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1. Introduction

1.1. About this course. This is the first part of notes for a lecture course “In-
troduction to Representation Theory”. As a prerequisite only a good knowledge of
Linear Algebra is required. We will focus on the representation theory of quivers
and finite-dimensional algebras.

The intersection between the content of this course and a classical Algebra course
just consists of some elementary ring theory. We usually work over a fixed field K.
Field extensions and Galois theory do not play a role.

This part contains an introduction to general module theory. We prove the classical
theorems of Jordan-Hoélder and Krull-Remak-Schmidt, and we develop the represen-
tation theory of semisimple algebras. (But let us stress that in this course, semisim-
ple representations carry the label “boring and not very interesting”.) We also start
to investigate short exact sequences of modules, pushouts, pullbacks and properties
of Auslander Reiten sequences. Some first results on the representation theory of
path algebras (or equivalently, the representation theory of quivers) are presented
towards the end of this first part. We study the Jacobson radical of an algebra,
decompositions of the regular representation of an algebra, and also describe the
structure of semisimple algebras (which is again regarded as boring). Furthermore,
we develop the theory of projective modules.

As you will notice, this first part of the script concentrates on modules and algebras.
But what we almost do not study yet are modules over algebras. (An exception are
semisimple modules and projective modules. Projective modules will be important
later on when we begin to study homological properties of algebras and modules.)

Here are some topics we will discuss in this series of lecture courses:

e Representation theory of quivers and finite-dimensional algebras

e Homological algebra

e Auslander-Reiten theory

e Knitting of preprojective components

e Tilting theory

e Derived and triangulated categories

e Covering theory

e Categorifications of cluster algebras

e Preprojective algebras

e Ringel-Hall algebras, (dual)(semi) canonical bases of quantized enveloping
algebras

e Quiver representations and root systems of Kac-Moody Lie algebras

e Homological conjectures

e Tame and wild algebras

e Functorial filtrations and applications to the representation theory of clans
and biserial algebras

e Gabriel-Roiter measure

e Degenerations of modules
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e Decomposition theory for irreducible components of varieties of modules

1.2. Notation and conventions. Throughout let K be a (commutative) field. Set
K* = K\{0}. Sometimes we will make additional assumptions on K. (For example,
we often assume that K is algebraically closed.)

Typical examples of fields are Q (the field of rational numbers), R (the real numbers),
C (the complex numbers), the finite fields F, = Z/pZ where p is a prime number.
The field C is algebraically closed.

Let N ={0,1,2,3,...} be the natural numbers (including 0).

All vector spaces will be K-vector spaces, and all linear maps are assumed to be
K-linear.

If I is a set, we denote its cardinality by |I|. If I’ is subset of I we write I’ C I. If
additionally I’ # I we also write I’ C 1.

For a set M let Abb(M, M) be the set of maps M — M. By 1, (or idy) we
denote the map defined by 1,,(m) = m for all m € M. Given maps f: L — M and
g: M — N, we denote the composition by ¢gf: L — N. Sometimes we also write
go f instead of gf.

1.3. Acknowledgements. We thank Tim Eickmann, Alexander Ivanov, Julian
Kiihlshammer, Nicola Pace and Jeff Serbus for typo hunting.
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Part 1. Modules I: J-Modules
2. Basic terminology

2.1. J-modules. Our aim is to study modules over algebras. Before defining what
this means, we introduce a very straightforward notion of a module which does not
involve an algebra:

Let J be a set (finite or infinite). This set is our “index set”, and in fact only the
cardinality of J is of interest to us. If J is finite, then we often take J = {1,...,n}.
We also fix a field K.

A J-module is given by (V, ¢;)jc; where V' is a vector space and for each j € J we
have a linear map ¢;: V — V.

Often we just say “module” instead of J-module, and we might say “Let V be a
module.” without explicitly mentioning the attached linear maps ¢;.

For a natural number m > 0 an m-module is by definition a J-module where

J=A{1,...,m}.

2.2. Isomorphisms of J-modules. Two J-modules (V, ¢;); and (W, );); are iso-
morphic if there exists a vector space isomorphism f: V' — W such that

Jo;=v;f
for all j € J.

v—Low

d’jl b;

v

The dimension of a J-module (V, ¢;); is just the dimension of the vector space V.

Matrix version: If V and W are finite-dimensional, choose a basis vy, ..., v, of V and
a basis wy, . .., w, of W. Assume that the isomorphism f: V — W is represented by
a matrix I (with respect to the chosen bases), and let ®; and ¥; be a corresponding
matrices of ¢; and 1)}, respectively. Then F®; = U, F for all j, i.e. F~1;F = @,
for all j.

If two modules V' and W are isomorphic we write V = V.

2.3. Submodules. Let (V,¢;); be a module. A subspace U of V' is a submodule
of Vif ¢;(u) € U for all uw € U and all j € J. Note that the subspaces 0 and V' are
always submodules of V. A submodule U of V' is a proper submodule if U C V,

ie. U#V.
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o= (5 0)-

Then the 1-module (K2, ¢) has exactly three submodules, two of them are proper
submodules.

Example: Let

Matrix version: If V' is finite-dimensional, choose a basis vy, ..., v, of V such that
v1,...,0s is a basis of U. Let ¢;: U — U be the linear map defined by ¢,y (u) =
¢j(u) for all uw € U. Observe that (U, ¢;y); is again a J-module. Then the matrix
®; of ¢; (with respect to this basis) is of the form

_ (A B;
o= (b 2
In this case A; is the matrix of ¢; with respect to the basis vy, ..., vs.

Let V' be a vector space and X a subset of V| then (X) denotes the subspace of
V' generated by X. This is the smallest subspace of V' containing X. Similarly, for
elements xi,...,z, in V let (z1,...,x,) be the subspace generated by the z;.

Let I be a set, and for each ¢ € I let U; be a subspace of V. Then the sum Ziel U;
is defined as the subspace (X) where X = J,.; U.

Let V = (V, ¢;); be a module, and let X be a subset of V. The intersection U(X)
of all submodules U of V with X C U is the submodule generated by X. We
call X a generating set of U(X). If U(X) =V, then we say that V is generated
by X.

Lemma 2.1. Let X be a subset of a module V. Define a sequence of subspaces U; of
V' as follows: Let Uy be the subspace of V' which is generated by X . If U; is defined,

let
U1 = > 6;(U:).
j€J
Then
UX) =) U.
i>0
Proof. Set

Ux=>» U
i>0
One can easily check that Uy is a submodule of V', and of course Ux contains X.
Thus U(X) C Uy. Vice versa, one can show by induction that every submodule
U with X C U contains all subspaces U;, thus U also contains Uyx. Therefore
Ux CU(X). O

Let now ¢ be a cardinal number. We say that a module V' is c-generated, if V' can
be generated by a set X with cardinality at most ¢. A module which is generated
by a finite set is called finitely generated.
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By Ry we denote the smallest infinite cardinal number. We call V' countably
generated if V' can be generated by a countable set. In other words, V is countably
generated if and only if V' is Ny-generated.

If V' can be generated by just one element, then V is a cyclic module.

A generating set X of a module V' is called a minimal generating set if there
exists no proper subset X’ of X which generates V. If Y is a finite generating set
of V', then there exists a subset X C Y, which is a minimal generating set of V.

Warning: Not every module has a minimal generating set. For example, let V' be
a vector space with basis {e; | i« € N}, and let ¢: V' — V be the endomorphism
defined by ¢(e;) = e;_1 for all i > 2 and ¢(e;) = 0. Then every generating set of the
module N(o0) = (V, ¢) is infinite.

Lemma 2.2. IfV is a finitely generated module, then every generating set of V
contains a finite generating set.

Proof. Let X = {x1,...,x,} be a finite generating set of V', and let Y be an arbitrary
generating set of V. As before we have

V=UY)=> U.

i>0

We have z; = Zizo u;; for some w;; € U; and all but finitely many of the u;; are

zero. Thus there exists some N > 0 such that z; = Zz‘]\io u;; for all 1 < j < n. Each
element in U; is a finite linear combination of elements of the form ¢,, - - - ¢;, (y) for
some ji,...,7; € J and y € Y. This yields the result. O

Warning: Finite minimal generating sets of a module V' do not always have the
same cardinality: Let V = My(K) be the vector space of 2 x 2-matrices, and take
the module given by V' together with all linear maps A: V — V, A € My(K). Then
{(§D)}and {({9),(9¢)} are minimal generating sets of V.

Lemma 2.3. A module V' is finitely generated if and only if for each family U;,
i € 1 of submodules of V with V =3, U; there exists a finite subset L C I such
that V = ZiEL Uz

Proof. Let x4, ..., x, be a generating set of V', and let U; be submodules with V' =
> ics Ui. Then each element x; lies in a finite sum Ziel(l) U;. This implies V' =

Z?:l Zzel(l) Ui.

Vice versa, let X be an arbitrary generating set of V. For x € X let U, be the cyclic
submodule generated by x. We get V' = 3 _ U,. If there exists a finite subset
Y C X with V =3%" _ U,, then Y is a generating set of V. U

2.4. Factor modules. Let U be a submodule of V. Recall that
VIU={v=v+U|veV}
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and v+ U = v'+ U if and only if v—v' € U. Define ¢;: V/U — V/U by ¢;(v+U) =
¢j(v) + U. This is well defined since U is a submodule.

Then (V/U, ¢;); is a J-module, the factor module corresponding to U.

Matrix version: In the situation of Section 2.3, we have that vy + U, ..., v, + U is
a basis of V/U and the matrix of ¢; with respect to this basis is C}.

2.5. The lattice of submodules. A partially ordered set (or poset) is given
by (S, <) where S is a set and < is a relation on S, i.e. <is transitive (s; < s < s3
implies s; < s3), reflexive (s; < s;) and anti-symmetric (s; < sy and sy < 51
implies s; = s3).

One can try to visualize a partially ordered set (S, <) using its Hasse diagram:
This is an oriented graph with vertices the elements of S| and one draws an arrow
s —tif s <tandif s <m <t implies s =m or m = t. Ususally one tries to draw
the diagram with arrows pointing upwards and then one forgets the orientation of
the arrows and just uses unoriented edges.

For example, the following Hasse diagram describes the partially ordered set (5, <)
with three elements s, s9,t with s; < ¢ for i = 1,2, and s; and s, are not comparable
in (9, <).

S1 S2

For a subset T" C S an upper bound for 7T is some s € S such that ¢t < s for all
t € T. A supremum sg of T"is a smallest upper bound, i.e. sq is an upper bound
and if s is an upper bound then sy < s.

Similarly, define a lower bound and an infimum of 7.

The poset (5, <) is a lattice if for any two elements s,¢ € S there is a supremum
and an infimum of 7" = {s,t}. In this case write s + ¢ (or s Ut) for the supremum
and s Nt for the infimum.

One calls (5, <) a complete lattice if there is a supremum and infimum for every
subset of S.

Example: The natural numbers N together with the usual ordering form a lattice,
but this lattice is not complete. For example, the subset N itself does not have a
supremum in N.

A lattice (5, <) is called modular if
31+(tﬂ52) == (31+t)ﬂ52

for all elements sy, 89,1t € S with s; < s5.

This is not a lattice:
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RN
\./ AN

This is a complete lattice, but it is not modular:

RN
\

The following lemma is straightforward:

Lemma 2.4. Sums and intersections of submodules are again submodules.

Lemma 2.5. Let (V,¢;); be a module. Then the set of all submodules of V' is a
complete lattice where Uy < Uy iof Uy C Us.

Proof. Straightforward: The supremum of a set {U; | i € I} of submodules is
> ic; Ui, and the infimum is (., U. O

Lemma 2.6 (Dedekind). Let Uy, Uy, W be submodules of a module V such that
U, CU,. Then we have

U+ WnUy) = (U +W)NUs.

Proof. 1t is sufficient to proof the statement for subspaces of vector spaces. The
inclusion C is obvious. For the other inclusion let u € U;, w € W and assume
u+w € Uy. Then w = (u+ w) — u belongs to Uy and thus also to W N Uy. Thus
u+w e U +(WnNUs). O

Thus the lattice of submodules of a module is modular.

2.6. Examples. (a): Let K be a field, and let V' = (K2 ¢, 1) be a 2-module where

c, 0 01
o= (5 ) mav= (1)

and ¢; # cy. By e; and e; we denote the canonical basis vectors of K2. The module
V' is simple, i.e. V does not have any non-zero proper submodule. The 1-module
(K?, ¢) has exactly two non-zero proper submodules. Let

(01
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Then (K2, ¢,0) has exactly one non-zero proper submodule, namely U = (e;). We
have U = (K, ¢,0), and V/U = (K, ¢,0). In particular, U and V/U are not
isomorphic.

(b): Let
c 0 0 000
p=10 ¢ O andyp=10 0 O
0 0 ¢ 1 10

with pairwise different ¢;. Then the lattice of submodules of (K3, ¢, 1)) looks like

N
N/

The non-zero proper submodules are (e3), (e, e3) and (es, e3).
(c): Let
(&1 0 01
10
¢ = 0 and ¢ = 01

&1
0 ¢ 1 0

with ¢; # ¢o. If K = 3, then the lattice of submodules of (K*, ¢, ) looks like this:

AN
N/

The non-zero proper submodules are (e, es), (€3,€e4), (€1 + e3,62 + ¢4) and (e; +
263, e + 264).

(d):
Let
(&1 0 01
1 0

= e 0| Adv= 0 1

0 ¢ 1 0
with pairwise different ¢;. Then the lattice of submodules of (K4, ¢,1) looks like
this:
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L]

The non-zero proper submodules are (e, es) and (es, e4).

2.7. Decompositons and direct sums of modules. Let (V,¢,); be a module,
and let U; and Uy be submodules of V. If Uy NU; = 0 and U; + Uy =V, then this
is called a direct decomposition of V', and we say (V, ¢;); is the direct sum of
the submodules U; and Us. In this case we write V = U; @ Us.

A submodule U of V is a direct summand of V if there exists a submodule U’
such that U @ U’ = V. In this case we say that U’ is a direct complement of U
inV.

Matrix version: Assume that V is finite-dimensional. Choose a basis vy, ..., vs of U;
and a basis vs11,...,v, of Uy. Then the matrix ®; of ¢; with respect to the basis
vy, ...,0, of V is of the form

_ (4 0
q)j_<0 Bj)

where A; and B; are the matrices of ¢;, and ¢, y,, respectively.
Vice versa, let (V,¢;); and (W,1;); be modules. Define
(V. 95); @ W 1bj); = (VO W, 6; ®¢;);

where

VoW =VxW={(vw)|veV,weW}
and (¢; @ ;) (v, w) = (¢;(v), V;(w)).
In this case V@ W is the direct sum of the submodules V& 0 and 0 & W.

On the other hand, if (V, ¢;); is the direct sum of two submodules Uy and U,, then
we get an isomorphism

UhoU, -V
defined by (uq,ug) — uy + us.

A module (V, ¢;); is indecomposable if the following hold:

.« VA0,
e Let U; and U, be submodules of V with U;NU; =0 and Uy + U; =V, then
U1 =0or U2 =0.

If (V, ¢;); is not indecomposable, then it is called decomposable.

More generally, we can construct direct sums of more than two modules, and we
can look at direct decompositions of a module into a direct sum of more than two
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modules. This is defined in the obvious way. For modules (V;, qbg-i)) i, 1 <i<twe
write

Vi, 8); @ - @ (i, ), = (Vi 6.

2.8. Products of modules. Let I be a set, and for each 7 € I let V; be a vector
space. The product of the vector spaces V; is by definition the set of all sequences
(v;)ier with v; € V;. We denote the product by

v

el

With componentwise addition and scalar multiplication, this is again a vector space.
The V; are called the factors of the product. For linear maps f;: V; — W, with i € I

we define their product
[T IIvi—1IIw
iel iel iel

v (Hiel fl) ((v3)i) = (fi(vs));. Obviously, @,., Vi is a subspace of [[,., Vi. If I is a
finite set, then [[,., Vi = Vi.

el

Now for each 7 € I let V; = (‘/z‘,ﬁbg‘i))j be a J-module. Then the product of the
modules V; is defined as

Vo) =] Vi =[] Vir 6}, (Hv,,Has )

el i€l el i€l

Thus V' is the product of the vector spaces V;, and ¢; is the product of the linear
maps gby).

2.9. Examples: Nilpotent endomorphisms. Sometimes one does not study all
J-modules, but one assumes that the linear maps associated to the elements in J
satisfy certain relations. For example, if J just contains one element, we could
study all J-modules (V, f) such that f™* = 0 for some fixed n. Or, if J contains two
elements, then we can study all modules (V, f, g) such that fg = gf.

Assume |J| = 1. Thus a J-module is just (V, ¢) with V" a vector space and ¢: V' — V
a linear map. We additionally assume that ¢ is nilpotent, i.e. ¢ = 0 for some m
and that V is finite-dimensional. We denote this class of modules by A/,

We know from LA that there exists a basis vy, ..., v, of V such that the correspond-

ing matrix ® of ¢ is of the form
J()\l)
J(A
o — (A2)

0
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where J(\;), 1 <1 <tisa A x \-matrix of the form

01
0 1
J(Ni) =
01
0
for some partition A = (Ay,..., \;) of n.
A partition of some n € N is a sequence A = (Aq,...,\;) of integers with \; >

A > > >land N +---+ X\ =n.
Example: The partitions of 4 are (4), (3,1), (2,2), (2,1,1) and (1,1,1,1).

One can visualize partitons with the help of Young diagrams: For example the
Young diagram of the partition (4,2,2,1,1) is the following:

Let eq,...,e,, be the standard basis of K™ where

1 0
0 :
er=1|.|, . em=|"
' : 0
0 1
To each partition A = (Aq, ..., \;) of n we associate a module

N(A) = @N(A» = (K™, $5)

where for m € N we have

N(m) = (K™, ém)
with ¢,, the endomorphism defined by ¢,,(e;) = e;_1 for 2 < j < m and ¢,,(e1) = 0.
In other words, the matrix of ¢,, with respect to the basis ey, ..., e, is J(m).

We can visualize N(A) with the help of Young diagrams. For example, for A =
(4,2,2,1,1) we get the following diagram:

€14

€13

€12| €22| €32

€11] €21| €31 €41| €51

Here the vectors
{eij [1<i<5,1<5< N}
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denote a basis of

K'=K'o KoK’ K'o K.
Let ¢y: K — K be the linear map defined by ¢y (e;;) = e;;—1 for 2 < j < \; and
¢/\(61‘1) = 0. Thus N()\) — (Klo,gb/\)_

So ¢, operates on the basis vectors displayed in the boxes of the Young diagram
by mapping them to the vector in the box below if there is a box below, and by
mapping them to 0 if there is no box below.

The matrix of ¢, with respect to the basis

€11, €12, €13, €14, €21, €22, €31, €32, €41, €51

18

Similarly, for an arbitrary partition A = (Aq,...,\;) of n we will work with a basis
{e;; |1 <i<t,1<j<\}of K" and we define a linear map ¢,: K" — K" by
oa(ei;) = €51 for 2 < j < \; and ¢y (e;1) = 0. For simplicity, define e;o = 0 for all
1.

Theorem 2.7. For every module (V,¢) with V' an n-dimensional vector space and
¢ a nilpotent linear map V. — V' there exists a unique partition A of n such that

(V,¢) = N(A).
Proof. Linear Algebra (Jordan Normal Form). O

Now let A = (Aq,...,\;) be a again a partition of n, and let x € N(\) = (K", ¢).

Thus
r = Z Cij€ij
]
for some ¢;; € K. We want to compute the submodule U(xz) C N(\) generated by
x:

We get

P(z) = ¢ (Z Cijeij> = Zcij¢(€ij) = Z Cij€ij—1-
1,J 1,J

0§ >2
Similarly, we can easily write down ¢*(z), ¢*(z), etc. Now let r be maximal such
that c; # 0 for some 4. This implies ¢"~*(z) # 0 but ¢"(z) = 0. It follows that the

vectors z, ¢(x),. .., ¢"(x) generate U(x) as a vector space, and we see that U(x)
is isomorphic to N(r).



22 CLAUS MICHAEL RINGEL AND JAN SCHROER

For example, the submodule U(e;;) of N()) is isomorphic to N(j) and the corre-
sponding factor module N(X)/U(e;;) is isomorphic to

N = §) & P N().

aFi

Let us look at a bit closer at the example A = (3,1):

We get
Ulesr) = N(1), N(3,1)/U(ear) = N(3),
Ulen) = N(1), N(3,1)/U(ey;) = N(2,1),
Uleys) = N(2), N(3,1)/U(e12) = N(1,1),
Uleiz) = N(3), N(3,1)/U(e13) = N(1),
U(er +e91) = N(2), N(3,1)/U(e1a + €21) = N(2).

Let us check the last of these isomorphisms: Let 7 = e1o + e € N(3,1) = (K4, ¢).
We get ¢(z) = ey and ¢*(z) = 0. Tt follows that U(zx) is isomorphic to N(2).
Now as a vector space, N(3,1)/U(x) is generated by the residue classes €13 and
€12. We have ¢(ej3) = ey and ¢(e12) = eq. In particular, ¢(e12) € U(x). Thus
N(3,1)/U(z) = N(2).

2.10. Exercises. 1: Let W and U;, ¢ € I be a set of submodules of a module
(V, ¢;); such that for all k,l € I we have U C U; or U, D U,. Show that

So-Uu

icl el

Uwnu)=wn (UUZ).

el el

and

2: Let K be a field and let V = (K*, ¢, 1) be a module such that

A1

_ A2
¢ = s

A
with pairwise different \; € K. How can the lattice of submodules of V' look like?

3: Which of the following lattices can be the lattice of submodules of a 4-dimensional
module of the form (V, ¢, )7 In each case you can work with a field K of your choice.



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 23

Of course it is better if you find examples which are independent of the field, if this
is possible.

(see the pictures distributed during the lecture)

4: Classify all submodules U of V.= N(2,1), N(3,1), N(2,2) and determine in each
case the isomorphism class of U and of the factor module V/U.

For K =y and K = F3 draw the corresponding Hasse diagrams.

Let K = [, with p a prime number, and let A and p be partitions. How many
submodules U of V with U = N(A) and V/U = N(u) are there?

5: Let U be a maximal submodule of a module V', and let W be an arbitrary

submodule of V. Show that either W C U or U +W = V.

6: Find two 2 x 2-matrices A and B with coefficients in K such that (K?, A, B) has
exactly 4 submodules.

7: Show: If V' is a 2-dimensional module with at least 5 submodules, then every
subspace of V' is a submodule.

8: Let V be a 2-dimensional module with at most 4 submodules. Show that V is
cyclic.

3. Homomorphisms between modules

3.1. Homomorphisms. Let (V. ¢;); and (W,4;); be two modules. A linear map
f:V — W is a homomorphism (or module homomorphism) if

foi=1bif
for all j € J.

e
¢jl le
e f

—>.W

We write f: (V,¢;); — (W.4;); or just f: V — W. An injective homomorphism
is also called a monomorphism, and a surjective homomorphism is an epimor-
phism. A homomorphism which is injective and surjective is an isomorphism,
compare Section 2.2.

If f: (V,¢;); — (W,1);); is an isomorphism, then the inverse f~1: W — V is also a
homomorphism, thus also an isomorphism: We have

F = = e =0
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For modules (U, ;);, (V, ¢;);, (W, ¢;); and homomorphisms f: U — V and g: V —
W the composition gf: U — W is again a homomorphism.

Here is a trivial example of a homomorphism: Let (V, ¢;); be a module, and let U be
a submodule of V. Then the map ¢: U — V defined by ¢(u) = w is a homomorphism,
which is called the (canonical) inclusion.

Similarly, the map 7: V' — V/U defined by 7(v) = v+ U is a homomorphism, which
is called the (canonical) projection.

It f: (V,¢,); — (W,4,); is a homomorphism, then define

Ker(f) ={veV| f(v) =0},
the kernel of f, and

Im(f) = {f(v) [v eV},
the image of f. Furthermore, Cok(f) = W/Im(f) is the cokernel of f.

One can easily check that Ker(f) is a submodule of V: For v € Ker(f) and j € J
we have f¢;(v) =, f(v) =1;(0) = 0.

Similarly, Im(f) is a submodule of W: For v € V and j € J we have ¢;f(v) =
fo;(v), thus ¥, f(v) is in Im(f).

For a homomorphism f: V — W let fi: V — Im(f) defined by fi(v) = f(v) (the
only difference between f and f; is that we changed the target module of f from
W to Im(f)), and let fo: Im(f) — W be the canonical inclusion. Then f; is an
epimorphism and f; a monomorphism, and we get f = fof;. In other words, every
homomorphism is the composition of an epimorphism followed by a monomorphism.

Let V and W be J-modules. For homomorphisms f,g: V' — W define
f+g: V=W

by (f + ¢)(v) = f(v) + g(v). This is again a homomorphism. Similarly, for ¢ € K
we can define

cf: VoW

by (¢f)(v) = ¢f(v), which is also a homomorphism. Thus the set of homomorphisms
V' — W forms a subspace of the vector space Homg (V, W) of linear maps from
V to W. This subspace is denoted by Hom;(V, W) and sometimes we just write
Hom(V, W).

A homomorphism V' — V is also called an endomorphism. The set Hom ;(V, V)
of endomorphisms is denoted by End (V') or just End(V'). This is a K-algebra with
multiplication given by the composition of endomorphims. One often calls End (V)
the endomorphism algebra (or the endomorphism ring) of V.

3.2. Definition of a ring. A ring is a set R together with two maps +: RxR — R,
(a,b) — a+ b (the addition) and -: R x R — R, (a,b) — ab (the multiplication)
such that the following hold:
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e Associativity of addition: (a4 b) +c=a+ (b+c¢) for all a,b,c € R,

e Commutativity of addition: a +b =0+ a for all a,b € R,

e Existence of a 0-element: There exists exactly one element 0 € R with a +
0=a forall a € R,

e Existence of an additive inverse: For each a € R there exists exactly one
element —a € R such that a + (—a) =0,

e Associativity of multiplication: (ab)c = a(bc) for all a,b,c € R,

e Existence of a 1-element: There exists exactly one element 1 € R with la =
al = a for all a € R,

e Distributivity: (a + b)c = ac + be and a(b + ¢) = ab + ac for all a,b,c € R.

A ring R is commutative if ab = ba for all a,b € R.

3.3. Definition of an algebra. A K-algebra is a K-vector space A together with
amap -: AXA — A, (a,b) — ab (the multiplication) such that the following hold:

e Associativity of multiplication: (ab)c = a(bc) for all a,b,c € A;

e Existence of a 1-element: There exists an element 1 which satisfies la =
al = a for all a € A;

e Distributivity: a(b+ ¢) = ab+ ac and (a + b)c = ac + ac for all a,b,c € A;

e Compatibility of multiplication and scalar multiplication: A(ab) = (Aa)b =
a(Ab) for all A € K and a,b € A.

The element 1 is uniquely determined and we often also denoted it by 14.

In other words, a K-algebra is a ring A, which is also a K-vector space such that
additionally A(ab) = (Aa)b = a(Ab) for all A € K and a,b € A.

In contrast to the definition of a field, the definitions of a ring and an algebra do not
require that the element 0 is different from the element 1. Thus there is a ring and
an algebra which contains just one element, namely 0 = 1. If 0 = 1, then R = {0}.

3.4. Homomorphism Theorems.

Theorem 3.1 (Homomorphism Theorem). If V and W are J-modules, and if
f:V — W is a homomorphism, then f induces an isomorphism

[+ V/Ker(f) — Im(f)
defined by f(v+ Ker(f)) = f(v).

Proof. One easily shows that f is well defined, and that it is a homomorphism.
Obviously f is injective and surjective, and thus an isomorphism. O
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Remark: The above result is very easy to prove. Nevertheless we call it a Theorem,
because of its importance.

We derive some consequences from Theorem 3.1:

Corollary 3.2 (First Isomorphism Theorem). If Uy C U, are submodules of a
module V', then

V/Uy = (V/U1)/(Us/Uh).

Proof. Note that Us/U; is a submodule of V/U;. Thus we can build the factor
module (V/Uy)/(Uy/Uy). Let

V = V/U — (V/U1)/(Uz/Uh)

be the composition of the two canonical projections. This homomorphism is obvi-
ously surjective and its kernel is U;. Now we use Theorem 3.1. U

Corollary 3.3 (Second Isomorphism Theorem). If U; and Us are submodules of a
module V', then

U, /(U N Uy) = (U, + Us)/Us.

Proof. Let
Uy — U + Uy — (U + Uy) /U,

be the composition of the inclusion U; — U; + Us and the projection Uy + Uy —
(Uy + Uy)/Us. This homomorphism is surjective (If u; € Uy and uy € U,, then
uytus+Us = uy+Us is the image of uy.) and its kernel is UyNUs (An element uy € Uy
is mapped to 0 if and only if uy + Uy = Uy, thus if and only if u; € Uy N Us.). ]

U+ U,
U1 U2
Ui NU,

In particular, if U; C Uy and W are submodules of a module V', then the above
results yield the isomorphisms

(U nW)/(UyNW) = (U + Uy nW) /Uy,
UyJ(Uy +Us NW) = (Uy + W) /(U + W).

The module (U; + Us N W) /Uy is a submodule of Uy /Uy, and Uy /(U + W N Us) is
the corresponding factor module.
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Us

Uy +U,NnW

Uy / \U2 nNWo Ui+ W/U2 \ U,
\ /

" S

UlmW U1+U2ﬂW

+W

3.5. Homomorphisms between direct sums. Let
V=V,
j=1
be a direct sum of modules. By
;i V; =V
we denote the canonical inclusion and by

vV —V;

the canonical projection. (Each v € V' is of the form v = Y7, v; where the v; € Vj

are uniquely determined. Then 7y ;(v) = v;.) These maps are all homomorphisms.
They satisfy

v 0w = 1y,
7TV,i o LV,j = 0 lf Z 7é j,

n

> wyomy, = 1lv.

Jj=1

Now let V' and W be modules, which are a finite direct sum of certain submodules,

say
V=@V, and W=w.
j=1 i=1

If f: V — W is a homomorphism, define
fig=mwio fouw;: V; =W,
We can write f: V' — W in matrix form

fll fln
f=1: :
fml fmn
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and we can use the usual matrix calculus: Let us write elements v € V and w € W
as columns
U1 w1

v=|: and w =
'Un wm
with v; € V; and w; € W;. If f(v) = w we claim that
Jit o S]] [u Z?:l f1j(v5) wy

fml o fmn Un, E?:l fmj (vj> W,
Namely, if v € V we get for 1 <7 <m

n

Z Fii(v) = (wwao fouvy) (vy)

J=1

= (ﬂw’i ofo (Z Ly,j © Wv,j)) (v)

= (mwso f)(v) = w;.
The first term is the matrix product of the ith row of the matrix of f with the

column vector v, the last term is the ith entry in the column vector w.

Vice versa, if f;;: V; — W; with 1 < j < n and 1 < i < m are homomorphisms,
then we obtain with

E Lw,i © fij © Ty
i7j
a homomorphism f: V' — W, and of course we can write f as a matrix
Juu o fia
fml Tt fmn
The composition of such morphisms given by matrices can be realized via matrix

multiplication.

If A is a matrix, we denote its transpose by ‘A. In particular, we can write the
column vector v we looked at above as v = f[vy, ..., v,].

Now f — (fi;)i; defines an isomorphism of vector spaces

Hom ; (é %,éVV,) — ééHomJ(Vj,VVi).
j=1 i=1

j=1 i=1
In particular, for every module X we obtain isomorphisms of vector spaces

HomJ (X,é%) - éHomJ<X7VVZ)

i=1 i=1
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and

Hom (é%,X) — éHomJ(Vj,X).

j=1 j=1

3.6. Idempotents and direct decompositions. An element r in a ring R is an
idempotent if > = r. We will see that idempotents in endomorphism rings of
modules play an important role.

Let V = U; & U be a direct decomposition of a module V. Thus U; and U, are
submodules of V' such that Uy N Uy = 0 and Uy + Uy = V. Let ¢;: U; — V and
m;: V. — U; be the corresponding inclusions and projections. We can write these
homomorphisms in matrix form

51 :t[l 0], Lo :t[() ]_], ™ = []_ 0], Ty = [0 ]_]

Define e; = 1;m and e; = 1om. Then both e; and ey are idempotents in the
endomorphism ring End(V') of V. (For example, €2 = 1;m41m = 111y, m = e;1.) Set
e(U1,Us) = ey.

Proposition 3.4. Let V be a J-module. If we associate to an idempotent e €
End(V) the pair (Im(e), Ker(e)), then we obtain a bijection between the set of all
idempotents in End ;(V') and the set of pairs (Uy,Us) of submodules of V' such that
V=U&U.

Proof. Above we associated to a direct decompositon V = U; @ U, the idempotent
ey = uyym € End(V). This idempotent is uniquely determined by the following
two properties: For all u; € U; we have e1(u;) = wuy, and for all uy € Uy we have
e1(uz) = 0. From e; we can easily obtain the above direct decomposition: We have
Uy =Im(e;) and Uy = Ker(ey).

Vice versa, let e € End(V') be an idempotent. Define U; = Im(e) and Uy = Ker(e).
Of course U; and U, are submodules of V. We also get Uy NUy = 0: If x € Uy NUs,
then x € Uy = Im(f), thus z = e(y) for some y, and = € Uy = Ker(e), thus e(z) = 0.
Since e = ¢ we obtain z = e(y) = *(y) = e(z) = 0.

Finally, we show that Uy + U, = V: If v € V, then v = e(v) + (v — e(v)) and
e(v) € Im(e) = U;. Furthermore, e(v — e(v)) = e(v) — e*(v) = 0 shows that
v—e(v) € Ker(e) = Us,.

Thus our idempotent e yields a direct decomposition V' = U; @ U,. Since e(uy) = uy
for all u; € Uy and e(ug) = 0 for all us € Us, we see that e is the idempotent
corresponding to the direct decomposition V' = U; @ Us. U

The endomorphism ring End(V') of a module V' contains of course always the idem-
potents 0 and 1. Here 0 corresponds to the direct decomposition V =0&® V, and 1
corresponds to V =V & 0.

If e is an idempotent in a ring, then 1 — ¢ is also an idempotent. (Namely (1 —¢)? =
l—e—e+e?2=1—¢)
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If the idempotent e € End(V') corresponds to the pair (Uy, Us) with V = Uy @ Uy,
then 1 — e corresponds to (U, Uy). (One easily checks that Im(1 — e) = Ker(e) and
Ker(1 —¢) = Im(e).)

Corollary 3.5. For a module V' the following are equivalent:

o VV is indecomposable;
e V=£0, and 0 and 1 are the only idempotents in End(V).

Later we will study in more detail the relationship between idempotents in endo-
morphism rings and direct decompositions.

3.7. Split monomorphisms and split epimorphisms. Let V and W be mod-
ules. An injective homomorphism f: V — W is called split monomorphism if
Im(f) is a direct summand of W. A surjective homomorphism f: V — W is a split
epimorphism if Ker(f) is a direct summand of V.

Lemma 3.6. Let f: V — W be a homomorphism. Then the following hold:

(i) f is a split monomorphism if and only if there exists a homomorphism
g: W — V such that gf = 1y,
(ii) f is a split epimorphism if and only if there exists a homomorphism h: W —

V' such that fh = 1y .

Proof. Assume first that f is a split monomorphism. Thus W = Im(f) @& C for some
submodule C' of W. Let ¢: Im(f) — W be the inclusion homomorphism, and let
m: W — Im(f) be the projection with kernel C. Let fy: V' — Im(f) be defined by
fo(v) = f(v) for all v € V. Thus f = ¢fy. Of course, fy is an isomorphism. Define
g=fytm: W — V. Then we get

gf = (fo'm)(efo) = fo ' (me) fo = fo ' fo = 1v.

Vice versa, assume there is a homomorphism ¢g: W — V such that gf = 1. Set
e = fg. This is an endomorphism of W, and we have

¢ =(fo)(fg) = flgf)g= flvg=e,

thus e is an idempotent. In particular, the image of e is a direct summand of W.
But it is easy to see that Im(e) = Im(f): Since e = fg we have Im(e) C Im(f), and
f = flyv = fgf = ef yields the other inclusion Im(f) C Im(e). Thus Im(f) is a
direct summand of W.

This proves part (i) of the statement. We leave part(ii) as an exercise. O

3.8. Short exact sequences and Hom-functors. Let V, W, XY be modules,
and let f: V — W and h: X — Y be homomorphisms. For g € Hom (W, X) we
define a map

Hom,(f,h): Hom (W, X) — Hom,(V,Y),g — hgf.
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It is easy to check that Hom;(f, h) is a linear map of vector spaces: For g, g1, g2 €
Hom (W, X) and ¢ € K we have

h(gr+g2)f = hgrf + hgaf and  h(cg)f = c(hgf).
If V=W and f = 1y, then instead of Hom,(1y, h) we mostly write
Hom,;(V,h): Hom,(V, X) — Hom,(V.Y),

thus by definition Hom;(V, h)(g) = hg for g € Hom;(V, X). If X =Y and h = 1x,
then instead of Hom,(f,1x) we write

Homy(f, X): Hom;(W, X) — Hom,(V, X),
thus Homy(f, X)(g) = gf for g € Hom (W, X).

Let U, V,W be modules, and let f: U — V and g: V — W be homomorphisms. If
Im(f) = Ker(g), then (f,g) is called an exact sequence. Mostly we denote such
an exact sequence in the form

vLviw
We also say, the sequence is exact at V. Given such a sequence with U = 0,
exactness implies that g is injective. (For U = 0 we have Im(f) = 0 = Ker(g), thus
g is injective.) Similarly, if W = 0, exactness yields that f is surjective. (For W =0
we have Ker(g) =V, but Im(f) = V means that f is surjective.)

Given modules V; with 0 < ¢ < ¢ and homomorphisms f;: V;_1 — V; with 1 <17 <,
then the sequence (fi,..., f;) is an exact sequence if

Im(fi—1) = Ker(f;)
for all 2 < ¢ < t. Also here we often write
vo Ly B Ly,
Typical examples of exact sequences can be obtained as follows: Let V and W

be modules and let g: V' — W be a homomorphism. Let ¢: Ker(g) — V be the
inclusion, and let 7: W — Cok(g) be the projection. Then the sequence

0— Ker(g) > VLW 5 Cok(g) — 0

is exact. (Recall that Cok(g) = W/Im(g).)
Vice versa, if we have an exact sequence of the form

o-vLviw
then f is injective and Im(f) = Ker(g). Similarly, if

ULv2Ehw-—o
is an exact sequence, then h is surjective and Im(g) = Ker(h).
Lemma 3.7. Let 0 — U LV % W be an exact sequence of J-modules. Then

gf =0, and for every homomorphism b: X — V with gb = 0 there exists a unique
homomorphism b/ : X — U with b = fb'.
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Proof. Of course we have gf = 0. Let now b: X — V be a homomorphism with
gb = 0. This implies that Im(b) C Ker(g). Set U" = Ker(g), and let ¢: U — V
be the inclusion. Thus b = by for some homomorphism by: X — U’. There is an
isomorphism fy: U — U’ with f = vfy. If we define ¥’ = f; by, then we obtain

fb, = (Lfo)(fo_lbo) = Lbo =b.

We still have to show the uniqueness of ¢': Let 0”: X — U be a homomorphism
with fb” = b. Then the injectivity of f implies &’ = b". O

There is the following reformulation of Lemma 3.7:

Lemma 3.8. Let 0 — U LV % W be an exact sequence of J-modules. Then for
every J-module X, the sequence

Hom.I(va) Hom y (ng)
_— _—

0 — Hom,(X,U) Hom, (X, V)

is exact. (“Homy(X,—) is a left exact functor.”)

Hom (X, W)

Proof. We have Hom (X, ¢g) o Hom (X, f) = 0: For any homomorphism a: X — U
we get

(Hom (X, g) o Hom; (X, f))(a) = gfa = 0.
This implies Im(Hom (X, f)) C Ker(Hom,(X, g)).

Vice versa, let b € Ker(Hom (X, g)). Thus b: X — V is a homomorphism with gb =
0. We know that there exists some b': X — U with fo/ = b. Thus Hom (X, f)(0') =
fbt/ = b. This shows that b € Im(Hom;(X, f)). The uniqueness of b’ means that
Hom, (X, f) is injective. O

Here are the corresponding dual statements of the above lemmas:

Lemma 3.9. Let U L V & W — 0 be an evact sequence of J-modules. Then
gf =0, and for every homomorphism c: V- — Y with cf = 0 there exists a unique
homomorphism ¢ : W — Y with ¢ = cg.

Proof. Exercise. O
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And here is the corresponding reformulation of Lemma 3.8:

Lemma 3.10. Let U LV L W — 0 be an ezact sequence of J-modules. Then for
every J-module X, the sequence

Hom,(g,Y) Hom,(f,Y)
D _

0 — Hom,(W,Y) Hom,(V,Y) Hom,(U,Y)

is exact. (“Homy(—,Y") is a left exact contravariant functor.”)
Proof. Exercise. O

An exact sequence of the form

is called a short exact sequence. This sequence starts in U and ends in V.
Its middle term is V' and its end terms are U and W. For such a short exact
sequence we often write (f, g) instead of (0, f, g,0).

Two short exact sequences

0-U-Lv-Lw-=o0
and

0-U-5vLw o
are equivalent if there exists a homomorphism A: V' — V' such that the following
diagram is commutative:

Remark: The expression commutative diagram means the following: Given are
certain modules and between them certain homomorphisms. One assumes that for
any pair of paths which start at the same module and also end at the same module,
the compositions of the corresponding homomorphisms coincide. It is enough to
check that for the smallest subdiagrams. For example, in the diagram appearing in
the next lemma, commutativity means that bf = f’a and cg = ¢’b. (And therefore
also cgf = ¢'f'a.) In the above diagram, commutativity just means hf = f’ and
g = g’h. We used the homomorphisms 1;; and 1y to obtain a nicer looking diagram.
Arranging such diagrams in square form has the advantage that we can speak about
rows and columns of a diagram. A frequent extra assumption is that certain columns
or rows are exact. In this lecture course, we will see many more commutative
diagrams.

Lemma 3.11. Let
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be a commutative diagram with exact rows. If a and c¢ are isomorphisms, then b is
also an isomorphism.

Proof. First, we show that b is injective: If b(v) = 0 for some v € V| then cg(v) =
g'b(v) = 0. This implies g(v) = 0 since ¢ is an isomorphism. Thus v belongs to

Ker(g) = Im(f). So v = f(u) for some u € U. We get f'a(u) = bf(u) = b(v) = 0.
Now f’a is injective, which implies u = 0 and therefore v = f(u) = 0.

Second, we prove that b is surjective: Let v" € V’. Then ¢ '¢/(v') € W. Since g
is surjective, there is some v € V with g(v) = ¢7'¢/(v). Thus cg(v) = ¢'(v'). This
implies
g =0bv)) =g ) = g'b(v) = g'(v) = cg(v) = 0.

So v' — b(v ) belongs to Ker(g') = Im(f’). Therefore there exists some v’ € U’ with
f'(v) = v —bv). Let u = a (). Because f'(v') = fla(u) = bf(u), we get
v' = f(u) + b(v) = b(f(u) +v). Thus v’ is in the image of b. So we proved that b
is an isomorphism. O

The method used in the proof of the above lemma is called “Diagram chasing”.

Lemma 3.11 shows that equivalence of short exact sequences is indeed an equivalence
relation on the set of all short exact sequences starting in a fixed module U and
ending in a fixed module W:

Given two short exact exact sequences (f,g) and (f’,¢’) like in the assumption of
Lemma 3.11. If there exists a homomorphism h: V' — V' such that hf = f’ and
g = ¢'h, then h™! satisfies h='f' = f and ¢’ = gh~!. This proves the symmetry of
the relation.

If there is another short exact sequence (f”,¢”) with f”: U — V" and ¢": V" —
W and a homomorphism h’': V' — V" such that A'f’ = f” and ¢ = ¢"h/, then
Wh:V — V" is a homomorphism with h'hf = f” and g = ¢”h’h. This shows our
relation is transitive.

Finally, (f, g) is equivalent to itself, just take h = 1y. Thus the relation is reflexive.

A short exact sequence
0-ULVELW =0

is a split exact sequence (or splits) if Im(f) is a direct summand of V. In other
words, the sequence splits if f is a split monomorphism, or (equivalently) if g is a
split epimorphism. (Remember that Im(f) = Ker(g).)

Lemma 3.12. A short exact sequence 0 — U — V. — W — 0 splits if and only if
it 1s equivalent to the short exact sequence

0—-USUeW W -0,

where 1y s the inclusion of U into U & W, and my is the projection from U & W
onto W with kernel U.
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Proof. Let (f,g) with f: U — V and g: V — W be a short exact sequence. If it
splits, then f is a split monomorphism. Thus there exists some f': V — U with

Ff=1y. So

00—y
.
0—U—>UW 2>W—0

is a commutative diagram: If we write (; = *[1,0] and m = [0, 1], then we see that
‘[f',91f ="[1,0] = 11 and g = [0, 1] o *[f’, g] = m2 o *[f", g]. Thus (f, g) is equivalent
to (i1, m2).

Vice versa, assume that (f,g) and (i1, m) are equivalent. Thus there exists some
h:V — U®W such that hf = ¢; and g = moh. Let m; be the projection from U W
onto U with kernel W. Then mhf = w1, = 1y. Thus f is a split monomorphism.

O

3.9. Exercises. 1: Prove part (ii) of the above lemma.

2: Let K be a field of characteristic 0. For integers ¢,j € Z with i < j let M (i, j)
be the 2-module (K7~ @ ¥) where
i i+l %0 1
o = and ¥ = .
-1 01
j 0
Compute Hom(M (i, 7), M (k, 1)) for all integers i < j and k < [.

V= (K, (8 é))

Show: End(V') is the set of matrices of the form (a

3: Let

b) with a,b € K.
0 a
Compute the idempotents in End(V).

Compute all direct sum decompositions V' = V; @& Vs, with Vi and V5 submodules of
V.

4: Let

V= (K?,

o = O
o O O
o O O
_ o O
o O O
o O O
—

Show: End(V) is the set of matrices of the form
0 0

o o R
o 2
Q* O
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with a,b,c € K.

Use this to show that V' is indecomposable.

Show that V' is not simple.

5: Let V and W be J-modules. We know that V' x W is again a J-module.

Let f: V — W be a module homomorphism, and let

Iy ={(v, f(v)) [veV}
be the graph of f.

Show: The map f +— I'; defines a bijection between Hom;(V, W) and the set of
submodules U CV x W with U@ (0 x W) =V x W.

6: Let

V= (K?,

o OO
S O =
o O O
~—

Compute End(V') (as a set of 3 x 3-matrices).
Determine all idempotents e in End (V).
Determine all direct sum decompositions V' = Vi@V, (with drawings in case K = R).

Describe the map e — (Im(e), Ker(e)) (where e runs through the set of idempotents
in End(V)).

7: Let

0 Wi W W 0

be a diagram of J-modules with exact rows.

Show: There exists a homomorphism a;: V; — W; with af; = gia; if and only if
there exists a homomorphism as: Vo — Wy with gea = as fs.

8: Let
v Ly, Ly Ly Ly
lal lQQ la3 la4 la5
Wy 2 Wy -2 Wy 2w, -2 W

be a commutative diagramm of J-modules with exact rows.

Show: If a; is an epimorphism, and if a; and a4 are monomorphisms, then a3 is a
monomorphism.



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 37

If a5 is a monomorphism, and if a; and a4 are epimorphisms, then as is an epimor-
phism.

If ay, as, a4, as are isomorphisms, then ag is an isomorphism.

9: Let
0-ULvELw_oo

be a short exact sequence of J-modules.

Show: The exact sequence (f, ¢g) splits if and only if for all J-modules X the sequence

HOmJ(X,f) HomJ(X,g)
—_— 5 —

0 — Hom,(X,U) Hom, (X, V) Hom,; (X, W) — 0

is exact. (By the results we obtained so far, it is enough to show that Hom (X, g)
is surjective for all X.)

10: If the sequence
0—U 5V, % Uy — 0

is exact for all ¢ € Z, then the sequence

figi—1 v, fit19i

= Vi1 Vz‘+1ﬁ"'

1s exact.

11: Construct an example of a short exact sequence
0-U—-=UoW —-W -0
such that U 2 U’".

4. Digression: Categories

This section gives a quick introduction to the concept of categories.

4.1. Categories. A category C consists of objects and morphisms, the objects
form a class, and for any objects X and Y there is a set C(X,Y’), the set of mor-
phisms from X to Y. Is f such a morphism, we write f: X — Y. For all objects
X,Y, Z in C there is a composition map

CY,Z) xC(X,Y) = C(X, 2), (9,f)— g1,

which satisfies the following properties:

e For any object X there is a morphism 1y: X — X such that flxy = f and
1xg = g for all morphisms f: X — Y and g: 7 — X.

e The composition of morphisms is associative: For f: X — Y ¢g: Y — Z
and h: Z — A we assume (hg)f = h(gf).
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For morphisms f: X - Y and g: Y — Z we call gf: X — Z the composition of
f and g.

A morphism f: X — Y is an isomorphism if there exists a morphism ¢g: ¥ — X
such that gf = 1x and fg = 1y.

When necessary, we write Ob(C) for the class of objects in C. However for an object
X, we often just say “X lies in C” or write “X € C”.

Remark: Note that we speak of a “class” of objects, and not of sets of objects, since
we want to avoid set theoretic difficulties: For example the J-modules do not form
a set, otherwise we would run into contradictions. (Like: “The set of all sets.”)

If C' and C are categories with Ob(C’) € Ob(C) and C'(X,Y) C C(X,Y) for all
objects X, Y € C’ such that the compositions of morphisms in C’ coincide with the
compositions in C, then C' is called a subcategory of C. In case C'(X,Y) =C(X,Y)
for all X,Y € C’, one calls C' a full subcategory of C.

We only look at K-linear categories: We assume additionally that the morphism
sets C(X,Y) are K-vector spaces, and that the composition maps

C(Y,Z) x C(X,Y) = C(X, Z)
are K-bilinear. In K-linear categories we often write Hom(X,Y") instead of C(X,Y").

By Mod(K') we denote the category of K-vector spaces. Let mod(K) be the category
of finite-dimensional K-vector spaces.

4.2. Functors. Let C and D be categories. A covariant functor F:C — D
associates to each object X € C an object F(X) € D, and to each morphism
f: X — Y in C a morphism F(f): F(X) — F(Y) in D such that the following
hold:

o F(1x) = 1p(x) for all objects X € C;
o F(gf) = F(g)F(f) for all morphisms f, ¢ in C such that their composition
gf is defined.

By a functor we always mean a covariant functor. A trivial example is the following:
If C’ is a subcategory of C, then the inclusion is a functor.

Similarly, a contravariant functor F': C — D associates to any object X € C an
object FI(X) € D, and to each morphism f: X — Y in C a morphism F'(f): F(Y) —
F(X) such that the following hold:

e F(1x) = 1p(x) for all objects X € C;
o F(gf) = F(f)F(g) for all morphisms f, ¢ in C such that their composition
gf is defined.

Thus if we deal with contravariant functors, the order of the composition of mor-
phisms is reversed.
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If C and D are K-linear categories, then a covariant (resp. contravariant) functor
F:C — D is K-linear, if the map C(X,Y) — D(F(X),F(Y)) (resp. C(X,Y) —
D(F(Y), F(X))) defined by f +— F(f)is K-linear for all objects X,Y € C.

In Section 3.8 we will see examples of functors.

4.3. Equivalences of categories. Let F': C — D be a functor. Then F' is called
full, if for all objects X,Y € C the map C(X,Y) — D(F(X),F(Y)), f — F(f) is
surjective, and [ is faithful if these maps are all injective. If every object X' € D
is isomorphic to an object F'(X) for some X € C, then F' is dense.

A functor which is full, faithful and dense is called an equivalence (of categories).
If F': C — D is an equivalence, then there exists an equivalence GG: D — C such that
for all objects C' € C the objects C' and GF(C') are isomorphic, and for all objects
D € D the objects D and FG(D) are isomorphic.

If F: C — D is an equivalence of categories such that Ob(C) — Ob(D), X — F(X)
is bijective, then F' is called an isomorphism (of categories). If F' is such an
isomorphism, then there exists a functor G: D — C such that C = GF(C) for all
objects C € C and D = FG(D) for all objects D € D. Then G is obviously also an
isomorphism. Isomorphisms of categories are very rare. In most constructions which
yield equivalences F' of categories, it is difficult to decide if F' sends two isomorphic
objects X # Y to the same object.

4.4. Module categories. Given a class M of J-modules, which is closed under
isomorphisms and under finite direct sums. Then M (together with the homomor-
phisms between the modules in M) is called a module category.

(Thus we assume the following: If V'€ M and if V= V' then V' € M. Also, if
Vi,...,V; are modules in M, then Vi & --- &V, € M.)

If we say that f: X — Y is a homomorphism in M, then this means that both
modules X and Y lie in M (and that f is a homomorphism).

The module category of all J-modules is denoted by M(J). Thus Mod(K) = M (D).
For J ={1,...,n} set M(n) := M(J).

4.5. Hom-functors. Typical examples of functors are Hom-functors: Let M be
a module category, which consists of J-modules. Each J-module V' € M yields a
functor

Hom,;(V, —): M — mod(K)
which associate to any module X € M the vector space Hom;(V, X) and to any
morphism h: X — Y in M the morphism Hom;(V,h): Hom,(V, X) — Hom,(V,Y)
in mod(K).

Similarly, every object X € M yields a contravariant functor
Hom;(—, X): M — mod(K).
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4.6. Exercises. 1: For ¢ € K let N, be the module category of 1-modules (V] ¢)
with (¢ —cly)™ = 0 for some m. Show that all module categories N, are isomorphic
(as categories) to N := Nj.

5. Examples of infinite dimensional 1-modules

5.1. The module N(o0). Let V' be a K-vector space with basis {e; | ¢ > 1}. Define
a K-linear endomorphism ¢: V' — V by ¢(e;) = 0 and ¢(e;) = e;_; for all i > 2.
We want to study the 1-module
N(o0) := (V, 9).
We clearly have a chain of submodules
NO)cN(1)Cc---CN(@E)CN@E+1)C---

of N(oco) where N(0) = 0, and N(i) is the submodule with basis ey, ..., e; where
1 > 1. Clearly,

N(oo) = | J N(i).

1€Np
The following is clear and will be used in the proof of the next lemma: Every
submodule of a J-module is a sum of cyclic modules.
Lemma 5.1. The following hold:
(i) The N(i) are the only proper submodules of N(c0);

(ii) The N(i) are cyclic, but N(oo) is not cyclic;
(ili) N(o0) is indecomposable.

Proof. First we determine the cyclic submodules: Let x € V. Thus there exists
some n such that € N(n) and

n
Tr = E a;e;.
i=1

If x = 0, the submodule U(z) generated by x is just N(0) = 0. Otherwise, U(x) is
equal to N (i) where i the the maximal index 1 < j < n such that a; # 0. Note that
the module N(oo) itself is therefore not cyclic.

Now let U be any submodule of V. It follows that U is a sum of cyclic modules,

thus
U=> N(i)
el
for some I C Ny. If I is finite, we get U = N(max{i € I}), otherwise we have
U = N(c0). In particular, this implies that N(oo) is indecomposable. O
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A J-module V' is uniform if for any non-zero submodules U; and Us; one has U; N
Uy # 0. It follows from the above considerations that N(oo) is a uniform module.

5.2. Polynomial rings. This section is devoted to study some interesting and im-
portant examples of modules arising from the polynomial ring K[7'] in one variable
T.

As always, K is a field. Recall that the characteristic char(K') is by definition the
minimum n such that the n-fold sum 1+ 1+ ---+ 1 of the identity element of K is
zero, if such a minimum exists, and char(K) = 0 otherwise. One easily checks that
char(K) is either 0 or a prime number.

The elements in K[T] are of the form

f = i aiTi
=0

with a; € K for all i and m > 0. We set 7° = 1. One calls f monic if a,, = 1 where
n is the maximal 1 < ¢ < m such that a; # 0. If f # 0, then the degree of f is the
maximum of all ¢ such that a; # 0. Otherwise the degree of f is —oo.

By P we denote the set of monic, irreducible polynomials in K[T]. For example, if
K =C we have P ={T —c | c € C}.

Exercise: Determine P in case K = R. (Hint: All irreducible polynomials over R
have degree at most 2.)

Note that {1,7%,T?, ...} is a basis of the K-vector space K|[T.
Let
T-: K[T| — K|[T]
be the K-linear map which maps a polynomial f to 7'f. In particular, 7" is mapped
to T

Another important K-linear map is
d .
dT’

which maps a polynomial " a;T" to its derivative
d i
d—T( f)= Z aiT" ™.
i=1
Of course, in the above expression, ¢ stands for the i-fold sum 1+ 14 --- 4+ 1 of

the identity 1 of K. Thus, if char(K) = p > 0, then i = 0 in K if and only if 7 is
divisible by p. In particular ---(7"") = 0 for all n > 0.

K[T] — KI[T]

We know that every polynomial p can be written as a product

p=cpip2- - Pt
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where ¢ is a constant (degree 0) polynomial, and the p; are monic irreducible poly-
nomials. The polynomials p; and ¢ are uniquely determined up to reordering.

5.3. The module (K[T], &). We want to study the 1-module
d

V= (K(T), ).

Let V,, be the submodule of polynomials of degree < n in V. With respect to the
basis 1,T%,...,T" we get

01
0 2
V, & (K", o)
0 n
0
Exercise: If char(K) = 0, then
01 01
0 2 01
(KnJrlv )g(KnJrlv )
0 n 01
0 0

Proposition 5.2. We have

d N(o0) if char(K) = 0,
(K[T1, d_T) {@ZENO N(p) if char(K) = p.

Il

Proof. Define a K-linear map
d
ndT
by T + ! - e;4; where ¢! :=i(i —1)---1 for i > 1. Set 0! = 1. We have
d , . , ,
F(5T0) = 76T =i =i - Dt =it
On the other hand,

f+ (KT, =) — N(o0)

O(f(T7) = (i - er) =il - ;.
This implies that the diagram

K[T] —> N ()

i

K]~ N(c0)
commutes, and therefore f is a homomorphism of 1-modules. If char(K) = 0, then

f is an isomorphism with inverse
1 )
f_li €iy1 — — - T
7!
where 7 > 0.

Now assume char(K) = p > 0. We get ¢! = 0 if and only if i > p.
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The 1-module

(W, ¢) :== P N(»)

i€Np
has as a basis {e;; | i € No,1 < j < p} where
0 if j =1,
¢(ei;) = {

eij—1 otherwise.
Define a K-linear map
f: W — K[T|
by

ip+j—1

eij = — '
(71!

Since j < p we know that p does not divide (j — 1)!, thus (j — 1)! # 0 in K. One

easily checks that f defines a vector space isomorphism.

Exercise: Prove that y
f(¢(€z’j)) = d—T(f(ez’j))

and determine 1.

We get that f is an isomorphism of 1-modules. 0

5.4. The module (K[T],T-). Next, we want to study the 1-module
V= (KI[T],T").

Let a = Y ,a;T" be a polynomial in K[T]. The submodule U(a) of V generated
by a is

(a) :==U(a) ={ab| be K[T]}.
We call (a) the principal ideal generated by a.

