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ABSTRACT

Quicklinks for a website are navigational shortcuts displayed
below the website homepage on a search results page, and
that let the users directly jump to selected points inside the
website. Since the real-estate on a search results page is con-
strained and valuable, picking the best set of quicklinks to
maximize the benefits for a majority of the users becomes an
important problem for search engines. Using user browsing
trails obtained from browser toolbars, and a simple proba-
bilistic model, we formulate the quicklink selection problem
as a combinatorial optimizaton problem. We first demon-
strate the hardness of the objective, and then propose an
algorithm that is provably within a factor of (1—1/e) of the
optimal. We also propose a different algorithm that works
on trees and that can find the optimal solution; unlike the
previous algorithm, this algorithm can incorporate natural
constraints on the set of chosen quicklinks. The efficacy of
our methods is demonstrated via empirical results on both
a manually labeled set of websites and a set for which quick-
link click-through rates for several webpages were obtained
from a real-world search engine.

Categories and Subject Descriptors

H.3.m [Information Storage and Retrieval]: Miscella-
neous

General Terms

Algorithms, Experimentation, Measurements

Keywords

Quick links, Navigational queries, Toolbar data, Trails

1. INTRODUCTION

The distinction between the search box and the naviga-
tion bar in a browser is gradually vanishing. Search engines
are increasingly being used as starting points for users to
navigate a website: instead of typing nasa.gov in the nav-
igation bar or using a bookmark, many people apparently
prefer to type nasa in the search bar, presume the search en-
gine returns nasa.gov as the first search result, and almost
involuntarily click on the first result. The search engines
cater to such user expectations by providing a variety of so-
phisticated navigational support as part of traditional web
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Figure 1: Quicklinks for nasa.

search: e.g., typing a url (intentionally or not) in the search
box of some toolbars will automatically take the user to the
website of the url. A particularly popular feature that is
now available in all major search engines is the so-called
quicklinks that are displayed for navigational queries.

The best way to illustrate quicklinks is by an example.
Figure 1 is the screenshot of the top result for the naviga-
tional query nasa. One can see eight hyperlinks displayed
under the main result nasa.gov. All these links are from
the NASA website and have been provided as navigational
shortcuts that can directly take the user to selected points
of interest within the NASA website. These links were cho-
sen to serve the following purpose: suppose a typical user
who goes to nasa.gov navigates to the “mission” webpage
inside NASA. By providing this “mission” page as a quick-
link, the user need not go through nasa.gov in order to
get to this page; thus her navigation is made more efficient.
Considering the valuable real-estate expended on showing
the quicklinks, the large fraction of navigational queries, the
high click-through rate noted on these quicklinks, and the
associated implications on user experience, it becomes im-
perative for search engines to select them judiciously. This
is the topic of our work.

Sources of quicklinks. Several and obvious sources of in-
formation are available to a search engine for selecting good
quicklink candidates. The first is query and click logs: nav-
igational queries along with a plenitude of reformulations
and user click feedback on search results precisely pinpoint
the webpages in a website that are considered interesting
from a search point of view. The second is toolbar and user
trail data: with the widespread adoption of browser tool-
bars, it has become possible to analyze navigation patterns
within a website at a microscopic level and determine those
webpages frequented by many users. The third is the web-
graph obtained from hyperlinks: site-level link-analysis al-



gorithms can rank order the webpages within a site based on
popularity measures. The fourth is bookmarking and social
bookmarking websites such as del.icio.us and digg.com.
Finally, sitemaps or server logs can sometimes be provided
by the webmasters of the website.

None of these disparate sources of information available
for selecting quicklinks is, however, perfect. The most clicked
url in a newspaper website could correspond to a recent
news article; clearly this is not a desirable quicklink since
it is both fleeting and non-navigational. The most clicked
urls in a company website could all be links discussing their
most popular product, completely ignoring even slightly less
popular products. Likewise, the highly visited webpages ac-
cording to user trails might not be good quicklinks either;
e.g., the “logout” pages or “shopping cart” pages typically
have lots of trails going through them, but are not valuable
as quicklinks since it does not make sense for a user to click
on them from a search result page. Likewise, site-level tem-
plates might cause “privacy policy” and “copyright” pages
to have high popularity; once again, a majority of users are
indifferent about these pages. Thus, being a good quick-
link is a combination of various attributes: how noticeable
would be this webpage to the user’s navigational goal when
displayed as quicklink, how much traffic passes through it,
and what is the tangible benefit to the user (say, in terms
of fewer clicks or lower latency). Examples of good quick-
links include “store locator” in online shopping sites and “lo-
gin” pages in Facebook/MySpace (since any user has to go
through them before being able to do anything non-trivial).

Our contributions. In this paper we formalize the quick-
link selection problem. Our formal framework is based on an
objective defined over a set of user trails (i.e., the toolbar
data). In our model, each webpage has a score of notice-
ability as a quicklink. Noticeability distills the probability
that a user will recognize this quicklink as a shortcut to her
eventual navigation goal. When a webpage is displayed as a
quicklink, all trails that go through this webpage will bene-
fit with probability proportional to the noticeability of this
quicklink. With the remaining probability, the trails will
benefit from the remaining quicklinks. Under this model, we
formulate a simple cost function and a benefit-maximization
objective. Even though this objective is NP-hard, under
mild and plausible assumptions, it turns out to exhibit nice
properties. In particular, we show that it is non-negative
and submodular. Therefore, a greedy algorithm can obtain
a provably approximate solution. We use this algorithm for
quicklink selection.

While the greedy algorithm is applicable in the most gen-
eral case, it is not amenable to certain natural constraints we
may want to impose on the quicklinks. Motivated by this, we
consider the problem of quicklink selection when the union
of trails forms a tree. In this case, we show a dynamic pro-
gramming algorithm to exactly solve the quicklink selection
problem. Furthermore, this algorithm is robust enough to
incorporate some simple constraints on the set of quicklinks.
To be able to apply this algorithm in the general case, we
propose a heuristic to extract, from a given set of trails, the
best subset that will form a tree.

