X-SOM: A Flexible Ontology Mapper*

Carlo Curino, Giorgio Orsi, and Letizia Tanca

Politecnico di Milano - P.zza L. da Vinci, 32 — 20133 Milano (Italy)
E-mail: {curino,orsi, tanca}eelet.polimi.it

Abstract

System interoperability is a well known issue, especially
for heterogeneous information systems, where ontology-
based representations may support automatic and user-
transparent integration. In this paper we present X-SOM:
an ontology mapping and integration tool. The contribu-
tion of our tool is a modular and extensible architecture
that automatically combines several matching techniques
by means of a neural network, performing also ontology
debugging to avoid inconsistencies. Besides describing the
tool components, we discuss the prototype implementation,
which has been tested against the OAEI 2006 benchmark
with promising results.

1 Introduction

Semantic heterogeneity is a relevant problem in mod-
ern information systems, where the ability to map different
schemata related to the same domain, yet preserving model
consistency and query answerability, is paramount.

In this paper we present X-SOM, the eXtensible Smart
Ontology Mapper we have adopted within the Context-
ADDICT project [3]. In Context-ADDICT, heterogeneous,
dynamic data-sources are captured and automatically inte-
grated, to generate context-based data views to be loaded on
a portable device.

In the last few years several ontology mapping tech-
niques have been developed [14]. Some of the most effec-
tive systems make use of syntactical and structural match-
ers like: PROMPT [13], Chimaera [11] and HMatch [4].
Other interesting approaches are: AMON [15] which ex-
ploits logical inference, OMEN [12], based on a probabilis-
tic approach (bayesian networks), and machine learning-
based mapping tools such as GLUE [6]. Automatic ontol-
ogy mapping is a challenging task and we believe that the
automatic combination of several techniques may improve
performance, as proven by APFEL [7] and COMA++ [1]:

*This research is partially supported by the Italian MIUR projects:
ART-DECO (FIRB), and ESTEEM (PRIN).

the most promising attempt, to the best of our knowledge,
of combining different matching techniques.

X-SOM automatically combines several matching tech-
niques by means of a neural network and performs (semi)-
automatic resolution of inconsistencies. Given two consis-
tent ontologies, X-SOM produces a set of (equivalence or
subsumption) mappings between their concepts and roles,
ensuring also the consistency of the resulting model. The
novelty of our ontology mapper is not in the set of imple-
mented matching techniques, but rather in their combina-
tion based on a neural network, which estimates the impact
of each technique on the overall similarity, and in the sub-
sequent application of a consistency checking process.

The paper is organized as follows: In Section 2 we
present the ontology mapping problem, Section 3 presents
the overall architecture of X-SOM, Section 4 discusses
the Matching Subsystem while Section 5 is devoted to the
Mapping Subsystem; Section 6 introduces our consistency
checking process and Section 7 presents the experimental
results of our tool. Conclusions and future developments
are discussed respectively in Section 8 and Section 9.

2 The Ontology Mapping Problem

Ontology mapping/alignment has been defined as the
process of bringing two or more ontologies into mutual
agreement, by relating their similar concepts and roles by
means of some kind of mappings, and making them con-
sistent and coherent. Throughout this paper we limit the
definition to homogeneous mappings, where classes are
mapped to classes, roles to roles and individuals to indi-
viduals. Moreover we consider two kinds of mapping rela-
tionships: equivalence and subsumption expressed through
the OWL/RDFS primitives owl:equivalentClass and
rdfs:subclassOf respectively.

3 The X-SOM extensible Architecture

The overall X-SOM architecture is composed by three
subsytems: Matching, Mapping and Inconsistency Resolu-
tion.

The Matching Subsystem is constituted by a set of mod-
ules, each of which implements a matching technique and
is invoked by the Matching Subsystem according to a con-
figurable schedule. Each module receives as input two on-
tologies and returns a set of proposed mappings between
pairs of resources with a similarity degree. This structure
is called similarity map. Similarity maps are collected by
the Mapping Subsystem and weighed by means of a neural
network, in order to compute an aggregate matching value
v € [0,1] for each pair of resources. Given these aggregate
matching values, the Mapping Subsystem computes a set of
candidate mappings by applying a threshold value.

An ontology mapping process can produce inconsisten-
cies [9,10,16]; for this reason, the set of candidate mappings
computed by the Mapping Subsystem is handed to the In-
consistency Resolution Subsystem, responsible for guaran-
teeing the global consistency of the final model.

