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Scale Space Analysis and Active Contours
for Omnidirectional Images
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Abstract—A new generation of optical devices that generate
images covering a larger part of the field of view than conventional
cameras, namely catadioptric cameras, is slowly emerging. These
omnidirectional images will most probably deeply impact com-
puter vision in the forthcoming years, provided that the necessary
algorithmic background stands strong. In this paper, we propose
a general framework that helps define various computer vision
primitives. We show that geometry, which plays a central role in
the formation of omnidirectional images, must be carefully taken
into account while performing such simple tasks as smoothing
or edge detection. Partial differential equations (PDEs) offer a
very versatile tool that is well suited to cope with geometrical
constraints. We derive new energy functionals and PDEs for
segmenting images obtained from catadioptric cameras and show
that they can be implemented robustly using classical finite differ-
ence schemes. Various experimental results illustrate the potential
of these new methods on both synthetic and natural images.

I. INTRODUCTION

CONVENTIONAL imaging systems are severely limited in
their field of view so that, in order to obtain an image of an

entire scene, either multiple or rotating cameras must be used.
However, in many cases, a rotating camera is not suitable be-
cause it cannot simultaneously cover all directions of a dynamic
scene. On the other hand, mechanical parts are usually heavy
and expensive to manufacture. An interesting alternative way to
enhance the field of view is to use mirrors in conjunction with
lenses. A catadioptric sensor is an imaging sensor based on the
combination of a curved mirror and a lens to form a projection
onto the image plane of a camera (see Fig. 1). Such a sensor is
capable of recording light rays coming from a broad range of
directions around the focal point of the mirror. Consequently,
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Fig. 1. Catadioptric imaging system.

Fig. 2. Examples of omnidirectional images obtained using different mirrors:
(a) hyperbolic, (b) spherical, and (c) parabolic.

the images obtained from these sensors are often called omnidi-
rectional because they contain the information from a scene in
all possible directions around a perfect point-wise observer.

Various mirror shapes can be used but it has been shown in [1]
that the cases of interest are spherical, hyperbolical and parabol-
ical mirrors, among which only the last two have a single effec-
tive viewpoint. Examples of images acquired using catadioptric
cameras are provided in Fig. 2.

Obviously, the sensor records a distorted image. The forma-
tion of the omnidirectional image is well controlled and allows
us to easily derive its geometrical properties. First, the mirror is
a surface in whose geometrical properties are encoded
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in its induced Riemannian metric . Second, and since we are
considering perfect quadrics only, any light ray incident on one
of the foci of the mirror is reflected to the other focus. A pixel is
then created where the reflected light ray intersects the camera
plane. Let and label coordinates in the image
plane, here an open subset , and on the mirror sur-
face, respectively. The whole image formation process depicted
above induces a mapping between manifolds from the surface
of the mirror to the camera plane

This application allows us to transport the metric
and equip the image with a pullback metric

(1)

where we set , and Einstein’s summation con-
vention has been used. Two comments are in order here. First,
it should be noted that the image plane should not be
dealt with as the familiar Euclidean plane. It carries a very spe-
cific geometry encoded in its metric . Second, this geometry
is really inherited from that of the mirror , but realized
using a more convential domain . This simple, yet ge-
ometrically accurate, parameterization will be most helpful to
perform computation on . Besides and , there
is another manifold of interest for omnidirectional images: the
2-D sphere in . It is, indeed, very interesting to be able
to reconstruct the whole visual information around a perfect
point-like observer standing at the focus of the mirror. In this
case, each point represents the direction of an in-
coming light ray. For simple mirrors, it is possible to reconstruct
this information directly from the omnidirectional image in the
sensor plane .

As we shall see throughout this paper, the geometry embodied
by the metrics or is of primal importance. We will, thus,
treat omnidirectional images as scalar fields on parametric man-
ifolds. Geometry and, more particularly, the Riemannian struc-
ture will be used to derive generalizations of the concepts of
smoothing, scale-space and geodesic active contours for this
particular kind of images. We will proceed by deriving a fairly
general framework based on energy minimization and partial
differential equations (PDEs). Moreover, we will make use of
the parameterization to compute efficiently these operations di-
rectly from the camera plane. These techniques are of course
directly applicable to situations where scalar data are drawn on
a parametric surface for which we have a decent projection
to a euclidean parametric base . In these cases, the frame-
work derived in this paper allows to efficiently implement the
above-mentioned algorithms directly in the parametric carte-
sian coordinates, with well-studied numerical schemes, while
still respecting the complex geometry of the manifold.

