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Stressed Fibonacci spiral patterns of definite chirality
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Fibonacci spirals are ubiquitous in nature, but the spontaneous assembly of such patterns has rarely
been realized in laboratory. By manipulating the stress on Ag core/SiO, shell microstructures, the
authors obtained a series of Fibonacci spirals (3 X5 to 13 X 21) of definite chirality as a least elastic
energy configuration. The Fibonacci spirals occur uniquely on conical supports-spherical receptacles
result in triangular tessellations, and slanted receptacles introduce irregularities. These results
demonstrate an effective path for the mass fabrication of patterned structures on curved surfaces;
they may also provide a complementary mechanism for the formation of phyllotactic patterns.

© 2007 American Institute of Physics. [DOI: 10.1063/1.2728578]

Fibonacci spiral patterns are a configuration that curves
both clockwise and counterclockwise, and the numbers of
the spirals are the two neighbors from the Fibonacci series 1,
1,2,3,5,8,13, 21, 34,....1 Such spiral patterns as an ordered
packing can be found in every corner of the world of plants,
and they are highly appreciated largely due to the innumer-
able amazing properties of the Fibonacci series. Efficiency
principle and aesthetic considerations provide an intuitive
explanation to the preferential occurrence of Fibonacci spi-
rals in nature; for scientists, there must be a working prin-
ciple, essentially mathematical and physical,%7 following
which such a pattern can be precisely reproduced. In 1992,
Douady and Couder succeeded in obtaining some Fibonacci
spirals with drops of ferrofluid under a magnetic field, show-
ing that the formation of Fibonacci spirals in plants might be
a dynamic self-organizing process.2 By deforming metal
shells and rings, Steele generated some Fibonacci spiral-like
patterns as least elastic energy conﬁgurations.6 Remarkably,
the initiative that plant patterns including the Fibonacci spi-
rals may result from the effort to minimize the total elastic
energy appears time and again in literature,* " and the ad-
herence of the plant pattern to the geometry of the support
(receptacle, in botanic terminology) was perceived by Rich-
ards in 1948'% and reemphasized by Mitchison in 1977.
However, there are no experimental evidences that the Fi-
bonacci spirals can be systematically reproduced in a simply
stressed structure of inorganic materials.

Stress engineering is a technique recently devised for the
mass fabrication of ordered micro- and nanostructures.' >’
In an elastically mismatched structure comprising a stiff
layer on compliant substrate, a rich variety of buckling
modes have been realized by adjusting the mechanical pa-
rameters and the geometry of the system. With a well-
controlled experiment, a one-dimensional undulated buck-
ling mode was obtained, and the gold nanowires grown on
such a template measure 3.0 mm long.18 Since the governing
equations for a stressed system, i.e., the Foppl-von Kdrmén

Y Author to whom correspondence should be addressed; electronic mail:
zxcao@aphy.iphy.ac.cn

0003-6951/2007/90(16)/164102/3/$23.00

90, 164102-1

equations, are fourth-ordered differential equations, a variety
of totally different buckling modes can be fabricated by
modifying the boundary and/or pinning conditions.'* In-
spired by the achievements made on planar surfaces, we tried
to manipulate the stress patterns on a curved surface, in the
hope of obtaining some ordered structures for application. In
doing so, inorganic Ag core/SiO, shell microstructures of
varying shapes were prepared to reveal the most stressed
sites in a least elastic energy configuration. We reproduced
four sets of Fibonacci spiral patterns specified as 3
X5 to 13X 21, and in both sinister and dexter forms.

