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Abstract

Different methods to forecast traffic are analysed and discussed. An elementary approach is to develop heuristics

based on the statistical analysis of historical data. Daily traffic demand data from 350 inductive loops of the inner city

of Duisburg over a period of 2 years served as input. The sets of data are organized into four basic classes and a

matching process that assigns these sets into their class automatically is proposed. Furthermore, two models for short-

term forecast are examined: the constant and the linear model. These are compared with a prediction based on heu-

ristics. The results show that the constant model provides a good prediction for short horizons whereas the heuristics is

better for longer times. The results can be improved with a model that combines the short- and long-term methods.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In recent decades growing traffic problems have

become an increasing disturbing factor. The ex-

isting road network is not able to cope with the

demand leading to congestion which is both: a

social and an economic inconvenience. Neverthe-
less, the construction of new roads is often socially

untenable. Since current estimates propose that the

traffic demand will grow further [17], there is a

seek for new traffic management and information

systems to solve these problems. One vital com-
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ponent of such systems is the prediction of traffic

states. The information of future demand can be

provided to traffic control centres in order to

prevent a break-down of the flow in advance, e.g.,

using traffic lights or variable message signs. In the

same way, it is possible to pass information to the

drivers by means of radio broadcasts or dynamic
route guidance systems. However, predictive in-

formation offers a new degree of freedom for the

road users since they have the option of changing

the departure time.

In general, the prognosis horizon is the first and

most important parameter, since it determines

which procedure proves as the most effective

forecast method. A second important detail is the
input data, i.e., the number and the location of the

sources of the data. Different approaches have

been proposed in the past. Neural networks often

are used for predicting traffic flow, speed data or
ed.
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travel times up to 15 minutes [1,6,7,16]. To fore-
cast traffic jams spatial correlations can be used

taking into account, e.g., the dynamics of a mov-

ing jam [10,11]. For a useful long-term prediction

the current traffic data loose their weight and it is

more important to use experience about the past,

so-called heuristics, in form of a statistical data

base consisting of traffic time series [3–5,12,20].

The main problem creating such data bases is
the collection and availability of data. The first

methods based on the collection of data counting

manual during a few hours a day. The growing

number of inductive loops, infrared sensors, and

video systems installed on the roads offers the

possibility to create larger and consequently more

effective data bases about past experiences. To be

effective this information has to be combined with
data about the current situation.

The remainder of the paper is structured as

follows. In the next section results of a statistical

analysis of 2 years of data from over 350 urban

inductive loops are presented. The traffic demand

data are filed into sample classes. In Section 3 a

procedure to match a set of data in the right class

is proposed. In the following section, two different
methods for a short-term forecast are analysed and

compared with a forecast based on historical data.

In Section 5 a new method for arbitrary horizons is

proposed which combines the advantages of the

different models. The paper closes with a summary

and an outlook.
2. Analysis of historical data

In order to develop heuristics for traffic fore-

cast, i.e., experience about recurrent events, his-

torical data have to be analysed. Therefore, it is

useful to classify certain days and events in cate-

gories [4,13,20,21]. Two different characteristics

can be distinguished: daily and seasonal. Seasonal
differences arise due to school holidays. On the

other hand, there are daily differences: on working

days a sharp morning peak is found which is ab-

sent on Sundays or holidays. Additionally, there

are special events like football games. The fol-

lowing conclusions are drawn from a statistical

analysis of data from over 350 loop detectors in
the inner city of Duisburg during the years 1998–
2000. The data are provided by a permanent

connection to the centre of traffic control of the

municipal authority of Duisburg.

