
Grand Central Dispatch
A better way to do multicore.

Power play
A little reduction in clock speed can go a long
way in reducing power consumption. That’s
because the relationship between clock speed
and power consumption isn’t linear. The
 numbers vary with specifi c processor models
and manufacturing processes, but reducing
the clock speed of a processor by as little as
20 percent can cut the power consumption of
the processor by nearly one-half. And you can
add a second core to that processor at the
reduced clock speed and nearly double the
performance while seeing just a tiny increase
in overall power consumption.

Technology Brief
Grand Central Dispatch

Grand Central Dispatch (GCD) is a revolutionary approach to multicore computing.
Woven throughout the fabric of Mac OS X version 10.6 Snow Leopard, GCD combines
an easy-to-use programming model with highly effi cient system services to radically
simplify the code needed to make best use of multiple processors. The technologies in
GCD improve the performance, effi ciency, and responsiveness of Snow Leopard out of
the box, and will deliver even greater benefi ts as more developers adopt them.

A Software Challenge
Historically, microprocessors gained speed by running at faster and faster clock speeds.
Software ran faster as the clock speed increased without programmers having to do
any additional work because the software was typically written to do things in consecu-
tive sequence, an operation that could be sped up easily.

Processor clock speeds began to reach a limit because power consumption and heat
became problematic, particularly for mobile systems. Because of these issues, CPU
vendors shifted their focus from increasing clock speed to putting multiple processor
cores into a single CPU, which would use less total energy per unit of computing power.

Although there is more computing power in a multicore processor, software no longer
automatically becomes faster. Optimal multicore performance requires that operations
be performed in parallel, so most applications need to be signifi cantly rewritten to take
full advantage of modern multicore systems.

The dominant model for concurrent programming—threads and locks—is too diffi cult
to be worth the eff ort for most applications. To write a an effi cient application for multi-
core using threads, you need to:

• Break each logical task down to a single thread
• Lock data that is in danger of being changed by two threads at once
• Build a thread manager to run only as many threads as there are available cores
• Hope that no other applications running on the system are using the processor cores

The problem is far more complex than simply breaking tasks into threads. Too many
threads, improper locking of data, or resources “stolen” by other computing tasks can
all aff ect the optimal performance of the software. The complexity of these issues has
a well-deserved reputation for introducing bugs that are diffi cult to fi nd and fi x.

2Technology Brief
Grand Central Dispatch

The Solution: Grand Central Dispatch
Grand Central Dispatch is a revolutionary, pervasive approach to multicore processing.
GCD shifts the responsibility for managing threads and their execution from applications
to the operating system. Mac OS X Snow Leopard provides APIs for GCD throughout
the system, and uses a highly scalable and efficient runtime mechanism to process work
from applications. As a result, programmers can write less code to deal with concurrent
operations in their applications, and the system can perform more efficiently.

GCD gives developers a simple way to describe the different pieces of work that
your applications need to do, and an easy way to describe how those pieces might
be dependent upon one another. Units of work are described as blocks in your code,
while queues are used to organize blocks based on how you believe they need to be
executed. By using blocks and queues, you no longer need to worry about threads,
thread managers, or locking data, making an application’s code easier to understand.
You can simply let the system manage the work queues and execute the blocks for
optimal performance.

GCD has a multicore execution engine that reads the queues created by each applica-
tion and assigns work from the queues to the threads it is managing. GCD manages
threads based on the number of cores available and the demands being made at
any given point in time by the applications on the system. Because the system is
responsible for managing the threads used to execute blocks, the same application
code runs efficiently on single-processor machines, large multiprocessor servers, and
everything in between.

Without a pervasive approach such as GCD, even the best-written application cannot
deliver the best possible performance on any given system, because that single
application doesn’t have full insight into everything else happening in the system. GCD
understands the entire system and automatically maps the blocks of work a you write
to individual threads and cores as appropriate. It does this through a combination of
the following:

•	 Blocks, as extensions to C, C++, and Objective-C
•	 An efficient, scalable runtime engine
•	 A rich, low-level system API
•	 A convenient, high-level Cocoa API
•	 Sophisticated analysis and debugging tools

Only Mac OS X Snow Leopard provides such a seamlessly integrated and pervasive
approach. This enables developers to radically simplify their multithreaded code
while improving processor utilization, system responsiveness, code readability, and
data consistency.

