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A MARKER-BASED METHOD FOR INFERENCES ABOUT QUANTITATIVE
INHERITANCE IN NATURAL POPULATIONS
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Abstract.—A marker-based method for studying quantitative genetic characters in natural populations is presented and
evaluated. The method involves regressing quantitative trait similarity on marker-estimated relatedness between indi-
viduals. A procedure is first given for estimating the narrow sense heritability and additive genetic correlations among
traits, incorporating shared environments. Estimation of the actual variance of relatedness is required for heritability, but
not for genetic correlations. The approach is then extended to include isolation by distance of environments, dominance,
and shared levels of inbreeding. Investigations of statistical properties show that good estimates do not require great
marker polymorphism, but rather require significant variation of actual relatedness; optimal allocation generally favors
sampling many individuals at the expense of assaying fewer marker loci; when relatedness declines with physical distance,
it is optimal to restrict comparisons to within a certain distance; the power to estimate shared environments and inbreeding
effects is reasonable, but estimates of dominance variance may be difficult under certain patterns of relationship; and
any linkage of markers to quantitative trait loci does not cause significant problems. This marker-based method makes
possible studies with long-lived organisms or with organisms difficult to culture, and opens the possibility that quantitative

trait expression in natural environments can be analyzed in an unmanipulative way.
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The covariance between relatives for a quantitative trait is
the basis for estimating the heritability of the trait (Falconer
1989). Classically, the level of relationship between relatives
is calculated from known pedigrees (Cannings and Thompson
1981). In unmanipulated natural populations, pedigrees are
usually unknown, which prevents inferences about herita-
bility. However, genetic markers provide information about
relatedness between individuals of unknown pedigree (Mor-
ton et al. 1971; Thompson 1975; Lynch 1988; Queller and
Goodnight 1989; Ritland 1996). In principle, the joint dis-
tribution of markers and quantitative traits should provide
information about heritability and other genetic components
of traits expressed in the field.

Knowledge of heritable variation in natural populations is
important in many contexts. While many studies have ex-
amined the intensity of selection on phenotypes S in the field
(Lande and Arnold 1983), information about the heritability
of phenotypes, which determines the genetic response to se-
lection (Falconer 1989), is lacking in most field studies of
phenotypic selection. Magnitudes of heritabilities and genetic
correlations also provide information relevant to rates and
directions of short-term evolution (Dickerson 1955), histor-
ical patterns of natural selection (Lande 1979), the targets of
natural selection in a suite of correlated characters (Price et
al. 1984), and strategies for the conservation of genetic vari-
ability underlying quantitative traits.

Because quantitative traits are highly dependent upon the
environment for their expression, field-based measures of
quantitative inheritance are most desirable for nondomesti-
cated species. An excellent approach for estimating natural
heritabilities is cross-fostering in birds (Boag and Grant 1978;
Smith and Dhondt 1980; van Noordwijk et al. 1980; Dhondt
1982; Alatalo and Lundber 1986). However, other species

! Present address: Department of Forest Sciences, University of
British Columbia, 193-2357 Main Mall, Vancouver, British Colum-
bia V6T 1Z4, Canada.

rarely present such opportunities for non-disruptive manip-
ulation. In Drosophila, studies are based on regressing lab-
raised progeny on wild-caught parents (Prout 1958; Coyne
and Beecham 1987; Riska et al. 1989), and these usually
provide only a lower bound for heritability. Studies with
plants predominately involve hand-planting sibships in the
field (c.f. Mitchell-Olds 1986; Shaw 1986). While manipu-
lative experiments of wild populations are powerful for es-
timation and hypothesis testing (Mitchell-Olds and Shaw
1987), even the most careful treatments may affect the ex-
pression of quantitative characters.

This paper presents a marker-based approach for estimating
heritabilities, genetic correlations, and other components of
quantitative genetic variation in natural populations. Barring
the location of individuals, the only disturbance involved is
the harvest of tissue for assay of genotypes at marker loci.
Unlike the method of Shaw (1987), this procedure is based
on inferred relatedness, as opposed to known relationship,
and on a linear modeling procedure, as opposed to maximum
likelihood. The linear approach does not make assumptions
about the distribution of relatedness, which normally spans
a continuum in natural populations. A maximum likelihood
procedure, suited for populations with prespecified, discrete
classes of relatives, is presented in Mousseau et al. (unpubl.).

In the wild, the expression of quantitative traits is more
complex than under experimental conditions. Both the en-
vironment and the pattern of relationship are more variable,
and consequently the phenotypic similarity between relatives
is often not simply a function of relatedness and heritability.
Other factors that may contribute include dominance effects
(broad-sense heritability), sharing of environments, and shar-
ing of inbreeding combined with inbreeding depression. This
paper attempts to include these factors in progressively more
complex estimation models.

Part of the procedure presented herein involves estimating
“actual” variance for coefficients of relatedness, for which
new estimators are developed. This is a previously unexplored
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aspect of population structure that in itself is a feature worthy
of study. For adequate statistical power to infer heritability,
the population should exhibit substantial actual variation of
relatedness. For inferences about quantitative inheritance un-
der these complex models, variation must be detected for more
complex modes of genetic relationship. Lack of variation for
these modes of relationship prohibits inferences about these
complex inheritance and actually bias simple heritability es-
timates if variation is present but undetectable. Thus, estimates
should be interpreted with caution due to possible undetected
violations of assumptions, and comparisons should be made
with estimates obtained via classic procedures. At least, em-
pirical studies are needed to document patterns of relationship
in real populations and their feasibility for use in this proce-
dure. To this end, a companion paper applies this procedure
to two populations of the common monkeyflower, Mimulus
guttatus (Ritland and Ritland 1996).

THE ESTIMATION PROCEDURE AND ITS PROPERTIES

We consider a single population in which individuals are
assayed for both genetic markers and quantitative traits. The
markers are assumed codominant and at least two are required
(dominant markers can be used if suitable measures of re-
latedness are defined). For the purposes of developing a re-
gression-based estimator, the sample consists of pairs of in-
dividuals (the same individual may be present in more than
one pair, as discussed later). Let the value of a quantitative
trait for the ith pair of individuals be Y; for the first individual
and Y, for the second. In the following, our genetic inferences
will rest upon a quantity termed the “‘phenotypic similarity”’:

_ -0 -

7.
! \%4

(1a)

where U and V are the sample mean and variance of Y, re-
spectively, in the population. Among all pairs, the average
Z; equals the phenotypic correlation.