Proposition 5.3. All ideals in the ring K[T] are principal ideals.
Proof. Look it up in any book on Algebra. O

In other words: Each submodule of V' is of the form (a) for some a € K[T.

Now it is easy to check that (a) = (b) if and only if a|b and b|a if and only if there
exists some ¢ € K* with b = ca. (For polynomials p and ¢ we write p|q if ¢ = pf for
some f € K[T].)

It follows that for submodules (a) and (b) of V' we have
(a) N (b) =l.cm.(a,b)
and
(a) + (b) = g.c.d.(a,b).
Here l.c.m.(a, b) denotes the lowest common multiple, and g.c.d.(a, b) is the greatest
common divisor.
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Let R = K][T] be the polynomial ring in one variable 7', and let aq,...,a, be
elements in R.

Lemma 5.4 (Bézout). Let R = KI[T| be the polynomial ring in one variable T,
and let ay,...,a, be elements in R. There exists a greatest common divisor d of
ai,...,a,, and there are elements r; in R such that

n
d= E ;.
=1

It follows that d is the greatest common divisor of elements ay, . .., a, in K[T] if and
only if the ideal (aq,...,a,) generated by the a; is equal to the ideal (d) generated
by d.

The greatest common divisor of elements ay, ..., a, in K[T]is 1 if and only if there
exists elements rq,...,r, in K[T] such that
n
1= Z TiQy;.
i=1

Let P be the set of monic irreducible polynomials in K[T]. Recall that every poly-
nomial p # 0 in K[T] can be written as

p=cpi'ps - pft

where ¢ € K*, ¢; > 1 and the p; are pairwise different polynomials in P. Further-
more, ¢, the e; and the p; are uniquely determined (up to reordering).

If b|a then there is an epimorphism
K[T]/(a) — KI[T]/(b)
defined by p + (a) — p+ (b).
Now let p be a non-zero polynomial with
p=cpi'py - py!
as above.

Proposition 5.5 (Chinese Reminder Theorem). There is an isomorphism of 1-

modules
t

K([T)/(p) — [[ K1)/ (05).

i=1

Proof. We have py

p and therefore there is an epimorphism (of 1-modules)

mi: KT/ (p) — K[T]/(p7")-
This induces a homomorphism
t

r: K[T)/(p) — ] KIT)/(65")

i=1
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defined by 7(a) = (m1(a),...,m(a)). Clearly, a € Ker(r) if and only if m;(a) = 0 for
all 7 if and only if p{’|a for all ¢ if and only if p|a. This implies that 7 is injective.

For a polynomial a of degree n we have dim K[T']/(a) = n, and the residue classes
of 1,T,...,T"! form a basis of K[T|/(a).

In particular, dim K[T]/(p{") = deg(ps*) and

t
[ [ dim K(77/(p5") = deg(p).
i=1
Thus for dimension reasons we get that m must be also surjective. U

Exercises: Let p be an irreducible polynomial in K[T7.

Show: The module (K[T]/(p),T-) is a simple 1-module, and all simple 1-modules
(over a field K) are isomorphic to a module of this form.

Show: The submodules of the factor module K[T]/(p®) are
0= (p)/(r) C (0" )/ C--- C (p)/(¥°) € K[T1/(p%),

and we have

() @)/ /) = )/ (") = KT/ (p).

Special case: The polynomial T is an irreducible polynomial in K[T], and one easily
checks that the 1-modules (K[T]/(T¢),T-) and N(e) are isomorphic.

Notation: Let p € P be a monic, irreducible polynomial in K[T]. Set

V(") = Gt/ 7.

p

This is a cyclic and indecomposable 1-module. The modules N (;) are the only
simple 1-modules (up to isomorphism).
Exercise: If p =T — ¢ for some ¢ € K, then we have

cl
c 1

N(Z)g(m,@:: e

Cc

The residue classes of the elements (T — ¢)?, 0 < i < n — 1 form a basis of N (Z)
We have

T-(T—c)=(T—c)" +¢(T-c).
The module
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has as a basis the canonical basis vectors ey, ...,e,. We have ®(e;) = ce; and
d(e;) = ce; + €;_1 if i > 2. Then
fi(T—c) v en;

for ¢ > 0 yields an isomorphism of 1-modules: One easily checks that

(T (T =c)) =2(f((T = )"))

for all i > 0.

Conclusion: If we can determine the set P of irreducible polynomials in K[7T7], then
one has quite a good description of the submodules and also the factor modules of
(K[T],T-). But of course, describing P is very hard (or impossible) if the field K is
too complicated.

5.5. The module (K(7),T-). Let K(T') be the ring of rational functions in one
variable T'. The elements of K (T') are of the form g where p and ¢ are polynomials

in K[T] wit ¢ # 0. Furthermore, g = % if and only if p¢’ = ¢p’. Copying the
ususal rules for adding and multiplying fractions, K(7T") becomes a ring (it is even
a K-algebra). Clearly, all non-zero elements in K (7") have an inverse, thus K(7) is

also a field. It contains K[T] as a subring, the embedding given by p — *.
Set K[T] = (K[T],T-) and K(T) = (K(T),T").

Obviously, K[T] is a submodule of K (7). But there are many other interesting
submodules:

For p € P, set
K[T,p™ '] = {]% g€ K[T],n € NO} C K(T).
For example, if p = T, we can think of the elements of K[T,T~!] as linear combi-
nations
St
1€Z

with only finitely many of the a; being non-zero. Here we write T-™ = Tim for
m > 1.

5.6. Exercises. 1: Show: The module K[T,T~']/K|[T] is isomorphic to N(oo). Its
basis are the residue classes of 771,772, .. ..

2: Let K[T] be the vector space of polynomials in one variable T" with coefficients in
ahﬁeld K, and let diT be the differentiation map, i.eif p = >"" ;a;T" is a polynomial,
then

d ~ i
d—T(p) = ; aiT" ™.

Show that the 1-module (KT, L) is indecomposable if char(K) = 0.
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Write (K[T7], %) as a direct sum of indecomposable modules if char(K) > 0.

3: Let T be the map which sends a polynomial p to T'p.

Show that the 2-module (K[T, -%,T") is simple and that K = End(K[T], %, T") if
char(K) = 0.

Compute End(K[T], 2, T") if char(K) > 0.

Show that (KT T-) is not simple in case char(K) > 0.

d
) dT
For endomorphisms f and g of a vector space let [f, g] = fg—gf be its commutator.

Show that [T+, 4] = 1.

4: Let K be a field, and let P be the set of monic irreducible polynomials in K[T].
For a € K(T) set

K[Tla={fa| f € K[T]} C K(T).
For every p € P let K[T,p~'] be the subalgebra of K(T) generated by T and p~'.

In other words,

K[T,p'] = {Z% | q € K[T),n € Ny} C K(T).

a: Show: The modules K[T|p~"/K[T]| and K|[T]/(p"™) are isomorphic. Use this to
determine the submodules of K[T|p~"/KIT].

b: If U is a proper submodule of K[T|p~"/K|[T], then U = K[T'|p~"/K|[T] for some
n < No.

c: We have
K(T)=> K[T,p"].

peEP
Let
v K[T,p~'|/K[T] — K(T)/K[T]

be the inclusion.

Show: The homomorphism
v=u: D (KT,p '/K[T]) — K(T)/K[T]
peEP peEP

is an isomorphism.

d: Determine the submodules of K (7)/K|[T].




48 CLAUS MICHAEL RINGEL AND JAN SCHROER

6. Semisimple modules and their endomorphism rings

Some topics discussed in this section are also known as “Artin-Wedderburn Theory”.
Just open any book on Algebra.

6.1. Semisimple modules. A module V' is simple (or irreducible) if V' # 0 and
the only submodules are 0 and V.

A module V' is semisimple if V is a direct sum of simple modules.

A proper submodule U of a module V is called a maximal submodule of V| if
there does not exist a submodule U’ with U C U’ C V. It follows that a submodule
U C V is maximal if and only if the factor module V/U is simple.

Theorem 6.1. For a module V' the following are equivalent:

(i) V is semisimple;
(ii) V is a sum of simple modules;
(iii) Every submodule of V' is a direct summand.

The proof of Theorem 6.1 uses the Axiom of Choice:

Axiom 6.2 (Axiom of Choice). Let f: I — L be a surjective map of sets. Then
there exists a map g: L — I such that fg=1p.

Let I be a partially ordered set. A subset C of [ is a chain in [ if for all ¢,d € C
we have ¢ < d or d < ¢. An equivalent formulation of the Axiom of Choice is the
following;:

Axiom 6.3 (Zorn’s Lemma). Let I be a non-empty partially ordered set. If for
every chain in I there exists a supremum, then I contains a mazimal element.

This is not surprising: The implication (ii) = (i) yields the existence of a basis
of a vector space. (We just look at the special case J = ). Then J-modules are just
vector spaces. The simple J-modules are one-dimensional, and every vector space
is a sum of its one-dimensional subspaces, thus condition (ii) holds.)

Proof of Theorem 6.1. The implication (i) = (ii) is obvious. Let us show (ii) =
(iii): Let V be a sum of simple submodules, and let U be a submodule of V. Let W
be the set of submodules W of V with U N W = 0. Together with the inclusion C,
the set W is a partially ordered set. Since 0 € VW, we know that WV is non-empty.

If W C W is a chain, then
W= Jw
wew’
belongs to W: If x € U N W’ then x belongs to some W in W', and therefore
reUNW =0.
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Now Zorn’s Lemma 6.3 says that VV contains a maximal element. So let W € W be
maximal. We know that U "W = 0. On the other hand, we show that U +W = V:
Since V' is a sum of simple submodules, it is enough to show that each simple
submodule of V' is containd in U + W. Let S be a simple submodule of V. If we
assume that S is not contained in U + W, then (U + W) NS is a proper submodule
of S. Since S is simple, we get (U + W) NS =0, and therefore U N (W 4+ 5) = 0:
fu=w+swithueU, weWandse S, thenu—w=se (U+W)nS=0.
Thus s=0andu=weUNW =0.

This implies that W + S belongs to W. The maximality of W in W yields that
W = W +.S and therefore we get S C W, which is a contradiction to our assumption
S Z U+ W. Thus we see that U + W = V. So W is a direct complement of U in
V.

(ili) = (ii): Let S be the set of submodules of V', which are a sum of simple
submodules of V. We have 0 € §. (We can think of 0 as the sum over an empty set
of simple submodules of V.)

Together with the inclusion C, the set § forms a partially ordered set. Since 0
belongs to §, we know that § is non-empty.

If §’ is a chain in S, then

Uvu

Ues’

belongs to §. Zorn’s Lemma tells us that & contains a maximal element. Let U be
such a maximal element.

We claim that U = V: Assume there exists some v € V with v ¢ U. Let W be the
set of submodules W of V with U C W and v ¢ W. Again we interpret W together
with the inclusion C as a partially ordered set. Since U € W, we know that W is
non-empty, and if YW is a chain in W, then

U w

wew’

belongs to W. Zorn’s Lemma yields a maximal element in W, say W. Let W' be
the submodule generated by W and v. Since v ¢ W, we get W C W’. On the
other hand, if X is a submodule with W C X C W', then v cannot be in X, since
W' is generated by W and v. Thus X belongs to W, and the maximality of W
implies W = X. Thus we see that W is a maximal submodule of W’. Condition
(ili) implies that W has a direct complement C. Let C' = C N W’'. We have
Wnc' =wn({CnW’') =0, since WNC = 0. Since the submodule lattice of a
module is modular (and since W C W), we get

W+C' =W+ CnW)=W+C)NW=VnWw =Ww".

This implies
W' /W=W+C"/W=C'/(WnC") ="
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Therefore C’ is simple.

/\
/\/
\/

Because U is a sum of simple modules, we get that U+4C" is a sum of simple modules,
thus it belongs to S. Now U C U + " yields a contradiction to the maximality of
UinS.

(i) = (i): We show the following stronger statement:

Lemma 6.4. Let V' be a module, and let U be the set of simple submodules U of V.
If V. =">"yeu U, then there exists a subset U' C U such that V = @4, U

Proof. A subset U’ of U is called independent, if the sum ), U is a direct sum.
Let 7 be the set of independent subsets of U, together with the inclusion of sets C
this is a partially ordered set. Since the empty set belongs to 7 we know that 7 is
non-empty. If 77 is a chain in 7, then

Uv
ueT’

is obviously in 7. Thus by Zorn’s Lemma there exists a maximal element in 7. Let
U’ be such a maximal element. Set

wW=> U
Uel’

Since U’ belongs to 7, we know that this is a direct sum. We claim that W = V:
Otherwise there would exist a submodule U in U with U W, because V is the
sum of the submodules in /. Since U is simple, this would imply U N W = 0. Thus

the set U’ U{U} is independent and belongs to 7, a contradiction to the maximality
of ' in 7. O

This finishes the proof of Theorem 6.1. U

Here is an important consequence of Theorem 6.1:

Corollary 6.5. Submodules and factor modules of semisimple modules are semisim-
ple.

Proof. Let V be a semisimple module. If W is a factor module of V', then W = V /U
for some submodule U of V. Now U has a direct complement C' in V| and C' is
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isomorphic to W. Thus every factor module of V' is isomorphic to a submodule of
V. Therefore it is enough to show that all submodules of V' are semisimple.

U/V\C
N

Let U be submodule of V. We check condition (éii) for U: Every submodule U’ of
U is also a submodule of V. Thus there exists a direct complement C' of U’ in V.
Then C' NU is a direct complement of U’ in U.

N
N

agn

<

AN

Of course U'N(C'NU) = 0, and the modularity yields U'+(CNU) = (U'+C)NU =
VNnU="U. U

U\UI
e

Let V be a semisimple module. For every simple module S let Vg be the sum of
all submodules U of V' such that U = S. The submodule Vs depends only on the
isomorphism class [S] of S. Thus we obtain a family (Vs)s) of submodules of V
which are indexed by the isomorphism classes of simple modules. The submodules
Vs are called the isotypical components of V.

Proposition 6.6. Let V' be a semisimple module. Then the following hold:

oV = @[S] Vs;

o [fV'is a submodule of V', then Vi =V'NVg;

o [f W is another semisimple module and f:V — W is a homomorphism,
then f(Vs) C W.

Proof. First, we show the following: If U is a simple submodule of V', and if W is
a set of simple submodules of V' such that V' =", ., W, then U = W for some
W e W: Since V=73, W, there is a subset W' of W such that V' = @, .,,, W.
For every W € W' let my: V. — W be the corresponding projection. Let

t: U —-V = @ w
Wew’
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be the inclusion homomorphism. If U and W are not isomorphic, then 7y o v = 0.
Since ¢ # 0 there must be some W € W' with my ot # 0. Thus U and W are
isomorphic.

Since V' is semisimple, we have V = E[S] Vs. To show that this sum is direct, let us
look at a fixed isomorphism class [S]. Let 7 be the set of all isomorphism classes of
simple modules different from [S]. Define

U=VsnN Z Vi

[T1eT

Since U is a submodule of V', we know that U is semisimple. Thus U is generated
by simple modules. If U’ is a simple submodule of U, then U’ is isomorphic to S,
because U and therefore also U’ are submodules of V. On the other hand, since U’
is a submodule of 3.+ Vr, we get that U’ is isomorphic to some T" with [T] € T,
a contradiction. Thus U contains no simple submodules, and therefore U = 0.

If V" is a submodule of V', then we know that V' is semisimple. Obviously, we have
V¢ C V'NVs. On the other hand, every simple submodule of V/N Vs is isomorphic to
S and therefore contained in V§. Since V' N Vg is generated by simple submodules,
we get V/'N Vg C V4.

Finally, let W be also a semisimple module, and let f: V' — W be a homomorphism.
If U is a simple submodule of Vg, then U = S. Now f(U) is either 0 or again
isomorphic to S. Thus f(U) C Wy. Since Vg is generated by its simple submodules,
we get f(Vs) C W. O

6.2. Endomorphism rings of semisimple modules. A skew field is a ring D
(with 1) such that every non-zero element in D has a multiplicative inverse.

Lemma 6.7 (Schur (Version 1)). Let S be a simple module. Then the endomorphism
ring End(S) is a skew field.

Proof. We know that End(S) is a ring. Let f: S — S be an endomorphism of S. It
follows that Im(f) and Ker(f) are submodules of S. Since S is simple we get either
Ker(f) =0 and Im(f) = S, or we get Ker(f) =S and Im(f) = 0. In the first case,

f is an isomorphism, and in the second case f = 0. Thus every non-zero element in
End(S) is invertible. O

Let us write down the following reformulation of Lemma 6.7:

Lemma 6.8 (Schur (Version 2)). Let S be a simple module. Then every endomor-
phism S — S is either 0 or an isomorphism.

Let V be a semisimple module, and as before let Vg be its isotypical components.

We have
V=EDVs
(5]
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and every endomorphism f of V maps Vs to itself. Let fs: Vg — Vg be the homo-
morphism obtained from f via restriction to Vg, i.e. fs(v) = f(v) for all v € V.
Then f +— (fs)[s) defines an algebra isomorphism

End(V) — [ ] End(Vs).
(8]

Products of rings: Let I be an index set, and for each 7 € I let R; be a ring. By
[I#
el

we denote the product of the rings R;. Its elements are the sequences (7;);cr

with r; € R;, and the addition and multiplication is defined componentwise, thus
(ri)i + (r})i = (ri +r{); and (r3); - (r}); = (rir})s.

The above isomorphism tells us, that to understand End(V'), we only have to un-
derstand the rings End(Vs). Thus assume V = V. We have

vz@s
iel

for some index set I. The structure of End(V') only depends on the skew field
D = End(9S) and the cardinality |/] of I.

If [ is finite, then |I| = n and End(V) is just the ring M, (D) of n x n-matrices with
entries in D.

If 7 is infinite, we can interpret End(V') as an “infinite matrix ring”: Let M;(D)
be the ring of column finite matrices: Let R be a ring. Then the elements of
M;(R) are double indexed families (r;;);; with ¢,j € I and elements r;; € R such
that for every j only finitely many of the r;; are non-zero. Now one can define the
multiplication of two such column finite matrices as

(rig)ij = (ro)se = <Z TijT;’t> :
Jel it
The addition is defined componentwise. (This definition makes also sense if I is

finite, where we get the usual matrix ring with rows and columns indexed by the
elements in [ and not by {1,...,n} as usual.)

Lemma 6.9. For every index set I and every finitely generated module W we have

End (@ W) >~ M;(End(W)).

el

Proof. Let t;: W — @,.; W be the canonical inclusions, and let 7;: @,., W — W
be the canonical projections. We map

f € End (EB W)

el
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to the double indexed family (m; o f 0¢;);;. Since W is finitely generated, the image
of every homomorphism f: W — €p,.; W is contained in a submodule @, ., W
where I’ is a finite subset of I. This yields that the matrix (m; o f 0¢;);; is column

finite. O

6.3. Exercises. 1: Let K be an algebraically closed field.

Classify the simple 1-modules (V, ¢).

Classify the 2-dimensional simple 2-modules (V, ¢, ).

For every n > 1 construct an n-dimensional simple 2-module (V] ¢, ).

2: Show that every simple 1-module is finite-dimensional.

Show: If K is algebraically closed, then every simple 1-module is 1-dimensional.
Show: If K =R, then every simple 1-module is 1- or 2-dimensional.

3: Let (V, ¢1, ¢2) be a 2-module with V' # 0 and [¢1, ¢2] = 1.

Show: If char(K) = 0, then V is infinite dimensional.

Hint: Assume V is finite-dimensional, and try to get a contradiction. You could
work with the trace (of endomorphisms of V). Which endomorphisms does one have
to look at?

4: Let A= ((1) (2)) € M(2,C). Find a matrix B € M(2,C) such that (C? A, B) is
simple.

20 . .
5 Let A = <0 2) € M(2,C). Show that there does not exist a matrix B €

M(2,C) such that (C?, A, B) is simple.

6: Let V = (V,¢;)jes be a finite-dimensional J-module such that all ¢, are diago-
nalizable.

Show: If [¢;, ¢;] = 0 for all 4,5 € J and if V' is simple, then V' is 1-dimensional.

7. Socle and radical of a module

7.1. Socle of a module. The socle of a module V is by definition the sum of
all simple submodules of V. We denote the socle of V' by soc(V'). Thus soc(V) is
semisimple and every semisimple submodule U of V' is contained in soc(V').

Let us list some basic properties of socles:



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 55

Lemma 7.1. We have V = soc(V') if and only if V is semisimple.

Proof. Obvious. O
Lemma 7.2. soc(soc(V)) = soc(V).

Proof. Obvious. O
Lemma 7.3. If f: V — W is a homomorphism, then f(soc(V')) C soc(W).

Proof. The module f(soc(V)) is isomorphic to a factor module of soc(V'), thus it is
semisimple. As a semisimple submodule of W, we know that f(soc(V')) is contained
in soc(W). O

Lemma 7.4. If U is a submodule of V', then soc(U) = U Nsoc(V).

Proof. Since soc(U) is semisimple, it is a submodule of soc(V'), thus of U Nsoc(V).
On the other hand, U N soc(V) is semisimple, since it is a submodule of soc(V).
Because UNsoc(V) is a semisimple submodule of U, we get UNsoc(V) C soc(U). O

Lemma 7.5. If V; with i € I are modules, then

soc (@ VZ-> = @soc(%).
iel el

Proof. Let V = @,., Vi. Every submodule soc(V;) is semisimple, thus it is contained

in soc(V). Vice versa, let U be a simple submodule of V| and let m;: V. — V; be

the canonical projections. Then m;(U) is either 0 or simple, thus it is contained

in soc(V;). This implies U C @,.,soc(V;). The simple submodules of V' generate

soc(V'), thus we also have soc(V) C €, soc(V;). O

7.2. Radical of a module. The socle of a module V' is the largest semisimple
submodule. One can ask if every module has a largest semisimple factor module.

For |J| =1 the example V = (K[T],T-) shows that this is not the case: For every
irreducible polynomial p in K[T], the module K[T]/(p) is simple with basis the
residue classes of 1,T,7T2,...,T™ ! where m is the degree of the polynomial p.

Now assume that W = K[T|/U is a largest semisimple factor module of V. This
would imply U C (p) for every irreducible polynomial p. Since

@ =0,

peEP
we get U = 0 and therefore W = K[T]. Here P denotes the set of all irreducible
polynomials in K[T]. But V' is not at all semisimple. Namely V' is indecomposable
and not simple. In fact, V' does not contain any simple submodules.

Recall: A submodule U of a module V is called a maximal submodule if U C V
and if U C U’ C V implies U = U’.
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By definition the radical of V is the intersection of all maximal submodules of V.
The radical of V' is denoted by rad(V').

Note that rad(V') = V if V' does not contain any maximal submodule. For example,
rad(N(o0)) = N(o0).

The factor module V/rad(V') is called the top of V' and is denoted by top(V).

Lemma 7.6. Let V' be a module. The radical of V' is the intersection of all submod-
ules U of V' such that V/U is semisimple.

Proof. Let r(V') be the intersection of all submodules U of V' such that V/U is
semisimple. Clearly, we get r(V') C rad(V). To get the other inclusion rad(V') C
r(V), let U be a submodule of V' with V/U semisimple. We can write V/U as a
direct sum of simple modules S;, say V/U = @,.; S;. For every i € I let U; be the
kernel of the projection V' — V/U — S;. This is a maximal submodule of V', and
therefore we know that rad(V') C U;. Since U = (,.; Us, we get rad(V') € U which

implies rad(V') C (V). O

Note that in general the module V/rad(V) does not have to be semisimple: If
V = (KIT],T-), then from the above discussion we get V/rad(V) =V and V is not
semisimple. However, if V' is a “module of finite length”, then the factor module
V/rad(V) is semisimple. This will be discussed in Part 2, see in particular Lemma
10.9.

Let us list some basic properties of the radical of a module:

Lemma 7.7. We have rad(V') = 0 if and only if O can be written as an intersection
of mazimal submodules of V.

Lemma 7.8. If U is a submodule of V with U C rad(V), then rad(V/U) =
rad(V)/U. In particular, rad(V/rad(V')) = 0.

Proof. Exercise. O

Lemma 7.9. If f: V — W is a homomorphism , then f(rad(V)) C rad(W).

Proof. We show that f(rad(V)) is contained in every maximal submodule of W: Let
U be a maximal submodule of W. If f(V) C U, then we get of course f(rad(V)) C U.
Thus, assume f(V) € U. Tt is easy to see that U N f(V) = f(f~1(U)).

U/W\f(v)
N S

FUHU)
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Thus

WU = f(V)/f(fU) = V/ ()
is simple, and therefore f~!(U) is a maximal submodule of V' and contains rad(V").
So we proved that f(rad(V)) C f(f~'(U)) for all maximal submodules U of W.
Since rad (V) C f~1(U) for all such U, we get

F(rad(V)) € £ (rad(W)) C rad(1V).

Lemma 7.10. If U is a submodule of V', then (U +rad(V))/U C rad(V/U).
Proof. Exercise. O

In Lemma 7.10 there is normally no equality: Let V = (K[T|,T-) and U = (T?) =
(T?). We have rad(V) = 0, but rad(V/U) = (T)/(T?) # 0.

Lemma 7.11. If V; with i € I are modules, then

rad (@ Vi> = @rad(vi).

el el

Proof. Let V. = @id Vi, and let m;: V' — V; be the canonical projections. We
have 7;(rad(V')) € rad(V;), and therefore rad(V) € @,.,rad(V;). Vice versa, let
U be a maximal submodule of V. Let U; be the kernel of the composition V; —
V' — V/U of the obvious canonical homomorphisms. We get that either U; is a
maximal submodule of V; or U; = V;. In both cases we get rad(V;) C U;. Thus
D, rad(V;) € U. Since rad(V) is the intersection of all maximal submodules of V/,
we get P, ., rad(V;) C rad(V). O

7.3. Large and small submodules. Let VV be a module, and let U be a submodule
of V. The module U is called large in V if U N U’ # 0 for all non-zero submodules
U’ of V. The module U is small in V if U + U’ C V for all proper submodules U’
of V.

Lemma 7.12. Let U; and Uy be submodules of a module V. If Uy and Uy are large
in V', then Uy NUs is large in V. If Uy and Uy are small in V', then Uy + Us is small
m V.

Proof. Let U; and U, be large submodules of V. If U is an arbitrary non-zero
submodule of V', then Us NU # 0, since U, is large. But we also get U1 N (UsNU) =
UyNUyNU # 0, since Uy is large. This implies (U3 NU;) NU # 0. Thus Uy N Us is
large as well.

If Uy and U, are small submodule of V', and if U is an arbitrary submodule of V'
with Uy +Us +U =V, then Uy + U =V, since U; is small. But this implies U =V,
since U, is small as well. O

Lemma 7.13. For 1 < i < n let U; be a submodule of a module V;. Set U =
Uy@d---dU, andV =V, ®---®V,,. Then the following hold:
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o U is large in V if and only if U; is large in V; for all i;
o U is small in 'V if and only if U; is small in V; for all i.

Proof. Let U be large in V. For some j let W; # 0 be a submodule of V;. Now we
consider W; as a submodule of V. Since U is large in V', we get that W, N U # 0.
But we have

W,nU=W;nV,)NU =W;n(V;NnU)=W,NUj.
This shows that W; NU; # 0. So we get that U; is large in Wj.

To show the converse, it is enough to consider the case n = 2. Let U; be large in
Vi for v = 1,2. Set V.=V, & Vo. We first show that U; @ V5 is large in V: Let
W 2 0 be a submodule of V. If W C V5, then 0 # W C U; @ Vo. If W € V3, then
Vo € W+ Vy and therefore Vi N (W + V4) # 0. This is a submodule of Vj, thus
Uy NViN (W +V3) # 0 because U; is large in V. Since Uy N (W 4+ V3) # 0, there
exists a non-zero element vy € Uy with u; = w+ vy where w € W and vy € V5. This
implies w = u; — vy € WN (U @ Va). Since 0 # uy € Vi and vy € Vo we get w # 0.
Thus we have shown that U; & V5 is large in V. In the same way one shows that
Vi @ U, is large in V. The intersection of these two modules is U; @ Us. But the
intersection of two large modules is again large. Thus U; @ U, is large in V.

Next, assume that U is small in V. For some j let W, be a submodule of V; with
U; +W; =V,. Set
wWe=w, e P
i#]
This is a submodule of V with U + W = V. Since U is small in V|, we get W =V,
and therefore W; = V.

To show the converse, it is enough to consider the case n = 2. For i = 1,2 let U; be
small in V;, and set V =V & V5. We show that U; = U; ¢ 0 is small in V: Let W
be a submodule of V' with U; + W = V. Since U; C V; we get

Uy+WnW)=U+W)NnVi=VnV, =W.

Now U is small in V;, which implies W NV} = V;. Therefore V; C W. In particular,
Uy CWand W =U; + W = V. In the same way one shows that Uy = 0 @ Us is
small in V. Since the sum of two small modules is again small, we conclude that
U, ® U, is small in V. O

Let V' be a module, and let U be a submodule of V. A submodule U’ of V' is called
a maximal complement of U in V if the following hold:

e UNU' =0;
e If U” is a submodule with U’ C U”, then U N U" # 0.

If U’ is a maximal complement of U, then U + U' = U & U'.

Lemma 7.14. Let V' be a module. Every submodule U of V' has a maximal comple-
ment. If U' is a mazximal complement of U, then U & U’ is large in V.
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Proof. We show the existence by using Zorn’s Lemma: Let U be a submodule of V',
and let VW be the set of all submodules W of V' with U N W = 0. Clearly, this set
is non-empty, and if W;, ¢ € I form a chain in W, then also

Jw

iel
is in W. Thus W contains maximal elements. But if U’ is maximal in W, then U’
is a maximal complement of U.

If U’ is a maximal complement of U in V, and if W is a submodule of V' with
UaU)NW=0,then U+ U +W =UU &W. Thus UN (U & W) = 0. The
maximality of U’ yields U’ @ W = U’. This implies W = 0. It follows that U @& U’
is large in V. U

Recall that a module V is called uniform if U; NU; # 0 for all non-zero submodules
U, and U, of V. It is easy to show that V is uniform if and only if all non-zero
submodules of V' are large. It follows that a module V' is uniform and has a simple
socle if and only if V' contains a large simple submodule.

Lemma 7.15. Let U # 0 be a cyclic submodule of a module V', and let W be a
submodule of V with U € W. Then there exists a submodule W' of V' with W C W'
such that U € W' and W' is mazimal with these properties. Furthermore, for each
such W', the module V/W' is uniform and has a simple socle, and we have

soc(V/W') = (U +W'") /W'

Proof. Assume U is generated by x. Let V be the set of all submodules V"’ of V' with
WCV andx ¢ V'

Since W belongs to V, we known that ) is non-empty. If V;, i € [ is a chain of
submodules in V, then |J,,; V; also belongs to V. (For each y € J,.; Vi we have
y € V; for some i.) Now Zorn’s Lemma yields a maximal element in V.

Let W’ be maximal in V. Thus we have W C W' © ¢ W’ and U € W'. If now
W' is a submodule of V' with W’ C W”  then W” does not belong to V. Therefore
x € W"” and also U C W”.

Since W' C U+ W', we know that (U +W')/W' # 0. Every non-zero submodule of
V/W"is of the form W” /W’ for some submodule W” of V' with W’ C W”. It follows
that U C W and that (U + W’)/W' C W”/W'. This shows that (U + W')/W’ is
simple. We also get that (U + W')/W" is large in V/W'. This implies soc(V/W') =
U+wH/w'. O

Corollary 7.16. Let U # 0 be a cyclic submodule of a module V', and let W be a
submodule of V with U € W. IfU+W =V, then there exists a mazimal submodule
W' of V with W C W',

Proof. Let W' be a submodule of V with W C W’ and U € W' such that W' is
maximal with these properties. Assume U + W = V. This implies U + W' = V. By
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Lemma 7.15 we know that
VW' = (U +W") /W' = soc(V/W')
is simple. Thus W’ is a maximal submodule of V. U

Corollary 7.17. For a finitely generated module V' the following hold:

(i) rad(V) is small in V;
(ii) If V #0, then rad(V) C V;
(iii) If V # 0, then V has mazimal submodules.

Proof. Clearly, (i) implies (ii) and (iii). Let us prove (i): Assume V is a finitely
generated module, and let x4, ..., z, be a generating set of V. Furthermore, let W
be a proper submodule of V. We show that W +rad(V) is a proper submodule: For
0 <t <nlet W; be the submodule of V' which is generated by W and the elements
x1,...,x;. Thus we obtain a chain of submodules

W=W,cW,c---CW, =V.

Since W C V, there exists some t with W,y C W, = V. Let U be the (cyclic)
submodule generated by x;. We get

U+Wia =Wy =V,

and U € W;_;. By Corollary 7.16 this implies that there exists a maximal submodule
W’ of V- with W;_; C W’. Since W’ is a maximal submodule of V', we get rad(V') C
W’. Thus

Warad(V) CW+W =W'cC V.
This shows that rad(V') is small in V. O

Note that a corresponding statement for the socle of a module is in general wrong:
For example, the l-module V = (KI[T],T") is finitely generated, and we have
soc(V) = 0. So the socle is not large in V' in this case.

Corollary 7.18. Every proper submodule of a finitely generated module V' is con-
tained in a maximal submodule of V.

Proof. This follows from the proof of Corollary 7.17. U

Proposition 7.19. Let V be a module. The intersection of all large submodules of
V' is equal to soc(V).

Proof. Let Uy be the intersection of all large submodules of V. We want to show that
soc(V) is contained in every large submodule of V. This implies then soc(V') C U.

Let U be a large submodule of V. Assume soc(V) is not contained in U. Then
U Nsoc(V) is a proper submodule of soc(V'). Since soc(V') is generated by simple
submodules, there exists a simple submodule S of V' which is not contained in U.
Now S is simple and therefore U NS = 0. Since S # 0, this is a contradiction. This
implies soc(V) C Uy.
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Vice versa, we claim that Uy is semisimple: Let W be a submodule of Uy. We have to
show that W is a direct summand of Uy. Let W’ be a maximal complement of W in
V. Since WNW’ = 0, we get WN(W'NU,) = 0. It follows that W+ (W'NUy) = Uy:
Since W + W' is large in V', we have Uy C W + W'. Thus

W4+ (W nUy) =W+ W)NUy = U,.

Here we used modularity. Summarizing, we see that W/ NUj is a direct complement
of W in Uy. Thus W is a direct summand of Uy. This shows that Uy is semisimple,
which implies Uy C soc(V). O

Proposition 7.20. Let V' be a module. The sum of all small submodules of V' is
equal to rad(V'). A cyclic submodule U of V is small in V if and only if U C rad(V').

Proof. Let W be a maximal submodule of V. If U is a small submodule of V', we
get U C W. (Otherwise W C U + W =V by the maximality of W, and therefore
W =V since U is small in V.) Thus every small submodule of V' is contained in
rad(V'). The same is true, if there are no maximal submodules in V', since in this

case we have rad(V) = V.

Let U be a cyclic submodule contained in rad(V'). We want to show that U is small
in V. Let U’ be a proper submodule of V. Assume that U + U’ = V. Since U’ is
a proper submodule, U cannot be a submodule of U’. Thus there exists a maximal
submodule W' with U’ C W’. Since U + U" = V, we obtain U + W' = V. In
particular, U is not contained in W’. But U lies in the radical of V', and is therefore
a submodule of any maximal submodule of V| a contradiction. This proves that
U+U' CcV, thus U is small in V.

Let Uy be the sum of all small submodule of V. We have shown already that
Up C rad(V). Vive versa, we show that rad(V) C Uy: Let x € rad(V). The cyclic
submodule U(z) generated by x is small, thus it is contained in Uy. In particular,
x € Uy. Thus we proved that Uy = rad(V). O

7.4. Exercises. 1: Show: If the submodules of a finite-dimensional module V' form
a chain (i.e. if for all submodules U; and U, of V' we have Uy C Uy or Uy C Uy),
then U is cyclic.

2: Assume char(K) = 0. Show: The submodules of the 1-module (K[T7], &) form
a chain, but (K[T7], &) is not cyclic.

3: For A € K let J(A,n) be the Jordan block of size n x n with eigenvalue . For
A1 # Ag in K, show that the 1-module (K™, J(Ay,n)) @ (K™, J(A2,m)) is cyclic.

4: Classify the small submodules of (K[T],T") and N(o0).

Are (K[T],T-) and N(c0) uniform modules?

5: Find an example of a module V' and a submodule U of V such that U is large
and small in V.
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6: When is 0 large (resp. small) in a module V7
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Part 2. Modules of finite length
8. Filtrations of modules

8.1. Schreier’s Theorem. Let VV be a module and let Uy, ..., Us be submodules
of V' such that

0=UCU, C---CU;,=V.

This is called a filtration of V' with factors U;/U;_;. The length of this filtration
is

{1 <i<s|Ui/Ui-1 # 0}].
A filtration
0=U,CU[C--CU/ =V
is a refinement of the filtration above if
{Ui|0<i<s} C{U;|0<j <t}

Two filtrations Uy C U; € --- C Uy and Vo C V; C --- C V, of V are called
isomorphic if s = ¢ and there exists a bijection 7: [0, s] — [0, ¢] (where for integers
i and j we write [i,j] = {k € Z | i < k < j}) such that

Ui/Ui—1 = Vi Va(iy-1
for 1 < <s.
Theorem 8.1 (Schreier). Any two given filtrations of a module V' have isomorphic
refinements.

Before we prove this theorem, we need the following lemma:

Lemma 8.2 (Butterfly Lemma). Let Uy C Uy and Vi C V, be submodules of a
module V. Then we have

(U +VonUs) /(U +VinUsy) =2 (U NVa) /(U1 N V) + (Us N VY))
~ (Vi + U, NVa)/ (Vi + U NVa).

The name “butterfly” comes from the picture

U1+V2ﬁU2 ‘/1+U2m‘/2
Uy +VinU, UsnV, Vi+UiNV,

T~

(UyNnVy)+ (U nV)
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which occurs as the part marked with * of the picture

VN
NN\,

* *

*><*><*
NN
N\

A%

0

Note that Vi + Uy NVy = (Vi + Us) NV = V) + (Uy N V3), since Vi C V. But we
have (Vo +Uy) NV = Vi and Vo + (Uy N V) = Va. Thus the expression Vo + Uy NV,
would not make any sense.

Proof of Lemma 8.2. Note that Uy NV, C Uy N V4. Recall that for submodules U
and U’ of a module V' we always have

U/(UNU) = (U +U)/U.

d

+ U

N
N

unu’
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Since Uy C Uy and V; C Vs, we get

U +Vinly) + (UsnVo) =Uy + (VinUy) + (U N V)
=U+ (UyNVy)

=U, +VoNnU,
and
(U +VinUs) N (UasNVy) = (U + Vi) NU; N (U N V)
= U +VinUy) NV,
=((VinU) +Uy)NVs
= (VinUs) + (U NVs).
The result follows. Il

Proof of Theorem 8.1. Assume we have two filtrations
0=0,CcU, C---CU,=V
and
0=VWCWc..-CV,=V
of a module V. For 1 <1i < s and 0 < j <t define
Uj=U+V;NU;.
Thus we obtain

0=U0 CUn
Uy = Uy C Uy

Us1=UCUsq C---CUy=Us, =V,
Similarly, set
Vii=Via+U; NV
This yields
0=V CVnn
Vi=Va C Vo

TV =V,
o C Ve =V

C
-
Viii=Ve CVuC---CViu =V, =V.
For 1 <i<sand 1< j <tdefine
Fyj=Uy/Uijr and Gy =Vji/Vii.

The filtration (U;;);; is a refinement of the filtration (U;); and its factors are the
modules F};. Similarly, the filtration (V};);; is a refinement of (V}); and has factors
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Gj;- Now the Butterfly Lemma 8.2 implies F;; = G
Fij = Uij/Uij
- (Uifl —|— ‘/] N Uz)/(szl —|— ‘/];1 N Uz)
= Via+UinV))/(Viea+ Ui NV))
- Gﬂ
This finishes the proof. O

ji, namely

A filtration
0=UCU,C---CU;=V.
of a module V' with all factors U;/U;_1 (1 < i < s) being simple is called a com-

position series of V. In this case we call s (i.e. the number of simple factors) the

length of the composition series. We call the U;/U;_; the composition factors of
V.

8.2. The Jordan-Holder Theorem. As an important corollary of Theorem 8.1
we obtain the following:

Corollary 8.3 (Jordan-Holder Theorem). Assume that a module V' has a composi-
tion series of length . Then the following hold:

o Any filtration of V' has length at most | and can be refined to a composition
series;

o All composition series of V' have length [.

Proof. Let
0=UycUycCc---CcU=V

be a composition series, and let
0=WwWCWc..-CV,=V

be a filtration. By Schreier’s Theorem 8.1 there exist isomorphic refinements of these
filtrations. Let F; = U;/U;_1 be the factors of the filtration (U;);. Thus F; is simple.
If (U]); is a refinement of (U;);, then its factors are Fi, ..., F] together with some
0-modules. The corresponding refinement of (V;); has exactly [ + 1 submodules.
Thus (V;); has at most [ different non-zero factors. In particular, if (V}); is already
a composition series, then ¢ = [. 0

If V' has a composition series of length [, then we say V has length [, and we write
[(V) = 1. Otherwise, V has infinite length and we write I(V') = occ.

Assume [(V) < oo and let S be a simple module. Then [V : S] is the number
of composition factors in a (and thus in all) composition series of V' which are
isomorphic to S. One calls [V : S| the Jordan-H6lder multiplicity of S in V.
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Let [(V) < oo. Then ([V : S])ses is called the dimension vector of V', where S
is a complete set of representatives of isomorphism classes of the simple modules.
Note that only finitely many entries of the dimension vector are non-zero. We get

S Vs =1(V).

Ses

Example: If J = (), then a J-module is just given by a vector space V. In this
case [(V) = dim V if V is finite-dimensional. It also follows that V' is simple if and
only if dim V' = 1. If V is infinite-dimensional, then dim V' is a cardinality and we
usually write [(V) = oo.

For modules of finite length, the Jordan-Holder multiplicities and the length are
important invariants.

8.3. Exercises. 1: Let V be a module of finite length, and let V;,...,V; be sub-

modules of V. Show: If
t
! <Z w) =1(V),
i=1

then V = @'_, Vi.

2: Let V4 and V5 be modules, and let S be a factor of a filtration of Vi & V5. Show:
If S is simple, then there exists a filtration of V| or of V5 which contains a factor
isomorphic to S.

3: Construct indecomposable modules V; and Vo with I(V}) = [(V3) = 2, and a
filtration of Vi @ V5 containing a factor T' of length 2 such that 7' is not isomorphic
to Vi or Vs.

4: Determine all composition series of the 2-module V' = (K?, ¢, ) where
Co 00101
Co 0011
¢ = c1 and Y = 0
(&) 0
C3 0

with pairwise different elements ¢y, c1, o, c3 in K.

9. Digression: Local rings

We need some basic notations from ring theory. This might seem a bit boring but
will be of great use later on.
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9.1. Local rings. Let R be a ring. Then r € R is right-invertible if there exists
some r’ € R such that ' = 1, and r is left-invertible if there exists some r” € R
such that r”r = 1. We call 7’ a right inverse and r” a left inverse of r. If r is
both right- and left-invertible, then r is invertible.

Example: Let V' be a vector space with basis {e; | ¢ > 1}. Define a linear map
f:V =V by f(e;) = e;41 for all ¢, and a linear map g: V' — V by g(e;) = 0 and
g(e;) = e;_q for all ¢ > 2. Then we have gf = 1y, thus f is left-invertible and g is
right-invertible. Note also that fg # 1y, since for example fg(e;) = 0.

Lemma 9.1. If v is a right inverse and r" a left inverse of an element r, then
r" =", In particular, there is only one right inverse and only one left inverse.

Proof. We have v’ = 11" = r"rr’/ = "1 =1". O
Lemma 9.2. Assume that r is right-invertible. Then the following are equivalent:

e 1 is left-invertible;
o There exists only one right inverse of r.

Proof. Assume that r is right-invertible, but not left-invertible. Then rr = 1 and
r'r # 1 for some r’. This implies

r(r' +r'r—=1)=rr' +rr'r—r=1.

But ' +r'r —1#1r". O

An element 7 in a ring R is nilpotent if " = 0 for some n > 1.

Lemma 9.3. Let r be a nilpotent element in a ring R, then 1 — r is invertible.

Proof. We have (1 —r)(1+7+7r?+7r®+---) = 1. (Note that this sum is finite, since
7 is nilpotent.) One also easily checks that (1 +r+7r*+7r3+---)(1 —r)=1. Thus
(1 — r) is right-invertible and left-invertible and therefore invertible. t

A ring R is local if the following hold:

o 1#£0;
o If r € R, then r or 1 — r is invertible.

(Recall that the only ring with 1 = 0 is the 0-ring, which contains just one element.
Note that we do not exclude that for some elements » € R both r and 1 — r are
invertible.)

Local rings occur in many different contexts. For example, they are important in
Algebraic Geometry: One studies the local ring associated to a point x of a curve
(or more generally of a variety or a scheme) and hopes to get a “local description”,
i.e. a description of the curve in a small neighbourhood of the point x.
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Examples: K[T] is not local (7" is not invertible, and 1 — 7" is also not invertible),
Z is not local, every field is a local ring.

Let U be an additive subgroup of a ring R. Then U is a right ideal of R if for all
u € U and all » € R we have ur € U, and U is a left ideal if for all ©u € U and all
r € R we have ru € U. One calls U an ideal if it is a right and a left ideal.

If I and J are ideals of a ring R, then the product I.J is the additive subgroup of
R generated by all (finite) sums of the form ) i,j, where i, € [ and j;, € J. It
is easy to check that I.J is again an ideal. For n > 0, define I° = R, I' = I and
"2 = [(I"Y) = (1" 1.

A left ideal U is a maximal left ideal if it is maximal in the set of all proper left
ideals, i.e. if U C R and for every left ideal U’ with U C U’ C R we have U = U’.
Similarly, define a maximal right ideal.

Recall that an element e € R is an idempotent if ¢? = e.

Lemma 9.4. Let e € R be an idempotent. If e is left-invertible or right-invertible,
then e =1

Proof. 1f e is left-invertible, then re = 1 for some r € R. Also e = le = (re)e =
re = 1. The other case is done similarly. O

Lemma 9.5. Assume that R is a ring which has only 0 and 1 as idempotents. Then
all left-invertible and all right-invertible elements are invertible.

Proof. Let r be left-invertible, say 'r = 1. Then rr’ is an idempotent, which by
our assumption is either 0 or 1. If 7/ = 1, then r is right-invertible and therefore
invertible. If ' = 0, then 1 = r'r = v'rr'r = 0, thus R = 0. The only element
0 =1in R = 0 is invertible. The other case is done similarly. 0

Proposition 9.6. The following properties of a ring R are equivalent:

(i) We have 0 # 1, and if r € R, then r or 1 —r is invertible (i.e. R is a local
Ting);
(ii) There exist non-invertible elements in R, and the set of these elements is
closed under +;
(iii) The set of non-invertible elements in R form an ideal;
(iv) R contains a proper left ideal, which contains all proper left ideals;
(v) R contains a proper right ideal which contains all proper right ideals.

Remark: Property (iv) implies that R contains exactly one maximal left ideal. Using
the Axiom of Choice, the converse is also true.

Proof. We first show that under the assumptions (i), (ii) and (iv) the elements 0
and 1 are the only idempotents in R, and therefore every left-invertible element and
every right-invertible element will be invertible.
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Let e € R be an idempotent. Then 1 — e is also an idempotent. It is enough to show
that e or 1 — e are invertible: If e is invertible, then e = 1. If 1 — e is invertible, then
1 — e =1 and therefore e = 0.

Under (i) we assume that either e or 1 — e are invertible, and we are done. Also
under (ii) we know that e or 1 —e is invertible: If e and 1 —e are both non-invertible,
then 1 = e + (1 — e) is non-invertible, a contradiction. Finally, assume that under
(iv) we have a proper left ideal I containing all proper left ideals, and assume that
e and 1 — e are both non-invertible. We claim that both elements and therefore
also their sum have to belong to I, a contradiction, since 1 cannot be in I. Why
does e € I hold? Since e is non-invertible, we know that e is not left-invertible.
Therefore Re is a proper left ideal, which must be contained in /. Since 1 — e is also
non-invertible, we know that 1 —e € I.

(i) = (ii): 0 # 1 implies that 0 is not invertible. Assume ry, 75 are not invertible.
Assume also that 1 + 79 is invertible. Thus z(r; + 79) = 1 for some =z € R. We get
xry = 1 — xry. Now (i) implies that xry or 1 — xry is invertible. Without loss of
generality let xr; be invertible. Thus there exists some y such that 1 = yxr;. This
implies that ry is left-invertible and therefore invertible, a contradiction.

(i) = (i): The existence of non-invertible elements implies R # 0, and therefore
we have 0 # 1. Let r € R. If r and 1 — r are non-invertible, then by (ii) we get that
1 =r+ (1 —r) is non-invertible, a contradiction.

(i) == (iili): Let I be the set of non-invertible elements in R. Then by (ii) we
know that [ is a subgroup of (R,+). Given x € I and r € R we have to show that
rex € I and xr € I. Assume rx is invertible. Then there is some y with yrz = 1,
thus x is left-invertible and therefore z is invertible, a contradiction. Thus rz € I.
Similarly, we can show that xr € I.

(ili) == (iv): Let I be the set of non-invertible elements in R. By (iii) we get
that I is an ideal and therefore a left ideal. Since 1 ¢ I we get I C R. Let U C R
be a proper left ideal. Claim: U C I. Let z € U, and assume z ¢ [. Thus x is
invertible. So there is some y € R such that yxr = 1. Then for r € R we have
r=rl=(ry)r € U. Thus R C U which implies U = R, a contradiction. Similarly
we prove (iil) = (v).

(iv) = (i): Let I’ be a proper left ideal of R that contains all proper left ideals.
We show that all elements in R\ I’ are invertible: Let r ¢ I’. Then Rr is a left
ideal of R which is not contained in I’, thus we get Rr = R. So there is some r’ € R
such that r'r = 1, in other words, r is left-invertible and therefore invertible. Now
let € R be arbitrary. We claim that r or 1 — r belong to R\ I": If both elements
belong to I’; then so does 1 = r + (1 —r), a contradiction. Thus either 7 or 1 —r is
invertible. Similarly we prove (v) = (i). O

If R is a local ring, then

I := {r € R | r non-invertible }
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is called the radical (or Jacobson radical) of R.

Corollary 9.7. The Jacobson radical I of a local ring R is the only maximal left
tdeal and also the only maximal right ideal of R. It contains all proper left and all
proper right ideals of R.

Proof. Part (iii) of the above proposition tells us that I is indeed an ideal in R.
Assume now [ C I’ C R with I" a left (resp. right) ideal. Take r € I"\ I. Then r is
invertible. Thus there exists some 7’ such that r'r = rr’ = 1. This implies I’ = R.
So we proved that I’ is a maximal left and also a maximal right ideal. Furthermore,
the proof of (iii) = (iv) in the above proposition shows that I contains all proper
left ideals, and similarly one shows that I contains all proper right ideals of R. [

If I is the Jacobson radical of a local ring R, then the radical factor ring R/I is
a ring without left ideals different from 0 and R/I. It is easy to check that R/ is
a skew field. (For 7 € R/I with 7 # 0 and r € R\ I there is some s € R such that
sr=1=rs. In R/ wehave s - T=3F=1=7T§=T-5.)

Example: For ¢ € K set

R=A{f/g1f g€ KI[T],g(c) # 0},
m={f/ge R|[f(c)=0,9(c)#0}.

Then m is an ideal in the ring R. In fact, m = (T — ¢)R: One inclusion is obtained

since T
(T — C)i — ﬂ’
g g
and the other inclusion follows since f(c¢) = 0 implies f = (T'—c)h for some h € K[T
and therefore )
f_ (T'—¢)—.

g g
If r € R\ m, then r = f/g with f(c) # 0 and g(c) # 0. Thus r ! = g/f € Ris an

inverse of r.

If r = f/g € m, then r is not invertible: For any f’/¢’ € R, the product f/g-f'/¢ =
ff'/gg" always lies in m, since (ff')(c) = f(c)f'(¢) = 0 and thus it cannot be the
identity and therefore r is not invertible.

Thus we proved that R\ m is exactly the set of invertible elements in R, and the set
m of non-invertible elements forms an ideal. So by the above theorem, R is a local
ring.

9.2. Exercises. 1: A module V is called local if it contains a maximal submodule
U, which contains all proper submodules of V. Show: If V is local, then V' con-
tains exactly one maximal submodule. Construct an example which shows that the
converse is not true.

2: Show: Every module of finite length is a sum of local submodules.
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3: Let V be a module of length n. Show: V is semisimple if and only if V' cannot
be written as a sum of n — 1 local submodules.

4: Let R = K[X,Y] be the polynomial ring in two (commuting) variables. Show:

e R is not local;
e 0 and 1 are the only idempotents in R;
e The Jacobson radical of R is 0.

10. Modules of finite length

10.1. Some length formulas for modules of finite length.

Lemma 10.1. Let U be a submodule of a module V' and let W = V/U be the
corresponding factor module. Then V' has finite length if and only if U and W have
finite length. In this case, we get

[(V)=UU)+ (W)
and for every simple module S we have

V:S]=[U:8]+[W:S5]

Proof. Assume that V has length n. Thus every chain of submodules of V" has length
at most n. In particular this is true for all chains of submodules of U. This implies
I(U) < n. The same holds for chains of submodules which all contain U. Such
chains correspond under the projection homomorphism V' — V/U to the chains of
submodules of V/U = W. Thus we get [(W) < n. So if V has finite length, then so
do U and W.

Vice versa, assume that U and W = V/U have finite length. Let
O0=UcU;C---CUs=U and O0=WoCcW,C---CW, =W

be composition series of U and W, respectively. We can write W; in the form
W; =V; /U for some submodule U C V; € V. We obtain a chain

o=UyctUyc---cU,=U=V,cVyCc---CcV,=V
of submodules of V' such that
Vi/Vioa = W5 /Wi

for all 1 < j <t. This chain is a composition series of V', since the factors U; /U;_;
with 1 <4 <'s, and the factors V;/V;_; with 1 < j <t are simple. If S is simple,
then the number of composition factors of V' which are isomorphic to S is equal
to the number of indices i with U;/U;_; = S plus the number of indices j with
V;/V;—1 = S. In other words, [V : S]=[U: S|+ [W :S]. O
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Corollary 10.2. Let V' be a module of finite length. If0 =Uy C U, C---C U, =V
s a filtration of V', then

t
(V) =) U(U/Uin).
i=1
Corollary 10.3. Let Uy and Uy be modules of finite length. Then

Corollary 10.4. Let V' be a module of finite length, and let Uy and Uy be submodules
of V.. Then

WUy + 1(Us) = WUy + Us) + LU N US).

Proof. Set U :=U; NUy and U" := Uy + Us.

N,
N\,

/

Then
U"ju = (U, )U") @ (Us/U).
Thus
[(Uh) = I(U") + UI(UL/U),
[(Uz) = I(U") + U(U>/U),
U™ =1U") + (U, JU") + (U U).
This yields the result. O

Corollary 10.5. Let V and W be modules and let f: V — W be a homomorphism.
If V' has finite length, then

(V) = I(Ker(f)) + I{(Im(f)).
If W has finite length, then
{(W) = I(Im(f)) + L(Cok(f)).

Proof. Use the isomorphisms V/ Ker(f) = Im(f) and W/ Im(f) = Cok(f). O
Recall that for every homomorphism f: V' — W there are short exact sequences

0— Ker(f) =V —1Im(f) =0

and
0 — Im(f) - W — Cok(f) — 0.



74 CLAUS MICHAEL RINGEL AND JAN SCHROER

Corollary 10.6. For every short exact sequence
0—-U—=V-=>W-=0

of modules with (V') < oo, we have (V') = l(U) + (W).

Corollary 10.7. Let V' be a module of finite length, and let f: V — V be an
endomorphism of V.. Then the following statements are equivalent:

f s injective;
f s surjective;
f is an isomorphism;

[(Tm(f)) = U(V).

Lemma 10.8. If V is a module of finite length, then V' is a finite direct sum of
indecomposable modules.

Proof. This is proved by induction on [(V'). The statement is trivial if V' is inde-
composable. Otherwise, let V =V, @& V5 with V4 and V5 two non-zero submodules.
Then proceed by induction. (l

Recall that in Section 7.2 we studied the radical rad(V') of a module V. The following
lemma shows that V/rad(V') is well behaved if V' is of finite length:
Lemma 10.9. Let V' be a module of finite length. Then V/rad(V') is semisimple.

Proof. Assume that {(V/rad(V)) = n. Inductively we look for maximal submodules
Ui, ..., U, of V such that for 1 <t <n andV; = ﬂ§:1 U; we have

t
V/Vi= VU
=1

and [(V/V;) = t. Note that V/U; is simple for all i.

For t = 1 there is nothing to show. If Uy, ..., U; are already constructed and if t < n,
then rad(V') C V;. Thus there exists a maximal submodule U,y with V,;NU; ;1 C V;.
Since V; € U1, we know that U, 1 C V; + U;y1. The maximality of U, implies
that V;g + Ut+1 = V. Set ‘/t+1 = ‘/;g N Ut+1.

Vt/V\
N

Vin

Ut+1
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Thus we obtain
V/Vigr = Vi/Vigr @ U1/ Vi
=V/U @& V/V;

t
= V/U & @ V/U.
1=1

The last of these isomorphisms comes from the induction assumption. O

10.2. The Fitting Lemma.

Lemma 10.10 (Fitting). Let V' be a module of finite length, say [(V)) = n, and let
f € End(V). Then we have

V =Im(f") & Ker(f").
In particular, if V is indecomposable, then Im(f™) =0 or Ker(f") = 0.

Proof. We have
0 = Ker(f") C Ker(f') C Ker(f?) C
(For = € Ker(f?) we get f'(z) = 0 and therefore f*!(z) = 0.)

Assume that Ker(fi™!) = Ker(f?) for some i. It follows that Ker(f") = Ker(f*1).
(Assume f"(z) = 0. Then f*(f(x)) = 0 and therefore f(z) € Ker(f?) = Ker(f"!).
This implies f'(z) = f71(f(z)) = 0. Thus Ker(f*!) C Ker(f").)

If

0 = Ker(f") c Ker(f') c --- C Ker(f"),
then [(Ker(f")) > 4. This implies ¢ < n, and therefore Ker(f™) = Ker(f") for all
m > n.

We have
Im(f?) € Im(f) € Im(f°) =
(For z € Im(f") we get x = (y) = f"1(f(y)) for some y € V Thus z € Im(f1).)

Assume that Im(f*1) = Im(f*). Then Im(f*) = Im(f*™!). (For every y € V
there exists some z with f"!(y) = fi(z). This implies f(y) = f*(2). Thus
Im(f*) € Im(f**).)

If
Im(f") C - C Im(f") € Im(f°) =
then {(Im(f")) < n — i, which implies i < n. Thus Im(f™) = Im(f™) for all m > n.

So we proved that
Ker(f") = Ker(f*") and Im(f") = Im(f*").