Ontologies are often published on the web and not ac-
cessible for modifications. For this reason and to preserve
the original representations, X-SOM mappings are stored in
a separated ontology called mapping ontology.

4 Matching

The Matching Subsystem has been designed to be exten-
sible, to allow easy integration of new matching modules.
Since this architecture makes experimenting new modules
very easy, X-SOM can also be used as a framework for eval-
uating matching techniques.

The implemented modules can be roughly classified
into two families: syntactical, comparing resources by
analyzing their names, labels and comments; and struc-
tural, comparing the structures of the resources’ neighbor-
hoods; we have currently implemented five modules: (1) the
Jaro module (syntactical) implements an algorithm based
on Jaro String Similarity [5]; (2) the Levenshtein mod-
ule (syntactical) computes the Levenshtein string distance;
(3) the WordNetSimilarity module (syntactical) uses the
WordNet thesaurus, exploiting the knowledge of synsets;
(4) the QOM Similarity module (structural) exploits the
structural matching algorithms proposed in [8]; finally, (5)
the Walk module (structural) is a bounded path matcher
[13], which compares corresponding terms along two paths
in the ontology graph. Some of the modules, typically the
structural ones, require to operate on an “a-priori” similar-
ity map, which is thus pre-computed by one of the other
modules (called the feeder). Each technique has shown, in
our tests, weaknesses and strengths; as an example, syntac-
tical analyzers are not able to distinguish homonyms, while
structural modules are in general very precise but may lack
in recall. This is why X-SOM weighs the results of all the
modules by means of a neural network, trained to optimize
the combination of the various techniques.

5 Mapping

The Mapping Subsystem receives as input the set of sim-
ilarity maps computed by all the modules of the Matching
Subsystem, and produces a set of candidate mappings to be
verified by the Inconsistency Resolution Subsystem.

Once the neural network has computed the similarity
map with the aggregate similarity values, X-SOM filters
them by means of two configurable thresholds: accept and
discard. These thresholds determine the level of automation
of the tool, called behavior, which can be:

o Fully-automatic: The Mapping Subsystem distin-
guishes two sets of matchings: those with similarity
degree greater than the accept threshold are designated
as candidate mappings, while the others are discarded.

e Conservative: The Mapping Subsystem groups the
matchings into three sets: the matchings with a sim-
ilarity degree greater than the accept threshold are ac-
cepted, those with a similarity degree lower than the
discard threshold are discarded. The remaining match-
ings are considered as uncertain and submitted to the
user in order to be manually evaluated.

e Human-intensive: X-SOM produces two sets of
matchings; those with a similarity value lower than the
accept threshold are considered as uncertain and sub-
mitted to the user, while the others are automatically
elected to candidate mappings.

5.1 The Neural Network

The most challenging issue is to assign the right weight
to each matching algorithm. Formally, the problem is to
estimate the optimal aggregation function y = W (X) where
each component x, € X is the matching degree given by the
1" module of the schedule with respect to a resource pair,
and y is the aggregate similarity.

We have equipped X-SOM with a three-layer feed-
forward neural network that is used to approximate the W
function. Noticed that this task can be carried out also man-
ually using some simple functions (linear, sigmoidal and
geometrical means and max, min functions) but this solu-
tion implies that the expert knows in advance how reliable
the various techniques are, in order to assign appropriate
weights. Due to the nature of the implemented functions,
this solution also assumes the problem to be linear.

The first layer (input) has a neuron for each matching
module in the schedule, and implements a simple transfer
function y=0x with a tuned by the training algorithm. The
third layer (output) has one neuron with a sigmoidal trans-
fer function and produces the aggregate similarity degree
for candidate mappings. The interesting matter is the hid-
den layer structure: in our experiments we have tested three

different transfer functions (linear, sigmoid and arctan)
and three error back-propagation algorithms: on-line back-
propagation (OEBP), batch back-propagation (BEBP) and
resilient back-propagation (REBP). The best results were
obtained using a sigmoidal transfer function, chosen to am-
plify matching degrees grater than 0.5 and to dull the others,
and using the BEBP algorithm with cross-validation. The
number of neurons of this layer has been set to:

||hiddenNeurons|| = [logz(||inputs|| x ||outputs||)] (1)

The learning rate and the momentum have been chosen by
simulations (actually a learning rate of 0.25 and a momen-
tum of 0.2). We use 85% of the samples to train the net, and
the remaining 15% to perform cross-validation.