The following models for the genetic and environmental
basis of phenotypic similarity are developed in a sequential
manner, from the simple to the complex. At the simplest,
relatives share additive effects of genes. At the next level of
complexity, relatives may share environmental effects (in-
cluding maternal effects), and this may be a function of dis-
tance between individuals. At the third level, relatives may
share dominant effects of genes. If individuals are inbred, a
fourth level involves shared phenotypes due to inbreeding
depression. By specifying how these factors combine to de-
termine phenotypic similarity, we can extract these genetic
and environmental covariances from the observed phenotypic
similarities, given the appropriate estimates of relatedness.

As Weir and Cockerham have emphasized (1984), one must
distinguish parameters from their estimates. Thus, in the fol-
lowing, estimated values are given by capital letters, while
the true parameter values are given in the corresponding low-
ercase letters.

A Regression Estimator for Heritability

With purely additive genetic variation and no sharing of
environment, the phenotypic similarity between two relatives
A and B for a quantitative trait is
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Zi = Zrih2 + €; (lb)

(c.f. Jacquard 1974, eq. 23; Falconer 1989, eq. 9.13), where
h? is the narrow-sense heritability, r, is the coefficient of
kinship between this pair of individuals i, and e; is an error
term, due to random environmental effects, with zero ex-
pectation. The coefficient of kinship is the probability that
two homologous alleles, one sampled from each individual,
are identical-by-descent (Jacquard 1974). Equation (1b)
stems from the fact that alleles at quantitative trait loci (QTL)
are identical between relatives with probability 7;, that there
are two alleles in diploids to consider; and that given an
identity, the expected product equals the heritability (oth-
erwise it is zero). For our purposes below, we will specifically
assume that variation of r, is uncorrelated with variation at
QTL, e.g., there is a random association between loci used to
estimate r; and QTL.

Equation (1b) is a linear model where A2 is the parameter
to be estimated and r, is an observable parameter. Normally,
regression requires that the predicting variable (relatedness)
be known without error, but with the proper precautions, we
can replace r; with its estimate from markers, R,. For N pairs
of relatives, standard regression theory gives the estimator
for heritability as

7 CZR

2 — ZZR
h A (Ic)

where Cz is the sample covariance between phenotypic sim-
ilarity (Z;) and estimated relatedness (R,), and V, is the actual
variance of relatedness among all pairs i. This actual variance
of relatedness, whose estimation is treated below, is less than
the variance among estimates of relatedness, the latter of
which includes statistical variance.

It can be shown that in a haploid population where two
markers are assayed, this regression estimator for heritability
is identical to the marker-based estimator for heritability giv-
en by Ritland (1989). The current work greatly increases the
power of heritability estimation by providing the most effi-
cient extension to data from more than two marker loci, and
to diploids.

Note that a method-of-moments estimator can be obtained
from eq. (1b) as

(1d)

%nl N

The problem with this approach is the relativity of relat-
edness estimates: in the absence of knowing the drift variance
incurred by the formation of relationships within populations,
the expection of all pairwise relatedness estimates from mark-
ers is zero (Ritland 1996). The only practical estimators for
heritability in this context are those based on variation of actual
relationship. Alternatively, if one assumes a mixture of un-
related and related individuals of prespecified degree, a mix-
ture model can be combined with maximum likelihood to give
estimates without resorting to explicit computation of actual
variance of relatedness (see Mousseau et al., unpubl.).

In natural populations, the clustering of relatives in similar
environments inflates the phenotypic correlation between rel-
atives, and must be taken into account for unbiased estimates
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of heritability. If environments are shared between relatives,
the phenotypic similarity can be rewritten as

Zi=2rih’ +r, + e (2a)

where r, is the correlation of environmental effects between
the individuals being compared. The joint estimator for her-
itability and environmental correlation is

.~ _C
h? = Z—‘Z/R (2b)
f, = Z — RR? (2¢)

where Z and R are the means of the Z; and R;.
If #* = 0, the statistical variance of the marker-based her-
itability estimate is approximately

() Ex
NVR(I s VR) G

where Ep is the estimation variance of relatedness. Of note
is the importance of actual variance of relatedness in the
accuracy of heritability estimates.

When true relatedness is low, the estimation variance of
relatedness (Eg) based on n marker loci, each with m alleles,
is about 1/[4n(m — 1)] (Ritland 1996). The actual variance
of relatedness (V) depends highly on the taxa studied, but
in monkeyflowers lies within the range of 0.0025 to 0.01
(Ritland and Ritland 1996; and unpub. data). This lower
bound corresponds to a combination of % half-sibs and 7%
unrelated, and the upper bound to % full-sibs and % unrelated.
These values provide ballpark figures for the statistical var-
iances to expect when using markers to infer heritability via
eq. (3). Statistical properties of eq. (3) are studied in greater
detail in a following section.

Var(h?) = 7

Estimation of Pairwise Relationship

Pairwise relatedness is notoriously difficult to estimate,
with the maximum likelihood method suffering from biases
with few marker loci. To reduce bias, method-of-moments
estimators can be used (Ritland 1996). This approach is based
upon the fact that between a pair of individuals denoted i,
each allele j at each locus k gives an estimate of relatedness,
Ry The estimate of relatedness is found by averaging es-
timates over alleles j and loci k using weights Wy,

R; = Zk Wi Rijk (4a)
Js
Formulae for computation of optimal weights are given in
Ritland (1996). A simplified estimator with weights efficient
at low levels of relatedness is

Six — Pj
R =c Y &K

(4b)
Jk P Jjk

where S;; is the fraction of alleles of type j at locus k shared

between the two relatives, P the estimated population fre-

quencies of allele j at locus k (with pair i excluded from the

calculation of Pj), and

-1
c:@m—ﬁ,

for n, the number of alleles at locus k.

(40)
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Estimation of Actual Variance of Relationship

Actual variance of relatedness occurs due to the presence
of a mixture of full-sibs, half-sibs, first-cousins, unrelated
individuals, and so on. There are no published methods for
estimating actual variance of relatedness with genetic mark-
ers. In this section, I describe a random effects, weighted
analysis of variance for estimating variance of relatedness.
This ANOVA is based on the statistical independence of
relatedness estimates among unlinked loci: estimates of re-
latedness from independent loci are subjected to a one-way
weighted ANOVA wherein the intraclass covariance equals
the actual variance of relatedness. While maximum likelihood
can alternatively be used here, it would require undue as-
sumptions about the distribution of actual relatedness.