Empirical results using both manually labeled data and
click-through data obtained from a real-world search engine
demonstrate the efficacy of our approach. Our greedy algo-
rithm for quicklink selection beats three strong competing
baseline algorithms by a significant margin. We show that

combining the trails obtained from toolbar logs with search
logs can yield results that are better than those achieved
by either individually. In fact, we obtain 22% improvement
in terms of picking good quicklinks, and a 100% improve-
ment in terms of not picking bad quicklinks, when compared
against the best baseline algorithm.

Organization. The rest of the paper is organized as fol-
lows. Section 2 discusses the related work. Section 3 con-
tains the formulation of the quicklinks selection problem.
Section 4 contains our main algorithms for the problem —
an approximation algorithm that works in the general case
and an exact algorithm that works on trees. Section 5 con-
tains our extensive experimental results on both manually
labeled and post-hoc user-response data from real search
engine traffic. Section 6 contains the concluding remarks.

2. RELATED WORK

The related work falls into three main categories. The
first is the generic problem of organizing websites better
for efficient user browsability. The second is the emerging
area of data mining and analysis of website usage patterns,
user trails, and the toolbar data. The third is the related
work in the broad area of greedy algorithms and submodular
maximization.

Website organization. Organizing websites based on user
traffic has been studied for a long time. One of the earliest
work in this area is that of Srikant and Yang [20]. They
propose a simple algorithm to automatically find pages in
a website whose location is different from where users nor-
mally expect to find them, using the assumption that users
backtrack if they do not find the information where they
expect it. Perkowitz et al. [18, 17] consider the problem of
synthesizing an index page to facilitate user navigation of a
website; one can think of their work as a method for auto-
matic sitemap creation. Doerr et al. describe an extensible
system to analyze weblogs and find patterns to improve the
navigability of websites [8]. In particular, they consider the
problem of providing shortcuts to popular targets. However,
their approach is quite ad hoc.

A different line of research deals with carefully placing
links in a website so as to optimize either the number of
steps or the number of bytes transferred in order to reach
the desired pages of a Web site. Many of the algorithms are
based on recursive balanced partitioning of the tree [12, 11,
3]. Czyzowicz et al. consider the problem of enhancing the
hyperlink structure in order to improve web performance [7].

Our work is different in two ways. First, the website or-
ganization work assumes that the algorithms have access to
the entire webserver traffic. On the other hand, our work
relies only on a partial and perhaps biased subset of the en-
tire traffic, available through the toolbar. In addition, we
also have access to the search traffic that hits pages within
the website. Second, the website organization cares more
about how to organize the website for maximizing user ef-
ficiency. We are more concerned about displaying the right
set of quicklinks along with the website’s homepage, in the
context of search results. As we argued earlier, a high-traffic
webpage in the site is not necessarily a good quicklink.

Website and toolbar analysis. There is a large body of
work on visualizing and analyzing usage patterns in web-



site. The focus can range from clustering [9, 10], to pattern
discovery [4], and visualization of navigation patterns [5].
Mayr [14] developed a quantitative measure called the Web
Entry Factor to aggregate common usage frequencies for
webpages, where an entry means a website visit with an
identifiable entry pattern (navigation type) from a logfile
perspective.

Recently, Liu et al. proposed BrowseRank, a method that
uses the toolbar data to create a user browsing graph and
a continuous-time Markov chain based on the time spent
along the edges [13]. The stationary probability of this chain
gives a query-independent ranking of webpages. Bilenko and
White considered the problem of using toolbar data to an-
alyze post-search browsing behavior [1]. They show that
post-search browsing behavior yields better relevance signal
than mere search log clickthrough; see also [2]. White et
al. used toolbar data to provide links to websites frequently
visited by other users with similar information needs [22].

The problem of generating succinct titles for quicklinks
and similar entry points was recently considered in [6]. There,
the authors proposed a probabilistic model for title genera-
tion and used this model to generate short yet informative
titles for quicklinks, in the context of the title of the root
page.

While our work also analyzes toolbar data, the emphasis
is on finding webpages that are best suited for display as
quicklinks, and not on the analysis or visualization of user
visit patterns. Also, our analysis combines search logs with
toolbar data, yielding better results than if only the toolbar
logs had been used.

Greedy algorithms. Submodular functions have been
studied extensively in recent years due to their ability to en-
capsulate the “diminishing returns” effect that is so common
in combinatorial covering problems. The greedy algorithm
is a well-known way for maximizing submodular functions.
Nembhauser and Wolsey [15, 16] showed that the greedy ap-
proach gives an (1 — 1/e)-approximation for maximizing a
non-decreasing submodular function with a minimum value
of zero. Our problem also has some connections to facil-
ity location [21]. However, unlike the general facility loca-
tion problem, our problem has more structure and hence is
amenable to greedy algorithms.

3. FORMULATION

In this section we present a formal model for selecting
quicklinks.

3.1 Background

Fix a website W. Let V be the set of webpages from the
website, where each webpage is associated with a url. We
assume that the webpages in V' have been de-duplicated, i.e.,
the urls corresponding to the webpages in V' are canonical
and any url on the website can be mapped to exactly one
of these canonical urls. From here on, u will denote both
the webpage and the canonical url corresponding to it. Let
r € V be a distinguished node in the website, called the root;
r corresponds to the website’s homepage. Let E be the set of
directed edges among V, given by hyperlinks: (u,v) € E if
and only if there is a hyperlink from webpage u to webpage
v. The nodes V and the edges E together form the graph
for the website W.