We claim that Im(f")NKer(f") = 0: Let € Im(f")NKer(f"). Then x = f"(y) for
some y and also f"(z) = 0, which implies f?"(y) = 0. Thus we get y € Ker(f*") =
Ker(f™) and z = f"(y) = 0.
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Next, we show that Im(f") 4+ Ker(f™) = V: Let v € V. Then there is some w with
f(v) = f*(w). This is equivalent to f™(v— f™(w)) = 0. Thus v— f"(w) € Ker(f").
Now v = f™(w) + (v — f™(w)). This finishes the proof. O

Corollary 10.11. Let V' be an indecomposable module of finite length n, and let
f € End(V). Then either f is an isomorphism, or f is nilpotent (i.e. f* =10).

Proof. If Im(f™) = 0, then f™ = 0, in particular f is nilpotent. Now assume that
Ker(f™) = 0. Then f" is injective, which implies that f is injective (f(z) =0 =
f™(x) =0 = 2 =0). Thus [ is an isomorphism.

Combining the above with Lemma 9.3 we obtain the following important result:

Corollary 10.12. Let V' be an indecomposable module of finite length. Then End(V)
s a local ring.

Let V' be a module, and let R = End(V') be the endomorphism ring of V. Assume
that V =V, @& V5 be a direct decomposition of V. Then the map e: V' — V defined
by e(vq1,v2) = (v1,0) is an idempotent in End(V'). Now e = 1 if and only if V5 = 0,
and e = 0 if and only if V; = 0.

It follows that the endomorphism ring of any decomposable module contains idem-
potent which are not 0 or 1.

Example: The 1-module V = (K|[T],T") is indecomposable, but its endomorphism
ring End(V) = KT is not local.

Lemma 10.13. Let V be a module. If End(V') is a local ring, then V is indecom-
posable.

Proof. It a ring R is local, then its only idempotents are 0 and 1. Then the result
follows from the discussion above. U

10.3. The Harada-Sai Lemma.

Lemma 10.14 (Harada-Sai). Let V; be indecomposable modules of length at most n
where 1 <1 <m = 2", and let f;: V; — Viy1 where 1 < i < m be homomorphisms.
If froo1--- foft # 0, then at least one of the homomorphisms f; is an isomorphism.

Proof. We show this by induction on a: Let a < n. Let V;, 1 < i < m = 2% be
modules of length at most n, and f;: V; — V;11, 1 <¢ < m homomorphisms. If

I(Im(fn-1--- faf1)) >n—a,
then at least one of the homomorphisms is an isomorphism.
If a = 1, then there is just one homomorphism, namely f;: V; — Vo, If i(Im(f7)) >

n — 1, then f; is an isomorphism. Remember that by our assumption both modules
Vi and V5 have length at most n.
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Assume the statement holds for a < n. Define m = 2% Let V; be indecomposable
modules with 1 <7 < 2m, and for 1 < i < 2m let f;: V; — V1 be homomorphisms.

Let f=fn1--fi,9=fnand h= fo,,_1--- finr1. Thus
ViV, LV, 0L v

Assume [(Im(hgf)) > n — (a + 1). We can assume that [(Im(f)) < n — a and
[(Im(h)) < n — a, otherwise we know by induction that one of the homomorphisms
fi is an isomorphism.

Since
[(Im(f)) = l(Im(g f)) = I(Im(hgf)) >n = (a+1)

and

[(Im(h)) > I(Im(hg[)),
it follows that {(Im(f)) = n —a = [(Im(h)) and therefore I[(Im(hgf)) =n — a.
Since Im(f) and Im(hgf) have the same length, we get Im(f) N Ker(hg) = 0. Now
Im(f) has length n — a, and Ker(hg) has length I(V,,) — {(Im(hg)). This implies
[(Im(hg)) = n — a, because

(m(hg)) < I(Tm(hg)) < I(Tm(h))

So we see that Im(f) + Ker(hg) = V;,,. In this way, we obtained a direct decompo-
sition

Vi = Im(f) & Ker(hg).
But V,, is indecomposable, and Im(f) # 0. It follows that Ker(hg) = 0. In other

words, hg is injective, and so g is injective.
In a similar way, we can show that ¢ is also surjective: Namely
Vi1 = Im(gf) ® Ker(h) :
Since Im(gf) and Im(hgf) have the same length, we get
Im(gf) N Ker(h) =0.
On the other hand, the length of Ker(h) is
(V1) = 1(Im(h)) = [(Vpsr) — (0 — a).

Since V11 is indecomposable, Im(gf) # 0 implies V,,.1 = Im(gf). Thus gf is
surjective, which yields that ¢ is surjective as well.

Thus we have shown that g = f,,, is an isomorphism. U

Corollary 10.15. If V' is an indecomposable module of finite length n, and if I
denotes the radical of End(V'), then I"™ = 0.

Proof. Let S be a subset of End(V'), and let SV be the set of all (finite) sums of
the form ), f;(v;) with f; € S and v; € V. This is a submodule of V. (It follows
from the definition, that SV is closed under addition. Since all f; are linear maps,
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SV is also closed under scalar multiplication. Finally, for V' = (V,¢;); we have
¢;(SV) C SV, since

& <Z ﬁ-(w)) =" fild;(v)),
because all the f; are homomorphisms.)
For i > 0 we can look at the submodule IV of V. Thus
L CIPVCIVCIV =V
If I'"'V = I'V, then I'V = 'tV

The Harada-Sai Lemma implies I™ = 0 for m = 2" — 1, thus also IV = 0. Thus
there exists some t with

0=I'Vc.-..cI?VcIVcIV=V.

This is a filtration of the module V', and since V' has length n, we conclude t < n.
This implies IV = 0 and therefore "™ = 0. U
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10.4. Exercises. 1: Find the original references for Schreier’s Theorem, the Jordan-
Holder Theorem, the Fitting Lemma and the Harada-Sai Lemma.

2: Let V be a module with a simple submodule S, such that S is contained in every
non-zero submodule of V. Assume that every endomorphism of S occurs as the
restriction of an endomorphism of V. Show: The endomorphism ring of V' is local,
and its radical factor ring is isomorphic to the endomorphism ring of S.

In particular: The endomorphism ring of N(oo) is a local ring with radical factor
ring isomorphic to the ground field K.

3: Let V = (K[T],T-). Show that V is indecomposable and that End(V') is not a
local ring.
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11. Direct summands of finite direct sums

11.1. The Exchange Theorem. If the endomorphism ring of a module V' is local,
then V is indecomposable. In representation theory we are often interested in the
indecomposable direct summands of a module. Then one can ask if these direct
summands are in some sense uniquely determined (at least up to isomorphism).

Lemma 11.1. Fori=1,2 let h;: V — Y; be homomorphisms. LetY =Y, ®Ys5 and
f:t[hl,hQ]I V—>Y
If hq is an isomorphism, then

Y =Im(f) @ Ya.

Proof. For y € Y, write y = y; + yo with y; € Y7 and y, € Y5. Since h; is surjective,
there is some v € V' with hy(v) = y;. We get

y=uy1+y2=h(v) +y2 =hi(v) + ha(v) = ha(v) + y2 = f(v) + (=h2(v) + y2).
Now f(v) € Im(f) and —hy(v) + y2 € Ys. So we proved that Im(f) + Yy =Y.

For y € Im(f) NY5, there is some v € V with y = f(v). Furthermore, y = f(v) =
hi(v) + ha(v). Since y € Ys, we get hi(v) = y — ha(v) € Y1 NYy = 0. Since hy is
injective, hq(v) = 0 implies v = 0. Thus y = f(v) = f(0) = 0. O

Theorem 11.2 (Exchange Theorem). Let V, W1, ..., W,, be modules, and define

j=1

Let f: V. — W be a split monomorphism. If the endomorphism ring of V' is local,
then there exists some t with 1 < t < m and a direct decomposition of Wy of the

form W, = V" & W/ such that
t
W=Im(f)eW, e @W; ad V' =V
J#t

If we know additionally that W = Im(f) @ W1 @ C for some submodule C' of W,
then we can assume 2 <t < m.

Proof. Since f is a split monomorphism, there is a homomorphism ¢g: W — V
with gf = 1y. Write f = *[f1,..., fu] and g = [g1, ..., g] with homomorphisms
fi:V—W;and g;: W; — V. Thus we have

9f = Zgjfj =1v.
j=1

Since End(V) is a local ring, there is some ¢ with 1 < ¢ < m such that g, f; is
invertible. Without loss of generality assume that g; f; is invertible.



80 CLAUS MICHAEL RINGEL AND JAN SCHROER

Since gy f1 is invertible, f; is a split monomorphism, thus f;: V' — W is injective
and Im(f;) @ W] = W; for some submodule W] of Wij. Let h: V. — Im(f;) be
defined by h(v) = fi(v) for all v € V. Thus we can write

fir V= Wi =1Im(f;) ® Wy
in the form f; = *[h,0]. Thus
=0, fo, s f]: V—=TIm(f) @W, & Wy @ ---®W,,.

Since h is an isomorphism, the result follows from Lemma 11.1. (Choose h; = h,
1/71 :Im(f1)7 h’2 = [Oafh"'ufm] and Y2 - W{@WQ@@WT&)

Finally, we assume that W = Im(f) @ W; @ C for some submodule C' of W. Let
g: W — Im(f) be the projection from W onto Im(f) with kernel W; @ C' followed
by the isomorphism f~!': Im(f) — V defined by f~!(f(v)) = v. It follows that

gf = 1v.

We can write g = [, . . ., gm] With homomorphisms g;: W; — V, thus g, is just the
restriction of g to W;. By assumption g; = 0 since W, lies in the kernel of g. In the
first part of the proof we have chosen some 1 <t < m such that g;f; is invertible in
End(V'). Since g; = 0, we see that ¢ > 1. O

11.2. Consequences of the Exchange Theorem.

Corollary 11.3. Let V, X, W1, ..., W,, be modules, and let

j=1

If End(V) is a local ring, then there exists some t with 1 < t < m and a direct
decomposition Wy = V' & W] with V' =V and

xX=weHw;
J#t

Proof. The composition of the inclusion ¢: V — V @& X and of an isomorphism
1 VaeX— EB;nzl W; is a split monomorphism

v - @w,
j=1

and the cokernel Cok(f) is isomorphic to X.
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The Exchange Theorem provides a ¢t with 1 < ¢t < m and a direct decomposition
W, =V"® W/ with V' 2V such that

W =Tm(f) & W & PW;.
J#t
This direct decomposition of W shows that the cokernel of f is also isomorphic to
Z =W/ ® @, W;. This implies X = Z. In particular, we have W, = V' @ W} =
Ve W O

112

Corollary 11.4 (Cancellation Theorem). Let V, Xy, Xy be modules with V & X,
V @& Xy. If End(V) is a local ring, then X; = Xs.

Proof. We apply Corollary 11.3 with X = Xy, W; =V and Wy = X5. There are
two cases: In the first case there is a direct decomposition V' =W, = V' & W/ with
V' =V and X; = W{@®W,. Since V is indecomposable, V' = V'@W/ implies W’ =0.
Therefore X; = W5 = X5. In the second case, there is a direct decomposition

Xo=Wy =V @ W) with V' =V and X; = V@Wz,thust VoW, X, O

Corollary 11.5 (Krull-Remak-Schmidt Theorem). Let Vi,...,V,, be modules with
local endomorphism rings, and let W1, ..., W,, be indecomposable modules. If

n m
b=,
i=1 j=1
then n = m and there exists a permutation m such that V; = Wy for all1 <i < n.

Proof. We proof this via induction on n: For n = 0 there is nothing to show. Thus
letn>1. Set V="V, and X = @, V;. By Corollary 11.3 there is some 1 < ¢ < m
and a direct decomposition W, = V’ @ W/ with V] 2V and X = W) ® P, j #

The indecomposability of W; implies W/ = 0. This implies

Dvi=Dpw:
=2

J#t
By induction n — 1 = m — 1, and there exists a bijection
m:4{2,....,n} = {1,....m}\ {t}

such that V; =2 W, for all 2 <i < n. Now just set m(1) = . O

Rema(r)k: In the literature the Krull-Remak-Schmidt Theorem is often called
Krull-Schmidt Theorem. But in fact Remak was the first to prove such a result in
the context of finite groups, which Krull then generalized to modules. The result
was part of Robert Remaks Doctoral Dissertation which he published in 1911. He
was born in 1888 and murdered in Auschwitz in 1942.
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Corollary 11.6. Let Vi,...,V, be modules with local endomorphism ring, and let
U be a direct summand of @]_, V;. Then there exists a subset I C {1,...,n} such

that
U=

icl

Proof. We prove this via induction on n: For n = 0 there is nothing to show. Thus
letn>1. Set V=V, X = @?:2 Vi and W7 = U. Let W5 be a direct complement
of U in @;_, V;. Thus

Ve X =W &W,.

There are two cases: In the first case there is a direct decomposition W, = U =
V'aU with V! 2V and X 2 U’ @ W,. Since U’ is isomorphic to a direct summand
of X, induction yields a subset I’ C {2,...,n} such that U' = ,_, V;. Thus with
I:=T1T"U{l} we get

el

U=VolU=VialU =
iel
In the second case there is a direct decomposition Wy = V' & Wj with V' =V and

X 2 U@ W,. Thus U is also isomorphic to a direct summand of X. Therefore there
is a subset I C {2,...,n} with U = ,_, Vi. O

11.3. Examples. We present some examples which show what happens if we work
with indecomposable direct summands, whose endomorphism ring is not local.

Assume |J| = 2, thus M = (KT}, T3], Ty, Ty") is a J-module. Let U; and Uy be
non-zero submodules of M. We claim that U; N Uy # 0: Let vy € Uy and uy € Us
be non-zero elements. Then we get ujus € Uy N Us, and we have ujus # 0.

In other words, the module M is uniform. (Recall that a module V" is called uniform
if for all non-zero submodules U; and Uy of V' we have U; N Uy # 0.) This implies
that every submodule of M is indecomposable.

The submodules U of M are the ideals of K[T},T3]. If U is generated by elements
D1y, Pi, we write U = I(py,...,p;). (One can show that every ideal in K[T7, T3]
is finitely generated, but we do not need this here.)

Now let Uy, Us be ideals with Uy 4+ Uy = K[T7,T]. This yields an exact sequence
0= N LU U, % M0,
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where f =*[¢, =] and g = [¢,¢]. Here we denote all inclusion homomorphisms just
by ¢.

This sequence splits: Since g is surjective, there is some u; € U; and uy € Uy with
g(uy,ug) = 1. If we define
h: M — U1 D U2
by h(p) = (puy, pug) for p € K[T1, T3], then this is a homomorphism, and we have
gh = 1j;. This implies
Mo (U NUy) = U, @ Us.

This setup allows us to construct some interesting examples:
Example 1: Let Uy = [(T},T3) and Uy = I(T) — 1,T5). We obtain
Mo U nNUy) = I(T,T,) @ I(T) —1,T)).

Now M is a cyclic module, but I(71,T3) and I(1y —1,73) are not. Thus I(7T},T5) &
I(T)—1,Ty) contains a cyclic direct summand, but none of the indecomposable direct
summands [ (7}, T5) and I(1y —1,T5) is cyclic. (We have UyNUy = I(T1(T1 —1),T5),
but this fact is not used here.)

Example 2: Let U; = I(T}) and Uy = I(T? — 1,T1Ty). We obtain U, N U, =
I(Tlg — Tl,TlTQ) and
Mo (TP - T, T\ Ty) < I(Ty) @ [(T? — 1, T Ty).

The map f + Tyf yields an isomorphism M — I(T}), but the modules I(T? —
Ty, T\'Ty) and I(T? — 1, T1T3) are not isomorphic. Thus in this situation there is no
cancellation rule.

Example 3: Here is another (trivial) example for the failure of the cancellation
rule: Let J = (), and let V be an infinite dimensional K-vector space. Then we have
VeK=2V=ZVa0.

Thus we cannot cancel V. On the other hand, in contrast to Example 2, V' is not
an indecomposable module.

11.4. Exercises. 1: Let V = (KI[T],T-). Show:

(a): The direct summands of V@ V are 0, V @ V and all the submodules of the
form

Upg :={(hf,hg) | h € K[T]}

where f and g are polynomials with greatest common divisor 1.

(b): There exist direct summands U of V' & V such that none of the modules 0,
VeV, Uw=V®0and Uy; = 0@V are a direct complement of U in V@ V.

2: Let My,..., M; be pairwise non-isomorphic modules of finite length, and let
m,; > 1 for 1 < i <t. Define
t
v
i=1
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and let R = End(V) be the endomorphism ring of V. Show: There exists an
idempotent e in R such that e(V) is isomorphic to @2:1 M;, and we have R = ReR.

Kk ok 3 oKk ok Sk kR ok sk ok ok Sk sk sk ok Sk sk kR Sk sk kol sk sk sk sk skokeskoskokosko sk kol skokok koo skok skoskokoskok ok sk kok sk skokok sk okokoskokokok skokokosk
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Part 3. Modules II: A-Modules
12. Modules over algebras

12.1. Representations of an algebra. Let A and B be K-algebras. A map
n: A — B is a K-algebra homomorphism if 7 is a ring homomorphism which is
also K-linear. In other words, for all a;,as € A and all A\ € K the map 7 satisfies
the following:

nar + az) = n(ar) +nlaz),
n(Aa) = An(a),
n(aras) = n(ay)n(az),
n(la) = 1p.

An example of an algebra is the endomorphism ring Endg (V') of a K-vector space
V. The underlying set of Endg (V) is the set of K-linear maps f: V' — V. Addition
and scalar multiplication are defined pointwise, and the multiplication is given by
the composition of maps. Thus we have

(f1 + f2)(v) = fi(v) + fa(v),
(Af)w) = A(f(v) = f(Iv),
(f1f2)(v) = f1(f2(v))
for all f, f1, fo € Endg(V), A€ K andv € V.

Similarly, the set M, (K) of n x n-matrices with entries in K forms naturally a
K-algebra.

From the point of view of representation theory, these algebras are very boring (they
are “semisimple”). We will meet more interesting algebras later on.

A representation of a K-algebra A is a K-algebra homomorphism
n: A— Endg(V)

where V' is a K-vector space. We want to write down explicitely what this means:
To every a € A we associate a map n(a): V' — V such that the following hold:

(f1) n(a)(vi +v2) = nla)(v1) + nla)(va),
(R2) n(a)(Av) = A(n(a)(v)),

(Rs) n(ar + az)(v) = n(ar)(v) + nlaz)(v),
(R4) n(Aa)(v) = A(n(a)(v)),

(Rs) n(aiaz)(v) = nlar)(n(az)(v)),
(Rs) n(1a)(v) =

v
for all a,a;,as € A, v,v;,v3 € V and A € K. The conditions (R;) and (Rs) just
mean that for every a € A the map n(a): V' — V is K-linear. The other rules show
that n is an algebra homomorphism: (R3) and (Ry) say that n is K-linear, (R5)
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means that 7 is compatible with the multiplication, and (Rg) shows that the unit
element of A is mapped to the unit element of Endg (V).

12.2. Modules over an algebra. An A-module structure on V' (or more pre-
cisely, a left A-module structure on V') is a map

g AXxV =V

(where we write a-v or av instead of o(a,v)) such that for all a, a;,as € A, v,v1,v9 €
V and A € K the following hold:

(M) a(vy + vg) = avy + avy,

A a(¥w) = Aav),
(M) (a1 + az2)v = a1v + ag,
(M) (Aa)o = Aav),
(Ms) (a1az)v = ay(aqv),
(Ms) 1av = 0.

The conditions (M;) and (Ms) are the K-linearity in the second variable, and (Ms)
and (M,) are the K-linearity in the first variable. Condition (Mj5) gives the com-
patibility with the multiplication, and (Mg) ensures that 14 acts as the identity on
V. The map o is sometimes called scalar multiplication. An A-module (left
A-module) is a vector space V' together with an A-module structure on V.

Thus an A-module V' has two scalar multiplications: the one coming from V' as a
vector space over our ground field K, and the other one from the A-module structure.
In the latter case, the scalars are elements of A. The scalar multiplication with
elements of K is just a special case of the scalar multiplication with elements of the
algebra, because \-v = (\-14)-vforall A € K andv € V.

12.3. Modules and representations. Let Abb(V, V') be the set of all (set theo-
retic) maps V' — V. If we have any (set theoretic) map n: A — Abb(V, V), then
we can define a map 77: A x V — V by

n(a,v) = n(a)(v).
This defines a bijection between the set of all maps A — Abb(V, V') and the set of
maps AxV — V.

Lemma 12.1. Let A be a K-algebra, and let V' be a K-vector space. If n: A —
Endg (V) is a map, then n is a representation of A if and only if 7: AxV — V is
an A-module structure on V.

Proof. 1f n: A — Endg (V) is a representation, we obtain a map
nAxXV -V

which is defined by 7j((a,v)) := n(a)(v). Then 7 defines an A-module structure on
V.
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Vice versa, let 0: A x V — V be an A-module structure. Then the map 7: A —
Endg (V) which is defined by &(a)(v) := o(a,v) is a representation of A.

Now it is easy to match the conditions (R;) and (M;) for 1 < i < 6. O

Let V be an A-module. We often write V' = 4V and say “V is a left A-module”.
Often we are a bit sloppy and just say: “V is an A-module”, “V is a module over A”,
“V'is a module” (if it is clear which A is meant), or “V is a representation” without
distinguishing between the two concepts of a “module” and a “representation”.

12.4. A-modules and |A|-modules. Let n7: A — Endg (V) be a representation of
A. Since we associated to every a € A an endomorphism 7(a) of a vector space V',
we see immediately that each representation of A gives us an |A|-module, namely

(‘/7 n(a’))aem\-

By |A| we just mean the underlying set of the algebra A. (Of course |A| is just A
itself, but we can forget about the extra structure (like multiplication etc.) which
turns the set A into an algebra.) But note that the endomorphisms 7n(a) are not
just arbitrary and cannot be chosen independently of each other: They satisfy very
strong extra conditions which are given by (R3), ..., (Rs).

So we see that every A-module is an |A|-module.

This means that we can use the terminology and theory of modules which we de-
veloped in the previous chapters in the context of A-modules. (We just interpret
them as |A|-modules.) The |A|-modules are the maps A x V' — V which satisfy
the axioms (M;) and (M;), and the A-modules are exactly the |A|]-modules which
additionally satisfy (Ms),. .., (Ms).

If 4V is an A-module, then every submodule and every factor module (in the sense
of the general module definition) is again an A-module. If 4V}, i € I are A-modules,
then the direct sum @, 4V; and the product [],.; 4V; are again A-modules.

As suggested in the considerations above, if 4V and oW are A-modules, then a
map f:V — W is an A-module homomorphism if it is a homomorphism of
| A]-modules. In other words, for all v,v;,v € V and a € A we have

flor +v2) = f(v) + f(v2),
flav) = af(v).

We write Hom 4 (V, W) or just Hom(V, W) for the set of homomorphisms 4V — 4W.
Recall that Hom4(V, W) is a K-vector space (with respect to addition and scalar
multiplication). Similarly, let End4 (V) or End(V') be the endomorphism ring of V.

By Mod(A) we denote the K-linear category with all A-modules as objects, and
with A-module homomorphisms as morphisms. We call Mod(A) the category of
(left) A-modules. By mod(A) we denote the category of all finite-dimensional
A-modules. This is a full subcategory of Mod(A).
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12.5. Free modules. Let V be an A-module. A subset U of V is a submodule if
and only if U is closed under addition and scalar multiplication with scalars from

A.

If X is a subset of V, then the submodule U(X) generated by X is the set of
all (finite) linear combinations » . | a;z; with z1,...,z, € X and a,...,a, € A:
Clearly the elements of the form Y  a;x; have to belong to U(X). On the other
hand, the set of all elements, which can be written in such a way, is closed under
addition and scalar multiplication. Thus they form a submodule and this submodule
contains X.

For z € V let Ax = {ax | a € A}. Thus Az is the submodule of V' generated by .
Similarly, for all subsets X C V' we have

UX)=>_ Ax.

zeX

If A is an algebra, then the multiplication map p: A x A — A satisfies all properties
of an A-module structure, where V' = A as a vector space. Thus by our convention
we denote this A-module by 4A. The corresponding representation

with a — ), is the regular representation. Here for a € A the map \,: A — A
is defined by A\,(z) = ax, thus A, is the left multiplication map with a.

A free A-module is by definition a module V' which is isomorphic to a (possibly
infinite) direct sum of copies of 4A.

If V is an A-module, then a subset X of V' is a free generating set if the following
two conditions are satisfied:

e X is a generating set of V,ie. V =3 _ Ax;
o If xq,...,x, are pairwise different elements in X and a4, ..., a, are arbitrary
elements in A with
n
Z a;r; = 0,
i=1

then q; =0 forall 1 <i <n.

(Compare the definition of a free generating set with the definition of a basis of a
vector space, and with the definition of a linearly independent set of vectors.)

Lemma 12.2. An A-module is free if and only if it has a free generating set.

Proof. Let W be a direct sum of copies of 4A, say W = @,., W; with W; = 4A
for all ¢ € I. By e; we denote the 1-element of W;. (In coordinate notation: All
coefficients of e; are 0, except the ith coefficient is the element 14 € 4A = W;.)
Thus the set {e; | i € I} is a free generating set of W.
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If f: W — V is an isomorphism of A-modules, and if X is a free generating set of
W, then f(X) is a free generating set of V.

Vice versa, we want to show that every A-module V' with a free generating set X
is isomorphic to a free module. We take a direct sum of copies of 4A, which are
indexed by the elements in X. Thus W = @me « Wy where W, = 4A for all .
As before, let e, be the 1-element of W, = 4A. Then every element in W can be
written as a (finite) sum ) _y aze, with a, € A for all z € X, and a, = 0 for
almost all (i.e. all but finitely many) z € X. We define a map f: W — V by

f (Z axez> = Z%x.
reX reX

It is easy to check that f is an A-module homomorphism which is surjective and
injective, thus it is an isomorphism of A-modules. O

If Fis a free A-module with free generating set X, then the cardinality of X is
called the rank of F. Thus F' has finite rank, if X is a finite set.

Let F be a free A-module, and let W be an arbitrary A-module. If X is a free
generating set of F', and if we choose for every x € X an element w, € W, then
there exists exactly one A-module homomorphism f: F' — W such that f(z) = w,

for all z € X. Namely,
f <Z ax:c> = Z Uy Wy

zeX zeX
for all x € X and all a, € A. If the set {w, | z € X} is a generating set of
the A-module W, then the homomorphism f is surjective. Thus in this case W is
isomorphic to a factor module of F'. So we proved the following result:

Theorem 12.3. FEvery A-module is isomorphic to a factor module of a free A-
module.

Inside the category of all |A]-modules, we can now characterize the A-modules as
follows: They are exactly the modules which are isomorphic to some factor module of
some free A-module. Thus up to isomorphism one obtains all A-modules by starting
with 4 A, taking direct sums of copies of 4A and then taking all factor modules of
these direct sums.

Every finitely generated A-module is isomorphic to a factor module of a free module
of finite rank. In particular, each simple A-module is isomorphic to a factor module
of a free module of rank one. Thus, we get the following:

Lemma 12.4. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) M is finitely generated;
(il) M is finite-dimensional as a K-vector space;
(iii) I(M) < 0.



90 CLAUS MICHAEL RINGEL AND JAN SCHROER

12.6. The opposite algebra. If A is a K-algebra, then we denote the opposite
algebra of A by A°P. Here we work with the same underlying vector space, but the
multiplication map is changed: To avoid confusion, we denote the multiplication of

A°P by %, which is defined as
a1 *x Qo = Q9 - A1 = A2Qq

for all aj,ay € A (where - is the multiplication of A). This defines again an algebra.
Of course we have (A°)®P = A.

Lemma 12.5. If A is an algebra, then Enda(4A) = A°P.
Proof. Asbeforelet A\,: A — A be the left multiplication with a € A, i.e. \,(z) = az

for all x € A. Similarly, let p,: A — A be the right multiplication with a € A, i.e.
pa() = za for all z € A. It is straightforward to check that the map

p: A? — Enda(4A)

defined by p(a) = p, is an algebra homomorphism. In particular we have
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for all ay,as,x € A. The map p is injective: If a € |A|, then p(a)(1) =1-a = a.
Thus p(a) = 0 implies a = p(a)(1) = 0.

We know that
)\apb - pb)\a

for all a,b € A. (This follows directly from the associativity of the multiplication in
A.) In other words, the vector space endomorphisms p, are endomorphisms of the
A-module 4A, and p yields an embedding of A° into Ends(4A4).

It remains to show that every endomorphism f of 4A is a right multiplication: Let
f(1) = b. We claim that f = p,: For a € A we have

fla)=fla-1)=a-f(1) = a-b= pa).

This finishes the proof. U

12.7. Right A-modules. A right A-module structure on V is a map

p:VxA-YV
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(where we write v-a or va instead of p(v, a)) such that for all a, a;,as € A, v,v1,v9 €
V and A € K the following hold:

(M) (v1 + v9)a = via + vaa,

(M3) (Av)a = A(va),
(M3) v(a; + az) = vay + vas,
(M}) v(Aa) = A(va),
(Mé) v(ayaz) = (vay)as,

(M) vlg =w.

A right A-module is a vector space V together with a right A-module structure
on V. We often write V =V, and say “V is a right A-module”.

12.8. Examples. For A-modules V' and W the homomorphism space Hom4(V, W)
carries a (left) End4(W)-module structure defined by

End4 (W) x Homu(V, W) — Homu(V, W), (f,g9)+— fg,
and Hom(V, W) has a right End4(V)-module structure given by

Homa(V, W) x Enda (V) — Homa(V, W), (g,f)— gf.
One can also turn 4V into a module over End 4 (V') by

Enda(V) xV =V, (f,v)— f(v).

12.9. Direct decompositions of the regular representation. Let A be a K-

algebra, and let
AA=DP
1€l
be a direct decomposition of the regular module 4A with modules P; # 0 for all
i € I. Thus every element a € A is of the form a = )., a; with a; € F;. (Only
finitely many of the a; are allowed to be non-zero.) In particular let

1:1,4:2@

1€l
with e; € P,.
Lemma 12.6. For all i € I we have P; = Ae;.

Proof. Since P; is a submodule of 4A and e; € P;, we know that Ae; C P;. Vice
versa, let x € P;. We have
r=z-1= Z zTe;.

el
Since x belongs to P;, and since 4A is the direct sum of the submodules F;, we get
x =ze; (and ze; = 0 for all @ # j). In particular, z € Ae;. O

Lemma 12.7. The index set I is finite.
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Proof. Only finitely many of the e; are different from 0. If e;, = 0, then P, = Ae; =0,
a contradiction to our assumption. 0

A set {f;|i € I} C R of idempotents in a ring R is a set of pairwise orthogonal
idempotents if f;f; = 0 for all i # j. Such a set of pairwise orthogonal idempotents
is complete if 1 =), fi.

Lemma 12.8. The set {e; | i € I} defined above is a complete set of pairwise
orthogonal idempotents.

Proof. We have

ej:ej-lz E 6]‘62‘.

el
As in the proof of Lemma 12.6, the unicity of the decomposition of an element in a
direct sum yields that e; = eje; and eje; = 0 for all 7 # j. O

Warning: Given a direct decomposition 4A = @, ; Fi. If we choose idempotents
e; € P, with P, = Ae;, then these idempotents do not have to be orthogonal to each
other. For example, let A = My(K) be the algebra of 2 X 2-matrices with entries in

K. Take
(10 4 e (00
A=\t o) ™ 2700 1)

and define P, = Ae;. We obtain 4A = P, @ P5. The elements e; and e, are
idempotents, but they are not orthogonal.

Lemma 12.8 shows that any direct decomposition of 4A yields a complete set of
orthogonal idempotents in A. Vice versa, assume that f;,7 € I is a complete set of
orthogonal idempotents in an algebra A, then

AA = @Afi

is a direct decomposition of 4A.

Example: Let B be an algebra, and let A = M,,(B) be the algebra of n x n-matrices
with entries in B for some n € N;. Let ¢;; be the n X n-matrix with entry 1 at the
position (7,7) and all other entries 0. For brevity write e; = e;. The diagonal
matrices e;, 1 < ¢ < n form a complete set of orthogonal idempotents in A. Note
that Ae; contains exactly the matrices whose only non-zero entries are in the ith
column. It follows immediately that

AA = é Aei.
i=1

Note also that the modules Ae; are isomorphic to each other: We get an isomorphism
Ae; — Aej via right multiplication with e;;.

Instead of working with this isomorphism, we could also argue like this: Let X = B"
be the vector space of n-tupels with coefficients in B. We interpret these n-tupels
as n x l-matrices. So matrix multiplication yields an A-module structure on X. It
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is clear that X and Ae; have to be isomorphic: X and Ae; only differ by the fact
that Ae; contains some additional 0-columns.

Warning: The above direct decomposition of M, (B) is for n > 2 of course not the
only possible decomposition. For example for n = 2 and any = € B the matrices

£9) w (

form also a complete set of orthogonal idempotents in Ms(B). In this case

() =8 (o ) o) () 57)

w3 )

consists of the matrices of the form
b1 bl.T
b2 bgl‘

) (5 )

consists of the matrices whose only non-zero entries are in the second column.

where

with bl, b2 S B, and

12.10. Modules defined by idempotents. As before, let A be a K-algebra.

Lemma 12.9. Let e be an idempotent in A. The endomorphism ring End4(Ae) of
the A-module Ae is isomorphic to (eAe)P. In particular, Enda(4A) is isomorphic
to A°?. We obtain an isomorphism

n: Endy(Ae) — (eAe)P

which maps f € Enda(Ae) to f(e). Vice versa, for each a € A, the inverse n~!(eae)
18 the right multiplication with eae.

Proof. Let f € Enda(Ae), and let a = f(e) € Ae. Then a = ae because a belongs
to Ae. Since f is a homomorphism, and e is an idempotent we have a = f(e) =
f(e?) =ef(e) = ea. Thus a = eae € eAe. Clearly, the map defined by 7(f) = f(e)

is K-linear.
Let fi1, fo € Enda(Ae), and let n(f;) = fi(e) = a; for i = 1,2. We get

n(fif2) = (fife)(e) = fi(fale)) = filaz) = fi(aze) = azfi(e) = asay.

Thus 7 yields an algebra homomorphism 7: Ends(Ae) — (eAe)°P. (Note that the
unit element of (eAe)°P is e.)

The algebra homomorphism 7 is injective: If n(f) = 0, then f(e) = 0 and therefore
flae) =af(e) =0 for all a € A. Thus f = 0.
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The map 7 is also surjective: For every a € A let peq.: Ae — Ae be the right
multiplication with eae defined by peqe(be) = beae where b € A. This map is
obviously an endomorphism of the A-module Ae, and we have 1(peae) = Peac(€) =
eae.

Thus we have shown that 7 is bijective. In particular, the inverse n~!(eae) is the
right multiplication with eae. U

Lemma 12.10. If X is an A-module, then Hom(Ae, X) = eX as vector spaces.

Proof. Let n: Homy(Ae, X) — eX be the map defined by n(f) = f(e). Since
f(e) = f(e*) = ef(e), we have f(e) € eX, thus this is well defined. It is also clear
that n is K-linear.

If f1, fo € Homyu(Ae, X), then n(f1) = n(f2) implies fi(e) = fa(e), and therefore

filae) = afi(e) = afs(e) = fa(ae)
for all a € A. So f; = f5. This proves that 7 is injective.

Next, let ex € eX. Define f,: Ae — X by f,(ae) = aex. It follows that f,(ajaze) =
a1 fr(age) for all aj,as € A. Thus f, € Homy(Ae, X) and n(f.) = fo(e) = ex. Son
is surjective. U

An idempotent e # 0 in a ring R is called primitive if e is the only non-zero
idempotent in eRe.

Lemma 12.11. A non-zero idempotent e in a ring R is primitive if and only if the
following hold: Let e = ey + ey with e; and ey orthogonal idempotents, then e; = 0
or es = 0.

Proof. Let e; and ey be orthogonal idempotents with e = e; + e;. Then eeje = e
and eese = ey, Thus e; and ey belong to eRe.

Vice versa, if €’ is an idempotent in eRe, then ¢ and e — €’ is a pair of orthogonal
idempotents with sum equal to e. 0

Lemma 12.12. Let e, e’ be idempotents in A. Then the following are equivalent:

(i) The modules Ae and Ae' are isomorphic;
(ii) There exist some x € eAe’ and y € € Ae such that xy = e and yr = €.

Proof. We can identify Hom4(Ae, M) with eM: We just map f: Ae — M to f(e).
Since e = e we get f(e) = f(e?) = ef(e), thus f(e) € eM. Thus the homomor-
phisms f € Homa(Ae, Ae’) correspond to the elements in eAe’.

(i) = (ii): If Ae and A€’ are isomorphic, there exist homomorphisms f: Ae — A¢’
and g: A¢’ — Ae such that gf = 14.. Set z = f(e) and y = g(€’). Thus x € eAé,
y € e'Ae, xy = e and yxr = €.
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(i) = (i): Assume there exist elements x € eAe’ and y € ¢/ Ae with zy = e and
yr =€'. Let f: Ae — Ae’ be the right multiplication with x, and let g: Ae’ — Ae be
the right multiplication with y. Then f and g are A-module homomorphisms, and we
have gf = 14, and fg = 14». Thus the A-modules Ae and Ae’ are isomorphic. [J

The statement (ii) in the above lemma is left-right symmetric. Thus (i) and (ii) are
also equivalent to

(iii) The A°’-modules eA and €'A are isomorphic.

We want to compare A-modules and eAe-modules. If M is an A-module, then eM
is an eAe-module.

Lemma 12.13. Let e be an idempotent in A. If S is a simple A-module with eS # 0,
then eS is a simple eAe-module.

Proof. We have to show that every element = # 0 in eS generates the e Ae-module
eS. Since x € 5, we get Ax = S. Thus edexr = eAxr = eS. Here we used that
x = ex for every element = € eS. O

Recall that a module V' is called local if it contains a maximal submodule U, which
contains all proper submodules of V.

Lemma 12.14. Let e be an idempotent in A. Then Ae is a local module if and only
if eAe is a local ring.

Proof. Let Ae be a local module, and let M be the maximal submodule of Ae. For
every element x € Ae we have © = xe, thus M = Me. We have eM = eAe N M.
(Clearly, eM C eAe N M. The other inclusion follows from the fact that e is an
idempotent: If a € A and eae € M, then eae = e(eae) € elM.)

In particular we have eM = eMe C eAe. We have e € eAe, but e does not belong
to M or eM. Thus eMe C eAe.

We claim that eMe is an ideal in eAe: Clearly, eAe - eMe C eMe. Since the right
multiplications with the elements from eAe are the endomorphisms of Ae, we have
Me - eAe C Me. (Me is the radical of the module Ae.) Thus eMe - eAe C eMe.

If € eAe\ eMe, then x € Ae and x ¢ M. (Note that exe = z.) Thus x generates
the local module Ae. It follows that there exists some y € A with yx = e. Because
r = ex, we have

eye-x = eyr = e = e.

Thus =z is left-invertible in eAe, and eye is right-invertible in eAe.

The element eye does not belong to eM, since eM is closed under right multiplication
with elements from eAe, and e ¢ eM. So we get eye € eAe \ eMe.
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Thus also the element eye has a left inverse in eAe. This proves that eye is invertible
in eAe. It follows that exe is invertible in eAe: Namely, we have

(eye) ™t - eye - x = (eye) e,
Multiplying both sides of this equation from the right with eye yields = - eye = e.

We have shown that all elements in eAe \ eMe are invertible, thus eAe is a local
ring.

Vice versa, assume that eAe is a local ring. Then Ae is a non-zero cyclic module,
thus it has maximal submodules. Let M; be a maximal submodule, and let M5 be
any proper submodule of Ae. Suppose M is not contained in M;. This implies
Ae = My 4+ M,, thus e = x1 + x9 with x; € M;. We have e = ee = ex; + exs.
Since eAe is a local ring, one of the elements ex; = ex;e, ¢ = 1,2 is invertible in
eAe. If e = yex;, then e belongs to Azx; C M;, thus Ae = M;. By assumption both
modules M; and Ms are proper submodules of Ae. This contradiction shows that
M contains all proper submodules of Ae, thus Ae is a local module. 0

12.11. Modules over factor algebras. Let A be a K-algebra, and let I be an
ideal in A. Define B = A/I. If M = gM is a B-module, then we can turn M
into an A-module by defining a - m := am for all @ € A and m € M. We write
vA(M) or 4M for this A-module. (But often we just write M.) For this A-module
M = 1A(M) we obviously have I - M = 0. We say that M is annihilated by I.

Vice versa, if X is an A-module with 7 - X = 0, then we can interpret X as a
B-module: For b € B and x € X, we write b = a + I and then define b - x := ax.
This is well defined since I - X = 0. It is easy to check that this turns X into an
B-module.

These two constructions are inverse to each other. Thus we can identify the B-
modules with the A-modules, which are annihilated by I.

The following is obviously also true: If M; and M, are A-modules, which are anni-
hilated by I, then a map M; — M, is A-linear if and only if it is B-linear. Thus we
get HOIHA(Ml, MQ) = HOIHB(Ml, MQ)

Proposition 12.15. Let I be an ideal in a K-algebra A, and let B = A/I. If we
associate to each B-module M the A-module v3(M), then we obtain an embedding of
the category of B-modules into the category of A-modules. The image of the functor
consists of all A-modules, which are annihilated by I.

12.12. Modules over products of algebras. Let R and S be rings. Recall that
the product R x S of R and S is again a ring with componentwise addition and
multiplication. Thus (r,s) + (7',s") = (r+ ', s+ §') and (r,s) - (r',s') = (rr', ss).

Similarly, if A and B are algebras, then A x B is again an algebra. In this case, define
ea = (1,0) and eg = (0,1). These form a complete set of orthogonal idempotents.
We have (Ax B)eq = Ax 0 and (A x B)eg = 0 x B. These are ideals in A x B, and
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we can identify the factor algebra (A x B)/(A x 0) with B, and (A x B)/(0 x B)
with A.

Let C' = A x B, and let M be a C-module. We get M = e M ® egM as a direct
sum of vector spaces, and the subspaces e, M and egM are in fact submodules of
M. The submodule e4 M is annihilated by 0 x B = (A x B)eg, thus e4M can be
seen as a module over (A x B)/(0 x B) and therefore as a module over A: Fora € A
and m € M define a - exm = (a,0)eam = (a,0)m. Similarly, egM is a B-module.
Thus we wrote M as a direct sum of an A-module and a B-module.

Vice versa, if M; is an A-module and Ms is a B-module, then the direct sum M; @ M,
of vector spaces becomes an (A x B)-module by defining (a, b)-(mq, ms) = (amq, bmy)
fora € A, b € B, m;y € M; and my € M,. In particular, we can interpret all A-
modules and all B-modules as (A x B)-modules: If M is an A-module, just define
(a,b)ym = am for a € A, b € B and m € M. (This is the same as applying :4*? to
M.) We call an (A x B)-modules, which is annihilated by 0 x B just an A-module,
and an (A x B)-modules, which is annihilated by A x 0 is just a B-module.

Thus we proved the following result:

Proposition 12.16. Let A and B be algebras. Then each (A x B)-module is the
direct sum of an A-module and a B-module.

In particular, indecomposable modules over A x B are either A-modules or B-
modules.

Warning: If A = B, we have to be careful. If we say that an A-module M can be
seen as a (A x B)-module, we have to make clear which copy of A we mean, thus if
we regard M as a module over A x 0 or 0 x A.

12.13. Bimodules. Let A and B be K-algebras. An A-B-bimodule V is a K-
vector space V' together with two module structures

pa: AxV =V and pug: BxV =V
such that for alla € A, b € B and v € V we have
MA(aa MB(bv U)) = MB(ba ,uA((l, U))

Using our short notation av for pa(a,v) and bv instead of pp(b,v), we can write
this as

a(bv) = b(av).
Note that for all A € K and v € V we have

pa(A-14,0) = Av = pug(A-1p,v).
Warning: In many books, our A-B-bimodules are called A-B°P-bimodules.

Assume that M is an A-B-bimodule. We get a canonical map ¢: B — Ends(M)
which sends b € B to the scalar multiplication b-: M — M which maps m to bm.
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It is easy to check that the image of ¢ lies in End 4(M): We have
c(b)(am) = b(am) = a(bm) = a(c(b)(m))
forallae A, b€ Band m € M.

Example: Let M be an A-module, and let B := End4(M) be its endomorphism
algebra. Then M is an A-B-bimodule. Namely, M becomes a B-module by

,uB(fv m) = f<m>
for all f € Endy(M) and m € M. But we also have f(am) = af(m).

The next result shows that bimodule structures allow us to see homomorphism
spaces again as modules.

Lemma 12.17. Let M be an A-B-bimodule, and let N an A-C-bimodule. Then
Homu (M, N) is an B°°-C-bimodule via

b(c(f(m))) = c(f(bm))
forallbe B, ce C, f € Homy(M, N) and m € M.

Proof. Let x be the multiplication in B°P, and set H := Hom4(M, N). It is clear
that the two maps B® x H — H, (b, f) — (bf: m — f(bm)) and C x H — H,
(¢, f) — (¢f: m+ cf(m)) are bilinear. We also have 1p- f = f and 1¢ - f = f for
all f e H.

For by,b, € B and f € H we have

This shows that

Similarly,
((cre2) f)(m) = (crc2)(f (m))
= c1(c2(f(m)))
= c1((c2f)(m))
= (c1(c2f))(m).
shows that (cico)f = c1(cof) for all ¢1,co € C'and f € H. O

Let M be an A-B-bimodule. This gives a covariant functor

Hom (M, —): Mod(A) — Mod(BP).



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 99

Similarly, if N is an A-C-bimodule we get a contravariant functor

Homy(—, N): Mod(A) — Mod(C).

12.14. Modules over tensor products of algebras. Let A and B be K-algebras.
Then A ®k B is again a K-algebra with multiplication

(a1 ®@by) - (a2 ® by) = (a1az @ b1b).
(One has to check that this is well defined and that one gets indeed a K-algebra.)

Proposition 12.18. The category of A-B-bimodules is equivalent to the category of
A QR B-modules.

Sketch of proof. Let M be an A-B-bimodule. This becomes an A ® B-module via
(a ®b)m = abm

for alla € A, b € B and m € M. The same rule applied the other way round turns
an A ®j B-module into an A-B-bimodule. O

12.15. Exercises. 1: Let A = K(Xj,...,X,,) be the K-algebra of polynomials in n
non-commuting variables Xi,..., X, and let J = {1,...,n}. Show: The category
of J-modules is equivalent to Mod(A).

In particular, Mod(K[T7]) is equivalent to the category of 1-modules.

2: Let A be a K-algebra. Show that the category of left A-modules is equivalent to
the category of right A°°-modules.

13. Semisimple algebras

13.1. Semisimple algebras and their modules.

Theorem 13.1. Let A be an algebra. Then the following are equivalent:
(i) The module 4 A is semisimple;
(ii) Every A-module is semisimple;

(iii) There exist K-skew fields D; and natural numbers n; where 1 < i < s such
that

A= H M,.(D,).
=1

An algebra A is called semisimple if one of the equivalent conditions in the above
theorem is satisfied.
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The opposite algebra A°P of a semisimple algebra A is again semisimple. This follows
directly from Condition (iii): If D is a skew field, then D is also a skew field. For
an arbitrary ring R there is an isomorphism

M, (R)*® — M, (R?)

which maps a matrix ® to its transpose ‘®.

Proof of Theorem 13.1. The implication (ii) = (i) is trivial.

(i) == (ii): Let 4A be a semisimple module. Since direct sums of semisimple
modules are again semisimple, we know that all free A-modules are semisimple.
But each A-modules is a factor module of a free module, and factor modules of
semisimple modules are semisimple. Thus all A-modules are semisimple.

(i) = (iii): Since 4A is semisimple, we know that 4A is a direct sum of simple
modules. By the results in Section 12.9 this direct sum has to be finite. Thus
Ends(4A4) is a finite product of matrix rings over K-skew fields. We know that
Ends(4A) =2 A°P, thus A is a finite product of matrix rings over K-skew fields.
Thus the same holds for A.

(iii) = (i): Let A be a product of s matrix rings over K-skew fields. We want to
show that 4 A is semisimple. It is enough to study the case s =1: If A = B x C,
then the modules g B and ¢C' are semisimple, and therefore 4A is also semisimple.

Let A = M, (D) for some K-skew field D and some n € Ny. Let S = D" be the set
of column vectors of length n with entries in D. It is easy to show that S is a simple
M,,(D)-module. (One only has to show that if x # 0 is some non-zero column vector
in S, then M, (D)x = S.) On the other hand, we can write 4A as a direct sum of n
copies of S. Thus 4A is semisimple. O

Let A = M,,(D) for some K-skew field D and some n € N;. We have shown that 4A
is a direct sum of n copies of the simple module S consisting of column vectors of
length n with entries in D. It follows that every A-module is a direct sum of copies
of S. (Each free module is a direct sum of copies of S, and each module is a factor
module of a free module. If a simple A-module T is isomorphic to a factor module
of a free A-module, we obtain a non-zero homomorphism S — 7. Thus T' = S by
Schur’s Lemma.) If

A= ﬁ Mm(Dl)v
i=1

then there are exactly s isomorphism classes of simple A-modules.

Proposition 13.2. Let K be an algebraically closed field. If A is a finite-dimensional
semisimple K-algebra, then

A f[ M, (K)
i=1

for some natural numbers n;, 1 <1 < s.
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Proof. First, we look at the special case A = D, where D is a K-skew field: Let
d € D. Since D is finite-dimensional, the powers d’ with i € Ny cannot be linearly
independent. Thus there exists a non-zero polynomial p in K[T] such that p(d) = 0.
We can assume that p is monic. Since K is algebraically closed, we can write it as
a product of linear factors, say p = (T'—¢1) - -+ (T — ¢,) with ¢; € K. Thus in D we
have (d —¢1)---(d — ¢,) = 0. Since D has no zero divisors, we get d — ¢; = 0 for
some i, and therefore d = ¢; € K.

Now we investigate the general case: We know that A is isomorphic to a product
of matrix rings of the form M, (D;) with K-skew fields D; and n; € N;. Since A
is finite-dimensional, every K-skew field D; must be finite-dimensional over K. But
since K is algebraically closed, and the D, are finite-dimensional K-skew fields we
get D; = K. U

The centre of a ring R is by definition the set of elements ¢ € R such that cr = rc
for all » € R. We denote the centre of R by C(R). If R and S are rings, then
C(RxS)=C(R) x C(S).

Lemma 13.3. If A=T[_, M, ,(K), then the centre of A is s-dimensional.

Proof. 1t is easy to show that the centre of a matrix ring M, (K) is just the set of
scalar matrices. Thus we get

C (H Mm(K)> = HC(MM.(K)) o~ H K.

U

13.2. Examples: Group algebras. Let G be a group, and let K[G] be a K-vector
space with basis {e,; | g € G}. Define

€4g€h = Cgh.
Extending this linearly turns the vector space K|[G| into a K-algebra. One calls

K|[G] the group algebra of G over K. Clearly, K[G] is finite-dimensional if and
only if GG is a finite group.

A representation of GG over K is a group homomorphism

p: G — GL(V)
where V is a K-vector space. In the obvious way one can define homomorphisms
of representations. It turns out that the category of representations of G over K is

equivalent to the category Mod(K[G]) of modules over the group algebra K[G]. If
V' is a K[G]-module, then for g € G and v € V' we often write gv instead of eyv.

The representation theory of G depends very much on the field K, in particular, the
characteristic of K plays an important role.

Theorem 13.4 (Maschke). Let G be a finite group, and let K be a field such that
the characteristic of K does not divide the order of G. Then every K[G]-module is
semisimple.
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Proof. 1t is enough to show that every finite-dimensional K[G]-module is semisimple.
Let U be a submodule of a finite-dimensional K[G]-module V. Write

V=UaoW

with W a subspace of V. But note that W is not necessarily a submodule.

Let 0: V' — V be the projection onto U. So §(u) = u and §(w) = 0 for all u € U
and w € W. Define f: V — V by

U |G|Zg gU

geG

Here we use our assumption on the characteristic of K, otherwise we would divide
by 0, which is forbidden in mathematics.

We claim that f € Endgg(V): Clearly, f is a linear map. For h € G we have
‘ Z g 0(ghv).
geG
Set x4 := gh. Thus g~' = ha;'. So we get
geG

Thus f is an endomorphism of V.

We have Im(f) = U: Namely, Im(f) C U since each term in the sum is in U. If

u € U, then
flu) |m§:flg“ Kﬂihﬂg |m§:“_“

geG geG

Clearly, this implies U N Ker(f) = 0: Namely, if 0 # v € U N Ker(f), then f(u) =

u = 0, a contradiction.

We have dim Ker(f) + dim Im(f) = dim V. This implies
V = Tm(f) @ Ker(f) = U @ Ker(/),

and Ker(f) is a submodule of V. Now let U be a simple submodule of V. We
get V.= U @ Ker(f). By induction on dim V', Ker(f) is semisimple, thus V is
semisimple. 0

13.3. Remarks. Let G be a finite group, and let K be a field. If char(K') does not
divide the order of G, then K[G] is semisimple. In this case, from our point of view,
the representation theory of K[G] is very boring. (But be careful: If you say this at
the wrong place and wrong time, you will be crucified.)

More interesting is the modular representation theory of G, i.e. the study of
representations of G over K where char(K) does divide |G].
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For example, if G = S, is the symmetric group of bijective maps {1,...,n} —
{1,...,n}, then one can parametrize the simple K [G]-modules by certain partitions.
But in the modular case, it is not even known which dimensions these simple modules
have.

Another interesting question is the following: Given two finite groups G and H,
and let K be a field. When are the module categories mod(K[G]) and mod(K[H])
derived equivalent? (We will learn about derived categories and derived equivalences
later on.)

Again let G be a finite group, let K be a field such that char(K) divides |G|,

and let Sq,...,S5, be a set of representatives of the isomorphism classes of simple
K[G]-modules. We define a quiver I" associated to K[G] as follows: Its vertices are
Si,...,5,. There is an arrow S; — S; if and only if there exists a non-split short

exact sequence
0—S5 —-FE—5 —0

of K[G]-modules. (In fact, one should work with multiple arrows here, namely the
number of arrows S; — S, should be equal to dim Ext}([G](Si, S;), but we did not
introduce Ext-groups yet...)

The connected components of T parametrize the “blocks of K[G]”: A K-algebra A is
connected if it cannot be written as a product A = A; X As of non-zero K-algebras
Ay and Ay. Now write K[G] as a product

K[G] = By x --- x By

of connected algebras B;. It turns out that the B; are uniquely determined up
to isomorphism and reordering. They are called the blocks of K|[G]. The simple
representations of a block B; correspond to the vertices of a connected component
['; of I'. To understand the representation theory of K[G| is now the same as
understanding the representation theory of each of the blocks. Such blocks are in
general not any longer group algebras. Thus to understand group algebras, one
is forced to study larger classes of finite-dimensional algebras. Each block is a
“selfinjective algebra”.

13.4. Exercises. 1: Prove that the K-algebra A := [[..; K is semisimple if and
only if the index set [ is finite. If I is infinite, construct a submodule U of the
regular representation 4 A which does not have a direct complement in 4 A.

2: Let G = Zs be the group with two elements, and let K be a field.

(a) Assume char(K') # 2. Show: Up to isomorphism there are exactly two simple
K[G]-modules.

(b) Assume char(K) = 2. Show: Up to isomorphism there are exactly two
indecomposable K[G]-modules, and one of them is not simple.

(c¢) Assume that K is an infinite field with char(K) = 2. Construct an infinite
number of 2-dimensional pairwise non-isomorphic representations of K[G x

al.
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14. The Jacobson radical of an algebra
In this section let A be a K-algebra.

14.1. The radical of an algebra. The radical of A is defined as
J(A) :=rad(4A).

In other words, J(A) is the intersection of all maximal left ideals of A. Often one
calls J(A) the Jacobson radical of A.

Since the A-module 4 A is finitely generated (it is cyclic), we know that 4A contains
maximal submodules, provided A # 0. In particular, J(A) = A if and only if A = 0.

Lemma 14.1. The radical J(A) is a two-sided ideal.

Proof. As an intersection of left ideals, J(A) is a left ideal. It remains to show that
J(A) is closed with respect to right multiplication. Let a € A, then the right multi-
plication with a is a homomorphism 4 A — 4 A, and it maps rad(44) torad(4A4). O

Lemma 14.2. If A is semisimple, then J(A) = 0.

Proof. Obvious. (Why?) O

Lemma 14.3. Let x € A. The following statements are equivalent:

i) z e J(A);

ii) For all ai,as € A, the element 1 + ayxas has an inverse;
(iii) For all a € A, the element 1 + ax has a left inverse;

(iv) For all a € A, the element 1+ xa has a right inverse.

Proof. (i) = (ii): Let © € J(A). We have to show that 1 + x is invertible. Since
x € J(A), we know that = belongs to all maximal left ideals. This implies that 1+x
does not belong to any maximal left ideal (because 1 is not contained in any proper

ideal).

We claim that A(1 + z) = A: The module 4A is finitely generated. Assume that
A(1 + x) is a proper submodule of 4A. Then Corollary 7.18 implies that A(1 + z)
must be contained in a maximal submodule of 4A, a contradiction.

Therefore there exists some a € A with a(1 +x) = 1. Let y = a — 1. We have
a =14y, thus (14 y)(1+ x) = 1, which implies y + x + yz = 0. This implies
y=(—1—y)x € Az C J(A). Thus also 1 +y has a left inverse. We see that 1 +y
is left invertible and also right invertible. Thus its right inverse 1 + x is also its left
inverse. Since J(A) is an ideal, also ajzay belongs to J(A) for all a1,as € A. Thus
all elements of the form 1 + a;zay are invertible.

(i) = (iii): Obvious.
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(i) = (i): If o ¢ J(A), then there exists a maximal left ideal M, which does not
contain z. This implies A = M + Az, thus 1 = y — az for some y € M and a € A.
We get 1+ ax = y, and since y belongs to the maximal left ideal M, y cannot have
a left inverse.

(ili) <= (iv): Condition (ii) is left-right symmetric. O

Corollary 14.4. The radical J(A) of A is the intersection of all maximal right
ideals.

Proof. Condition (ii) in Lemma 14.3 is left-right symmetric. O

Lemma 14.5. If I is a left ideal or a right ideal of A, which consists only of nilpotent
elements, then I is contained in J(A).

Proof. Let I be a left ideal of A, and assume all elements in I are nilpotent. It is
enough to show that for all € I the element 1+ z is left-invertible. (If a € A, then
ax € I.) Since z is nilpotent, we can define

z:Z(—l)ixizl—x+x2—x3+-~-.

i>0
We get (1 +2)z =1 = 2(1+ x). The left-right symmetry shows that every right
ideal, which consists only of nilpotent elements is contained in the radical. O

Warning: Nilpotent elements do not have to belong to the radical, as the following
example shows: Let A = My(K). Then A is a semisimple algebra, thus J(A) = 0.
But of course A contains many nilpotent elements, for example

(0.

But observe that there are elements y in Az which are not nilpotent. In other words
1 + y is not invertible. For example

=)

isin Az and 1 + e is not invertible. We can also construct maximal left ideals of A
which do not contain z.

Proposition 14.6. Let a € A. Then a € J(A) if and only if aS = 0 for all simple
A-modules S

Proof. Let T be a simple A-module, and let x be a non-zero element in 7. The map
f: aA — T defined by f(b) = bx is an A-module homomorphism. Since x # 0, we
have f # 0. Since T is simple, f is surjective and the kernel of f is a maximal left
ideal. It follows from the definition of J(A) that J(A) is contained in the kernel of
f. Thus J(A)z = 0, and therefore J(A)T = 0.