In this approach, we first estimate the squared actual re-
latedness of a single pair of individuals i as follows. After
eq. (4a), let W, = X;W;, be the locus-specific weights for
estimating relatedness, such that relatedness is estimated as
R; = 3 W;R; where Ry = X;W;R;;. The expectation of R? is

r? + E wie? (5a)
3

for e} the error variance for locus k (this assumes errors are
independent among loci). Now, the weighted sum of squares
of locus-specific estimates of relatedness is

S Wik,

whose expectation is

r? Ek: wi + ; wiet. (5b)
By solving for r? in the above pair of equaitons, we obtain
an estimator for squared relatedness for pair i. Then by av-
eraging this over N pairs of relatives and subtracting the
squared mean relatedness, we obtain the estimator for vari-
ance of actual relatedness:

2
(2 WkRik> - > WiR%

. 1\ & |\ ¥ k

Ve = (ﬁ) b 1- > w?

where R = 3; R;/N is the average pairwise relatedness in the
population. If observations of marker genotypes are missing
for some loci for some pairwise comparisons, weights should
be normalized so they sum to unity. Note that since one
computes a between-locus (within individual) covariance, at
least two loci are required to estimate variance of actual
relatedness (and heritability). This is in accord with the earlier
work of Ritland (1989), wherein a two-locus model was used
to develop a crude estimator for heritability. Simulations of
marker data consisting of N full sib families indicate that eq.
(5¢) does recover reasonably unbiased estimates (propor-
tionally within 2-5% of true values). By contrast, the ex-
pected value of eq. (4a) when averaged over all pairs of
individuals is approximately zero regardless of the true levels
of relatedness (Ritland 1996), suggesting that marker-based
inferences about heritability can only be based on variance
of relatedness, and not mean relatedness.

_RZ

(5¢0)
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Genetic Correlations

The extension of this method to tne estimation of genetic
correlations among characters is straightforward. Interest-
ingly, it does not require estimation of actual variance of
relatedness. Hence, it is simplest to work with a linear model
involving covariances, and not correlations as in eq. (1a). For
pair i, let Y;, be the value of trait & in the first individual,
Y',; be the value of trait k in the second individual, and r; be
the relatedness between the two individuals. In the popula-
tion, let U; and U, be the respective means of traits 1 and
2, let v4;, be the additive genetic covariance between the two
traits and vy, the corresponding genetic variances, and let c,;,
be the environmental covariance between traits between in-
dividuals and c,; the corresponding covariances for single
traits. The models for the phenotypic covariances between
individuals for the same trait are

Yy, — Uy, — U =Yy = 2rva + ¢ + e (62)
(Yo = Up)(Yy; — Up) = Yoo = 2rivpn + cp + €
while that for different traits is

Y —UDY 5 — Up) =Y = 2rya + Copp + €552

(6b)

wherein the e is random error with zero mean. The regression
estimators for the additive genetic variances and covariances
are then

A CY R
V — 11
Al TVr
A Cyur
V — 22
2= Sy
. Cy,Rr
Darp = L2k 6
A12 2V, (6¢)

where the Cyy are the covariances between the Ys of eq. (6b)
and estimated relatedness, e.g., Cy g = Cov(Y},, R). Since
what we seek is (v412/V (¥4, 742)), an estimator for the genetic
correlation is

Paz = —F——
CYHRCY\zR

The actual variance of relatedness has canceled out. This
implies that one marker locus (not two, as for heritability)
is the minimum requirement. However the error of estimation
of the genetic correlation as normally defined—the ratio of
the covariance of additive effects to the geometric mean of
the variance of additive effects—still has a large estimation
variance, on the order of 1/4? times that of heritability. Thus,
one must have good estimates of additive genetic variances
for both characters. Note that the sign of the genetic corre-
lation, which is sufficient for tests of many hypotheses in
evolutionary biology, is simply given by the sign of Cy, .

(6d)

Statistical Properties of Estimators

Heritability has always been difficult to estimate, suffering
from large standard errors even in well-designed experiments.
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TaBLE 1. Estimated values of heritability in Monte-Carlo datasets
(m = number of alleles per locus, n» = number of loci). Case A: %
half-sibs, % unrelated (» = 0.0313, V, = 0.0029). Case B: % half-
sibs, ¥ full-sibs, 3% unrelated (r = 0.0487, V, = 0.0078).

m n h? (SE)
A. true k2 = 0.0
2 32 0.001 (0.005)
4 8 —0.005 (0.007)
B. true 42 =0.0
2 8 0.005 (0.004)
4 4 0.000 (0.003)
16 2 —0.009 (0.002)
16 8 0.001 (0.001)

B. true k2 = 0.25

8 0.289 (0.005)
32 0.256 (0.003)
4 0.260 (0.004)
8 0.250 (0.003)

AR ON

The inference of relatedness not only makes this problem
more acute, but magnifies the potential for bias and increases
the discrepency between predicted variance (eq. [3]) and true
statistical variance. For part of what follows, Monte-Carlo
simulations were performed. An artificial dataset of 1000
pairs was created with known values, then heritability esti-
mated via the above procedure. This was repeated 10° times
for each of several combinations of numbers of alleles m and
number of loci n (allele frequencies were assumed even at
each marker locus).

Potential Biases

Table 1 gives examples of bias that may occur. In case A,
where % of the pairs are half-sibs and the remaining unrelated,
bias is less than 0.01 for zero true heritability. However,
because actual variance of relatedness was low (0.003), es-
timates of heritability were very unreliable with few alleles
or loci. In case B, where variance of actual relatedness was
higher (0.0075), a pattern of bias is revealed in which at low
true heritability, heritability is underestimated, while at high-
er heritability, it is overestimated. These biases are small,
and disappear with greater numbers of marker loci or greater
marker polymorphism. In general, it seems that when both
the variance of relatedness and the degree of marker infor-
mation are sufficiently large, the expected estimate of heri-
tability is close to its true value.