A trail is a directed path in this graph. Formally, a trail
p = p1,p2,..., is such that p1 = r and for each i > 1, we
have (p;,pi+1) € E. Note that a trail need not be simple,
i.e., nodes on a trail can repeat and create loops. Let P be
the (multi)set of all trails. Given a set @ C V and a trail
p, let the projection of Q with respect to p, denoted Q|, be
the set of nodes in @ restricted to only the nodes in p.

Quicklinks. Let k£ > 0 be a given quicklink budget; typi-
cally k < 8. In the quicklink selection problem, the following
is the situation of interest. The user issues some query for
which the search engine’s ranking function determines r,
from website W, to be the top result for this query. The
goal of the search engine is then to show k additional web-
pages in V', called quicklinks, under r. The question now is
to select the best k webpages in V' to show on the search
result page, when r is the top search result’.

User behavior in trails. We now state a simple model of
user behavior with respect to trails. This model leads to a
principled definition of our objective function. For a given
website, we assume that each user has an information need
that is expressed in the trail and served by the webpages
in the trail; perhaps the end of the trail webpage delivers
the information need. The webpages in the trail may or
may not be known to the user a priori, but we assume that
the user will quickly notice any webpage (perhaps by the
page title or its incoming anchortext) that could lead to her
desired information via some trail. We capture this notion
probabilistically below.

Each node u € V has a value a(u) € [0,1] associated
with it. We call this the noticeability of the node u. Intu-
itively, a(u) corresponds to the probability that, if u was
displayed as a quicklink under 7, then a user would notice u
and judge it as belonging to a trail from r that would serve
her information need. While ideally the noticeability is a
user-specific value (e.g., depending on the user’s familiarity
with the website), for tractability reasons, we assume it is a
user-independent global value.

Therefore, if u (with noticeability a(u)) is shown as a
quicklink under 7, then with probability a(u) it will benefit
all the trails that pass through u. The exact amount of
benefit will depend on the position of u inside the trail, and
is precisely captured by the ability to shortcut the trail by
going directly from r to u, when w is displayed as a quicklink
for r. If u is not recognized by the user of the trail (which
happens with probability 1 — a(u)), then the benefits come
from the remaining quicklinks.

Cost model and the objective. For every trail p, let
B, : V — R" be a function that gives the benefit Bj(u) of
having u as a quicklink with respect to the trail p, provided
u is noticed by the user. The benefit B, (u) can capture
natural things such as the total expected time to reach u
from r or the total number of clicks needed to reach u from
r. We make two mild assumptions about this function.

(A1) If u is not on the trail p, then Bj,(u) = 0. In other
words, nodes not part of the trail do not contribute to the
benefit.

!Quicklinks could also be shown only when the original
query was navigational; such variations do not change our
formulation.



(A2) For w,v on the trail p, B,(u) > By(v) if and only
if v is closer to r than u. In other words, as a quicklink,
u benefits p more than v if it occurs further down the trail
from the root r.

Now, given a set @, the benefit of the set on trail p is
calculated as follows. Let gq¢ € @ be the node that occurs
last in p. Then, the effective benefit is defined to be

Bp(Q) = alqe) - By(ae) + (1 — alqr)) - Bo(Q\ {ge})(1)
Bp(¢) =0

It is easy to see from (A1) that it suffices to consider the
projection of Q with respect to p.

OBSERVATION 1. For all p and Q, Bp(Q) = Bp(Q|p)-

Using (A2) and the fact that the range of «(-) is [0, 1], we
have

OBSERVATION 2. For all p and Q, By

(Q) < By (qe)-

Now we can formally state the quicklink selection prob-
lem.

PROBLEM 3  (QUICKLINK SELECTION). Given a budget
k, find a set of nodes Q CV with |Q| < k to mazimize

Q)= Bu(Q). (2)

pPEP

3.2 Hardness

In this section we show the hardness of the quicklink se-
lection problem.

LEMMA 4. The quicklink selection problem is NP-hard.

ProOOF. This is a reduction from the hitting set problem.
In the hitting set problem, we are given a collection C of
subsets of a universe S and an integer k and asked: is there
a subset S’ C S with |S’| < k such that S’ contains at least
one element from each subset in C? Given an instance of the
hitting set problem, we create an instance of the quicklink
selection problem as follows. First, we let a(s) = 1 for
each s € §. We then assume an arbitrary ordering on the
elements in S; this naturally orders the elements in each
subset C' € C, giving rise to a trail pc. For each trail pc, we
set Bp, () = 1. The crucial point to note is that for a given
trail pc, (1) takes value 1 if and only if at least one node
from pc is included in the quicklink solution. Given this, it
is easy to see that the hitting set instance has a solution if
and only if the objective of the quicklink selection problem
has value exactly [C|. [

4. ALGORITHMS
4.1 A greedy algorithm

In this section we obtain a greedy approximation algo-
rithm for the quicklink selection problem. We do this by
showing that the quicklink objective is non-decreasing and
submodular.

First, we state the notion of submodularity.

DEFINITION 5  (NON-DECREASING SUBMODULARITY). Let
U be a finite set. A function f : 2V — R is non-decreasing
and submodular if (i) non-negativity: f(¢) =0 and f(-) >
0, (i) monotonicity: f(X) < f(Y) when X CY C U, and
(13) submodularity: f(X)+ f(Y) > f(XNY)+ f(XUY),
VX,Y C U, or equivalently, (i) f(X U {u}) — f(X) >
FY Ufuh) = F(V), VX CY C U

Submodularity, a combinatorial analog of convexity, cap-
tures the diminishing returns property. Next, we show that
the effective benefit function is non-negative and non-decreasing.

LEMMA 6. For a given set P, the function B(P,Q) is
non-negative and non-decreasing in Q.

PROOF. It is clear from (1) and (2) that the function is
non-negative. We now show it is non-decreasing by showing
it point-wise, i.e., for each p, the function B,(Q) is non-
decreasing.