Note that, differently from other ontology match-
ing/aligning tools, this neural network is not used to identify
the matchings, but to approximate the optimal aggregation
function.

One interesting problem is the construction of the train-
ing set needed to perform the estimation of the W function.
It is constituted by a set of tuples, each containing the simi-
larity values given by each module with respect to the same
pair of resources. To perform the regression we need also
the desired outcome of the aggregation function that is gen-
erated from a manually-aligned reference ontology. Two
examples of tuples are shown in Table 1.

Resl Res2 Jaro | WordNet | Struct. | Walk | Desiderata
Institution | Institute | 0.86 0.67 1.00 0.67 1.00
collection | booktitle | 0.55 0.00 0.00 none 0.00

Table 1. Example of Training Set Tuples

The so generated training set cannot be used “as-is”, it
has to be pre-processed [2]. The cleaning process removes:
duplicate samples (i.e., same inputs and same desiderata),
conflicting samples (i.e., same inputs but different desider-
ata), linearly dependent samples, and adds, if not already in
the set, an all-zeros sample (i.e., a sample which refers to a
pair of totally different resources) and an all-ones sample,
(i.e., a sample which refers to a pair of identical resources:
100% of similarity).

Another problem is the numerical gap between positive
and negative samples, respectively those with desired out-
come equal to 1.0 and 0.0. Given two non-trivial ontologies,
with n and m resources respectively, and r correct align-
ments expressed with k mapping relations, we can have
k x (nx m) — r negative samples with r < k x (n x m). This
gap may lead the regression algorithm to overfit the positive
samples. A possible solution is adding to the training set all
the positive samples and to sample the negative ones; we
have seen that training sets with a positive/negative sample
rate from 1:2 to 1:4 are balanced enough for the regression
task.

When one of the matching modules does not produce a
similarity value for a pair of resources, as shown in Table
1 for the Walk module, X-SOM repairs the missing infor-
mation through an average of the values produced by mod-
ules of the same family. When acting with the conservative
behavior, X-SOM can use the neural network also to learn
from the user interaction. When the user corrects a tool
proposal, the network trainer performs additional training
steps until the result of the network agrees with the user.
This behavior can be seen as a manual fine tuning of the
aggregation function.

6 Inconsistency Resolution

The Inconsistency Resolution Subsystem has a modular
architecture, supporting seamless integration of new check-
ing algorithms. It takes the candidate mappings from the
Mapping Subsystem and produces a set of mappings, in
which the tool or the user have solved all the inconsisten-
cies. Since the input ontologies are supposed to be consis-
tent, consistency resolution is reduced to finding those map-
pings that introduce a contradiction into the final model.
This problem is faced in X-SOM at two different levels:
standard consistency check and what we have called seman-
tic consistency check. Since X-SOM is designed to handle
ontologies with an expressive power contained in that of
the SHOIN(D,,) description logic, the standard consistency
check is the process of testing if there exists an interpre-
tation / that is a model for the T-BOX obtained once the
mappings are applied.

To find the contradictions X-SOM applies a binomial

search algorithm isolating the set of mappings responsible
for the inconsistencies. When the tool acts with the semi-
automatic behavior, the inconsistent mappings are submit-
ted to the user who selects the correct ones. When acting
with the fully-automatic behavior, X-SOM discards the con-
flicting mappings with lowest similarity degree until a non-
conflicting set of mappings is found.
Since this process requires global T-BOX satisfiability
check, which is a quite expensive task, we introduced some
checks directly into the similarity map to discard evidently
contradictory mappings (e.g. between declarated disjoint
concepts) to increase X-SOM scalability.

By Semantic Consistency Check we mean the process
of verifying whether there are mappings that introduce into
the model a semantic contradiction without introducing a
logical contradiction into the T-BOX. To better explain the
concept of semantic contradiction let us introduce the no-
tion of local entailment: an entailment A C B is said to be
local to an ontology O if it involves only resources of O.
By semantic contradiction we mean the presence of one or
more local entailments that were not enabled before apply-
ing the mappings.