This paper is organized as follows. In Section II, we review
the geometry of the problem, particularizing to catadioptric sys-
tems. In Section III, we introduce basic differential operators on

Fig. 3. Geometry of the paraboloid P embedded in . Left: Original coor-
dinates (x ; x ; x ) expressed in polar coordinates (r; ') are mapped to coor-
dinates (x; y) after focal projection. Right: Focal projection coincides with a
simple orthographic projection in this case.

Riemannian manifolds and provide explicit formulas for the sur-
faces of interest in this paper. Section IV is the core of the paper,
where we construct active contours on parametric surfaces. The
case of surfaces conformally euclidean is solved by a straight-
forward extension of the technique originally introduced in [2].
For more complex situations, we formulate a new energy min-
imization problem inspired by the formalism introduced in [3].
We illustrate our results with numerical simulations using om-
nidirectional images but also on generic situations where data is
defined on surfaces. Finally, Section V gathers conclusions and
suggestions for future research.

II. RIEMANNIAN GEOMETRY OF PARAMETRIC SURFACES

In this section, we introduce a few concepts of Riemannian
geometry that will be used throughout this paper. This material
is classical and can be found in standard textbooks (see for ex-
ample [4]), but we include it here for clarity and as a way to
introduce notations. These notions are first worked out in the
case of omnidirectional images produced with parabolic cata-
dioptric mirrors, which will be our main application. Since the
techniques designed in this paper are fairly general, we also give
explicit derivations in the case of scalar images drawn on the
surface of a hyperboloid. These two case studies will be used
later on in the paper in a recurrent way.

A. Parabolic Catadioptric Mirrors

A complete geometrical view of catadioptric systems has
been worked out in [1], to which we refer for details. That
paper shows that the most interesting catadioptric systems use
either a parabolic or hyperbolic mirror. We will deal here with
parabolic mirrors only, as they are by far the most common.
None of our results are strictly bound to this particular case,
though. In fact the techniques introduced below could be used
for any mirror represented as a parametric surface.

The paraboloid is a quadratic surface which can be ex-
pressed by the Cartesian equation

(2)
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Fig. 4. Geometry of the 2-sphere: (a) spherical polar coordinates and (b) stere-
ographic projection.

We will set for simplicity. Using a system of polar
coordinates shown in Fig. 3, we obtain the equivalent
parameterization

(3)

(4)

(5)

The Euclidean line element can be expressed in these coordi-
nates

(6)

and this immediately gives us the metric on

As shown by Geyer and Daniilidis in [1], any light ray inci-
dent to the focus of the paraboloid is going to be reflected to
the other focus, here the point at infinity. Thus, the focal pro-
jection from the mirror to the camera plane is simply the
orthographic projection, i.e., the coordinates of the intersection
between the reflected light ray and the camera plane are simply

. In the following, we shall need the induced
metric on the camera plane in coordinates. Since we have

and , performing this change of
variable in the 2-D Euclidean line element yields

(7)

which corresponds to the following metric:

(8)

Note that this metric is not diagonal; it will be an important
source of complication later on.

In the case of a parabolic mirror, Geyer and Daniilidis
showed that the reconstruction of a perfect viewpoint at the
focus of the mirror can be simply computed as the inverse
stereographic projection of the sensor image. It is, thus, also
important to work out the links between the geometry of
and that of the sensor image. As we shall see in the next
sections, this will allow us to process the spherical image
directly using the sensor output. Consider a sphere of radius
as depicted in Fig. 4. A point on is identified with the vector

, ,

. In cartesian and polar coordinates, the
Euclidean line element reads

(9)

On the surface, and the differential , so the metric
induced on the sphere is given by the well-known expression

(10)

The stereographic projection sends a point on the sphere
to the point with polar coordinates in the plane, for which
we have , . It is shown in Fig. 4. In
terms of these new coordinates, the metric becomes

(11)

Let us proceed toward deriving the metric in cartesian sensor
coordinates , where . We obtain

(12)

In this case, the metric on the sphere is obtained from the metric
on the Euclidean plane by multiplying the latter by the function

(13)

Accordingly, the metric induced on when is derived
as

(14)

and, consequently, the inverse metric is as follows:

(15)

Metrics that differ only by a multiplicative factor are confor-
mally equivalent. The stereographic projection endows the
plane with a metric conformal to the regular euclidean metric.
This particular class of problems will receive special attention
later on in this paper. Finally, one should not be surprised that
metrics (8) and (14) are so different. Though the related images
are produced by the same system, the first one corresponds to
light intensity on the parabolic mirror while the second one
corresponds to light intensity perceived by an observer at the
focus of the mirror. The same sensor image is, thus, endowed
with different geometries, depending on which information one
wishes to process.