Let Q CV and let u € V'\ Q. Let ¢1,...
that the trail p is of the form

,qr € Q be such
P=...,q1,.-.,Q42,...5Qi, .. Uy.o. Qit1y---,40,....

Notice that u partitions @) into two sequences; call them

Q; = {qla sy ql} and Qj; = {qi+17 B qf}' AlSO7 notice
that Bp(Q) depends only on qi,...,q; and

By(Q) = o(qe) By (ae) + (1 — a(q0)) Bp(Qy, )-

A similar expression can be written for B,(Q U {u}).

Let A(Q4) = [1,cq+ (1 —alq)) > 0. Now,

By(QU {U}) By(Q)
= AQ)) - (a(w)By(u) + (1 — a(u)Bp(Qy) — Bp(Qy))
= AQ @U’w ()(m»

(@) (3)
(¢:))

|

h
AA,—\

Q
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where the first inequality follows from Observation 2 and the
second inequality follows from (A2) since By, (u) > By (q:). 0O

LEMMA 7. For a given set P, the function B(P, Q) is sub-
modular in Q.

PRrROOF. Let @ C R C V. We need to show (iii’) in Defi-
nition 5, i.e., for any v € V\ Q, B(P,QU{u}) — B(P,Q) >
B(P,RU{u})— B(P, R). As before, we will show this point-
wise, for each p € P. We will use the same notation as in
the proof of Lemma 6.

If w € R, the proof follows Lemma 6. So, we assume
u ¢ R. Now, as in (3),

(QU{u}) B,(Q)

AQY) - a(u) - (By(u) — Bp(Qu))
> A(RY) - a(u) - (By(u) — By(Qy))
> A(RY) - afu) - (By(u) — By(Ry))

p(RU {u}) - BP(R)'

Here, the first inequality follows from the definition of A(-)
and the fact that QF C RY}. The second inequality follows
since Q, C R, and Bp(R;) > Bp(Qy ) using Lemma 6. []

Thus we have established that the effective benefit objective
for quicklink selection is non-decreasing and submodular.
A natural way to optimize covering problems, where the
function is non-decreasing and submodular, is the greedy
approach. Start with an empty set and iteratively build
the solution. At each iteration, select the element with the
highest incremental benefit to the current solution and add
it to the current solution. We now present the algorithm
QL-ALG.



Algorithm QL-ALG

Set Q «— 0.
While |Q| < & do,
Find u € V'\ Q that maximizes B(P,QU{u})— B(P, Q).
Set Q@ — QU {u}.
Return Q.
It is easy to see from the results of Nemhauser, Wolsey,
and Fischer [15, 16] that since the effective benefit function is

non-decreasing and submodular, the above greedy algorithm
is a provably good solution.

THEOREM 8. Algorithm QL-ALG produces a (1 — 1/e)-
approximation to the quicklink selection problem.

4.2 Algorithms for trees

In the previous section we described QL-ALG, a greedy
algorithm that incrementally picks quicklinks for a website
so as to maximize the benefit gained over all the trails for
that website. While the optimization function has nice theo-
retical properties that allow us to bound the performance of
QL-ALG, there are several desiderata that are not handled.
These typically take the form of constraints on the solution,
which, unfortunately, are either not easily expressible under
the previous framework or destroy the submodularity prop-
erty that is essential for bounding the performance of the
greedy algorithm. Next, we discuss two such constraints and
propose methods to find quicklinks under these constraints.

The first constraint is the presence of parent-child web-
pages as quicklinks. It can be confusing to the user to show
two webpages, one of which is conceptually subsumed by
the other, as two separate quicklinks. E.g., for the website
chase. com, it may not be desirable to display both Find-us
and ATM-locator as quicklinks, where the latter is an in-
neighbor of the former in the graph. The second constraint
is homogeneity: it is aesthetically unattractive to display
some quicklinks that are very broad high-level webpages
while some others are deep down in the website. For ex-
ample, the former could be pages like News or Weather in
the bbc.co.uk (yielding small benefits for a large segment
of users), while the latter might be very commonly accessed
webpages like Sports/Football/English-Premier-League
(yvielding large benefits for a few users). Displaying them
together as quicklinks can confuse the user, who might pay
just a fraction of second attention to each quicklink.

Constrained quicklink selection. The above examples
motivate the need for constrained quicklink selection. We
consider pairwise constraints on the set of quicklinks that
can be obtained by an algorithm, e.g., it is possible to spec-
ify a set of all pairs of webpages in the website that can-
not both occur together as quicklinks. Note that pairwise
constraints can capture both parent-child and homogeneity
constraints. Unfortunately, at this level of generality, the
problem becomes hopelessly intractable.

LEMMA 9. The quicklink selection problem, with pairwise
constraints on the solution, is as hard as independent set.

On the other hand, parent-child and homogeneity constraints
are nicely handled if the graph induced by the trails in P
form a tree, rooted at r. We show that in this case, we can
actually solve the quicklinks selection problem exactly.

Dynamic programming on trees. In the following, we
assume that the set of trails induce a tree T, rooted at r.
The main idea behind the dynamic program is that select-
ing k quicklinks at any node in the tree has exactly one of
the two options: either select the node itself as a quicklink
and select k& — 1 quicklinks from its children or select all
the k quicklinks from its children. At this point, it is easy
to introduce parent-child and homogeneity constraints on
the solution. For simplicity, we will present the algorithm
without the constraints.

First, we will convert the tree T" to a binary tree. This
is done by replacing any internal node u of degree d > 2
with children u1,...,uq by a binary tree of depth lgd with
leaves u1,...,uq. All the internal nodes of this binary tree
will have noticeability score of zero; hence, they will never
get selected in any quicklink solution.