The Ag core/SiO, shell microstructures were prepared
onto the polycrystalline-Al,O5 substrates by coevaporating a
mixed powder of Ag,O and SiO in various mass ratios, with
the substrates placed at ~1.0 cm above the source. For the
core/shells presented in this letter, the mass ratio of Ag,O
versus SiO was varied between 2:1 and 1:1. The substrates
were primarily held at 1270 K, a temperature deliberately
chosen to be slightly above the melting point of silver
(1234.8 K) but far below that of SiO, (1883 K) in order to
provide a favorite condition for the formation of Ag core/
SiO, shells. With the given processing parameters, the
thickness of the SiO, shell was maintained at below 150 nm.
The two materials have significantly different thermal expan-
sion coefficients at 1270 K, asi0,=0.45 X 107%/K and Qpy
=27.1 X 107%/K; hence a large stress is developed upon cool-
ing in the shell, as given in the formula o=[Eg,(aa,
—agip,)/ 1=vsi0, JAT, where  Egip,=75X[1+1.5X1074(T
—15.0)] is the elastic modulus in gigapascal for SiO, and
V5102=0.17 is Poisson’s ratio. In case the thermal stress ex-
ceeds a critical value o, (for a spherical shell, o,
=[ESi02/\/3(1—VSiozz)](f/R)’ where ¢ is the shell thickness
and R the shell radiu521), the SiO, shell will become unstable
against the formation of buckling modes. The stressed pat-
terns were made observable through the subsequent biased
growth of spherules onto the most stressed sites at the later
stage of cooling. Ex situ observation of the patterns was
performed on a scanning electron microscope (FEI, Serion)
operated at 5.0 keV.
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FIG. 1. Fibonacci spiral patterns in the sinister form grown on Ag core/SiO,
shell microstructures: (a) 3 X5, (b) 5X 8, (c) 8 X13, and (d) 13X 21. Each
individual pattern is presented in triad, one original and two with plotted
counterclockwise and clockwise spirals to guide the eyes.

In different wetting conditions onto the substrate, the
free surface of the Ag core/SiO, shell microstructures brings
about the presence of an apex as antipode to the contact
point. Since the substrate was held horizontal, axisymmetri-
cal core/shells were obtained, with the axis of symmetry ly-
ing along the direction of gravitation, that near the apices
they can be approximated with a paraboloid of revolution. In
Fig. 1, the decorating spherules that reveal the most stressed
sites on the primary core/shells manifest obviously parastic-
hous spirals. With little effort we identified the Fibonacci
spiral patterns as 3 X5, 5X 8, 8 X 13, and 13 X 21. The num-
bers of spherules visible to the reader are roughly of 40, 126,
150, and 290, respectively. These are the only four sets of
Fibonacci spiral patterns realizable in the current experimen-
tal system, since, by rough estimation based on the property
of Fibonacci series, the next Fibonacci spiral pattern, 21
X 34, requires more than 700 spherules, which is prohibitive
for a microsized Ag core/SiO, shell—the large stress de-
manded to generate so dense a buckling mode would bring
the core/shell structure to crash.

The stressed Fibonacci patterns have grown both in the
sinister form (spirals in large number run counterclockwise)
and in the dexter form (spirals in large number run clock-
wise), as in pine cones.”? In Fig. 1, all the four Fibonacci
patterns are in the dexter form. For all but the last one, their
sinister counterparts were also obtained (Fig. 2). From the
current experiment, we cannot figure out a biasing factor that
predetermines the chirality for the spiral 2gattems. It is be-
lieved that they occur in plants at random;” but, when mod-
eled as a least energy configuration for confined particles
(see below), there may be a factor, geometrical in nature, that
tips the balance.

In the case that the primary Ag core/SiO, shells exhibit a
worse wetting to the substrate, they adopt a nearly spherical
shape. Accordingly, the spherules arrange themselves into a
quite perfect triangular tessellation, i.e., triangular lattice
with a proper number of fivefold disclinations (Fig. 3). This
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FIG. 2. Fibonacci spiral patterns in the dexter form: (a) 3 X5, (b) 5X 8, and
(c) 8 X13.

reminds us of the famous Thomson’s problem concerning the
least energy configuration of identical charges on the surface
of a conducting sphere.23 In fact, our stressed patterns on the
nearly spherical supports fit very well with the numerical
solutions to Thomson’s problem. This strongly suggests that
the stressed patterns on a homogeneous spherical surface as a
least elastic energy configuration can be modeled with mu-
tually repulsive charges, though the interactions involved in
the two circumstances differ a lot. The robustness of the
ultimate least energy configurations against the concrete in-
teraction is a well-established fact on both the planar and the
spherical surfaces,” 2 even though it lacks a rigorous math-
ematical proof. In fact, they have been verified in diverse
physical systems including the two-dimensional electron gas
and the magnetic flux in supf:rczonductors,25’26 to name only a
few, where the form of the potentials and the number of
particles show significant differences.