B. Another Illustrative Example

Let us now give another illustrative example: a different para-
metric surface, together with a projection to a parametric base.
Consider the two-sheeted hyperboloid depicted in Fig. 5.
It is convenient to embed into the pseudo-Euclidean (or
Minkowski) space , whose line element is

(16)
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Fig. 5. Geometry of the 2-hyperboloid: (a) hyperbolic polar coordinates and
(b) stereographic projection.

In these coordinates, is conveniently realized a pseudo-
sphere of equation

In pseudo-polar coordinates
, (16) becomes

(17)

For , we distinguish the upper sheet of the hyperboloid,
and for , the lower one. Since is constant on the
hyperboloid, we finally have

(18)

and the metric on the upper sheet of reads

where we set .
A useful parametric realization of the upper sheet of the hy-

perboloid consists in projecting inside the open unit disk in
by means of a stereographic projection (see Fig. 5)

(19)

(20)

Note that, if the eccentricity of the hyperboloid is big enough,
this mapping closely matches the focal projection of a hy-
perbolic mirror and can be used for omnidirectional image
processing as well. The induced metric in the disk is easily
computed

(21)

Note the formal similarities with the expressions derived above
for the sphere and the general form of this metric, which is also
conformally equivalent to the euclidean one.

Before concluding this section, we may wonder why one
would work on the manifold-bound data instead of simply
considering the acquired image as a regular euclidean one.
We do believe there are simple tasks that can be performed
directly on the sensor image, without resorting to the complex

framework discussed hereafter. However, there are important
situations where working on the manifold is of vital importance.
For example, it has been shown in [5] that working with a full
field of view (a perfect omnidirectional image) stabilizes the
structure from motion problem and that the reason for this gain
is purely geometrical. Working with the image as observed
by an observer at the focus of the mirror has also numerous
advantages for tracking, since it processes the field of view in
its natural coordinates. Finally, using the correct geometry is
also of paramount importance in pattern recognition: on the
sensor output seen as a regular euclidean image, objects of the
same size or shape will appear distorted depending on their
position, whereas these effects are nicely compensated for in
the correct geometry. We will give a concrete example example
of these effects in Section IV-C.

III. SMOOTHING AND DETECTING EDGES

ON PARAMETRIC MANIFOLDS

A. Warm-Up: Useful Differential Operators

Various classical tasks in Computer Vision (smoothing, edge
detection) can be implemented by means of differential opera-
tors acting on images. Since we have defined omnidirectional
images as scalar functions on Riemannian manifolds, we can
now easily define the corresponding differential operators in
the correct geometry. Even though most of this material can be
found in standard textbooks [4], we provide here the most im-
portant expressions for completeness. One of the first differen-
tial operators encountered in image processing is the gradient,
used primarily for edge detection. The gradient of a scalar func-
tion is defined in a coordinate-free fashion in by imposing
that the directional derivative of a scalar field satisfies

On a Riemannian manifold , directional derivatives are
replaced by vectors in the tangent plane of at a point and
the scalar product at is naturally defined through the metric

In a local system of coordinates on , the components of
the gradient will, thus, read

(22)

A similar reasoning leads to the expression of the divergence of
a vector field on

where is the determinant of . Finally, just as the ordinary
Laplacian is defined in by combining these two operators,
the Laplace–Beltrami [6] operator is the second order differen-
tial operator defined on scalar fields on by

(23)
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Fig. 6. Gradient of a hyperbolic image: (a) original image, (b) component of
the gradient in the horizontal direction, (c) component of the gradient in the
vertical direction, and (d) norm of the gradient.