Let P, be the set of all trails that end at a node u. Let
C(u, @, k) be the best effective benefit when @ is the current
set of quicklinks and there can be at most k£ quicklinks in
the subtree rooted at u (including w itself). Let wui,u2 be
the children of u. The recurrence of the dynamic program,
QL-ALG-TREE, is given by

B(Pua Q) + maXfZl(C(ula Q:e)
+ C(u27Q>k - 6))
B(Py, QU {u})
+ maxlg:_ll(C(ul, QU {u},0)
+ C(u2, QU {u}, k —€—1)),

and the base cases for any leaf node u are given by C(u, @,0) =
B(Py,Q) and C(u,Q, k) = B(P,,QU {u}), for k > 1. The
dynamic program is invoked as C(r, 0, k). The dynamic pro-
gram can be implemented in time O(k? - n - d), where d is
the depth of the tree T' and n is the number of nodes in T'.

C(u,Q, k) = max

LEMMA 10. The algorithm QL-ALG-TREE solves the quick-
link selection problem for trees.

Extracting a tree from trails. While the above algo-
rithm is very efficient and can accommodate homogeneity
and parent-child constraints, it assumes that the set of trails
form a tree. This is a strong assumption and is general may
not be satisfied, especially for websites with lots of traffic.
Next, we consider the problem of extracting the best subset
of trails from P so that they form a tree. Unfortunately,
this problem is once again hopeless.

LEMMA 11. Given a set of trails, finding the maximum
subset that induces a tree is as hard as independent set.

PRrROOF. Consider an instance (V, E) of the independent
set problem. Let the nodes in V' be ordered. We construct
a trail p, for each u € V. The trail consists of the directed
path 7 v1,...,v4 where r is a special node and vi1,...,vq
are the neighbors of w in E. It is easy to check that finding
the maximum subset of trails in {p,}uev that form a tree
is equivalent to finding the maximum independent set in
(V,E). O

Given this intractability, we resort to the following simple
heuristic. Following [19], let the value v(p) of a trail p be
given by v(p) = £(p)/(1 + n(p)), where ¢(p) is the length of
p and n(p) the number of other trails that intersect with p
(i.e., there is at least one webpage w such that both p and
the intersecting trail arrive at w, but by following links from
different pages). Note that ¢(p) denotes the importance of p



and n(p) the number of trails that would have to be dropped
if p is retained in the tree; the formula for v(p) captures both
these factors. Thus, a high v(p) implies that either the trail
is long and hence important, or that We then order the
trails by decreasing order of v(p) and greedily pick the next
trail, which is added to the current set of trails as long as it
maintains a tree.

5. EXPERIMENTS

In this section we compare the performance of our ap-
proach, QL-ALG, against strong baselines. First, we de-
scribe our experimental setup. We describe in detail the
different datasets and measures we use to evaluate our ap-
proach, and give the rationale for making these choices.
Then we break down the performance comparison along lines
that highlight the various aspects of the quicklinks selec-
tion problem. We show in this section that across a wide
array of ground truths and performance measures our ap-
proach, QL-ALG, significantly outperforms several compet-
itive baselines.

5.1 Methodology

We first discuss the data and the implementation of the
recognizability function that we used in our experiments.
Then, we discuss the various datasets and measures used by
our evaluation setup. Finally, we describe the baselines that
QL-ALG is compared against.

5.1.1 Data and Implementation Details

We extracted data on user trails from Yahoo! toolbar logs
collected over a period of three months. Each trail consists of
a series of clicks by the user such that (1) any two successive
clicks are at most 10 minutes apart?, and (2) none of the
clicks was on the Back button of the browser. The intuition
is that the entire trail, from the entry point into the website
up to the click on the Back button, corresponds to a focussed
browse for some information on the website, and these are
exactly the trails that users might follow after being led to
the website from the search results page. Pressing a Back
button or waiting on a page for more than 10 minutes are
both indications that focussed browsing might have ended,
and further clicks by that user might not be as relevant for
quicklink selection. Note that some trails might begin at
pages other than the website homepage; in such cases, we
prefix the trail with the homepage.

In Section 3 we introduced the noticeability function that
models the propensity of a user to notice and click on a
quicklink that is of interest to her. In our experiments we
estimate the noticeability a(u) of URL u in website W from
the number of clicks c(u) that u receives on the search en-
gine’s results page. The intuition is that a webpage that
gets searched for and clicked often is likely to possess what-
ever features make URLs attractive to users. In addition,
we have a parameter (3 that controls the amount of influ-
ence that noticeability exerts on the objective function of
QL-ALG. In particular,

B8
c(u) )
ou)=|=—"—=) .
v (z@ )
where V' is the set of all URLs in website W.

2The time limit of 10 minutes was set arbitrarily, but results
using other time limits were similar

5.1.2  Ground Truth and Performance Measures

In order to evaluate QL-ALG we use human editors to
label the true quicklinks within websites. For these exper-
iments, we randomly selected a set of 1257 websites from
the set of websites that are searched for most often on the
Web. This bias is essential for our evaluation since these
are exactly the type of websites for which our system will
be required to display quicklinks. From these websites we
created the following datasets.

BEST SET OF QUICKLINKS. We tasked three human edi-
tors with picking the best set of quicklinks for 100 websites
selected from the set mentioned above. The editorial guide-
lines called for picking a set of 8 or fewer quicklinks that
would be useful for a large fraction of the users coming to
the website. For this purpose the editors were allowed to
browse the website, scan the web-master provided sitemaps
etc. Though the editors had access to other sources of in-
formation, like the queries which commonly result in clicks
on the website, these cues were seldom used while labeling.
Because of this, the editors were often unable to determine
the intention of a typical user while visiting the website, and
were significantly biased by the website structure. The ed-
itors were allowed to pick less than 8 quicklinks when they
found few good candidates.