Statistical Errors

The simulations show that eq. (3) with Ex = 1/[4n(m —
1)] gives values within 10-20% of the true value, except
when true variances are large, where predicted variance is
too low (results not shown). The true variances drop sharply
from n = 2 to 4 loci, and from m = 2 to 4 alleles (with one
locus, variance of relatedness cannot be estimated). Beyond
these values, the simulations demonstrated that alleles are
roughly as informative as loci, e.g., doubling the number of
alleles at all loci has same effect as doubling the number of
loci in terms of decreasing the estimation variance of heri-
tability.
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Fic. 1. Expected standard error (SE) per pair, per locus, of (a) the
estimate of actual variance of relatedness V, and (b,c) the estimate
of heritability 42, as a function of number of marker loci and number
number of equifrequent alleles at the marker loci. The optimal al-
location of experimental effort in terms of the numbers of marker
loci assayed is given by the minumum SE for each allele number
class (1000 pairs of individuals are assayed in each case, results
based upon simulations; see text).

Experimental Design

Because inferences are based on nonmanipulated individ-
uals of unknown pedigree, the main choices of experimental
design involve altering the numbers of marker loci assayed,
the number of individuals sampled, and the spatial pattern
of sampling. The number of marker loci needed for adequate
estimation of relatedness can be calculated roughly as that
needed to ensure E; = Vi (the estimation variance of heri-
tability is doubled by markers, c.f. eq. [3]). This is n(m —
1) between 25 and 100 (e.g., 25-100 diallelic loci, or 12-50
triallelic loci, or 2-10 decallelic loci, etc.). Thus for cases of
stronger population structure (Vz = 0.01) isozymes may be
adequate, but with weaker structures, microsatellites or more
variable markers may be needed.

This assumes no tradeoffs between assaying individuals ver-
sus marker loci. If total sample size is fixed (number of markers
X number of individuals = constant), the question arises as
to how to best partition effort into assaying more loci versus
assaying more individuals. This is the “optimal allocation”
problem for point estimation in a random-effects ANOVA (see

KERMIT RITLAND

Scheffe 1959). For estimating variance of relatedness, the op-
timum allocation formula of Scheffe (1959, p. 237, I, with 6
= Vip/Vg = 4(m — 1)Vp) is just 2 marker loci and as many
individuals as possible, assuming low true Vg.

The optimal allocation for heritability estimation is not the
same as that for variance of relatedness, but is difficult to
obtain analytically. Based on the above simulations, Figure
1 shows the standard error of estimates, on a per-pair, per-
locus basis (the variance of estimates obtained from 1000
pairs was divided by the number of loci used). For each case
of allele number (m = 2, 4, 8, 16), the number of loci at
which the SE is minimized (the number of loci ranges from
n = 2,4, 8,16, 32) is the optimum allocation. Figure la
shows that as predicted by Scheffe’s formula, variance of
actual relatedness is optimally estimated by the minimum
number of markers (two).

By contrast, often more markers are optimal for estimating
heritability (Figure 1b—c). Generally 4-16 loci are optimal,
and more loci are needed with fewer alleles or when actual
variance of relatedness is weaker; fewer loci are needed in
the opposite cases (Figure 1b). Estimates with few markers
and few alleles have very poor properties, reflecting cases
where the actual variance of relatedness is often estimated
as zero or negative. However, these calculations have as-
sumed a constant per-locus cost of marker assay. Due to the
effort of DNA isolation, the cost for the first locus is higher,
and favors the assay of more marker loci than predicted by
Figure 1.

The spatial pattern of sampling affects the magnitude of
actual variance of relatedness in the sample (that is, if one
cannot sample all individuals in a population). In our study
(Ritland and Ritland 1996) we chose to sample a continuous
population with a single transect spanning the population,
within which adjacent pairs or triplets of plants were sampled,
separated by a random distance. Sampling in both dimensions
may increase the number of pairwise comparisons within a
specified distance.

In any sampling plan involving a population with individ-
uals genetically isolated by distance, the number of pairwise
comparisons should be as large as possible (ca. 104 or even
10° if possible), owing to the innate large estimation variance
of heritability, but not so large as to underrepresent larger
scale patchiness of the population. In this light, an alternative
to transect sampling would be to sample patches of individ-
uals in a gridwork, where within each patch every individual
is sampled. For total sample size N, if n were sampled in
each patch, the total number of pairwise comparisons with
this scheme is N(n — 1)/2. For example, if 500 individuals
were sampled in 10 patches (50 in each patch), the number
of pairwise comparisons is reasonable (12,250).

As a total alternative, one can choose those populations or
even those taxa expected to show greater population sub-
structure. One expects higher variance of relatedness in small
populations consisting of a few family units, where randomly
chosen pairs of individuals are likely to be related, or in large
populations with limited dispersal of offspring, where indi-
viduals of close proximity are likely to be related.

Nonrandom Association of Markers with QTLs

Bias may occur from non-random association of markers
with quantitative trait loci (QTLs). Simulations were run
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TABLE 2. Bias of heritability estimates due to associations of QTLs
with markers. True h? was 0.5, see text for other details. Bias is
very small except with complete association.

Heritability estimate

No. markers No. QTLS Mean SE
QTLs randomly distributed
2 2 0.5273 0.0058
2 8 0.5173 0.0063
8 2 0.4952 0.0032
8 8 0.5028 0.0031
QTLs completely disassociated with markers
2 2 0.5185 0.0067
2 8 0.5319 0.0069
8 2 0.4993 0.0034
8 8 0.4989 0.0031
QTLs completely associated with markers
2 2 0.7880 0.0077
4 4 0.6363 0.0044
8 8 0.5668 0.0033
16 16 0.5296 0.0029

where the genome consisted of 16 linkage blocks, with no
recombination within blocks. The genetic component of the
quantitative trait was determined by 2-16 QTLs that were,
with respect to markers, either randomly distributed, com-
pletely associated with markers (no recombination), or com-
pletely disassociated with markers (always unlinked). All
markers had four alleles.

Table 2 gives the main features of the simulation results.
With random association of markers with QTLs, and with QTLs
disassociated with markers, a slight upward bias was ob-
served with low marker polymorphism, but no bias was ob-
served with more marker polymorphism. The bias did not
depend on the number of QTLs. If QTLs were completely as-
sociated with markers, significant positive bias occurred, par-
ticularly when markers were few. However, this is an extreme
case, rarely expected to be encountered in real data.

Estimation of the Spatial Correlation of Environments

We now proceed to more complex versions of the linear
model for estimating quantitative genetic parameters. For
brevity the explorations of statistical properties are limited
and the above conclusions are assumed to qualitatively apply.
However, we emphasize that statistical problems only get
worse from this point, that caution needs to be excercised
with any treatment of real data, and that much further work
remains to find improved statistical models and methods for
marker-based inferences about quantitative inheritance in the
field.