How much faster?
Placing a work item in a GCD queue is a
lightweight operation. In fact, it requires
only 15 instructions, which makes the
blink of an eye seem like a long time.
By comparison, setting up a thread and
assigning work to it can require hundreds
of instructions and take more than 50
times longer.

3Technology Brief
Grand Central Dispatch

Benefits
Although Grand Central Dispatch was designed primarily to address the challenge of
multicore computing, it also delivers a broad range of benefits to both developers and
users, including the following:

Improved responsiveness—By making it both easy and efficient to move small chunks
of work off the main thread, GCD helps developers make applications more responsive to
user input. GCD applications also tend to require less code, CPU time, and memory than
traditional mechanisms, enabling the system to run more efficiently.

Dynamic scaling—Optimizing the performance of a traditional multithreaded program
typically requires that developers know the details of the hardware on which their appli-
cations are executing, and that no other program is running. While these assumptions
may be appropriate for a high-performance computing environment, neither is true for
desktop applications.

GCD enables you to structure your code in a way that identifies the available opportunities
for parallelization, letting the system determine the optimal degree of parallelism with
which to execute an application based on the current hardware configuration and the
demands of other applications. This allows GCD-based applications—and the entire
operating system—to efficiently scale from one to many processors without requiring
any manual tuning.

Better processor utilization—GCD makes it very easy for both applications and frame-
works to dispatch work they want to run separate from a program’s main thread of
execution, with the system deciding whether that means another thread or a different
CPU. Even with existing applications, Snow Leopard frameworks are better able to
distribute work across all available processors. As more applications explicitly adopt
GCD, systems running Snow Leopard will have better information and smaller units of
work, enabling even more efficient scheduling.

Cleaner code—Most importantly, GCD provides all these benefits while actually reducing
the complexity of the code you have to write. Even experienced developers have found
that adopting GCD dramatically improves the readability, maintainability, and correctness
of their formerly multithreaded source code.

Programming Model in Depth
GCD provides powerful abstractions that enable developers to easily specify what they
want done, while the system optimally schedules how it gets done.

Blocks
Blocks are a simple extension to C (as well as Objective-C and C++) that make it easy
for you to define self-contained units of work. A block in code is denoted by a caret at
the beginning of a function. For example, you could declare a block and assign it to x
by writing:

x = ^{ printf("hello world\n"); }

This turns the variable x into a way of calling the function so

that calling x(); in the code would print the words hello world.

4Technology Brief
Grand Central Dispatch

What’s really powerful about blocks is that they enable you to wrap much more complex
functions—as well as their arguments and data—in a way that can be easily passed
around in a program, much as a variable can be easily referenced and passed.

dataF

Block

F= +

Queues
With Grand Central Dispatch, you schedule blocks for execution by placing them on
various system- or user-queues. GCD then uses those queues to describe concurrency,
serialization, and callbacks. Queues are lightweight user-space data structures, which
generally makes them far more efficient than manually managing threads and locks.

H G F

Queue

Event sources
In addition to scheduling blocks directly, you can associate a block and queue with an
event source such as a timer, network socket, or file descriptor. Every time that source
fires, a new copy of the block is added to the queue. This allows rapid response without
the expense of polling or “parking a thread” on the event source.

EE

Source E

Thread pools
Whenever a queue has blocks to run, GCD removes one block at a time and schedules
it on the next available thread from the pool of threads that GCD manages. This saves
the cost of creating a new thread for each request, dramatically reducing the latency
associated with processing a block. Thread pools are automatically sized by the system to
maximize the performance of the applications using GCD while minimizing the number
of idle or competing threads.

H G F

Thread
Pool

5Technology Brief
Grand Central Dispatch

Runtime Architecture in Depth
Most of the intelligence behind Grand Central Dispatch is provided by queues. As the
centerpiece of both serialization and concurrency, queues need to be extremely efficient
yet thread safe, so that they can be accessed quickly and safely from any thread.

