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Abstract—Recent years have witnessed the deployments of
wireless sensor networks in a class of mission-critical applications
such as object detection and tracking. These applications often
impose stringent QoS requirements including high detection
probability, low false alarm rate and bounded detection delay.
Although a dense all-static network may initially meet these QoS
requirements, it does not adapt to unpredictable dynamics in
network conditions (e.g., coverage holes caused by death of nodes)
or physical environments (e.g., changed spatial distribution of
events). This paper exploits reactive mobility to improve the
target detection performance of wireless sensor networks. In
our approach, mobile sensors collaborate with static sensors and
move reactively to achieve the required detection performance.
Specifically, mobile sensors initially remain stationary and are
directed to move toward a possible target only when a detection
consensus is reached by a group of sensors. The accuracy of
final detection result is then improved as the measurements
of mobile sensors have higher signal-to-noise ratios after the
movement. We develop a sensor movement scheduling algorithm
that achieves near-optimal system detection performance under
a given detection delay bound. The effectiveness of our approach
is validated by extensive simulations using the real data traces
collected by 23 sensor nodes.

I. INTRODUCTION

In recent years wireless sensor networks (WSNs) have been
deployed in a class of mission-critical applications such as
target detection [1], object tracking [2], and security surveil-
lance [3]. A fundamental challenge for these WSNs is to meet
stringent QoS requirements including high target detection
probability, low false alarm rate and bounded detection de-
lay. However, physical phenomena (e.g., the appearance of
intruders) often have unpredictable spatiotemporal distribu-
tions. As a result, a large network deployment may require
excessive sensor nodes in order to achieve satisfactory sensing
performance. Moreover, although dense node deployment may
initially achieve the required performance, it does not adapt to
dynamic changes of network conditions or physical environ-
ments. For instance, death of nodes due to battery depletion or
physical attacks can easily cause coverage holes in a monitored
battlefield.

In this paper, we exploit reactive mobility to improve the tar-
get detection performance of WSNs. In our approach, sparsely
deployed mobile sensors collaborate with static sensors and
move in a reactive manner to achieve required detection
performance. Specifically, mobile sensors remain stationary
until a possible target is detected. The accuracy of the final

detection decision will be improved after mobile sensors move
toward the possible target position and achieve higher Signal-
to-Noise Ratios (SNRs). By taking advantage of such reactive
mobility, a network can adapt to irregular and unpredictable
spatiotemporal distribution of targets. Moreover, the sensor
density required in a network deployment is significantly
reduced because the sensing coverage can be reconfigured in
an on-demand fashion.

Several challenges must be addressed for utilizing the
mobility of sensors in target detection. First, practical mobile
sensors are only capable of slow-speed movement, which may
lead to long detection delays. The typical speed of mobile
sensor systems (e.g., NIMs [4], Packbot [5] and Robomote [6])
is about 0.2−2 m/s. Therefore, the movement of sensors must
be efficiently scheduled in order to reduce detection latency.
Second, the number of mobile sensors available in a network
deployment is often much smaller than that of static sensors
due to the higher manufacturing cost. Hence mobile sensors
must effectively collaborate with static sensors to achieve the
maximum utility. At the same time, the coordination among
sensors should not introduce high overhead or significant de-
tection delay. Third, the distance that mobile sensors move in a
detection process should be minimized. Due to the high power
consumption of locomotion, frequent movement will quickly
deplete the battery of a mobile node. For instance, a Robomote
[6] sensor needs to recharge every 20 minutes when constantly
moving. Although mobile sensors may recharge their batteries
by moving to locations with wired power sources, frequent
battery recharging causes disruptions to network topologies.
Finally, moving sensors lower the stealthiness of a network,
which is not desirable for many applications deployed in
hostile environments like battlefields.

We attempt to address the aforementioned challenges and
demonstrate the advantages of reactive mobility in target-
detection WSNs. This paper makes the following major con-
tributions:

• We propose a novel two-phase detection approach that
utilizes mobility of sensors to improve detection perfor-
mance. Mobile sensors initially remain stationary and are
directed to move toward a possible target only when
a detection consensus is reached by all nearby mobile
and static sensors. Such a two-phase strategy allows
mobile sensors to avoid unnecessary movement through



the coordination with static sensors.
• We develop a near-optimal movement scheduling algo-

rithm based on dynamic programming that minimizes
the expected moving distance of mobile sensors under a
given detection delay bound. Meanwhile, our scheduling
algorithm enables mobile sensors to locally control their
movement and sensing, thus both coordination overhead
and detection delay are reduced significantly.

• We conduct extensive simulations using real data traces
collected by 23 sensors in the SensIT vehicle detection
and tracking experiments [7]. Our results provide several
important insights into the design of target-detection
systems with mobile sensors. First, we show that a
small number of mobile sensors can significantly boost
the detection performance of a network. Second, tight
detection delays can be achieved by efficiently scheduling
slow-moving mobile sensors.

The rest of the paper is organized as follows. Section II
reviews related work. Section III and IV introduce the back-
ground and the formulation of our problem. The performance
of the proposed two-phase detection model is studied in
Section V. Section VI presents a near-optimal movement
scheduling algorithm. We present simulation results in Sec-
tion VII and conclude the paper in Section VIII.

II. RELATED WORK

Recent work demonstrated that the sensing performance
of WSNs can be improved by integrating mobility. Several
projects proposed to eliminate coverage holes in a sensing field
by relocating mobile sensors [8], [9], [10]. Although such an
approach improves the sensing coverage of the initial network
deployment, it does not dynamically improve the network’s
performance after targets of interest appear. Complementary
to these projects, we focus on online sensor collaboration
and movement scheduling strategies that are used after the
appearance of targets.