B. Examples

As a first example of the concepts introduced above, let
us consider the problem of detecting edges of an omnidirec-
tional image produced by a hyperbolic mirror. As depicted
in Section II-B, we approximate the catadioptric system by
a stereographic projection and work directly in the open unit
disk in . The main advantage as we will see is that we can
implement most techniques directly in cartesian coordinates
from the sensor output while respecting the geometry of the
mirror. The induced hyperbolic metric in the disk has been
computed in (21) for cartesian coordinates . Using (22),
and since this metric is conformally equivalent to the euclidean
cartesian metric, we see that the hyperbolic gradient is just a
scaled version of its usual euclidean cousin

The scaling factor in this expression goes to zero on the border
of the disk, which does not belong to the image domain. It is ex-
actly the conformal factor in the hyperbolic metric and governs
how the size and morphology of patterns in the image vary. To
illustrate its effect, we apply the gradient to localize edges of
an omnidirectional image acquired with a hyperbolic mirror in
Fig. 6. More precisely, we computed the horizontal and vertical
components of the gradient, as well as its norm. Note that, in the
latter case, the correct scalar product has been used

(24)

(25)

As a second example, we would like to illustrate how one
can easily implement gaussian smoothing or, equivalently,
linear scale-space [7]–[9]. We will keep this discussion gen-
eral enough so that it can be applied to problems other than
omnidirectional computer vision. There are two popular ways
of computing gaussian filtering in euclidean computer vision:
either using convolution with a gaussian kernel or by imple-
menting the linear heat flow. On general manifolds, though,
the situation becomes trickier. First, gaussian filtering may
simply not exist: on the paraboloid for example, there is no
clear notion of Fourier analysis or convolution theorem. In fact,
these mathematical constructions make sense on homogeneous
spaces of Lie groups, such as the sphere or the hyperboloid.
However, even in these nicer cases, the situation is not so
simple. Indeed, if filtering can be easily implemented on
thanks to a spherical equivalent of the fast Fourier transform
[10], it is not the case on : there is a convolution and a
Fourier transform (the Helgason transform; see [11]), but there
is no efficient algorithm and naive implementations based on
separation of variables cannot be applied since the Helgason
kernel is not separable. One has to resort to more involved nu-
merical schemes [12], [13]. The best way to compute gaussian
filtering on manifolds is, thus, to use the linear heat flow

(26)

where is the Laplace–Beltrami operator. Then again, imple-
menting PDEs on manifolds may be quite complicated: usually
differential operators are expressed in local coordinate systems
which are hard to handle numerically.

In [14] and [15], the authors introduced a new framework
for solving variational problems and PDEs for scalar and
vector-valued data defined on arbitrary surfaces implicitly
represented by a level set function (see also [16], [17], and
references therein). Level set functions are basically defined
on a fixed cartesian coordinate system, which allows easy
computations of PDEs on level set-based surfaces contrary to
surfaces represented by triangulated models. The main advan-
tage of the previous framework is to carry out, e.g., the linear
heat flow on arbitrary surfaces even if the method requires to
use a data extension procedure from the surface to a cartesian
narrow band. It is, however, not clear what the exact extension
procedure is. There are different models to extend data and
one natural and fast method is to extend data in such a way
that they are constant normal to each level set [18]. In our
case of omnidirectional images, a global parametrization of
surfaces is available, which allows to map the surface and its
geometry to an euclidean parametric base. We, thus, propose to
simply compute the heat flow on that base, which only requires
cartesian differential operators, and then eventually map the
result to the original surface. This approach provides fast and
exact computations of the linear scale space without using a
level set function or a triangulated surface but is limited to
parametric surfaces.

Let us once again illustrate this mechanism with the hyper-
boloid. A scalar image painted on is first mapped to the
open unit disk by stereographic projection. The Escher painting
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Fig. 7. Heat flow/Gaussian smoothing on a hyperbolic image: (a) original,
(b)t = 10, (c) t = 100, (d) t = 300, (e) t = 500, and (f) t = 700. Note how
the flow is comparatively slower close to the border of the disk.

in Fig. 7 is a good example of such an image. The only thing we
need to compute the heat flow, is the expression of the Laplace–
Beltrami operator in the unit disk, given the metric (21)

(27)

Once again, conformal equivalence has reduced this expression
to a scaling factor times the usual Laplacian in . Implementa-
tion is, thus, trivial and requires only an efficient discrete Lapla-
cian [19]. The action of the Laplace–Beltrami heat flow in the
disk is illustrated in Fig. 7 for various evolution times . As one
can notice, the flow behaves like a linear euclidean heat flow
only close to the origin. As one moves closer to the border of
the disk, the scaling factor in (27) slows the flow down. This can

also be understood intuitively as the size of patterns close to the
border of the disk is actually much bigger than measured with
euclidean tools. It will, thus, take more time to smooth them out
of the image.