If resources have a patchy distribution within a population,
individuals who reside near each other will share environ-
ments, causing an environmental correlation for a trait that
decreases with the physical distance between individuals. If
this is ignored, heritability estimates are not biased when the
environmental correlation decreases independently of relat-
edness with distance. However, in populations with restricted
gene flow, nearby individuals are also more related (e.g.
Wright’s ‘‘isolation-by-distance’’), and both relatedness and
the sharing of environments will decrease with distance (Fig.
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FiGg. 2. Decrease of phenotypic, environmental, and genetic cor-
relations (relatedness) as a function of physical distance between
individuals in populations with restricted dispersal. The variance
of relatedness has two components: that due to variation of distance
between individuals, and that due to variation of pedigree at a
constant distance (indicated by vertical bars).

2), confounding and biasing marker-based estimates of her-
itability.

One approach to incorporating distance-dependence of
shared environments is to classify relatives into distance
classes, such that pairwise comparisons are made between
individuals of approximately the same distance, then to es-
timate heritability for each class and average estimates over
classes. However, with this approach, small sample problems
may be introduced. More importantly, limiting comparisons
to within distance catagories omits variance of relatedness
due to physical distance, reducing the overall statistical pow-
er. Under isolation-by-distance, variance of relatedness has
two components: one due to variation of distance between
individuals, and another due to variation of pedigree at a
constant distance (c.f. Fig. 2).

A Model for Local Environments

A second approach is to directly incorporate environmental
patchiness into the estimation model. However, this requires
specifying a function for the environmental correlation. As
a first approximation, the environmental correlation between
a pair of individuals i decreases linearly with the physical
distance d; separating them as

a, — b.d; (7a)

where a, is the environmental correlation between individuals
sharing the same environment and b, is the decrease of cor-
relation per unit distance. Note that a, is less than the total
environmental variance, as it does not include variance spe-
cific to individuals such as accidents of development. Also,
to avoid the inference of negative environmental correlations
at greater distances, an exponential function or some other
simple function can alternatively be used in place of eq. (7a),
but this would require a nonlinear regression procedure. If
comparison of relatives are restricted to close distances, this
problem probably will not occur.

The linear model for phenotypic similarity becomes (after
eq. [2a])
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Fic. 3. Reliability of estimates as a function of number of adjacent

neighbors used in the estimation procedure, under four cases of an

isolation by distance model described in the text. The optimal number is circled in each case.

Zi = 2rih2 + a, — bed,‘ + e; (7b)

with the joint estimates of heritability and environmental
parameters being

A

CzrVp — CpzCry

h? = (8a)
2(VRVD - C%?D)

58 — CDZVR - CRZZCRD (Sb)
2(VgVp — C2p)

4, = Z — Rh?> — Db, (8¢)

wherein the V and C, respectively, denote sample variances
and covariances, with indices signifying trait similarity (Z),
genetic relatedness (R), and physical distance (D); Z, R and
D are the means of the Z,, R,, and D,, respectively. With no
correlation of relatedness with distance (Cgz = 0), the esti-
mator for heritability reverts to eq. (1c) and the slope of the
environmental correlation simplifies to b, = CpzVp.

Sampling Relatives under Isolation by Distance

In populations where relatedness declines with physical
distance, the high relatedness between proximate individuals
suggests that the heritability estimation procedure should re-
strict pairwise comparisons to individuals lying within a cer-
tain distance of each other (a ‘“‘cutoff’” distance). However,
the power to infer heritability depends primarily upon vari-
ation of relatedness, which can be strongly associated with
variation of physical distance between individuals (Fig. 2).
This favors a larger distance cutoff that includes less related
individuals. Now, if relatedness declines exponentially with
distance, then as the cutoff distance is increased, variation
of relatedness will eventually start to decrease as more un-
related pairs are added, suggesting the existance of an optimal
cutoff of physical distance that confers the greatest power to
infer heritability compared to other distance cutoffs.

To verify this optimal distance cutoff, a simulation was
conducted where 10,000 individuals were placed along a tran-

sect at equal distances. In the baseline simulation, relatedness
between successive individuals was randomly chosen, with
equal probability, to be either zero or r = 0.125 (half-sibs),
and data generated under the case of four triallelic marker
loci and a true heritability of 0.25. This created a geometric
decrease of relatedness with distance. Cases of greater num-
bers of loci, higher variability of relatedness (r = 0 or r =
0.25 with equal probability) and higher mean relatedness,
were also considered. Figure 3 gives the results in terms of
the SE of the heritability estimate as a function of the number
of neighbors used (e.g., the distance cutoff).

Figure 3 shows that in two of four cases, an optimum
distance cutoff does exist (the SE is minimized), but this
optimum is shallow. With higher mean relatedness, the op-
timum increases, while with higher variance of relatedness,
the optimum decreases. Also, increasing the number of mark-
ers slightly increases the optimum. These results suggest than
in any analysis of real data where physical distance is a
covariate, heritability should be estimated under several cut-
offs, and that the cutoff giving lowest error of estimation be
chosen as the optimum cutoff.

Dominance and Inbreeding Depression

At least two other factors may significantly affect the cor-
relation between relatives in natural populations: dominance
and inbreeding. Beyond this, the full description of the co-
variance between relatives in partially inbreeding populations
is inordinately complex, requiring at least five genetic pa-
rameters (see Harris 1964; Jacquard 1974). While the appro-
priate coefficients of relationship for these can be estimated
from marker data (Ritland 1987), and therefore these quan-
titative genetic parameters estimated in principle with a pro-
cedure analogous to above, the statistical power of such in-
ferences would be extremely low. In this light, it has been
noted if one assumes only additive and dominance effects
(two of five parameters) together with a change of the mean
phenotype with inbreeding, little bias of estimates occurs up
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to an inbreeding coefficient of 0.35 (de Boer and van Ar-
endonk 1992). Thus, with some sacrifice of realism, in this
section we additionally consider just dominance and mean
inbreeding depression, with the qualification that inbreeding
not be very strong.