Several recent studies [11], [12] analyzed the impact of
mobility on detection delay and area coverage. These studies
are based on random mobility model and do not address the
issue of actively controlling the movement of sensors. Bisnik
et al. [13] analyzed the performance of detecting stochastic
events using mobile sensors. Chin et al. [14] proposed to
improve coverage by patrolling fixed routes using mobile
sensors. Different from this work, we study efficient sensor
collaboration and movement scheduling strategies that achieve
specified target detection performance. Reactive mobility is
used in a networked robotic sensor architecture [15], [16] to
improve the sampling density over a region. However, this
project does not focus on target detection under performance
constraints.

Collaborative target detection in stationary sensor networks
has been extensively studied [17], [1], [18]. The two-phase
detection approach proposed in this paper is based on an
existing decision fusion model [17]. Several projects studied
the network deployment strategies that can achieve specified
detection performance [19]. Practical network protocols that

facilitate target detection and tracking have also been inves-
tigated [3], [20], [21]. Complementary to these studies that
deal with the mobility of targets, we focus on improving target
detection performance by utilizing the mobility of sensors.

III. PRELIMINARIES

In this section, we describe the preliminaries of our work,
which include the target energy model, the local detection
model and the multi-sensor decision fusion model.

A. Energy Attenuation Model

Sensors detect targets by measuring the energy of signals,
e.g., acoustic signal, emitted by targets. The energy attenuates
with the distance from the source. Suppose the position of
target is at the origin of polar coordinate plane, the attenuated
signal energy at the position of sensor i that is xi meters away
from the target is given by

es(xi) =
{ S0

(xi/d0)k if xi > d0

S0 if xi ≤ d0
(1)

where S0 is the signal energy measured within d0 from the
source, and d0 is a constant determined by target’s shape. k
is a decaying factor which is typically from 2 to 5. The mea-
surements of sensors are contaminated by background noise
which is modeled as zero-mean additive white Gaussian noise
with variance of ς2. Accordingly, the energy measurement at
sensor i is the sum of signal energy and noise energy en:

ei = es(xi) + en

In practice, the energy measurement at a sensor is often
estimated by the arithmetic average over a number of samples.
If we calculate ei using N samples, the noise energy en is
1
N

∑N
j=1 ν2(j), where ν(j) is the background intensity when

taking the jth sample. en follows a Chi-square distribution
with mean equal to ς2 and variance equal to 2ς4/N . N is
often large in practice. As a result, en can be approximated
by the Gaussian distribution, i.e., en ∼ N(ς2, 2ς4/N). For
example, acoustic data is recorded at a frequency of 4960Hz
in the SensIT experiments conducted in [7]. If the energy mea-
surement is calculated every 0.75 s, N is 4960×0.75 = 3720.
We denote µ = ς2 and σ2 = 2ς4/N in the remainder of this
paper. Consequently, the energy measured at sensor i using
N samples follows a Gaussian distribution with the mean
decaying with the distance from the source:

ei ∼ N(µ + es(xi), σ2)

B. Detection and Decision Fusion Models

Data fusion [17] is a widely used technique for improving
the performance of detection systems. There exist two basic
data fusion schemes, namely, value fusion and decision fusion.
In value fusion [22], each sensor sends its raw energy measure-
ments to the cluster head, which makes the detection decision
based on the received energy measurements. Different from
value fusion, decision fusion operates in a distributed manner
as follows. Each sensor makes a local decision based on its



measurements and sends its decision to the cluster head, which
makes a system decision according to the local decisions.
Due to its low overhead, decision fusion is preferred in
the bandwidth constrained WSNs. Moreover, decision fusion
allows mobile sensors to locally control their movement and
sensing, as we will show in Section IV.

Many fusion rules have been proposed in the literature [17]
for different detection systems. In this work, we adopt the
majority rule due to its simplicity. Specifically, in the local
detection, each individual sensor i makes a local decision (0 or
1) by comparing the energy measurement against a detection
threshold, λi, and reports its local decision to the cluster head.
The cluster head makes the system decision by the majority
rule, i.e., if more than half of sensors vote 1, the cluster head
decides 1, otherwise, decides 0.

The false alarm rate is the probability of making a positive
decision when the target is actually absent, and the detection
probability is the probability that a target is correctly detected.
We assume a Constant False Alarm Rate (CFAR) detection
model [17]. The local detection at sensor i is to test the
following hypothesis:

H0 :p(ei|H0)=
1√
2πσ

exp
(
− (ei − µ)2

2σ2

)
H1 :p(ei|H1)=

1√
2πσ

exp
(
− (ei−µ−es(xi))2

2σ2

)
where ei represents the energy measurement using N samples
at sensor i. H0 and H1 represent the hypothesis that the target
is absent and present, respectively. The optimal decision rule
is Likelihood Ratio Test [17], in which node i compares its
energy measurement ei with a detection threshold λi. Node i
decides 1 if its energy measurement exceeds λi; otherwise,
decides 0. So the local false alarm rate P i

F and the local
detection probability P i

D are given by

P i
F =

∫ +∞

λi

p(ei|H0)dei = Q

(
λi − µ

σ

)
(2)

P i
D =

∫ +∞

λi

p(ei|H1)dei = Q

(
λi−µ−es(xi)

σ

)
(3)

where Q(·) is the complementary cumulative distribution
function of standard Gaussian distribution,

Q(x) =
∫ +∞

x

1√
2π

exp
(
− t2

2

)
dt

Obviously, the closer the sensor is from the source, the higher
detection probability it will achieve.

Suppose there are total n sensors in a detection cluster,
the system false alarm rate PF and the system detection
probability PD can be expressed as

PF = Pr(Y ≥ n

2
|H0), PD = Pr(Y ≥ n

2
|H1)

where Y represents the total number of positive local de-
cisions. Denote Ii as the local decision of node i, then
Y =

∑n
i=1 Ii.

IV. MOBILITY-ASSISTED TARGET DETECTION WITH
DECISION FUSION

This section formulates our problem called the Mobility-
assisted Detection with Decision Fusion. The network model
is described in Section IV-A. In Section IV-B, a two-phase
detection approach is proposed. The problem is formally
formulated in Section IV-D.