2.1. Daily characteristics

In order to classify days, the daily traffic de-

mand, i.e., the flow of vehicles vs. time, has to be
investigated. Therefore, the flow per minute JnmðtÞ
of every loop detector NLDðtÞ at a certain time t is
accumulated. Then the data are summed over all

days, where data are available NdaysðtÞ, this result is
divided by NLDðtÞ and NdaysðtÞ:

JdemðtÞ ¼
PNdaysðtÞ

n¼1

PNLDðtÞ
m¼1 JnmðtÞ

NdaysðtÞNLDðtÞ
: ð1Þ

One advantage of this procedure is the opportu-

nity to analyse even days with an incomplete set of

data. The resulting traffic time series are subdi-

vided in seven classes, taking into account the

different demand during the weekdays.

Obviously, the demand of many days is quiet
similar, since the activity patterns on most work-

ing days do not differ very much. However, this is

also true if Fridays and days before holidays are

compared. Therefore, the number of classes can be

reduced. For the decision which traffic time series

can be merged into one class a matching process is

used which compares the traffic patterns on the

basis of an error measure (Section 3). Finally, the
following distinct classes are defined:

• Monday until Thursday, except holidays or

days before holidays (Mo–Th),

• Friday and days before holidays (Fri),

• Saturday except holidays (Sat), and

• Sunday and holidays (SunHol).

Fig. 1 shows the daily traffic demand of these

four groups. The highest number of vehicles dur-

ing one day is generally measured on Fri. If this

value is set to 100%, the other classes are as fol-

lows: Mo–Th 97%, Sat 71%, and SunHol 51%.

Analysing the traffic time series in more detail

yields for the graph of Mo–Th (solid line in Fig. 1)

a rough division into four regions:
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Fig. 1. No. of cars vs. time. The data are stemming from all

inductive loops and are averaged over days with a similar traffic

demand. The four classes are distinct.
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• a sharp morning peak located at 7:51 with a

small standard deviation of 3 minutes,

• a region which is approximately a straight line

but with many fluctuations like the peaks at

about 9 or 10 o�clock,
• a peak in the afternoon located at 16:21, which

is higher and broader than the morning peak,

and

• a relatively smooth curve during the night with

a minimum at 3:09.

This classification reflects the daily life, for a

detailed discussion (see [5]). However, for a traffic

forecast the standard deviations of the peaks are
an expressive feature. They reflect the quality of a
Table 1

Summary of the empirical data

Class Feature Cars [veh/minutes] Std

Mo–Th 1. Morning shift 1.16 0.0

2. Morning shift 2.24 0.1

Morning peak 3.38 0.2

Afternoon peak 3.82 0.1

Fri 1. Morning shift 1.14 0.0

2. Morning shift 2.19 0.1

Morning peak 3.28 0.2

Afternoon peak 3.69 0.1

Sat 1. Morning shift 0.61 0.0

2. Morning shift 0.61 0.0

The height and the width of the peaks as well as their standard devia

and their standard deviation is given.
heuristic. Since the standard deviation of the
morning peak is about three minutes, it will appear

with a high probability in this interval of time

(Table 1).

2.2. Seasonal differences

For the analysis of seasonal differences, only

working days, i.e., the classes Mo–Th and Fri, are
considered. On average the highest number of ve-

hicles is measured in May. If this value is set to

100% the other months are: June 99%, April and

November 98%, March, February and December

97%, September 95%, August and October 94%,

July 89%. Most of these differences are due to

school holidays. In general, the structure of the

traffic demand stays the same during school holi-
days, i.e., traffic patterns are not changed. But in

July the absolute values are reduced by 10%. Un-

fortunately, no data are measured in January

during the three years due to problems of the data

connection.

2.3. Special events

Similar to holidays or long vacations, there are

sometimes special events which influence traffic

patterns drastically. For this kind of events two

examples are presented in the following. In Fig.