MEASURE: PRECISION/RECALL. Since the ground truth de-
scribed above finds the best set of quicklinks, we can eval-
uate the ability of QL-ALG to find exactly the same set
of quicklinks. For this we employ the PRECISION and RE-
CALL metrics, which are standard in information retrieval re-
search. The PRECISION of a solution is the fraction of quick-
links predicted by it that also belong to the BEST SET OF
QUICKLINKS ground truth. RECALL of a solution is the frac-
tion of quicklinks in the BEST SET OF QUICKLINKS ground
truth that are also predicted in the solution. The PRECISION
and RECALL measures are commonly reported in a combined
fashion via F-MEASURE, which is the harmonic mean of the
two quantities.

As described above, obtaining the BEST SET OF QUICK-
LINKS for websites is a time consuming process. In order
to evaluate our approach more extensively we created the
following dataset.

INDIVIDUAL QUICKLINK JUDGMENTS. We provided a set of
300 websites and 15 “prospective” quicklinks candidates per
website to a set of 22 editors. The editors were then asked
to consider each link independently, and rate its fitness as
a a quicklink. The guidelines for determining fitness of a
candidate URL as a quicklink were the same as described
above. Notice that since the editors were not trying to find
the best 8 quicklinks for a website, the editorial process was
much faster and a total of 4500 URLs were judged this way.
On the flip side, since the editors were making decisions on
the level of individual URLSs, there was more variability in
the judgments. To counteract this effect, each URL was
labeled by 3 editors and the majority label was used. Also,
issues like parent-child and homogeneity constraints in the
positive set of quicklinks were not evaluated.

MEASURE: FRACNEGATIVES. Given the local/incomplete
nature of the INDIVIDUAL QUICKLINK JUDGMENTS, we can-
not punish an approach for not selecting URLs that have
been rated as good quicklinks by editors. This is because



the approach could be finding quicklinks that were not eval-
uated by the editors (they were given a set of 15 quicklink
candidates to evaluate). Moreover, these predicted quick-
links might be better overall than those rated as positive
by the editors. Hence, the only aspect of performance we
can evaluate is the ability of an approach to avoid selecting
quicklinks that are rated as negative by the editors. This
motivates the FRACNEGATIVES measure, which is the frac-
tion of websites on which a URL rated as negative by the
editors was picked as a quicklink by the algorithm. A lower
value of FRACNEGATIVES indicates better performance.

Live TRAFFIC JUDGMENTS. Here we use the click-through
rates on the quicklinks that are currently displayed by the
Yahoo search engine as the ground truth. The click-through
rates were obtained for 1043 websites, while ensuring that
there are enough number of views so that the click-through
rates were robust. We ignored biases resulting from quick-
link position: we believe these were negligible owing to the
quicklink presentation (see Figure 1). Note that unlike the
two ground truth datasets described earlier that scored quick-
links as a set and as individuals, LIVE TRAFFIC JUDGMENTS
result in a ranking of the quicklinks displayed for a website.
We use this ranking for the evaluation measure described
next.

MEASURE: FRACCORRECTSUBSETS. We use this measure
to determine how well our objective function ranks sets of
quicklinks. Note that using click-through rates from the
LivE TRAFFIC JUDGMENTS we can obtain an ordering on
subsets of the 8 quicklinks shown. For instance, given two
subsets of the displayed quicklinks, each of equal size (say,
4), we can tell which of two subsets is better in terms of
the sum of their click-through rates. Similarly, for these
subsets of quicklinks we can also measure how they score
using the objective function of QL-ALG (see Equation 2)
or other baseline approaches. Using the FRACCORRECT-
SUBSETS measure we compute the fraction of such pairs of
subsets that are ranked in the same way by LIVE TRAFFIC
JUDGMENTS and the quicklink selection objective function.
One thing to note is that we obtain one measure of FRAC-
CORRECTSUBSETS for each subset size: we use subsets of
sizes 4,5,6,7. In each case a higher values indicate better
performance.

5.1.3 Baselines

Here we describe the various baselines we compare QL-
ALG against.

ToprCLICKED. While finding the quicklinks for a website
our approach heavily uses information about URLs within
the site that are returned as results by a search engine and
are then clicked by users. We use this information to con-
struct the ToPCLICKED baseline. Hence the ToPCLICKED
baseline predicts the top-8 clicked URLs within the site as
quicklinks. While computing the number of times a URL
in the site is clicked on the search results page, we restrict
ourselves to queries that have a navigational intent. We de-
fine these queries as those that contain the website name in
them. For example, clicks on URL www.nasa.gov/topics/
solarsystem will only be counted for queries which contain
the word “nasa”. This helps the baseline identify URLs that

Approach F-MEASURE PRECISION RECALL
QL-ALc 0.22 0.18 0.28
PAGERANK 0.18 0.17 0.19
ToPVISITED 0.17 0.16 0.18
TopPCLICKED 0.14 0.13 0.15

Table 1: Performance of various approaches evalu-
ated on the BEST SET OF QUICKLINKS ground truth.

are specifically sought in the context of the website and not
just in general on the Web. Since the quicklinks problem re-
lates to identifying URLs that have to shown on the search
results page, as we shall see later, this simple baseline is very
competitive in terms of performance.

ToPVISITED. One of the sources of information used by our
approach in order to select quicklinks for a website is the
paths that users take while browsing the website. If lots
of users’ browsing paths involve a certain web page then
chances are that it is an important one. The TOPVISITED
baseline uses just this information to select quicklinks: it
predicts the top-8 visited URLSs in a website as its quicklinks.
As a part of developing this baseline, we experimented with
including the “time spent” on a particular page as a feature
in selecting quicklinks. However, our initial experiments in-
dicated that time spent was not a very accurate indicator of
page importance: it is not clear that people are reading a
web page the whole time it is open in the browser. Hence,
for the TOPVISITED baseline we regard each visit to a web
page as a single unit. These tweaks as well as the original
signal in the data make this baseline extremely competitive.