A. Network Model

The network is composed of a number of static and mobile
sensors. Targets appear at a set of known physical locations
referred to as surveillance spots with certain probabilities.
Surveillance spots are often identified by the network au-
tonomously after the deployment. Therefore, it is impossible
to deploy sensors only around surveillance spots. Nodes in
the network self-organize into clusters around the surveillance
spots by running a clustering protocol [21], such that each
cluster monitors a surveillance spot. The above surveillance
model is consistent with several previous works [23], [24].
We assume that each static sensor belongs to only one cluster.
However, a mobile sensor may belong to multiple clusters be-
cause it can contribute to the detection at different surveillance
spots.

We now briefly discuss how the above network model can be
applied to a target detection application. Suppose a number of
mobile and static sensors are randomly deployed (e.g., dropped
off from an aircraft) in a battlefield to detect military targets.
After operating for a certain amount of time, the network may
identify some important locations (e.g., based on detection
history) as surveillance spots. A cluster is then formed around
each spot to perform the detection.

B. A Two-phase Detection Model

As each cluster performs detection separately, our discus-
sion focuses one cluster hereafter. We design a two-phase
detection approach to utilize the mobility of sensors.

In the first phase, all sensors synchronously measure energy
and make local decisions by comparing against a predefined
threshold. Each sensor reports its local decision to the cluster
head, which makes a system decision according to the majority
rule. If a positive system decision is made, the second-phase
detection is initiated.

In the second phase, each mobile sensor moves toward
the surveillance spot according to its movement schedule
composed of a list of moves. A move specifies the distance a
mobile sensor should move and the time instance it starts to
move. Both fixed sensors and mobile sensors measure energy
at sampling interval of T , and sum all the measured energies
up. A sequential fusion-like procedure is adopted. At each
sampling interval, if the current sum exceeds a threshold at
sensor i, a positive local decision is made and reported to
the cluster head; otherwise, the sensor continues to sense, and
continues to move according to its movement schedule if it is
a mobile sensor. Note that a sensor may terminate its detection
before the end of the second phase.
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(a) 14 static sensors;
detection probability is
75%; delay is 2s
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(b) 10 mobile sensors;
detection probability is
75%; delay is 7s
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(c) 7 mobile sensors;
detection probability is
75%; delay is 15s

Fig. 1. A numerical example of target detection using static or mobile
sensors.

At the end of the second phase, if the energy sum doesn’t
exceed the threshold, a negative local decision is made and
reported. A sensor can terminate its detection before the end of
the second phase if it has enough evidence to make a positive
local decision. The final system decision is made by the cluster
head as soon as enough local decisions are received to reach
a majority consensus. After the end of the second phase,
the mobile sensors shared by multiple clusters may need to
move back to their original positions if such movement break
the detection performances of other clusters. Otherwise, these
shared mobile sensors stay at the new positions to avoid the
energy consumed in moving back.

Such a two-phase approach has several advantages: (1)
unnecessary movement of mobile sensors is avoided, as mobile
sensors start to move only after the first-phase detection
produces a positive decision; (2) the sequential fusion strategy
allows each mobile sensor to locally control its sensing and
moving according to its movement schedule, which avoids
inter-node coordination overhead. Moreover, a mobile sensor
may terminate its detection once it has enough evidence to
make a positive decision. As a result, the delay of reaching a
consensus in the cluster can be reduced.

C. A Numerical Example

We now illustrate our problem and the basic approach using
a numerical example. To simplify the discussion, we assume
that there is only one surveillance spot. We also assume
that, after a possible target appears, a decision consensus is
always reached in the first phase of detection, which triggers
all mobile sensors to move toward the surveillance spot.
The required detection probability and false alarm rate are
75% and 5%, respectively. The minimum movement speed
of mobile sensors is 1 m/s. During initialization, the cluster
head estimates the parameters of target energy model (see (1))
using a real data set obtained from [7] (the details are given
in Section VII).

We now discuss three different cases: a) if all sensors
are static, 14 sensors will be needed to achieve the required
detection performance within a delay of 2 second as shown in
Figure 1(a). b) If the allowable detection delay is 7 seconds,
10 mobile sensors will be needed as they can move closer
to the target resulting in higher signal-to-noise ratios. c) If
a detection delay of 15 seconds is allowed, only 7 mobile
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(a) Spatial view: void
and solid circles rep-
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tively. The moving dis-
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(b) Temporal view: in the first-phase detection,
all sensors sample for T time at a period
of D; in the second-phase detection, sensors
may terminate the detection in advance, e.g.,
the sensor successfully detects the target and
terminates its second phase at the end of the
5th sampling interval, as illustrated.

Fig. 2. The spatial and temporal views of the two-phase detection

sensors are needed as illustrated in Figure 1(c). This is because
these sensors are able to move a longer distance toward the
surveillance spot than in case b).

Two important observations can be made from this example.
First, the detection performance can be significantly improved
by taking the advantage of mobility of sensors. Second,
scheduling more mobile sensors to move toward a possible
target results in a shorter delay. This observation is particularly
important as most mobile sensor systems have low movement
speeds. Our objective is to find a movement schedule of mobile
sensors that minimizes the total moving distance of sensors
while achieving the required detection performance and delay.

D. Problem Formulation

Our problem is characterized by a 3-tuple < α, β,D >.
Specifically, for any target appears at the surveillance spot,
the objective is to minimize total expected moving distance of
mobile sensors subject to the constraints: (1) the system false
alarm rate is no higher than α; (2) the system detection proba-
bility is no lower than β; and (3) the expected detection delay
is no longer than D. As discussed in Section I, The objective of
minimizing the total moving distance is motivated by several
practical considerations including high power consumption of
locomotion and disruptions to the network topology caused by
sensor movement.