Deriving the gradient and Laplace–Beltrami operators was
very simple in the case of thanks to conformal equivalence.
The same of course holds true for the sphere. The case of
the paraboloid is slightly more complicated but involves only
straightforward applications of the definitions. For example, the
Laplace–Beltrami operator computed with the metric (8) reads

IV. SEGMENTATION WITH ACTIVE CONTOURS

ON OMNIDIRECTIONAL IMAGES

In this section, we define the evolution equation of geodesic
active contours tailored to omnidirectional images. We start
by considering spherical and hyperbolic geometry, where
conformal equivalence makes it easy to alter the initial theory.
We then describe a broader technique that is able to cope with
a larger class of manifolds, including the paraboloid.

A. Active Contour on Conformally Euclidean Surfaces

Geodesic active contours (GAC) were introduced by Caselles
et al. in [2] and Kichenassamy et al. in [20] to overcome the
limitations of traditional snakes. They are defined as minimizers
of following energy:

(28)

where is a closed planar curve, its first
derivative with respect to the parameter , is the Euclidean
length of , is a given image, represented here as a positive
bounded function and is an edge detector function. It was
proved in [2] that the direction for which decreases most
rapidly provides the following minimization flow:

(29)

where is the unit normal to the curve and is its curva-
ture. The right hand side of the (29) corresponds to the Euler–
Lagrange of energy (28). The first term is the mean curvature
motion, also called curve shortening flow, weighted by the edge
detector function . It smoothes the curve shape by decreasing
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its total length as fast as possible. The second term of (29) at-
tracts the curve toward the boundaries of objects by creating an
attraction valley centered on the edges. Hence, the function
does not need to be equal to zero to stop the evolution of the
snake on the contours of objects.

In [2], Caselles et al. proved that the curve minimizing
is actually a geodesic in a Riemannian space whose

metric tensor is

(30)

where is the Euclidean metric tensor. This fact is proved by
considering the general definition of a geodesic, i.e., a curve
of minimal weighted distance/length between two points on
a given Riemannian space. The minimal length between two
points on a manifold equipped with the metric tensor is
given by the following standard formula:

with and . Considering the metric
(30), the active contour energy can be expressed in an equivalent
way

(31)

This formalism encodes the geometry of edges in the new
metric, but we see from (31) that the geometry of the evolving
curve is still Euclidean. When the active contour evolves in a
more general space, defined by the first fundamental form ,
we ,thus, propose to modify the formalism to take geometry into
account. The most obvious modification is to simply introduce
the correct metric and this leads to a new energy functional

(32)

which reduces to the standard active contour model when the
metric , i.e., the Euclidean metric.

Let us now go back to the specific case of omnidirectional
images. The metric tensor for the sphere and the hyperboloid,
defined in (14) and (21), are both conformally equivalent to the
Euclidean metric through stereographic projection. This allows
us to simplify Functional (32) considering where

is the determinant of . Inserting this expression into (32),
we get

(33)

which corresponds to the energy of active contours on either
spherical or hyperbolic manifolds and ( stands
for disk) is the edge detector function for either the spherical or
the hyperbolic (non-Euclidean) images. The evolution equation
of the curve minimizing energy (33) is naturally obtained by
replacing the function by in (29)

(34)

We notice that (34) is defined on the planar open domain ,
which corresponds to the stereographic projection of the sphere
and the hyperboloid onto the plane (see Section II-A and B).
Thus, the evolution equation of the active contour is not di-
rectly performed on the spherical or the hyperbolic manifold but
on the plane by taking into account the geometry of the given
manifolds with the factor . Then the snake is mapped onto
the sphere and the hyperboloid with a one-to-one mapping de-
fined in Section II-A and B. This way of evolving the active
contour on nonflat spaces, whose metric tensors are known, is,
thus, very fast and numerically accurate. It does require a global
parametrization and, so far, conformal equivalence with . In
the next section, we will consider a larger class of manifolds.

Let us now consider two examples of illustration of these new
active contour models. The first example presents the evolution
of the snake on the hyperbolic manifold by the mean curvature
flow, Figs. 8 and 9. The geometry of the hyperboloid is de-
fined by the metric tensor in (21), which implies that

. The mapping between the disk , which
corresponds to the stereographic projection of the hyperboloid
onto the plane, is given by

(35)

given

The second example carries out the image segmentation task
on the sphere by extracting Australia, Fig. 11. The metric tensor
of the sphere is defined in (14), which implies that

. Besides, the mapping between the plane of
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Fig. 8. Mean curvature flow on the hyperboloid; (a)–(d) present the evolution
of the AC on the disk D given by (34) when f = 1. The disk D corresponds
to the stereographic projection of the hyperboloid onto the plane. (a) Initial AC
on D; (b) AC at t > 0; (c) AC at t > t ; (d) AC at t > t .