Dominance

Dominance variance inflates the correlation between rel-
atives that may share both alleles at a locus identically by
descent. These are generally stronger relatives, such as full-
sibs, whose covariance is inflated by % of the dominance
variance (half-sibs are unaffected). In the absence of inbreed-
ing and shared environments, the phenotypic similarity be-
tween relatives (eq. [1a]) becomes

Zi = 2r,-h2 + 21”2,‘(1‘1 - hZ) + e, (9)

where H is the broad-sense heritability (additive plus dom-
inance genetic variance), and r,; is the probability that, at a
randomly chosen polymorphic locus, the pair of relatives i
share both alleles by descent (A, see Jacquard 1974, eq. 23).
Estimators for this coefficient of relatedness for individuals
are given in Ritland (1996).

Inbreeding

If the level of inbreeding varies among pairs of relatives,
and inbreeding effects a systematic change on the phenotype
(e.g. inbreeding depression), then relatives share phenotypes
due to shared inbreeding. For the ith pair of relatives, let the
inbreeding coefficient of the first individual be f;, and that of
the second individual be f;’. To describe this correlation due
to shared inbreeding, let inbreeding have a linear effect by
upon the normalized phenotype value as

Yi_U
4%

where b;is the regression of the normalized phenotypic value
. on f, fis the average inbreeding coefficient in the population,
and other terms are from eq. (1b). In the absence of other
factors determining similarity, the expected phenotypic sim-
ilarity between two individuals (eq. [1b]) equals the “‘in-
breeding correlation,”

=b(fi—f)te (10a)

E[Z] = foibf (10b)

where

L= —PE =D (10c)

measures the sharing of inbreeding coefficients between the
two individuals. Finding this quantity requires estimating f
for each individual. This involves the same procedure as
estimating r (eq. [4b]), with S defined as the observation
of alleles identical-by-state for a single individual i; if ho-
mozygous, then S;; = 1; if heterozygous, then Sy = 0 (see
Ritland 1996 for details).

This inbreeding correlation has two components, one due
to shared inbreeding coefficients (f; and f;') and one due to
inbreeding depression (7). Both must be present for its pres-
ence. Equation (10b) can also be obtained from Jacquard
(1974, eq. 23) by redefining his V4 as 3p;82 — (Sp:3,)2, so
that the coefficient multiplying his D becomes f,. Thus b7
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is closely related to the mean of dominance deviations in a
corresponding homozygous population.

If one seeks estimates of heritability defined in terms of
an outbred, reference population, one must account for the
increase phenotypic variance due to inbreeding (by definition,
the additive genetic variance is unaffected). In the absence
of epistasis, it increases by the factor (1 + f), so that in-
breeding effects can be removed by multiplying heritability
estimates by (1 + f), using f estimated from markers.

Inbreeding has also been recognized to inflate the corre-
lation between relatives and hence bias estimates of herita-
bility, regardless of changes in phenotypic variance. For ex-
ample, r = % for full-sibs of outbred parents, while r = %
for full-sibs of completely inbred parents, resulting in over-
estimation of heritability in the presence of any undetected
inbreeding. However, a unique property of the marker-based
estimate of heritability is that since r is estimated from ge-
netic markers, the increase of r due to inbreeding is incor-
porated, resulting in no bias of heritability estimates due to
inflated relatedness.

The General Model

A total of five quantitative genetic parameters enter the
general model: narrow-(42) and broad-sense (H) heritabilities,
the regression of fitness onf(b/%), and the intercept (a,) and
slope (b,) of the environmental correlation. To jointly esti-
mate all these, or any subset of these, a matrix formulation
of the linear model quantitative genetic parameters is now
presented. In many situations, a reduced set of parameters
will be estimated. For example, inbreeding in animals, or
dominance for certain characters, may be assumed absent. In
the full model, the phenotypic similarity Z; is related to the
quantitative genetic parameters through the linear model

Z,‘ = a, — d,‘be + 2r,»h2 + 27'2,' (H - hZ) +f2lbj% + €;

(11)

The estimated parameters consists of the vector B = (a,, b,,
h?, H — h?, b?) and the independent variables lie in the vector
X = ({1, d;, 2ry, 2ry;, f5}, i = 1, N). The phenotypic simi-
larities are placed in the vector Y (or matrix, if more than
one character). The least-squares estimates of parameters are
then B = (XXT)~IXTY.

Estimating the Variance-Covariance Matrix of Actual
Relationship (XXT)

Finding the full set of estimates requires not only estimating
three different types of relationship for each pair of individuals,
but their actual variances and covariances in the population
as well. This involves a straightforward extension of the ANO-
VA procedure developed earlier (eq. [5c]). To describe this,
let the “‘coefficients of relationship R, and R, refer to either
r, ry or f (e.g., £ and m index coefficients of relatedness and
inbreeding). For a pair of individuals i, we define the weighted
sum of squared relatedness (£ = m) or cross-product of re-
latedness (€ # m) among n loci (indexed by k) as

S = kZl Wi Wion R Riton- (12a)
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The individual coefficients of relatedness or inbreeding are
estimated by the general form

n
Rie = 2, WiRe, (12b)
and are used for the total sum of squares. Taking advantage
of the fact that estimates are statistically independent among
loci, for N pairs of relatives, the estimator for actual variances
and covariances of relatedness as

. (1\ & [ R.R,, — 52,
Vrem - (N) ’=21 (1 - Z Wit’Wim)’

There are two addendum to computing the variance-covari-
ance matrix XXT. First, covariances involving distance d; are
computed using relatedness estimated from all marker loci
(there is no need for the ANOVA). Second, when computing
f2; on a locus-by-locus basis, I have found it best to use total
f for one individual (regardless of locus) while using locus-
specific estimates of f for the second individual. This elim-
inates a slight positive bias when estimating the actual vari-
ance of this quantity using the ANOVA formula (12b).

(12¢)

Statistical Properties of the General Model

The cost of more elaborate statistical models is often an
increase of the statistical variance of parameters (such as
heritability) formerly estimated in simpler models. This prob-
lem arises whenever the independent variables are correlated.
Thus to adequately characterize properties, we need to know
what are the natural levels of variation and covariation for
the two- and four-gene coefficients of relatedness, the sharing
of inbreeding coefficients, and the sharing of environments
(the components of X). Of course, this information is lacking,
as these coefficients have never been estimated.