2(a) and (c) the influence of the football match

between Germany and the United States of

America during the World Championship 1998 is
. dev. [veh/minutes] Time Std. dev. [minutes]

5 5:44 2

0 6:53 2

1 7:51 3

5 16:21 24

4 5:44 2

1 6:53 4

6 7:52 3

3 15:09 32

4 5:44 3

3 6:46 7

tions are measured. Additionally, the times the structures occur
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Fig. 2. Daily traffic demand for special events: (a) football World Championship match Germany–USA; (b) solar eclipse on the 11th

of August in 1999. The football match results in a sharp breakdown at 21:00 whereas the solar eclipse influences the whole day; (c) and

(d) are the same curves in percental graphs.
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shown. Ten minutes after the kick-off at 21:00 the

flow is only at 88% of the average traffic time series

of a working day. Shortly before the end of the

game it decreases further to only 61%. Averaged
over the interval from 21:10 until 22:50 a flow of

72% of a working day is measured. Note that the

activity during the whole day is remarkably higher.

A different characteristic shows a very special

event: the solar eclipse at the 11th of August in

1999 during 11:11–13:50 (see Fig. 2(b) and (d)).

Although the total eclipse could not be seen in

Duisburg, even a partial eclipse of 97% influenced
the traffic pattern dramatically. From the morning

peak until the peak in the afternoon only 93% of

the usual number of vehicles is found. The mini-

mum of the dip is located at 12:36 with only 67%

of the averaged graph of this class. It is quite re-

markable that the solar eclipse influences a whole

day.
2.4. Dependence on direction

Up to now, graphs resulting from all inductive

loops have been studied, i.e., the traffic pattern of
the whole city. But every street has its own char-

acteristic. Therefore, a single street is selected

which exhibits typical commuter flows: the

M€ulheimer Straße. It connects the Autobahn A3

(Cologne–Oberhausen) with the inner city of

Duisburg. For the investigation of the flow to-

wards the A3, 10 inductive loops are employed in

the other direction eight.
The result for the class Mo–Th is shown in

Fig. 3. The traffic time series of this street differs

strongly from the traffic pattern of the whole

city. This is due to a huge number of commuters

coming to Duisburg in the morning and leaving

in the afternoon. The morning peak to Duisburg

is shifted to 7:59. Such data can also be helpful
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Fig. 3. Traffic time series for different directions. A flow of

commuters can be observed: Into the city in the morning and

out of the city in the evening.
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for the identification of origin–destination ma-

trices.

3. Matching process

In the previous section, daily and the seasonal

differences have been analysed by classifying days.

In order to assign traffic time series in the correct

class automatically, a basic approach is examined
in this section: matching. In the matching process

two sets of data with a certain length N and po-

sitive elements xn, yn, are compared using different

measures of discrepancy. There are various mea-

sures, which rate the deviations differently. In the

following, we discuss results for two examples of

such measures, whereby xn and yn are the data of

two different traffic time series:

• the mean absolute deviation (MAD),

MAD ¼ 1

N

XN
n¼1

jxn � ynj; ð2Þ
Table 2

Results of the matching process for two holidays and days before the

Mo–Th Fri

Holidays

04/10/1998 (Good Friday) 1.29 1.34

05/01/1998 (Labour Day) 1.24 1.28

Before holidays

04/09/1998 0.19 0.18

04/30/1998 0.36 0.30

The assignment yields that holidays belong to the class SunHol and d
• and the mean relative deviation related to the

measured value (MRD),
MRD ¼
PN

n¼1
jxn�ynj

xn

N
� 100%: ð3Þ

3.1. Consistency of classification

In Section 2.1 we already mentioned that
matching allows for an estimation whether the

allocation into four classes is sufficient or, e.g.,

holidays have to be put in a new class. Therefore,

the data of the years 1998 and 1999 are compared

with the corresponding sample classes. It is deter-

mined whether a time series is matched to its own

sample class or not. In Table 2 the results for

holidays, which are matched to the class SunHol,
and days before them, which are matched to the

class Fri, are shown.