Since the triangular tessellation in Figs. 3(a) and 3(b)
and the Fibonacci spirals in Figs. 1 and 2 result from the

FIG. 3. Patterns on spherical supports. (a) and (b) are stressed patterns, and
(c) and (d) illustrate the numerical solutions to Thomson’s problem of N
=46 and 140 (Courtesy of Bowick, see Ref. 24), respectively.
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FIG. 4. Parastichous spirals on frustrating surfaces. (a) Stressed pattern on a
slanted Ag core/SiO, shell microstructure, and (b) the “X pattern” of
achenes in a strawberry.

same experiment, we believe that the formation of the Fi-
bonacci spirals might as well be modeled by mutually repul-
sive particles but on a conical surface. That the stressed Fi-
bonacci spirals come about on conical supports without
rigorous request on the degree of perfection or the magnitude
of conicity, as observed in this experiment on a dozen of
core/shell microstructures of differing sizes and/or shell
thicknesses, confirms the robustness of the Fibonacci spiral
pattern, which might explain its wide spreading in the king-
dom of plants.4 This is quite easy to understand since it is
analogous to the robustness of the triangular lattices for pla-
nar surfaces and the triangular tessellations for spherical sur-
faces. Modeled as least energy configuration for a collection
of mutually repulsive entities, the stressed patterns will re-
main congruent so long as the confining support maintains its
geometric features, and it is conceivable that a marked de-
parture from those patterns of high regularity occurs in as-
semblies %rown on a frustrating surface where the symmetry
is broken.”” To demonstrate this, some core/shells were pre-
pared with the substrate slightly kipped so as to eliminate the
axisymmetry. The spherules thereupon are found falling into
parastichous spirals though, but showing a frustration here
and there [Fig. 4(a)]. The situation is quite similar to that in
a ripe strawberry where the axisymmetry is usually missing
and consequently the achenes are disposed in the typical “X
pattern” [Fig. 4(b)]. In fact, strawberry provides an illustrat-
ing example of the receptacle-shaped pattern transition that,
with its softish receptacle transforming from a disk as that of
a sunflower through a green cone into an asymmetrical ripe
pseudocarp, the pattern changes readily from the Fibonacci
spirals for florets into the X pattern for achenes.

By now, we have prepared core/shells in various shapes:
from the nearly spheres, through the “conical” ones of vary-
ing conicity, to those being conical by and large but with the
axisymmetry in absence. Accordingly, the stressed patterns
are triangular tessellation with disclinations,"> Fibonacci Spi-
ral patterns of definite chirality, and the so-called X pattern.
The adherence of the Fibonacci spiral patterns to the conical
supports is strikingly robust. This observation reinforces the
“geometry of phyllotaxis” revealed by Richards,'? and can
be suggestive for the design of self-assembled structures on
curvy surfaces. In an inhomogeneous mechanical system,
stressed Fibonacci spiral patterns might occur on a spherical
or cylindrical support, which only needs be conical when
weighted with the local mechanical constants. At the mo-
ment, we cannot give a strict proof of this conjecture; even
numerical tests should also wait for some time, considering
the very slow progress with the much simpler Thomson’s
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problem. Fortunately, many confirmative evidences can be
found in nature. For example, the flower heads for both dan-
delion and dahlia are nearly spherical; however, the seeds of
dandelion that grow simultaneously are packed in triangular
tessellation, whereas the successively growing florets on
dahlia fall into spirals.

In summary, we demonstrated that the Fibonacci spiral
patterns of definite chirality can be reproduced through stress
manipulation on the Ag core/SiO, shell microstructures.
These results will be very helpful for the design and fabrica-
tion of patterned structures on curved surfaces that can find
useful applications in photonics and foldable electronics.
Furthermore, these results obtained in a purely inorganic ma-
terial system hint at the role of stress in influencing the plant
patterns. We speculate that the prerequisite for the occur-
rence of Fibonacci spiral patterns as stressed buckling modes
be the availability of a conical support. The robust adherence
of the stressed patterns to the geometry of the supports sheds
some light on the mechanical rationale underlying the forma-
tion of particular plant patterns. Of course, a comprehensive
model for the formation of plant patterns should incorporate
as well the biochemical and genetic processes that alter
growth at deeper levels.

This work was supported by the National Natural Sci-
ence Foundation of China and the Space Exploration Pro-
gram of China.

"The website http://www.mscs.dal./ca/Fibonacci/ provides extensive infor-
mation about the Fibonacci series and their ubiquity in the world of plants.
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