Vice versa, assume aS = 0 for all simple A-modules S. We assume that a does not
belong to J(A). Since J(A) is the intersection of all maximal left ideals, there exists
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a maximal left_ideal I with a ¢ I. We know that S; := 4A/I is a simple A-module.
For b € Aset b =0+ I. It follows that @ # 0. Since

a-l=a-1=a#0
we have aS7 # 0. This contradiction shows that a € J(A). O

In other words, the radical J(A) is the intersection of the annihilators of the simple
A-modules. (Given an A-module M, the annihilator of M in A is the set of all
a € A such that aM = 0.)

Corollary 14.7. For every A-module M we have J(A)M C rad(M).

Proof. 1If M’ is a maximal submodule of M, then M /M’ is a simple A-module, thus
J(A)(M/M') = 0. This implies J(A)M C M'. Since J(A)M is contained in all
maximal submodules of M, it is also contained in the intersection of all maximal
submodules of M. O

Warning: In general, we do not have an equality J(A)M = rad(M): Let A = K[T.
Then J(K[T]) = 0, and therefore J(K[T])M = 0 for all K[T]-modules M. But for
the K[T]-module N(2) we have rad(N(2)) = N(1) # 0.

Corollary 14.8. If M is a finitely generated A-module, M' is a submodule of M
and M"+ J(A)M = M, then M' = M.

Proof. Assume M is finitely generated and M’ is a submodule of M with M’ +
J(A)M = M. By Corollary 14.7 we know that J(A)M C rad(M). Thus M’ +
rad(M) = M. Since M is finitely generated Corollary 7.17 implies that rad(M) is
small in M. Thus we get M’ = M. g

Corollary 14.9 (Nakayama Lemma). If M is a finitely generated A-module such
that J(A)M = M, then M = 0.

Proof. In Corollary 14.8 take M’ = 0. O
Lemma 14.10. The algebra A is a local ring if and only if A/J(A) is a skew field.

Proof. If A is a local ring, then J(A) is a maximal left ideal. Thus A/J(A) is a ring
which contains only one proper left ideal, namely the zero ideal. Thus A/J(A) is a
skew field.

Vice versa, if A/J(A) is a skew field, then J(A) is a maximal left ideal. We have to
show that J(A) contains every proper left ideal: Let L be a left ideal, which is not

contained in J(A). Thus J(A)+ L = A. Now J(A) =rad(4A) is a small submodule
of 4A, since 4 A is finitely generated. Thus L = A. O

Theorem 14.11. If A/J(A) is semisimple, then for all A-modules M we have
J(A)M = rad(M).
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Proof. We have seen that J(A)M C rad(M). On the other hand, M/J(A)M is
annihilated by J(A), thus it is an A/J(A)-module. Since A/J(A) is semisimple, each
A/J(A)-module is a semisimple A/J(A)-module, thus also a semisimple A-module.
But if M/J(A)M is semisimple, then rad(M) has to be contained in J(A)M. O

Examples: If A= K[T], then A/J(A) = A/0 = A. So A/J(A) is not semisimple.
If A is an algebra with I(4A) < oo (for example if A is finite-dimensional), then
AJJ(A) = 4A/rad(4A) is semisimple.

Lemma 14.12. Ife is an idempotent in A, then J(eAe) =eJ(A)e = J(A) NeAe.

Proof. We have J(A) NeAe C eJ(A)e, since © € eAe implies © = exe. Thus, if
additionally = € J(A), then x = exe belongs to eJ(A)e.

Next we show that eJ(A)e C J(eAe): Let x € J(A). If a € A, then 1 + eae - x - e
is invertible, thus there exists some y € A with y(1 4 eaexe) = 1. This implies
eye(e + eaexe) = ey(l + eaexe)e = e. Thus all elements in e + eAe(exe) are left-
invertible. This shows that exe belongs to J(eAe).

Finally, we show that J(eAe) C J(A) NeAe: Clearly, J(eAe) C eAe, thus we have
to show J(eAe) C J(A). Let S be a simple A-module. Then eS = 0, or eS is a
simple eAe-module. Thus J(eAe)eS = 0, and therefore J(eAe)S = 0, which implies
J(eAe) C J(A). O

14.2. Exercises. 1: Let ) be a quiver. Show that the radical J(K Q) has as a basis
the set of all paths from i to j such that there is no path from j to i, where ¢ and j
run through the set of vertices of Q.

15. Quivers and path algebras

Path algebras are an extremely important class of algebras. In fact, one of our main
aims is to obtain a better understanding of their beautiful representation theory and
also of the numerous links between representation theory of path algebras and other
areas of mathematics.

Several parts of this section are taken from Crawley-Boevey’s excellent lecture notes
on representation theory of quivers.

15.1. Quivers and path algebras. Recall: A quiver is a quadruple
Q = (QOa Qh S, t)

where ()9 and () are finite sets, and s,t: ()1 — )y are maps. The elements in (g
are the vertices of (), and the elements in (); the arrows. For an arrow a € ()¢
we call s(a) the starting vertex and ¢(a) the terminal vertex of a.
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Thus we can think of () as a finite directed graph. But note that multiple arrows
and loops (a loop is an arrow a with s(a) = t(a)) are allowed.

Let @ = (Qo, Q1, s,t) be a quiver. A sequence
a=(ay,ag,...,a,)

of arrows a; € )y is a path in Q if s(a;) = t(a;41) forall 1 <i < m—1. Such a path
has length m, we write I(a) = m. Furthermore set s(a) = s(a,,) and t(a) = t(a;).
Instead of (aq,as, ..., a,) we often just write ajas - - ay,.

Additionally there is a path e; of length 0 for each vertex i € @y, and we set
s(e;) =t(e;) = 1.

The path algebra K@ of () over K is the K-algebra with basis the set of all paths
in (). The multiplication of paths a and b is defined as follows:

If a = ¢; is of length 0, then

dh— b b 1ft(b)%z,
0 otherwise.

If b = e;, then

ab:=a-b:= {a if s(a) =3,

0 otherwise.

Finally, assume that a = (a1,...,q;) and b = (by,...,b,,) are paths of length [, m >
1. Then

ab:=a-b:= {(ah o bl’ Y bm) if S(CLl) = t<b1)7
else.
15.2. Examples. 1: Let @) be the following quiver:

9<% 4-to5

Wy

Then the paths in @) are

€1, €2, €3, €4, €5, 4, b7 C, d7 €, f7 ca, da’7 fcu fd7 deL, fCCL.
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Thus, KQ is a 17-dimensional K-algebra. Here are some examples of multiplications
of paths:

ez ey, =0,
fe-a= fca,
a-fc=0,
b-es =0,
es-b=0,
es-b=0.

The algebra K (@) has a unit element, namely 1 := e + e + e3 + e4 + e5.

2: Let ) be the quiver

Q: (1

Then K@ is isomorphic to the polynomial ring K[T] in one variable T'.

3: Let @ be the quiver

Q: (10

Then K@ is isomorphic to the free algebra K(X,Y") in two non-commuting variables
X and Y.

15.3. Idempotents in path algebras. Let A = K@ for some quiver @), and
assume that Qp = {1,...,n}.

Then the e; are orthogonal idempotents, in other words e? = ¢; and e;e; = 0 for all

1 # j. Clearly,
1= Z €;
i=1

is the identity of A. The vector spaces Ae; and e;A have as bases the set of paths
starting in ¢ and the set of paths ending in j, respectively. Furthermore, e;Ae; has
as a basis the set of paths starting in ¢ and ending in j. We have

A= é AGZ‘.
1=1

Clearly, each Ae; is a left A-module. So this is a direct decomposition of the regular
representation 4 A.

Lemma 15.1. If0 # x € Ae; and 0 #£ y € e;A, then xy # 0.

Proof. Look at the longest paths p and ¢ involved in x and y, respectively. In the
product zy the coefficient of pg cannot be zero. O

Lemma 15.2. The e; are primitive idempotents.

Proof. 1t End 4(Ae;) = (e;Ae;)°P contains an idempotent f, then f? = f = fe;. This
implies f(e; — f) = 0. Now use Lemma 15.1. O
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Corollary 15.3. The A-modules Ae; are indecomposable.

Proof. The only idempotents in End4(Ae;) are 0 and 1. O
Lemma 15.4. Ife;, € Ae;A, then i = j.

Proof. The vector space AejA has as a basis the paths passing through the vertex
j. O

Lemma 15.5. Ifi # j, then Ae; & Ae;.

Proof. Assume ¢ # j and that there exists an isomorphism f: Ae; — Ae;. Set
y = f(e;). It follows from Lemma 12.10 that y € e;Ae;. Let g = f~', and let
x = g(e;). This implies

(9f)(e:) = g(y) = g(ye;) = yg(e;) = yr = ex.
A similar calculation shows that zy = e;. But y € e;Ae; and © € Ae;. Thus
y = e;ye; and x = ze;. This implies e; = 2y = ze;ye; € Ae; A, a contradiction to
Lemma 15.4. O

15.4. Representations of quivers. A representation (or more precisely a K-
representation) of a quiver Q = (Qo, @1, s,1) is given by a K-vector space V; for
each vertex i € )y and a linear map

Vo Vi — Vi)

for each arrow a € ();. Such a representation is called finite-dimensional if V; is
finite-dimensional for all 7. In this case,

dimV =Y " dimV;
1€Qo
is the dimension of the representation V.
For a path p = (ay,...,a,) of length m > 1 in @, define
V;?:: ‘/(11 0%20"'O%m: V;(P) _)V;f(p)'

A morphism

0:vV —-W
between representations V' = (V;,V,);, and W = (W;, W,), , is given by linear maps
0;: Vi — W, 1 € Qo such that the diagram

gs(a)
Vita) —= Wi(a)
Va W,
0t(a)

Vi) —= Wi

commutes for each a € Q1. The vector space of homomorphisms from V to W is
denoted by Hom(V, W), or more precisely by Homg(V, W).
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A morphism 0 = (6;);: V' — W is an isomorphism if each 6; is an isomorphism.
In this case, we write V = W.

The composition 1 o § of two morphisms #: V — W and ¢: W — X is given by

The K-representations form a K-category denoted by Rep(Q)) = Rep,(Q). The full
subcategory of finite-dimensional representations is denoted by rep(Q)) = rep(Q).

A subrepresentation of a representation (V;,V,);, is given by a tuple (U;); of
subspaces U; of V; such that

Va(Us(a)) - Ut(a)
for all @ € Q;. In this case, we obtain a representation (U;, U, ); . where U, : Ugq) —
Uya) is defined by U, (u) = V,(u) for all u € Uy(q).

The direct sum of representations V = (V;,V,);, and W = (W;,W,), , is defined
in the obvious way, just take V@ W = (V; & W;,V, & Wy); 4.

Now we can speak about simple representations and indecomposable repre-
sentations. (As for modules, it is part of the definition of a simple and of an
indecomposable representation V' that V' # 0.)

15.5. Examples. 1: For i € Qg let S; be the representation with

K ifi=j,
(Si)j:{

0 else.

for all j € Q, and set (S;), = 0 for all a € Q1. Obviously, S; is a simple represen-
tation.

2: For A\ € K let V) be the representation
K—>>K

of the quiver 1 ——=2. Then V), =2V, if and only if A =0 = ppor A # 0 # p. We
have
0 if A#0and =0,
dim Hom(V),V,) =<1 if u#0,
2 iftA=0=p.

3: For Ay, Ay let V), 5, be the representation

A1
KK
A2

of the quiver 1 ——=22. Then V), , = V,, ,, if and only if there exists some ¢ # 0

with ¢(A, Ag) = (i1, p2): Assume there exists an isomorphism

9 - (91792>: V)\1,)\2 - VM17H2'



112 CLAUS MICHAEL RINGEL AND JAN SCHROER
Thus 6 = (a, b) for some a,b € K*. We obtain a diagram

K2 K

e

KK

satisfying bA; = pia and bA\y = psa. Set ¢ = a~'b. Tt follows that c(A, \s) =
(p1, p2)-

4: For A € K let V) be the representation

ACK

of the I-loop quiver. Then Vy =V, if and only if A = p.

5: Let V' be the representation
[o]
K——<K?
7]
of the quiver 1 ——= 2. The subrepresentations of V are (K, K?) and (0,U) where

U runs through all subspaces of K2. It is easy to check that none of these subrepre-
sentations is a direct summand of V. Thus V is an indecomposable representation.

15.6. Representations of quivers and modules over path algebras. Let V' =
(Vi, Va)ia be a representation. Let

v KQx Vi~ DV,
1€Qo i€Qo
be the map defined by
v, ifi =7, V,(v;) if i = s(p),
ﬁ(ej,vl-) = { J and 7}(]7, Uz‘) _ { p( ) (p)

0  otherwise 0 otherwise

where the e; are the paths of length 0, p runs through the set of paths of length at
least one and v; € V;. Then we extend these rules linearly.

Vice versa, let V' be a K(Q-module, i.e. there is a K()-module structure
n: KQxV -V

on the K-vector space V. For each path e; of length 0 define V; := ¢;V/, which is
clearly a K-vectorspace. It follows that

V=
1€Qo
For each arrow a € ()1 define a linear map
Vo Vi — Vi)

by Va(v) :=n(a,v) for all v € V(. Then (V;, V,);, is obviously a representation of
Q.
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We leave it as an exercise to show that these constructions yield equivalences of
K-categories between Rep,(Q) and Mod(KQ).

So from now on we can use all the terminology and the results we obtained for
modules over algebras also for representations of quivers. In particular, we get a
Jordan-Holder and a Krull-Remak-Schmidt Theorem, we can ask for Auslander-
Reiten sequences of quiver representations, etc. We will often not distinguish any
longer between a representation of ) and a module over K Q).

If V.= (Vi,Va)ia is a representation of @ let
d = dim(V) = (dim V;)seq,

be its dimension vector. If V' is a finite-dimensional indecomposable representa-
tion, then dim(V) € N is called a root of Q. A root d is a Schur root if there
exists a representation V' with Endg (V) = K and dim(V') = d. Assume that d is
a root. If there exists a unique (up to isomorphism) indecomposable representation
V with dim(V) = d, then d is called a real root. Otherwise, d is an imaginary
root.

A representation V' of @) is rigid (or exceptional) if each short exact sequence
0—=V-W-=V-=0
splits, i.e. it WXV V.

Here are some typical problems appearing in representation theory of quivers:

(i) Classify all indecomposable representations of ). (This is usually very hard
and can only be achieved for very few quivers.)
(ii) Determine all roots of (). Determine the real roots and the Schur roots of

Q.

(iii) Classify all rigid representations of ().

(iv) Compute the Auslander-Reiten quiver of mod(K @), or at least try to de-
scribe the shape of its connected components.

(v) How does the representation theory of a quiver ) change, if we change the
orientation of an arrow of ()7

15.7. Exercises. 1: Let () be a quiver. Show that K () is finite-dimensional if and
only if () has no oriented cycles.

2: Let V = (K « K - K)and W = (K < K — 0) be representations of the quiver
1 « 2 — 3. Show that Homg(V, W) is one-dimensional, and that Homg(W, V') = 0.

3: Let @ be the quiver

1—-2—---—n.
Show that K@ is isomorphic to the subalgebra
A:={M € M,(K) | m;; = 0 if there is no path from j to i}
of M, (K).
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4: Let @ be any quiver. Determine the centre of K@Q. (Reminder: The centre
C(A) of an algebra A is defined as C(A) = {a € A | ab = ba for all b € A}.)

5: Let () be a quiver with n vertices. Show that there are n isomorphism classes of
simple K Q)-modules if and only if () has no oriented cycles.

6: Let @ be a quiver. Show that the categories Rep (@) and Mod(K Q) are equiv-
alent.

7: Construct an indecomposable representation of the quiver

|

with dimension vector

8: Show: If V' = (Vi, Va)icgo.acq, is an indecomposable representation of the quiver

Q: o o o o o

then dim V; <1 for all i € Q.
Construct the Auslander-Reiten quiver of ).

9: Let @ be the following quiver:

O

|

O O O O O O

Let A = K(@Q. Write 4A as a direct sum of indecomposable representations and
compute the dimension of the indecomposable direct summands.

10: Let [ ]/( )
KI[T/(T? 0
A= {K[T]/(T?) K]'

This gives a K-algebra via the usual matrix multiplication. (The elements of A are

of the form
a 0
b ¢

where a,b € K[T|/(T?) and ¢ € K.) Show that A is isomorphic to KQ/I where Q

is the quiver
« C O —>0
and [ is the ideal in KQ generated by the path o? := (a, «).
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16. Digression: Classification problems in Linear Algebra

Many problems in Linear Algebra can be reformulated using quivers. In this section,
we give some examples of this kind.

16.1. Classification of endomorphisms.
Q: (1

Let K be an algebraically closed field, and let V' be a finite-dimensional K-vector
space of dimension n. By Endg (V) we denote the set of K-linear maps V. — V|

and by G = GL(V) the set of invertible K-linear maps V' — V. For f € Endg (V)
let

Gf={9"'fglg€ G} CEndg(V)
be the G-orbit of f. One easily checks that for fi, fo € Endg (V) we have either
Gfl = Gfg or Gfl N Gfg = @

Question 16.1. Can we classify all G-orbits?

Answer: Of course we can, since we paid attention in our Linear Algebra lectures.

For n = 0 everything is trivial, there is just one orbit containing only the zero
map. Thus assume n > 1. Fix a basis B of V. Now each map f € Endg(V) is
(with respect to B) given by a particular matrix, which (via conjugation) can be
transformed to a Jordan normal form. It follows that each orbit G f is uniquely
determined by a set

{(TLl, )\1), (TLQ, )\2), ey (Tlt, )\t)}

where the n; are positive integers with n; +---+n, = n, and the \; are elements in
K. Here (n;, \;) stands for a Jordan block of size n; with Eigenvalue A;.

16.2. Classification of homomorphisms.

Q: 1—2

Let K be any field, and let Vi and V5 be finite-dimensional K-vector spaces of
dimension n; and ns, respectively. By Homg (V3, Vs) we denote the set of K-linear

maps V) — Vo, and let G = GL(V;) x GL(V,). For f € Homg(V1, V2) let
Gf={h""fg|(g9,h) € G} C Homg (1, V5)

be the G-orbit of f.

Question 16.2. Can we classify all G-orbits?

Answer: Of course we can. This is even easier than the previous problem: Fix

bases B; and By of V; and V3, respectively. Then each f € Homg(V3,V5) is given
by a matrix with respect to By and Bs. Now using row and column transformations
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(which can be expressed in terms of matrix multiplication from the left and right)
we can transform the matrix of f to a matrix of the form

(5 0)

where FE, is the r x r-unit matrix and the zeros are matrices with only zero entries.
Here r is the rank of the matrix of f.

It turns out that there are 1+min{n;, ny } different G-orbits where n; is the dimension

of V.

16.3. The Kronecker problem.
Q : 1—=2
Let K be an algebraically closed field, and let V; and V5, be finite-dimensional

K-vector spaces. Let G = GL(Vi) x GL(V3). For (fi, fa) € Homg(Vh, V2) X
Homy (V1, V3) let

G(f1, f2) = {(h_lflg,h_lfQQ) | (9,h) € G} € Homg (V1, Va) x Homg (Vi, V5)
be the G-orbit of (f1, f2).
Question 16.3. Can we classify all G-orbits?

Answer: Yes, we can do that, by we will need a bit of theory here. As you can
see, the problem became more complicated, because we simultaneously transform
the matrices of f; and f, with respect to some fixed bases of Vi and V5.

Example: The orbits G(K LK KD K) and G(K LEKKLSL K) are equal if
and only if A = p.

16.4. The n-subspace problem.

Q 1 \ 2 / n
0
An n-subspace configuration is just an n+ 1-tuple (V, V4, ..., V,,) where V is a vector

space and the V; are subspaces of V. We call
dim(V;Vq,...,V,) = (dim V,dim V4, ...,dim V},)

the dimension vector of the n-subspace configuration (V, Vi, ..., V,,).

We say that two n-subspace configurations (V, Vi, ..., V,) and (W, Wy,... W) are
isomorphic if there exists an isomorphism (= bijective linear map) f: V' — W such
that the following hold:

o f(Vi) Wy
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e The linear maps f;: V; — W; defined by f;(v;) = f(v;) where 1 < i <n and
v; € V; are isomorphisms.

In particular, two isomorphic n-subspace configurations have the same dimension
vector.

Problem 16.4. Classify all n-subspace configurations up to isomorphism.

We can reformulate this problem as follows: Let V, Vi, ..., V,, be vector spaces such
that dim V; < dim V for all 7. Set
Z =Inj(V1, V) x -+ x Inj(V,,, V)

where Inj(V;, V') denotes the set of injective linear maps from V; — V. Let G =
GL(V) x GL(W}) x -+ - x GL(V},). Each element (fi,..., f,) can be thought of as an
n-subspace configuration given by (V,Im(fy),...,Im(f,)).

Then G acts on Z as follows: For (fi,..., f.) and ¢ = (90,91, ---,9n) € G define

g- (fla <. 7fn) = (go_lflgl,- <. 7g()_1fngn)
and let

G(fla---afn):{g'(fla---afn)|g€G}

be the G-orbit of (f1,..., f,). Classifying all n-subspace configurations with dimen-
sion vector (dim V,dim V4, ..., dim V},) up to isomorphism corresponds to classifying
the G-orbits in Z.

It turns out that Problem 16.4 is much too hard for large n. But for small n one
can solve it.

Given two n-subspace configurations (V, Vi, ..., V,,) and (W, Wy,..., W,,), we define
their direct sum by

Vi, V)@ (W, Wy, ... W)= (Ve W, Ve Wy, ..., V,®&W,).
It follows that (V, Vq,..., V)@ (W, Wy, ..., W,) is again an n-subspace configuration.
An n-subspace configuration (V,V,...,V,) is indecomposable if it is not isomor-

phic to the direct sum of two non-zero n-subspace configurations. (We say that an
n-subspace configuration (V,Vy,...,V,) is zero, if V = 0.)

One can prove that any n-subspace configuration can be written (in a “unique way”)
as a direct sum of indecomposable n-subspace configurations. Thus to classify all
n-subspace configurations, it is enough to classify the indecomposable ones.

We will see for which n there are only finitely many indecomposable n-subspace
configurations.

Instead of asking for the classification of all n-subspace configurations, we might ask
the following easier question:

Problem 16.5. Classify the dimension vectors of the indecomposable n-subspace
configurations.
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It turns out that there is a complete answer to Problem 16.5.

16.5. Exercises. 1: Classify all indecomposable 3-subspace configurations. Does
the result depend on the field K7

2: Solve the Kronecker problem as described above for V; = V5 = K? where K is
an algebraically closed field.

3: Find the publication of Kronecker where he solves the Kronecker problem.

>k >k >k ok oK sk ok ok ok ok ok ok Sk ok Sk ok sk sk sk sk sk sk sk sk ki kiR ok okook skosk sk sk skokokskokokok koskoskosk skok sk skok skoskoskosk skokoskokokokoskoksk sk skoskokokok
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Part 4. Projective modules
17. Projective modules

In this section let A be a K-algebra. As before, let Mod(A) be the category of left
A-modules, and let mod(A) be the full subcategory of finitely generated A-modules.

17.1. Definition and basic properties. An A-module P is called projective if
for any epimorphism ¢g: M — N and any homomorphism h: P — N there exists a
homomorphism h’: P — M such that goh’ = h. This is called the “lifting property”.

N
An A-module P is projective if and only if for every epimorphism ¢g: M — N of
A-modules the induced map

Homa(P, g): Homu(P, M) — Homa(P, N)

is surjective. For every A-module X, the functor Homy (X, —) is left exact. Thus a
module P is projective if and only if Hom,4 (P, —) is exact.

(A functor F': Mod(A) — Mod(B) is exact if for every short exact sequence 0 —
U—V — W — 0in Mod(A) the sequence 0 — F(U) — F(V) — F(W) — 0 is
exact in Mod(B).)

Recall that an A-module F is free if F' is isomorphic to a direct sum of copies of
the regular representation 4A.

Lemma 17.1. Free modules are projective.

Proof. Let F be a free A-module with free generating set X. Let g: M — N be an
epimorphism of A-modules, and let h: F' — N be any homomorphism of A-modules.
For every = € X we look at the image h(z). Since g is surjective there exists some
m, € M with g(m,) = h(x). Define a homomorphism h': F' — M by h'(x) = m,.
Since X is a free generating set of X, there exists exactly one such homomorphism
h'. For every x € X we have (goh')(x) = h(x), and this implies gh’ = h, since X is
a generating set of F. O

The map A’ constructed in the proof of the above lemma is in general not uniquely
determined. There can be many different maps h' with the property gh’ = h:

For example, for F' = 4A the set {14} is a free generating set. Let M be an
A-module and let U be a submodule of M. By g: M — M/U we denote the
corresponding projection map. This is a typical epimorphism. For x € M let T =
x+U be the corresponding residue class in M/U. Let h: 4A — M /U be an arbitrary
homomorphism. Then h(l,) = T for some z € M. Now the homomorphisms
h': 4A — M such that gh’ = h correspond to the elements in 7 =2+ U = {x + u |
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u € U}, namely we can take any  +u € x + U and then define h'(14) = = + w.
Thus if U # 0, then there are many such homomorphisms A'.

Lemma 17.2. A direct sum of modules is projective if and only if each direct sum-
mand is projective.

Proof. Let g: M — N be an epimorphism. First let P = €,.; P; with P; projective
for all 7. For a homomorphism h: P — N let h;: P, — N be its restriction to P;.
For every h; there exists a lifting, i.e. there exists a homomorphism h}: P, — M
with gh; = h;. Define h': @, ; P — M such that the restriction of ' to P; is just
;. This implies gh’ = h.

Vice versa, let P be a projective module, and let P = P, & P, be a direct decompo-
sition of P. For a homomorphism hy: P, — N let h = [hy,0]: P, & P, — N. Since
P is projective, there exists a homomorphism h': P — M with gh’ = h. We can
write b’ = [, h}] with h}: P, — M. Tt follows gh} = h;. O

Lemma 17.3. For a module P the following are equivalent:

(i) P is projective;
(ii) Every epimorphism M — P splits;
(iii) P is isomorphic to a direct summand of a free module.

Furthermore, a projective module P is a direct summand of a free module of rank c
if and only if P has a generating set of cardinality c.

Proof. (i) = (ii): Let M be an A-module, and let g: M — P be an epimorphism.
For the identity map 1p: P — P the lifting property gives a homomorphism h’: P —
M with go h/ = 1p. Thus g is a split epimorphism.

(i) = (iii): There exists an epimorphism f: F' — P where F is a free A-module.
Since f splits, P is isomorphic to a direct summand of a free module.

(iii) = (i): The class of projective modules contains all free modules and is closed
under direct summands.

Now we proof the last statement of the Lemma: If P has a generating set X of
cardinality ¢, then let I’ be a free module of rank ¢. Thus F' has a generating set of
cardinality ¢. We get an epimorphism F' — P which has to split.

Vice versa, if P is a direct summand of a free module F' of rank ¢, then P has a
generating set of cardinality ¢: We choose an epimorphism f: F' — P, and if X is
a generating set of F', then f(X) is a generating set of P. O

Thus an A-module P is finitely generated and projective if and only if P is a direct
summand of a free module of finite rank.

Let Proj(A) be the full subcategory of Mod(A) of all projective A-modules, and set
proj(A) := Proj(A) Nmod(A).
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Warning: There exist algebras A such that 4A is isomorphic to 4A @& 4A. Thus
the free module 4A has rank n for any positive integer n. For example, take as A
the endomorphism algebra of an infinite dimensional vector space.

Corollary 17.4. If P and Q) are indecomposable projective modules, and if p: P —
Q an epimorphism, then p is an isomorphism.

Proof. Since @) is projective, p is a split epimorphism. But P is indecomposable and
@ # 0. Thus p has to be an isomorphism. O

17.2. The radical of a projective module. Recall that a submodule U of a
module M is small in M if U + U’ C M for all proper submodules U’ of M.

As before, by J(A) we denote the radical of an algebra A.

Lemma 17.5. If P is a projective A-module, then
J(End4(P)) ={f € Ends(P) | Im(f) is small in P}.

Proof. Let J := J(End4(P)). Let f: P — P be an endomorphism such that the
image Im(f) is small in P. If ¢ € End4(P) is an arbitrary endomorphism, then
Im(fg) C Im(f), thus Im(fg) is also small in P. Clearly, we have

P =1Im(lp) =Im(1p + fg) + Im(fg).

Since Im(fg) is small, we get that 1p + fg is surjective. But P is projective,
therefore 1p + fg is a split epimorphism. Thus there exists some h € End4(P) with
(1p + fg)h = 1p. We have shown that the element 1p + fg has a right inverse for
all g € End4(P). Thus f belongs to J.

Vice versa, assume f € J. Let U be a submodule of P with P = Im(f)+ U, and let
p: P — P/U be the projection. Since P = Im(f)+U, we know that pf is surjective.
But P is projective, therefore there exists some p': P — P with p = pfp’. Now
1p — fp' is invertible, because f € J. Since p(1p — fp') = 0 we get p = 0. This
implies U = P. It follows that Im(f) is small in P. O

Corollary 17.6. Let P be a projective A-module. If rad(P) is small in P, then
J(Endo(P)) = {f € End(P) | Im(f) C rad(P)}.

Proof. Each small submodule of a module M is contained in rad(M). If rad(M)
is small in M, then the small submodules of M are exactly the submodules of

rad(M). O
Lemma 17.7. If P is a projective A-module, then rad(P) = J(A)P.

Proof. By definition J(A) = rad(4A) and J(A)A = J(A). This shows that the
statement is true for P = 4A. Now let M;, i € I be a family of modules. We have

J(A) (EB MZ-> =@ J(AM; and rad (@ Mi> = @ rad(My).

el icl icl icl
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We know that J(A)M C rad(M) for all modules M. Thus we get
J(A) (EB MZ-> =@ J(A)M; € Erad(M;) = rad (EB MZ) .
iel i€l iel iel
This is a proper inclusion only if there exists some i with J(A)M; C rad(M;). Thus,
if J(A)M; = rad(M;) for all 4, then J(A) (P,.; M;) = rad (B,; M;). This shows

that the statement is true for free modules.
Vice versa, if J(A) (B,c; M;) = rad (P,.; M;), then J(A)M; = rad(M;) for all .

Since projective modules are direct summands of free modules, and since we proved
the statement already for free modules, we obtain it for all projective modules. [J

Lemma 17.8. Let U be a submodule of a projective module P such that for every
endomorphism f of P we have f(U) C U. Define

f«: P/U — P/U
by f(x +U) = f(z)+ U. Then the following hold:
(i) f« is an endomorphism of P/U;
(ii) The map f — f. defines a surjective algebra homomorphism
End4(P) — End4(P/U)
with kernel {f € Ends(P) | Im(f) C U}.

Proof. Let p: P — P/U be the projection. Thus f, is defined via po f = f,op. It
is easy to show that this is really an A-module homomorphism, and that f — f,
defines an algebra homomorphism. The description of the kernel is also obvious.

It remains to show the surjectivity: Here we use that P is projective. If g is an
endomorphism of P/U, there exists a lifting of g o p: P — P/U. In other words
there exists a homomorphism ¢': P — P such that po g = gop.

pP=—P/U—PJU

Thus we get ¢, = g. O

Let M be an A-module. For all f € End4(M) we have f(rad(M)) C rad(M). Thus
the above lemma implies that for any projective module P there is a surjective
algebra homomorphism End,(P) — End4(P/rad(P)), and the kernel is the set of
all endomorphisms of P whose image is contained in rad(P).

We have shown already: If rad(P) is a small submodule of P, then the set of all
endomorphisms of P whose image is contained in rad(P) is exactly the radical of
End4(P). Thus, we proved the following:
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Corollary 17.9. Let P be a projective A-module. If rad(P) is small in P, then
Enda(P)/J(Enda(P)) = Enda(P/rad(P)).

17.3. Cyclic projective modules.

Lemma 17.10. Let P be an A-module. Then the following are equivalent:

(i) P is cyclic and projective;
(ii) P is isomorphic to a direct summand of 4 A;
(iii) P is isomorphic to a module of the form Ae for some idempotent e € A.

Proof. We have shown before that a submodule U of 4A is a direct summand of 4 A
if and only if there exists an idempotent e € A such that U = Ae.

If e is any idempotent in A, then 4A = Ae @ A(1 — e) is a direct decomposition.
Thus Ae is a direct summand of 4A, and Ae is projective and cyclic.

Vice versa, let U be a direct summand of 4A, say 4 A =U ®U'. Write 1l = e+ ¢
with e € U and ¢’ € U’. This implies U = Ae and U’ = A¢’, and one checks easily
that e, ¢/ form a complete set of orthogonal idempotents. O

Lemma 17.11. Let P be a projective A-module. If P is local, then End(P) is a
local ring.

Proof. It P is local, then P is obviously cyclic. A cyclic projective module is of the
form Ae for some idempotent e € A, and its endomorphism ring is (eAe)°?. We
have seen that Ae is a local module if and only if eAe is a local ring. Furthermore,
we know that eAe is a local ring if and only if (eAe)°P is a local ring. O

The converse of Lemma 17.11 is also true. We will not use this result, so we skip
the proof.

17.4. Projective covers. Let M be an A-module. A homomorphism p: P — M
is a projective cover of M if the following hold:

e P is projective;
e p is an epimorphism;
e Ker(p) is a small submodule of P.

In this situation one often calls the module P itself a projective cover of M and
writes P = P(M).

Lemma 17.12. Let P be a finitely generated projective module. Then the projection
map P — P/rad(P) is a projective cover.

Proof. The projection map is surjective and its kernel is rad(P). By assumption P
is projective. For every finitely generated module M the radical rad(M) is a small
submodule of M. Thus rad(P) is small in P. O
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Warning: If P is an arbitrary projective A-module, then rad(P) is not necessarily
small in P: For example, let A be the subring of K(T') consisting of all fractions
of the form f/g such that ¢ is not divisible by 7. This is a local ring. Now let
P be a free A-module of countable rank, for example the module of all sequences
(ag, a1, ...) with a; € A for all 7 such that only finitely many of the a; are non-zero.
The radical U = rad(P) consists of all such sequences with a; divisible by T" for all
i. We define a homomorphism f: P — 4K (T') by

fa07a’17"' ZT az—a0+T+ﬁ+

>0

Let W be the kernel of f. Since f # 0, W is a proper submodule of P. On the
other hand we will show that U + W = P. Thus U = rad(P) is not small in P. Let
a = (ag,aq,...) be a sequence in P and choose n such that a; = 0 for all j > n.
Define b = (bg, by, ...) by

bupr = T la; = agT" + ay T" + -+ + a, T

i=0

and b; = 0 for all j # n+ 1. Since b belongs to T'A, we know that b is in U. On the
other hand f(b —a) =0, thus b —a € W. We see that a« = b — (b — a) belongs to
U+Ww.

Given two projective covers p;: P; — M;, 1 = 1,2, then the direct sum

p1Dpr: PL® Py, — My @ M,

_(p1 O
p1@p2—(0 pg)'

The map p; @ ps is obviously an epimorphism and its kernel is Ker(p;) @ Ker(p,).
By assumption Ker(p;) is small in P;, thus Ker(p;) @ Ker(py) is small in P; @ P.

is a projective cover. Here

Warning: Given infinitely many projective modules P; with small submodules U;,

then @,., U; is not necessarily small in €,.; P,

Lemma 17.13 (Projective covers are umque). Letpy: P, — M be a projective cover,
and let py: Py — M be an epimorphism with Py projective. Then the following hold:

e There exists a homomorphism f: P, — P such that py o f = pa;

e Fach homomorphism f: Py — Py with py o f = ps is a split epimorphism;

o [f py is also a projective cover, then every homomorphism f: P, — Py with
p1 o f = po is an isomorphism.

Proof. Since p; is an epimorphism, and since P; is projective, there exists a homo-
morphism f with p; f = ps.
Py
f 7 l
p1

p2

P2—>M



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 125

We have to show that each such f is a split epimorphism: We show that
Ker(py) + Im(f) = P;.

For x € P, we have p;(z) € M. Since ps is surjective, there exists some =’ € P,
such that p;(z) = pa(2’) = (p1f)(2"). Thus p1(x — f(2')) = 0. We see that x — f(2')
belongs to Ker(p;), thus z = (x— f(2'))+ f(2') lies in Ker(p;) +Im(f). Now Ker(p;)
is small in Pj, which implies Im(f) = P;. We have shown that f is surjective. But
each epimorphism to a projective module is a split epimorphism.

Now we assume that ps is also a projective cover. Again let f: P, — P; be a homo-

morphism with p; f = py. Since f is a split epimorphism, there exists a submodule
U of P, with Ker(f) ® U = P,. We show that

Ker(py) + U = P,.

If y € P, then there exists some y' € P; with ps(y) = pi(y'). We know that
f: P, — Py is surjective, thus y’ has a preimage in P,. Since P, = Ker(f) ® U, we
can find this preimage in U. Thus there is some u € U with f(u) = y’. Summarizing,
we get po(y) = p1(y') = (p1f)(u) = pa(u). We see that y — u belongs to Ker(ps),
thus y = (y —u) +u € Ker(pz) + U. Since Ker(p2) is small in P, we get U = P, and
therefore Ker(f) = 0. Thus f is also injective.

So projective covers are (up to isomorphism) uniquely determined. Also, if p: P —
M is a projective cover, and f: P — P is a homomorphism with po f = p, then f
is an isomorphism. O

Corollary 17.14. Let P and Q) be finitely generated projective modules. Then P =
Q if and only if P/rad(P) = Q/rad(Q).

Proof. Since P and () are finitely generated projective modules, the projections
p: P — P/rad(P) and ¢: Q — @Q/rad(Q) are projective covers. If f: P/rad(P) —
@/ rad(Q) is an isomorphism, then fop: P — @Q/rad(Q) is a projective cover. The
uniqueness of projective covers yields P = (). The other direction is obvious. 0

Corollary 17.15. Let P be a direct sum of local projective modules. If U is a
submodule of P which is not contained in rad(P), then there exists an indecomposable
direct summand P' of P which is contained in U.

Proof. Let P = @,.; P with local projective modules P;. Let U be a submodule of
P which is not contained in rad(P). We have rad(P) = @,., rad(F;) and therefore

P/rad(P) = @ P,/ rad(P,).
el
Let u: U — P be the inclusion map, and let p: P — P/rad(P) be the projection.
Finally, for every ¢ € I let m;: P/rad(P) — P;/rad(F;) also be the projection. The
composition pu is not the zero map. Thus there exists some ¢ € I with m;pu # 0.
Since P;/rad(F;) is a simple module, m;pu is surjective. Let p;: P, — P;/rad(P;)
be the projection. Since P; is a local projective module, p; is a projective cover.
By the surjectivity of m;pu the lifting property of P; yields an f: P; — U such that
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mipuf = p;. Now we use that p; is an epimorphism: The lifting property of P gives
us a homomorphism g: P — P; with p;g = m;p.

I 7 p
‘o, P/rad(P)

s T

P, " . P/rad(P,)

Thus we have
piguf = mpuf = p;.

Since p; is a projective cover, guf must be an isomorphism. Thus we see that uf is
a split monomorphism whose image P’ := Im(uf) is a direct summand of P which
is isomorphic to P;. Clearly, P’ as the image of uf is contained in U = Im(f). O

Lemma 17.16. Let P be a finitely generated projective A-module, and let M be
a finitely generated module. For a homomorphism p: P — M the following are
equivalent:

(i) p is a projective cover;
(ii) p is surjective and Ker(p) C rad(P);
(iii) p induces an isomorphism P/rad(P) — M/rad(M).

Proof. (i) == (ii): Small submodules of a module are always contained in the
radical.

(i) = (iii): Since Ker(p) C rad(P) we have rad(P/Ker(p)) = rad(P)/ Ker(p).
Now p induces an isomorphism P/ Ker(p) — M which maps rad(P/ Ker(p)) onto
rad(M) and induces an isomorphism P/rad(P) — M/rad(M).

(iii) = (i): We assume that p: P — M induces an isomorphism p,: P/rad(P) —
M/rad(M). This implies rad(M) + Im(p) = M. Since M is a finitely generated
module, its radical is a small submodule. Thus Im(p) = M. We see that p is an
epimorphism. Since p, is injective, the kernel of p must be contained in rad(P). The
radical rad(P) is small in P because P is finitely generated. Now Ker(p) C rad(P)
implies that Ker(p) is small in P. O
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18. Injective modules

18.1. Definition and basic properties. A module [ is called injective if the
following is satisfied: For any monomorphism f: X — Y, and any homomorphism
h: X — I there exists a homomorphism g: Y — [ such that gf = h.

1 <T X
Lemma 18.1. The following are equivalent:
(i) I is injective;

(ii) The functor Homa(—, 1) is exact;
(i) Every monomorphism I — N splits;

Proof. (i) <= (ii): By (i) we know that for all monomorphisms f: X — Y
the map Homa(f,I): Homu(Y,I) — Homa(X, I) is surjective. This implies that
Homa(—, I) is an exact contravariant functor. The converse is also true.

(i) = (iii): Let f: I — N be a monomorphism. Thus there exists some g: N — [
such that the diagram

[<T[

commutes. Thus f is a split monomorphism.

(ili) = (i): Let f: X — Y be a monomorphism, and let h: X — I be an arbitrary
homomorphism. Taking the pushout along h we obtain a commutative diagram

0—> Xty —= Cok(f) —=0
oo
0 I B Cok(f) —0

with exact rows. By (iii) we know that f’ is a split monomorphism. Thus there
exists some f”: E — [ with f” o f’ = 1;. Observe that Im(h' o f) C Im(f’). Set
g := f"oh/. This implies g o f = h. In other words, I is injective. O

Lemma 18.2. For an algebra A the following are equivalent:
(i) A is semisimple;

(ii) Every A-module is projective;
(iii) Every A-module is injective.

Proof. Recall that A is semisimple if and only if all A-modules are semisimple. A
module M is semisimple if and only if every submodule of M is a direct summand.
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Thus A is semisimple if and only if each short exact sequence
0-X—-Y—->27—-0

of A-modules splits. Now the lemma follows from the basic properties of projective
and injective modules. O

For any left A-module 4 M let D(4M) = Homg (4 M, K) be the dual module of
aM. This is a right A-module, or equivalently, a left A°P-module: For o € D(4M),
a € A°? and x € 4 M define (a)(z) := a(az). It follows that ((ab)a)(z) = a(abx) =
(acr)(bx) = (b(a))(x). Thus (bx a)a = (ab)a = b(a«) for all x € M and a,b € A.

Similarly, let M4 now be a right A-module. Then D(Mj,) becomes an A-module
as follows: For a € D(M,) and a € A set (aa)(z) := a(xa). Thus we have
((ab)a)(x) = a(zab) = (ba)(za) = (a(ba))(x) for all z € M and a,b € A.

Lemma 18.3. The A-module D(A4) = D(400 A) is injective.

Proof. Let f: X — Y be a monomorphism of A-modules, and let
e: Homg(Ax, K) — K

be the map defined by a — «a(1). Clearly, e is K-linear, but in general it will not
be A-linear. Let h: X — Homg (A4, K) be a homomorphism of A-modules.

Let us now just think of K-linear maps: There exists a K-linear map ¢’: Y — K
such that ¢’ o f = eoh. Define a map h': Y — Homg (A4, K) by K (y)(a) := €' (ay)
forally € Y and a € A.

e

X L> HOIHA(AA, K) —= K

It is easy to see that A’ is K-linear. We want to show that A’ is A-linear. (In other
words, h' is a homomorphism of A-modules.)

For y € Y and a,b € A we have I/(by)(a) = €'(aby). Furthermore, (bh'(y))(a) =
R (y)(ab) = €'(aby). This finishes the proof. O

Lemma 18.4. There are natural i.somorphisms

Hom 4 (-,HMi> = HHomA<_7Mi)

iel iel
and
Hom 4 <@ M;, —) = H Hom 4 (M;, —).
iel el
Proof. Exercise. O

Lemma 18.5. The following hold:
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(i) Direct summands of injective modules are injective;
(ii) Direct products of injective modules are injective;
(iii) Finite direct sums of injective modules are injective.

Proof. Let I = I, @ I, be a direct sum decomposition of an injective A-module
I, and let f: X — Y be a monomorphism. If h: X — [; is a homomorphism,
then [2]: X — I, @ I is a homomorphism, and since I is injective, we get some
g=1%]:Y — I ® Iy such that

gof=1[9%]of =1k
Thus g; o f = h and therefore I; is injective. This proves (i).

Let I;, © € I be injective A-modules, let f: X — Y be a monomorphism, and
suppose that h: X — [[..;[; is any homomorphism. Clearly, h = (h;);c; where
h; is obtained by composing h with the obvious projection [[,.,I; — I;. Since
I; is injective, there exists a homomorphism g¢;: Y — [, with g; o f = h;. Set
g := (9i)ier: Y — [Lic; Li- 1t follows that g o f = h. This proves (ii).

The statement (iii) follows obviously form (ii). O

Warning: Infinite direct sums of injective modules are often not injective. The
reason is that in general we have

EBHomA %@Hom/‘ i, —) % Homyu (@MZ, )

el el i€l

Lemma 18.6. If P4 is a projective A°®-module, then D(Pj4) is an injective A-
module.

Proof. First assume that Py = @,.; A4 is a free A°’-module. We know already by
Lemma 18.3 that D(Ay4) is an injective A-module. By Lemma 18.4 we have

D(P,4) = Homg (@ Ay, K) =~ [ [Homg (A, K) = ] D(Aa).
i€l iel iel
Now Lemma 18.5 (ii) implies that D(P,) is projective. Any projective module is
a direct summand of a free module. Thus Lemma 18.5 (i) yields that D(Py) is an
injective A-module for all projective A°°-module Pj. O

18.2. Injective envelopes.

Lemma 18.7. Fvery A-module can be embedded into an injective A-module.

Proof. Let 4M be an A-module. There exists a projective A°°-module P, and
an epimorphism P4, — D(4M). Applying the duality D = Homg(—, K) gives a
monomorphism DD(4M) — D(P,4). Lemma 18.6 says that D(P,) is an injective
A-module. It is also clear that there exists a monomorphism 4 M — DD(4M). This
finishes the proof. O
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One can now define injective resolutions, and develop Homological Algebra with
injective instead of projective modules.

Recall that a submodule U of a module M is called large if for any non-zero sub-
module V' of M the intersection U NV is non-zero.

A homomorphism f: M — I is called an injective envelope if the following hold:

(i) I is injective;
(ii) f is a monomorphism;
(iii) f(M) is a large submodule of I.

Lemma 18.8. Let I be an injective module, and let U and V' be submodules of I
such that UNV = 0. Assume that U and V' are mazimal with this property (i.e.
if U CU withU' NV =0, then U = U', and if V C V' with UNV' =0, then
V=V'). Then I =U®V.

Proof. 1t is easy to check that the map
fI—=1/ ULV

defined by m +— (m + U, m + V') is a monomorphism: Namely, m € Ker(f) implies
meUNnV =0.

There is an embedding (U + V')/U — I/U. We claim that (U + V)/U is large in
I/U: Let U'/U be a submodule of I/U (thus U C U’ C I) with

U+V))unU'JU)=0=U/U.
In other words, (U +V)NU'"=U+ (VNU') =U. This implies (VNU’') C U and

(obviously) (VNU') C V. Thus VNU’ = 0. By the maximality of U we get U = U’
and therefore U’ /U = 0.

Similarly one shows that (U + V')/V is a large submodule of 1/V.

We get

U+WV))Us(U+V))V=VaeUCMCM/UsM/V.
By Lemma 7.13 we know that M is large in M /U & M/V. But M is injective and
therefore a direct summand of M/U & M/V. Thus M & C = M/U & MV for some
C'. Since M is large, we get C' = 0. So M = M/U @ M/V. By the maximality of U
and V we get V.= M/U and U = M/V and therefore U &V = M. O

The dual statement for projective modules is also true:

Lemma 18.9. Let P be a projective module, and let U and V' be submodules of P
such that U +V = P. Assume that U and V are minimal with this property (i.e.
if U CU withU' +V = P, then U =U', and if V' CV with U + V' = P, then
V=V'). Then P=U®a®V.

Lemma 18.10. Let U be a submodule of a module M. Then there exists a submodule
V' of M which is maximal with the property U NV = 0.



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 131

Proof. Let

V={WCM|UnNW =0}
Take a chain (V;);c; in V. (Thus for all V; and V; we have V; C V; or V; C V;.) Set
V=, Vi. We get

)

Uunv=un <Uv> =Jwnv)=o.

Now the claim follows from Zorn’s Lemma. O

Warning: For a submodule U of a module M there does not necessarily exist a
minimal V' such that U +V = M.

Example: Let M = K[T] and U = (T'). Then for each n > 1 we have (T') + (T +
™= M.

Theorem 18.11. FEvery A-module has an injective envelope.

Proof. Let X be an A-module, and let X — I be a monomorphism with I injective.
Let V' be a submodule of I with X NV = 0 and we assume that V' is maximal with
this property. Such a V' exists by the previous lemma.

Next, let
U={UCIT|UNV =0and X CU}.

Again, by Zorn’s Lemma we obtain a submodule U of [ which is maximal with
UNnV =0and X CU.

Thus, U and V are as in the assumptions of the previous lemma, and we obtain
I =U®V and X C U. We know that U is injective, and we have our embedding
X —=U.

We claim that X is a large submodule of U:

Let U’ be a submodule of U with X N U’ = 0. We have to show that U" = 0. We
have X N (U' @ V) =0: If 2 = v + v, then x — v = v and therefore v = 0. Thus
x=u" € XNU' = 0. By the maximality of V we have U'®V =V. Thus U’ =0. O

Warning: Projective covers do not exist in general.

If X is an A-module, we denote its injective hull by 7(X).

Lemma 18.12. Injective envelopes are uniquely determined up to isomorphism.
Proof. Exercise. O

Recall that a module M is uniform, if for all non-zero submodules U and V' of M
we have U NV # 0.

Lemma 18.13. Let I be an indecomposable injective A-module. Then the following
hold:



132 CLAUS MICHAEL RINGEL AND JAN SCHROER

(i) I is uniform (i.e. if U and V are non-zero submodules of I, then UNV #0);
ii) Fach injective endomorphism of I is an automorphism;

(iii) If f,g € Enda(I) are both not invertible, then f + g is not invertible;

(iv) Enda([) is a local Ting.

Proof. (i): Let U and V' be non-zero submodules of I. Assume UNV = 0. Let U’
and V' be submodules which are maximal with the properties U C U’, V C V"’ and
U'NV'=0. Lemma 18.8 implies that I = U’ & V’. But [ is indecomposable, a
contradiction.

(ii): Let f: I — I be an injective homomorphism. Since [ is injective, f is a split
monomorphism. Thus I = f(I)® Cok(f). Since I is indecomposable and f(I) # 0,
we get Cok(f) =0. Thus f is also surjective and therefore an automorphism.

(iii): Let f and g be non-invertible elements in End4 (7). by (ii) we know that f and
g are not injective. Thus Ker(f) # 0 # Ker(g). By (i) we get Ker(f) N Ker(g) # 0.
This implies Ker(f + g) # 0.

We know already from the theory of local rings that (iii) and (iv) are equivalent
statements. 0

19. Digression: The stable module category

Let C be a K-linear category. An ideal Z in C is defined as follows: To each
pair (C,C") of objects C,C" € C there is a subspace Z(C,C") of Hom¢(C, C') such
that for arbitrary morphisms f: D — C, h: C" — D" and g € Z(C,C") we have
hogo feI(D,D").

If Z is an ideal in C we can define the factor category C/Z as follows: The objects
are the same as in C and

Home/7(C, C") := Home(C, C") /Z(C, C").
The composition of morphisms is defined in the obvious way.

If X is a class of objects in C which is closed under finite direct sums, then we say
that f: C — C' factors through X if f = fy0 f; with f1: C — X, fo: X — '
and X € X. Let Z(X)(C,C") be the set of morphisms C' — C” which factor through
X. In this way we obtain an ideal Z(X) in C.

Now let A be an arbitrary K-algebra, and as before let Proj(A) be the full subcate-
gory of projective A-modules. The stable module category of Mod(A) is defined
as

Mod(A) = Mod(A)/Z(Proj(A)).
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Define
Hom(M, N) := Homyieda(a)/proja) (M, N) = Homy (M, N)/Z(Proj(A))(M,N).
Similarly, we define mod(A) = mod(A)/Z(proj(A)).

Thus the objects of Mod(A) are the same ones as in Mod(A), namely just the
A-modules. But it follows that all projective A-modules become zero objects in
Mod(A): If P is a projective A-module, then 1p lies in Z(Proj(A))(P, P). Thus 1p
becomes zero in Mod(A). Vice versa, if a module M is a zero object in Mod(A),
then M is a projective A-module: If 1,; factors through a projective A-module, then
M is a direct summand of a projective module and therefore also projective.

Now Schanuel’s Lemma implies the following: If M is an arbitrary module, and if
p: P — M and p': P' — M are epimorphisms with P and P’ projective, then the
kernels Ker(p) and Ker(p') are isomorphic in the category Mod(A).

If we now choose for every module M an epimorphism p: P — M with P projective,
then M — Ker(p) yields a functor Mod(A) — Mod(A). If we change the choice of
P and p, then the isomorphism class of Ker(p) in Mod(A) does not change.

So it makes sense to work with an explicit construction of a projective module P
and an epimorphism p: P — M. Let M be a module, and let F'(M) be the free
module with free generating set |M| (the underlying set of the vector space M).
Define

p(M): F(M) — M
by m — m. In this way we obtain a functor F': Mod(A) — Mod(A)

Let (M) be the kernel of p(M), and let

be the corresponding inclusion. Then Q: Mod(A) — Mod(A) is a functor and
u: €2 — F'is a natural transformation. We obtain a short exact sequence

0—-QM)—FM)—M—0

with F'(M) a free (and thus projective) module. One calls 2 the loop functor or
syzygy functor. This is a functor but it is not at all additive.

For example, if M =0, then F(M) = 4A and Q(M) = 4A.

Future: Let A be a finite-dimensional K-algebra. We will meet stable homomor-
phism spaces in Auslander-Reiten theory, for example the Auslander-Reiten formula
reads

EXt,léx(Nv T(M)) = DHO_HUl(Ma N)>

for all finite-dimensional A-modules M and N. If A has finite global dimension, we
have
mod(A) = D°(A)

where A is the repetitive algebra of A and D%(A) is the derived category of bounded
complexes of A-modules.
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20. Projective modules over finite-dimensional algebras

There is a beautiful general theory on projective modules, however one can cut
this short and concentrate on finite-dimensional projective modules over finite-
dimensional algebras. The results in this section can be generalized considerably.
The general theory is developed in Sections 22 and 23.

Theorem 20.1 (Special case of Theorem 23.1). Let A be a finite-dimensional alge-
bra. Then A/J(A) is semisimple.

Proof. The module 4A is a finite direct sum of local modules, thus 4A/rad(4A) is
a finite sum of simple modules and therefore semisimple. O

Theorem 20.2 (Special case of Theorem 23.2). Let A be a finite-dimensional alge-
bra. If

AA=P@&---DPF,

1s a direct decomposition of the reqular representation into indecomposable modules
P;, then each finite-dimensional indecomposable projective A-module is isomorphic
to one of the P;.

Proof. For each finite-dimensional indecomposable projective A-module P there ex-
ists an epimorphism F — P with F' a free A-module of finite rank. In particular F’
is finite-dimensional. Since P is projective, this epimorphism splits. Then we use

the Krull-Remak-Schmidt Theorem. O

Theorem 20.3 (Special case of Theorem 23.3). Let A be a finite-dimensional alge-
bra. The map P +— P/rad(P) yields a bijection between the isomorphism classes of
finite-dimensional indecomposable projective A-modules and the isomorphism classes
of simple A-modules.

Proof. 1If P and @ are isomorphic modules, then P/rad(P) and @/ rad(Q) are also
isomorphic. Therefore P +— P/rad(P) yields a well defined map.

The map is surjective: Let S be a simple module. We write 44 = @, P; with
indecomposable modules P;. Since P; is of finite length and indecomposable, we
know that End4(P;) is a local ring. Furthermore, P; = Ae; for some idempotent e; €
A. Since End4(P;) = (e;Ae;)? we know that e;Ae; is also a local ring. Therefore,
Lemma 12.14 implies that Ae; is a local module.

There exists a non-zero homomorphism 4A — S, and therefore for at least one index
1 we get a non-zero map f: P, — S. Since S is simple, we know that f is surjective.
Furthermore, the kernel of f is rad(P;) because P; is local. Thus S is isomorphic to
P,/ rad(P;).
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The map is injective: Let P and () be finite-dimensional indecomposable projective
modules such that P/rad(P) = @/rad(Q)). Then Corollary 17.14 implies that
P=qQ. O

If P is a local projective module, then S := P/rad(P) is a simple module and
P(S) := P is the projective cover of S.

Theorem 20.4 (Special case of Theorem 23.4). Let A be a finite-dimensional al-
gebra, and let P be a finite-dimensional indecomposable projective A-module. Set

S := P/rad(P). Then the following hold:

(i)

(ii) Enda(P) is a local ring;

(i) J(Enda(P)) ={f € Enda(P) | Im(f) C rad(P)};

(iv) Each endomorphism of P induces an endomorphism of S, and we obtain an
algebra isomorphism End 4 (P)/J(End4(P)) — End4(S);

(v) The multiplicity of P in a direct sum decomposition 4+ A = @, P; with

indecomposable modules P; is exactly the dimension of S as an End4(S)-

module.

P is local;

Proof. We have shown already that each finite-dimensional indecomposable module
is local and has a local endomorphism ring. Since P is finitely generated, rad(P)
is small in P. Now (iii) and (iv) follow from Lemma 17.8 and Corollary 17.9. It
remains to prove (v): We write 4A = @@, P; with indecomposable modules P;.
Then

J(A) =rad(4A) = @ rad(P;) and AA/J(A @ P;/rad(P,
i=1
The multiplicity of P in this decomposition (in other Words, the number of direct
summands P; which are isomorphic to P) is equal to the multiplicity of S in the
direct decomposition 4A/J(A) = @.", P;/rad(F;). But this multiplicity of S is
the dimension of S as an End4(S)-module. (Recall that A/J(A) is a semisimple
algebra, and that End 4(9) is a skew field.) O

Theorem 20.5. Let A be a finite-dimensional algebra. Then every finitely generated
module has a projective cover.

Proof. Let M be a finitely generated A-module. There exists a finitely generated
projective module P and an epimorphism p: P — M. We write P = @}, P; with
indecomposable modules P;. We can assume that P is chosen such that n is minimal.
We want to show that Ker(p) C rad(P):

Assume Ker(p) is not a submodule of rad(P). Then there exists an indecomposable
direct summand P’ of P which is contained in Ker(p), see Corollary 17.15. But then
we can factorize p through P/P’ and obtain an epimorphism P/P’" — M. Since
P’ is an indecomposable direct summand of P, the Krull-Remak-Schmidt Theorem
implies that P/P’ is a direct sum of n — 1 indecomposable modules, which is a
contradiction to the minimality of n. Thus we have shown that Ker(p) C rad(P).
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Since M is finitely generated, rad(M) is small in M, and therefore every submodule
U Crad(M) is small in M. O

Let A be a finite-dimensional algebra, and let M be a finitely generated A-module.
How do we “construct” a projective cover of M?

