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A laser communications link to transmit science, telemetry and test data from

Mars to the Earth has been designed; the next step will be technology

validation demonstrations.
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ABSTRACT | Significant technological advances were made

toward utilizing the Hale telescope for receiving the faint laser

communication signals transmitted from an optical transceiver

on a spacecraft orbiting Mars. The so-called Palomar Receive

Terminal design, which would have supported nominal down-

link data rates of 1–30 Mbps, is described. Testing to validate

technologies for near-Sun (3� from edge of solar disc) daytime

operations is also discussed. Finally, a laboratory end-to-end

link utilizing a 64-ary pulse-position modulated photon-

counting receiver and decoder that achieved predicted near-

capacity (within 1.4 dB) performance is described.

KEYWORDS | Deep space; laser communication; photon count-

ing; pulse-position modulation

I . INTRODUCTION

The Mars Laser Communication Demonstration (MLCD)
Project [1]–[4] was established with the intent of demon-

strating the first ever Mars-to-Earth laser communication

link. An optical flight transceiver called the Mars Laser
Terminal [5], [6] (MLT) onboard the Mars Telecommu-

nication Orbiter (MTO) [7] was to transmit science,

telemetry, and test data to the MLCD Ground Network

(MGN) at nominal data rates varying from 1 to 30 Mbps.

The MGN consisted of the Palomar Receive Terminal

(PRT) [8] and the Link Development and Evaluation

System (LDES) [9], [10]. The 5.08-m-diameter Hale

telescope at Palomar Observatory, Palomar Mountain,
CA, retrofitted with a photon-counting receiver, would

have served as the PRT. Following a successful preliminary

design, the MLCD Project was discontinued due to

programmatic changes within NASA that resulted in a

cancellation of MTO. In this paper, we will describe the

preliminary design of the PRT with an emphasis on the

driving technologies that will continue to be of interest for

future demonstrations of deep-space laser communication.
An overview of PRT with its relation to the link design

is provided in Section II, followed by a brief description of

the major assemblies in Section III. In Section IV, critical

technology validation test results are presented, followed

by conclusions in Section V.

II . SYSTEM BLOCK DIAGRAM

Fig. 1 shows the system block diagram for the PRT with

different colored blocks representing the major assem-

blies. The primary purpose of the solar rejection filter
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(SRF) was to protect the Hale telescope while receiving

downlink during near Sun operations, i.e., less than 40�

Sun-Earth-probe (SEP) angle. Light gathered at the Hale

telescope Cassegrain focus would be coupled to the

pointing acquisition and tracking assembly (PATA) where

spatial and spectral acquisition is accomplished prior to the

photons’ being incident on the detector amplifier assembly
(DAA). Photoelectric conversion at the DAA with the

output signal being fed to the receiver assembly (RA) would

follow. Temporal acquisition to determine slot, symbol,

and frame boundaries would be performed by the RA with

the temporally acquired signal being passed to the decoder.

Estimates of the transmitted block of bits, or an error flag,

would be produced after decoding. State control, status

monitoring, data processing, archival, and coordination
with the MLCD Mission Operations System (MOS) would

be carried out by the monitor and control assembly (MCA).

The MCA would also coordinate link activities with the

local atmosphere and weather monitoring (AWM) station.

The optical stimulus in the PATA and the test signal

generator in the DAA were used for calibration and testing

of the system in the absence of a downlink laser signal.

Derivation of the photon budget [11] and selection of
modulation and coding schemes [12] for an optical

downlink from Mars were described earlier. A photon

flux (photons/second) composed of signal ð�sÞ and back-

ground noise ð�bÞ is incident at the PRT DAA. The incident

ð�s þ �bÞ depends upon the distance of the transmitter, the

SEP angle, and prevailing atmospheric conditions, i.e.,

attenuation, sky radiance, and turbulence. For a given set of

conditions, the operating point can be optimized by spatial

filtering, i.e., varying the detector field-of-view (FOV). To

clarify, when background photon flux incident on the

detector is low, widening the FOV to collect close to 100%

of the signal provides the best operating point. However,
with the same atmospheric turbulence and high back-

ground photon flux, reducing the FOV to detect a smaller

fraction of the signal may improve performance because of

reduced noise penalty from Bin-band[ background light.