We make the following assumptions in the problem formu-
lation. (1) The surveillance spot is at the origin, the initial
position of sensor i is x0

i . (2) The probability that a target
appears at the surveillance spot is Pa, which is known or can
be easily estimated by detection history. And the time that
a target remains at the surveillance spot after appearance is
much longer than D. (3) A mobile sensor moves at a constant
speed of v, and the moving distance is multiple of vT . A
sensor move is denoted as Mi(x, j), which represents mobile
sensor i’s moving process from position x to x − vT in the
jth sampling interval [(j − 1)T, jT ]. A movement schedule,
S = {Mi(x, j)}, is composed of a list of moves.

To ensure a detection delay of D, the sampling period
in the first-phase detection must be no longer than D. To
simplify our discussion, we assume that the period equals to



D. Hence, the expected delay of the first phase is D
2 if the time

instance at which the target appears is uniformly distributed
within D. Accordingly, the duration of the second phase must
be no longer than D

2 in order to bound the total expected
detection delay within D. We assume D

2 is multiple of T .
Therefore, there are maximum D

2T sampling intervals in the
second phase. Consequently, the constraint of detection delay
bound is satisfied. Note that sampling interval T is usually
very small in practice. For instance, T is 0.75s in the SensIT
experiments [7]. Thus, this assumption has little impact on
the temporal precision of detection. The spatial and temporal
views of the two-phase detection are illustrated in Figure 2.

We define the following notation. λ1 and λ2 are the lo-
cal detection thresholds for the first-phase detection and the
second-phase detection, respectively. Note that all sensors use
same local detection threshold in each phase, which is derived
in Section V. Denote PF1 (PF2) and PD1 (PD2 ) as the system
false alarm rate and the system detection probability in the
first (second)-phase detection, respectively. Because a mobile
sensor may stop moving before delay bound D, the actual
number of moves in a detection is a random variable which
depends on the detection threshold and movement schedule in
the second phase. Let L0(λ2,S) and L1(λ2,S) represent the
total expected number of moves of all mobile sensors when
the target is absent and present, respectively. L0(λ2,S) and
L1(λ2,S) are derived in Section V-B.

Our objective is to find a solution, < λ1, λ2,S >, such
that the total expected distance that the mobile sensors move
away from their original positions is minimized. Formally, the
following cost function is minimized:

c(λ1, λ2,S)=(1−Pa)·PF1·L0(λ2,S)+Pa·PD1·L1(λ2,S) (4)

subject to the following constraints:

PF1 · PF2 ≤ α (5)
PD1 · PD2 ≥ β (6)
λ1 ∈ Λ1 = {λ1(1), λ1(2), . . . , λ1(k)} (7)
λ2 ∈ Λ2 = {λ2(1), λ2(2), . . . , λ2(k)} (8)

∀Mi(x, j)∈S, (vT ≤x≤x0
i ) ∧ (1≤j≤ D

2T
) (9)

In the objective function (4), the second phase detection is
initiated with the probability of Pa ·PD1 if the target is present,
and (1 − Pa) · PF1 if the target is absent. (5) and (6) are the
detection performance required by user. As the decisions of
two phases are mutually independent, the joint false alarm
rate and detection probability are product of two phases’ false
alarm rates and detection probabilities, respectively. (7) and
(8) specify discrete values of the two detection thresholds. In
practice, the achievable precision of sensors is low-bounded.
(9) specifies the spatial and temporal constraints of sensor
movement in the second-phase detection. Each mobile sensor
must move between its initial position and the surveillance
spot, and the movement must complete within D

2 , which
ensures the detection delay bound as discussed above.

V. PERFORMANCE MODELING OF TWO-PHASE
DETECTION

We now derive the false alarm rates and the detection
probabilities in the two phases of detection which are used
in Section VI to find the solution of our problem.

A. First-phase Detection

Since the local false alarm rate doesn’t depend on sensor’s
position, all sensors have same local false alarm rate α1 =
Q(λ1−µ

σ ) according to (2). In absence of target, the number
of positive local decisions, Y , follows a Binomial distribution.
Therefore, the system false alarm rate can be calculated as

PF1 =
n∑

i= n
2

(
n

i

)
αi

1(1 − α1)n−i

According to de Moivre-Laplace Theorem [25], the Binomial
distribution is approximately a Gaussian distribution with
mean of nα1 and variance of nα1 − nα2

1 if n ≥ 10 [26].
This condition can be met in many moderate to large scale
network deployments. Therefore, the system false alarm rate
can be approximated by

PF1 ' Q

(
n
2 − nα1√
nα1 − nα2

1

)
(10)

We now derive the system detection probability in the first-
phase detection. The local decision at sensor i, Ii, follows a
Bernoulli distribution with β1,i as the probability of success,
where β1,i is the local detection probability of sensor i at its
original position x0

i in the first phase. According to (3), β1,i =
Q(λ1−µ−es(x0

i )
σ ). As I1, . . . , In|H1 are mutually independent,

the mean and variance of Y |H1 are as follows,

E[Y |H1]=
n∑

i=1

E[Ii|H1] =
n∑

i=1

β1,i

Var[Y |H1]=
n∑

i=1

Var[Ii|H1]=
n∑

i=1

β1,i−
n∑

i=1

β2
1,i

However, I1, . . . , In|H1 are not identically distributed, as
the local detection probability depends on sensor’s position.
According to Lyapunov’s Central Limit Theorem [27], if
the Lyapunov condition is satisfied, the distribution of Y |H1

approaches a Gaussian distribution when n is large. The proof
of satisfaction of the Lyapunov condition is omitted here due
to space limit and can be found in [28]. Consequently, the
system detection probability can be calculated by

PD1 ' Q

 n
2 −

∑n
i=1 β1,i√∑n

i=1 β1,i −
∑n

i=1 β2
1,i

 (11)

B. Second-phase Detection

In this section, we analyze the performance of the second-
phase detection, which includes the false alarm rate, the
detection probability, and the expected number of moves under
a given movement schedule.