An example of semantic contradiction is the cycle of
subsumptions of Fig. 1. In this situation all the concepts
belonging to the cycle are collapsed into a unique concept
because, for any two concepts, it is always possible to infer
that one is subclass of the other and vice-versa. The seman-
tic inconsistency that arises is the local entailment O2:C C
02:B that was not possible in the original ontology.

rdfs:subclassOf _ owl:equivalentClass /

0,85 _ - >

b -
P -

\ rdfs:subclassOf

~ ~

df bcl \O? ~ N

rdfs:subclass
159 @)

(asserted) (inferred)

~
owl:equivalentClass ™.

Figure 1. Cycle Semantic Contradiction

Notice that, while we can guarantee standard consistency
using a reasoner SAT service, semantic consistency cannot
be easily guaranteed. Notice also that a semantic incon-
sistency is not always an error: it may arise because of a
partial knowledge of the domain by the designers of the in-
put ontologies. In these situations X-SOM resorts to a set
of heuristics or asks for the user intervention. In the sit-
uation described above, X-SOM cuts the cycle discarding
the involved mapping with lowest similarity degree or, as in
conservative behavior, submits the mappings involved into
the cycle to the user that choses the correct one.

7 Experimental Results

X-SOM performance has been evaluated in terms of the
precision and recall. The tests have been made on the sys-
tematic benchmark series proposed by the Ontology Align-
ment Evaluation Initiative campaign (OAEI 2006), which
refers to the bibliography domain. The test campaign has
been made with a non-competitive frame of mind: our pur-
pose is to show X-SOM performance with a standard strat-
egy and without any re-parameterization between different
test cases. Such performance is shown, aggregated by test
family, in Fig. 2.

Test family L includes two tests that map ontologies
with different expressive powers (OWL-DL, OWL-Lite and
OWL-Full'). Tt can be seen that a different expressive
power does not affect the tool capabilities.

Family RN contains ontology pairs in which the names
of resources and metadata are replaced by random ones.
These are the most critical tests for X-SOM because the
syntactical modules cannot help find the similarities, and
the structural modules are fed with the results coming from
the syntactical ones. The results show that the tool is not
able to find any similarity between the ontologies. Pure

IPlease notice that for OWL-Full ontologies the standard consistency
check must be turned off, and only semantic consistency check is per-
formed.

owl:equivalentClass

structural mapping techniques, currently under develop-
ment, will be added to X-SOM to overcome such limitation.

The SY family involves ontology pairs whose resources
have names with syntactic variants like synonyms, different
naming conventions, acronyms, different languages or sim-
ply misspelled words. XSOM'’s behavior is quite good: the
most relevant difficulty is the identification of similarities
between words and their acronyms due to different acronym
construction strategies (e.g. dotted notation or upper-case
characters) that mislead string-distance algorithms like Jaro
and Levenshtein.

The last test family, named R, refers to real ontologies to
be aligned. These are the MIT, UMBC, Karlshrue and IN-
RIA bibliographic ontologies. For our tool this is the most
relevant family, because it involves real ontologies that were
not built to stress a particular matching algorithm, and re-
flects real ontology design patterns.

8 Conclusions

One of the most relevant results of the test campaign
is the improvement in performance emerged when using
a neural network instead of a linear or sigmoidal average
function to aggregate the results of the Matching Subsys-
tem. Fig. 2 shows that the recall measure increases by a
21% in average against the sigmoidal average and by a 37%
against the linear average; the precision measure increases
by a 10% and 16.5% respectively. The weights used with
the linear and sigmoidal average have been established by
linear regression on the same set of data used to train the
neural network.

Another conclusion is that the confidence degree as-
signed to each matching technique by the neural network
seems to be not dependent of the particular application do-
main. As said above, X-SOM has been tested using the
OAEI benchmark test suite (bibliographic domain); For the
test campaign we have chosen to train the neural network
with datasets generated from the Networks, Animals and
Computer Science ontologies pairs used by the 3CON On-
tology Alignment Contest (I3CON 2004). Notice that none
of them contains concepts or roles belonging to the biblio-
graphic domain.

Tests showed a maximum variance of 6.8% in recall and
of 3.6% in precision using the three different training sets.
We believe that the neural network learns that a given com-
bination of matching algorithms is better than another and
mixes the matching proposals to maximize precision and
recall. Some problems in establishing the optimal aggrega-
tion function emerge when we use techniques which results
are statistically dependent (e.g. feeded modules). For this
reason we performed a stepwise regression with Matlab to
remove a-priori statistically irrelevant modules.