Fig. 2 illustrates a mapping of incident signal and noise

pairs in decibel-photons/nanosecond to partitions (blue

lines) of achievable throughputs in Mbps, optimized under

the constraints that the pulse-position modulation (PPM)
alphabet size is chosen from {32, 64}, and the slot-width ðTsÞ
is a multiple of 1.6 ns (inverse of the clock rate implemented

on MLT). The partitions are overlaid with a representative

range of pairs for Bdesign[ conditions (red curve) on the

MLCD link. To obtain the mapping, the incident signal and

noise powers are first decreased by 5.23 dB to account for

a photodetection efficiency of 0.3, and the signal rate is

decreased by an additional 5 dB to allow for margin and
implementation losses, yielding estimated photon rates at

the DAA. The partitions correspond to the capacity of the

channel with these signal and noise pairs. In [13], a point

design representing a nominal MLCD link budget for a

signal received with PRT when the MLT transmits from the

Fig. 1. System block diagram for PRT. The different colors are indicative of the partitioning of the PRT major assemblies.
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maximum Mars distance is presented. This operating point

is shown with a red asterisk in Fig. 2.

III . PRT DESCRIPTION

A brief description of the assemblies in the PRT follows.

A. Telescope Assembly
A detailed survey of existing telescopes was con-

ducted prior to selecting the Hale telescope. Key consi-

derations were:

1) sufficient collection aperture diameter to satisfy

required data rates;

2) ability to operate during the day at low SEP angles

(down to 3�);
3) favorable topography from cloud cover and

atmospheric turbulence;

4) existing developed infrastructure;

5) proximity to potential uplink telescopes needed to

transmit laser beacons.

Alternate contenders were the Infra-Red Telescope

Facility (IRTF) and Keck telescopes at Mauna Kea. The

high rental cost of Keck and expensive upgrades for using
IRTF eliminated them from further consideration. Studies

conducted by Caltech Optical Observatories confirmed the

feasibility of using the Hale telescope with viable

approaches to satisfy the 3� SEP angle requirement.

The elements of the TA were shown in purple shading

in Fig. 1. The key requirements were:

i) to enable link operations at SEP angles of less

than 3�;
ii) to provide a system bidirectional scatter distribu-

tion function (BSDF) of less than 0.08 sr�1;

iii) to transmit at least 78% of 1064 nm light;
iv) to restrict blurring by the solar rejection filter to

less than 15 �rad.

The main design and development item for the TA was to

provide solar protection [14], [15] since all other elements

of the Hale telescope were operational.

An SRF was selected instead of baffles, primarily

because at low SEP angles, the baffles had a high

transmission of stray background light due to near grazing
incidence. Though installation of the SRF over the dome

slit would have provided isolation of the dome interior

from the ambient atmosphere, as a cost saving measure,

installation of the SRF at the entrance aperture was

selected. Fig. 3(a) shows a solid-model rendering of the

Hale telescope with the filter placement design in

Fig. 3(b). A shroud [Fig. 3(c)] was designed to protect

the primary mirror from incident off-axis sunlight through
the sides of the open structure.

The final design selected for the SRF was a clear

polyimide 1 (CP1) substrate developed at Langley Research

Center [16] over the alternative, more expensive glass-

panel mosaic approach. With good optical and mechanical

characteristics, CP1 could be cast in 1.5-m pieces. This

substrate offered good scattering characteristics, was

amenable to cleaning for maintaining BSDF against dust
buildup, and displayed no observable birefringence.

Furthermore, ready availability coupled with an order of

magnitude lower cost favored the membrane filter. Its

light weight also offered ease of deployment and removal.

Safety concerns from possible breakage of glass panels

while the filter was deployed were also overcome with the

membrane SRF.