PAGERANK. The PAGERANK baseline was constructed in
the following manner. We take all the user trails and con-
struct a (weighted) graph on the set of web pages as nodes
along with a supernode s. Each trail p = p1,...,p¢ defines
a directed path in the graph, starting at the supernode s,
going through the nodes p1, ..., p¢ in succession, and ending
at s. Now, we compute the stationary distribution, viewing
the weighted graph as the transition matrix of a random
walk, and output the top ranked nodes (other than s and
the root 7 of the website) as quicklinks. This baseline was
constructed in order to see how well natural PageRank-like
mechanisms work for quicklinks, if the transition probabili-
ties were not uniform but computed from actual trails.

5.2 Comparison on Editor Labeled Data

In this section we evaluate our algorithm and baselines on
the BEST SET OF QUICKLINKS ground truth. The averaged
results of running QL-ALG and other competing algorithms
on the websites in the ground truth are shown in table 1.
The QL-ALG approach was run with the 8 parameter set to
2 (Section 5.4) and all approaches were required to fetch 8
quicklinks. As mentioned earlier we use the PRECISION and
RECALL measures to report results, and these numbers are
summarized as the F-MEASURE.

There are several observations to be made about the re-
sults. First, the QL-ALG algorithm outperforms all the
other baselines in terms of F-MEASURE; it scores 22% higher
than the second-best baseline, PAGERANK. The baseline ap-
proaches are competitive, especially in terms of PRECISION,
however, QL-ALG outperforms the baselines by a wide mar-
gin in terms of RECALL. Note that the PRECISION and RE-



QL-ALGc PAGERANK ToOPVISITED TOPCLICKED
0.22 0.39 0.41 0.42

Table 2: Performance of various approaches in terms
of FRACNEGATIVES on the INDIVIDUAL QUICKLINK JUDG-
MENTS ground truth.

CALL values differ because the number of quicklinks in the
ground truth are not always 8, while the algorithms always
predict 8.

Second, the approaches that employ user browsing pat-
terns within the website in selecting quicklinks outperform
the ToPCLICKED baseline. The TorPCLICKED baseline only
knows the URLs where users enter the website via a search
engine and not where the users navigate afterwards. This
indicates that using the information present in the naviga-
tional patterns is useful in discovering the important pages
within a website.

Finally, even though QL-ALG outperforms the baseline
approaches, it scores overall low values in terms of PRECI-
SION and RECALL measures. The principal reason for this
is the inability of the editors to determine the intention of
an average visitor to the website. The editors did not ac-
cess traffic related features of a website that the automated
approaches had access to. Hence, the editors were mostly
biased by the web site structure in selecting the quicklinks.
In fact, the quicklinks found by QL-ALG were occasionally
superior to the ones selected by the editors, in terms of help-
ing with the average website user’s browsing. Another rea-
son for low scores in Table 1 is that there are often more
than 8 good quicklinks for any particular website. Hence,
quicklinks predicted by QL-ALG might be good even though
they do not match those identified by the editors. A more
important evaluation is to check that QL-ALG avoids bad
quicklinks, and this leads to the next experiment.

5.2.1 Avoiding Bad Quicklinks

In this experiment we evaluate the output of QL-ALG
and the various baselines in terms of the FRACNEGATIVES
measure described in Section 5.1.2. Recall that the FRAC-
NEGATIVES measure attempts to count the fraction of web-
sites for which an approach outputs at least one quicklink
that is rated negative by editors as part of the INDIVIDUAL
QUICKLINK JUDGMENTS ground truth. The results for this
experiment are presented in Table 2.

The results show that for 22% percent of the websites,
QL-ALG places at least one quicklink that is considered bad
by editors. The corresponding numbers for the baselines
are almost 100% higher. Note that the FRACNEGATIVES
measure can be made arbitrarily small if the URLs selected
as quicklinks by an approach have no intersection with the
ones that have been labeled by editors. Hence, the results
in Table 2 have to considered in relation to the numbers in
Table 1. The fact that QL-ALG outperforms all competing
algorithms in both tables indicates it shows valid quicklinks
for the vast majority of websites it is run on.

5.3 Comparison on Data from Live Traffic

In this section we compare the performance of QL-ALG
with the baselines in terms of the FRACCORRECTSUBSETS
measure described in Section 5.1.2. The FRACCORRECTSUB-
SETS measure is useful to compare how well the underlying
objective ranks subsets of quicklink candidates for which we
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Figure 2: Performance of QL-ALG and competing al-
gorithms on the FRACCORRECTSUBSETS measure plot-
ted for various subset sizes.
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Figure 3: Performance of QL-ALG with varying val-
ues of § in terms of PRECISION and RECALL measured
over the BEST SET OF QUICKLINKS ground truth.

know click-through rates on live search traffic. The under-
lying objective for the QL-ALG algorithm is given in Equa-
tion 2; for the ToPCLICKED, TOPVISITED, and PAGERANK
baselines the underlying objective value for a subset is the
sum of goodness values for individual items in the subset.
We compute separate FRACCORRECTSUBSETS measures for
subsets of sizes 4,5,6, and 7. These measures for the various
quicklink selection approaches are plotted in Figure 2.

As we can see from the figure QL-ALG outperforms all
competing approaches in terms of the FRACCORRECTSUB-
SETS measure for all subset sizes. The increase in accuracy
of QL-ALG over the most the competitive baseline, TOPVIs-
ITED, is on average 5% for all the subset sizes. Moreover, the
order of the baseline performance amongst themselves mim-
ics those obtained in experiments performed in the previous
section. This further corroborates our conclusion that infor-
mation latent in the navigation patterns of users on a web
site is particularly useful for the task of finding quicklinks,
or important web pages, on the site.

5.4 Effect of Noticeability

In this section we evaluate the effect of the noticeability
function (specifically, the 8 parameter) on the accuracy of
the objective function of QL-ALG.
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Figure 5: Distribution of trails lost while selecting
trails that conform to a tree structure.