Obviously, the neural network can only approximate the

0.80 —H [recall ‘

1.00 ~ ﬁ
0.90 [] Reczﬂl_

. [Precision l
0.80

RI

N SY ST R All

0.75 — [l Precision

Sigmoidal Neural

All - {RN} Linear

Figure 2. X-SOM: Precision and Recall Measures

ideal aggregation function and some wrong mappings sur-
vive even after the threshold application. The consistency
checking process has been introduced to address this prob-
lem. It identifies and, in simple cases, automatically re-
moves errors in the final mappings set thus improving the
performances measures.

9 Future Developments

X-SOM is still a prototype and much work is still in or-
der, in particular about its efficiency. We are studying to in-
troduce greedy matching algorithms and early pruning tech-
niques of bad matchings along with new matching modules
based on bayesian networks, metadata inspection and pure
structural analysis to increase the recall.

An interesting issue is the mappings expressiveness; we
are working to increase the complexity of the mappings be-
tween resources, e.g. to associate a concept of one ontology
with a SPARQL query over another ontology also known as
GAV (Global as View) mappings.

The semantic consistency check is currently imple-
mented as a set of heuristics; a formalization effort is on-
going to provide a more systematic and formal framework
for semantic consistency analysis.

References

[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with coma++. Proc. of the
2005 ACM SIGMOD Int. Conf. on Management of data,

pages 906-908, 2005.
[2] C. M. Bishop. Neural Networks for Pattern Recognition.

Oxford University Press, New York, 1994.

[3] C. Bolchini, C. Curino, F. A. Schreiber, and L. Tanca.
Context integration for mobile data tailoring. In Proc.
IEEE/ACM of Int. Conf. on Mobile Data Management.
TIEEE, ACM, May 2006.

[4] S. Castano, A. Ferrara, and S. Montanelli. H-match: an al-
gorithm for dynamically matching ontologies in peer-based
systems. In Proc. of the 1st VLDB Int. Workshop on Se-
mantic Web and Databases (SWDB 2003), Berlin, Germany,
September 2003.

[5] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A com-
parison of string distance metrics for name-matching tasks.
Proc. of the 1JCAI-2003 Workshop on Information on the
Web, 2003.

[6] A.Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontol-
ogy matching: A machine learning approach. Handbook on
Ontologies in Information Systems, pages 397-416, 2004.

[71 M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology
alignment methods with apfel. In Proc. of the 4th Int. Se-
mantic Web Conf. (ISWC-2005)., pages 1148-1149, 2005.

[8] M. Ehrig and Y. Sure. Ontology mapping: an integrated ap-
proach. Proc. of the 1st European Semantic Web Symposium,
pages 76-91, 2004.

[9] M. Klein. Combining and relating ontologies: an analysis
of problems and solutions. Workshop on Ontologies and
Information Sharing, IJCAI, 2001.

[10] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y.
Halevy. Representing and reasoning about mappings be-
tween domain models. Proc. of the 18th Nat. Conf. on Al,
2002.

[11] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The
chimaera ontology environment. Proc. of the 17th Nat. Conf.
on A, 2000.

[12] P. Mitra, N. F. Noy, and A. R. Jaiswal. Omen: A probabilis-
tic ontology mapping tool. Workshop on Meaning Coordi-
nation and Negotiation at ISWC-04.

[13] N. F. Noy and M. A. Musen. The prompt suite: Interactive
tools for ontology merging and mapping. Int. Journal of
Human-Computer Studies, pages 983—-1024, 2004.

[14] L. Predoiu, C. Feier, F. Scharffe, J. D. Bruijn, F. Martin-
Recuerda, D. Manov, and M. Ehrig. State-of-the-art survey
on ontology merging and aligning. Institut AIFB, Universi-
tat Karlsruhe, Tech. Rep, 2005.

[15] A. Sanchez-Alberca, R. Garcia-Garcia, C. Sorzano,
C. Gutiérrez-Cossio, M. Chagoyen, and M. F. Lépez. Amon:
A software system for automatic generation of ontology
mappings.

[16] P. Visser, D. Jones, Bench-Capon, and Shave. An analysis
of ontological mismatches: Heterogeneity versus interop-
erability. AAAI Spring Symp. on Ontological Engineering,
Stanford, 1997.