To examine statistical properties of the full model in the
absence of such information about relevant parameter values,
I nevertheless constructed artificial datasets under two sce-
narios of relationship: (a) a mixture of full-sibs, half-sibs,
and unrelated, in proportions 0.2, 0.2 and 0.6 at a closer
distance, and 0.1, 0.1 and 0.8 at a further distance (thus
creating isolation-by-distance); (b) a mixture of full-sibs,
selfed-sibs and unrelated in the same proportions at two dis-
tances. Markers all had four alleles with frequency distri-
bution {0.4, 0.3, 0.2, 0.1}, the true values of quantitative
genetic parameters were zero, and cases of 8, 16 and 32
markers were examined. Variances were computed by boot-
strapping a dataset consisting of 1000 pairs of individuals.

When distance was added to the model for narrow-sense
heritability (eq. [7b]), the error of the heritability estimate
increased very slightly (< 5%). In addition, errors for the
environmental factors (a, b,) were several times less than that
for heritability. This would seem to imply that the joint es-
timation of heritability and spatial environmental correlations
has good power.

For inferring broad sense heritability and the inbreeding
correlation, we need to first estimate the means and actual
variances of the higher-order relatedness coefficients r, and
f> from markers. These simulations indicated that their es-
timation properties were quite good, showing low bias and
low variance. In fact, the errors in inferring actual variance
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of these quantities were generally less than that for the two-
gene coefficient r (but other scenarios of relationship would
result in greater errors for four-gene parameters). Increasing
the number of marker loci always bestowed greater reductions
in the statistical errors of four-gene quantities than for ». The
estimation of r, showed greatest uncertainty but greatest ben-
efit with increasing numbers of markers. For example, when
16 instead of 8 markers were used, the SE for the actual
variance of r, fell by 77%, that for the actual variance of f>
fell by 61%, while that for the actual variance of r fell by
only 22%.

Under a model of narrow and broad-sense heritability, ex-
treme variance of heritability estimates were encountered in
both scenarios. This was due primarily to problems with
jointly estimating r and r,. Even though the estimation vari-
ance for the four-gene parameter, r, is normally less than
that for the two-gene relatedness, r, (Ritland 1996), the cor-
relation of r and r, among classes of relatives was strong.
This colinearity of r and r, may be a general problem. Another
problem is that actual variances of r, are smaller than that
for r, increasing the likelihood that estimates will be zero or
negative, disallowing joint estimates of narrow- and broad-
sense heritability.

Under model of heritability and inbreeding correlations,
the inbreeding correlation showed an error about equal to
that for heritability. The increase of the SE for heritability
ranged from 20% (32 markers) to 50% (8 markers). Thus,
more markers seem to mitigate increases of variance due to
model complexity. However, these increases depend greatly
on the pattern of relatedness; with greater proportions of
selfed sibs, the increase was not nearly as great.

A Computer Program

As part of the development of this procedure, a FORTRAN
computer program was written that implements the full es-
timation model, including X — Y distance coordinates, as
well as reduced versions of the model. A second program
generates simulated data. For details of program features and
availability, contact the author.

DisCUSSION

This paper has presented an estimation procedure for quan-
titative genetic parameters using marker-inferred, natural lev-
els of relatedness. Estimation of up to five quantitative ge-
netic parameters has been described: narrow-(4?) and broad-
sense (H) heritabilities, the squared regression of fitness on
the inbreeding coefficient (bf), and the intercept (a,) and slope
(b,) of the environmental correlation between individuals.
This procedure is especially appropriate for the many organ-
isms that either cannot be mated in any controlled fashion,
or whose progeny are difficult to grow. This applies partic-
ularly to long-lived organisms, such as trees. In addition, for
all species there is the appeal that inferences can be made
with unmanipulated material in natural habitats, so that spu-
rious environmental effects are eliminated.

However, the expense of molecular markers, the uncer-
tainty of inferred relationships, and the limits of population
structure place definite constaints on use of this method, par-
ticularly when more complex models involving several quan-
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titiative genetic parameters are invoked. While simulations
have demonstrated the ability of this method to recover in-
formation from real data, the statistical power of this pro-
cedure depends critically on the patterns of relatedness in
real populations, specifically the extent of actual variance of
relatedness. This is largely unknown, in large part because
there has been no reason for population geneticists to measure
actual variance of relatedness.

The development of complex models for quantitative trait
similarity has also required a complex description of genetic
relatedness, in that several different coefficients of related-
ness are actually required for a full description of relation-
ship. With the exception of the basic parameter of relatedness,
the two-gene relatedness, r, statistical procedures for esti-
mating these quantities and their actual variances have not
been previously considered, and had to be developed for the
purpose of this paper. The use of these estimators (egs. [5c],
[12a—c], and Ritland 1996) should allow workers to deter-
mine the ultimate feasibility of marker-based inference of
quantitative genetic parameters. Also, these coefficients of
relatedness are of interest in themselves as descriptors of
population structure for other applications such as conser-
vation genetics.

In all estimation formulae, the heritability has the pleasing
interpretation as ‘“‘the (partial) regression of character simi-
larity Z on relatedness r.” It is a partial regression if the
additional quantitative genetic factors, such as the environ-
mental correlation or shared inbreeding, are also taken into
account. This interpretation provides a linkage of heritability
to phenotypic selection theory, wherein the phenotypic se-
lection intensity is “‘the regression of fitness on the character
phenotype” (a partial regression if several characters are in-
cluded in the analysis, c.f. Lande and Arnold 1983).

The Precision of Inference and Experimental Design

Heritability is a quantity already notorious for large errors
of estimation, as standard errors of order 0.1 can result from
the best optimized experimental designs involving known
relationships. The inference of relatedness adds this uncer-
tainty to the estimate of heritability. Beyond sample size,
there are two major factors that determine the estimation
variance (eq. [3]).

The first factor is the estimation variance of relatedness.
In general, it does not take an enormous number of loci to
get an adequate estimates of pairwise relatedness for the pur-
pose of heritability estimation, for as discussed earlier, gen-
erally n(m — 1) should be between 25 and 100, for n loci
and m alleles per locus. One could do well with a dozen
triallelic isozyme loci, with four microsatellite loci each with
12 alleles, or with other combinations. However, simulations
indicated that the optimal division of experimental effort fa-
vors sampling more individuals than one might expect, at the
expense of assaying more markers within those individuals
(c.f. Fig. 1).