Fig. 9. Mean curvature flow on the hyperboloid; (a)–(d) shows the evolution
of the AC of Fig. 8 on the hyperboloid H when using the mapping from the
disk to the hyperboloid defined in (35). (a) Initial AC on H ; (b) AC at t > 0;
(c) AC at t > t ; (d) AC at t > t .

-values, given in Fig. 10(a), and the disk in Fig. 10(b),
which corresponds to the stereographic projection of the sphere
onto the plane, is given by

and the mapping between the disk and the sphere is given by

(36)

Fig. 10. Three equivalent representations of the omnidirectional image earth
(a) in the parametric (�; ') plane and (b) in the disk D using the stereographic
projection. (c) Original image as a scalar function on S .

Fig. 11. Segmentation of Australia on the sphere; (a)–(d) present the evolution
of the AC on the disk D given by (34). The disk D corresponds to the stereo-
graphic projection of the sphere onto the plane. (a) Initial AC on D; (b) AC at
t > 0; (c) AC at t > t ; (d) final AC.

given

The numerical implementation of the minimizing flow (34) is
done with standard numerical schemes (see [21] and [22] for
details).

B. Active Contours on the Paraboloid

In the previous section, an evolution equation for the ac-
tive contours on spherical and hyperbolic manifolds was
defined from the minimization of Functional (32) using the
metric of these manifolds. These metrics have a simple form,

, which allows us to directly find the evolution
equation for the snake from the standard geodesic/geometric
active contours [2], [20]. In this section, we want to derive
the evolution equation for the active contours on parabolic
manifolds whose metric tensor is defined in (8). In this case,
the metric is not diagonal, which implies more developments
to find the evolution equation from the minimization of (32).
Instead of computing the Euler–Lagrange equation of the
functional (32), we propose to apply the formalism defined by
Bresson et al. in [3] and [23], which consider the general case
of an active hypersurface evolving on any given Riemannian
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Fig. 12. Segmentation of Australia on the sphere; (a)–(d) show the evolution
of the AC of Fig. 11 on the sphere S using the mapping from the disk to the
sphere defined in (36). (a) Initial AC onS ; (b) AC at t > 0; (c) AC at t > t ;
(d) final AC.

Fig. 13. Manifold � embedded in 
, reproduced from [24].

manifold. This formalism is based on the work of Sochen et al.
[24] and [25], who introduced the Beltrami framework. The
Beltrami framework is a differential geometric framework for
image processing, which represents images as Riemannian
manifolds embedded in a higher dimensional Riemannian
manifold. The Beltrami flow applied on images determines
a minimal hyper-surface which exhibits very nice geometric
properties such as smoothing images while preserving edges. In
[3] and [23], authors used the Beltrami framework to generalize
the model of active contours. In their approach, they replaced
the embedding manifold (which is the given image in [24]
and [25]) by an active contour, which is embedded in a higher
dimensional Riemannian manifold (as the given image in [24]
and [25]). In what follows, we first remind the general model
introduced in [3] and [23], then we focus the model to a contour
embedded in a parabolic manifold.

We consider the following functional introduced in [3]
and [23]

(37)

which corresponds to the Polyakov action [26] weighted by the
function . The Polyakov action is basically a functional that
measures the weight of a mapping between an embedded
manifold and the embedding manifold (see Fig. 13).

More precisely, is the first fundamental form of the man-
ifold , is the inverse metric of , is the determinant of

, is the dimension of , , , is
the volume element w.r.t. the local coordinates on , is the
metric tensor of the embedding space , the dimension of ,

, , and is
the generalization of the magnitude of the gradient to maps be-
tween Riemannian manifolds. We observe that the volume el-
ement as well as the rest of the expression is re-parametriza-
tion invariant. In other words, they are invariant under a smooth
transformation. Thus, this action depends on the geometrical ob-
jects and not on the way we describe them via our parametriza-
tion of the coordinates. Finally, when identical indices appear
one up and one down in (37), they are summed over according
to the Einstein summation convention.