Let e: M — M/rad(M) be the canonical projection. The module M/rad(M) is a
finitely generated A/J(A)-module. Since A/J(A) is semisimple, also M/rad(M) is
semisimple. So M/rad(M) can be written as a direct sum of finitely many simple
modules §;, say

M/rad(M) = ési.

For each module S; we choose a projective cover ¢;: P(S;) — S;. Set P = ., P(S;)
and

q= Equ: P — M/rad(M).
i=1
Since P is projective there exists a lifting p: P — M of ¢, i.e. p is a homomorphism
with € o p = ¢. Thus we get a commutative diagram

P/T>M/rad(M)

Since P and M are finitely generated we see that p is a projective cover.

21. Projective modules over basic algebras

A K-algebra A is a basic algebra if the following hold:

e A is finite-dimensional;
o A/J(A) 2K x K x---x K.

n times

In this case, there are n isomorphism classes of simple A-modules, and each simple
A-module is 1-dimensional.

Let Q = (Qo, Q1, s,t) be a quiver. By KQ we denote the subspace of K@ generated
by all paths of length at least one. Clearly, KQ" is an ideal in KQ.

An ideal Z in K@) is an admissible ideal if there exists some m > 2 such that
(KQH™ CIC(KQ').
It follows that A := K@Q/Z is a finite-dimensional K-algebra.
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Theorem 21.1 (Gabriel). A K-algebra A is basic if and only if A = KQ/Z where
Q is a quiver and I is an admissible ideal.

Proof. Later. O

Theorem 21.2 (Gabriel). Let A be a finite-dimensional K-algebra with K alge-
braically closed. Then there exists a uniquely determined quiver ) and an admissible
ideal T in K@ such that the categories mod(A) and mod(KQ/Z) are equivalent.

Proof. Later. O

We will actually not use Theorems 21.1 and 21.2 very often. But of course these
results are still of central importance, because they tell us that path algebras and
their quotients by admissible ideals are not at all exotic. They are hidden behind
every finite-dimensional algebra over an algebraically closed field.

Assume now that Z is an admissible ideal in a path algebra K@ and set A := KQ/Z.
For each i € (Qy let S; be a 1-dimensional K-vector space, and let
n: AxS; —5;
be the A-module structure defined by
_ s ifa=e,,
n(@s) = {0 otherwise

for all s € S; and all paths a in ). It is clear that the modules S;, i € Q) are
pairwise non-isomorphic 1-dimensional (and therefore simple) A-modules.

Define A" = KQ*/Z. This is an ideal in A. The algebra A is (as a vector space)
generated by the residue classes p = p + I of all paths p in Q.

Lemma 21.3. A" is an ideal in A, and all elements in A* are nilpotent.

Proof. Clearly, AT is (as a vector space) generated by the residue classes p =p+ I
of all paths p in @ with [(p) > 1. Now it is obvious that A" is an ideal.

Since A is finite-dimensional, we get that every element in A" is nilpotent. (When
we take powers of a linear combination of residue classes of paths of length at least
one, we get linear combinations of residue classes of strictly longer paths, which
eventually have to be zero for dimension reasons.) 0

Corollary 21.4. AT C J(A).

Proof. By Lemma 14.5 an ideal consisting just of nilpotent elements is contained in
the radical J(A). O

Lemma 21.5. {e; + 7 | i € Qo} is a linearly independent subset of A.

Proof. This follows because Z C (KQ1)? C KQ™. O
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Corollary 21.6. dim A" = dim A — |Qo].

By abuse of notation we denote the residue class e; + Z also just by e;.

Lemma 21.7. dim J(A) < dim A — |Qy|.

Proof. We know that J(A) consists of all elements = € A such that =S = 0 for all
simple A-modules S, see Proposition 14.6. By definition ¢;5; # 0 for all i € Q.
Thus none of the e; belongs to J(A). O

Thus for dimension reasons, we obtain the following result:
Lemma 21.8. We have AT = J(A) and dim J(A) = dim A — |Qo|.

Lemma 21.9. ¢;Ae; is a local ring for all i € Q.

Proof. As a vector space, e;Ae; is generated by all residue classes of paths p in )
with s(p) = t(p) = i. By Lemma 14.12 we know that J(e;Ae;) = e;J(A)e;. We
proved already that AT = J(A). It follows that J(e;Ae;) is (as a vector space)
generated by all paths p with s(p) = t(p) = ¢ and I(p) > 1. Thus

dime; Ae;/J(e; Ae;) = 1.
Therefore e; Ae; is a local ring. O

Theorem 21.10. Let A = KQ/Z where I is an admissible ideal in a path algebra
KQ. Then the following hold:

(i) aA = @ier Ae; is a direct decomposition of the regular representation into
idecomposables;

(ii) Each finite-dimensional indecomposable projective A-module is isomorphic to
one of the Ae;;

(iii) Ae; is a local module with top(Ae;) := Ae;/ rad(Ae;) = S;;

(iv) Ae; = Ae; if and only if i = j;

v) The S; are the only simple A-modules;

(Vi; A/ J(A) = Bicq, Sii

(vii) A is a basic algebra.

Proof. There exists a non-zero homomorphism m;: Ae; — S; defined by 7;(ae;) =
ae; - 1. (Recall that the underlying vector space of S; is just our field K.) It follows
that ; is an epimorphism.

Since e;Ae; is a local ring, we know that the modules Ae; are local (and indecom-
posable). This implies
Ae;/rad(Ae;) = S;.

The rest of the theorem follows from results we proved before for arbitrary finite-
dimensional algebras. U
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22. Direct summands of infinite direct sums

22.1. The General Exchange Theorem.

Theorem 22.1 (General Exchange Theorem). Let M be a module with direct de-
compositions

M=Us@PM=UaNaV.
i=1
We assume that N = @?:1 N; such that the endomorphism rings of the N; are local.
Then for 1 <i < m there exist direct decompositions M; = M. & M such that

M:U@N@éM{ and N%éMi”.

i=1 i=1

Proof. We prove the theorem by induction on n. For n = 0 there is nothing to show:
We can choose M] = M; for all i.

Let
M=Us@PM=Uas@N oV
i=1 j=1

be direct decompositions of M, and assume that the endomorphism rings of the
modules N; are local. Take

M=U®N & (N,®V)

where N/ = @;:11 N;. By the induction assumption there are direct decompositions
M, = X, ®Y; such that

M:U@N/@é)(i and ngéyi-
i=1 i=1

Now we look at the direct decomposition

M=UeaN)ePX
i=1
and the inclusion homomorphism from N, into M. Then we apply the Exchange
Theorem (see Skript 1) to this situation: We use that N,, & (U & N') is a direct
summand of M. For 1 < i < m we obtain a direct decomposition X; = M} & X/
such that

M=UaoN)oN, P M
i=1
with @.", X! = N,,. Note that only one of the modules X/ is non-zero. Define
M!" = X! @ Y;. This implies

Mi=X;@Yi=M o X;®Y; = M;® M/



140 CLAUS MICHAEL RINGEL AND JAN SCHROER

and . . .

S -rodr=von-vy

i=1 i=1 i=1
This finishes the proof. O
If M = &,.; M; is a direct sum of modules M;, and J is a subset of the index set

I, we define

MJ = @Mz

e

We want to study modules which can be written as direct sums of modules with
local endomorphism ring. The key result in this situation is the following:

Theorem 22.2. Let M = @iel M; be a direct sum of modules M; with local endo-
morphism rings, and let U be a direct summand of M. Then the following hold:

(a) For every element u € U there exists a direct decomposition U = U’ & U"
and a finite subset J C I such that w € U and U = My;
(b) If M/U is indecomposable, then there exists some i € I with M = U & M.

Proof. For u € U there exists a finite subset I’ of I such that u € M. Since U is a
direct summand of M, we can choose a direct decomposition M = U @ C. By the
General Exchange Theorem 22.1 there exist submodules U” C U and C” C C' such
that M = Mp @ U” @ C”. Define
U=MpaeC"YNU and C'=(MpaU")NC.
We claim that
U=UaU" and C=C"aC"
It is enough to show the first equality: Of course we have U' N U” = 0, since
(Mp & C")ynU” =0. Since U"” C U, we get by modularity
U=MnU=U"e&MpraC"\NU
=U"+((MpaC"YNU)
=U"+U".
We see that
(1) UselU'eaCoC"=UC=M=MaU" ®C"
and therefore
UaelC' 2M/(U" e C") =2 Mp.
By the Krull-Remak-Schmidt Theorem there exists a subset J C I’ with U’ =
M. Of course u belongs to U' = (Mp & C”)NU. Thus we constructed a direct

decomposition U = U’ @ U” with u € U’ and U’ = M; with J a finite subset of I.
This proves part (a) of the theorem.

We started with an arbitrary direct decomposition M = U & C, and now we want
to prove (b) for the direct summand C' (and not for U). Thus we assume that M/C
is indecomposable. Since U = M /C, we know that U is indecomposable. Let u be
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a non-zero element in U. As before we obtain a direct decomposition U = U’ & U”
with u € U’. We see that U” = 0. Thus Equation 1 reduces to

UVeC el =M= Meaec"
iel’
Now (" is isomorphic to a direct summand of M., thus by the Krull-Remak-Schmidt
Theorem it is a finite direct sum of modules with local endomorphism rings. Thus

we can apply the General Exchange Theorem 22.1 and obtain direct decompositions
M; = M] & M/ for i € I' such that

M=Co@PMaoc =CoPM
el el
Since M/C' is indecomposable, we know that exactly one of the modules M/, say
M, is non-zero. On the other hand, M;, = M; @© M, is indecomposable, and
therefore M = M;,. Thus M = C @© M;,. This proves part (b) for the direct
summand C' of M. d

Corollary 22.3. Let M = @,.; M; be a direct sum of modules M; with local endo-
morphism rings. Then every non-zero direct summand of M has a direct summand
which is isomorphic to one of the M;’s.

Proof. 1f U is a non-zero direct summand of M, then choose some 0 # u € U. Then
part (a) of Theorem 22.2 yields a direct decomposition U = U’ @ U” with u € U’
and U' = M for some finite index set J C I. Since 0 # u € U’, we know that J is
non-empty. If 7 € J, then U has a direct summand isomorphic to M;. O

Corollary 22.4. Let M = @,.; M; be a direct sum of modules M; with local endo-
morphism rings. If U is an indecomposable direct summand of M, then U = M; for
some i € 1.

Proof. Choose 0 # u € U. We get a direct decomposition U = U’ @ U” and a finite
non-empty index set J C [ with v € U’ and U’ = M. Since U is indecomposable,
U=U"=M; withi € J. O

22.2. The Krull-Remak-Schmidt-Azumaya Theorem.

Theorem 22.5 (Azumaya). Let M = @, ., M; be a direct sum of modules M; with
local endomorphism rings. Let U = @je} U be a direct summand of M. For every
indecomposable module N let I(N) be the set of indices i € I with M; = N, and let
J(N) be the set of indices j € J with U; = N. Then we have

[J(N) < [L(N)].

Proof. First, let J(N) be finite and non-empty, and let j, € J(IN). Corollary 22.4
yields that there exists some ig € I with M;, = Uj,. The Cancellation Theorem

implies that
b = P u.

i€\ {io} Jj€JI\{jo}
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By induction we obtain |J(N)| < [I(N)].

Next, assume that J(NV) is infinite. For ¢ € J define Uy = €P,, U;. Let i € I(N),
and let J; be the set of all t € J with M = M; @ U/. Obviously, J; is a subset of
J(N), because M; & U] = U, & U/ implies U; = M; = N.

On the other hand, if t € J(N), then U] is a maximal direct summand of M. Thus
there exists some ¢ € I with U/ & M; = M, and we see that ¢ € J;. We proved that

U Ji=J0).

We claim that every set of the form J; is finite: Let x # 0 be an element in M;.
There exists a finite subset J(z) C J such that x € P;c ;) U;. It ¢ J(x), then
D,csw) Ui € Uy, and therefore 2 € M; N U] which implies ¢ §Z J;. We see that J; is
a subset of the finite set J(z).

Since J(N) is infinite, /(/V) has to be infinite as well. The cardinality of {J,c;y /i
is at most |I(N)|, thus |J(N)| < [I(N)]. O

Corollary 22.6. Let M = ,.; M; be a direct sum of modules M; with local en-
domorphism rings. Let U be a direct summand of M such that U = @jeJ U; with
U; indecomposable for all j € J. Then there exists an injective map o: J — I such
that U; = M,y for all j € J. In particular, U is isomorphic to My for some subset

I' of I.

Proof. Let U = @]e ; U; with indecomposable module U;. We choose a direct
complement C' of U, thus

M=UsaC=UacC.

jed

To this decomposition we apply the above Theorem 22.5. Thus for any indecompos-
able module N we have |J(N)| < |I(N)|. Thus there is an injective map o: J — [
such that U; = M, for all j. We can identify J with a subset I’ of I, and we
obtain U = M. O

Corollary 22.7 (Krull-Remak-Schmidt-Azumaya). Assume that M = @, ; M; is
a direct sum of modules M; with local endomorphism rings. Let M = @JGJ
with indecomposable modules U;. Then there exists a bijection o: I — J such that

M; = Us

Proof. By Corollary 22.6 there is an injective map o: I — J with M; = Uy, for all 4.
By Corollaries 22.4 and 22.6 we know that the modules U; have local endomorphlsm
rings. Thus for every indecomposable module N we have not only |J(N)| < [I(N)],
but also the reverse |I(N)| < |J(N)|, which implies |J(N)| = |I(N)|. Thus we can
construct a bijection o: I — J with M; = Uy, for all 4. U
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22.3. The Crawley-Jgnsson-Warfield Theorem.

Theorem 22.8 (Crawley-Jgnsson-Warfield). Let M = @,.; M; be a direct sum of
modules M; with local endomorphism rings. If U is a countably generated direct
summand of M, then there exists a subset J of I with

UM, =M,

jeT

Proof. Let U be a countably generated direct summand of M, and let uy, us, ... be
a countable generating set of U. Inductively we construct submodules U; and V; of
U with

U=Uiod-—-olUaV

such that uy,...,u; € @2:1 U;, and such that each U; is a direct sum of indecom-
posable modules.

As a start of our induction we take t = 0, and there is nothing to show. Now assume
that we constructed alread Uy, ..., U, V; with the mentioned properties.

Let w1 = x401 + ypo1 with x4 € @2:1 U; and y;.1 € V. Now V; is a direct
summand of M and vyy1 € V. Thus by Theorem 22.2, (a) there exists a direct
decomposition V; = Uy @ Vi with v € Uy such that Uy, is a direct sum of
modules of the form M;. Since y;11 € U1, we know that w1 = 2401 + 411 belongs

We obtain the direct decomposition
U@ QU D U1 © Viga,
and the modules U; with 1 <4 < ¢+ 1 have the desired form.

By construction, the submodules U; with ¢ € Ny form a direct sum. This direct sum
is a submodule of U, and it also contains all elements u; with ¢ € Ny. Since these
elements form a generating set for U, we get U = €, U;. Thus we wrote U as a
direct sum of indecomposable modules. Corollary 22.6 shows now that U is of the
desired form. O

22.4. Kaplansky’s Theorem. Let U be a submodule of a module M, and let
M = M; & M, be a direct decomposition of M. We call U compatible with the
direct decomposition M = M; @ M, it U = (U N M) + (U N Ms).

By Ng we denote the first infinite cardinal number. (For example Q is of cardinality
Ng.) Let ¢ be a cardinal number. A module M is called c-generated if M has a
generating set of cardinality at most ¢, and M is countably generated if M is
No-generated.

Theorem 22.9 (Kaplansky). Let ¢ > Xy be a cardinal number. The class of mod-
ules, which are direct sums of c-generated modules, is closed under direct summands.
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Proof. For each i € I let M; be a c-generated module, and let M = @id M;. We
can assume M; # 0 for all 7. Let M = X &Y. We want to show that X is a direct
sum of c-generated submodules. Set e = e(X,Y). If U is a submodule of M, define
o(U) =eU+ (1 —e)U. We call a subset J C I compatible if M is compatible with
the decomposition X &Y. A set with cardinality at most ¢ is called a c-set.

We start with some preliminary considerations:
(1) If J C I is a c-set, then M is c-generated.

Proof: For every ¢ € I choose a c-set X; which generates M;. Then set X; = UZ.EJ X;
which is a generating set of M;. (Here we assume that M; = @ie ;M; is an inner
direct sum, so the M; are indeed submodules of M;.) Since J and also all the X;
are c-sets, the cardinality of X ; is at most ¢®. Since c is an infinite cardinal, we have
2 =c.

(2) If U is a c-generated submodule of M, then eU, (1—e)U and o(U) are c-generated.

Proof: If X is a generating set of U, then eX = {ex | x € X'} is a generating set of
eU. Similarly, (1 —e)X is a generating set of (1 —e)U.

(3) For every c-generated submodule U of M there exists a c-set J C [ such that
U C M;.

Proof: Let X be a generating set of U. For every = € X there exists a finite subset
J(x) C I with & € M. Define J = J, .y J/(2). Now all sets J(x) are finite, X is
a c-set and c is an infinite cardinal number, thus we conclude that J is a c-set. By
construction X is contained in the submodule M; of M. Since U is (as a module)
generated by X, we know that U is a submodule of M.

(4) For every c-generated submodule U of M there exists a compatible ¢-set J C [
such that U C M.

Proof: Let U be a c-generated submodule of M. By (3) we can find a ¢-set J(1) C I
such that U C My. We can form o (M ;q)).

Inductively we construct c-sets J(1) € J(2) € --- C I such that o(M;y) C
o(Mjyny) for all t > 1. (Here we use (1), (2) and (3).) Define J = (J,», J(%).
We have M; = {J,», M. Since J(t) is a c-set, and since c is an infinite cardinal
number, the set J is also a c-set. It remains to show that M is compatible with the
decomposition M = X @Y, in other words, we have to show that for every x € M
also ex belongs to M;: Since x € M; we have x € My for some t. Therefore
ex € eMyu) C o(Myw)) C My C M.

(5) If I(j) is a compatible subset of I, then eM;;y € M. Set J = JI(j). If
eMiy € My for every j, then eM; C M.

Now we can start with the proof of the theorem:

Let I(a) be an ordered chain of compatible subsets of I with the following properties:
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(i) The cardinality of I(a+ 1) \ I(«) is at most ¢;
(ii) If A is a limit number, then I(X) =, _, I(«@);
(iii) We have (J, I(a) = 1.

a<

Here I(a) is defined inductively: Let [(0) = 0. If a is an ordinal number with
I(a) C I, choose some x € M\ My). Let U, be the submodule generated by .
By (4) there exists a compatible subset J(x) of I with cardinality at most ¢ such
that U, is contained in M. Define I(a+ 1) = I(a) U J(x). By (5) this is again a
compatible set. For a limit number A define /() as in (ii). It follows from (5) that
I()) is compatible.

Since I(«) is compatible, we get a decomposition

M[(a) = X(a) &P Y(Oz)
with X(a) € X and Y(a) C Y. Let us stress that the submodules X (a) and
Y («) are direct summands of M. We have X (a) C X(a+ 1), and X(«) is a direct

summand of X (a + 1), say X(a+ 1) = X(a) @ U(aw + 1). If X is a limit ordinal
number, then X (o) = |J,., X(a). We get

X=U(w

and
Ula+1) = X(a+ 1)/X(a) = eMi(at1)/eMi@) = eMrari\i()-
By (i), (1) and (2) we obtain that U(«) is c-generated. O

Corollary 22.10. Let M = @, ; M; be a direct sum of countably generated modules
M; with local endomorphism rings. If U is a direct summand of M, then there exists
a subset J C I such that U = M;.

Proof. By Theorem 22.9 every direct summand U of M is a direct sum of countably
generated modules U;. On the other hand, we know that every countably generated
direct summand U; of M is a direct sum of indecomposable modules, thus U ist a
direct sum of indecomposable modules. Finally, we use Corollary 22.6. U

Question 22.11. Is the class of modules, which are direct sums of modules with
local enomorphism rings, closed under direct summands?

The following is a direct consequence of Theorem 22.9:

Theorem 22.12 (Kaplansky). Every projective module is a direct sum of countably
generated projective modules.

Proof. Each projective A-module is a direct summand of a direct sum of modules
of the form 4A. The module 4A is cyclic, in particular it is countably generated.
Thus we can apply Theorem 22.9, where we set ¢ = N. 0
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23. Projective modules over semiperfect algebras

In this section we generalize the results from Section 20.

An algebra A is semiperfect if the following equivalent conditions are satisfied:

(i) 4A is a (finite) direct sum of local modules;
(ii) 4A is a (finite) direct sum of modules with local endomorphism ring;
(iii) The identity 14 is a sum of pairwise orthogonal idempotents e; such that the
rings e; Ae; are local.

If A is semiperfect, then A°P is semiperfect as well. This follows since condition (iii)
is left-right symmetric.

Examples:

(a) Finite-dimensional algebras are semiperfect.

(b) Let My, ..., M, be indecomposable A-modules with local endomorphism
rings, and let M = M; @ -+ @ M,,. Then Ends(M) is semiperfect, since
condition (iii) is obviously satisfied.

Theorem 23.1. Let A be a semiperfect algebra. Then A/J(A) is semisimple.

Proof. The module 4A is a finite direct sum of local modules, thus 4A/rad(4A) is
a finite sum of simple modules and therefore semisimple. 0

Warning: The converse of the above theorem does not hold: By K(7T') we denote
the field of rational functions in one variable 7. Thus K(7') consists of fractions
f/g of polynomials f,¢g € K[T| where g # 0. Now let A be the subring of K(T)
consisting of all rational functions f/g such that neither 7" nor T'— 1 divide g. The
radical J(A) of A is the ideal generated by T'(T — 1), and the corresponding factor
ring A/J(A) is isomorphic to K x K, in particular it is semisimple. Note that A
has no zero divisors, but A/J(A) contains the two orthogonal idempotents —7" + 1
and T. For example

(-T+1)?=T?-2T+1=(T*-T)-T +1,
and modulo 7% — T this is equal to =T + 1.
Theorem 23.2. Let A be a semiperfect algebra. Then the following hold:

e Fach projective A-module is a direct sum of indecomposable modules;

e Fach indecomposable projective module is local and has a local endomophism
ring;

o I[f yJA =P, @ ---D P, is a direct decomposition of the reqular represen-
tation into indecomposable modules P;, then each indecomposable projective
A-module is isomorphic to one of the P;.
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Proof. Since A is a semiperfect algebra, the module 4 A is a direct sum of local

modules. Thus let
2MA=Pa
i=1

with local modules @);. As a direct summand of 4A each Q; is of the form Ae;
for some idempotent e;. In particular @); is cyclic. The endomorphism ring of an
A-module of the form Ae (where e is an idempotent) is (eAe)°P, and if Ae is local,
then so is eAe. Thus also (eAe)? is a local ring.

Let P be a projective A-module. Thus P is a direct summand of a free A-module F'.
We know that F'is a direct sum of modules with local endomorphism ring, namely
of copies of the ();. Kaplansky’s Theorem implies that

r=r
jeJ
is a direct sum of countably generated modules P;. By the Crawley-Jgnsson-Warfield

Theorem each P; (and therefore also P) is a direct sum of modules of the form @;.

So each projective module is a direct sum of indecomposable modules, and each
indecomposable projective module is of the form @);, in particular it is local.

If 4A=ED,_, P is another direct decomposition with indecomposable modules Py,
then by the Krull-Remak-Schmidt Theorem we get m = n, and each P, is isomorphic
to some Q);. O

Theorem 23.3. Let A be a semiperfect algebra. The map P — P/rad(P) yields
a bijection between the isomorphism classes of indecomposable projective A-modules
and the isomorphism classes of simple A-modules.

Proof. By Theorem 23.2 we know that each indecomposable projective A-module is
local and isomorphic to a direct summand of 4A. Now we can continue just as in
the proof of Theorem 20.3. U

Theorem 23.4. Let A be a semiperfect algebra, and let P be an indecomposable
projective A-module. Set S := P/rad(P). Then the following hold:

(i) P s local;

i) Enda(P) is a local ring;

(i) J(Enda(P)) = {f € Enda(P) | Im(f) C rad(P)};

(iv) Each endomorphism of P induces an endomorphism of S, and we obtain an
algebra isomorphism Ends(P)/J(Ends(P)) — Enda(S);

(v) The multiplicity of P in a direct sum decomposition 1A = @, P; with

indecomposable modules P; is exactly the dimension of S as an End4(S)-

module.

Proof. We have shown already that each indecomposable projective A-module P is
local and isomorphic to a direct summand of 4A. Therefore End4(P) is local. In
particular, rad(P) is small in P. Now copy the proof of Theorem 20.4. O
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24. Digression: Projective modules in other areas of mathematics
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Part 5. Homological Algebra I: Resolutions and extension groups
25. Pushout and pullback

25.1. Pushout. Let U, V;, V5 be modules, and let fi: U — Vi and fo: U — V5 be

homomorphisms.

Vi

V

U

AN

7
Define
W =ViaV/{(fi(u),—fo(u) |ueU}

and g;: V; — W where ¢;(v1) = (v1,0) and go(v9) = (0,v5). Thus g; is the composi-
tion of the inclusion V; — V; & V; followed by the projection V) & Vo — W.

One calls W (or more precisely W together with the homomorphisms g; and g5) the
pushout (or fibre sum) of f; and fs.

So W is the cokernel of the homomorphism *[fy, — fo] : U — V1@ Vs, and [g1, go]: Vi P
Vo — W is the corresponding projection. We get an exact sequence

t[f17

i — 2] Vi@ Vs [91,92] W — 0.

Obviously,

U [ f1.f2] Vi@ Vs [91,—g2] W —0

is also an exact sequence.

Proposition 25.1 (Universal property of the pushout). For the module W and
the homomorphisms g1: Vi — W and go: Vo — W as defined above the following
hold: We have g, fi = gaf2, and for every module X together with a pair (hy: Vi —
X, hy: Vo — X)) of homomorphisms such that hyfi = hofo there exists a uniquely
determined homomorphism h: W — X such that hy = hgy, and hy = hgs.
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Proof. Of course g1f1 = gofs. If we have hyf; = hofy for some homomorphisms
h;: V; — X, then we can write this as

[hy, ho) {_JC}Q] =0.

This implies that the homomorphism [hq, hs] factorizes through the cokernel of
“[f1, —f2]. In other words there is a homomorphism h: W — X such that

[h1, ha] = h[g1, go].

But this means that h; = hg; and hy = hgy. The factorization through the cokernel
is unique, thus A is uniquely determined. O

More generally, let fi: U — Vi, fo: U — V5 be homomorphisms. Then a pair
(g1: Vi — W, go: Vo — W) is called a pushout of (fi, fs), if the following hold:

® g1f1 = gafo;
e For all homomorphisms hy: Vi, — X, hy: Vo — X such that hifi = hofs

there exists a unique(!) homomorphism h: W — X such that hg; = hy and
h,g2 = h2.
Lemma 25.2. Let f1: U — Vi, fo: U — V5 be homomorphisms, and assume that
(g1: Vi = W,g2: Vo — W) and also (gy: Vi — W', g5: Vo — W') are pushouts of
(f1, f2). Then there exists an isomorphism h: W — W' such that hg, = ¢} and
hgs = g4. In particular, W = W',

Proof. Exercise. O

25.2. Pullback. Let Vi, Vo, W be modules, and let g;: Vi — W and ¢go: Vo — W
be homomorphisms.

Define
U={(v1,v2) € Vi@ Va|gi(v1) = ga(v2)}-

One easily checks that U is a submodule of Vi @ V,. Define f;: U — V; by f;(vi,v) =
v;. Thus f; is the composition of the inclusion U — V; @V, followed by the projection
Vi@ Va — V;. One calls U (or more precisely U together with the homomorphisms
fi1 and f5) the pullback (or fibre product) of g; and go. So U is the kernel
of the homomorphism [g1, —¢s]: V1 & Vo — W and '[f, fo]: U — Vi & V4 is the
corresponding inclusion. We get an exact sequence

0—U tf1, /2] Vi@V, l91,—9g2] W,
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Of course, also

t[f17

0—=U —f2] Vi@ Vs [91,92] W

1s exact.

Proposition 25.3 (Universal property of the pullback). For the module U and
the homomorphisms f1: U — Vi and fo: U — V5 as defined above the following
hold: We have g1 fi = gafa, and for every module Y together with a pair (hy: Y —
Vishe: Y — Vi) of homomorphisms such that gihy = goho there exists a uniquely
determined homomorphism h:Y — U such that hy = fih and hy = foh.

Vi

h1 91

R

Y=-—-—-- =U w

NP

ha g2
Va

Proof. Exercise. O

More generally, let g;: Vi — W, go: Vo — W be homomorphisms. Then a pair
(fi: U — Vi, fo: U — V3) is called a pullback of (g1, g2), if the following hold:

® g1f1 = g2fo;
e For all homomorphisms hy: Y — Vi, ho: Y — V5 such that g1hy = gohs

there exists a unique(!) homomorphism h: Y — U such that fih = hy and
foh = ha.

Lemma 25.4. Let g,: V), — W, go: Vo — W be homomorphisms, and assume that
(fi: U = Vi, fo: U — Vo) and also (f]: U — Vi, f5: U — Vi) are pullbacks of
(91,92). Then there exists an isomorphism h: U — U such that fih = f] and
foh = f5. In particular, U =2 U’.

Proof. Exercise. O

Since the pushout of a pair (fi: U — Vi, fo: U — V5) (resp. the pullback of a pair
(g1: Vi — W, go: Vo — W)) is uniquely determined up to a canonical isomorphism,
we speak of “the pushout” of (fi, f2) (resp. “the pullback” of (g1, g2)).

25.3. Properties of pushout and pullback.

Lemma 25.5. Let (g1: Vi — W, ga: Vo — W) be the pushout of homomorphisms
(fi: U = Vi, fo: U — Vo), and let (f{: U — Vq, f5: U — Vs) be the pullback of
(91,92). Then the uniquely determined homomorphism h: U — U’ with fi = fih
and fy = fih is surjective. If *[f1, fa] is injective, then h is an isomorphism, and
(f1, f2) is a pullback of (g1, ga)-
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Vi
f1 Y
h Ji
U=---- U’ W
15
fa g2
Vs
Proof. Exercise. O

Lemma 25.6. Let (f1: U — Vi, fo: U — Vi) be the pullback of homomorphisms
(g1: Vi = W, g2: Vo — W), and let (g}: Vi — W' gh: Vo — W’) be the pushout of
(f1, f2). Then the uniquely determined homomorphism h: W' — W with g1 = hg]
and go = hgl is injective. If [g1, go] is surjective, then h is an isomorphism, and
(91, 92) is the pushout of (fi, f2).

Vi
V g1
9 .
U WH———-—-- =W
92
AN ;
Va
Proof. Exercise. O

Lemma 25.7. Let (g1: Vi — W, go: Vo — W) be the pushout of a pair (fy: U —
Vi, fo: U — Vi), If fi is injective, then go is also injective.

Proof. Assume go(vy) = 0 for some vy € V5. By definition go(v9) is the residue class
of (0,vy) in W, thus there exists some u € U with (0,v) = (f1(u), —fa(u)). If we
assume that f; is injective, then 0 = f;(u) implies u = 0. Thus vy = — fo(u) =0. O

Lemma 25.8. Let (fi: U — Vi, fo: U — V3) be the pullback of a pair (g1: Vi —
W, go: Vo — W). If g1 is surjective, then fy is also surjective.

Proof. Let vy € V. If we assume that g; is surjective, then for g;(vy) € W there
exists some v; € Vi such that g;(v1) = g2(v2). But then u = (vq,vy) belongs to U,
and therefore fo(u) = vs. O

Pushouts are often used to construct bigger modules from given modules. If Vi, 1,
are modules, and if U is a submodule of Vi and of V5, then we can construct the
pushout of the inclusions fi: U — Vi, fo: U — V5. We obtain a module W and
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homomorphisms g;: V); — W, go: Vo — W with g1 f1 = g2 fs.

/\
\/

Since f; and fy are both injective, also ¢g; and gy are injective. Also (up to canonical
isomorphism) (f1, f2) is the pullback of (g1, ¢92).

25.4. Induced exact sequences. Let

0-ULvELSw_oo

be a short exact sequence, and let a: U — X be any homomorphism. We construct
the pushout (¢': V — P, f': X — P)of (f:U — V,a: U — X). Since the
homomorphisms g: V' — W and 0: X — W satisfy the equation gf = 0 = Oa, there
is a homomorphism ¢': P — W with ¢'a’ = ¢g and ¢'f’ = 0. Thus we obtain the
commutative diagram

and we claim that (f’, ¢’) is again a short exact sequence, which we call the (short
exact) sequence induced by a. We write a.(f,g) = (f',4').

Proof. Since [ is injective, we know that f’ is also injective. Since g = ¢'a’ is
surjective, also ¢’ is surjective. By construction ¢'f’ = 0, thus Im(f") C Ker(g’). We
have to show that also the other inclusion holds: Let (v, x) € Ker(g') where v € V
and x € X. Thus

0=g'((v,2) = g'(a(v) + f'(z)) = ¢'(d(v)) = g(v).
Since (f, g) is an exact sequence, there is some u € U with f(u) = v. This implies
f'(@+a(u)) = (0,2 + a(u)) = (v,2),
because (v,z) — (0,2 + a(u)) = (v, —a(u)) = (f(u), —a(u)). O

Dually, let b: Y — W be any homomorphism. We take the pullback (¢": Q@ —
Y,b':Q — Y)of (b:Y — W,g: V — W). Since the homomorphisms 0: U — Y
and f: U — V satisfy b0 = 0 = g f, there exists a homomorphism f”: U — @ with
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g"f"=0and 0" f” = f. Again we get a commutative diagram

f// g//

0 U Q Y 0

|k
f g

0 U V w 0,

and similarly as before we can show that (f”,¢”) is again a short exact sequence.
We write b*(f,g) = (f”,4¢"), and call this the (short exact) sequence induced
by .

Lemma 25.9. Let
0-ULvLwoo
be a short exact sequence. Then the following hold:
(i) If a: U — X is a homomorphism, then there exists a homomorphism
a VvV —X

with a = a" f if and only if the induced sequence a.(f,g) splits;
(ii) If b: Y — W is a homomorphism, then there exists a homomorphism

v':Y -V

with b = gb” if and only if the induced sequence b*(f,g) splits.

y
b////l
, b
i
0 Uty w0
al y 7 a
X

Proof. Let a: U — X be a homomorphism. We obtain a commutative diagram with
exact rows:

0 Ut W ——=0

V
ol

0 X P w 0

The lower sequence is by definition a.(f,g). If this sequence splits, then there
exists some f”: P — X such that f”f" = 1x. Define " = f"a’. Then d"f =
f'd' f = f"f'a = a. Vice versa, let a”: V — X be a homomorphism with a”f = a.
Since a” f = 1xa, the universal property of the pushout shows that there exists a
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homomorphism h: P — X such that " = ha', 1x = hf’.

/\\
\

%

In particular, f’ is a split monomorphism. Thus the sequence (f’,¢) = a.(f,g)
splits.
The second part of the lemma is proved dually. O

Lemma 25.10. Let

I— Xt p Loy ——

be a commutative diagram with exact rows. Then the pair (a”, f") is a pushout of

(f;a).

Proof. We construct the induced exact sequence a.(f,g) = (f',¢'): Let (a': V —
P, f': X — P) be the pushout of (f,a). For ¢': P — W we have g = ¢'d’.

Since a”f = f"a there exists some homomorphism h: P — P’ with o = hd
and f” = hf’. We claim that ¢’ = g”h: This follows from the uniqueness of the
factorization through a pushout, because we know that

ga _g_g//a//_ "ha

and
glfl — 0 — g/lfl/ — g”hf/-
Thus we have seen that h yields an equivalence of the short exact sequences (f’, ¢')

and (f”,4¢"), In particular h has to be an isomorphism. But if A is an isomorphism,
then the pair (a” = hd', f” = hf’) is a pushout of (f,a), since by assumption (a’, f')
is a pushout of (f,a). O

We leave it as an exercise to prove the corresponding dual of the above lemma:

Lemma 25.11. Let

0 vl ey 0

|, b,k
f

g

0 U V w 0

be a commutative diagram with exact rows. Then the pair (b",¢") is a pullback of

(9,0).
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25.5. Examples. Let
0— N©2)L NGE) L N1) —0

be a short exact sequence, and let h: N(2) — N(1) be a homomorphism. As before,
N(m) is the m-dimensional 1-module (K™, ¢) with basis ey, ..., e, ¢(e;) = 0 and
o(e;) = e;_q for all 2 < i < m. We will fix such bases for each m, and display the
homomorphisms f, g and h as matrices: For example, let

10
f=10 1| and g =[0,0,1].
0 0

For h = [0, 1], the induced sequence h.(f,g)
0 — N(1) = N(2) — N(1) = 0.
For h = [0, 0], the induced sequence h.(f,g)
0 — N(1) — N(1) @ N(1) — N(1) — 0.

is of the form

is of the form

Similarly as above let
0— N@3)L N4 L N1) —0

be the obvious canonical short exact sequence, and let h: N(3) — N(2) be the
homomorphism given by the matrix

010

0 0 1|
Thus h is the canonical epimorphism from N(3) onto N(2). Now one can check that
the pushout of (f, h) is isomorphic to N(3).

On the other hand, if h is given by the matrix
001
0 0 O
Then the pushout of (f, h) is isomorphic to N((2,1)) = N(2) & N(1).

25.6. Schanuel’s Lemma. Let A be an algebra, and let
0O—-M —P—M-—0

be a short exact sequence of A-modules. If M is an arbitrary module, then such a
sequence exists, because every module is factor module of a projective module. If
we fix M and look at all possible sequence of the above form, then the modules M’
are similar to each other, in fact they are “stably equivalent”.

Every module can be written as a factor module of a projective module, but the
submodules of projective modules are in general a very special class of modules.

For example there are algebras, where submodules of projective modules are always
projective.
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An A-module M is called torsion free if M is isomorphic to a submodule of a
projective module.

Lemma 25.12 (Schanuel). Let P and Q) be projective modules, let U be a submodule
of P and V' a submodule of Q. If P/U = Q/V, thenU @ Q =V & P.

Proof. Let M := P/U, and let p: P — M be the projection map. Similarly, let
q: Q@ — M be the epimorphism with kernel V' (since )/V is isomorphic to M such
a g exists).

We construct the pullback of (p, ¢) and obtain a commutative diagram

ELQ
A
P——=M
where p’ is an epimorphism with kernel isomorphic to U = Ker(p), and ¢’ is an

epimorphism with kernel isomorphic to V' = Ker(q): Set U’ := Ker(p’) and V' :=
Ker(q'). We get a diagram

0 0
yr-Y ey
0 U’ E——>Q 0
|
iy | q q
Y
0 U P—L> M 0
0 0

We can assume E = {(v,w) € P& Q | p(v) = q(w)}, ¢ (v,w) = v and p'(v,w) = w
for all (v,w) € E. Now it is easy to define homomorphisms i;; and éy such that
everything commutes, and then ones shows that iy and 4y, are in fact isomorphisms.

Since @ is projective, p’ is a split epimorphism, which implies F =2 U & Q. Since P
is projective as well, ¢’ is a split epimorphism, thus £ =V & P. U

25.7. Short exact sequences with projective middle term. Let n: 0 — X ER

YL Z—-0andny:0— X' Iy 2 7 - 0 be short exact sequences. We say
that  induces 7/’ if there exist homomorphisms A and A’ such that the diagram

0 X Y A 0
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commutes.

Lemma 25.13. Let

0-ULPLW -0
be a short exact sequence of A-modules with P a projective module. Then this se-
quence induces every short exact sequence which ends in W.

Proof. Let

00U LvLZw—o
be an arbitrary short exact sequence of A-modules. Since g is an epimorphism, the
lifting property of the projective module P yields a homomorphism p’: P — V' such
that gp’ = p. This implies gp'u = pu = 0. Thus p'u can be factorized through the

kernel of g. So there exists some h: U — U’ such that p'u = fh. Thus we obtain
the following commutative diagram with exact rows:

0 U—>P——=W—=0
I
f g
0 U Vv’ w 0
This shows that (f, g) is the short exact sequence induced by h. U

25.8. Exercises. 1: Let
0—-UL v, S w—o

and
0—-U ELN |7 2w =0
be equivalent short exact sequences of J-modules, and let a: U — X be a homo-

morphism. Show that the two short exact sequences a.(f1,g1) and a.(fs, g2) are
equivalent.

2: Recall: For any partition A\, we defined a 1-module N()\). Let
0— Nn) L N@2n) 25 N(n) — 0

be the short exact sequence with f; the canonical inclusion and ¢; the canonical
projection, and let

n: 00— Nn) 2NN L Nn) -0
be a short exact sequence with A = (Ay, \2).

Show: There exists some homomorphism a: N(n) — N(n) such that a.(fi,g1) = .

3: Let
0-ULvELwoo

be a short exact sequence of J-modules, andlet a: U — X, d: X — X', b: Y — W,
b':Y’' — Y be homomorphisms of J-modules. Show:

e The induced sequences (a'a).(f,g) and a.(a.(f, g)) are equivalent;
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e The induced sequences (b0')*(f,g) and (0')*(b*(f, g)) are equivalent;
e The induced sequences a.(b*(f,g)) and b*(a.(f, g)) are equivalent.

26. Homological Algebra

26.1. The Snake Lemma.

Theorem 26.1 (Snake Lemma). Given the following commutative diagram of ho-
momorphisms
fi g1

U, i W, 0
f2 g2
0 U, Vs Wo

such that the two rows are exact. Taken kernels and cokernels of the homomorphisms
a, b, c we obtain a commutative diagram

0 0 0
fo 9o
Up—— Vo —=W,

agn bO co
fi g1
Uy Vi Wi 0
a b c
f2 92
0 Us Vs Wy
a b2 Cc2
f3 g3

0 0 0

with exact rows and columns. Then
0(x) = (azo fy ' obo gy o co)(w)
defines a homomorphism (the “connecting homomorphism”)
d: Ker(c) — Cok(a)
such that the sequence
Ker(a) 2% Ker(b) 2 Ker(c) 2 Cok(a) £ Cok(b) £ Cok(c)

15 exact.
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Proof. The proof is divided into two steps: First, we define the map J, second we
verify the exactness.

Relations

We need some preliminary remarks on relations: Let V' and W be modules. A
submodule p C V x W is called a relation. If f: V' — W is a homomorphism, then
the graph

L(f) = {(v, f(v) | v € V}
of f is a relation. Vice versa, a relation p C V x W is the graph of a homomorphism,
if for every v € V' there exists exactly one w € W such that (v, w) € p.

If p C V x W is a relation, then the opposite relation is defined as p~! = {(w, v) |
(v,w) € p}. Obviously this is a submodule again, namely of W x V.

If V1, V5, V3 are modules and p C V; x Vo and o C V5 x V3 are relations, then
ogop:={(v1,v3) € V; x V3 | there exists some vy € V5 with (v1,v9) € p, (v9,v3) € 0}

is the composition of p and o. It is easy to check that o o p is a submodule of
Vi x V.

For homomorphisms f: V; — V5 and g: V5 — V3 we have ['(g) o I'(f) = ['(gf).

The composition of relations is associative: If p C Vi x V5, 0 C VoxViyand 7 C Vyx V)
are relations, then (T oo)op= 7o (00 p).

Let p C V x W be arelation. For a subset X of V' define p(X) ={w e W | (z,w) €
p for some x € X}. If z € V, then set p(z) = p({z}).

For example, if f: V — W is a homomorphism and X a subset of V| then

(CUNX) = F(X).
Similarly, (T'(f)~")(Y) = f~1(Y") for any subset Y of W.

Thus in our situation, as f, 'bg; *co stands for
[(az) o T(fo) " o T(b) o T'(g1) ™" o I(co).

First, we claim that this is indeed the graph of some homomorphism §.

0 is a homomorphism

We show that asf, 'bg; *co is a homomorphism: Let S be the set of tuples
(wo, wy,v1, Vg, ug, uz) € Wo X Wy x Vi x Vo x Uy x Us
such that
wy = co(wo) = g1(v1),
vy = b(v1) = fa(u),

us = G,Q(UQ).
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Wo
g1
U1 —— W1
Ib
f2

U9 ——= V2
1a2
Uus

We have to show that for every wy € Wy there exists a tuple
(wo, w1, v1,v2, Uz, uz)

in S, and that for two tuples (wp,wy, vy, va, us, ug) and (wj, wi, vy, vh, ub, us) with
wp = w(, we always have ug = uj.
Thus, let w € Wy. Since ¢; is surjective, there exists some v € V; with g1(v) = co(w).
We have

g2b(v) = cg1(v) = ceo(w) = 0.
Therefore b(v) belongs to the kernel of g, and also to the image of f,. Thus there
exists some u € Uy with fo(u) = b(v). So we see that

(w, co(w), v,b(v), u,as(u)) € S.
Now let (w, co(w), v, b(v"), v, z) also be in S. We get

g1(v —v") = co(w) — co(w) = 0.
Thus v — v’ belongs to the kernel of g;, and therefore to the image of fi;. So there
exists some y € Uy with fi(y) = v —v'. This implies

folu =) =bv =) =bfi(y) = foaly).
Since fo is injective, we get u — v’ = a(y). But this yields
az(u) —x = az(u — u') = aga(y) = 0.

Thus we see that as(u) = x, and this implies that ¢ is a homomorphism.
Exactness

Next, we want to show that Ker(d) = Im(gyp): Let x € Vy. To compute dgo(x)
we need a tuple (go(z),wy, v1,ve,us,uz) € S. Since g1by = cogo and bby = 0 we
can choose (go(x),cogo(x),bo(x),0,0,0). This implies dgo(x) = 0. Vice versa, let
w € Ker(d). So there exists some (w,wy, vy, Vs, uz,0) € S. Since uy belongs to the
kernel of ay and therefore to the image of a, there exists some y € U; with a(y) = us.
We have

bfi(y) = faa(y) = fa(uz) = b(vy).

Thus vy — f1(y) is contained in Ker(b). This implies that there exists some x € V;
with by(z) = v1 — fi(y). We get

cogo(x) = g1bo(x) = g1(v1 — f1(y)) = g1(v1) = co(w).



162 CLAUS MICHAEL RINGEL AND JAN SCHROER

Since ¢ is injective, we have go(x) = w. So we see that w belongs to the image of
go-

Finally, we want to show that Ker(f;) = Im(d): Let (wo,wy,v1,ve,us, uz) € S, in
other words d(wg) = uz. We have

fa(uz) = fzaa(us) = bafa(us).

Since fo(ug) = vy = b(vy), we get by fo(ug) = bob(vy) = 0. This shows that the
image of ¢ is contained in the kernel of f3. Vice versa, let uz be an element in Us,
which belongs to the kernel of f3;. Since ay is surjective, there exists some uy € Us
with ag(ug) = ug. We have by fo(us) = fsas(us) = f3(us) = 0, and therefore fo(us)
belongs to the kernel of by and also to the image of b. Let fo(us) = b(vy) =: vs.
This implies cg;(v1) = g2b(v1) = gafa(uz) = 0. We see that g1(vq) is in the kernel
of ¢ and therefore in the image of ¢g. So there exists some wy € Wy with co(wg) =
g1(v1). Altogether, we constructed a tuple (wg, wy, vy, Vg, ug, uz) in S. This implies
uz = 6(wp). This finishes the proof of the Snake Lemma. O

Next, we want to show that the connecting homomorphism is “natural”: Assume
we have two commutative diagrams with exact rows:

fi g1

Uy Vi Wi 0

Lo,

0 U, Vo —2 W,

fl

U, %4 wi 0
a’l b’l c’l
;b )9 ’
0—= U, vy 2w,

Let §: Ker(c) — Cok(a) and 6": Ker(¢') — Cok(a’) be the corresponding connecting
homomorphisms.

Additionally, for i = 1,2 let p;: U; — U}, ¢;: V; — V! and r;: W; — W/ be homo-

7
morphisms such that the following diagram is commutative:

Uy Vi Wi 0
N ‘ N ‘ N
U, l 1% l wi 0
0 Uy ‘ Vo ‘ Wy
NN NG
0 U; 4 W;

The homomorphisms p;: U; — U/ induce a homomorphism ps: Cok(a) — Cok(a’),
and the homomorphisms r;: W; — W/ induce a homomorphism ry: Ker(c) —
Ker(¢).
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Lemma 26.2. The diagram

Ker(c) —2= Cok(a)
-
Ker(¢') —— Cok(a')

15 commutative.

Proof. Again, let S be the set of tuples
(wo, wy, vy, V2, ug, uz) € Wy x Wy x Vi x Vo x Uy x Us
such that
wy = co(wo) = g1(v1),
vy = b(v1) = fa(u),
us = as(us),

and let S be the correspondingly defined subset of W] x W7 x V' x Vi x Uj x U;,.
Now one easily checks that for a tuple (wo, wy, v1,ve, us, ug) in S the tuple

(ro(wo), r1(w1), q1(v1), g2(v2), p2(u2), p3(us))
belongs to S’. The claim follows. O

26.2. Complexes. A complex of A-modules is a tuple Cy = (C,,, dp,)nez (We often
just write (C,,, dy,), or (Cy, d,)) where the C,, are A-modules and the d,,: C,, — C,,_4
are homomorphisms such that

Im(d,,) C Ker(d,,_1)

for all n, or equivalently, such that d,,_1d, = 0 for all n.

dp42 dp+1 d dp—1
. Cn-i—l " Cn N Cn—l ..

A cocomplex is a tuple C* = (C™,d"),cz where the C™ are A-modules and the
d": C™ — C™"1 are homomorphisms such that d"™d" = 0 for all n.

dan—

2 m—1 m m—+1
Cmfl d cn L Cm+1 d ..

Remark: We will mainly formulate results and definitions by using complexes, but
there are always corresponding results and definitions for cocomplexes. We leave it
to the reader to perform the necessary reformulations.

In this lecture course we will deal only with (co)complexes of modules over a K-
algebra A and with (co)complexes of vector spaces over the field K.

A complex Cy = (C,,, d,,)nez is an exact sequence of A-modules if

Im(d,) = Ker(d,-1)
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for all n. In this case, for a > b we also call

d da—1 dpy1
C, =% ailaﬁ...ﬁcgn
dpi2 dpi1

exact sequences. An exact sequence of the form
0—XxX-Lv-Lz-0

is a short exact sequence. We denote such a sequence by (f,g). Note that this
implies that f is a monomorphism and ¢ is an epimorphism.

Example: Let M be an A-module, and let Cy = (C,,d,)nez be a complex of
A-modules. Then

Homu (M, Cy) = (Homyu (M, C,,), Homa (M, d,,))nez
is a complex of K-vector spaces and
Homy (Co, M) = (Homu(C,,, M), Homa(dy11, M))nez
is a cocomplex of K-vector spaces. (Of course, K is a K-algebra, and the K-modules

are just the K-vector spaces.)

Given two complexes Cy = (Cy, dp,)nez and C, = (C!,d})nez, & homomorphism

of complexes (or just map of complexes) is given by fo = (fn)nez: Co — C)
where the f,,: C,, — C! are homomorphisms with d, f,, = f._1d, for all n.

dn+1 dn

Chit C, Chy e

lfn«kl fnl fnll
d

/ /
/ n+1 ! dn /
Cn—l—l Cn n—1 e

The maps Cy — C. of complexes form a vector space: Let f,, go: Co — C. be such
maps, and let A € K. Define fo + go := (fn + 9n)nez, and let Afe := (Afp)nez-

If fo=(fu)n: Co — Cl and go = (gn)n: C., — CU are maps of complexes, then the
composition

Gofo = ga 0 fo: Co — C:/
is defined by ge fe := (gnfr)n-

Let Cy = (Cy,dy,)n be a complex. A subcomplex C, = (C! d)), of C, is given by
submodules C! C C,, such that d/, is obtain via the restriction of d,, to C!. (Thus we
require that d,(C}) C C! _, for all n.) The corresponding factor complex C,/C.
is of the form (C,/C!,d"), where d! is the homomorphism C, /C! — C,_1/C! _,

induced by d,,.

Let fo = (fu)n: C. — Cs and ge = (gn)n: Co — C7 be homomorphisms of com-
plexes. Then

0—C, o, =l —o
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is a short exact sequence of complexes provided
1 Jfn 9n o~
0—-C,—C,—=C,—0

is a short exact sequence for all n.

26.3. From complexes to modules. We can interpret complexes of J-modules
(here we use our terminology from the first part of the lecture course) as J'-modules
where

J = JUZU{d}.
(We assume that J, Z and {d} are pairwise disjoint sets.)

If Co = (C,,dy)n is a complex of J-modules, then we consider the J-module
C = @ C,.
nel

We add some further endomorphisms of the vector space C, namely for n € Z
take the projection ¢,,: C' — C onto C,, and additionally take ¢4: C' — C whose
restriction to C), is just d,. This converts C' into a J'-module.

Now if fo = (fn)n: Ce — C. is a homomorphism of complexes, then

Dr: B - Do

nez nez ne’l

defines a homomorphism of J’-modules, and one obtains all homomorphisms of J'-
modules in such a way.

We can use this identification of complexes of J-modules with J’-modules for trans-
ferring the terminology we developed for modules to complexes: For example sub-
complexes or factor complexes can be defined as J'-submodules or J'-factor modules.

26.4. Homology of complexes. Given a complex Cy = (C,,, d,,), define
H,(C,) = Ker(dy)/ Im(dp1),
the nth homology module (or homology group) of C,. Set Hy(Co) = (H,(Cl))n-
Similarly, for a cocomplex C* = (C™, d") let
H(C*) = Ker(d")/ Tm{d" ")
be the nth cohomology group of C°.
Each homomorphism f,: Cy — C. of complexes induces homomorphisms

H,,(fa): Ho(Co) — Hu(CQ).
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(One has to check that f,(Im(d,11)) C Im(d),, ) and f,(Ker(d,)) C Ker(d,).)

It follows that H,, defines a functor from the category of complexes of A-modules to
the category of A-modules.

Let Cy = (C,,,d,,) be a complex. We consider the homomorphisms

dn+1 dn dnfl
Cor 255 €, 22 0y 25 0,

By assumption we have Im(d;, ;) C Ker(d;) for all i.

The following picture illustrates the situation. Observe that the homology groups
HZ(C.) = Ker(dl)/lm(dlﬂ)

are highlighted by the thick vertical lines. The marked regions indicate which parts
of C; and C;_; get identified by the map d;. Namely d; induces an isomorphism

C;/ Ker(d;) — Im(d;).

The map d,, factors through Ker(d,,_;) and the map C,, = Ker(d,,_1) factors through
Cok(d,,41). Thus we get an induced homomorphism d,,: Cok(d, 1) — Ker(d,_1).
The following picture describes the situation:
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d,

Cok(dp11) Ker(d,_1)

So we obtain a commutative diagram

Ch

L]

Cok(d,41) i, Ker(d,_1)

The kernel of d,, is just H,(C,) and its cokernel is H,_1(C,). Thus we obtain an
exact sequence

i§ dn PS4
0— H,(C,) = Cok(d+1) = Ker(d,—1) — H,-1(Cs) — 0

where i¢ and p¢ | denote the inclusion and the projection, respectively. The inclu-
sion Ker(d¥) — C,, is denoted by u¢.

26.5. Homotopy of morphisms of complexes. Let C, = (C,,d,) and C, =
(C!.dl) be complexes, and let f,,ge: Co — C? be homomorphisms of complexes.

Then f, and g, are called homotopic if for all n € Z there exist homomorphisms
5,1 Cp — C) . such that

B = [ — Gn = dpp 10 + Sn_1d,y,.

In this case we write f, ~ go. (This defines an equivalence relation.) The sequence
s = (sp)n is a homotopy from f, to g.

dn+1 dn
CnJrl Cn Cnfl —
Sn Sn—1
! ! !
CnJrl & Cn n—1 e

n+1

The morphism f,: Cy — C. is zero homotopic if f, and the zero homomorphism
0: Cy — C. are homotopic. The class of zero homotopic homomorphisms forms an
ideal in the category of complexes of A-modules.

Proposition 26.3. If f,,g.: Co — C. are homomorphisms of complexes such that
fo and gs are homotopic, then H,(fs) = H,(gs) for all n € Z.
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Proof. Let Cy = (C,,,d,,) and C, = (C!,d.,), and let = € Ker(d,,). We get

n» 'n

fa(@) = gn(x) = (fu — g90) ()
= ( In+15n + 8n-1d,)(2)

= d;z-i-lsn (7)

since d,(z) = 0. This shows that f,(z) and g,(z) only differ by an element in
Im(d;, ). Thus they belong to the same residue class modulo Im(d],, ). O

Corollary 26.4. Let f,: Cy — C. be a homomorphism of complexes. Then the
following hold:

(i) If f is zero homotopic, then H,(fs) =0 for all n;
(ii) If there exists a homomorphism ge: Cl, — C4 such that gefs ~ lc, and
fege ~ 1ci, then H,(f.) is an isomorphism for all n.

Proof. As in the proof of Proposition 26.3 we show that f,(z) € Im(d;_,). This
implies (i). We have H,(ge)H,(fe) = Hu(gefs) = Hp(le,) and H,(fe)H,u(gs) =
H,(fege) = Hn(1¢,). Thus H,(f,) is an isomorphism. O

26.6. The long exact homology sequence. Let
O—>A,féB.g—'>C.HO

be a short exact sequence of complexes. We would like to construct a homomorphism
On: Hy(Co) — Hp_1(As).

Recall that the elements in H,,(C,) are residue classes of the form x+Im(dS, ) with
x € Ker(d). Here we write Ay = (A,,d?), Be = (B,,d?) and C, = (C,,,d?).

For z € Ker(d9) set
O +Tm(dS, ) == 2+ Tm(d;)
where z € (f, 1, dPg-")(x).

Theorem 26.5 (Long Exact Homology Sequence). With the notation above, we
obtain a well defined homomorphism

5n: Hn(Co) - n—l(Ao)
and the sequence

Hn(g.) 6n
e

H,(C,) = H, _1(A,)

. 6n+1 Hn(A.) Hn(fo) Hn<B.> anl(fo) .

15 exact.
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Proof. Taking kernels and cokernels of the maps d2, d? and d? we obtain the fol-
lowing commutative diagram with exact rows and columns:

B,—> .C, 0

1 1

Cok(d4) ~= Cok(dB) ——> Cok(dS) —0

(The arrows without label are just the canonical inclusions and projections, re-
spectively. By f! ¢/, and f/_,, g/, we denote the induced homomorphisms on the

kernels and cokernels of the maps d?, d? and d¢, respectively.)

The map f] is a restriction of the monomorphism f,, thus f/ is also a monomor-
phism. Since g,,_; is an epimorphism and g, ;(Im(d?)) C Im(d), we know that
gr_, is an epimorphism as well.