Results for the other days are depicted in Table

3(a). Some of the data sets are incomplete because

the local network was down or the connection to

the host system of the city broke off. However, an

advantage of the matching process is that even

with the a lower number of values a correct
matching can be achieved. The results are divided

into groups taking into account the number of the

measured values (Table 3).

For entire or almost entire sets only one mea-

sure of discrepancy is necessary to get satisfying

matching results, either the MAD or the MRD.

Indeed, some of them are not useful alone like the

mean error which is only a measure for the traffic
demand of the whole day. Since the demand within

the classes Mo–Th and Fri is very similar, these are

often mixed up.
m using MAD

Sat SunHol Id

0.62 0.19 SunHol

0.55 0.13 SunHol

0.76 1.21 Fri

1.03 1.49 Fri

ays before them to Fri.



Table 3

Results of the matching processes

Measure Percentage of correct matching, when x minutes are missing

x ¼ 0 x < 240 x < 480 x < 720 x < 960 x < 1200 x < 1440

(a) MAD 99 99 99 99 98 97.5 96

MRD 97 95 95 95 95 95 92

(b) MAD 100 100 100 100 100 100 100

MRD 100 95 96 97 98 98 98

(c) MAD 100 96 96 96 95 94 91

MRD 49 37 37 40 41 45 47

(d) MAD 100 96 96 96 95 94 88

MRD 49 40 40 43 44 48 42

Since some of data sets are incomplete, they are subdivided according to the number of measured values. (a) The data of the years 1998

and 1999 are matched to the corresponding sample classes. A high percentage is matched correctly. (b) Matching of 52 data sets of the

year 2000 with the sample traffic time series of the years before. (c) and (d) Matching of the local data of the M€ulheimer Strasse (c) in

direction inner city and (d) in direction outskirts. The data are not as stable as those of the whole city.
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3.2. Automatic matching

An open question is: how does this method

operate with data which are not used to generate

the sample classes? Nevertheless, the earlier an

incomplete set of data can be assigned to the

correct sample class the earlier a first automatic

prediction can be provided. To examine how
‘‘new’’ data can be assigned to the given classes

data sets of 52 days of 2000 are compared with the

classes generated by data of 1998 and 1999. Table

3(b) shows the results. Using the MAD all days are

assigned to the correct sample class regardless of

the number of measured values.

However, the accumulated data of the whole

city have a very stable structure in the sense that
fluctuations are averaged. This is the reason for the

high percentage of correct matching. Since also

incomplete data sets are matched correctly, it is

possible to automatize the process of forecast.

Measuring data during a few hours of a day allows

to decide, which sample graph is suitable to fore-

cast the remaining day.

Data of a single inductive loop differ more from
day-to-day. Therefore, it is more difficult to match

the data with the sample graphs. Results for the

network of inductive loops of the M€ulheimer

Strasse (Section 2.4) are shown in Table 3(c) and

(d) for both directions. In this case, some error

measures are not as useful as others. The fluctua-
tions cause a high MRD during time intervals with
low traffic, e.g., at night. In future, we will examine

possibilities to merge the measures of discrepancy

to get a better matching result.
4. Short-term forecast

The traffic time series already provide predictive
data for all days of a sample class. In order to take

the current data into account two methods of

short-term forecast are examined: the constant

model and the linear model.
4.1. Constant model

In this model, the forecast for all horizons is a

constant value. However, in the literature different

approaches to determine this value are proposed

[3,14,18]. The value can be the last value measured

(Naive Model) or better an average over, e.g., the
last 10 values (moving average). In the following a

Single-Smoothing model is used, based on an ex-

ponential adjustment. The forecast value JcðnÞ at

the discrete time-step n is calculated by two

equations:

Jcð1Þ ¼ Jð1Þ; for the first value;

JcðnÞ ¼ aJðnÞ þ ð1� aÞJcðn� 1Þ; each other:
ð4Þ
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An example for different prognosis horizons Ds
can bee seen in Fig. 4. a is the smoothing coeffi-

cient, with 0 < a < 1. The higher the value of a the

less is the influence of the past. To give a rough

idea: the cumulative weight (weight of the last l
values) of 99% is reached within the last l ¼ 13

values for a ¼ 0:3 and within the last l ¼ 4 values

for a ¼ 0:7.
So the first task is to choose a suitable value for

a. To answer this question the MADs of short-

term forecasts during the years 1998 and 1999 are

calculated and minimized by varying the coeffi-
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Fig. 4. Short-term forecast using the constant model with dif-

ferent horizons Ds, and a ¼ 0:5.