To achieve this, blocks are added and removed from queues using atomic operations
available on modern Intel processors, which are guaranteed to execute completely
(without interruption) even in the presence of multiple cores. These are the same
primitives used to implement locks; they are inherently safe and fast.

Global queues
GCD has a set of global concurrent queues available to each process. Each queue
is associated with a pool of threads operating at a given priority (for example, high,
default, or low). The queues are able to monitor resource demand across the entire
operating system, not just a single process. This systemwide view is what allows GCD
to automatically balance supply and demand for threads across multiple applications.

Whenever a developer enqueues a block on one of the global queues, GCD looks
for any available threads at the appropriate priority. If so, it dequeues the block and
assigns it to that thread. Conversely, whenever a thread finishes its work and becomes
available, GCD checks to see whether there is a pending block on the associated
concurrent queue, and dequeues that block based on a first-in/first-out (FIFO) policy.
All of this happens as a side effect of queueing and completing work; GCD itself does
not require a separate thread.

Private queues
In addition to using the shared concurrent queues, developers can create their own
private serial queues within a given process to serialize access to shared data structures.
These private queues are sometimes described as “islands of serialization in a sea of
concurrency,” because the default behavior of GCD is to schedule everything on the
concurrent queues.

In fact, serial queues are scheduled using the global queues. Each serial queue has a
target queue, which is initially set to the default priority concurrent queue. When a
block is first added to an empty serial queue, the queue itself is added to the target
queue. Because all operations are atomic, additional blocks can continue to be added
to the serial queue.

When its turn comes, the serial queue is dequeued and executed using the same
policy and mechanism as individual blocks added directly to the target queue. The
only difference is that, in this case, execution (sometimes called “draining”) means
that each block in the serial queue is dequeued and executed one after the other.

Main queue
Every process has a unique, well-known main queue—always a serial queue—which
is associated with the main thread of the program. This is particularly useful for Cocoa
applications, because certain operations must always be scheduled on the main
thread. The main queue is typically associated with CFRunLoop (for Core Foundation)
or NSRunLoop (for Cocoa) on the main thread, both of which drain the main queue at
the end of their work cycles.

6Technology Brief
Grand Central Dispatch

Developer Tools
The Instruments application—part of the Xcode tools included with Snow Leopard—
provides a strong set of capabilities for analyzing GCD usage and performance on
multicore hardware.

The Dispatch instrument allows you to visualize your applications’ use of GCD, seeing a
real-time view and history of block and queue use as the applications run. In addition
to this behavioral overview, Dispatch gives you a rich set of analyses, including:

•	 How many times a block has been executed

•	 The execution duration of a particular block instance

•	 The latency associated with a given queue (for example, a measure of how much work
was there before each block)

The Dispatch instrument also provides stack backtraces showing both what the
application was doing when the block was submitted and what the call stack looked
like when it was actually invoked.

Conclusion
Multicore processors are changing the software landscape, requiring developers to
reconsider how they write their applications to realize the benefits offered by these
new computing powerhouses. Grand Central Dispatch is a new approach to building
software for multicore systems, one in which the operating system takes responsibility
for the kinds of thread management tasks that traditionally have been the job of
application developers. Because it is built into Mac OS X at the most fundamental
level, GCD can not only simplify how developers build their code to take advantage of
multicore processors, but also deliver better performance and efficiency than traditional
approaches such as threads. With GCD, Snow Leopard delivers a new foundation on
which Apple and third-party developers can innovate to exploit the enormous power
of both the hardware of today and the hardware of tomorrow.

For More Information
For more information about Mac OS X v10.6
Snow Leopard, visit www.apple.com/macosx.

© 2009 Apple Inc. All rights reserved. Apple, the Apple logo, Cocoa, Instruments, Mac OS, and Xcode are trademarks of Apple Inc.,
registered in the U.S. and other countries. Snow Leopard is a trademark of Apple Inc. Other product and company names men-
tioned herein may be trademarks of their respective companies. Product specifications are subject to change without notice. This
material is provided for information purposes only; Apple assumes no liability related to its use. June 2009 L409098A