We have seen above that the homomorphism dfll: A, — A,_1 induces a homomor-
phism

a=dA: Cok(d?,,) — Ker(d? ).
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Similarly, we obtain b = dB and ¢ = dC. The kernels and cokernels of these homo-
morphisms are homology groups. We obtain the following commutative diagram:

0 0 0
Hy(Ad) Hy(Be) —— Hy(Cl)
in iy i
V4 an
Cok(d2, 1) 2~ Cok(dZ, )~ Cok(dS., ) —> 0

a b c
0 — Ker(d! ) > Ker(d? ) ——> Ker(dS )

Pﬁ—l p5—1 pg—1

Hy—1(fe) Hy—1(ge)

H, 1(As) —> H,_1(B,) — H,,_1(C,)

0 0 0

Now we can apply the Snake Lemma: For our n we obtain a connecting homomor-
phism
0: Hn<Co) - n71<Ao)

which yields the required exact sequence. It remains to show that § = 9,,.

Let T be the set of all triples (x,y, 2) with x € Ker(dY), y € B,, z € A,_; such that
gn<y) =z and fn71<z) = d§<y)

(1) For every x € Ker(d$) there exists a triple (z,vy,2) € T:

Let x € Ker(d). Since g, is surjective, there exists some y € B, with g,(y) = z.
We have

gn—1d5 (y) = dS gu(y) = dS (x) = 0.
Thus df(y) belongs to the kernel of g, 1 and therefore to the image of f,, ;. Thus
there exists some 2z € A,y with f,,_1(2) = dZ(y).

(2) If (2,91, 21,), (T, Y2, 22) € T, then z; — 2, € Im(d2):

We have g, (y1 —y2) = z—x = 0. Since Ker(g,) = Im(f,) there exists some a,, € A,
such that f,(a,) = y1 — yo. It follows that

fn—ldﬁ(an) = dffn(an) = df(yl - yz) = fn—1(21 - 22)-
Since f,_1 is a monomorphism, we get d“(a,) = 21 — 2z5. Thus z; — 2o € Im(d2).

(3) If (z,y,2) € T and x € Im(dY, ), then z € Im(d2):

Let z = dg+1(r) for some r € C, 1. Since g, is surjective there exists some
s € By11 with g,11(s) = r. We have

gn(y) =T = dg+1<r) = dg+1gn+1(5) = gndf+1(5>-



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 171
Therefore y — d? , (s) is an element in Ker(g,) and thus also in the image of f,,. Let
y—dP (s) = fu(t) for some t € A,. We get
Famrdil () = d3 fu(t) = d (y) — dd}] 4 (s) = d}j(y) = faa(2).
Since f,_1 is injective, this implies d2(¢) = z. Thus z is an element in Im(d%).
(4) If (x,y,2) € T, then z € Ker(d? ,):
We have
Facady_1(2) = d}}_ fai(2) = d}}_yd (y) = 0.
Since f,_» is injective, we get d2 ,(z) = 0.
Combining (1),(2),(3) and (4) yields a homomorphism 6, : H,(Cs) — H,_1(A.)
defined by
Sn(z + Im(dS ) == z + Im(d3)
for each (x,y,z) € T.

The set of all pairs (pS(x),p? ,(2)) such that there exists a triple (x,y,2) € T is
given by the relation

L(pp-1) 0 D(up_y) ™ o D(fam1) ™" o T(dy) 0 T(gn) " o T(uy) o T(pf) ™"

This is the graph of our homomorphism §,,.

Ker(d$) —— H,(C,)
|
B, —*—C,
|

A
pn—l

Hyo(A)) =2 Ker(dh ) = A,y 2“2 B,

Now it is not difficult to show that this relation coincides with the relation

D(pn_y) o D(foy) ™ o (b)) o T(gy) ™" o I(iy))
which is the graph of §.

This implies 6 = 6,,. 0



172 CLAUS MICHAEL RINGEL AND JAN SCHROER

The exact sequence in the above theorem is called the long exact homology
sequence associated to the given short exact sequence of complexes. The homo-
morphisms 9,, are called connecting homomorphisms.

The connecting homomorphisms are “natural”: Let

f‘ Je

0 A, B, C. 0

l”' | lq. | l

0 Al Te B! e ol 0

be a commutative diagram with exact rows. Then the diagram

Ho(Co) = H, 1(Al)

Hn(r.)l
H,(C!

lHnl(po)
S

) - n—l(A/o)

commutes, where §,, and 6], are the connecting homomorphisms coming from the
two exact rows.

27. Projective resolutions and extension groups

27.1. Projective resolutions. Let P;, © > 0 be projective modules, and let M be
an arbitrary module. Let p;: P, — P;_1, ¢ > 1 and €: Py — M be homomorphisms
such that

s P LR B P S M0

7

is an exact sequence. Then we call
Pit1 i p2 p1
P.;:(..._> i+1; Pi_>' N N PO)

a projective resolution of M. We think of P, as a complex of A-modules: Just
set P, =0 and p;;; = 0 for all 7 < 0.

Define
Qp, (M) = Qp, (M) := Ker(e),

and let Q% (M) = Ker(p;_1), ¢ > 2. These are called the syzygy modules of M
with respect to P,. Note that they depend on the chosen projective resolution.

If all P, are free modules, we call P, a free resolution of M.

The resqlution P, is a minimal projective resolution of M if the homomorphisms
P; — Qp (M), i>1and also e: Py — M are projective covers. In this case, we call

Q*(M) := Qp, (M)
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the nth syzygy module of M. This does not depend on the chosen minimal
projective resolution.

Lemma 27.1. If
0—-U—-P—-M-—0

is a short exact sequence of A-modules with P projective, then U = Q(M) @ P’ for
some projective module P’.

Proof. Exercise. O

Sometimes we are a bit sloppy when we deal with syzygy modules: If there exists
a short exact sequence 0 — U — P — M — 0 with P projective, we just write
Q(M) = U, knowing that this is not at all well defined and depends on the choice
of P.

Lemma 27.2. For every module M there is a projective resolution.

Proof. Define the modules P; inductively. Let ¢ = ¢y: Fy — M be an epimorphism
with Py a projective module. Such an epimorphism exists, since every module is
isomorphic to a factor module of a free module. Let p;: Ker(eg) — Py be the
inclusion. Let e1: P, — Ker(gg) be an epimorphism with P; projective, and define
p1r = oe: Pp — Py Now let e5: P, — Ker(gy) be an epimorphism with P,
projective, etc.

The first row of the resulting diagram

£

P F M 0
H2 H1
) )

AN AN

Ker(g; Ker(gg

is exact, and we get a projective resolution
of Cok(py) = M. O

Theorem 27.3. Given a diagram of homomorphisms with exact rows

P3 P2 p2 Pl p1 PO I3 M O
lf
P P, Ph P P P ¢! N 0

where the P; and P} are projective. Then the following hold:

)

(i) There exists a “lifting” of f, i.e. there are homomorphisms f;: P; — P! such
that
pifi = ficapi and €' fo = fe
for all i;
(ii) Any two liftings fo = (fi)i>o and f. = (f])i>o are homotopic.
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Proof. (i): The map ¢": Pj — N is an epimorphism, and the composition fe: Py —
N is a homomorphism starting in a projective module. Thus there exists a homo-
morphism fy: Py — Bj such that &'f, = fe.

We have Im(p;) = Ker(e) and Im(p}) = Ker(¢’). So we obtain a diagram with exact
rows of the following form:

p3 P2 p2 P1 p1 Im<p1)—>0
|7
~~ Py~ P ——~Tm(p;) —=0

The homomorphism fy is obtained from fy by restriction to Im(p;). Since Pj is
projective, and since p is an epimorphism there exists a homomorphism f;: P, — P|
such that p|f1 = ﬁ)pl, and this implies p| fi = fop1. Now we continue inductively
to obtain the required lifting (f;)i>o.

(ii): Assume we have two liftings, say fo = (fi)i>0 and f, = (f/)i>0. This implies
fe=¢fo=¢f
and therefore £'(fy — f;) = 0.

Let ¢;: Im(p;) — P!, be the inclusion and let m;: P/ — Im(p}) be the obvious
projection. Thus p} = ¢; o m;.

The image of fy — f} clearly is contained in Ker(¢') = Im(p}). Now let si: Py —
Im(p}) be the map defined by s, (m) = (fo— f)(m). The map 7 is an epimorphism,
and s is a map from a projective module to Im(p}). Thus by the projectivity of Fy
there exists a homomorphism so: Py — Pj such that m o sg = si,.

We obtain the following commutative diagram:

P—=M

_ S e ]

P{Z = Im(p}) —= By —= N

Now assume s;_1: P,_; — P/ is already defined such that

fic1 = i1 = pisic1 + sicapio1.
We claim that pi(f; — f/ — s;—1pi) = 0: We have
Pi(fi = fi = sicapi) = pifi — Difi — Pisicapi
= fi-1pi — fil—lpi - pgsiflpi
= (fier = fiZ0)pi — Disiaps
= (Pisi—1 + SiaPi1)Pi — DiSi—1Di
= Si—2Pi-1Pi
=0
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(since p;_1p; = 0).

Pi—1

Di
P P4 P
fil %1 lfz%z lfi—Q
P/ —> P, ——F_,
25 P

Therefore
Im(fi = fi = si—1pi)  Ker(p) = Im(pj,).
Let s;: P — Im(p}, ) be defined by s;(m) = (fi — f] — si—1pi)(m).

Since P is projective there exists a homomorphism s;: F; — P/, such that m;;,0s; =
si. Thus we get a commutative diagram

~

Si ,
fi—fi—si—1pi

P,

i

A\

<

/ /
Pl T Im(p; ;) it L

Thus p} s, = fi — f{ — si—1p; and therefore f; — f/ = p},,5; + s;_1p;, as required.
This shows that f, — f, is zero homotopic. Therefore fo = (fi); and f, = (f!); are
homotopic. 0

27.2. Ext. Let

P,:(...””_+1>pnp_">...p_2>p1£po)
be a projective resolution of M = Cok(p;), and let N be any A-module. Define
Exty (M, N) := H"(Homu(P,, N)),

the nth cohomology group of extensions of M and N. This definition does not
depend on the projective resolution we started with:

Lemma 27.4. If P, and P, are projective resolutions of M, then for all modules N
we have
H"(Homy(P,, N)) = H"(Homyu(P., N)).

Proof. Let fo = (fi)i>0 and ge = (gi)i>0 be liftings associated to

p3 P2 P1

P, P, Py—=M 0
Py P, Ph P P P, ¢! A 0
and
P P, Ph P Py P, Y 0
Pop-Bp Bop oy 0.
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By Theorem 27.3 these liftings exist and we have gofo ~ 1p, and fege ~ 1p;. Thus,
we get a diagram

p3 P2 P1

Py Py Fo
g2f2—1p, g1fi—1p, gofo—1p,
S92 S1 S0
p3 p2 p1
Py Py R

such that g;f; — 1p, = piy15; + si—1p; for all i. (Again we think of P, as a complex

with P, =0 for all i < 0.)

Next we apply Hom4(—, V) to all maps in the previous diagram and get
Hom(ge fe, N) ~ Homy(1p,, N).

Similarly, one can show that Hom(fege, V) ~ Hom4(1p;, N). Now Corollary 26.4
tells us that H"(Homu(gefe, N)) = H"(Homa(1p,, N)) and H"(Homy(fegs, N)) =
H™(Homy(1p;, N)). Thus

H"(Homyu(fs, N)): H"(Homyu(P., N)) — H"(Homa(P,, N))

is an isomorphism. O

27.3. Induced maps between extension groups. Let P, be a projective resolu-
tion of a module M, and let g: N — N’ be a homomorphism. Then we obtain an
induced map

Exty (M, g): H"(Homy(P,, N)) — H"(Homu(P,, N'))
defined by [a] — [g o a]. Here a: P, — N is a homomorphism with « o p,1 = 0.
There is also a contravariant version of this: Let f: M — M’ be a homomorphism,

and let P, and P, be projective resolutions of M and M’, respectively. Then for any
module N we obtain an induced map

Ext(f, N): H"(Homyu(P,, N)) — H"(Homu(P,, N))

defined by [3] — [ o f,|. Here §: P, — N is a homomorphism with o p/ ;=0
and f,: P, — P! is part of a lifting of f.

27.4. Some properties of extension groups. Obviously, we have Ext’} (M, N) =
0 for all n < 0.

Lemma 27.5. Ext% (M, N) = Homy (M, N).

Proof. The sequence P, — Py — M — 0 is exact. Applying Homy(—, N) yields an
exact sequence

Hom 4 (p1,N)
— 5

0 — Homyu (M, N) — Homu(Fp, N) Homa(Py, N).
By definition Ext% (M, N) = Ker(Hom(py, N)) = Homu (M, N). O
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Let M be a module and
0— QM) P M—0

a short exact sequences with Fy projective.
Lemma 27.6. Ext!(M, N) = Homu(Q(M),N)/{sous |s: Py — N}.
Proof. 1t is easy to check that Hom4(Q(M), N) = Ker(Homy(p2, N)) and {s o u |
s: Py — N} = Im(Homyu(py, N)). O
Lemma 27.7. For all n > 1 we have Ext”,"'(M, N) = Ext" (QM, N).

Proof. If P, = (P;, pi)i>o is a projective resolution of M, then --- P; 2op B P is
a projective resolution of Q(M). O

27.5. Long exact Ext-sequences. Let
0-X—-Y—->27—-0

be a short exact sequence of A-modules, and let M be any module and P, a projective
resolution of M. Then there exists an exact sequence of cocomplexes

0 — Homyu(P,, X) — Homyu (P, Y) — Homy(Fs, Z) — 0.

This induces an exact sequence

0 — Homu (M, X) — Homu(M,Y) — Homyu (M, Z)

=

Ext! (M, X) —— Exty(M,Y) —— Ext! (M, 2)

e

Ext’ (M, X) w Ext’ (M, Z)

which is called a long exact Ext-sequence.

Ext? (M, X)

To obtain a “contravariant long exact Ext-sequence”, we need the following result:

Lemma 27.8 (Horseshoe Lemma). Let

0-xLyLz o0

be a short exact sequence of A-module. Then there exists a short exact sequence of
complezes

n:0— P —P,—P/'—0

where P., P, and P! are projective resolutions of X, Y and Z, respectively. We

also have Py, = P. & P,.
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Proof. ... O
Let N be any A-module. In the situation of the above lemma, we can apply

Homy(—, N) to the exact sequence 7. Since n splits, we obtain an exact sequence
of cocomplexes

0 — Homu(P), N) — Homu(P,, N) — Homu(P,, N) — 0.
Thus we get an exact sequence

0 —— Homu(Z, N) — Hom4 (Y, N) — Hom4 (X, N)

Exty(Z, N) — Ext} (Y, N) — Ext} (X, N)

Ext(Z, N) — Ext%(Y, N) — Ext(X, N)

Ext(Z, N)

which is again called a (contravariant) long exact Ext-sequence.

27.6. Short exact sequences and the first extension group. Let M and N be
modules, and let

P.:(...p"_ﬂpnﬂ)...ﬂpleo)

be a projective resolution of M = Cok(p;). Let Py — M be the cokernel map of
p1, le.
PP M—0

is an exact sequence.
We have
H"(Homu(P,, N)) := Ker(Homy (pyi1, N))/ Im(Hom(p,, N)).

Let [a] := «a 4+ Im(Homu(p,, N)) be the residue class of some homomorphism
a: P, — N with aop,.1 = 0.
Clearly, we have

Im(Homa(p,, N)) ={sop,|s: P,y — N} C Homu(P,, N).

For an exact sequence
0=NLEL M0
let
U(f,9)
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be the set of homomorphisms a: P, — N such that there exists some 3: Py — E
with foa=Fop, and go f =¢.

P2 p2 P1 pP1 Po 5 M 0
|
T
Y
0 NTlepftou 0

Observe that ¥(f,g) C Homa(Py, N).

Lemma 27.9. The set ¥(f,g) is a cohomology class, i.e. it is the residue class of
some element a € Ker(Hom 4 (p2, N)) modulo Im(Hom(p1, N)).

Proof. (a): If a € ¥(f, g), then o € Ker(Hom 4(p2, N)):

We have
foaopy=pFopiopy=0.
Since f is a monomorphism, this implies « o ps = 0.

(b): Next, let a, o’ € (f,g). We have to show that a — o’ € Im(Hom4(py, N)):

There exist § and ' with gof=ec=go ', foa=op; and foa' = ' op;. This
implies g(3 — ) = 0. Since P, is projective and Im(f) = Ker(g), there exists some
s: Py — N with fos= 08— /3. We get

fla—=a)=(3—=0)p1=fosopr.
Since f is a monomorphism, this implies &« — @/ = s o p;. In other words, o — o’ €
Im(Hom 4 (p1, N)).

(c): Again, let o € ¥(f,g), and let v € Im(Homa(py, N)). We claim that a + v €
U(f,9):

Clearly, v = s o py for some homomorphism s: Py — N. There exists some 3 with
gof=cand foa=fop;. This implies

fla+7)=Bp1+ fspr=(B+ fs)pr.
Set (' := [+ fs. We get
98 =g(B+ fs)=gB+gfs=gB=e¢.
Here we used that go f = 0. Thus a+ v € ¥(f, g). O
Theorem 27.10. The map
Y: {0 - N —%—M—0}~ — Exth(M,N)
(f,9) = ([, 9)

defines a bijection between the set of equivalence classes of short exact sequences

0N -0
and Ext'y (M, N).
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Proof. First we show that v is surjective: Let a: P, — N be a homomorphism with
aopy=0. Let

Py P2 Py S M — 0
be a projective presentation of M. Set Q(M) := Ker(¢).

Thus p; = py o g1 where e1: P, — Q(M) is the projection, and p: Q(M) — Py is
the inclusion. Since a o py = 0, there exists some o/: Q(M) — N with a = o/ oe;.
Let (f,g) := &/ (u1,e) be the short exact sequence induced by «'. Thus we have a
commutative diagram

P, = P & Py—=M 0
0——QM) 2~ P —= M 0
]

f g
0 N E M 0

This implies o € P(f, g).

Next, we will show that v is injective: Assume that ¥(f1,91) = ¥(f2, g2) for two
short exact sequence (f1,¢1) and (fs,g2), and let o € ¥(f1,1). Let o': Q(M) — N
and pq: Q(M) — P, be as before. the restriction of a to (M) and let p}: Q(M) —
P, be the obvious inclusion.

We obtain a diagram

0—= QM) 2P —> M 0

a/l ﬁll B2 H
fi g1

0 N B M——0
|
| )]
A
0 N—L B 2 0

with exact rows and where all squares made from solid arrows commute.

By the universal property of the pushout there is a homomorphism v: F; — FEj
with vo f; = fy and v o 3; = #5. Now as in the proof of Skript 1, Lemma 10.10
we also get go 0y = g1. Thus the sequences (f1, g1) and (fs, go) are equivalent. This
finishes the proof. O

Let 0 — X 5V % Z = 0 be a short exact sequence, and let M and N be modules.
Then the connecting homomorphism

Homy (M, Z) — BExt! (M, X)
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is given by h +— [n] where 7 is the short exact sequence h*(f, g) induced by h via a
pullback.

N 0—=X . M—0
|
Y
0—x 1oy 2.y 0

Similarly, the connecting homomorphism
Homy (X, N) — Ext}(Z, N)

is given by h +— [n] and where 7 is the short exact sequence h.(f,g) induced by h
via a pushout.

- 0 N

If (f,g) is a split short exact sequence, then ¥ (f,g) = 0+ Im(Homu(py, N)) is the
zero element in Ext’ (M, N): Obviously, the diagram

p1

P, Py———=M 0
| |
|0 |[0] H
(5] [01]
is commutative. This implies

¥([o],[01]) = 0+ Im(Homa(py, N)).

In fact, Ext! (M, N) is a K-vector space and v is an isomorphism of K-vector spaces.
So we obtain the following fact:

Lemma 27.11. For an A-module M we have Exty (M, M) = 0 if and only if each
short exact sequence

0O—-M—-FE—M-—0
splits. In other words, = M & M.

27.7. The vector space structure on the first extension group. Let
My:0—QM)— P —M—0
be a short exact sequence with Fy projective. For i = 1,2 let
m:OHNLEiﬂM—M)
be short exact sequences.

Take the direct sum 7, @1 and construct the pullback along the diagonal embedding
M — M @ M. This yields a short exact sequence 7'
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We know that every short exact sequence 0 — X — x — M — 0 is induced by 7,,.
Thus we get a homomorphism [a}]: Q(M) — N @ N such that the diagram

M 0—— QM) Py - M 0
[ | H
n 0—=N&N £ M 0
| l |t
mon: 0—=N&N-—FE P, —>M®M-—0
f 0] [91 0]
[OfQ 0 g2

commutes. Taking the pushout of 7' along [1,1]: N @ N — N we get the following
commutative diagram:

N 00— QM) “—~P —=M 0
e |
n' 0—=NG&N £ M 0
CE
n" 0 N £ M 0
In other words,
' = [a].(nu),
"= [1,1,(n).

This implies " = (a3 + @2)«(npr). Define

mtn =1

Note that there exists some [;, i = 1,2 such that the diagram

N 0—= QM) L= Py —= M 0
. fi gi
ni 0 N E; M 0

commutes. Thus 1, = (o)« (nar)-

Similarly, let n: 0 - N — E — M — 0 be a short exact sequence. For A\ € K let
Let ' := (A)«(n) be the short exact sequence induced by the multiplication map
with A\. We also know that there exists some a: Q(M) — N which induces 7. Thus
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we obtain a commutative diagram

M 0 — Q(M) Py M 0

n: 0 N E M 0
O

n' 0 N E M 0

Define \n :=17'.

Thus, we defined an addition and a scalar multiplication on the set of equivalence
classes of short exact sequences. We leave it as an (easy) exercice to show that this
really defines a K-vector space structure on Ext’ (M, N).

27.8. Injective resolutions. injective resolution

minimal injective resolution

Theorem 27.12. Let I°® be an injective resolution of an A-module N. Then for any
A-module M we have an isomorphism

Ext’ (M, N) = H™(Hom (M, I°)).

which s “natural in M and N 7.

Proof. Exercise. O

28. Digression: Homological dimensions

28.1. Projective, injective and global dimension. Let A be a K-algebra. For
an A-module M let proj.dim(M) be the minimal j > 0 such that there exists a
projective resolution (F;,d;); of M with P; = 0, if such a minimum exists, and
define proj. dim(M) = oo, otherwise.

We call proj. dim(M) the projective dimension of M. The global dimension of
A is by definition

gl. dim(A) = sup{proj. dim(M) | M € mod(A)}.

Here sup denote the supremum of a set.
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It often happens that the global dimension of an algebra A is infinite, for example
if we take A = K[X]/(X?). One proves this by constructing the minimal projective
resolution of the simple A-module S. Inductively one shows that Q'(S) = S for all
1> 1.

Proposition 28.1. Assume that A is finite-dimensional. Then we have

gl. dim(A) = max{proj.dim(S) | S a simple A-module}.
Proof. Use the Horseshoe Lemma. O

Similarly, let inj.dim(M) be the minimal j > 0 such that there exists an injec-
tive resolution (I;,d;); of M with I; = 0, if such a minimum exists, and define
inj. dim(M) = oo, otherwise.

We call inj. dim(M) the injective dimension of M.

Theorem 28.2 (No loop conjecture). Let A be a finite-dimensional K -algebra. If
Ext’ (S, 9) # 0 for some simple A-module S, then gl. dim(A) = oo.

Conjecture 28.3 (Strong no loop conjecture). Let A be a finite-dimensional K-
algebra. If Ext'y(S,S) # 0 for some simple A-module S, then proj.dim(S) = oo.

28.2. Hereditary algebras. A K-algebra A is hereditary if gl. dim(A) < 1.
28.3. Selfinjective algebras.

28.4. Finitistic dimension. For an algebra A let
fin.dim(A) := sup{proj.dim(M) | M € mod(A), proj. dim(M) < oo}
be the finitistic dimension of A. The following conjecture is unsolved for several

decades and remains wide open:

Conjecture 28.4 (Finitistic dimension conjecture). If A is finite-dimensional, then

fin.dim(A) < 0.

28.5. Representation dimension. The representation dimension of a finite-
dimensional K-algebra A is the infimum over all gl. dim(C') where C is a generator-
cogenerator of A, i.e. each indecomposable projective module and each indecom-
posable injective module occurs (up to isomorphism) as a direct summand of C.

Theorem 28.5 (Auslander). For a finite-dimensional K-algebra A the following
hold:

(i) rep.dim(A) = 0 if and only if A is semisimple;
(ii) rep.dim(A) # 1;
(iii) rep.dim(A) = 2 if and only if A is representation-finite, but not semisimple.
Theorem 28.6 (Iyama). If A is a finite-dimensional algebra, then rep.dim(A) < oo.

Theorem 28.7 (Rouquier). For eachn > 3 there exists a finite-dimensional algebra
A with rep.dim(A) = n.
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28.6. Dominant dimension. dominant dimension of A

28.7. Auslander algebras. Let A be a finite-dimensional representation-finite K-
algebra. The Auslander algebra of A is defined as End(M) where M is the
direct sum of a complete set of representatives of isomorphism classes of the inde-
composable A-modules.

Theorem 28.8 (Auslander).

28.8. Gorenstein algebras.

29. Tensor products, adjunction formulas and Tor-functors

29.1. Tensor products of modules. Let A be a K-algebra. Let X be an A°P-
module, and let Y be an A-module. Recall that X can be seen as a right A-module
as well. For z € X and a € A we denote the action of A°? and A on X by axx = z-a.

By V(X,Y) we denote a K-vector space with basis
XxY={(z,y)|zre X,ye Y}

Let R(X,Y’) be the subspace of V(X,Y') which is generated by all vectors of the
form

(1) ((z+2"),y) = (v,y) — (2", y),
(2) (z,(y+¥)) — (2,y) — (2,9),
(3) (m y) — (z,ay),
(4) Mz,y) — (A\z,9).

where . € X, y €Y, a € Aand A\ € K. The vector space
X®aY =V(X,)Y)/R(X,Y)

is the tensor product of X, and 4Y. The elements z in X ®4 Y are of the form

Z T @ Yi
i=1

where z ®y = (z,y) + R(X,Y). But note that this expression of z is in general not
unique.

Warning

From here on there are only fragments, incomplete proofs or no proofs
at all, typos, wrong statements and other horrible things...
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A map #: X xY — V where V is a vector space is called balanced if for all
r, 2 € X, y,y €Y, a € Aand X € K the following hold:

(1) Bz +2',y) = B(z,y) + B2, y),
(2) Bz, y +y') = Bz, y) + Bz, y),
(3) Blza,y) = Bz, ay),
(4) B(Az,y) = A\B(z,y).

In particular, a balanced map is K-bilinear.

For example, the map
w: X xY —=X Xa Y

defined by (z,y) — x®uy is balanced. This map has the following universal property:

Lemma 29.1. For each balanced map f: X XY — V there exists a unique K-linear
map v: X @Y — V with f =vyouw.

XxY —=Xe,Y

Furthermore, this property characterizes X @Y up to isomorphism.

Proof. We can extend (§ and w (uniquely) to K-linear maps 3': V(X,Y) — V and
Wi V(XY) - X ®4 Y, respectively.  We have R(X,Y) C Ker(f'), since 3 is
balanced. Let ¢: R(X,Y) — Ker(#') be the inclusion map. Now it follows easily
that there is a unique K-linear map v: X ®4Y — V with § = yow and ' = yow'.

0—=RX,)Y)—V(X,Y) > X @4V —> 0

|
| | ¥
’ A
0 —— Ker(f) —= V(X,Y) 2~y 0

g

Let A, B, C be K-algebras, and let 4 Xpg be an A-B°P-bimodule and gYs a B-C°P-
bimodule. We claim that X ® gY is an A-C°P-bimodule with the bimodule structure
defined by

a(r ®y) = (ax) @y,

(z@y)e=12® (ye)
where a € A, c € C and 1 ®y € X ®g Y: One has to check that everything is

well defined. It is clear that we obtain an A-module structure and a C°P-module
structure. Furthermore, we have

(a(z ®y))e = ((az) @ y)e = (azx) @ (ye) = a((z @ y)c).

Thus we get a bimodule structure on X ®p Y.
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Lemma 29.2. For any A-module M, we have
AAa@a M =M

as A-modules.

Proof. The A-module homomorphisms 7: A® s M — M, a®m — am and ¢: M —
A®4 M, m— 1®m are mutual inverses. U

Let f: X4 — X and g: 4Y — 4Y’ be homomorphisms. Then the map f: X xY —
X' ®4 Y’ defined by (z,y) — f(x) ® g(y) is balanced. Thus there exists a unique
K-linear map

[®g: X®@4Y - X @Y

with (f @ g)(z @ y) = f(z) @ g(y).
XxY—=X®,1Y
lﬁ /-//f®9
XI ®A Y/
Now let f = 1x, and let g be as above. We obtain a K-linear map
X®Rg=1y®g: X®@,4Y - X®,Y

Lemma 29.3. (i) For any right A-module X4 we get an additive right exact

functor
X ®4 —: Mod(A) — Mod(K)

defined by Y — X @, Y and g — X ®g.
(ii) For any A-module oY we get an additive right exact functor

—®4Y: Mod(A) — Mod(K)
defined by X — X @, Y and f— fRY.

Proof. We just prove (i) and leave (ii) as an exercise. Clearly, X ®4 — is a functor:
We have X ®4 (go f) = (X ®49)0 (X ®a f). In particular, X @4 1y = 1xg,v.
Additivity:
(X®a(f+9)z@y) =2 (f+9g
=z©(f(y) +9())
= (@@ fly)+(xe9(y)
=XefNHzey) +

~—
—
<

~—

Right exactness:



188 CLAUS MICHAEL RINGEL AND JAN SCHROER

Lemma 29.4. (i) Let X4 be a right A-module. If (Y;); is a family of A-modules,

then
X ®a4 <@Y> =~ (D(X @4 V)

where an isomorphism is defined by x ® (y;); — (z ® y;);.
(ii) Let oY be an A-module. If (X;); is a family of right A-modules, then

(@ X@-> 1Y = PXi@aY)

where an isomorphism is defined by (r;); @ y — (x; @ y);.

Proof. Again, we just prove (i).

U

Corollary 29.5. If P is a projective right A-module and 4Q a projective left A-
module, then

P ®4 —: Mod(A) — Mod(K)
and

— ®4 Q: Mod(A°?) — Mod(K)

are exact functor.

Proof. We know that A ® 4 — is exact. It follows that @Z A ®4 — is exact. Since
Py®Qa =P, A for some Qa, we use the additivity of ® and get that Py ® — is
exact as well. The exactness of — ®4 @ is proved in the same way. O

Lemma 29.6. Let A be a finite-dimensional algebra, and let X 4 be a right A-module.
If X ®4 — 1is exact, then X 4 is projective.

Proof. Exercise. 0

29.2. Adjoint functors. Let A and B be categories, and let F': A — B and
G: B — A be functors. If

Hompg(F(X),Y)) = Homu(X,G(Y))

for all X € A and Y € B and if this isomorphism is “natural”, then F' and G are
adjoint functors. One calls F' the left adjoint of G, and G is the right adjoint
of F.

Theorem 29.7 (Adjunction formula). Let A and B be K -algebras, let 4 X g be an A-
BP-bimodule, gY a B-module and 47 an A-module. Then there is an isomorphism

Adj :=n: Homu(X ®pY,Z) — Homp(Y,Homa(X, 7))
where n is defined by n(f)(y)(x) :== f(z®y). Furthermore, n is “natural in X,Y, Z”.
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Proof. ...
O

29.3. Tor. We will not need any Tor-functors, but at least we will define them and
acknowledge their existence.

Let P, be a projective resolution of ,Y, and let X 4 be a right A-module. This yields
a complex

= XQAP - X®a P —=X®40—---
For n € Z define
Tor (X,Y) := H,(X @4 P,).

Let P, be a projective resolution of a right A-module X 4. Then one can show that
for all A-modules 4Y we have

TorX(X,Y) = Hy(Pa®4 Y).

Similarly as for Ext!,(—, —) one can prove that Tor? (X,Y) does not depend on the
choice of the projective resolutlon of Y.

The following hold:
(i
(ii
(iii

(iv

) or( Y) =0 for all n < 0;

) Torj (X Y)=X®4Y;

) If 4P is projective, then Tor’ (X, P) = 0 for all n > 1.
)

Again, similarly as for Ext!(—, —) we get long exact Tor-sequences:

(i) Let
n:0— X)) - X4— X4 —0

be a short exact sequence of right A-modules. For every A-module 4Y this induces

an exact sequence

Tord (X', V) — Tor}(X,Y) — Tord (X", Y)

Tors (X",Y)

X/®AY X@AY X”@AY—)O
(ii) Let

n:0— 4Y — Y — ,Y" -0
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be a short exact sequence of A-modules. For every right A-module X4 this induces

an exact sequence

Tort (X, Y") — Tor(X,Y) — Torf (X, Y")

Tord (X, Y")

X®4Y'

X®a4Y

X ®A Y// - o O
Note that the bifunctor Tor?(—, —) is covariant in both arguments. This is not true
for Ext’(—, —).

Theorem 29.8 (General adjunction formula). Let A and B be K-algebras, let 4 Xp

be an A-B°P-bimodule, gY a B-module and sZ an A-module. If 47 is injective,
then there is an isomorphism

Homy (Tor?(X,Y), Z) = Ext’,(Y, Homa(X, Z))
for alln > 1.

>k >k ok ok ok sk ok ok ok kR ok Sk ok Sk ok sk sk sk sk sk sk sk sk sk oskoskokok ok ok ok skosk sk sk skokokskokokok skoskoskosk skok sk skok skoskoskoskoskokoskokokoskoskok skoskoskoskokokok



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 191

Part 6. Homological Algebra II: Auslander-Reiten Theory
30. Irreducible homomorphisms and Auslander-Reiten sequences

30.1. Irreducible homomorphisms. Let M be a module category. A homomor-
phism f: V — W in M is irreducible (in M) if the following hold:

e f is not a split monomorphism;

e f is not a split epimorphism;

e For any factorization f = fof; in M, f; is a split monomorphism or f; is a
split epimorphism.

Note that any homomorphism f: V — W has many factorizations f = f,f; with
f1 a split monomorphism or fy a split epimorphism: Let C' be any module in M,
and let g: V. — C and h: C' — W be arbitrary homomorphisms. Define f; =
1,0: V=VeaCand fo = [f,h]: VO C — W. Then f = fof; with f; a split

monomorphism.

Similarly, define f; = *[f,g]: V — W @& C and f; = [1,0]: W & C — W. Then
f = f5f] with f} a split epimorphism. We could even factorize f as f = fJ f]’ with
" a split monomorphism and f5 a split epimorphism: Take f; = *[1,1,0]: V —

VoVeWand ff =[0,f,1: VaVeW — W.

Thus the main point is that the third condition in the above definition applies to
ALL factorizations f = fof; of f.

The notion of an irreducible homomorphism makes only sense if we talk about a
certain fixed module category M.

Examples: Let V and W be non-zero modules in a module category M. Examples
of homomorphisms which are NOT irreducible are 0 - 0,0 - W,V — 0,0: V —
W, 1ly: V. — V. (Recall that the submodule 0 of a module is always a direct
summand.)

Lemma 30.1. Assume that M is a module category which is closed under images
(i.e. if f: U — V is a homomorphism in M, then Im(f) is in M). Then every
irreducible homomorphism in M is either injective or surjective.

Proof. Assume that f: U — V is a homomorphism in M which is neither injective
nor surjective, and let f = fo f; where fi: U — Im(f) is the homomorphism defined
by fi(u) = f(u) for all w € U, and fy: Im(f) — V is the inclusion homomorphism.
Then f; is not a split monomorphism (it is not even injective), and fs is not a split
epimorphism (it is not even surjective). O

30.2. Auslander-Reiten sequences and Auslander-Reiten quivers. Again let
M be a module category. An exact sequence

0-ULvELwoo
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with U, V,W € M is an Auslander-Reiten sequence in M if the following hold:

(i) The homomorphisms f and g are irreducible in M;
(ii) Both modules U and W are indecomposable.

(We will see that for many module cateogories assumption (ii) is not necessary: If M
is closed under kernels of surjective homomorphisms and f: U — V is an injective
homomorphism which is irreducible in M, then Cok( f) is indecomposable. Similarly,
if M is closed under cokernels of injective homomorphisms and ¢g: V' — W is a
surjective homomorphism which is irreducible in M, then Ker(g) is indecomposable.)

Let (I'g,T'1) and (I'o, I'z) be two “quivers” with the same set Iy of vertices, but with
disjoint sets I'; and I'y of arrows. Then (I'g,I'1, ') is called a biquiver. The arrows
in ['; are the 1-arrows and the arrows in I's the 2-arrows. To distinguish these two
types of arrows, we usually draw dotted arrows for the 2-arrows. (Thus a biquiver
' is just an oriented graph with two types of arrows: The set of vertices is denoted
by Ty, the “l-arrows” are denoted by I'; and the “2-arrows” by I's.)

Let M be a module category, which is closed under direct summands. Then the
Auslander-Reiten quiver of M is a biquiver I'y; which is defined as follows: The
vertices are the isomorphism classes of indecomposable modules in M. For a module
V' we often write [V] for its isomorphism class. There is a l-arrow [V] — [V] if
and only if there exists an irreducible homomorphism V' — W in M, and there is a
2-arrow from [W] to [U] if and only if there exists an Auslander-Reiten sequence

0—-U—-=V—-=W—=0.

The Auslander-Reiten quiver is an important tool which helps to understand the
structure of a given module category.

Later we will modify the above definition of an Auslander-Reiten quiver and also
allow more than one arrow between two given vertices.

30.3. Properties of irreducible homomorphisms. We want to study irreducible
homomorphisms in a module category M in more detail.

For this we assume that M is closed under kernels of surjective homomorphisms,
that is for every surjective homomorphism g: V' — W in M, the kernel Ker(g)
belongs to M. In particular, this implies the following: If g;: Vi — W, go: Vo — W
are in M, and if at least one of these homomorphisms g; is surjective, then also the
pullback of (g1, g2) is in M.

Lemma 30.2 (Bottleneck Lemma). Let M be a module category which is closed
under kernels of surjective homomorphisms. Let

0-ULvELSw_oo

be a short exact sequence in M, and assume that f is irreducible in M. If g": V' —
W is any homomorphism, then there exists a homomorphism by: V' — V with
gby = ¢', or there exists a homomorphism by: V. — V' with ¢'by = g.
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V! or V!
bl//l' bg/fl/
s 9 . g
VZ /
0—=U 2oy 2w ——0 0—=U 2oy 2w ——0

The name “bottleneck” is motivated by the following: Any homomorphism with
target W either factors through g or g factors through it. So everything has to pass
through the “bottleneck” g.

Proof. The induced sequence (¢')*(f,g) looks as follows:

fi g1

0 U P Vv’ 0

lg,

0 U V w 0

The module P is the pullback of (g, ¢’), thus P belongs to M. We obtain a factor-
ization f = fof; in M. By our assumption, f is irreducible in M, thus f; is a split
monomorphism or f5 is a split epimorphism. In the second case, there exists some
f5: V' — P such that fsf) = 1y,. Therefore for by := g1 f} we get

gbr=dgfs=gffs=glv =g
On the other hand, if f; is a split monomorphism, then the short exact sequence
(f1,91) splits, and it follows that g; is a split epimorphism. We obtain a homomor-
phism ¢} : V' — P with g1g] = 1y.. For by := fog] we get
g =gy =9dng =gl =4¢
O
Corollary 30.3. Let M be a module category which is closed under kernels of
surjective homomorphisms. If

0-ULvELSwoo

s a short exact sequence in M with f irreducible in M, then W is indecomposable.

Proof. Let W = W, @ Wy, and let 1;: W; — W be the inclusions. We assume that
Wi # 0 # W5. Thus none of these two inclusions is surjective. By the Bottleneck
Lemma, there exist homomorphisms ¢;: W; — V with g¢; = ;. (If there were
homomorphisms ¢;: V' — W, with (;¢, = g, then g and therefore also ¢; would be
surjective, a contradiction.)

Let C' = 1Im(c;) + Im(cg) € V. We have Im(f)NC = 0: If f(u) = c1(wy) + c2(wy)
for some u € U and w; € W;, then

0=gf(u) =ger(wr) + gea(wz) = 11 (wr) + t2(w2)

and therefore w; = 0 = ws.
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On the other hand, we have Im(f) +C = V: If v € V|, then g(v) = 1 (w]) + t2(w})
for some w, € W;. This implies g(v) = gei(w)) 4+ gea(wh), thus v — ¢y (w]) — ca(w))
belongs to Ker(g) and therefore to Im(f). If we write this element in the form f(u’)
for some v’ € U, then v = f(u') + ¢1(w)) + co(w)).

Altogether, we see that Im(f) is a direct summand of V', a contradiction since we
assumed f to be irreducible. O

Corollary 30.4. Let M be a module category which s closed under kernels of
surjective homomorphisms. If

0-U, v, woo
0=, v, 2w o

are two Auslander-Reiten sequences in M, then there exists a commutative diagram

0 Uy Vi w 0

0 Uy —2>Vy w 0

with a and b isomorphisms.

Proof. Since f is irreducible, there exists a homomorphism b: V; — V5 with g1 = gob
or a homomorphism ¢': Vo — V; with go = ¢;b'. For reasons of symmetry, it
is enough to consider only one of these cases. Let us assume that there exists
b: Vi — Vo with g1 = ¢gob. This implies the existence of a homomorphism a: U; — U,
with bf; = foa. (Since gobf; = 0, we can factorize bf; through the kernel of gs.)
Thus we constructed already a commutative diagram as in the statement of the
corollary.

It remains to show that a and b are isomorphisms: Since g; is irreducible, and
since gy is not a split epimorphism, the equality ¢, = ¢2b implies that b is a split
monomorphism. Thus there is some b': Vo, — V; with b = 1y,. We have V' foa =
b'bfi = fi, and since f; is irreducible, a is a split monomorphism or ¥ f5 is a split
epimorphism. Assume ' fy: Uy — V; is a split epimorphism. We know that U, is
indecomposable and that V; # 0, thus ¢’ f; has to be an isomorphism. This implies
that f5 is a split monomorphism, a contradiction. So we conclude that a: Uy — Uy
is a split monomorphism. Now U, is indecomposable and U; # 0, thus a is an
isomorphism. This implies that b also has to be an isomorphism. 0

Corollary 30.5. Let M be a module category which is closed under direct summands
and under kernels of surjective homomorphisms. Let

0-ULvELSwoo

be an Auslander-Reiten sequence in M. If Y is a module in M which can be writ-
ten as a finite direct sum of indecomposable modules, and if h:' Y — W is a ho-
momorphism which is not a split epimorphism, then there exists a homomorphism

n:Y — V with gh' = h.
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Proof. We first assume that Y is indecomposable. By the Bottleneck Lemma, instead
of A’ there could exist a homomorphism ¢': V' — Y with g = hg’. But g is irreducible
and h is not a split epimorphism. Thus ¢’ must be a split monomorphism. Since
Y is indecomposable and V' # 0, this implies that ¢’ is an isomorphism. Thus

h=g(g)"

Now let YV = EBEZlYZ- with Y, indecomposable for all i. As usual let +,: Y, —
@le Y; be the inclusion homomorphisms. Set h; = ht;. By our assumptions, h is
not a split epimorphism, thus the same is true for h;. Thus we know that there
are homomorphisms h.:Y; — V with gh, = h;. Then k' = [h],..., h}] satisfies
gh’ = h. O

Now we prove the converse of the Bottleneck Lemma (but note the different assump-
tion on M):

Lemma 30.6 (Converse Bottleneck Lemma). Let M be a module category which is
closed under cokernels of injective homomorphisms. Let

0-ULvELwoo

be a non-split short exact sequence in M such that the following hold: For every
homomorphism ¢': V! — W in M there exists a homomorphism by: V' — V with
gb1 = ¢, or there exists a homomorphism by: V. — V' with g'bs = g. Then it follows
that f is irreducible in M.

Proof. Let f = fyf1 be a factorization of f in M. Thus f;: U — V' for some V' in
M. The injectivity of f implies that f; is injective as well. Let g;: V! — W' be the
cokernel map of f;. By assumption W’ belongs to M. Since gfof; = gf = 0, we can
factorize gfs through g;. Thus we obtain ¢': W’ — W with ¢'g; = gfs. Altogether
we constructed the following commutative diagram:

It follows that the pair (f2, g1) is the pullback of (g, ¢’). Our assumption implies that
for ¢’ there exists a homomorphism b;: W' — V with gb; = ¢’ or a homomorphism
by: V — W' with ¢'by = g.

If by exists with gb; = ¢’ = ¢’'1y-, then the pullback property yields a homomorphism
h: W' — V" with by = foh and 1y, = gih. In particular we see that g; is a split
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epimorphism, and therefore f; is a split monomorphism.

h”/\
/

In the second case, if by exists with gly = g = g’bg, we obtain a homomorphism
h:V — V' with 1y = foh/ and by = g1h’. Thus f5 is a split epimorphism.

30.4. Dual statements. Let us formulate the corresponding dual statements:

Lemma 30.7 (Bottleneck Lemma). Let M be a module category which is closed
under cokernels of injective homomorphisms. Let

0—-ULvLw—o

be a short exact sequence in M, and assume that g is irreducible in M. If f': U —
V' is any homomorphism, then there exists a homomorphism ai: V — V' with
ar f = f', or there exists a homomorphism as: V' — V with asf' = f.

0 U V W 0 or 0 U V W 0
7 k4
|, |
¥ s/
%4 v’

Corollary 30.8. Let M be a module category which is closed under cokernels of
injective homomorphisms. If

0-ULvLwoo

1s a short exact sequence in M, and if g is irreducible in M, then U is indecompos-

able.

Corollary 30.9. Let M be a module category which is closed under cokernels of
injective homomorphisms. If

OHU LS W, —0
O—>U V2—>W2—>O
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are two Auslander-Reiten sequences in M, then there exists a commutative diagram

0 U f1 V1 g1 A 0
P g2
0 U Vs Ws 0

with b and ¢ isomorphisms.

Corollary 30.10. Let M be a module category which is closed under direct sum-
mands and under cokernels of injective homomorphisms. Let

0-ULvELwoo

be an Auslander-Reiten sequence in M. If X is a module in M which can be
written as a finite direct sum of indecomposable modules, and if h: U — X s a ho-
momorphism which is not a split monomorphism, then there exists a homomorphism
h:V — X with h' f = h.

Lemma 30.11 (Converse Bottleneck Lemma). Let M be a module category which
1s closed under kernels of surjective homomorphisms. Let

0-ULvLw—o

be a non-split short exact sequence in M such that the following hold: For every
homomorphism f': U — V' in M there exists a homomorphism ay: V — V' with
arf = [, or there exists a homomorphism as: V' — V with asf’ = f. Then it
follows that g is irreducible in M.

The proofs of these dual statements are an exercise.

30.5. Examples: Irreducible maps in A//*%. In this section let
M — Nf.d.
be the module category of all 1-modules (V,¢) with V finite-dimensional and ¢

nilpotent.

Recall that we denoted the indecomposable modules in M by N(n) where n > 1.
Let us also fix basis vectors ey, ..., e, of N(n) = (V,¢) such that ¢(e;) = e;_; for
2<i<nand ¢(e)=0.

By
tn: N(n) = N(n+1
we denote the canonical inclusion (defined by ¢, (e,) = €,), and let
Tni1: N(n+1) — N(n)
be the canonical projection (defined by 7, 11(€n11) = €,). For n >t let
Tnt = T41 O+ O i1 0 Myt N(n) — N(1),
and for t < m set

Ltm i= Lm—1 00 tgy1 042 N(t) — N(m).
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Finally, let 7, = tnn = Inem)-

Lemma 30.12. For m,n > 1 the following hold:

(i) Ewvery injective homomorphism N(n) — N(n + 1) is irreducible (in M);
(ii) Every surjective homomorphism N(n + 1) — N(n) is irreducible (in M ).
(iii) If f: N(n) — N(m) is irreducible (in M), then either m =n+1 orn =

m + 1, and f is either injective or surjective.

Proof. Let h: N(n) — N(n+1) be an injective homomorphism. Clearly, & is neither
a split monomorphism nor a split epimorphism. Let h = gf where f: N(n) — N())
and g: N(A\) — N(n + 1) are homomorphisms with A\ = (A,...,\;) a partition.
(Recall that the isomorphism classes of objects in M are parametrized by partitions
of natural numbers.) Thus

F="f, . 69N

and
g_gla'-'agt @N 1 —>NTL+].)

with f;: N(n) — N(\;) and g;: N(\;) — N(n + 1) homomorphisms and
t
h=gf=> gif
i=1

Since h is injective, we have h(e;) # 0. Thus there exists some i with g;fi(e1) # 0.
This implies that g; f; is injective, and therefore f; is injective.

If \; > n+1, then g;(e;) = 0, a contradiction. (Note that g;fi(e;) # 0 implies

gi(e1) # 0).) Thus J\; is either n or n+ 1. If \; = n, then f; is an isomorphism, if

Ai =n+ 1, then g; is an isomorphism. In the first case, set
f'=10,...,0,£710,...,0]: N(A\) — N(n).

We get f'f = 1n(n), thus f is a split monomorphism.

In the second case, set
g ="0,...,0,g;,0,...,0]: N(n+1) — N(\).

It follows that gg' = 1n(n+1), s0 g is a split epimorphism. This proves part (i). Part
(ii) is proved similarly.

Next, let f: N(n) — N(m) be an irreducible homomorphism. We proved already
before that every irreducible homomorphism has to be either injective or surjective.
If m > n+ 2, then f factors through N(n+ 1) as f = fof; where f; is injective but
not split, and f5 is not surjective, a contradiction. Similarly, if m < n — 2, then f
factors through N(n — 1) as f = fof1 where f is not injective, and f, is surjective
but not split, again a contradiction. This proves (iii). O
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Lemma 30.13. For m,n > 1 the following hold:

e Fwery non-invertible homomorphism N(n) — N(m) in M is a linear com-
bination of compositions of irreducible homomorphisms;

o Every endomorphism N(n) — N(n) in M is a linear combination of 1y
and of compositions of irreducible homomorphisms.

Proof. Let f: N(n) — N(m) be a homomorphism with

t

flen) = Zaiei

i=1
with a; # 0. It follows that n > ¢ and m > ¢, and dim Im(f) = t. Let
g =tlmOmnt: N(n) — N(m).
Now it is easy to check that
dim Im(f — ayg9) <t —1.

We see that f — a;g is not an isomorphism, thus by induction assumption it is a
linear combination of compositions of irreducible homomorphisms in M. Also, ¢ is
either 1n(, (in case n = m) or it is a composition of irreducible homomorphisms.
Thus f = a;g + (f — a¢g) is of the required form. O

Thus we determined all irreducible homomorphisms between indecomposable mod-
ules in M. So we know how the 1-arrows of the Auslander-Reiten quiver of M look
like. We still have to determine the Auslander-Reiten sequences in M in order to
get the 2-arrows as well.

30.6. Exercises. Use the Converse Bottleneck Lemma to show that for n > 1 the
short exact sequence

(7]

0 — N(n) N(ﬂ%—l)@N(n—l)MN(n)HO

is an Auslander-Reiten sequence in N4, (We set N(0) = 0.)

31. Auslander-Reiten Theory

31.1. The transpose of a module. ...
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31.2. The Auslander-Reiten formula. An A-module M is finitely presented
if there exists an exact sequence

PLPLM—0

with Py and P; are finitely generated projective A-modules. Our aim is to prove the
following result:

Theorem 31.1 (Auslander-Reiten formula). For a finitely presented A-module M
we have
Exty (N, 7(M)) = DHom , (M, N).

Before we can prove Theorem 31.1 we need some preparatory results:

Lemma 31.2. Let X — Y 5 Z — 0 be exact, and let

P

X Y A 0

o, T

XI—>Y/—9>ZI

be a commutative diagram where &, and &, are isomorphisms and Im(f) C Ker(g).
Then

Ker(g)/Im(f) = Ker(¢).

Proof. ...

t

Lemma 31.3. Let f: X — Y be a homomorphism, and let u:' Y — Z be a
monomorphism. Then

Ker(Homy (N, f)) = Ker(Hom4 (N, u o f)).

Proof. Let h: N — X be a homomorphism. Then h € Ker(Homu4 (N, f)) if and only
if foh = 0. This is equivalent to u o f o h = 0, since u is injective. Furthermore
uo foh=0if and only if h € Ker(Homyu(N,uo f)). O

Let A be a K-algebra, and let X be an A-module. Set

X" :=Homu(X, 44).
Observe that X* is a right A-module.
For an A-module Y define

Nxy: X ®4Y — Homuy(X,Y)

by (o ® y)(z) := a(z) - y. In other words

nxy(a®y) = pyoa
where p, is the right multiplication with y.

X5 A%y
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Clearly, X* is a right A-module: For a € X* and a € A set (- a)(z) := a(z) - a.
The map X* x Y — Homy(X,Y), (o,y) — p, o « is bilinear, and we have
(aa,y) = py o (aa)
(e, ay) — pay o .
We also know that
(py © (aa))(x) = py(afz) - a) = a(z) - ay = (pay © @) ().
In other words, the map (o, y) — p, o a is balanced.

X*xY —=X*,4Y

l nxy

Homu(X,Y)

Lemma 31.4. The image of nxy consists of the homomorphisms X — Y which
factor through finitely generated projective modules.

Proof. We have
nxy (Z a; & ?/z) = Z nxy (0 @ yi)
i=1 i=1
= Z Py; © .
i=1

H

X @AA [Py1 7777 Pyn} Y
i=1

To prove the other direction, let P be a finitely generated projective module, and
assume h = g o f for some homomorphisms h: X - Y, f: X - Pandg: P — Y.
There exists a module C' such that P @& C' is a free module of finite rank. Thus
without loss of generality we can assume that P is free of finite rank. Let ey,... e,
be a free generating set of P. Then f(z) = >, a;(z)e; for some «;(z) € A. This
defines some homomorphisms «a;: X — 4A. Set y; := g(e;). It follows that

This finishes the proof. O
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Lemma 31.5. Assume that X is finitely generated, and let f: X — Y be a homo-
morphism. Then the following are equivalent:

(i) f factors through a projective module;
(ii) f factors through a finitely generated projective module;
(iii) f factors through a free module of finite rank.

Proof. Exercise. O

Let Homu (X, Y)p := Pa(X,Y) be the set of homomorphisms X — Y which factor
through a projective module. Clearly, this is a subspace of Hom4(X,Y"). As before,
define

Hom ,(X,Y) := Homa(X,Y)/Pa(X,Y).

Lemma 31.6. If X is a finitely generated projective A-module, then nxy s bijective.

Proof. 1t is enough to show that
’I]AA7y2 (AA)* ®A Y — HOIHA(AA, Y)
is bijective. (Note that nxqxy is bijective if and only if 1xy and 7xy are bijective.)

Recall that (AA)* = HOIHA(AA, AA) = AA, AA XA Y = AY and HOIHA(AA, AY) =
AY.

Thus we have isomorphisms A4 ®4Y — Y, a®y — a(l)y and Y — Homyu(44,Y),
y + p,. Composing these yields a map a ® y — pa(1)y = py © . We have

Payy(a) = aa(l)y = a(a)y = (p, o a)(a).

31.3. The Nakayama functor. Let
v: Mod(A) — Mod(A)
be the Nakayama functor defined by
v(X) :=D(X") = Homg (X", K) = Homg (Homyu (X, 4A4), K).
Since X* is a right A-module, we know that v(X) is an A-module.

Lemma 31.7. The functor v is right exact, and it maps finitely generated projective
modules to injective modules.

Proof. We know that for all modules N the functor Homy(—, V) is left exact. It is
also clear that D is contravariant and exact. Thus v is right exact.

Now let P be finitely generated projective. It follows that D(P*) is injective: With-
out loss of generality assume P = 4A. Then P* = A4 and Homg (Aa, K) is injec-
tive. U

Set v7! := Homyu(D(A4), —).
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31.4. Proof of the Auslander-Reiten formula. Now we can prove Theorem
31.1: Let M be a finitely presented module. Thus there exists an exact sequence

PE5PLM—-0

where Fy and P, are finitely generated projective modules. Applying v yields an
exact sequence

(P 22 u(Py) XY y(M) — 0
where v(Fy) and v(Py) are now injective modules. Define

T(M) := Ker(v(p)).

We obtain an exact sequence
0 — (M) — v(P) 22 v(py) X2 vy — o.

Warning: 7(M) is not uniquely determined by M, since it depends on the chosen
projective presentation of M. But if Mod(A) has projective covers, then we take a
minimal projective presentation of M. In this case, 7(M) is uniquely determined
up to isomorphism.

Notation: If X 5 Y % Z are homomorphisms with Im(f) C Ker(g), then set

HX Ly L 7):=Ker(g)/ Im(f).

We know that Ext! (N, 7(M)) is equal to

Hom 4 (va(p)
_—

L. Homa(N, v(Ry))

Hom 4 (va(q)
_—

H (HomA(N, v(P,)) ), Hom (N, U<M))) .

Let u: v(M) — I be a monomorphism where [ is injective. We get
Ext! (N, 7(M)) = Ker(Hom4 (N, v(q)))/ Im(Hom4 (N, v(p)))
= Ker(Hom (N, u) o Homy4 (N, v(q)))/ Im(Hom (N, v(p))).
For the last equality we used Lemma 31.3.

Define a map

Exy :=i0D(nxy: DHomy(X,Y) — Homa (Y, v(X))

by
D Homa(X,Y) —) _p(x* @, Y) Homy (X* @4 Y, K)
Hom (Y, Homg (X*, K))
Exy

Hom (Y, v(X))
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where ¢ := Adj is the isomorphism given by the adjunction formula Theorem 29.7.
We know by Lemma 31.6 that {xy is bijective, provided X is finitely generated
projective.

Using this, we obtain a commutative diagram
DHomu(Py, N) —— D Homu (P, N) —— D Homus (M, N) — 0
o o o
p: Homu (N, v(P;)) — Homa (N, v(Fy)) — Homu (N, v(M))

whose first row is exact and whose second row is a complex. This is based on the
facts that the functor D is exact, and the functor Hom(—, N) is left exact.

Thus we can apply Lemma 31.2 to this situation and obtain

H(p) = Ker(§un)
= Ker(D(nun))
= {a € DHomyu (M, N) | a(Im(nyn)) = 0}.

(If f: V — W is a K-linear map, then the kernel of f*: DW — DV consists of all
g: W — K such that go f = 0. This is equivalent to g(Im(f)) =0.)

Recall that
Eun = Adj o D(nun).
If M is finitely generated, then Lemma 31.4 and Lemma 31.5 yield that

Im(ny ) = Homa (M, N)p.
This implies
{a € DHomy (M, N) | a(Im(nyn)) = 0} = DHom (M, N).
This finishes the proof of Theorem 31.1.

The isomorphism
DHom 4 (M, N) — Ext! (N, 7(M))

is “natural in M and N”:

Let M be a finitely presented A-module, and let f: M — M’ be a homomorphism.
This yields a map

D Homy(f, N): DHomu(M, N) — D Homy(M', N)
and a homomorphism 7(f): 7(M) — 7(M'). Now one easily checks that the diagram
Ext! (N, 7(M)) =<—— DHom 4 (M, N)
lExt;(N,T(f)) LDHomA(f,N)
Ext! (N, 7(M")) <— DHom ,(M’, N)

commutes, and that Ext! (N, 7(f)) is uniquely determined by f.
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Similarly, if g: N — N’ is a homomorphism, we get a commutative diagram

Exty (N, 7(M)) <—— DHom, (M, N)
TExt;(g,T(M)) TDHo_mA(M,g)

Ext’(N', 7(M)) <— DHom , (M, N’)

Explicit construction of the isomorphism

¢rrn: DHom 4 (M, N) — Ext) (N, 7(M)).