We assume all sensors in the second-phase detection have
the same detection threshold of λ2. In absence of target, the
local false alarm rate is given by

α2 = 1 − Pr(

D
2T∩

j=1

Ei,j < λ2|H0) (12)

where Ei,j =
∑j

k=1 ei,k and ei,j is the energy received
during the jth sampling interval [(j − 1)T, jT ] at sensor i. As
ei,j are independent and identically-distributed (i.i.d.) when
target is absent, i.e., ei,j |H0 ∼ N(µ, σ2), all sensors share the
same local false alarm rate. The joint probability in (12) can
be calculated numerically by the Monte-Carlo method. The
details are omitted here due to space limit and can be found
in [28]. Similar to (10), the system false alarm rate for the
second phase can be calculated by

PF2 ' Q

(
n
2 − nα2√
nα2 − nα2

2

)
(13)

Similar to (12), the local detection probability of sensor i is

β2,i = 1 − Pr(

D
2T∩

j=1

Ei,j < λ2|H1) (14)

For a fixed sensor, the energies received in different sampling
intervals are i.i.d.. However, for a mobile sensor, the energies
received in different sampling intervals have different mean
values, which depend on the movement schedule. Specifically,

ei,j |H1, fixed ∼ N(µ + es(x0
i ), σ

2), ∀j (15)

ei,j |H1, mobile ∼ N(µ + ξi,j(S), σ2), ∀j (16)

where ξi,j(S) is the energy received by mobile sensor i in
the jth sampling interval of the second phase under movement
schedule S. Suppose Li is the number of total moves of sensor
i in movement schedule S. As we show in Section VI-A,
the system detection performance is likely to be maximized
when the Li moves are consecutive from the beginning of
the second-phase detection. In such a case, ξi,j(S) can be
calculated as:

ξi,j(S)=

{
1

vT

∫ x0
i−(j−1)vT

x0
i−jvT

es(xi)dxi 1 ≤ j ≤ Li

es(x0
i − LivT ) j > Li

(17)

In (17), when mobile sensor i is moving from x0
i − jvT to

x0
i − (j − 1)vT during the jth sampling interval, the received

energy is the arithmetic average over N samples, which can be
approximated by the mean value of the function es(xi) defined
by (1); when mobile sensor i stops moving and remains at the
position of x0

i −LivT after Li sampling intervals, the received
energy in one sampling interval is a constant, i.e., es(x0

i −
LivT ). Similar to (11), the system detection probability for
the second-phase detection can be calculated by

PD2 ' Q

 n
2 −

∑n
i=1 β2,i√∑n

i=1 β2,i −
∑n

i=1 β2
2,i

 (18)

Denote li as the random variable of the actual moves of
mobile sensor i in the second phase. We now derive the
expected values of li when the target is absent and present,
which are denoted by E i

0(Li) and E i
1(Li), respectively.

When the target is absent, mobile sensor i terminates the
second phase at the end of the kth sampling interval with
probability of{

Pr(
∩k−1

j=1Ei,j <λ2

∩
Ei,k≥λ2|H0) k < D

2T

Pr(
∩ D

2T −1
j=1 Ei,j <λ2|H0) k = D

2T

Accordingly, if the target is absent, the expected number of
moves, E i

0(Li), is given by:

E i
0(Li) = E[li|H0] = 1 · Pr(Ei,1 ≥ λ2|H0)

+

Li−1
X

k=2

k ·Pr(

k−1
\

j=1

Ei,j <λ2

\

Ei,k ≥λ2|H0)+Li ·Pr(

Li−1
\

j=1

Ei,j <λ2|H0)

= 1 +

Li−1
X

k=1

Pr(

k
\

j=1

Ei,j < λ2|H0) (19)

Similarly, if the target is present, the expected number of
moves, E i

1(Li), can be derived as:

E i
1(Li)=E[li|H1]=1+

Li−1∑
k=1

Pr(
k∩

j=1

Ei,j<λ2|H1) (20)

Suppose there are M mobile sensors in the cluster. The total
expected number of moves, L0(λ2,S) and L1(λ2,S), which
are needed to compute the cost defined by (4), are given by:

Lr(λ2,S) =
M∑
i=1

E i
r(Li), r = 0, 1 (21)

VI. NEAR-OPTIMAL SENSOR MOVEMENT SCHEDULING

In this section, we first analyze the structure of the optimal
solution in Section VI-A. A dynamic programming based near-
optimal movement scheduling algorithm is proposed in Sec-
tion VI-B. The procedure of finding the detection thresholds
is described in Section VI-C.

A. The Structure of Optimal Solution

A naive method to solve the problem formulated in Sec-
tion IV-D is to exhaustively search all possible combinations
of λ1, λ2 and S. Since both λ1 and λ2 have k possible values
and each mobile sensor has 2

D
2T possible movement schedules,

the size of searching space is k2 · 2
D
2T ·M . Obviously, such

exponential complexity is not practical. In this section, we
analyze the structure of optimal solution to the problem, which
leads to the development of a polynomial-time near-optimal
movement scheduling algorithm in Section VI-B.

A solution < λ1, λ2,S > is said to be valid if all constraints
can be satisfied. In other words, given a movement schedule
S, if λ1 and λ2 can be found to satisfy the constraints (5)
and (6), < λ1, λ2,S > is a valid solution. A valid solution is
optimal if it minimizes the objective function (4).



For a movement schedule X, we define C(λ2,X) as the
inverse function of PD2 defined by (18):

C(λ2,X) = Q−1(PD2) =
n
2 −

∑n
i=1 β2,i√∑n

i=1 β2,i −
∑n

i=1 β2
2,i

(22)

As the local detection probabilities, β2,i, depend on the detec-
tion threshold of the second phase as well as the movement
schedule, C is a function of λ2 and X. The following theorem
reveals the first property of the optimal solution.