The front of the filter, shown in Fig. 4, was an all-
dielectric stack of alternating layers of high- and low-index

films, designed to efficiently reflect visible light from 350

to 1000 nm. This is necessary on the front side to prevent

the absorption of a significant amount of sunlight by the

filter. On the back side of the substrate film, an Binduced

transmission[ filter was applied. This filter makes use of a

very thin layer of metal as the primary rejection agent. By

placing a dielectric stack on each side of the metal layer,
light at one narrow wavelength band can efficiently be

coupled into and out of the metal. By keeping the metal

layer thin, the loss from intrinsic absorption by the metal

layer could be restricted to less than 1 dB while achieving an

average of 10–15 dB attenuation at other wavelengths.

B. Pointing Acquisition Tracking Assembly (PATA)
The key functional requirements for PATA were:
i) to optically reimage light from the Cassegrain

focus of the Hale telescope on to the DAA with an

overall transmission loss of less than 3 dB;

ii) to implement a line-of-sight stabilization loop that

would maintain the focal spot on the detector

against atmospheric perturbations and telescope

jitter;

Fig. 2. Incident signal and noise power pairs mapped to partitions

(blue lines) of achievable throughputs in Mbps. Red curve overlaying

the partitions represents anticipated pairs under design conditions.

A data point corresponding to the budget presented in [13] is also

shown with a red asterisk.
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iii) to provide 0.1 nm noise equivalent bandwidth

(NEB) filtering of signal prior to incidence on the

detector;

iv) to provide state control and relay component

status to the MCA;

v) to support validation of all PATA functions in the
absence of a downlink laser signal, i.e., to provide

a built-in self-test capability for alignment and

calibration of PRT.

The block diagram in Fig. 5 shows the essentials of the

PATA design [17]. The primary receive light path is shown

by a solid green line. Alternative light paths used to assist

acquisition, or for calibration and testing, are shown by a

dashed green line. The red dashed line shows the optical

path used for alignment. Dashed black lines show all the

control signals for various actuators and test equipment.

Blue-filled boxes are optics and controllers, purple-filled

boxes indicate the optical stimulus, and yellow-filled boxes

indicate interfacing neighbors. The signal and background
from the Hale telescope Cassegrain focus would be

recollimated and folded onto an optical breadboard or

custom interface plate. The circularly polarized downlink

laser would be linearized and incident on a steering mirror

located at a conjugate pupil. During initial acquisition, the

signal would be directed to a coarse field-of-view

acquisition sensor shown by a dashed green path following

the polarizing beam splitter. Initial acquisition would rely
on blind pointing the Hale telescope using MTO spacecraft

ephemeredes. The acquisition sensor FOV would cover the

blind pointing uncertainty. After verifying initial coarse

spatial acquisition in a 1-nm NEB filter, the downlink path

would be switched toward the 0.1-nm NEB filter shown in

Fig. 5. Temperature control would tune out uncertainties

in received laser wavelength due to Doppler shifts and

drifts in the MLT transmitter. During initial spectral
acquisition, the field-stop would be wide open

ð�50 � �radÞ and photons would be incident on the

photon-counting quadrant detector (see Section III-C).

The outputs from the quadrant would be fed to the receiver

assembly where temporal acquisition, i.e., determination

of the PPM slot, symbol, and frame boundaries would

Fig. 3. (a) Solid model rendering of the Hale telescope showing the horseshoe shaped right-ascension wheel and the open frame structure of

the telescope. (b) Filter placement design near the head ring assembly of the telescope. (c) Shroud design to prevent side solar

illumination of the primary mirror.

Fig. 4. The front surface reflects visible wavelengths, whereas the

back surface reflects and absorbs visible and infrared wavelengths.

The filter theoretical design predicted 94% transmission at 1064 nm.
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occur (see Section III-D). Prior to temporal acquisition,

incidence of downlink on the detector would be open loop,

necessitating the wide open field-stop. Following temporal

acquisition (G 60 s), the RA would feed back mean-signal
estimates to a microcontroller, where a spatial error signal

used to close a line-of-sight stabilization loop would be

extracted. In other words, signals fed to the steering

optics would keep the signal spot centered in the field-

stop. At this stage, the field-stop would also be adjusted

to optimize the operating point (see Section II). Fig. 6

shows a summary of the PATA sequence of events.