The second factor is the actual variance of relatedness.
There are two basic ways the investigator can exert some
control over this factor: optimized spatial sampling designs,
as discussed earlier, or the choice of populations or species.
Species with wide dispersal of progeny would be difficult to
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study, whereas species where progeny establish within a few
neighbors, such as many conifers, would be feasible to study.
In addition, if one wishes to jointly estimate additive and
dominance variance, the levels of two- and four-gene relat-
edness (r and rp) should not be greatly correlated among
classes of relatives. However, this correlation of relatedness
coefficients in natural populations is a great unknown.

If actual variation of r, is present, it may turn out that
under a more continuous isolation-by-distance case, where
local drift as well as recent coancestry via pedigree deter-
mines total relatedness, that r and r, are largely independent,
allowing joint estimation. Barring this, one will probably
have to exclude dominance variance, as in controlled exper-
iments in mostly domesticated plants and animals, its quan-
tity is quite small compared to additive genetic variance,
particularly when a transformation is found that converts the
phenotypic distribution to Gaussian (Powers 1950). However,
theory predicts that dominance variance should be relatively
large for fitness characters (Mousseau and Roff 1987), mak-
ing its inference relevant for field studies of life history char-
acters.

Unresolved Actual Variances

Lack of variation for certain parameters of actual relat-
edness or inbreeding may not bias estimates, but it does make
certain quantitative genetic parameters nonestimable. In these
cases, if mean levels of relatedness are still positive and
significant, the overall phenotypic correlation would be af-
fected through the constant term (a, of eq. [7b]). For example,
if both the means of r and r, are positive, but actual variance
positive for only r, any dominance variance has a constant
contribution to the phenotypic correlation, and does not bias
estimates of A2, since r, does not vary and therefore cannot
affect the association between phenotypes (Z) and r via cor-
relations between r and r,. However, the broad-sense heri-
tability is nonestimable.

Inbreeding depression combined with shared of inbreeding
levels between compared individuals can also substantially
contribute to the phenotypic correlation between relatives.
Again, the mean level of shared inbreeding depression has
no effect on the correlation; this shared inbreeding depression
must vary significantly among pairs of individuals for it to
bias estimates of other quantities such as heritability.

Inferences Involving Individuals Compared Several Times

When the data consists of groups of more than two related
individuals, and all possible within-group pairwise relation-
ships are considered, the estimates of relatedness and char-
acter similarity will be statistically correlated when groups
of individuals are mutually interrelated. However, if the av-
erage level of relatedness is low, or the variance of relatedness
within groups is low (or, if true, heritability is low), a suf-
ficient approximation is to use all pairwise comparisons be-
cause the statistical correlation between pairs is low. For
example, if groups consist of pure full-sib families, there is
no within-group variance of relatedness, and the correlation
computed from all pairwise combinations within families (the
within-group correlation) is computationally equivalent to the
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Fic. 4. A simple microphylogenetic structure that can bias esti-
mates (see text).

statistically efficient estimate of the within-group correlation
given by a one-way, random-effects ANOVA.

Previous approaches for estimating quantitative genetic pa-
rameters using the network of relationships, such as that of
Shaw (1987), not only assume known relatedness, but also
assume multivariate normality. In other words, all depen-
dencies of the data higher than order two (variances and
covariances) are negligible. With higher levels of relatedness
and heritability, ideally, one should account for these higher-
order dependencies of pairwise data. However, this requires
that the estimation model include both higher-order coeffi-
cients of relationship (e.g., variance of relatedness among
groups) as well as higher-order moments of quantitative vari-
ance. For example, in the simplest case of a group of three,
the additional statistical dependencies are given by the third
moment of relatedness and character similarity, E[r;,3(Y; —
Uy)(Y, — Uy)(Y; — Uy)] = M;3, where r,; is the probability
all three relatives share alleles identity-by-descent and M3 is
the third-moment of additive alleles (groups of four or more
relatives would have terms of r2; and V24, where r; are the
two-gene coefficients of relationship and V, the variance of
additive effects). This model would become prohibitively
complex with groups of more than four individuals.

If one simply computes estimates using all pairwise com-
binations of relatives, regardless of their statistical interde-
pendence, point estimates will likely be unbiased, but the
validity of statistical tests is questionable, as the unit of in-
dependent observation is not easily determined. In the above
simulations, and in our field study (Ritland and Ritland 1996),
the bootstrap method was used to compute error variances,
with individual the unit of resampling (identical comparisons
were omitted). Bootstrapping of individuals would assume a
homogenous ‘‘microphylogenetic” structure within the pop-
ulation. In Figure 4, a simple example of a nonhomogenous
structure is given. The length of branches connecting indi-
viduals (labeled A-H) depict the level of relatedness: smaller
branches denote closer relatedness, and individuals A-D are
essentially unrelated to individuals E-H. In this figure, in-
dividuals within groups are not statistically independent from
each other, and the effect of bootstrapping individuals would
be to underestimate the true statistical variance. The extent
of this bias due to microstructure depends on the extent of
dichotomous phylogenetic structure, and is less of a problem
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when genetic isolation is gradual or continuous. Inspecting
Figure 4, we see that bootstrapping should ideally be done
at the group level (i.e., with groups A-D and E-H as the
units of resampling). However, now this reduces the number
of independent units such that we may not have enough for
valid bootstrapping. The appropriate bootstrapping test under
such structure is an area worthy of further investigation.

Conclusion and Prospects

In any estimation procedure, one must strike a compromise
between model tractability, estimability of parameters, and
biological realism. The procedure in this paper has been de-
scribed for several genetic and environmental factors, such
as dominance, inbreeding depression, and shared environ-
ments. The problem is that statistical power generally de-
creases with increased model complexity when the contrib-
uting factors are intercorrelated. While future studies should
consider all relevant factors influencing the correlation be-
tween relatives, ultimately we must compromise between
simplicity (idealism) and complexity (realism), which is the
art of science.

This proposed method is but one of several new approaches
for studying quantitative traits via molecular markers. In this
area, the most frequent application is the mapping and char-
acterization of individual quantitative trait loci, or QTL (Hase-
man and Elston 1972; Long et al. 1995), which requires con-
trolled crosses and therefore known pedigrees. The mapping
of QTL with unknown pedigrees, e.g., with material collected
from wild populations, is an interesting prospect, and seems
most possible using concepts borrowed from allele-sharing
methods (Lander and Schork 1994). Another prospect for
marker-aided inference is for those cases where inferences
about heritability are made when maternity is known but
paternity unknown (c.f. Konigsberg and Cheverud 1992).
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