In Figures 3 and 4 we plot the performance of QL-ALG
when the 3 parameter is varied over a wide range of values.
As we can see from the plots increased emphasis on Notice-
ability increases the performance of our approach in terms of
all the measures: note that lower values of FRACNEGATIVES
indicate better performance. Moreover, once Noticeability
achieves a significant amount of influence, increase the
parameter further does not result in a further increase in
performance.

5.5 Experiments with Tree-Structured Trails

In Section 4 we described a process by which we select a
subset of trails such that they conform to a tree structure.
We also designed exact algorithms that could further be used

Subset size 4 5 6 7
Full Trails | 0.76 0.77 0.78 0.81
Tree Trails | 0.78 0.79 0.80 0.83

Table 3: Performance of the QL-ALG objective func-
tion (Equation 2) in ranking subsets of quicklink
candidates as evaluated by the FRACCORRECTSUBSETS
measure.
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Figure 6: Distribution of clicks lost while selecting
trails that conform to a tree structure.

to enforce parent-child and homogeneity constraints on the
set of quicklinks selected. In this section we evaluate the
performance of our tree-based quicklink selection approach.
In general, user navigation trails form a graph over the
set of URLs in the website. In order to ensure that trails
conform to tree-based navigation on the website we have to
exclude some trails, and consequently lose some user clicks.
In Section 4 we presented algorithms and heuristics to min-
imize the amount of loss of trails and clicks. In Figures 5
and 6 we plot the distribution of the loss in terms of ex-
cluded user trails and clicks when our algorithms were run
on the set of 1257 ground truth websites. As we can see the
distribution is heavily biased towards very few trails and
clicks dropped, pointing to the efficacy of our heuristic.
Another measure of loss of information is the resulting loss
in the ability of the objective function in ranking subsets of
quicklink candidates. Hence, we repeat the experiment per-
formed previously in Section 5.3 that plots the FRACCOR-
RECTSUBSETS measure over the LIVE TRAFFIC JUDGMENTS
ground truth set. In Table 3 we present the accuracy of the
objective function on the tree-structured trails as computed
by the FRACCORRECTSUBSETS measure for different sizes of
subsets. For comparison purposes, we also present the corre-
sponding values of the QL-ALG obtained in experiments in
Section 5.3. For both sets of values the parameter [ is set to
2. As we can see the loss of trails and clicks has no adverse
effect on the power of the objective function in ranking sets
of quicklinks candidates. In fact, the accuracy of the objec-
tive function seems to have increased once we streamlined
the trails into a tree-structure. This indicates that most sig-
nificant user navigation through a website is tree-structured
and major deviations from this structure are often noise.
Therefore, forcing the trails to conform to the tree structure
can improve the ranking power of our objective function.
We also show the usefulness of the tree-based quicklink
selection algorithm via several anecdotal examples. Con-
sider the website for the Electronic Arts game publisher
ea.com. Quicklinks chosen from the tree-based approach
are high-level web pages for seven popular games, such as
thesims2.ea.com, battlefield.ea.com, fifa08.ea.cometc.



On the other hand the greedy approach picks as quicklinks
six web pages from deep within the sub-site of the most
popular game, namely thesim2.ea.com. The remaining two
links are to high-level pages. Clearly, the enforcement of
the homogeneity constraint in our tree-based approach helps
find a cogent set of quicklinks in such cases.

Similar examples serve to demonstrate the usefulness of
the parent-child constraint. As an instance, for the senate.
gov website the following links are picked as quicklinks by
the greedy approach: obama.senate.gov/, obama.senate.
gov/about,obama.senate.gov/contact, and obama.senate.
gov/votes. Clearly, the first of these links is the parent of
all others making the rest redundant as quicklinks. The
tree based algorithm on the other hand picks several differ-
ent high level pages such as, obama.senate.gov/, biden.
senate.gov/, kennedy.senate.gov/, mccain.senate.gov/
etc. Clearly the latter set of quicklinks are superior.

6. CONCLUSIONS AND FUTURE WORK

As search engines aim to enhance user satisfaction, they
are offering increasingly sophisticated navigational aids that
attempt to infer the users’ intent and quickly take them to
content that they wanted to reach but did not explicitly
specify in their search queries. Quicklinks is an important
example of this phenomenon; they let users directly access
webpages within a website whose homepage was returned as
a search result. As they occupy valuable real estate on the
search results page, they must be picked so as to deliver sig-
nificant benefits to a large fraction of users. In this paper, we
framed this critical quicklink selection problem in terms of
an objective function that assesses the navigational benefit
of a candidate quicklink in terms of the observed browsing
behaviors of users, as obtained from browser toolbar logs.

In addition to proposing the mathematically precise prob-
lem formulation, we formally proved the hardness of opti-
mizing the objective and gave an algorithm that is provably
within a factor of (1 —1/e) of the optimal. Empirical results
using both manually labeled data and clickthrough data ob-
tained from a real-world search engine demonstrated the ef-
ficacy of our approach, which beats three strong competing
baseline algorithms by a significant margin. Our method
combines trails obtained from toolbar logs with search logs
and attains results that are better than those achieved by
either individually. In fact, we obtain 22% improvement
in terms of picking good quicklinks, and a 100% improve-
ment in terms of not picking bad quicklinks, when compared
against the best baseline algorithm.

There is significant scope for future work on this problem,
primarily with respect to the tree-based algorithms. While
our proposed algorithm picks quicklinks that obey certain
desired constraints, it is unclear what the best set of con-
straints are, and how to best evaluate the results. Instead of
enforcing hard constraints on the set of selected quicklinks,
we are planning to explore an objective function that com-
bines the current objective with a soft penalty for constraint
violation. Another area of future work concerns standar-
dising quicklinks across sites: e.g., all restaurant websites
should have quicklinks for the menu, the restaurant loca-
tion, and such. Finally, we want to explore extensions of
the objective function to handle spiking interest on certain
webpages/topics, and other such temporal effects.
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