C. Detector Amplifier Assembly (DAA)
The DAA would conduct photoelectric conversion and

signal conditioning for subsequent processing by the RA.

The DAA would incorporate a test signal generator (TSG)

to emulate the MLT laser signal for testing. Driving

requirements for the detector were:

i) to provide a photon-detection efficiency (PDE)

greater than 30% at 1064 nm;

ii) to display a gain variance less than 10%;

iii) to output single photon pulse-widths of 1 ns

measured at 10% nominal pulse height;

iv) to provide a quadrant configuration with four
analog outputs;

Fig. 5. PATA block diagram showing the different light paths described in the text above. The dashed black lines indicate the intrasystem

interfaces within PRT that are controlled and monitored.

Fig. 6. Operational sequence summary for PATA.
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v) to provide an FOV of 10–15 �rad measured on
the sky, corresponding to half of the quadrant

detector diameter;

vi) to have a lifetime of at least 1000 h.

After a thorough evaluation of available options for

achieving high photodetection efficiency at 1064 nm, a

hybrid photodiode (HPD) utilizing an InGaAsP photocath-

ode was selected. The InGaAsP photocathode HPD was

manufactured by Intevac Inc., Santa Clara, CA. The anode
is a GaAs Schottky avalanche diode.

The detector was not a commercially available item,

and development was pursued through a program that

involved testing of mostly custom devices. The incident

signal plus background photon flux, especially during

near-Sun operations, would be high, driving a single

detector to saturation. Splitting the incident photon-

flux over a quadrant configuration solved this problem
while facilitating the extraction of an error signal for

the line-of-sight stabilization and control mentioned in

Section III-B.

Output pulse widths of 450 ps were measured in the

laboratory while PDE of greater than 30% was achieved

with the HPD at temperatures less than 250 K. Dark

currents were measured at 250 Kcps at a temperature of

224 K. Count rates of 200 Mcps were achieved with a Jet
Propulsion Laboratory custom threshold circuit. The

operating bandwidth for this circuit was 3 GHz. The

outputs from the four quadrants of the HPD were fed into

low-noise preamplifiers maintained at the detector tem-

perature inside a detector cryostat module. Feeds from the

preamplifiers were fed to room temperature low-noise

postamplifiers. A schematic block diagram of the DAA is

shown in Fig. 7.
The auxiliary electronics, diagnostics, and control

needed by the DAA are shown in Fig. 7, including the

TSG. In this paper, the TSG is not discussed. The analog

signal output (four channels) shown in Fig. 7 was to be fed
to the receiver assembly, described next.

D. Receiver Assembly (RA)
The driving requirements for the receiver were:

i) to perform data frame, slot, symbol, and code-

word synchronization functions, not necessarily

in the stated order;

ii) to accomplish temporal acquisition in less than
60 s for an initial 1-part-per-million frequency

offset;

iii) to provide the capability to maintain temporal

tracking at outages up to 30 ms;

iv) to incur implementation losses, measured at the

output of the decoder and relative to an ideal

Poisson photon counting receiver of less than

0.8 dB;
v) to deinterleave the data frame into individual

code words.

The receiver converted the analog output from the

detector into counts via digital thresholding with a custom

photon discriminator, deserializer interface. This unit

essentially used a 1-bit analog-to-digital converter running

at 3 Gs/s, with a 1-dB compression of photon-count rates

for 250 Mcps. Through simulations and laboratory tests
receiver losses of less than 0.8 dB at representative

operating points (ns and nb combinations) spanning the

mission profile were verified. Slot synchronization, one of

the most challenging functions, was accomplished on each

individual channel of received data prior to combining

with the aid of a Btraining[ sequence of pulses inserted into

the transmitted data streams. This was found to be a low-

risk implementation with a modest impact on overall data
throughput of less than 4%. Parameter estimationVused

to determine the channel operating pointVwould be used

for three different functions in the receiver: i) computation

Fig. 7. Schematic block diagram of the detector amplifier assembly.
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of the likelihood ratio for input to the decoder assembly,
ii) PATA feedback for closing line-of-sight stabilization

loop, and iii) receiver status monitor functions.