205

31.5. Existence of Auslander-Reiten sequences. Now we use the Auslander-

Reiten formula to prove the existence of Auslander-Reiten sequences:

Let M = N be a finitely presented A-module, and assume that End4 (M) is a local

ring. We have End , (M) := Hom 4 (M, M) = End4(M)/I where

I:=Enda(M)p :={f € Enda(M) | f factors through a projective module}.

If M is projective, then Hom (M, M) = 0. Thus, assume M is not projective.
The identity 1,; does not factor through a projective module: If 1,; = g o f for
some homomorphisms f: M — P and g: P — M with P projective, then f is a
split monomorphism. Since M is indecomposable, it follows that M is projective, a

contradiction.

Note that End4(M)p is an ideal in End4(M). It follows that
Enda(M)p C rad(Enda(M)).

Thus we get a surjective homomorphism of rings
Hom (M, M) — Enda(M)/rad(Enda(M)).
Recall that End4(M)/rad(Ends(M)) is a skew field.

Set
U :={a € DEnd, (M) | a(rad(End 4(M))) = 0},

and let € be a non-zero element in U.

Now our isomorphism
¢arar: DHom 4 (M, M) — Extyy (M, 7(M))
sends ¢ to a non-split short exact sequence

00— (M) LY LMo

Let
0-xLyLz 0
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be a short exact sequence of A-modules. Then g is a right almost split homo-
morphism if for every homomorphism h: N — Z which is not a split epimorphism
there exists some hA': N — Y with go h' = h.

0 X Y A 0

Dually, f is a left almost split homomorphism if for every homomorphism
h: X — M which is not a split monomorphism there exists some h': Y — M with

Wof=h.

Now let
n:0—>T(M)i>Yi>M—>O.
be the short exact sequence we constructed above.

Lemma 31.8. g is a right almost split homomorphism.

Proof. Let h: N — M be a homomorphism, which is not a split epimorphism. We
have to show that there exists some h’': N — Y such that gh’ = h, or equivalently
that the induced short exact sequence h*(f, g) splits.

Since h is not a split epimorphism, the map
Hom (M, h): Homyu (M, N) — Homy (M, M)

defined by f — hf is not surjective: If hf = 1,;, then h is a split epimorphism, a
contradiction.

The induced map
Hom (M, h): Hom (M, N) — Hom 4(M, M)

is also not surjective, since its image is contained in rad(End ,(M)). We obtain a
commutative diagram

MM

DHom , (M, M) 224 xt), (M, ~(M)
lDHmnAmmh> lEXﬂthUWD
DHom (M, N) - Ext} (N, 7(M))
where ¢yrar(¢) =1 and DHom , (M, h)(¢) = 0. This implies Ext'y(h, 7(M))(n) = 0.

Note that the map Ext!,(h, 7(M)) sends a short exact sequence ) to the short exact
sequence h*(1)) induced by h via a pullback.
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So we get h*(n) = 0 for all h: N — M which are not split epimorphisms. In other
words, g is a right almost split morphism. O

Lemma 31.9. Let 0 - X LV % Z 0 bea non-split short exact sequence.
Assume that g is right almost split and that End 4(X) is a local ring. Then f is left
almost split.

Proof. Let h: X — X’ be a homomorphism which is not a split monomorphism.
Taking the pushout we obtain a commutative diagram

0 Xty 2oy
ool
v 0—x Loy Loz

whose rows are exact. Assume 1) does not split. Thus ¢’ is not a split epimorphism.

Since ¢ is right almost split, there exists some ¢”: Y’ — Y with go ¢’ = ¢'. It
follows that g(¢”f") = ¢'f' = 0.

0 X Y A 0

Since Im(f) = Ker(g) this implies ¢” f" = f f” for some homomorphism f”: X’ — X.
Thus
9(g"h) = (99" )" = g'h' = g.
In other words, g(¢”"h' — 1y) = 0. Again, since Im(f) = Ker(g), there exists some
p: Y — X with ¢"h/ — 1y = fp. This implies
ffl/h — gl/f/h

— g/lh/f

=(fp+1Iv)f

=fpf+f
and therefore f(f”h —pf — 1x) = 0. Since f is injective, f"h —pf —1x = 0. In
other words, 1x = f”h — pf. By assumption, End(X) is a local ring. So f"h
or pf is invertible in End4(X). Thus f is a split monomorphism or h is a split
monomorphism. In both cases, we have a contradiction. O

Recall the following result:

Lemma 31.10 (Fitting Lemma). Let M be a module of length m, and let h €
Enda(M). Then M = Im(h™) & Ker(h™).

A homomorphism ¢g: M — N is right minimal if all ~ € End4(M) with gh = ¢
are automorphisms. Dually, a homomorphism f: M — N is left minimal if all
h € End4s(N) with hf = f are automorphisms.
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Lemma 31.11. Let g: M — N be a homomorphism, and assume that M has
length m. Then there exists a decomposition M = My @ My with g(My) = 0, and
the restriction g: My — N is right minimal.

Proof. Let M = M; @ M,y with My C Ker(g) and Ms is of maximal length with this
property. If now My = M| ® M7 with M{ C Ker(g), then M & M, C Ker(g). Thus
M7 =0.

So without loss of generality assume that g(M’) # 0 for each non-zero direct sum-
mand M’ of M. Assume that gh = g for some h € End4(M).

By the Fitting Lemma we have M = Im(h™) & Ker(h™) for some m. If Ker(h™) #
0, then g(Ker(h™)) # 0, and therefore there exists some 0 # z € Ker(h™) with
g(x) # 0. We get g(x) = gh™(z) = 0, a contradiction. Thus Ker(h™) = 0. This
implies M = Im(h"™), which implies that h is surjective. It follows that h is an
isomorphism. O

Lemma 31.12. Let 0 = X LYV % Z = 0 be a non-split short exact sequence. If
X is indecomposable, then g is right minimal.

Proof. Without loss of generality we assume that f is an inclusion map. By Lemma
31.11 We have a decomposition Y = Y;®Y5 such that Y5 C Ker(g) and the restriction
g: Y1y — Z is right minimal. It follows that X = Ker(g) = (Ker(g) NY7) & Ya.

Case 1: Ker(g) NY; = 0. This implies X = Y5, thus f is a split monomorphism, a
contradiction since our sequence does not split.

Case 2: Y5 = 0. Then Y = Y] and the restriction ¢g: Y} — Z coincides with ¢g.

We leave it as an exercise to formulate and prove the dual statements of Lemma
31.11 and 31.12.

Theorem 31.13. Let
0-XLy%Lzo0

be a short exact sequence of A-modules. Then the following are equivalent:

(i) g is right almost split, and X is indecomposable;
(i) f us left almost split, and Z is indecomposable;
(iii) f and g are irreducible.

Proof. Use Skript 1, Cor. 11.5 and the dual statement Cor. 11.10 and
Skript 1, Lemma 11.6 (Converse Bottleneck Lemma) and the dual state-
ment Lemma 11.11. Furthermore, we need Skript 1, Cor. 11.3 and Cor.
11.8. O

31.6. Properties of 7, Tr and v.
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Lemma 31.14. For any indecomposable A-module M we have
v H (M) = Qo (M).
Proof. Let P, — Py — M — 0 be a minimal projective presentation of M. Thus we
get ab exact sequence
0— QM) —P % Py— M—0.
Applying v yields an exact sequence
0—717(M)—v(P) o), v(R).
Now we apply v~! and obtain an exact sequence
0—vi(r(M)— P 5P,

Here we use that v~ (v(P)) = P, which comes from the fact that v induces an equiv-
alence between the category of projective A-modules and the category of injective
A-modules. This implies v=1(7(M)) = Qy(M). O

Here is the dual statement:
Lemma 31.15. For any indecomposable A-module M we have
v(r7H(M)) = Dy(M).

Lemma 31.16. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) proj.dim(M) < 1;
(ii) For each injective A-module I we have Homu (I, 7(M)) = 0.

Proof. Clearly, proj. dim(M) < 1 if and only if Qy(M) = 0. By the Lemma above
this is equivalent to Homa(D(A4),7(M)) = 0. But we know that each indecom-
posable injective A-module is isomorphic to a direct summand of D(A4). (Let I be
an indecomposable injective A-module. Then D([) is an indecomposable projective
right A-module. It follows that D(7) is isomorphic to a direct summand of A 4. Thus
I =2 DD(I) is a direct summand of D(A4).) This finishes the proof. O

Here is the dual statement, which can be proved accordingly:

Lemma 31.17. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) inj. dim(M) < 1;
(i) For each projective A-module P we have Homy (771 (M), P) = 0.
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31.7. Properties of Auslander-Reiten sequences. Let A be a finite-dimensional
K-algebra. In this section, by a “module” we mean a finite-dimensional module. A
homomorphism f: X — Y is a source map for X if the following hold:

(i) f is not a split monomorphism;
(ii) For each homomorphism f’: X — Y which is not a split monomorphism
there exists a homomorphism f”: Y — Y’ with f' = " o f;

f
X —Y
/
f g
l A
YI

(iii) If A: Y — Y is a homomorphism with f = ho f, then h is an isomorphism.
X~y Dn
Dually, a homomorphism ¢g: Y — Z is a sink map for Z if the following hold:

()" g is not a split epimorphism;
(ii)" For each homomorphism ¢’: Y’ — Z which is not a split epimorphism there
exists a homomorphism ¢”: Y’ — Y with ¢’ = g o ¢”;

Y/

gll P /s l/ )
. 9

»

y —=7
(iii)* If h: Y — Y is a homomorphism with g = g o h, then h is an isomorphism.
(Y —>7
We know already the following facts:

o If
0-XxLyLz_0

is an Auslander-Reiten sequence, then f is a source map for X, and ¢ is a
sink map for Z.

e If X is an indecomposable module which is not injective, then there exists a
source map for X.

e If 7 is an indecomposable module which is not projective, then there exists
a sink map for Z.

Lemma 31.18. (i) If f: X — Y 1is a source map, then X is indecomposable;
(ii) If g: Y — Z is a sink map, then Z is indecomposable.

Proof. We just prove (i): Let X = X; @ X5 with X; # 0 # Xy, and let 7: X — X,
1 = 1,2 be the projection. Clearly, m; is not a split monomorphism, thus there exists
some ¢;Y — X; with g; o f = m;. This implies 1x = [m, mo]" = [g1,95] o f. Thus f
is a split monomorphism, a contradiction. O
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Lemma 31.19. Let P be an indecomposable projective module. Then the embedding
rad(P) — P

18 a sink map.

Proof. Denote the embedding rad(P) — P by g. Clearly, g is not a split epimor-
phism. This proves (i)*. Let ¢’: Y' — P be a homomorphism which is not a split
epimorphism. Since P is projective, we can conclude that ¢’ is not an epimorphism.
Thus Im(¢g’) C P which implies Im(g’) C rad(P). Here we use that P is a local
module. So we proved (ii)". Finally, assume g = gh for some h € End(rad(P)).
Since g is injective, this implies that h is the identity 1,.q(p). This proves (iii)*. O

Lemma 31.20. Let I be an indecomposable injective module. Then the projection

Q — Q/soc(Q)

1S @ source map.

Proof. Dualize the proof of Lemma 31.19. O

Corollary 31.21. There a source map and a sink map for every indecomposable
module.

Lemma 31.22. Let f: X — Y be a source map, and let f': X — Y’ be an arbitrary
homomorphism. Then the following are equivalent:

(i) There exists a homomorphism f": X — Y" and an isomorphism h:Y —
Y'®Y" such that the diagram

1l A

Y/ @ Y//

commutes.
(ii) f' is wrreducible or Y’ = 0.

Proof. (ii) = (i): If Y’ = 0, then choose f” = f. Thus, let f’ be irreducible. It
follows that f’ is not a split monomorphism. Thus there exists some h': Y — Y’
with [/ =h'f.

x Loy
P

2 h
Y/

Now f’is irreducible and f is not a split monomorphism. Thus A is a split epimor-
phism. Let Y” = Ker(h'). This is a direct summand of of Y. Let p: ¥ — Y” be the
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corresponding projection. We obtain a commutative diagram

T .y

m I

f Y/ D Y//

X

Clearly, [’I‘;] is an isomorphism. Now set f” :=pf.

(i) = (ii): Without loss of generality we assume h = 1. Thus f = [ }C/I/] X —
Y =Y ®Y”. We have to show: If Y #£ 0, then f’ is irreducible.

(a): f’is not a split monomorphism: Otherwise f would be a split monomorphism,
a contradiction.

(b): f"is not a split epimorphism: We know that Y’ # 0 and X is indecomposable.
If f"is a split epimorphism, we get that f’ is an isomorphism and therefore a split
monomorphism, a contradiction.

(c): Let f" = hg.

XLY’

%

There is a source map [J{///} : X = Y'@Y”. Assume g is not a split monomorphism.
Then there exists some [¢/, ¢"]: Y/ @ Y” such that the diagram

X ﬂ}y/ @ YI/

lg
A’}

C
commutes. Thus g = ¢'f" 4+ ¢” f”. It follows that the diagram

5
X {fﬁ} Y'aY”

o

Yay” 0 1

commutes. Since [ J{,/,] is left minimal, the map [hg' hgly”} is an automorphism. Thus
hg' is an automorphism. This implies that A is a split epimorphism. So we have
shown that f” is irreducible. O

Corollary 31.23. Let f: X — Y be a source map, and let h: Y — M be a split
epimorphism. Then ho f: X — M 1is irreducible.

Here is the dual statement which is proved accordingly:
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Lemma 31.24. Let g: Y — Z be a sink map, and let g': Y' — Z be an arbitrary
homomorphism. Then the following are equivalent:

(i) There exists a homomorphism ¢":Y" — Z and an isomorphism h:Y' @
Y" —Y such that the diagram

YI @ Y/I

it

Z

Y

commutes.
(ii) ¢ is irreducible or Y' = 0.

Corollary 31.25. Let g: Y — Z be a sink map, and let h: M — Y be a split
monomorphism. Then goh: M — Z is irreducible.

Here is again the (preliminary) definition of the Auslander-Reiten quiver I'4
of A: The vertices are the isomorphism classes of indecomposable A-modules, and
there is an arrow [X] — [Y] if and only if there exists an irreducible map X —
Y. Furthermore, we draw a dotted arrow [r(X)]<-—[X] for each non-projective
indecomposable A-module X.

A (connected) component of "4 is a full subquiver I' = (I'g, I';) of I'4 such that
the following hold:

(i) For each arrow [X] — [Y]in T4 with {[X], [Y]}NTy # 0 we have {[X],[Y]} C
Lo;
(i) If [X] and [Y] are vertices in I, then there exists a sequence

(X, [Xo], - [X])

of vertices in I with [X] = [X}], [Y] = [X.], and for each 1 <1i <¢—1 there
is an arrow [X;] — [X;y1] or an arrow [X; 1] — [X}].

Corollary 31.26. Let X — Y be a source map, and let Y = @2:1 Y™ where Y; is
indecomposable, n; > 1 and Y; 2Y; for all i # j. Then there are precisely t arrows
in T4 starting at [X], namely [X] — [Yi], 1 <i < t.

Lemma 31.27. A vertex [X] is a source in T 4 if and only if X is simple projective.

Proof. Assume P is a simple projective module. Then any non-zero homomorphism
X — P is a split epimorphism. So [P] has to be a source in I'y. Now assume P
is projective, but not simple. Then the embedding rad(P) — P is a non-zero sink
map. It follows that [P] cannot be a source in I'4. Finally, if Z is an indecomposable
non-projective A-module, then again there exists a non-zero sink map ¥ — Z. So
[Z] cannot be a source. This finishes the proof. O

Lemma 31.28. A source map X — Y is not a monomorphism if and only if X is
mjective.
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We leave it to the reader to formulate the dual statements.

Corollary 31.29. I'4 is a locally finite quiver.

Let 0 — X 5 Y % Z — 0 be an Auslander-Reiten sequence in mod(A). Thus,
by definition f and g are irreducible. We proved already that X and Z have to be
indecomposable (Skript 1). It follows that we get a commutative diagram

0—>X 1o g% (X)—0

0 X Y A 0

where h and h' are isomorphisms.

Here 771(X) := TrD(X).

Source maps are unique in the following sense: Let X be an indecomposable A-
module which is not injective, and let f: X — Y and f: X — Y’ be source maps.
Byg:Y — Zand ¢': Y — Z' we denote the projections onto the cokernel of f and
1!, respectively. Then we get a cimmutative diagram

0—> X oy Loy 0
f g
0—> X Y Z 0

where h and h' are isomorphisms.

Dually, sink maps are unique as well.

31.8. Digression: The Brauer-Thrall Conjectures. Assume that A is a finite-
dimensional K-algebra, and let Sy, ... .5, be a set of representatives of isomorphism
classes of simple A-modules. Then the quiver of A has vertices 1,...,n and there
are exactly dim Ext}(S;, S;) arrows from i to j.

The algebra A is connected if the quiver of A is connected.

Lemma 31.30. For a finite-dimensional algebra A the following are equivalent:

(i) A is connected;

(ii) For any indecomposable projective A-modules P % P’ there exists a tu-
ple (Py, P, ..., P,) of indecomposable projective modules such that P, =
P, P, = P and for each 1 < i < m — 1 we have Homy(P;, Piy1) @
Homa(P,1, ) # 0;

(i) For any simple A-modules S and S’ there exists a tuple (Si,Ss,...,Sm) of
simple modules such that S; = S, S,, = S’ and for each 1 <i <m — 1 we
have Exty(S;, Sit1) ® Ext!(Si1, S;) # 0;

(iv) If A= Ay X Ay then Ay =0 or Ay =0;

(v) 0 and 1 are the only central idempotents in A.
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Proof. Exercise. Hint: If Ext4(.5;, S;) # 0, then there exists a non-split short exact
sequence

Then there exists an epimorphism p;: P, — S;. This yields a homomorphism
p.: P, — E such that gp, = p;. Clearly, ' has to be an epimorphism. (Why?)
Let p;: P; — S; be the obvious epimorphism. Then there exists an epimorphism

p;: P; — E such that fp; = pj. Next, there exists a non-zero homomorphism
q: P; — P; such that p;qg = fp;. O

Theorem 31.31 (Auslander). Let A be a finite-dimensional connected K -algebra,
and let C be a component of the Auslander-Reiten quiver of A. Assume that there
exists some b such that all indecomposable modules in C have length at most b. Then
C is a finite component and it contains all indecomposable A-modules. In particular,
A is representation-finite.

Proof. (a): Let X be an indecomposable A-module such that there exists a non-zero
homomorphism h: X — Y for some [Y] € C. We claim that [X] € C: Let

(1)

:[g ,...,gt1 @Y —Y

9

be the sink map ending in Y, where Yi( is indecomposable for all 1 < < t;. If h
is a split epimorphism, then h is an isomorphism and we are done. Thus, assume
ho := h is not a split epimorphism. It follows that there exists a homomorphism

(1)

1 t1
f(l) I CX @Yz(l)
(1) i=1
t1
such that
t1
hO — g(l)f(l) — Zgz(l)fz(l) X Y.
i=1
Since hg # 0, there exists some 1 < ¢; < t; such that g(1 ;é 0. Set hy 1)
and b} = g“) Next, assume that for each 1 <k <n —1 we already constructed a

non-invertible homomorphism

h;g: Y;ik) — Y(kil)

k-1

where [ ] € C and Y(O =Y, and a homomorphism
hi: X — Y,
such that b} o---oh} ohy # 0. So we get the following diagram:
X X e X X
J{hnl lhng lhl Lho
yon oy sy

tn=l h oy 2Ry, hi “ R
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with hj ohlo---0ohl ;oh, 1#0.

If h,,—1 is an isomorphism, then X = Y("_:l) and therefore [X] € C.

in

Thus assume that A,,_;: X — Y("fl) is non-invertible. Let

in

(n) —

g [gl 7"'7gtn @Y }/;inll)

be the sink map ending in Y;EL-: , where Yi( is indecomposable for all 1 < i <'t,.
Since h,,_1 is not a split epimorphism, there exists a homomorphism

i b
=1 X - Py
;=1

such that
oy = g™ f0 = Zgl” D R
Since hj ohlyo---oh! _oh, 1 #0, there exists some 1 <14, <t, such that
hiohyo---oh! 1091 f # 0.
Set h, := fi(:) and h! = gi(:). Thus
hiohyo---oh! ,ohl oh,#Q0.

Clearly, h! is non-invertible, since h! is irreducible.

If n > 2° — 2 we know by the Harada-Sai Lemma that h,, has to be an isomorphism.
This finishes the proof of (a).

(b): Dually, if Z is an indecomposable A-module such that there exists a non-zero
homomorphism Y — Z for some [Y] € C, then [Z] € C.

(c): Let Y be an indecomposable A-module with [Y] € C, and let S be a composition
factor of Y. Then there exists a non-zero homomorphism Pg — Y where Pg is
the indecomposable projective module with top S. By (a) we know that [Ps] €
C. Now we use Lemma 31.30, (iii) in combination with (a) and (b) to show that
all indecomposable projective A-modules lie in C. Finally, if Z is an arbitrary
indecomposable A-module, then again there exists an indecomposable projective
module P and a non-zero homomorphism P — Z. Now (b) implies that [Z] € C.
It follows that C = (I'4,d4). By the proof of (a) and (b) we know that there is a
path of length at most 2° — 2 in C which starts in [P] and ends in [Z]. It is also
clear that C has only finitely many vertices: Since I'4 is a locally finite quiver, for
each projective vertex [P] there are only finitely many paths of length at most 2° —2
starting in [P]. O

Corollary 31.32 (1st Brauer-Thrall Conjecture). Let A be a finite-dimensional K -
algebra. Assume there exists some b such that all indecomposable A-modules have
length at most b. Then A is representation-finite.
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Thus the 1st Brauer-Thrall Conjecture says that bounded representation type implies
finite representation type. There exists a completely different proof of the 1st Brauer-
Thrall conjecture due to Roiter, using the Gabriel-Roiter measure.

Conjecture 31.33 (2nd Brauer-Thrall Conjeture). Let A be a finite-dimensional
algebra over an infinite field K. If A is representation-infinite, then there exists
some d € N such that the following hold: For each n > 1 there are infinitely many
isomorphism classes of indecomposable A-modules of dimension nd.

Theorem 31.34 (Smalg). Let A be a finite-dimensional algebra over an infinite field
K. Assume there exists some d € N such that there are infinitely many isomorphism
classes of indecomposable A-modules of dimension d. Then for each n > 1 there are
infinitely many isomorphism classes of indecomposable A-modules of dimension nd.

Thus to prove Conjecture 31.33, the induction step is already known by Theorem
31.34. Just the beginning of the induction is missing...

Conjecture 31.33 is true if K is algebraically closed. This was proved by Bautista
using the well developed theory of representation-finite algebras over algebraically
closed fields.

31.9. The bimodule of irreducible morphisms. Let A be a finite-dimensional
K-algebra, and as before let mod(A) be the category of finitely generated A-modules.
All modules are assumed to be finitely generated.

For indecomposable A-modules X and Y let
rada(X,Y) := {f € Homu(X,Y) | f is not invertible}.
In particular, if X 2Y, then rad4(X,Y) = Homu(X,Y). If X =Y, then
rada (X, X) = rad(Ends (X)) := J(Enda(X)).

Now let X =@@;_, X; and Y = EB;:I Y; be A-modules with X; and Y indecompos-
able for all 7 and j. Recall that we can think of an endomorphism f: X — Y as a

matrix
Juu o fa
f=1: :
Jie o St
where f;;: X; — Y} is an homomorphism for all ¢ and j. Set
rads(Xq,Y7) - rada(Xs, Y1)
rads(X,Y) := : :
rada(X1,Y;) - rada(X,, V)

Thus rad4(X,Y) € Homa(X,Y).

Lemma 31.35. For A-modules X and Y we have f ¢ rada(X,Y) if and only if
there exists a split monomorphism u: X' — X and a split epimorphism p: Y — Y’
such that po fou: X' — Y’ is an isomorphism and X' # 0.
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Proof. Exercise. O

For A-modules X and Y let rad’(X,Y) be the set of homomorphisms f: X — Y
with f = ho g for some g € rada(X, M), h € rada(M,Y) and M.

Lemma 31.36. Let X and Y be indecomposable A-modules. For a homomorphism
f: X =Y the following are equivalent:

(i) f is irreducible;

(ii) f €rada(X,Y) \rad’(X,Y).

Proof. Assume f: X — Y is irreducible. Since X and Y are indecomposable we
know that f is an isomorphism if and only if f is a split monomorphism if and only
if fis a split epimorphism. Thus f € rad(X,Y). Assume f € rad%(X,Y).

For indecomposable A-modules X and Y define
It (X,Y) :=rads(X,Y)/rad% (X, Y).
We call Irr4(X,Y') the bimodule of irreducible maps from X to Y.

Set F(X) := Ends(X)/rad(End4s(X)) and F(Y) := Enda(Y)/rad(Enda(X)).
Since X and Y are indecomposable, we know that F'(X) and F(Y') are skew fields.

Lemma 31.37. Iira(X,Y) is an F(X)°P-F(Y)-bimodule.

Proof. Let f € Irry(X,Y), g € F(X) and h € F(Y), where f € rads(X,Y),
g € Enda(X) and h € End4(Y'). Define

g f=fg,
noF =TT
We have to check that this is well defined: We have a map
Enda(Y) x Homy(X,Y) x Enda(X) — Homa(X,Y)

defined by (h, f,g) — hfg. Clearly, if f € rada(X,Y), then hf and fg are in
rad4(X,Y). It follows that rads(X,Y) is an End4(X)°-End4(Y)-bimodule. It is
also clear that rad?(X,Y) is a subbimodule: Let f = fof; € rad%(X,Y) where f; €
rad4 (X, C) and fy € rada(C,Y) for some C. Then hf = (hfs)fi1 and fg = fo(f19),
so they are both in rad?% (X, Y). Furthermore, the images of the maps rad(X,Y") x
rad(Ends (X)) — rada(X,Y), (f,9) — fg and rada(X,Y) x rad(Enda(Y)) —
rads(X,Y), (h, f) — hf are both contained in rad%(X,Y). Thus Irry(X,Y) is
annihilated by rad(End4(X)°P) and rad(End4(Y")). This implies that Irrs(X,Y) is
an F(X)°-F(Y')-bimodule. O

Lemma 31.38. Let Z be an indecomposable non-projective A-module. Then F(Z) =
F(r(2)).
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Proof. Exercise. O

Lemma 31.39. Assume K is algebraically closed. If X is an indecomposable A-
module, then F'(X) = K.

Proof. Exercise. O

Theorem 31.40. Let M and N be indecomposable A-modules. Let g: Y — N be a
sink map for N. Write

Y=MaoY
with t maximal. Thus g = [g1,...,g,9'] where g;: M — N, 1<i<tandg:Y —
N are homomorphisms. Then the following hold:

(i) The residue classes of gy, ..., g, in Irry(M, N) form a basis of the F(M)°P-
vector space Irr o(M, N);
(ii) We have

= dimas (01, 3) = S

Dually, let f: M — X be a source map for M. Write

X=NaX
with s maximal. Thus f = '[fi,..., fs, ['] where fi: M — N, 1 < i < s and
' M — X" are homomorphisms. Then the following hold:

(iii) The residue classes of fi,..., fs in Irra(M,N) form a basis of the F(N)-
vector space Irr 4(M, N);
(iv) We have

s = dimF(N) (IITA<M7 N>) - dln&iﬁiiiﬁé\]{[’)g\f»

We have s =t if and only if dimy(F(M)) = dimg (F(N)) or s =t = 0.

Proof. (a): First we show that the set {gi,...,g;} is linearly independent in the
F(M)°P-vector space Irr (M, N):

Assume
t

(2) > Xix7=0

i=1
where \; € Enda(M), g; € rada(M,N), Ny = A\ + rad(Enda(M)), 5 = ¢ +
rad% (M, N) and 0 = 0 +rad% (M, N). By definition \; xg; = g;:A;. We have to show

that \; = 0, i.e. \; € rad(End4(M)) for all i.

Assume \; ¢ rad(End4(M)). In other words, A; is invertible. We get

t A1 A1
Zgl)\z:[glu7gt7g/]O[A]:gO[)\]MﬁN
i=1 / $

0 0



220 CLAUS MICHAEL RINGEL AND JAN SCHROER

By Equation (2) we know that this map is contained in rad? (M, N).

A1

Clearly, [ :
At

] is a split monomorphism, since
0

At

A1
A50,...,0]0 [ :] = 1.
0

Using Lemma 31.24 this implies that Z§=1 gi\; is irreducible and can therefore not
be contained in rad? (M, N), a contradiction.
(b): Next, we show that {gy, ..., g} generates the F'(M)°-vector space Irr4(M, N):

Let u: M — N be a homomorphism with u € rad4(M, N). We have to show that
T = u + rad% (M, N) is a linear combination of g7, ..., 7.

Since g is a sink map and wu is not a split epimorphism, we get a commutative
diagram

M apY!

[91,---:9t:9']
such that u = >>'_, gyu; + g'u'.
We know that ¢' € rads(Y’, N), since ¢’ is just the restriction of the sink map g
to a direct summand Y’ of Y. Thus ¢’ is irreducible or ¢’ = 0. Furthermore, M is

indecomposable and Y" does not contain any direct summand isomorphic to M. So
u' € rads(M,Y”). Thus implies ¢'u’ € rad® and therefore g’u’ = 0. It follows that

t t
u = E U *xg; +g'v = E W; * ;.
i=1 i=1

This finishes the proof.

The second part of the theorem is proved dually. O

Corollary 31.41. Let
0—=717(2)—=Y —-2—-0

be an Auslander-Reiten sequence, and let M be indecomposable. Then

dim g Irr o (M, Z) = dim g Irr 4 (7(2), M).

Proof. Let t be maximal such that Y = M* @ Y’ for some module Y’. Then we get
~dimg Irra (M, 7)) dimg Irra(7(2), M)
 dimgF(M) dimg F(M)
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It is often quite difficult to construct Auslander-Reiten sequences. But if there exists
a projective-injective module, one gets one such sequence for free:

Lemma 31.42. Let I be an indecomposable projective-injective A-module, and as-
sume that I is not simple. Then there is an Auslander-Reiten sequence of the form

0 — rad(/) — rad(l)/soc(I) ® I — I/soc(I) — 0.

Proof. ...

31.10. Translation quivers and mesh categories. Let I' = (I'y,I';,s,t) be a
quiver (now we allow I'y and I'y to be infinite sets).

We call T' locally finite if for each vertex y there are at most finitely many arrows
ending at y and there are are most finitely many arrows starting at y.

If there is an arrow © — y then x is called a direct predecessor of y, and if there
is an arrow y — 2 then z is a direct successor of y.

Let y~ be the set of direct predecessors of , and let ™ be the set of direct successors
of y. Note that we do not assume that y~ and y™ are disjoint.

A path of length n > 1 in I' is of the form w = (o, . .., ) where the a; are arrows
such that s(a;) = t(a;41) for 1 <i <n—1. We say that w starts in s(w) := s(«,),
and w ends in ¢(w) := t(ay). In this case, s(w) is a predecessor of ¢(w), and t(w)
is a successor of s(w).

Additionally, for each vertex = of I" there is a path 1, of length 0 with s(1,) =
t(1;) = x. For vertices z and y let W (x,y) be the set of paths from = to y. If a
path w in I' starts in x and ends in y, we say that z is a predecessor of y, and y is a
successor of x. If w = (ay,...,a,) has length n > 1, and if s(w) = t(w), then w is
called a cycle in I'. In this case, we say that s(ay), ..., s(a,) lie on the cycle w.

A vertex = in a quiver I' is reachable if there are just finitely many paths in I’
which end in x.

It follows immediately that a vertex x is reachable if and only if x has only finitely
many predecessors and none of these lies on a cycle. Of course, every predecessor of
a reachable vertex is again reachable. We define a chain

)= TCgc...c 4 IrCc,rc...
of subsets of T'y.

By definition _iI" = (). For n > 0, if ,,_;I" is already defined, then let ,,I" be the set
of all vertices z of I such that z— C ,,_¢I'.
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By [ we denote the full subquiver of I' with vertices ,,I". Set

L= U Loand = U T

n>0 n>0
Clearly, ,I' is the set of all reachable vertices of T'.
Now let K be a field. We define the path category KT as follows:

The objects in KT are the vertices of I'. For vertices z,y € T'y, we take as morphism
set Homgr(z,y), the K-vector space with basis W(z,y).

The composition of morphisms is by definition K-bilinear, so it is enough to define
the composition of two basis elements: First, the path 1, of length 0 is the unit
element for the object x. Next, if w = (aq,...,a,) € W(x,y)andv = (51,...,0n) €
W (y, z), then define

vwi=v-w = (L1, ...y By 0,y 0) € Wz, 2).
This is again a path since s(f,,) = t(aq).

We call I' = (T'g, 'y, s,t, 7,0) a translation quiver if the following hold:

(T1) (o, T, s,t) is a locally finite quiver without loops;

(T2) 7: I'y — Iy is an injective map where I is a subset of I'g, and for all z € T,
and every y € I'y the number of arrows y — z equals the number of arrows
7(z) = y;

(T3) o: I, — I'y is an injective map with o(a): 7(z2) — y for each a: y — z,
where I} is the set of all arrows a: y — z with z € T,

Note that a translation quiver can have multiple arrows between two vertices.

IfT' = (g, 'y, s,t,7,0) is a translation quiver, then 7 is called the translation of I
The vertices in 'y \ I are the projective vertices, and I'y\ 7(I'j)) are the injective
vertices. If I' does not have any projective or injective vertices, then I" is stable.

A translation quiver I' is preprojective if the following hold:

(P1) There are no oriented cycles in I';

(P2) If z is non-projective vertex, then 2z~ # 0);

(P3) For each vertex z there exists some n > 0 such that 7"(z) is a projective
vertex.

A translation quiver I' is preinjective if the following hold:

(I1) There are no oriented cycles in I';

(I2) If z is non-injective vertex, then 2 # (;

(I3) For each vertex z there exists some n > 0 such that 77"(z) is an injective
vertex.
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Again, let I' be a translation quiver. A function f: 'y — Z is additive if for all
non-projective vertices z we have

Fr@) + () =) [y

yeEZ—

For example, if C is a component of the Auslander-Reiten quiver of an algebra A
with dimg Irrg (X, Y) < 1 for all X|Y € C, then f([X]) := {(X) is an additive
function on the translation quiver C.

We will often investigate translation quivers without multiple arrows. In this case,
we do not mention the map o, since it is uniquely determined by the other data.

By condition (T2) we know that each non-projective vertex z of I yields a subquiver
of the form

Y1

Such a subquiver is called a mesh in I". (Recall that there could be more than one
arrow from 7(z) to y; and therefore also from y; to z. In this case, the map o yields
a bijection between the set of arrows y; — z and the set of arrows 7(z) — v;.)

Now let K be a field, and let I' = (I'g,I'1, s,¢,7,0) be a translation quiver. We
look at the path category KT := K(I'g,I'y,s,t) of the quiver (I'p,I'1,s,t). For each
non-projective vertex z we call the linear combination

pr = Z a-o(a)
a: y—z

the mesh relation associated to z, where the sum runs over all arrows ending in
z. This is an element in the path category KT

The mesh category K(I') of the translation quiver I' is by definition the factor
category of KT' modulo the ideal generated by all mesh relations p, where 2z runs
through the set I of all non-projective vertices of I

Example: Let I' be the following translation quiver:

N
N

This is a translation quiver without multiple arrows. The dashed arrows describe 7,
they start in some z and end in 7(z). Thus we have three projective vertices u, v, w
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and three injective vertices w,y, 2. The mesh relations are

ya =0,
00+ ey =0,
(e =0.

For example, in the path category KT we have dim Homgr(u,y) = 2. But in the
mesh category K(I'), we obtain Homg r(u,y) = 0.

Assume that I' = (g, 'y, s,¢,7,0) is a translation quiver without multiple arrows.
A function

d: F() U Fl — N1
is a valuation for I' if the following hold:
(V1) If a: * — y is an arrow, then d(z) and d(y) divide d(«);

(V2) We have d(7(z)) = d(z) and d(7(z) — y) = d(y — z) for every non-projective
vertex z and every arrow y — 2.

If d is a valuation for I', then we call (I', d) a valued translation quiver. If d is a
valuation for I" with d(z) = 1 for all vertices x of I, then d is a split valuation.

Our main and most important examples of valued translation quivers are the fol-
lowing:

Let A be a finite-dimensional K-algebra. For an A-module X denote its isomorphism
class by [X]. If X and YV are indecomposable A-modules, then as before define

F(X) := End(X)/rad(End4(X))
and
It (X,Y) :=radA(X,Y)/rad} (X, Y).
Let 74 be the Auslander-Reiten translation of A.

The Auslander-Reiten quiver I'4 of A has as vertices the isomorphism classes
of indecomposable A-modules. If X and Y are indecomposable A-modules, there

is an arrow [X| ——=[Y] if and only if Irra(X,Y") # 0. Define 7([Z]) := [1a(Z)]
if Z is indecomposable and non-projective. In this case, we draw a dotted arrow
[ra(2)] < - - [Z].

For each vertex [X] of T'4 define
dy = da([X]) := dimg F(X),
and for each arrow [X] — [V] let

dyy = da([X] = [Y]) :=dimg Irr4 (X, Y).

When we display arrows in I'4 we often write [X] v, Y]
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For an indecomposable projective module P and an indecomposable module X let
rxp be the multiplicity of X in a direct sum decompositions of rad(P) into inde-
composables, i.e.

rad(P) = XX @ C
for some module C' and ryp is maximal with this property.

Lemma 31.43. For a finite-dimensional K-algebra the following hold:

(i) T'(A) := (T4, da) is a translation quiver;

(ii) The valuation dy is split if and only if for each indecomposable A-module X
we have End4(X)/rad(End(X)) = K (For example, if K is algebraically
closed, then da is a split valuation.);

(i) A wvertex [X] of (I',da) is projective (resp. injective) if and only if X is
projective (resp. injective).

Proof. We have Irr4(X, X) = 0 for every indecomposable A-module X. (Recall that
every irreducible map between indecomposable modules is either a monomorphism
or an epimorphism.) Thus the quiver I'y does not have any loops. If Z is an
indecomposable non-projective module, then the skew fields F'(74(7)) and F(Z) are
isomorphic, and dimg Irr(74(2),Y) = dimg Irru (Y, Z) for each indecomposable
module Y. This shows that I"4 is locally finite, and that the conditions (T1), (T2),
(T3) and (V2) are satisfied. Since Irr4(X,Y) is an F(X)°P-F(Y)-bimodule, also
(V1) holds.

t

If C is a connected component of (I"4, d4) such that C is a preprojective (resp. prein-
jective) translation quiver, then C is called a preprojective (resp. preinjective)
component of I'y4.

An indecomposable A-module X is preprojective (resp. preinjective) if [X] lies
in a preprojective (resp. preinjective) component of I"4.

Let I' be a translation quiver with a split valuation d. Then we define the expansion
(I',d)¢ of T' as follows:

The quiver (I',d)¢ has the same vertices as (I', d), and also the same translation 7.
For every arrow a: x — y in I', we get a sequence of d(z — y) arrows o': x — y
where 1 < i < d(a). (Thus the arrows in (I', d)¢ starting in = and ending in y are
enumerated, there is a first arrow, a second arrow, etc.) Now o sends the ith arrow
y — z to the ith arrow 7(2) — y provided z is a non-projective vertex.

31.11. Examples of Auslander-Reiten quivers. (a): Let K = R and set

A= (ﬂ(f g) C My(C).
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Clearly, A is a 5-dimensional K-algebra. Let e;; = (§9) and e = (§9). Set
M:Aenz[%] and N:AGQQI[%].

These are the indecomposable projective A-modules, and we have 44 = M @ N.

We can identify Hom (M, N) with C since
Hom (M, N) =rada(M, N) = e11 Aeqy = C.

Next, we observe that rad(M) = 0 and rad(N) = [§] = [E] @ [R]. It follows that
the obvious map M @& M — N is a sink map. Furthermore, it is easy to check that
Ends(M) =R, F(M) 2R, Ends(N) = C and F(N) = C.
We have
dimg Irrq (M, N)  dimg Irr4 (M, N)
2 = TMN = " =
dimg F'(M) 1
This implies dimg Irra (M, N) = 2. Thus M — N is a source map. We get an
Auslander-Reiten sequence 0 — M — N — ) — 0 where Q = [%R}.

Next, we look for the source map starting in N: We have dimg Irra(N,Q) =
dimg Irry (M, N) = 2 and dimgF(Q) = 1. Thus N — @ @ @ is a source map.
We obtain an Auslander-Reiten sequence 0 — N — @ & @) — R — 0 where
R =[g]

The modules 771 (M) and 77!(N) are injective, thus the following is the Auslander-
Reiten quiver of A:

So there are just four indecomposable A-modules up to isomorphism. Using dimen-
sion vectors it looks as follows:

Note that the valuation of the vertices remains constant on T-orbits (and 7~ !-orbits),
so it is enough to display them only once per orbit.

(b): Next, let
k K
A= (0 K) C My(K)

where k C K is a field extension of dimension three, e.g. k¥ = Q and K = Q(v/2).
The indecomposable projective A-modules are

M:Aenz[’g] and N:A€22:[§].
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In this case there are 6 indecomposable A-modules, and the Auslander-Reiten quiver
I' 4 looks like this:

(c): Here is the Auslander-Reiten quiver of the algebra A = K@Q/I where @ is the
quiver

2/1\\13
%

and [ is the ideal generated by ba — dc:

0 0 1
1 0<——————— 0 1=<——————— 1 0
1 0 0
0 0
0 0<——————— 1 1<-——-——-—-—— 1 1=<—————-—— 0 0
0 0
1
11
1
0 1
0 1=<——————= 1 0<——————— 0 1
1 0

31.12. Knitting preprojective components. Let A be a finite-dimensional K-
algebra.

Basic idea: Let X be an indecomposable A-module. Whenever the sink map ending
in X is known, we can construct the source map starting in X. In I'(A) = (I'4, da)
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the situation around the vertex [X|] looks like this:

L] [72]

Here the Y; are non-injective modules, the [; are injective, and the P; are projective.
The sink map ending in X is of the form ¥ — X where

o o gy
=1 =1

To get the source map X — Z, we have to translate the non-injective modules Y;
using 7, '. Note that

for all 4. Furthermore, we have to check if X occurs as a direct summand of rad(P)
where P runs through the set of indecomposable projective modules. In this case,
there is an arrow [X| — [P] with valuation

dXP = dll’IlK II‘I‘A<X7 P) =Txp- dlIIlKF<X)

We get

t
d, _ d _ dxp,/dp,
7 — TZI(Yz) XTAl(Yi)/ TRCOIEN @pz xp;/ Py

i=1 i=1
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If X is non-injective, we get a mesh

(74 (Y1)]

[P
in the Auslander-Reiten quiver I'(A) of A. We have
eyt = dxrgiony and - drpig = dx
Knitting preparations

(i) Determine all indecomposable projectives P, ..., P, and all indecomposable
injectives Iy, ..., I,.

(ii) For each 1 < i < n determine rad(F;) and decompose it into indecomposable
modules, say

where 7;; > 1, and the R;; are indecomposable such that R;; = R; if and
only if k = 1.
(ili) For each 1 <1i <n determine dp, = dimy F'(F;).

Note that
dr,,p, = dimg Irr o (Rij, P) = 135 - dg,,
where r;; = rg, p,. Furthermore, we know that
F(P;)) = Enda(F;)/rad(End4(P;)) = End4(P;/ rad(P;)) = End4(S;)
where S; is the simple A-module with S; = P,/ rad(FP;).

The knitting algorithm
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Let 1A be the empty quiver.

We define inductively quivers ,A, ,A", ,A” n > 0 which are subquivers of ("4, d).
For all n > 1 these quivers will satisfy

nflé g né g nflé” g né/ g né”-

By A, A/, ,A”, we denote the set of vertices of ,A, ,A', , A", respectively.

(ag) Define (A: Let ¢A be the quiver (without arrows) with vertices [S] where
S is simple projective.

(bo) Add projectives: For each [S] € (A, if S = R;; for some ¢, 7, then (if it
wasn’t added already) add the vertex [P;] with valuation dp,, and add an
arrow [S] — [P;] with valuation dgp, = rsp, - ds. We denote the resulting
quiver by (A’

(co) Translate the non-injectives in (A: For each [S] € (A with S non-
injective, add the vertex [1,'(5)] to ¢A’ with valuation d,~1(s) = ds, and for
each arrow [S] — [Y] constructed so far add an arrow [Y] — [7,1(5)] to o4’
with valuation dy 1) = dsy. We denote the resulting quiver by oA,

Note that any source map starting in a simple projective module S is of the form
S — P where P is projective. (Proof: Assume there is an indecomposable non-
projective module X and an arrow [S] — [X]. Then there has to be an arrow
[T4(X)] — [S], a contradiction since [S] is a source in (I'4,d4).) Thus we get P
from the data collected in (i), (ii) and (iii). More precisely, we have

n
dsp. /dp.
P:@_PZ PZ/PZ’
i=1

and we know that dsp, = rsp, - ds.

Now assume that for n > 1 the quivers , 1A, ,_1A" and ,,_;A” are already defined.
We also assume that for each vertex [X] € ,,_1A” and each arrow [X]| — [Y] in
n_1A” we defined valuations dy and dyy, respectively.

(a,) Define ,A: Let ,A be the full subquiver of ,, ;A" with vertices [X] such
that all direct predecessors of [X] in ,, A" are contained in , A, and if
[X] is a vertex with X = P; projective, then we require additionally that
[Rz]] € 1A for all 7.

(b,) Add projectives: For each [X] € ,A, if X = R;; for some 1, j, then (if
it wasn’t added already) add the vertex [P;] to , 1 A" with valuation dp,,
and add an arrow [X] — [P)] to ,_1A” with valuation dxp, = rxp - dx. We
denote the resulting quiver by ,A’.

(¢n,) Translate the non-injectives in ,A\, _;A: For each [X] € ,A\,_1A with
X non-injective, add the vertex [7;*(X)] to ,A’ with valuation d,~1(x) = dx,

and for each arrow [X] — [Y] constructed to far add an arrow [Y] — [r;1(X)]
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to ,A’ with valuation dy,rgl x) = dxy. We denote the resulting quiver by
né”-

The algorithm stops if ,A \ ,_1A is empty for some n. It can happen that the
algorithm never stops.

Define
<mé§:: LJrﬁ; and aﬂﬁz: LJrﬂA-

n>0 n>0

Let [X] € ,A, and let [X] — [Z;], 1 < i <t be the arrows in ,A’ starting in [X].
Then the corresponding homomorphism

t
dxz,/dz,
X-&z
i=1

is a source map. Similarly, let [V;] — [X], 1 <i < s be the arrows in ,A ending in
[X]. Then the corresponding homomorphism

S

dy, x /dy,
Dy x
1=1

is a sink map. The following lemma is now easy to prove:
Lemma 31.44. For alln > —1 we have

7ﬁ;::n(£A)
In particular, oA = (L4).

Clearly, oA is a full subquiver of (I'4, d4). One easily checks that ., A is a translation
subquiver of (I'4,d4) in the obvious sense.

The number of connected components of A is bounded by the number of simple
projective A-modules.

If we know the dimension vectors dim(P;) and dim(R;;) for all 4, j, then our knitting
algorithm yields an algorithm to determine dim(X') for any vertex [X| € A:

Let [X] be a vertex in ,A\ , 1A, and let [X] — [Z;], 1 < i < t be the arrows in
LA starting in [X]. Then X is non-injective if and only if

t
(X) < dxz, - UZ).
i=1
In this case, we have

dim(r (X)) = ~dim(X) + > dxz - dim(Z),

These considerations provide a knitting algorithm which is only based on dimension
vectors. We will prove the following result:
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Theorem 31.45. Let [X],[Y] € «A. Then [X] = [Y] if and only if dim(X) =
dim(Y').

Lemma 31.46. Let C be a connected component of (I'a,da). If
C C LA,

then C is a preprojective component of (I'4,da).

Proof. (a): By construction, for each [X]| € ,A” we have 7%(X) is projective for
some n > 0.

(b): The quiver ,A has no oriented cycles: One shows by induction on n that if
[X] — [Y] is an arrow in ,A, then there exists a unique ¢ < n such that [Y] €
AN\ 1A and [X] € ;1A The result follows.

(c): Let [X] € ,A. Then [X] has a direct predecessor in , A if and only if X is not
in OA- O

Often knitting does not work. For example, we cannot even start with the knitting
procedure, if there is no simple projective module. Furthermore, if an indecompos-
able projective module F; is inserted such that an indecomposable direct summand
of rad(F;) does not show up in some step of the knitting prodedure, then we are
doomed and cannot continue.

But the good news is that in many interesting situations knitting does work. Here
are the two most important situations: Path algebras and directed algebras. In fact,
using covering theory, one can use knitting to construct the Auslander-Reiten quiver
of any representation-finite algebra (provided the characteristic of the ground field
is not two).

The dual situation: Obviously, there is also a “dual knitting algorithm” by starting
with the simple injective A-modules. As a knitting preparation one needs to de-
compose I;/soc(l;) into a direct sum of indecomposables, and one needs the values
d;, = dimg F/(I;). If C is a component of I'(A) which is obtained by the dual knitting
algorithm, then C is a preinjective component.

Lemma 31.47. Let ) be a finite connected quiver without oriented cycles. Then
the following hold:

(i) I(KQ) has a unique preprojective component P and a unique preinjective
component L;
(ii) P =T if and only if KQ is representation-finite.

Proof. Exercise. O
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31.13. More examples of Auslander-Reiten quivers. (a): Let ) be the quiver
2 3 4

N

1

and let A = K(@Q. Using the dimension vector notation, I'4 looks as follows:

Here is an interesting question: What happens with the Auslander-Reiten quiver of
K@ if we change the orientation of an arrow in 7

For example, the path algebra of the quiver
2 3 4

N\

1
has the following Auslander-Reiten quiver:

1 0

< - — — — = - —

10
1
/)%u
1

001 _ 1

0

1 100

1 ST - - T T T~ 0
100 010

1 - 110

1
2

(b): Let @ be the quiver

1<—2)a
and let A = KQ/I where I is generated by the path aa. Clearly, A is finite-
dimensional, and has two simple modules, whch we denote by 1 and 2. The
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Auslander-Reiten quiver of A looks like this:

NN
NSNS
2N/

Note that this time, we did not display the dimension vectors of each indecomposable
module. Instead we used the composition factors 1 and 2 to indicate how the modules
look like. For example, the 4-dimensional A-module

[\

has a simple top 2, its socle is isomorphic to 1@ 1. Note also that one has to identify
the two vertices on the upper left with the two vertices on the upper right. Thus "4
has in fact just 7 vertices. Sometimes one displays certain vertices more than once,
in order to obtain a nicer and easier to understand picture.

Clearly, I' 4 does not contain a preprojective component. We have a simple projective
module, namely 1. So ¢A = {1}. But then we see that 1A\ ¢A = (). So there is just
one reachable vertex in 4.

We constructed 'y “by hand”. In other words, our methods are not yet developed
enough to prove that this is really the Auslander-Reiten quiver of A.

(c): Let A be the path algebra of the quiver

3

/7

Then there is an infinite preprojective component in (I'4,d4), which can be ob-
tained from the following picture by identifying the vertices in the first with the
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corresponding vertices in the fourth row:

Exercise: Determine ,,A for all n > 0.

(d): Let

A= Ps 1% C My(C).

Using the dimension vector notation, we obtain an infinite preprojective component

of (FA,dA)Z

(e): Let

R C
0 O

< Qa

Again using the dimension vector notation we get an infinite preprojective compo-
nent:

2 2 4

L INTNTNS
VA WA ANWAN
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(f): Let A= KQ/I where @ is the quiver
/

7

(&

d

c b a

3 2 1

and the ideal I is generated by abcdef and cdg. It turns out that (I'4, D4) consists
of a single preprojective component:

6
5<2—8
4
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I

_ o o

| —oo oo

| —oo coco

| [ I

Y I
o o

_ ,
| ,
| ,
\ [ / \ I / | |
! y ! y y
/ | \ , / | I
y y
(@) o

< — — — — A

[e]enlen)
[elel o]
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(g): Let A= KQ/I where @ is the quiver
3
2

b

<
o

1

and [ is the ideal generated by ba. The indecomposable projective A-modules are
of the foom P, = 1, P, = 2 ,, P3 = 2. Then A consists of a preprojective
component

which does not contain P;.

(h): Let A= KQ/I where @ is the quiver

and [ is the ideal generated by ba. The indecomposable projective A-modules are of
the form P, =1, P, = ;2 ,, P3 = E ®1. Then A consists of two points, namely
P, and P:

Note that one of the direct summands of the radical of P; does not show up in the
course of the knitting algorithm. So we get A\ 1A = ().
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(i): Let A= KQ/I where @ is the quiver

L,
.

and [ is the ideal generated by ba. The indecomposable projective A-modules are
of the form Py =1, P, = ,2,, P; = ) 234, P, = 4. Then A has two connected

components, one is an (infinite) preprojective component, and the other one consists
just of the vertex Pj:

0 0 0

10<——————— 30 <——————~— 50<———— — —--
2 4 6
0 0
00 <——————— 20<——————— 40 <———————--"
1 3 5
0 1
01 <——————— 10
0 1

and [ is the ideal generated by ca and ¢b. The indecomposable projective A-modules
are of the form P, = 1, P, = ;2,, P; = ,3,. Then A consists of an infinite
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preprojective component containing an injective module:

0 0 2 4

0<—————— 1 <—————— 3 <—————— B <— — — — — — .-

1 0 0
1 3 5
2 <— = - === 4 <——=———— 6 <— — — — — — -
0 0 0

(1): Let A = K|[T|/(T*). There is just one simple A-modules S, and all indecom-
posable A-modules are uniserial. The Auslander-Reiten quiver looks like this:

Nnntn

nNnn

nn

The only indecomposable projective A-module has length 4. For the other three
indecomposables we have 74(X) = X. For example, the obvious sequence of the
form

S
0—)%%5@2—)%%0

is an Auslander-Reiten sequence.

(m): Let @ be the quiver
4
2 3
\ /
1

and set A = KQ/(ba).
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Using the socle series notation the Auslander-Reiten quiver of A looks as follows:

SN
N N NS
\2/ N, |
NN

(n): Let @ be the quiver
a b
1=—=2—=3
c d

and let A = KQ/I where [ is generated by ba, cd,ac — db. The (I'4,d4) looks as
follows (one has to identify the three modules on the left with the three modules on

the right):

Note that A is a selfinjective algebra, i.e. an A-module is projective if and only if it
is injective.

(0): Let @ be the quiver

S
w

o
e~

o
ot
D

1 2
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and let A = KQ/I where [ is generated by cba. Then (I'4,d4) looks as follows:

______ 4 < — — — — — — - - - - — —

<————— 2

NN TN N
NN, TN NS
NN N
“\3/ ““\23/ ”
VAN

32. Grothendieck group and Ringel form

32.1. Grothendieck group. As before, let A be a finite-dimensional K-algebra,

and let Sq,...,.5, be a complete set of representatives of isomorphism classes of the
simple A-modules. For a finite-dimensional module M let
dim(M) = ([M : S4],...,[M : S,])

be its dimension vector. Here [M : S;] is the Jordan-Holder multiplicity of S; in M.
Note that dim(M) € Ny C Z". Set e; := dim(S;). Then

G(A) = Ko(A) :=2"
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is the Grothendieck group of mod(A), and ey, ..., e, is a free generating set of
the abelian group G(A).

We can see dim as a map
dim: {A-modules}/ = — G(A)

which associates to each modules M, or more precisely to each isomorphism class
[M], the dimension vector dim(M).

Note that

> M S =1(X).

i=1
Furthermore, dim is additive on short exact sequences ,ie. if 0 = X — Y —
Z — 0 is a short exact sequence, then dim(Y') = dim(X) + dim(Z).

Lemma 32.1. If

f: {A-modules}/ = — H
1s a map which is additive on short exact sequences and H is an abelian group, then
there ezists a unique group homomorphism f': G(A) — H such that the diagram

dim

{A-modules}/ = — G(A)

commutes.

Proof. Define a group homomorphism f': G(A) — H by f'(e;) :== f(5;) for 1 <i <
n. We have to show that f'(dim(M)) = f(M) for all finite-dimensional A-modules
M. We proof this by induction on the length I(M) of M. If [((M) = 1, then M = S;
and we are done, since f'(dim(M)) = f'(e;) = f(S;).

Next, assume [(M) > 1. Then there exists a submodule U of M such that U # 0 #
M/U. We obtain a short exact sequence
0—-U—->M-— M/U— 0.

Clearly, [(U) < (M) and I(M/U) < I(M). Thus by induction f'(dim(U)) = f(U)
and f'(dim(M/U)) = f(M/U). Since f is additive on short exact sequences, we get

fM) = f(U)+ [(M/U) = f(dim(U)) + f'(dim(M/U)) = f'(dim(M)).
It is obvious that f’ is unique. This finishes the proof. O

Here is an alternative construction of G(A): Let F(A) be the free abelian group
with generators the isomorphism classes of finite-dimensional A-modules. Let U(A)
be the subgroup of F(A) which is generated by the elements of the form

[X] =[]+ 2]
if there is a short exact sequence 0 — X — Y — Z — 0. Define

G(A) := F(A)/U(A).
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For an A-module M set [M] := [M]+ U(A). It follows that G(A) is isomorphic to
7" with generators [S;], 1 <i < n. By induction on [(M) one shows that

n

[M] =Y [M:8]-[S].

i=1

—

32.2. The Ringel form. We assume now that A is a finite-dimensional K-algebra
with gl.dim(A) = d < oco. In other words, we assume Ext}™(X,Y) = 0 for all
A-modules X and Y and d is minimal with this property.

Define
d

(X,Y)a:=> (—1)'dim Ext,(X,Y).
=0
(If gl. dim(A) = oo, but proj.dim(X) < oo or inj.dim(Y’) < oo, then we can still
define (X,Y) 4 :=>",,(—1)'dim Ext},(X,Y).)
Recall that Ext%(X,Y) = Hom4(X,Y). We know that for each short exact sequence
0—-X'—-X—->X"-0

and an A-module Y we get a long exact sequence

0 — Ext% (X" Y) — Ext%(X,Y) — Ext (X", Y)

=

Exty (X" Y) — Ext!(X,Y) — Ext} (X", Y)

=

Ext%(X",Y) — Ext%(X,Y) — Ext}(X",Y)

Now one easily checks that this implies

Ext? (X")Y)

d d
D (=1)fdim Bxt!y(X",Y) = > (—1)'dim Ext,(X,Y)

t=0 t=0

_|_

M=

(—1)'dim Ext}, (X', Y) =0.

t

Il
o

In other words,
(X" Y)a— (X, )4+ (X, Y)a=0.
It follows that
(=, Y)a: {A-modules}/ = — Z
is a map which is additive (on short exact sequences). Thus (dim(X),Y)4 =
(X,Y)a is well defined.
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Similarly, we get that
(Y4 = (X, V)4 + (X, Y")a=0.
if0 =Y —Y — Y” — 0 is a short exact sequence.
Thus (dim(M ), dim(N)) 4 := (M, N) 4 is well defined, and we obtain a bilinear map
(=, —)a: G(A) x G(A) — Z.
This map is determined by the values

d
(eies)a =Y _(—1)'dim Ext!y(S;, S;)

t=0

since dim(M) = >"" [ [M : Sile;.