The calculus of variations gives us the flow minimizing Func-
tional (37) w.r.t. the th embedding coordinate , and
being fixed

(38)

for , is the Beltrami
operator which generalizes the Laplace operator to nonflat
manifolds and is
the Levi–Civita connection coefficients. If the metric tensor

of the embedded manifold is chosen to be the induced
metric tensor; , then the map are
harmonic maps such as geodesics and minimal surfaces and
the weighted Polyakov action is reduced to the weighted Euler
functional/Nambu action that describes the (hyper-)area of a
(hyper-)surface

(39)

The induced metric tensor is also introduced in the flow (38),
which yields to

(40)

for and is the mean curvature vector general-
ized to any embedding manifold . Thus, the functional (39)
and the minimization flow (40) define the energy and the evolu-
tion equation for the active contour model defined in a general
Riemannian manifold such as hyperbolic, spherical or parabolic
manifolds.

The previous model is consistent with the standard geodesic/
geometric active contours model [2], [20] when the embedding
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manifold is the Euclidean space, i.e., , . Indeed,
let us choose , which means that
the metric tensor of is as follows:

with . Energy functional (39) is, thus, equal to

which corresponds to the energy of the geodesic/geometric ac-
tive contour model defined in (28) when is the edge detector
function. The minimization flow (29) can also be recovered. The
mean curvature vector is equal to

using and . The
second part of the flow is equal to

Finally, the flow (40) is as follows:

(41)

which is exactly the flow of the geodesic/geometric active con-
tour model defined in (29).

We now determine the energy and the evolution equation for
the active contours evolving on parabolic manifolds. We remind
the metric tensor for a parabolic manifold, defined in (8)

and the inverse tensor is as follows:

where is the determinant of . The metric
tensor of the active contour, in the Polyakov framework,
embedded on a parabolic manifold, , is as follows:

where means the transpose of and is the norm
of the tangent vector on the parabolic manifold. Thus, energy

functional (39) of the active contours embedded on a parabolic
manifold is equal to

where stands for active contours on parabolic mani-
folds. Let us now compute the evolution equation for the active
contours on a parabolic manifold. The Beltrami part is equal to

The Levi–Civita connection coefficients are equal to

which gives us the second term of the mean curvature vector:

which is as follows under the vectorial form:

(42)

where . Thus, the mean curvature vector is equal to

Then, the second part of the flow (40) is equal to

and the term is equal for 1, 2 to

where is the gradient operator defined on the manifold .
Finally, the flow (40) for the active contours embedded on a
parabolic manifold is a follows:

(43)
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Fig. 14. Original bunny image obtained from a catadioptric system. (a) Raw
image from the sensor. (b) Omnidirectional image represented as a scalar func-
tion on the paraboloid.

In [27], Epstein–Gage proved that the geometry of the curve de-
formation is not affected by the tangential velocity . This result
is due to the fact that the tangential velocity does not change the
geometry of the curve but its parametrization. Hence, (43) can
be replaced by

Since the minimization solution is not changed when the
Euler–Lagrange equation is multiplied by a strictly positive
function, we finally get the evolution of the active contour on
a parabolic manifold

(44)

using .
As an example of illustration, we consider the segmenta-

tion of the bunny object lying on the parabolic manifold in
Figs. 15 and 16. The mapping between the disk in Fig. 14(a)
and the paraboloid, which corresponds to the focal projection
of the paraboloid onto the plane, is given by

(45)
given

The numerical implementation of the minimizing flow (44) is
done with standard numerical schemes, see [21] and [22] for
details.

C. Insightful Example

Previous sections defined evolution equations for active con-
tours evolving on different manifolds. We remind that our basic
idea consists in evolving the snake on the disk using the geom-
etry of the given manifold and map the evolving contour on the
manifold. However, is it really useful to include the manifold’s
geometry in the evolution process? In other words, why not just
using the standard Euclidean active contour model [2], [20] on
the disk and map the evolving contour to the manifold? We in-
troduce here an example to show the importance of taking into

Fig. 15. Segmentation of bunny on the paraboloid; (a)–(d) present the evolution
of the AC on the disk D given by (44). The disk D corresponds to the focal
projection of the paraboloid onto the plane. (a) Initial AC onD; (b) AC at t >

0; (c) AC at t > t ; (d) final AC.