For the sake of brevity, a high-level functional

description depicted in Fig. 8 is presented. The modulated

laser signal uðtÞ is composed of PPM modulated laser signal

flux ns and background flux nb. The horizontal direction

represents time with blue vertical markers representing

PPM-word boundaries and black vertical markers denoting
PPM-slot boundaries. An M ¼ 4 slot PPM-word with the

laser-pulse slot denoted by a square pulse is shown in the

first line of Fig. 8. Photon arrivals are shown in the second

line of Fig. 8, where additive noise photons can arrive in

any of the nonsignal or signal slots. In the third line, photon

arrivals are converted to an analog electrical signal sðtÞ
following photoelectric conversion and amplification at the

DAA (see Section III-C). These bandlimited pulses
represent signal and background flux and other additive

noise such as detector dark response. The pulses are

bandlimited to approximately 2 GHz. The receiver samples

sðtÞ are then converted to estimated photon counts per slot

period k̂m, illustrated in the fourth line in Fig. 8. The

unsynchronized photon counts are synchronized to slot

boundaries as illustrated conceptually on line 5 (other

forms of synchronization are also performed but omitted
here for the sake of simplicity). The signal and background

flux ðns þ nbÞ per slot are estimated as indicated in lines 6

and 7. Parameter estimates are used to create log-

likelihood ratios that are output to the decoder. The

signal and background estimates are also passed to the
PATA and MCA.

E. Decoder Assembly
The decoder assembly would accept slot and codeword-

synchronized photon counts from the RA to produce

estimates of the user bit stream as well as error flags for

codewords that the decoder could not recover. The

performance of the decoder assembly is measured by the
codeword error rate (WER), bit error rate (BER), and

undetected error rate (UER), i.e., the fraction of code-

words erroneously declared correct. The driving require-

ments for the decoder assembly were:

i) to provide performance within 1.2 dB of the ideal

Poisson channel capacity at a WER of 10�4;

ii) to provide an error flag with a UER of less than

10�9 wherever the WER is less than 10�4;
iii) to interface with both M ¼ 32 and M ¼ 64 PPM;

iv) to produce a decoded bit stream at rates up to

50 Mbps.

Several classes of codes were considered for the error-

correction code: hard-decision-decoded Reed–Solomon

codes [18], [19], parallel concatenated convolutional

[20]–[23], serially concatenated convolutional [24]–[26],

and low-density parity-check (LDPC) [27], [28].
The serial concatenated PPM (SCPPM) code described

in [24] was found to provide the best performance. This

code treats PPM as the inner code in a serial concatena-

tion with a short constraint length convolutional code.

Fig. 8. Signal flow diagram for the receiver assembly. The horizontal direction represents time, with the black graduation marks denoting slots

of 1.6 ns and the blue graduation marks denoting PPM-word boundaries of 64 times the slot width.
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Using extrinsic information transfer function analysis

[29], we chose a memory 2 [octal taps (5, 7)], rate 1/2

convolutional code. A recursive 1=(1 þ D) binary accu-
mulator is added prior to the PPM mapping in the

signaling chain improve the performance of iterative

decoding. In the decoder the PPM mapping and binary

accumulator are decoded jointly.

A longer bit-interleaver provides better performance

(although with diminishing gains) but requires larger

memory to implement. An interleaver length of

15 120 ¼ 24 � 33 � 5 � 7 bits was chosen as a good
tradeoff between performance and complexity. This value

is divisible by log2 M for a large range of M, allowing

easy integration with various PPM orders. The inter-

leaver was based on a quadratic permutation polynomial

[30], and we observed no loss in performance relative to

a pseudorandom spread interleaver. Simulation and

bounds [31] on the performance illustrated error floors

would be far below 1E-8, with negligible impact for our
purposes.

Fig. 9 illustrates floating-point performance at a

nominal operating point of the SCPPM code and two

leading alternatives: an iteratively demodulated (LDPC)

code and RS-coded PPM. In all cases, the code is designed

to Bfit[ the modulation, and the LDPC codes and SCPPM

both iteratively demodulate, essentially treating the

modulation as part of the ECC. This matching is critical
to obtain near-capacity performance. The SCPPM code

gained 4.8 dB over the noniterative RS code and was within

less than 1-dB of capacity over a wide range of operating

points for the deep-space Mars linkVwith moderate

encoding and decoding complexity.