Theorem 1: Suppose S and S′ are two valid movement
schedules. For a certain λ2, if L0(λ2,S) = L0(λ2,S′),
L1(λ2,S) = L1(λ2,S′) and C(λ2,S) ≤ C(λ2,S′), there
must exist λ1 and λ′

1, such that c(λ1, λ2,S) ≤ c(λ′
1, λ2,S′).

Proof: Suppose < λ1, λ2,S > and < λ′
1, λ2,S′ >

minimize the cost function among all valid solutions with
schedules S and S′ for a certain λ2, respectively. As S,
S′ and λ2 are known, such solutions can be found by the
exhaustive search of values of λ1 in polynomial time. We
construct a new solution < λ′

1, λ2,S >. We now show it
is a valid solution. Compared to < λ′

1, λ2,S′ >, this new
solution only changes PD2 in all constraints. As PD2 always
decreases with C(λ2,X) and C(λ2,S) ≤ C(λ2,S′), we have
PD2(λ2,S) ≥ PD2(λ2,S′). Therefore, constraint (6) can be
met and < λ′

1, λ2,S > is a valid solution. Since λ1 minimizes
the cost function among all valid solutions with S, hence,

c(λ1,λ2,S) ≤ c(λ′
1, λ2,S)

= (1 − Pa)PF1(λ
′
1)L0(λ2,S) + PaPD1(λ

′
1)L1(λ2,S)

= (1 − Pa)PF1(λ
′
1)L0(λ2,S′)+PaPD1(λ

′
1)L1(λ2,S′)

= c(λ′
1, λ2,S′)

Theorem 1 shows that, for given total expected numbers of
moves, L0 and L1, and detection threshold for the second-
phase detection, λ2, the objective function increases with
C(λ2,X). Therefore, the optimal solution < λ∗

1, λ
∗
2,S

∗ >
must yield the minimum C(λ∗

2,S
∗) among all solutions that

have the same total expected numbers of moves. Moreover,
the maximum total expected numbers of moves for all mobile
sensors are bounded. Therefore, for given L0, L1 and λ2,
if there only exist a polynomial number of valid movement
schedules, the optimal schedule can be found as the one that
minimizes the value of C(λ2,X).

However, according to (19)∼(22), λ2, S and local detection
probabilities, β2,i, have a complex nonlinear relationship,
which suggests that there may exist an exponential number of
movement schedules for given L0 and L1. In the following, we
describe a linear approximation of C(λ2,X), which is the key
to find the optimal movement schedule in polynomial time.

Denote ~β = (β2,1, . . . , β2,n)T, and ~ε = (1, . . . , 1)T, then,

C(λ2,X) = f(~β) =
n
2 − ~βT~ε√
~βT~ε − ~βT~β

The first order Taylor expansion of f(~β) at ~β0 is

f(~β) = f(~β0) + ∇f(~β0)T(~β − ~β0) + R1 (23)

where ∇f(~β) = ( ∂f
∂β2,1

, . . . , ∂f
∂β2,n

)T, R1 is the remainder and

∂f

∂β2,i
=−

1+ 1
2 (n

2 −~βT~ε)(~βT~ε−~βT~β)−1(1−2β2,i)√
~βT~ε − ~βT~β

Since β2,i ∈ (0, 1), if we expand f(~β) at the central point,
i.e., β0

2,i = 1
2 , we have ∂f

∂β2,i

∣∣∣
β0
2,i

= − 2√
n

and (23) will be

C(λ2,X) = − 2√
n

n∑
i=1

β2,i +
√

n + R1 (24)

The above equation shows that C(λ2,X) monotonically de-
creases with

∑n
i=1 β2,i, when R1 is independent of β2,i. Our

numerical simulations (omitted due to page limit and can
be found in [28]) show that this monotonicity holds with
a high probability (> 98%). In practice, C(λ2,X) can be
minimized by maximizing

∑n
i=1 β2,i. Since the local detection

probabilities of fixed sensors are independent of the movement
schedule, if the sum of detection probabilities of all mobile
sensors is maximized, the sum of detection probabilities of all
sensors is also maximized. We now show another property
of the optimal solution that further reduces the problem
complexity.

Theorem 2: Suppose mobile sensor i is scheduled with Li

moves in an optimal schedule. In order to maximize the sum
of local detection probabilities in the second-phase detection,
the Li moves must be consecutive from the beginning of the
second phase.
The proof of Theorem 2 is omitted here due to page limit and
can be found in [28].

B. A Near-optimal Movement Scheduling Algorithm

Based on the analysis on the structure of optimal solution,
we develop the following strategy to solve the problem formu-
lated in Section IV-D. First, for given total expected numbers
of moves, L0 and L1, we employ a dynamic programming
algorithm to find the schedule that minimizes C(λ2,S) defined
by (22) in polynomial time, which is presented in this section.
Then, we search the detection thresholds of two phases, λ1

and λ2, to find the near-optimal solution in polynomial time,
which is presented in Section VI-C. We note that the solution
< λ1, λ2,S > found this way is optimal if the monotonicity
between C(λ2,X) and the sum of local detection probabilities
holds, i.e., C(λ2,X) strictly decreases with

∑n
i=1 β2,i in (24).

Let P (m,Lm
0 ,Lm

1 ) be the maximum sum of local detection
probabilities of sensors 1, . . . ,m with total expected moves no
more than Lm

0 and Lm
1 when the target is absent and present,

respectively. Then we have a dynamic programming recursion:

P (m,Lm
0 ,Lm

1 ) = max
0≤Lm≤Hm

{

P (m−1,Lm
0 −Em

0 (Lm),Lm
1 −Em

1 (Lm)) + β2,m(Lm)} (25)

where Hm is the maximum number of moves of sensor m.
Hm = min{ D

2T ,
x0

m

vT }, as the sensor will stop moving if it
reaches the surveillance spot or the required delay bound
is reached. β2,m(Lm) (given by (14)) is the local detection
probability of sensor m which is scheduled with consecutive



Lm moves in the second phase. Em
0 (Lm) and Em

1 (Lm) are
expected numbers of moves of sensor m defined by (19) and
(20), if the target is absent and present, respectively. The initial
state of the above recursion is P (0, ·, ·) = 0.