Table 4

Optimal smoothing coefficients a for minimizing the MAD

Ds [minutes] Mo–Th Fri

5 0.32 0.30

20 0.46 0.45

40 0.55 0.55

60 0.52 0.53

120 0.64 0.81

The longer the prognosis horizon Ds the higher is the optimal a. Fur

Table 5

Optimal number of measured values N used for the fit

Ds [minutes] Mo–Th Fri

5 32 28

20 42 44

40 53 55

60 59 53

120 63 63

Note: A value is measured every minute, e.g., 60 values represent 1 h
cient a in steps of 0.01. This is done for each
sample class and for five different horizons indi-

vidually. The results can be seen in Table 4. The

longer the horizon Ds the higher is the optimal a.
In other words, if one wants to look further into

the future, more importance should be attached

to the current data. Besides, the optimal a depends

on the sample class. This is due to the different

sizes of fluctuations in the graphs.

4.2. Linear model

This model is based on the linear curve fitting

by use of the last N measured values. The trend of

this linear fit is extrapolated into the future and

used for the forecast. For this model it is impor-

tant to determine the optimal number of values N
starting from the current data point. Similar to

Section 4.1 the MADs of a prediction are calcu-

lated and minimized by varying N in steps of 1.

This is also done for five prognosis horizons and

for the four sample classes.

The results are presented in Table 5. The longer

the prognosis horizon Ds the more values should

be used for the prediction. Thus, the further one
goes into the future the more values should be used

from the past. This is a remarkable difference to
Sat SunHol

0.28 0.23

0.38 0.30

0.41 0.33

0.32 0.36

0.39 0.44

thermore, the coefficient depends on the sample class.

Sat SunHol

34 52

66 68

72 70

77 72

69 76

our.
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Fig. 5. Short-term forecast using the linear model with different

horizons Ds and N ¼ 20.
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the constant model. The reason for this is the fact
that the more points are used for the fit, the lower

is the gradient in general. However, with a steep

gradient large deviations might occur, e.g., in case

a trend changes (Fig. 5). A larger N leads to a

prognosis less susceptible for deviations due to

fluctuations.

4.3. Comparison of methods

In order to compare both short-term methods

with each other and with the heuristics the MAD is

calculated for different prognosis horizons Ds.
Results are presented in Fig. 6 for an ordinary

weekday and the day of the solar eclipse. The

MAD for the heuristics is constant regardless of
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Fig. 6. The MAD of the prognosis from the current data using differen

and the heuristics (dotted line). (a) An ordinary day. The constant mo

day of the solar eclipse. In this special case, the constant model is th
Ds. It represents the MAD of the complete day.
For a and N the optimal values determined in the

previous sections are used.

One can see that at an ordinary day the con-

stant model is the best forecasting method up to

Ds � 18 minutes. The linear model is in any case

worse than the constant model. In the special case

of the solar eclipse, the constant model is the op-

timal method even up to Ds � 40 minutes.
5. Combination of methods

Hitherto, two forecast methods have been ex-

amined: the heuristics in form of sample graphs for

long-term predictions and the short-term predic-

tions based on the current data, like the constant
model. The former lacks the influences of the

current situation whereas the latter does not take

into account the experience and the knowledge

about previous events, i.e., historical data.