Although LDPC codes have proven to have perfor-

mance comparable to or better than turbo-like codes on

the Gaussian channel, none of our LDPC code designs
outperformed SCPPM. Furthermore, for deep-space

channels, the onus on complexity lies with the space-

based encoder more so than with the Earth-based decoder,

and LDPC encoders have higher complexity than the

SCPPM encoder. At the time of selection, performance,

technology maturity, and complexity factors favored the

SCPPM code.

F. Monitor and Control Assembly (MCA)
The MCA would be distributed over the entire MLCD

ground network providing monitoring, control, and

coordination. Commands to the MLT through the MTO

mission operations system would also be coordinated by

the MCA. The monitor and control process at the PRT

centered about a MySQL database that would contain

orbital predicts, command sequences, and all the data
produced by other PRT assemblies. The MLCD MOS

accesses the database as a client to transmit commands and

predicts and receives operational status. Local display

terminals at PRT also acted as clients to the database

server. Fig. 10 is a block diagram representation the con-

figuration described. The PRT MCA contained a data-

processing assembly to receive and store decoder assembly

Fig. 9. SCPPM, LDPC-PPM, and RS-PPM performance M ¼ 64,

nb ¼ 0:2, Ts ¼ 32 ns.

Fig. 10. Depicting the server client configuration used for monitor and control of PRT.
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output and create virtual channels for MLT telemetry and

science data. A separate MySQL database would have

stored the downlink data from MLT.

IV. TECHNOLOGY VALIDATION

A. Telescope Assembly Validation
Validation of the telescope assembly was considerably

simplified and shortened by making use of an existing, well-

characterized telescope and the Palomar High Angular

Resolution Observer (PHARO) [32] instrument. What
remained were tests to validate the membrane filter

technology and tests to validate operation of the telescope

under the very specific, unusual conditions expected to

arise during MLCD operations. These latter tests were

limited to operations during and after extreme sun

exposure to assure that the telescope could continue to

perform within operational requirements.

Among the technology elements with lowest Breadiness[
was the membrane filter, which had to be taken from the

concept level to operational readiness. During the period of
MLCD performance, the CP1 substrate material was

manufactured and tested, optically as well as mechani-

cally, to assure that it could withstand the stresses of the

exposed telescope environment. In parallel, the filter

coatings were developed and applied over large surface

areas. A 1.5-m prototype was created for initial feasibility

testing. Difficulties with deposition rate control among

the various thin-film layers led to slight point-to-point
variations in spectral performance, as Fig. 11 shows. This

in turn resulted in radial variations in transmission

shown in Fig. 12.

The average filter transmission measured after place-

ment over a 1-m telescope aperture at the Optical

Communications Telescope Laboratory, Wrightwood, CA,

was 48% in the 1.059–1.069-�m spectral band, lower than

the targeted 78%. We anticipate that with further process
control development, average in-band optical throughput

can be improved to exceed 80%. Using the same test

arrangement and multiple time-exposure images of the

star Betelgeuse further demonstrated that there was no

noticeable filter-induced degradation to the full width at

half-maximum (FWHM) blur size beyond the 10.9 �rad

seeing-limited observations, validating predictions of

excellent optical performance.
Stray light from the Hale telescope primary mirror was

validated by performing experiments that involved point-

ing close to the Moon instead of the Sun and used the

PHARO instrumentation [33]. Validation of the 200-in

Hale telescope operation under stressing thermal condi-

tions was performed by opening the telescope dome and

exposing the telescope and dome interior to sunlight for a

full 8-h day around the summer solstice. Thermal sensors
were used to acquire infrared imagery for monitoring

heating of telescope and dome structures. A maximum

temperature rise of almost 60 �C was recorded in some

cases. Monitoring of the concrete dome floor, the telescope

right-ascension bearing, prime focus secondary spider, and

primary mirror cell all showed thermal rises exceeding any

Fig. 11. Reflection spectra from the membrane filter at

various radial positions.