According to (25), at the mth iteration, the optimal value of
P (m,Lm

0 ,Lm
1 ) is computed as the maximum value of Hm

cases which have been computed in previous iterations of
the recursion. Specifically, for the case where sensor m is
scheduled with Lm moves, the sum of local detection proba-
bilities can be computed as P (m − 1,Lm

0 − Em
0 (Lm),Lm

1 −
Em
1 (Lm))+β2,m(Lm) where the first addend is the maximum

sum of local detection probabilities for sensor 1, . . . ,m − 1
given the total expected numbers of moves, Lm

0 − Em
0 (Lm)

and Lm
1 − Em

1 (Lm). According to Theorem 2, sensor m’s
moves are consecutive from the beginning of the second
phase. Therefore, at most Hm cases need to be considered
when computing P (m,Lm

0 ,Lm
1 ). The maximum sum of local

detection probabilities for all mobile sensors is given by
P (M,LM

0 ,LM
1 ).

In order to calculate PD2 using (18), the square sum
of all local detection probabilities is also needed. For each
P (m,Lm

0 ,Lm
1 ), denote Q(m,Lm

0 ,Lm
1 ) as the square sum

of all local detection probabilities initialized to be zero.
Q(m,Lm

0 ,Lm
1 ) is added up incrementally in each itera-

tion. A schedule S(m,Lm
0 ,Lm

1 ) is also defined for each
P (m,Lm

0 ,Lm
1 ), and initialized to be empty. S(m,Lm

0 ,Lm
1 )

is filled incrementally in each iteration when computing
P (m,Lm

0 ,Lm
1 ). Formally,

L∗
m =argmax

0≤Lm≤Hm

{P (m−1,Lm
0 −Em

0 (Lm),Lm
1 −Em

1 (Lm))+β2,m(Lm)}

Q(m,Lm
0 ,Lm

1 )=Q(m−1,Lm
0 −Em

0 (L∗
m),Lm

1 −Em
1 (L∗

m))+β2
2,m(L∗

m)

S(m,Lm
0 ,Lm

1 )=S(m−1,Lm
0 −Em

0 (L∗
m),Lm

1 −Em
1 (L∗

m))
[

{Mm(x0
m − (j − 1)vT, j)|1 ≤ j ≤ L∗

m}

Note that both L0 and L1 are the expected numbers
of moves and hence are real numbers. Their values are
discretized in the dynamic programming procedure, i.e.,
Lr = {0, ∆, 2∆, . . . ,Lr,max}, r = 0, 1, where ∆ is an
interval. The maximum value, Lr,max can be set to be
maxλ2∈Λ2

∑M
i=1 E i

r(Hi), r = 0, 1, respectively. The complex-
ity of the dynamic programming procedure is O

((
MD
∆

)2
)

.

C. Finding Detection Thresholds
This section presents the procedure of finding the two detec-

tion thresholds and the movement schedule. Once the clusters
are formed after deployment, P (M,L0,L1), Q(M,L0,L1)
and S(M,L0,L1) are pre-computed for each possible com-
bination of λ2 and < L0,L1 > using the above movement
scheduling algorithm:

{Pλ2(M,L0,L1)|λ2∈Λ2,L0∈ [0,L0,max],L1∈ [0,L1,max]}
{Qλ2(M,L0,L1)|λ2∈Λ2,L0∈ [0,L0,max],L1∈ [0,L1,max]}
{Sλ2(M,L0,L1)|λ2∈Λ2,L0∈ [0,L0,max],L1∈ [0,L1,max]}

Algorithm 1 shows the pseudo code of the solving proce-
dure. For each possible total expected number of moves, L0

and L1, the values of λ1 and λ2 are searched to minimize
the cost defined by (4) under the constraints. A zero cost may
occur when all constraints are satisfied without moving the

sensors toward the surveillance spot (line 12 in Algorithm 1).
We note that the algorithm may not find any valid solution
when the performance requirements exceed the maximum
detection capability of the cluster. For instance, the constraint
on the system detection probability or false alarm rate may not
be satisfied even when all mobile sensors have been scheduled
with the maximum number of moves under the delay bound.
The complexity of Algorithm 1 is O

((
MD
∆

)2 · k2
)

.

Algorithm 1 The procedure of finding the detection thresholds
Input: Λ1, Λ2, {Pλ2(M,L0,L1)|λ2∈Λ2,L0∈ [0,L0,max],L1∈ [0,L1,max]},

{Qλ2(M,L0,L1)|λ2∈Λ2,L0∈ [0,L0,max],L1∈ [0,L1,max]},
{Sλ2 (M,L0,L1)|λ2∈Λ2,L0∈ [0,L0,max],L1∈ [0,L1,max]}

Output: λ∗
1 , λ∗

2 , S∗

1: cost = +∞
2: for L0 = [0, ∆, 2∆, . . . ,L0,max] do
3: for L1 = [0, ∆, 2∆, . . . ,L1,max] do
4: for λ1 = [λ1(1), λ1(2), . . . , λ1(k)] do
5: compute PF1 and PD1 using (10) and (11)
6: for λ2 = [λ2(1), λ2(2), . . . , λ2(k)] do
7: compute PF2 using (13)
8: if (5) holds then
9: compute PD2 using Pλ2(M,L0,L1), Qλ2(M,L0,L1) according to (18)

10: if (6) holds then
11: compute current cost c using (4)
12: if c = 0 then
13: exit
14: else if c < cost then
15: cost = c, λ∗

1 = λ1,λ∗
2 = λ2, S∗ = Sλ2 (M,L0,L1)

16: end if
17: end if
18: end if
19: end for
20: end for
21: end for
22: end for

VII. PERFORMANCE EVALUATION

We conduct extensive simulations using the real data traces
collected by Duarte et al. [7]. In the experiment, 75 WINS
NG 2.0 nodes [29] are deployed to detect military vehicles
driving through several intersected roads. The data set used in
our simulations includes the time series recorded by 23 nodes
at the frequency of 4960Hz and ground truth. Received energy
is calculated every 0.75s. Each run is named after the vehicle
type and the number of road covered, e.g., AAV3 stands for
the data recorded when an Assault Amphibian Vehicle (AAV)
drives through the road that is numbered 3. We refer to [7]
for more detailed setup of the experiment. In our simulations,
the acoustic data of AAV3∼11 are used.