33. Reachable and directing modules

Let K be a field, and let A be a finite-dimensional K-algebra. By M = M(A) we
denote the category mod(A) of all finite-dimensional A-modules.

33.1. Reachable modules. A path of length n > 0 in M is a finite sequence
([Xol, [X1],- .., [Xn]) of isomorphism classes of indecomposable A-modules X; such
that for all 1 < i < n there exists a homomorphism X; ; — X, which is non-zero
and not an isomorphism, in other words we assume rad(X;_1, X;) # 0. We say

that such a path ([Xo], [Xi],...,[X,]) starts in X and ends in X,,. If n > 1 and
[Xo] = [X,], then ([Xo], [Xi],...,[X,]) is a cycle in M. In this case, we say that
the modules Xg,..., X,,_1 lie on a cycle.

If X and Y are indecomposable A-modules, we write X =< Y if there exists a path
from X to Y, and we write X < Y if there is such a path of length n > 1.

An indecomposable module X in M is reachable if there are only finitely many
paths in M which end in X. Let

£(A)
be the subcategory of reachable modules in M.

Furthermore, we call X directing if X does not lie on a cycle, or equivalently, if
X £ X.

The following two statements are obvious:

Lemma 33.1. FEvery reachable module is directing.

Lemma 33.2. If X is a directing module, then rad(End4 (X)) = 0.
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Examples: (a): Let A = K[T]/(T™) for some m > 2. Then none of the indecom-
posable A-modules is directing.

(b): If A is the path algebra of a quiver of type A,, then each indecomposable
A-module is directing.

Let I'(A) = (I'4,da) be the Auslander-Reiten quiver of A. If Y is a reachable A-
module, and [X] is a predecessor of [Y] in T'(A), then by definition there exists a
path from [X] to [Y] in I'4y. Thus, we also get a path from X to Y in M. This
implies that X is a reachable module as well. In particular, if Z is a reachable non-
projective module, then 74(Z) is reachable. So the Auslander-Reiten translation
maps the set of isomorphism classes of reachable modules into itself.

We define classes
= MCMC--Cp M MC---

of indecomposable modules as follows: Set ;M = (. Let n > 0 and assume
that ,_1M is already defined. Then let ,,,M be the subcategory of all indecompos-
able modules M in M with the following property: If N is indecomposable with
rada(N, M) # 0, then N € ,_; M.

Let
n>0

be the full subcategory of M containing all M € , M, n > 0.

Then the following hold:

(a) p1M C , M (Proof by induction on n > 0);

(b) oM is the class of simple projective modules;

(¢) 1M contains additionally all indecomposable projective modules P such that
rad(P) is semisimple and projective;

(d) M can contain non-projective modules (e.g. if A is the path algebra of a
quiver of type Ay);

(e) »M is closed under indecomposable submodules;

(f) If g: Y — Z is a sink map, and

t
Y =Y
i=1

a direct sum decomposition with Y; indecomposable and Y; € ,, 1M for
all i, then Z € ,M; (Proof: Let N be indecomposable, and let 0 # h €
rad4 (N, Z). Then there exists some h': N — Y with h = goh'.

N

/
/
ol
‘g

Y —Z7

Thus we can find some 0 # h,: N — Y. If A, is an isomorphism, then
N 2Y, €, M. If b is not an isomorphism, then N € , oM C, 1 M.)
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(g) If Z € , M is non-projective, then 74(Z) € ,,_oM;
(h) We have
E(A) = M.

Lemma 33.3. Let A be a finite-dimensional K-algebra. If Z is an indecomposable
A-module, then Z € ,M if and only if [Z] € ,(T4).

Proof. The staatement is correct for n = —1. Thus assume n > 0. If Z € , M and

t
P -7
=1

is a sink map with Y; indecomposable for all 7, then Y; € ,_1M for all i. Thus
by induction assumption [Y;] € ,_1(I"4), and therefore [Z] € ,,(I'4). Vice versa, if
[Z] € n(Ta), then [Y;] € ,-1(T'4). Thus Y; € ,_y M. Using (f) we get Z € ,M. O

Let
E(A)
be the full subquiver of all vertices [X] of T'4 such that X is a reachable module.
One easily checks that F(A) is again a valued translation quiver.
Summarizing our results and notation, we obtain
E(A) = (T4 =4, and E(A) = M.
Furthermore, £(A) is the full subcategory of all A-modules X such that [X] € E(A).

We say that K is a splitting field for A if End4(S) = K for all simple A-modules
S.

Examples: If K is algebraically closed, then K is a splitting field for K. Also, if
A = KQ is a finite-dimensional path algebra, then K is a splitting field for A.

Roughly speaking, if K is a splitting field for A, then there are more combinatorial
tools available, which help to understand (parts of) mod(A). The most common
tools are mesh categories and integral quadratic forms.

Theorem 33.4. Let A be a finite-dimensional K-algebra, and assume that K is a
splitting field for A. Then the valuation for E(A) splits, and there is an equivalence
of categories

n: K(E(A)®) — E(A).

Proof. Let T be a complete set of indecomposable A-modules (thus we take exactly
one module from each isomorphism class). Set

Z=IN, M and ZI=ZNEA).

For X, Y € .7 we want to construct homomorphisms
a’y € Homy(X,Y)
with 1 <i < dyy = dimg Irra (X, Y).
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If Y = P is projective, we choose a direct decomposition

rad(P) = @ X~

XeT
We know that dxp = dimg Irr4 (X, P). Let
asyp: X — P
with 1 <17 < dxp be the inclusion maps.

By induction we assume that for all X,Y € ,7 we have chosen homomorphisms
a'yy: X — Y where 1 <17 < dxy.

Let Z € ,,.1Z be non-projective, and let
0-xL @PrivLzo
YenT

be the Auslander-Reiten sequence ending in Z, where the dxy component maps
X — Y of f are given by da%y, 1 <@ < dyy. Now g together with the direct sum

decomposition
B
YenT

yields homomorphisms a¥,: Y — Z, 1 < i < dxy = dyz. These homomorphisms
obviously satisfy the equation

dxy

Z Zagfzag(Y = 0.

YenT i=1

Denote the corresponding arrows from [X] to [Y] in
[':=E(A)°
by o’y where 1 <i < dyy.
We obtain a functor
n: K(I') — £(A)
as follows: For X € 7 define
n([X]) ==X and 7 (aky) = dxy.

This yields a functor K(I') — £(A), since by the equation above the mesh relations

are mapped to 0.

Now we will show that 7 is bijective on the homomorphism spaces.

Before we start, note that Ends(X) = K for all X € £(A). (Proof: A reachable
module X does not lie on a cycle in M(A), thus rad(End4(X)) = 0. This shows
that F(X) = End4(X). Let X € (M =E(A). If X = P is projective, then

F(X) = Enda(P/rad(P)) = Ends(S) = K
where S is the simple A-module isomorphic to P/rad(P). Here we used that K is
a splitting field for A. If X is non-projective, then F(X) = F(74(X)). Furthermore
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we know that 74(X) is projective for some n > 1. Thus by induction we get
F(X)=Enda(X) = K.)

Surjectivity of n: Let h: M — Z be a homomorphism in . Z, and let Z € ,Z. We
use induction on n. If M = Z, then h = c¢- 1) for some ¢ € K. Thus h = n(c- 1py).
Assume now that M # Z. This implies that A is not an isomorphism. The sink
map ending in 7 is

9= (ay)v;: @ Yo7 — 7.

Yen17Z

E 7
Y.

By induction the homomorphisms hy,;: M — Y are in the image of 7, and by the
construction of 7 also the homomorphisms aj-, are contained in the image of 7.
Thus A lies in the image of n

We get

Injectivity of n: Let R be the mesh ideal in the path category KT'. We investigate
the kernel IC of

n: KI' — T.
Clearly, R € K. Next, let w € K. Thus w € Homgr([M], [Z]) for some [M] and
[Z]. We have to show that w € R. Assume [Z] € ,Z. We use induction on n.
Additionally, we can assume that w # 0. Thus there exists a path from [M] to [Z].

If [M] = [Z], then w = ¢ 1y and n(w) = ¢ - 1y = 0. This implies ¢ = 0 and
therefore w = 0.

Thus we assume that [M] # [Z]. Now w is a linear combination of paths from [M]
to [Z], i.e. w is of the form
Yii

where the wy; are elements in Homgr([M], [Y]). Note that [Y] € ,_1Z. Applying n

we obtain A
0=n(w) = aymwy,).
Y,i

If Z is projective, then each al ,: Y — Z is an inclusion map, and we have
Im(ay, ;) N Im@%,z) 70
if and only if Y; = Y5 and i; = iy. This implies a} ,n(wy;) = 0 for all Y, 4. Since a.,

is injective, we get n(wy;) = 0. Thus by induction wy; € R and therefore w € R.

Thus assume Z is not projective. Then we know the kernel of the map
9= (ay2)v;: @ Y&z 7
Yen1T
namely

f=(axy)yi: X — @ ydvz,

Yen—1Z
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Thus the map
hi=((wy))yi: M — @ Y7

Yen-1Z

factorizes through f, since g o h = 0. So we obtain a homomorphism A': M — X
such that

(aky )y o b = (n(wya))y.
and therefore a’yy o b’ = n(wy,).
By the surjectivity of 7 there exists some w’: [M]| — [X] such that n(w’) = A’. Thus
we see that
n (&g(ywl) = aé(y oh' = 77<WY,2‘)-
In other words, 1 (wy; — ayyw’) = 0. By induction wy; — ayyw’ belongs to the
mesh ideal. Thus also

Y.
= aiz (wri — akyw') + ) (ayzaky)
Y,i Y,i
is contained in the mesh ideal. This finishes the proof. U

33.2. Computations in the mesh category. Let M and X be non-isomorphic
indecomposable A-modules such that X is non-projective. Let 0 — 74(X) — E —
X — 0 be the Auslander-Reiten sequence ending in X. Then

0 — Homy (M, 74(X)) — Homyu (M, E) — Homa (M, X) — 0
is exact.

Let T' = (T'4,d4). If [X] and [Z] are vertices in F(A) such that none of the paths
in I" starting in [X] and ending in [Z] contains a subpath of the form [Y] — [E] —
(71 (Y)], then we have

Hom g g4y ([X], [Z]) = Homgr([X], [Z]).

Using this and the considerations above, we can now calculate dimensions of homo-
morphism spaces using in the mesh category K (E(A)).

Let @ be the quiver

~—95

2
|
1=—3
!

4<—56

and let A = K(@. Here is the Auslander-Reiten quiver of A, using the dimension
vector notation:
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Here we display the locations of the indecomposable projective and the indecom-
posable injective A-modules:

/\/\/\/\/\/
/\/\/\/\/\/

1—> 3—>o—>o—>o—>o—>o—>o—>o—>o—> 1—> 3

N ONNNNS N,
\/\/\/\/\/\

The following pictures show how to compute dim Homy(P;, —) for all indecom-
posable projective A-modules P;. Note that the cases P, and P, and also P;
and Py are dual to each other. We marked the vertices [Z] by [a] where a =
dim Homy(P;, Z), provided none of the paths in E(A) starting in [P;] and ending
in [Z] contains a subpath of the form [Y] — [E] — [r;'(Y)]. Of course, we can
compute dim Homy (X, —) for any indecomposable A-module.
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/\/\/\/\/\/
./i\//fx/;\/ﬁ\/é\/ﬂ

\/\/\/\/\/\
\/\/\/\/\/\

dim Homu (P, —):

//\/\/\/\/\/
/QYQ\/A/A/A/O

\/\M/\/\/\/\
\w/\/\/\/\/\

dim Hom 4 (Ps, —):

/“\/\/\/\/\/
/ﬂ\/\/A/A/A/l

\/\M/\/\/\/\
\w/\/\/\/\/\
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dim HomA(P5, —):

/\/“\/\/\/\/
/ﬁm/\/\/\/\/
\wﬂm/\/\/\/\

\/\w/\/\/\/\

33.3. Directing modules.

Lemma 33.5. Let X be a directing A-module, then Enda(X) is a skew-field, and
we have Ext’y (X, X) =0 for alli > 1.

Proof. Since rad(Ends (X)) = 0, we know that End,(X) is a skew-field. It is also
clear that Ext)(X,X) =0: If 0 = X — M — X — 0 is a short exact sequence
which does not split, then we immediately get a cycle (X, M;, X) where M; is an
indecomposable direct summand of M.

Let C be the class of indecomposable A-modules M with M = X. We will show by
induction that Ext’, (M, X) =0 for all M € C and all j > I:

The statement is clear for j = 1. Namely, if Ext! (M, X) # 0, then any non-split
short exact sequence

O%X%@KHM%O

yields X < M < X, a contradiction.

Next, assume j > 1. Without loss of generality assume M is not projective. Let
0 — QM) - Py = M — 0 be a short exact sequence where ¢: Py — M is a
projective cover of M. We get

Ext’, (M, X) = Ext’, "(Q(M), X).

If Ext’,(M,X) # 0, then there exists an indecomposable direct summand M’ of
Q(M) such that Ext/; " (M’, X) # 0. But for some indecomposable direct summand
P of Py we have M’ < P < M < X, and therefore M’ € C. This is a contradiction
to our induction assumption. 0

Corollary 33.6. Assume gl. dim(A) < oo, and let X be a directing A-module. Then
the following hold:

(1) xa(X) = (X, X)4 = dimg End,(X);
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(ii) If K is algebraically closed, then x4(X) = 1;
(i) If K is a splitting field for A, and if X is preprojective or preinjective, then
xa(X) =1.

As before, let A be a finite-dimensional K-algebra. An A-module M is sincere if
each simple A-module occurs as a composition factor of M.

We call the algebra A sincere if there exists an indecomposable sincere A-module.

Lemma 33.7. For an A-module M the following are equivalent:

i) M is sincere;

(ii) For each simple A-module S we have [M : S| # 0;

(iii) If e is a non-zero idempotent in A, then eM # 0;

(iv) For each indecomposable projective A-module P we have Hom (P, M) # 0;
(v) For each indecomposable injective A-module I we have Homy (M, I) # 0

Proof. Exercise. O

Theorem 33.8. Let M be a sincere directing A-module. Then the following hold:

(i) proj.dim(M) <1
(ii) inj.dim(M) < 1;

(iii) gl.dim(A) < 2.
Proof. (i): We can assume that M is not projective. Assume there exists an inde-
composable injective A-module I with Hom (7, 7(M)) # 0. Since M is sincere, we
have Homy (M, I) # 0. This yields M < I < 7(M) < M, a contradiction. Thus
proj. dim(M) < 1.

(ii): This is similar to (i).

(iii): Assume gl.dim(A) > 2. Thus there are indecomposable A-modules with
Ext} (U, V) # 0. Let 0 — Q(U) — Py — U — 0 be a short exact sequence with
e: Py — U a projective cover. It follows that Ext%(Q(U),V) = Ext? (U, V) # 0.
Thus proj. dim(Q2(U)) > 2. Let U’ be an indecomposable direct summand of Q(U)
with proj. dim(U”) > 2. This implies Hom (7, 74(U")) # 0 for some indecomposable
injective A-module /. It follows that

M= <7m4U)<U <P=<M

where P is an indecomposable direct summand of Py, a contradiction. The first and
the last inequality follows from our assumption that M is sincere. This finishes the
proof. O

Theorem 33.9. Let X and Y be indecomposable finite-dimensional A-modules with
dim(X) =dim(Y). If X is a directing module, then X =Y.

Proof. (a): Without loss of generality we can assume that X and Y are sincere:
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Assume X is not sincere. Then let R be the two-sided ideal in A which is gen-
erated by all primitive idempotents e € A such that eX = 0. It follows that
R C Amny(X) :={a€ A|aX =0} and R C Anny(Y) := {a € A | aY = 0}.
Clearly, eX = 0 if and only eY = 0, since dim(X) = dim(Y). We also know that
Anny(X) is a two-sided ideal: If a; X = 0 and as X = 0, then (a; + a)X = 0.
Furthermore, if aX = 0, then a’aX = 0 and also aa”X C aX =0 for all «’,a” € A.
It follows that X and Y are indecomposable sincere A/R-modules. Furthermore, X
is also directing as an A/R-module, since a path in mod(A/R) can also be seen as
a path in mod(A). Thus from now on assume that X and Y are sincere.

(b): Since X is directing, we get proj. dim(X) < 1, inj. dim(X) < 1 and gl. dim(A4) <
2. Furthermore, we know that (dim(X),dim(X))4 = dimg Enda(X) > 0, and
therefore

(dim(X), dim(X)) 4 = (dim(X), dim(Y")) 4
= dim Hom,(X,Y) — dim Ext!(X,Y) + dim Ext%(X,Y).

We have Ext?(X,Y) = 0 since proj.dim(X) < 1. It follows that Hom4(X,Y) # 0.
Similarly,

(dim(X), dim(X))4 = (dim(Y), dim(X)) 4 = dim Hom(Y, X) — Ext(Y, X)

since inj. dim(X) < 1. This implies Homa(Y, X) # 0. Thus, if X 2 Y, we get
X <Y < X, a contradiction. O

Motivated by the previous theorem, we say that an indecomposable A-module X is

determined by composition factors if X = Y for all indecomposable A-modules
Y with dim(X) = dim(Y").

Summary

Let A be a finite-dimensional K-algebra. By mod(A) we denote the category of
finite-dimensional left A-modules. Let ind(A) be the subcategory of mod(A) con-
taining all indecomposable A-modules.

The two general problems are these:
Problem 33.10. Classify all modules in ind(A).
Problem 33.11. Describe Homa(X,Y) for all modules X,Y € ind(A).

Note that we do not specify what “classify” and “describe” should exactly mean.

(a) Let £(A) be the subcategory of ind(A) containing all reachable A-modules.
For all X € £(A) and all Y € ind(A) we have dim(X) = dim(Y") if and only
if X2Y.

(b) The knitting algorithm gives A = (L4) = E(A), and for each [X] € E(A)
we can compute dim(X).

(c) For X € ind(A) we have [X| € E(A) if and only if X € £(A).
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(d) If K is a splitting field for A (for example, if K is algebraically closed), then
the mesh category K (FE(A)¢) is equivalent to £(A).

(e) We can use the mesh category of compute dim Hom(X,Y) for all X|Y €
E(A).

We cannot hope to solve Problems 33.10 and 33.11 in general, but for the subcat-
egory £(A) C ind(A) of reachable A-modules, we get a complete classification of
reachable A-modules (the isomorphism classes of reachable modules are in bijection
with the dimension vectors obtained by the knitting algorithm), and we know a lot
of things about the morphism spaces between them.

Keep in mind that there is also a dual theory, using “coreachable modules” etc.

Furthermore, for some classes of algebras we have £(A) = ind(A), for example
if A is a representation-finite path algebra, or more generally if I'4 is a union of
preprojective components.

33.4. The quiver of an algebra. Let A be a finite-dimensional K-algebra. The
valued quiver Q4 of A has vertices 1,...,n, and there is an arrow i — j if and
only if dimg Ext}y(S;, S;) # 0. In this case, the arrow has valuation

Each vertex i of ()4 has valuation d; := dimg End 4(.9;).

Let Q% be the opposite quiver of A, which is obtained from Q4 by reversing all
arrows. The valuation of arrows and vertices stays the same.

Note that Q4 and Q9 can be seen as valued translation quivers, where all vertices
are projective and injective.

Special case: Assume that A is hereditary. Then we have
dpjpi = dz’j and dpl, = dgl. = dz

Thus, the subquiver P4 of preprojective components of (I'4,d4) is (as a valued
translation quiver) isomorphic to NQY.

We define the valued graph @, of A as follows: The vertices are again 1,...,n.
There is a (non-oriented) edge between ¢ and j if and only if

EXth(Si, S]) ) EXth(Sj, Sz) 7& 0.
Such an edge has as a valuation the pair

(dimEndA(sj) EXt}LX(SZ‘, Sj), dimEndA(Si)op EXth(Si, S])) = (dij/dj7 d”/dl)

Example of a valued graph:

(2,1)

The representation-finite hereditary algebras can be characterized as follows:
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Theorem 33.12. A hereditary algebra A is representation-finite if and only if Q 4
1s a Dynkin graph.

The list of Dynkin graphs can be found in Skript 3. Note that non-isomorphic
hereditary algebras can have the same valued graph.

33.5. Exercises. 1: Let A be an algebra with gl.dim(A) > d. Show that there
exist indecomposable A-modules X and Y with Ext%(X,Y) # 0.

34. Cartan and Coxeter matrix

Let A be a finite-dimensional K-algebra. We use the usual notation:

e P, ..., P, are the indecomposable projective A-modules;
e [1,..., I, are the indecomposable injective A-modules;
e Si,...,5, are the simple A-modules;

e S; = top(F;) = soc(l;).

(Of course, the modules P;, I; and S; are just sets of representatives of isomorphism
classes of projective, injective and simple A-modules, respectively.)

Let X and Y be A-modules.
If proj. dim(X) < oo or inj. dim(Y") < oo, then
(X,Y) 4 = (dim(X), dim(Y))a := Y _(—1)"dimy Ext}y(X,Y)
>0
is the Ringel form of A. This defines a (not necessarily symmetric) bilinear form
(—, —)a: Z" X 2" — 7.
If proj. dim(X') < oo or inj. dim(X) < oo, then set
Xa(X) = xa(dim(X)) := (X, X) 4 = Y _(—1)"dimy Ext}y (X, X).
>0

This defines a quadratic form xa(—): Z" — Z.

34.1. Coxeter matrix.

We did all the missing proofs in this section in the lectures. But you
also find them in Ringel’s book.

If dim(P,),...,dim(P,) are linearly independent, then define the Coxeter matrix
® 4 of A by
dim(P;) P4 = —dim(/;)
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for 1 < i < n. It follows that &4 € M, (Q).

Lemma 34.1. If gl. dim(A) < oo, then dim(P),...,dim(P,) are linearly indepen-
dent.

Proof. We know that gl. dim(A) < oo if and only if proj. dim(S) < oo for all simple

A-modules S. Furthermore {dim(S;) | 1 < i < n} are a free generating set of the
Grothendieck group G(A). Let

0—PD ... p _,pO _, 9,0

be a minimal projective resolution of a simple A-module S. This implies

d
> (—1)'dim(P?) = dim(S).
i=0
Thus the vectors dim(F;) generate Z™. The result follows. O

Dually, if gl. dim(A) < oo, then dim(/;),...,dim(/,) are also linearly independent.
So ® 4 is invertible in this case.

By the definition of ® 4, for each P € proj(A) we have
(3) dim(P)® 4 = —dim(v(P)).

Let M be an A-module, and let P £ P© — M — 0 be a minimal projective
presentation of M. Thus we obtain an exact sequence

(4) 0— M —PY - PO M0
where M” = Ker(p) = Qo(M). We also get an exact sequence

(5) 0 = Ta(M) — va(PV) 222,

vA(PO) = va(M) — 0
since the Nakajama functor vy is right exact.
There is the dual construction of 7,': For an A-module N let

(6) 0—>N—-TOL 1O N0

be an exact sequence where 0 — N — [(©) L 1MW is a minimal injective presentation

of N.

Applying v, yields an exact sequence

(7) 0 — vz /N) = vz (1) 22 1 (10) = 7 (N) = 0
Lemma 34.2. We have
(8) dim(74(M)) = dim(M)® 4 — dim(M")® 4 + dim(v4(M)).



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 259

Proof. From Equation (4) we get
—dim(P™") + dim(P?) = dim(M) — dim(M").

Applying @4 to this sequence, and using dim(P)® 4 = —dim(v4(P)) for all projec-
tive modules P, we get

dim(v4(P")) — dim(va(P®)) = dim(M) P, — dim(M") P4
From the injective presentation of 74(M) (see in Equation (5)) we get
dim(74(M)) = dim(va(P")) — dim(va(P"*)) + dim(v(M))
— dim(M)®,, — dim(M")D 5 + dim(v4(M))

U
Lemma 34.3. If proj. dim(M) < 2, then
(9) dim(74(M)) > dim(M)® 4.
If proj. dim(M) < 2 and inj. dim(74(M)) < 2, then
(10) dim (74(M)) — dim(M)®, = dim(I)

for some injective module I.

Proof. 1f proj.dim(M) < 2, then M" is projective, which implies dim(M")P, =
—dim(v4(M")). Therefore

dim(74(M)) — dim(M) P4 = dim(va(M") & va(M)),
and therefore this vector is non-negative. Note that v4(M") is injective. If we

assume additionally that inj. dim(74(M)) < 2, then v4(M) is also injective, since it
is the cokernel of the homomorphism

va(p): VA(P(U) - VA(P(O))

with v4(PM) and v4(P®) being injective. O
Lemma 34.4. If proj.dim(M) < 1 and Homy (M, 4A) =0, then
(11) dim(rs (M) = dim(M),.

Proof. If proj.dim(M) < 1, then M” = 0, since Equation (4) gives a minimal
projective presentation of M. By assumption v4(M) = D Homa(M, 4A) = 0. Thus
the result follows directly from Equation (8). O

Note that Equation (11) has many consequences and applications. For example, if
A is a hereditary algebra, then each A-module M satisfies proj. dim(M) < 1, and if
M is non-projective, then Homy (M, 4A) = 0.

Lemma 34.5. Assume proj.dim(M) < 2. If dim(74(M)) = dim(M)Dy, then
proj.dim(M) <1 and Homy (M, 4A) = 0.

Proof. Clearly, dim(74(M)) = dim(M)®4 implies va(M")oplusva(M) = 0. Since
M" is projective, we have v4(M") = 0 if and only if M” = 0. O
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Using the notations from Equation (6) and (7) we obtain the following dual state-
ments:

(i) We have
dim(,"(N)) = dim(N)¢;" — dim(N")®," + dim (v, (N)).
(ii) If inj. dim(N) < 2, then
dim(7; ' (N)) > dim(N)®}".
If inj. dim(N) < 2 and proj. dim(7,*(N)) < 2, then
dim (7, (N)) — dim(N)®," = dim(P)

for some projective module P.
(iii) If inj. dim(NV) < 1 and Homa(D(A4), N) = 0, then

dim(7, ' (N)) = dim(N) "

Lemma 34.6. If 0 — U — X — V — 0 is a non-split short exact sequence of
A-modules, then

dim End4(X) < dim End,(U & V).

Proof. Applying Homy(—,U), Homa(—, X) and Homu(—, V') we obtain the com-
mutative diagram

0 0 0
0 — Homy(V, U) — Homu(X, U) — Hom4 (U, U) —— Ext(V,U)

0 — Homu(V, X)) — Homu (X, X) — Homy (U, X)

0 — Homy (V, V) ——= Hom (X, V) —— Homu (U, V)

with exact rows and columns. Since 1 does not split, we know that the connecting
homomorphism ¢ is non-zero. This implies

dim Homy (X, U) < dim Homy (V,U) + dim Homu(U,U) — 1.
Thus we get
dim Homy (X, X) < dim Homu (X, U) + dim Homu (X, V)
< dim Homx(V,U) + dim Homu (U, U) — 1
+ dim Homy (V, V') + dim Homy4 (U, V)
=dim Endy(U& V) — 1.
This finishes the proof. U



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 261

Recall that for an indecomposable A-module X we defined
F(X) = Enda(X)/rad(End4 (X)),

which is a K-skew field. If K is algebraically closed, then F'(X) = K for all indecom-
posables X. If K is a splitting field for K, then F(77"(P;)) 2 K and F(7"(];)) = K
for all n > 0.

An algebra A is directed if every indecomposable A-module is directing.

Let A be of finite-global dimension. Then we call the quadratic form y, weakly
positive if x4(z) > 0 for all z > 0 in Z". If x € Z" with xa(z) = 1, then z is called
a root of y4.

Theorem 34.7. Let A be a finite-dimensional directed algebra. If gl. dim(A) < 2,
then the following hold:

(1) xa is weakly positive;

(ii) If K is algebraically closed, then dim yields a bijection between the set of
isomorphism classes of indecomposable A-modules and the set of positive
roots of xa.

Proof. (i): Let x > 0in G(A) = Z™. Thus x = dim(X) for some non-zero A-module
X. We choose X such that dim End4(X) is minimal. In other words, if Y is another
module with dim(Y') = z, then dim End4(X) < dim Ends(Y).

Let X = X1 @ ---® X, with X; indecomposable for all 7. It follows from Lemma
34.6 that Ext}(X;, X;) = 0 for all i # j. (Without loss of generality assume

Ext!(Xy, X;) # 0. Then there exists a non-split short exact sequence

t
O—>X1—>Y—>EBX1‘—>O
i=2
and Lemma 34.6 implies that dim End(Y) < dim End4(X), a contradiction.) Fur-

thermore, since X; is directing, we have Ext!(X;, X;) = 0 for all i. Thus we get
Ext! (X, X) = 0. Since gl. dim(A) < 2, we have

xa(z) = xa(dim(X)) = dim End4(X) + dim Ext? (X, X) > 0.

Thus x4 is weakly positive.

(ii): If Y is an indecomposable A-module, then we know that

xa(Y) =dim End,(Y),
since Y is directing. We also know that End4(Y) is a skew field, which implies
F(Y) =2 Enda(Y). Thus, x4(Y) =1 in case F(Y) =2 K.

Furthermore, we know that any two non-isomorphic indecomposable A-modules Y
and Z satisfy dim(Y") # dim(Z). So the map dim is injective.

Assume additionally that z is a root of y4. Now

1 = xa(r) = dim End4(X) + dim Ext? (X, X)
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shows that End4(X) = K. This implies that X is indecomposable.

It follows that the map dim from the set of isomorphism classes of indecomposable
A-modules to the set of positive roots is surjective. O

Note that a sincere directed algebra A always satisfies gl. dim(A) < 2.

Corollary 34.8. If () is a representation-finite quiver, then x k¢ is weakly positive.

Proof. If K@ is representation-finite, then I'x consists of a union of preprojective
components. Therefore all K@Q-modules are directed. Furthermore, gl. dim(KQ) <
1. Now one can apply the above theorem. O

Proposition 34.9 (Drozd). A weakly positive integral quadratic form x has only
finitely many positive roots.

Proof. Use partial derivations of y and some standard results from Analysis. For
details we refer to [Ril]. O

From now on we assume that K is a splitting field for A.

34.2. Cartan matrix. As before, we denote the transpose of a matrix M by M7,
For a ring or field R we denote the elements in R™ as row vectors.

The Cartan matrix Cy = (¢;;);; of A is the n x n-matrix with ijth entry equal to
¢ij = [P; : §;] = dim(P;);.

Thus the jth column of Cy is given by dim(P;)”.

Recall that the Nakayama functor v = v4 = D Homy(—, 4A) induces an equivalence

v: proj(A) — inj(A)
where v(P;) = I;. It follows that
dim(/;); = dim Homyu(1;, I;) = dim Homa (P}, P;) = ¢;j.

(Here we used our assumption that K is a splitting field for A.)

Thus the ith row of Cy is equal to dim(/;). So we get

(12) dim(P) = ¢;,C%  and dim([;) = ;C,.

Lemma 34.10. If gl. dim(A) < oo, then Cy is invertible over Z.

Proof. Copy the proof of Lemma 34.1. U

But note that there are algebras A where C is invertible over O, but not over Z,
for example if A is a local algebra with non-zero radical.
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Assume now that the Cartan matrix C'4 of A is invertible. We get a (not necesssarily
symmetric) bilinear form

(== Q"xQ"—=Q
defined by
(@, y) = 2Cy"y"

Here ;7 denote the inverse of the transpose C%) of C. Furthermore, we define a
symmetric bilinear form

(= =)4: Q" xQ" = Q
by
(@,9)s = (2, y)a + (. 2)s = 2(C1 + Oy
Set X'y (x) := (x,z)’,. This defines a quadratic form
Xa: Q' = Q.
It follows that
(2, y)a = Xalz +y) = Xalx) = Xaly).

The radical of y/, is defined by

rad(x}y) = {w € Q" | (w, —)); = 0}.
The following lemma shows that the form (—, —); we just defined using the Cartan
matrix, coincides with the Ringel form we defined earlier:

Lemma 34.11. Assume that Cy4 is invertible. If X and Y are A-modules with
proj. dim(X) < oo or inj. dim(Y') < oo, then

(dim(X), dim(Y)), = (X, V)4 = 3 (~1)'dim Exty(X, V).

>0
In particular, x'y(dim(X)) = ya(X).
Proof. Assume proj. dim(X) = d < co. (The case inj. dim(Y’) < oo is done dually.)
We use induction on d.

If d = 0, then X is projective. Without loss of generality we assume that X is
indecomposable. Thus X = P; for some 7. Let y = dim(Y). We get

(dim(X), dim(Y))y = (dim(P,), y)y = dim(P;)C;"y" = exy” = dim Homu(P;,Y).
Furthermore, we have Ext’(P;,Y) = 0 for all ¢ > 0.

Next, let d > 0. Let P — X be a projective cover of X and let X’ be its kernel. It
follows that proj. dim(X’) = d — 1. We apply Hom,(—,Y") to the exact sequence

0-X —-P—X—0.
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Using the long exact homology sequence we obtain

> (—1)idim Exty(X,Y) = > (=1)'dim Ext’,(P,Y) = > (=1)'dim Ext/,(X",Y)
_ — (dim(P), Y)} — (dim(X"), dim(Y)Y,
= (dim(X), dim(Y)),.

Here the second equality is obtained by induction. This finishes the proof. U

Let 9;; be the Kronecker function.

Corollary 34.12. If A is hereditary, then

(ei,ei)a = 1 ifi=J,
R —dim Ext}y(S;,S;) otherwise.

Proof. This holds since gl. dim(A) < 1 and since K is a splitting field for A. O

Lemma 34.13. Let A = KQ be a finite-dimensional path algebra. Then for any
simple A-module S; and S; we have dim Ext!(S;,S;) is equal to the number of
arrows 1 — j in Q.

Proof. Let a;; be the number of arrows ¢ — j. Since A is finite-dimensional we have
a;; = 0 for all <. The minimal projective resolution of the simple A-module S; is of
the form

0~ @PP" =P -5 -0
j=1
Applying Hom 4(—, ;) yields an exact sequence
0— HOH’IA(SZ‘, SJ) — HOH’IA(PZ‘, SJ) — HOH’IA(P;U, SJ) — EXth(SZ, SJ) — 0.
Corollary 34.14. Let A = KQ be a finite-dimensional path algebra, and let X and
Y be A-modules with dim(X) = a and dim(Y') = 3. Then

<X7 Y>KQ - <a75>KQ = Z aiﬁi - Z O‘s(a)ﬁt(a)
1€Qo ac€Q1
and
XkQ(X) ={a, a)kq = ZOZ? - Z%jaiaj
i=1 i<j
where q;; is the number of arrows a € Q1 with {s(a),t(a)} = {7, j}.

Lemma 34.15. Assume that Cy4 is invertible. Then

b,y =—-C7C,.
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Proof. For each 1 <14 < n we have to show that

(13) dim(P)® 4 = —dim(L,).

We have

dim(P)(=C;"Cs) = —dim([;) if and only if ~ —dim(Z;)" = —C4C;'dim(P)".
Clearly, C'dim(P,)" = €I, and —C%el’ = —dim(I;)". O

Example: Let () be the quiver
2

and let A = K(@Q. Then

and

Lemma 34.16. For all x,y € Q" we have
<$,y>i4 = _<y7x(1>A>i4 - <"L‘(I>A7y(1>z4>i4

Proof. We have
(@, y)y = 2CTy" = (2O Ty = yCyla”
= yC,TCRC 2" = —yCT®ha” = —(y, 20,4)),.

This proves the first equality. Repeating this calculation we obtain the second
equality. O

Lemma 34.17. If there exists some x > 0 such that x®4 = x, then x 4 is not weakly
positive.

Proof. We have (z,y)’, = 0 for all y if and only if 2(C;* + C;") = 0 if and only if
xCyt = —xCy T if and only if 2@, = . O

Corollary 34.18. If there exists some x > 0 such that x®, = x, then X'y is not
weakly positive.

Proof. If x € rad(x/4), then x/;,(z) = 0. O
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Assume there exists an indecomposable K@Q-module X with 7,(X) = X and
assume m > 1 is minimal with this property. Set

Y = P rio(X).
=1

Then 7xq(Y) = Y which implies
dim(Y) = dim(Y)®icq.
We get
Y, Z)kq = (Y, Z)kq + (£, Y )Kq

= —(dim(Z), dim(Y)Pxq) — (dim(Y) Py, dim(Z))

==Y, Z)kq + (2, Y)kq)-
This implies dim(Y") € rad(xxq)-
Lemma 34.19. For an A-module M the following hold:

(i) If proj.dim(M) < 1, then
Ta(M) = D Ext! (M, 4A).
(i) If inj.dim(M) <1, then
7 (M) 2 Extlo, (D(M), Ay).

Proof. Assume proj. dim(M) < 1. Then in Equation (4) we have M” = 0. Applying
Hom4(—, 4A) yields an exact sequence

0Homy (M, 4 A) — Hom,(P®, 4 A) — Homa(PW, 4A) — Ext! (M, 4A) — 0

of right A-modules. Keeping in mind that vy = D Homa(—, 4A4) we dualize the
above sequence get an exact sequence

0D Ext! (M, 4A) — va(PY) — v (PO) — v (M) — 0.
This implies (i). Part (ii) is proved dually. O

34.3. Exercises. 1: Show the following: If the Cartan matrix C'4 is an upper
triangular matrix, then C'y is invertible over Q. In this case, C'4 is invertible over Z

if and only if Enda(F;) = K for all i.

35. Representation theory of quivers

Parts of this section are copied from Crawley-Boevey’s lecture notes “Lectures on
representations of quivers”, which you can find on his homepage.
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35.1. Bilinear and quadratic forms. Let Q = (Qo, Q1,s,t) be a finite quiver
with vertices Qo = {1,...,n}, and let A = K@ be the path algebra of Q.

For vertices i, j € Qo let ¢;; = g;; be the number of arrows a € Q; with {s(a),t(a)} =
{i,7}. Note that the numbers ¢;; do not depend on the orientation of Q.

For a = (aq,...,ay) € Z™ define
qola) = Z ol — Z qij 0Ly
i=1 i<j
We call the quadratic form gg: Z" — Z the Tits form of Q.

The symmetric bilinear form (—, —)g: Z" x Z"™ — 7Z of () is defined by
—Gij if i # 7,
(€1 €5)q = ’ .
2 — 2q;; otherwise.

As before, e; denotes the canonical basis vector of Z" with ith entry 1 and all other
entries 0.

We have
(aa a)Q = 26]@(0&),
(a,B)q = gq(a + B) — qq(@) — 4o(B).
Note that gg and (—, —)g do not depend on the orientation of the quiver Q.

For a, 8 € Z™ define
<aaﬁa >Q = Z O‘iﬁi - Z as(a)ﬁt(a)~

1€Qo a€Q1

This defines a (not necessarily symmetric) bilinear form
(—, =)o :Z"xZ"—Z
which is called the Euler form of (). Clearly, we have

o) = (o, @)q;
(0575)62 = <Oé7ﬁ>Q + <5705>Q'

The bilinear form (—, —)¢ does depend on the orientation of Q.

The Tits form ¢g is positive definite if gg(a) > 0 for all 0 # o € Z", and qq is
positive semi-definite if gg(a) > 0 for all a € Z".

The radical of ¢ is defined by
rad(gq) = {a € Z" | (a, —)q = 0}.
For a, B € Z" set 8 > « if § — a € N™. This defines a partial ordering on Z".

An element o = (v, ..., q,) € Z" is sincere if a; # 0 for all i. We write a@ > 0 if
a; > 0 for all 4, and a > 0 if &« > 0 and «a; > 0 for some 1.
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Let Sy, ..., S, be the simple K Q-modules corresponding to the vertices of Q). (These
are the only simple K'Q-modules if and only if ) has no oriented cycles.) It is easy
to check that dim Exty(S;, S;) equals the number of arrows i — j in Q. (Just
construct the minimal projective resolution

o B P
JEQo
of S;, where a;; is the number of arrows ¢ — j in ). Then apply the functor
Hompq(—, 5;).)

Lemma 35.1. Let Q be a connected quiver, and let 3 > 0 be a non-zero element in
rad(qg). Then the following hold:

(i) B is sincere;
(i) qg is positive semi-definite;
(i) For a € Z™ the following are equivalent:
(a) gqla) = 0;
(b) @ € QB;
(c) a € rad(qg)-

Proof. (a): By assumption we have

(ﬁa ez)Q - 2 - 2%@ % Z%]ﬁ] = 0.
J#i

Z iP5 =0

J#i
and since ¢;; > 0 for all 4,7 and 8 > 0, we get 3; = 0 whenever ¢;; > 0. Since @) is
connected, we get 5 = 0, a contradiction. Thus we proved that 3 is sincere.

If B; =0, then

(b): The following calculation shows that gg is positive semi-definite:

ZQU@ (_:__) qu26 Z%]aaj+zq@]

1<j J 1<j 1<j 1<j
_ Z Qijoy 2@ Z iy
i#] l<J
_Z 2(]22 ﬁl2ﬁa _Zqz]aaj_qQ( )
1<J

For the last equality we used n times the equation

2%@ ﬁz Z %]6]

J#i

(c): If go(o) = 0, then the calculation above shows that «;/3; = a;/8; whenever
gij > 0. Since @ is connected it follows that o € Qf.

(d): If @ € QB, then a € rad(qq), since [ € rad(qg).
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(e): Clearly, if a € rad(qg), then gg(a) = 0. O

Theorem 35.2. Suppose that ) is connected.

(i) If Q is a Dynkin quiver, then qq 1is positive definite;
(i) If Q is an Euclidean quiver, then qq is positive semi-definite and rad(qq) =
7.6, where § is the dimension vector for Q) listed in Figure 2;
(iii) If Q is not a Dynkin and not an Euclidean quiver, then there exists some
a>01in Z" with qg(a) < 0 and (o, e;)q < 0 for all i.

Proof. (ii): It is easy to check that § € rad(qg): If there are no loops or multiple
edges we have to check that for all vertices ¢ we have

J

where j runs over the set of neighbours of 7 in (). By Lemma 35.1 this implies that
qq is positive semi-definite.

In each case there exists some vertex i such that §; = 1. Thus rad(gg) = QINZ" =
Z5.

(i): Any Dynkin quiver ) with n vertices can be seen as a full subquiver of some
Euclidean quiver @ with n + 1 vertices. We have q@(a:) > 0 for all non-sincere
elements in Z"™!, since the x with a5 (x) = 0 are all multiples of the sincere element
d. So qq is positive definite. (The form ¢g is obtained from qp via restriction to the

subquiver @ of @)
(iii): Let @ be a quiver which is not Dynkin and not Euclidean. Then ) contains
a (not necessarily full) subquiver ) such that )’ is a Euclidean quiver. Note that

any dimension vector of ()’ can be seen as a dimension vector of () by just adding
some zeros in case ) has more vertices than @)’

Let ¢ be the radical vector associated to @)'. If the vertex sets of Q)" and @ coincide,
then « := 0 satisfies gg(a) < 0.

Otherwise, if i is a vertex of () which is not a vertex of )’ but which is connected
to a vertex in ) by an edge, then a := 2§ + e; satisfies ¢g(a) < 0. O

Let @ be a Euclidean quiver. If i is a vertex of @) with §; = 1, then i is called
an extending vertex. Observe that there always exists such an extending vertex.
Furthermore, if we delete an extending vertex (and the arrows attached to it), then
we will obtain a corresponding Dynkin diagram.

For ) a Dynkin or an Euclidean quiver, let
Agi={a € Z"|a £0,q0(a) < 1}
be the set of roots of Q.
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A root aof Q) isreal if gg(a) = 1. Otherwise, if go(a) = 0, it is called an imaginary
root. Let Afj and Aién be the set of real and imaginary roots, respectively.

Proposition 35.3. Let Q be a Dynkin or a Euclidean quiver. Then the following
hold:

(i) Each e; is a root;
(ii) If « € Ag U {0}, then —a and a+ B are in Ag U {0} where 8 € rad(qq);
(i) We have

Al _ 0 if Q is Dynkin,
© T N{rd|0#£r e Z} if Q is Euclidean;

(iv) Every root a € A is either positive or negative;
(v) If Q is Euclidean, then the set (Ag U{0})/Zé of residue classes modulo 70
18 finite;

(vi) If Q is Dynkin, then Ag is finite.
Proof. (i): Clearly, we have gg(e;) = 1, so e; is a root.
(ii): Let o € Ag U {0} and (3 € rad(qg). Since (5, a)g = 0 = qo(3), we have
do(@) = 4o(f + @) = qo(B) + go(a) + (B, a)q

= qo(B — a) = qq(B) + aqla) — (B, a)q
Thus —a and a + (§ are in Ag U{0}. (The case § = 0 yields ¢o(—a) = go(«@).)

(iii): This follows directly from Lemma 35.1.

(iv): Let o be a root. So we can write « = o™ — o~ where a™,a~ > 0 and have
disjoint supports. Assume that both o™ and o~ are non-zero. It follows immediately
that (o™, a™)g < 0. This implies

12 go(a) = go(a™) +aqla™) — (@™, a7)q = go(a™) + go(a”).
Thus one of ™ and o~ is an imaginary root and is therefore sincere. So the other
one is zero, a contradiction.

(v): Let @ be an Euclidean quiver, and let e be an extending vertex of Q. If a is a
root with a, = 0, then § — @ and ¢ + a are roots which are positive at the vertex e.
Thus both are positive roots. This implies

{ae AU{0}|a.=0}C{aeZ"| - <a<i},
and obviously this is a finite set.
If 5 € AU{0}, then 8 — (.6 belongs to the finite set
{a € AU{0} | a. = 0}.

(vi): If @ is a Dynkin quiver, we can consider @) as a full subquiver of the cor-
responding Euclidean quiver ) with extending vertex e. (Thus, we obtain @ by
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deleting e from @) We can now view a root a of () as a root of @ with o, = 0.
Thus by the proof of (v) we get that A is a finite set. O

35.2. Gabriel’s Theorem. Combining our results obtained so far, we obtain the
following famous theorem:

Theorem 35.4 (Gabriel). Let Q) be a connected quiver. Then KQ is representation-
finite if and only if Q) is a Dynkin quiver. In this case dim yields a bijection between
the set of isomorphism classes of indecomposable K Q-modules and the set of positive
roots of qq.

Proof. (a): We know that there is a unique preprojective component P of the
Auslander-Reiten quiver I'kq.

(b): We have xxq(X) = go(dim(X)) for all K@Q-modules X.

(c): Assume K() is representation-finite. This is the case if and only if Pxg =
I'kg. Since all indecomposable preprojective modules are directed, we know that
K@ is a directed algebra. Furthermore, we have gl.dim(KQ) < 1 < 2. So we
can apply Theorem xx and obtain a bijection between the isomorphism classes of
indecomposable K ()-modules and the set of positive roots of xx¢q. Furthermore, an
element o € N" is a positive root of k¢ if and only if o € Ay. We also know that
Xkq = qq is weakly positive. But this implies that () has to be a Dynkin quiver.
(For all quivers () which are not Dynkin we found some a > 0 with g («) <0.)

(d): If K@ is representation-infinite, the component Pk is infinite. Each indecom-
posable module X in Pk is directed, and K is a splitting field for Q. Thus

xro(X) = qo(dim(X)) = 1.

Furthermore, we know that there is no other indecomposable K(@Q-module Y with
dim(X) = dim(Y"). So we found infinitely many a € Z" with gg(«) = 1.

Suppose that @ is a Dynkin quiver. Then
AQ = {a eZ"” | QQ(Q) = 1}

is a finite set, a contradiction. O

36. Cartan matrices and (sub)additive functions

In Figure 1 we define a set of valued graphs called Dynkin graphs. By definition
each of the graphs A,, B,, C,, and D,, has n vertices. The graphs A,, D,,, Egs, Er
and FEg are the simply laced Dynkin graphs.
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Fg —

Fy B A

G Rl

Fi1GURE 1. Dynkin graphs

In Figure 2 we define a set of valued graphs called Euclidean graphs. By definition
each of the graphs An, Bn, Cn, Dn, BCn, BD and CD has n + 1 vertices. The
graphs An, D, Egs, E7 and Eg are the simply laced Euclidean graphs. By
definition the graph EO has one vertex and one loop, and ZI has two vertices joined
by two edges. Our table of Euclidean graphs does not only contain the graphs
themselves, but for each graph we also display a dimension vector which we will
denote by 9.

A quiver @) is a Dynkin quiver or an Euclidean quiver of the underlying graph
of @ (replace each arrow of () by a non-oriented edge) is a simply laced Dynkin
graph or a simply laced Euclidean graph, respectively.
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Part 7. Extras
37. Classes of modules

simple modules

serial modules

uniserial modules

cyclic modules

cocyclic modules

indecomposable modules

projective modules

injective modules

preprojective modules (which should really be called postprojective modules)
preinjective modules

regular modules

bricks

stones

exceptional modules

Schur modules

tree modules (2 different definitions)
string modules

band modules

(generalized) tilting modules
(generalized) partial tilting modules
torsion modules

torsion free modules

In the world of infinite dimensional modules we find names like the following:
Priifer modules

p-adic modules
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generic modules
pure-injective modules

algebraically compact module

Classifications of modules

For some algebras of infinite representation type, a complete classification of inde-
composable modules is known. We list some of these classes of algebras:

Solved:

tame hereditary algebras
tubular algebras
Gelfand-Ponomarev algebras
dihedral 2-group algebras
quaternion algebra
special biserial algebras
clannish algebras
multicoil algebras

Open:

biserial algebras

However, one still has to be careful what it means to have a classification of all
indecomposable modules over an algebra. For example for tubular algebras, one can
parametrize all indecomposable modules by roots of a quadratic form. But given a
root, it is still very difficult to write down explicitely the corresponding indecom-
posable module(s). In fact, for tubular algebras this remains an open problem.

38. Classes of algebras

We list some names of classes of mostly finite-dimensional algebras which were stud-
ied in the literature:

Basic algebras
Biserial algebras

Canonical algebras



276 CLAUS MICHAEL RINGEL AND JAN SCHROER
Clannish algebras
Cluster-tilted algebra
Directed algebras

Dynkin algebras

Euclidean algebras

Gentle algebras

Group algebras

Hereditary algebras

Multicoil algebras

Nakayama algebras

Path algebras

Poset algebras

Preprojective algebras
Quasi-hereditary algebras
Quasi-tilted algebras
Representation-finite algebras
Selfinjective algebras
Semisimple algebras

Simply connected algebras
Special biserial algebras
String algebras

Strongly simply connected algebras
Symmetric algebras

Tame algebras

Tilted algebras

Tree algebras

Triangular algebras
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Trivial extension algebras
Tubular algebras
Wild algebras

Here are some classes of algebras, which are not finite-dimensional, but linked to
the finite-dimensional world:

Repetitive algebras

Enveloping algebras of Lie algebras
Quantized enveloping algebras
Ringel-Hall algebras

Cluster algebras

Hecke algebras

39. Dimensions

The concept of “dimension” occurs frequently and with different meanings in the
representation theory of algebras. Here just some of the most common dimensions:

dimension of a module as a vector space
projective dimension of a module
injective dimension of a modules

global dimension of an algebra

finitistic dimension of an algebra
dominant dimension of an algebra
representation dimension of an algebra
Krull-Gabriel dimension of an algebra
Krull-dimension of a commutative ring

dimension of a variety
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Algebra homomorphism, 85
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Auslander-Reiten formula, 200
Auslander-Reiten quiver, 213, 224
Auslander-Reiten quiver (of M), 192
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Balanced map, 185

Basic algebra, 139

Bimodule, 97

Bimodule of irreducible maps, 218
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Category, 37

Centre of a ring, 101

Chinese Reminder Theorem, 44

Cocomplex of A-modules, 164

Cohomology group, 166

Cokernel of a homomorphism, 24
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Complex of A-modules, 164

Component of an Auslander-Reiten quiver,
213

Composition factors, 66
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Connecting homomorphism, 160, 172

Contravariant functor, 38

Converse Bottleneck Lemma, 195

Countably generated, 146

Countably generated module, 14

Covariant functor, 38

Coxeter matrix, 257

Crawley-Jgnsson-Warfield Theorem, 145

Cycle (in a module category), 245

Cycle in a quiver, 221

Cyclic module, 14

Decomposable module, 18

Dedekind Lemma, 16

Degree of a polynomial, 41

Dense functor, 39

Determined by composition factors, 255

Dimension of a J-module, 12

Dimension of a representation, 110

Dimension vector of a finite length module,
67

Dimension vector of a quiver representation,
113

Direct complement of a submodule, 18

Direct decomposition of a module, 18

Direct sum of modules, 18

Direct sum of quiver representations, 111

Direct summand of a module, 18

directed algebra, 261

Directing module, 245

Dominant dimension of an algebra, 184

Dynkin quiver, 272

Endomorphism, 24
Endomorphism algebra, 24
Epimorphism, 23
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Equivalence of categories, 39 Indecomposable module, 18

Equivalence of short exact sequences, 33 Induced short exact sequence, 155

FEuclidean graphs, 272 Injective dimension, 183

FEuclidean quiver, 272 Injective resolution, 134

Euler form of a quiver, 267 Injective vertex of a translation quiver, 222

Exact sequence, 31 Invertible element in a ring, 68

Exact sequence of A-modules, 164 Irreducible homomorphism (in M), 191

Exceptional representation of a quiver, 113 Irreducible module, 48

Exchange Theorem, 79 Isomorphic filtrations, 63

expansion of a translation quiver, 225 Isomorphism, 23

extending vertex of an Euclidean quiver, 269 Isomorphism of categories, 39
Isomorphism of quiver representations, 111

Factor category, 135 Isotypical component of a module, 51

Factor complex, 165

Factor module, 15 Jacobson radical of a local ring, 71

Factors of a filtration, 63 Jacobson radical of an algebra, 104

Faithful functor, 39 Jordan-Hélder multiplicity, 66

Fibre product, 152 Jordan-Hoélder Theorem, 66

Fibre sum, 151

Filtration of a module, 63 Kernel of a homomorphism, 24

Finitely generated module, 13 Kronecker problem, 116

Finitely presented module, 200 Krull-Remak-Schmidt Theorem, 81

Finitistic dimension of an algebra, 184 Krull-Remak-Schmidt-Azumaya Theorem, 145

First Isomorphism Theorem, 26

Fitting Lemma, 75 Large submodule, 57

Free A-module, 88 Lattice, 15
Free generating set of a module, 88 Left A-module, 86
Full functor, 39 Left adjoint functor, 188
Full subcategory, 38 Left almost split morphism, 206
Functor, 38 Left ideal, 69

Left inverse, 68
General adjunction formula, 190 Left minimal homomorphism, 207
General Exchange Theorem, 141 Left-invertible element in a ring, 68
Generating set of a submodule, 13 Length of a composition series, 66
Global dimension, 183 Length of a filtration, 63
Grothendieck group, 243 Length of a module, 66
Group algebra, 101 Local module, 71

Local ring, 68
Harada-Sai Lemma, 76 Locally finite quiver, 221
Hasse diagram, 15 Long exact Ext-sequence, 177, 178
Hereditary algebra, 184 Long exact homology sequence, 169
Homology group, 166 Long exact Tor-sequence, 189
Homomorphism of A-modules, 87 Loop functor, 136
Homomorphism of J-modules, 23
Homomorphism of complexes, 165 Map of complexes, 165
Homomorphism Theorem, 25 Maschke’s Theorem, 101
Homotopic morphisms of complexes, 167 Maximal complement of a submodule, 58
Homotopy, 168 Maximal left ideal, 69

Maximal right ideal, 69
Ideal, 69 Maximal submodule, 48
Ideal of a category, 135 Mesh category, 223
Idempotent in a ring, 29 Mesh relation, 223
Image of a homomorphism, 24 Minimal generating set, 14
imaginary root (Euclidean case), 270 Minimal injective resolution, 134

Imaginary root of a quiver, 113 Modular lattice, 15
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Module category, 39

Module homomorphism, 87

Monic polynomial, 41

Monomorphism, 23

Morphism of quiver representations, 110

Nakayama functor, 202
Nakayama Lemma, 106
Nilpotent element in a ring, 68

Opposite algebra, 90
Opposite relation, 160
Orthogonal idempotents, 92

Partially ordered set (poset), 15
Partition, 20

Path (in a module category), 245
Path algebra, 108

Path in a quiver, 108, 221
preinjective component, 225
preinjective module, 225
Preinjective translation quiver, 222
preprojective component, 225
preprojective module, 225
Preprojective translation quiver, 222
Primitive idempotent, 94

Principal ideal in K[T7], 43
Product of ideals, 69

Product of modules, 19

Product of rings, 53

Projective cover, 125

Projective dimension, 183
Projective module, 119

Projective vertex of a translation quiver, 222
Proper submodule, 12

Pullback, 152

Pushout, 151

Quiver, 107
Quiver of an algebra, 214

Radical factor ring, 71

Radical of a local ring, 71

Radical of a module, 56

Radical of an algebra, 104, 121

Rank of a free module, 89

Reachable module, 245

Reachable vertex in a quiver, 221

real root (Dynkin and Euclidean case), 270
Real root of a quiver, 113

Refinement of a filtration, 63

Regular representation of an algebra, 88
Relation, 160

Representation dimension of an algebra, 184
Representation of a K-algebra, 85
Representation of a group, 101

Representation of a quiver, 110
Right A-module, 91

Right adjoint functor, 188

Right almost split morphism, 206
Right ideal, 69

Right inverse, 68

Right minimal homomorphism, 207
Right-invertible element in a ring, 68
Rigid representation of a quiver, 113
Ring, 24

Ring of rational functions, 46

root (Dynkin and Euclidean case), 269
Root of a quiver, 113

Schanuel’s Lemma, 123

Schreier’s Theorem, 63

Schur root of a quiver, 113

Schur’s Lemma, 52

Second Isomorphism Theorem, 26

Semiperfect algebra, 148

Semisimple algebra, 99

Semisimple module, 48

Short exact sequence, 33

Short exact sequence of complexes, 165

Simple module, 48

sincere algebra, 254

Sincere module, 254

Sink map, 210

Skew field, 52

Small submodule, 57

Snake Lemma, 159

Socle of a module, 54

Source map, 210

Split epimorphism, 30

Split exact sequence, 34

Split monomorphism, 30

Split valuation for a translation quiver, 224

Splitting field, 247

Stable module category, 135

Stable translation quiver, 222

Subcategory, 38

Subcomplex, 165

Submodule, 12

Submodule generated by a set X, 13

Subrepresentation of a quiver representation,
111

Symmetric bilinear form of a quiver, 267

Syzygy functor, 136

Tensor product of algebras, 99
Tensor product of modules, 185
Tits form of a quiver, 267

Top of a module, 56

Torsion free module, 123
Translation quiver, 222
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Uniform module, 41, 134
Universal property of the pullback, 153
Universal property of the pushout, 151

Valuation of a translation quiver, 224
valued graph of an hereditary algebra, 256
valued quiver of an algebra, 256

Valued translation quiver, 224

weakly positive form, 261
Young diagram, 20

Zero homotopic, 168
Zorn’s Lemma, 48
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