Fig. 12. Narrow-band images of one of the authors through the 1.5-m7p membrane filter at (a) 990, (b) 1064, and (c) 1102 nm.

Errors during the deposition run resulted in changes to the spectral transmission band of the outer ring of the filter.
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ever previously noted within a 24-h period. At the
conclusion of this exposure (though still during daylight

hours), the telescope was pointed toward objects in the

eastern sky and images recorded using the PHARO

instrument mounted in the Cassegrain cage. In spite of

these excessive thermal changes, the telescope generated

seeing-limited images of 7.8 �rad (FWHM on a 14-s

exposure) at 4:00 PM local time (LT), dropping to 3.4 �rad

immediately after sunset and ultimately 0.97 �rad with
the adaptive optics system operating later during the same

night. The blind-pointing accuracy of the telescope

likewise suffered little if any degradation as a result of

the thermal exposure. During the afternoon after telescope

exposure, the blind pointing accuracy was measured to

be 26.7 �rad, dropping to 24.2-�rad soon after sunset,

identical in magnitude to the measurements taken the

night prior to Sun exposure. While firm conclusions
regarding the ability of the telescope to withstand and

operate after repeated daytime exposure should only be

drawn after much more testing, it is at least clear that the

greatest concerns of telescope seeing and pointing ability

are not catastrophic to operations or to subsequent

astronomical use of the telescope.

B. Detector/Receiver/Decoder Validation
To validate the design of the PRT backend (detector,

receiver, decoder), a laboratory test setup was assembled.

This is shown in Fig. 13. Using a video camera as the data

input, an end-to-end detection, demodulation, and decod-

ing scheme was constructed as described below.

The camera footage is first compressed by a hardware
MPEG-2 encoder. This MPEG stream is then sent via TCP/

IP to a desktop personal computer running a software

SCPPM encoder.

A 64-ary PPM mapper takes in the encoded SCPPM

symbol stream and modulates a ytterbium (Yb)-doped

10-KHz spectral width fiber laser operating at 1064 nm.

The modulated PPM pulses are then sent over a length of

fiber to the HPD detector. The HPD detector generates
bandlimited pulses for each photon detected. The receiver

assembly performs slot synchronization and computes an

estimate of the photon count in a PPM slot, according to

the magnitude of the bandlimited signal. The receiver

assembly proceeds to use photon count estimates to

calculate PPM symbol log-likelihood ratios, which are fed

to the decoder assembly. Both the receiver and decoder

were implemented using Xilinx Virtex II field-program-
mable gated arrays (FPGAs). The SCPPM decoded bit

stream was then MPEG decoded to recover the original

camera video output prior to displaying the video stream.

The performance of the end-to-end system is plotted

in Fig. 14. Two experimental runs operating at 4 and

6 Mbps are shown. Both use only the top eight (out of 64)

channel statistics [34] and a maximum of seven SCPPM

decoding iterations. The two curves compare closely to a
standalone FPGA-based decoder assembly simulated with

seven iterations. A simulated FPGA based decoder with full

64-slot statistics and a maximum of 32 iterations is also

shown. The curves show that the partial statistics and a

maximum of seven iterations led to a 0.6 dB loss of

Fig. 13. Test setup for an end-to-end validation of detection and demodulation.
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performance. The end-to-end performance is also shown to

be within 1.4 dB of Shannon capacity. At a frame loss rate of

10�5, the number of signal photons per pulse slot is 2.67,
corresponding to 1.12 information bits per photon.

V. CONCLUSION

A description of the preliminary design of the PRT along

with critical technology validation test results was

presented. MLCD was to have been the first attempt at

communicating optically over planetary distances. The
advances described in the PRT design would have

enabled satisfying the data rates that the Mars link

demonstration was targeting. The interest in deep-space

optical communications persists [35]–[37]; however,

technology validation demonstrations are needed to

retire risks associated with implementing a new technol-

ogy. Therefore, BPRT-like[ designs, where an existing

infrastructure is suitably retrofitted for technology
demonstrations, may prove to be cost-effective stepping

stones towards an eventual operational implementation

of deep-space optical communications. h
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