A. Simulation Methodology

As the data are collected by fixed sensors, they can not
be directly used in our simulations. We generate data for our
simulations as follows. For each energy measurement collected
by a sensor, we compute the distance between the sensor and
the vehicle from the ground truth data. When a sensor makes
a measurement in our simulations, the energy is set to be the
real measurement gathered at a similar distance to target.

While the sensor measurements are directly taken from real
data traces, we use a target signal model estimated from a
training data set in our movement scheduling algorithm. Such a
methodology accounts for realistic factors. For instance, there
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exists considerable deviation between the measurements of
sensors in our simulations and the training data. This deviation
is due to various reasons including the difference between
vehicles and the changing noise levels caused by wind.

B. Simulation Settings

The simulation code is written in C++. As in [30], we
estimate the energy attenuation model using the AAV3 track as
the training dataset. Our estimated parameters of the energy
model defined by (1) are: S0 = 0.51 (after normalization),
d0 = 2.6 m, k = 2, µ = 10−4, σ2 = 2µ. There are four
surveillance spots located at the centers of the road sections.
Sensors in our simulations are randomly distributed in a field
of 50×50 m2 surrounded by four road sections, and the length
of each road section is 75 m, as illustrated in Figure 3. In
real scenarios, surveillance spots would be identified by the
network after the deployment. Therefore, it is impossible to
deploy sensors only around surveillance spots.

The total simulation time is 3 × 107 seconds, and each
target appearance lasts for 15 seconds. The probability that the
target appears at the beginning of a sampling interval is set to
be 5%. Each sensor in the deployment region thus belongs
four clusters. A sensor is randomly selected as the cluster
head for each surveillance spot. Based on the local decisions
of all sensors in the first-phase detection, a cluster head can
determine if a possible target appears at the surveillance spot
it monitors. The maximum false alarm rate, α, is set to be
5%, except in Figure 4. The moving speed of mobile sensors
is set to be 1 m/s except in Section VII-D. Sampling interval,
T , is set to be 0.75 s, which is consistent to the setting in the
SensIT experiment. The search interval in the near-optimal
movement scheduling algorithm, ∆, is set to be 0.1. The
expected detection delay, D, is set to be 15 s. As our algorithm
does not explicitly consider the mobility of targets, we assume
that a target remains stationary at a surveillance spot for 15
seconds before it disappears.

C. System Detection Performance

Our first set of simulations evaluate the basic performance
of the mobility-assisted detection model and the effectiveness
of our movement scheduling algorithm.

Figure 4 shows the Receiver Operating Characteristic (ROC)
curves for different number of mobile sensors. Under each
false alarm rate, the movement schedule of mobile sensors is
computed to maximize the system detection probability. Total
12 sensors are deployed. Static refers to the deployment in
which all sensors remain stationary. 1/4 moible refers to the 3
mobile sensors and 9 fixed sensors, and so on. We can see that
the system detection performance increases significantly with
the number of mobile sensors. In particular, six mobile sensors
can improve the detection performance by 10% to 35%.

In the second set of simulations, we evaluate the effec-
tiveness of our dynamic programming (DP) based movement
scheduling algorithm. 10 mobile sensors are deployed. We
employ a greedy scheduling algorithm as the baseline, in
which the cluster head always chooses the mobile sensor
closest to the surveillance spot and schedules it with one move
until the required detection performance is achieved. Figure 5
shows the total number of moves in the schedules found by
different algorithms when the requested detection probability
varies from 82% to 92%. As shown in Figure 5, our algorithm
schedules about 10 fewer moves than the greedy algorithm.

D. Impact of Mobile Sensor Speed

In this set of simulations, we evaluate the impact of mobile
sensor speed on the system detection performance. Total 10
mobile sensors are deployed.

Figure 6 plots actual detection probability versus the re-
quested detection probability if mobile sensor speed changes
from 0.2 m/s to 1.0 m/s. For each mobile sensor speed,
the achievable detection probability yields a saturation point,
which occurs when all mobile sensors have moved the maxi-
mum distance within the detection delay bound. However, even
when the mobile sensors moves as low as 0.2 m/s, a detection
probability of 86% is achieved. When mobile sensor speed is
higher, the detection probability increases considerably. This
result shows that our movement scheduling algorithm can
effectively improve system detection performance by taking
advantage of the increase of speed.

Figure 7 plots the number of moves versus the requested
detection probability. For each speed, the number of moves
increases with the requested detection probability. Moreover,
for a certain requested detection probability, the total number
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of moves decreases with sensor speed. It shows that our
movement scheduling algorithm can mitigate the impact of low
sensor speed on detection performance by scheduling more
sensors to move longer distance toward the target.

VIII. CONCLUSION

This paper exploits reactive mobility to improve the detec-
tion performance of WSNs. We propose a two-phase detection
model in which mobile sensors collaborate with static sensors
and move reactively to achieve the required detection perfor-
mance. We develop a sensor movement scheduling algorithm
that can achieve near-optimal system detection performance
under given detection delay bounds. Our extensive simulations
based on real data traces show that a small number of
mobile sensors can significantly improve the system detection
performance. Moreover, our movement scheduling algorithm
achieves satisfactory performance under realistic settings such
as slow speed of sensors (as low as 0.2 m/s).
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