For a good forecast both methods should be

combined. Therefore, we propose a method that

uses the constant model for small Ds and with

increasing Ds the heuristics. Therefore, the data
of the point in time a prognosis is rendered t0
loose their influence with increasing Ds. Based on

this consideration the following formula is pro-

posed:

JpredðtpÞ ¼ JdemðtpÞ þ k 	 DJðt0Þ ð5Þ
(b)
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e optimal prognosis algorithm up to about Ds � 40 minutes.
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as an example for the combination of short-term- and long-
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heuristics. The combination of both methods offer an improved
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with

DJðt0Þ ¼ Jcðt0Þ � Jdemðt0Þ;

k ¼
g 1� Ds

Dsmax

� �
; if 0 < Ds6Dsmax;

0; if Ds > Dsmax;

8<
:

Ds ¼ tp � t0:

The variables are defined as follows:

JpredðtpÞe predicted traffic flow,

JdemðtpÞe flow of the sample graph, (1),
Jcðt0Þe value of the constant model (4),

t0e point in time the prediction is made,

tpe point in time predicted,

ge weighting of current and historical data,

and

Dsmaxe maximum horizon for constant model.

Obviously, for Ds > Dsmax the heuristics is used
as forecast. The factor g is a coefficient for the

relationship between current and historical data.

Reasonable is 0 < g < 1; for g ¼ 0 only the sample

graph is used, for g ¼ 1 the prognosis curve starts

at the current value.

In order to find the optimal g and Dsmax, they

have been varied and the prognosis is compared

with the real data for all days of the year 1999. The
optimal parameter values are depicted in Table 6.

The parameters chosen differ a little bit depending

on the used measure.

In order to test this model for extreme values,

data from the day of the solar eclipse has been

chosen to demonstrate the quality of the model.

Results are depicted in Fig. 7. There is a large

anomaly of the traffic flow, which cannot be pre-
dicted by heuristics. However, the combination of

the short-term forecast with the heuristics im-

proves the quality of the prediction obviously.
Table 6

The parameters g and Dsmax that minimize the difference mea-

sures of discrepancies of the prognosis and the real data

MAD MRD

g 0.57 0.66

Dsmax [minutes] 37 29
6. Summary and outlook

In this contribution different methods of fore-

casting using 2 years of real-world data from the

inner city of Duisburg are presented. Firstly, the

historical data are examined taking into account

seasonal and daily differences, dependency on di-

rection and special events. At the end four basic

classes are found: Mo–Th, Fri, Sat and SunHol.
Additionally, an automatic matching process is

proposed that verifies the consistency of classifi-

cation. In the same way it is able in future to assign

the data to different classes automatically. The

results of two measures of discrepancy are pre-

sented.

Two methods of short-term forecasting are

discussed: the constant and the linear model. The
former sets a constant value, an exponentially

smoothed value, for all horizons Ds. Depending on

Ds optimal smoothing coefficients a are found. The

linear method extrapolates the gradient of the past

N values into the future using a curve fitting. The

optimal number of N for different Ds exhibits that

the further one wants to look into the future, the

more values of the past are needed. In the constant
model it is the other way round.

A comparison of these models with a prediction

using the heuristic yields, that the most promising

forecast method for short terms Ds � 18 minutes is
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the constant model and then the heuristic. There-
fore, a method combining both models is pro-

posed. This methods shows good results even for

special events like the solar eclipse.

In future, this method will be used in supple-

mentation with on-line simulations, e.g., of the

freeway network of NRW [9] or the inner city

network of Duisburg [8,15]. The simulations de-

scribe the dynamics in a network but are lacking
information about the boundaries [5]. Therefore,

the forecast will be used to predict the flow of the

sources. However, every forecast is confronted

with a fundamental problem: the messages are

based on future predictions which themselves are

affected by drivers� reactions to the messages they

receive [2]. Therefore, an anticipatory traffic fore-

cast is needed which takes into account the reac-
tion of the road users to the prediction [19].
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