Fig. 16. Segmentation of bunny on the paraboloid. (h)–(k) show the evolution
of the AC of Fig. 15 on the paraboloid P using the mapping from the disk to
the paraboloid defined in (45). (a) Initial AC on S ; (b) AC at t > 0; (c) AC
at t > t ; (d) final AC.

account the geometry of the given manifold in the segmenta-
tion process. Fig. 17(a) shows an object of interest defined on
the hyperbolic manifold. This object presents a smooth transi-
tion on the hyperboloid manifold, as one can see in Fig. 17(b),
which obviously does not correspond to an edge. However, the
projection of this smooth part on the plane, Fig. 17(c), shows
a sharp transition corresponding to an edge on the plane. This
“false edge” can give unsatisfactory segmentation results if the
hyperboloid geometry is not considered. Results based on the
Euclidean geometry and the hyperbolic geometry are presented
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Fig. 17. (a), (b) Object of interest, composed of a smooth transition, painted
on the hyperbolic manifold; (c), (d) projection of the object on the plane. The
smooth part of the signal on the hyperboloid corresponds to a sharp transition
on the plane. (a) Original image on the hyperboloid. (b) Zoom on the object of
interest. (c) Original image on the disk. (d) Zoom on the object of interest.

in Figs. 18 and 19. Fig. 18(a)–(h) shows the Euclidean active
contour which fails to segment the whole object on the hyper-
boloid due to the false edge on the disk that corresponds to a
smooth transition on the hyperboloid. Fig. 18(i)–(p) presents the
hyperbolic active contour that succeeds capturing the entire ob-
ject because the snake takes into account the geometry of the
hyperboloid manifold, which multiplies the edge detector func-
tion by a factor , in its evolution.

D. Discussion With Related Works

As we said in Section III, Bertalmio et al. in [14], [15] intro-
duced a new framework for solving PDEs on arbitrary surfaces
implicitly represented by a level set function. The main advan-
tage of their approach is to deal with arbitrary surfaces, which
is not our case, even if a data extension process is needed and
the computational time is more important than our technique. In
our framework, surfaces are given by a global parametrization,
which allows accurate and fast computations of the active con-
tour flows. In [16], [17], and [28], Spira and Kimmel defined
the evolution equation of the geodesic active contour on global
parametric manifolds by considering the Riemannian counter-
parts of the Euclidean flow [2]. Our approach is closely related
to theirs because we also consider parametric manifolds. How-
ever, the main difference lies in the fact that we have developed
the flow for the active contours defined on parametric manifolds
from a variational model based on the weighted Polyakov func-
tional, which gives the energy of the active contours and the
weighted Riemannian length of contours.

V. CONCLUSION

Omnidirectional imaging holds interesting promises for ap-
plications and will certainly become a conventional technique

Fig. 18. Segmentation of a synthetic object on the hyperboloid with the stan-
dard active contour model. (a)–(d) Standard Euclidean active contour (AC) fails
to segment the whole object on the hyperboloid due to a false edge on the disk,
(e)–(h) corresponding to a smooth transition on the hyperboloid. (a) Euclidean
AC on the disk at t = 0. (b) Euclidean AC at t > t . (c) Euclidean AC at
t > t . (d) Zoom on the AC at t . (e) Euclidean AC on the hyperboloid at
t = 0. (f) Euclidean AC at t > t . (g) Euclidean AC at t > t . (h) Zoom
on the AC at t .

in the near future. Due to their (eventually near) full covering
of the field of view, omnidirectional images allow to monitor a
complete scene using a single frame and, thus, provide a very
appealing basis for many computer vision algorithms. Manufac-
turing perfect omnidirectional image acquisition systems seems
to be very challenging, but several groups have reported inter-
esting progress [5]. A very interesting and promising research
direction is to investigate the properties of insect or animal eyes
to design more effective optical devices [29], [30]. Before a new
generation of full field of view optical devices matures, the con-
ventional way of acquiring omnidirectional images is through
a standard catadioptric setting, where a standard sensor over-
looks a curved mirror. The images obtained by such a device
are strongly influenced by the geometry of the mirror.
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Fig. 19. Segmentation of a synthetic object on the hyperboloid with the pro-
posed active contour model. Hyperbolic active contour (AC) succeeds capturing
the entire object, whereas the Euclidean model failed in Fig. 18 because the pro-
posed AC takes into account the geometry of the hyperbolic manifold in its evo-
lution. (a) Hyperbolic AC on the disk at t = 0. (b) Hyperbolic AC at t > t .
(c) Hyperbolic AC at t > t . (d) Zoom on the AC at t . (e) Hyperbolic AC on
the hyperboloid at t = 0. (f) Hyperbolic AC at t > t . (g) Hyperbolic AC at
t > t . (h) Zoom on the AC at t .

In this paper, we showed that the output of a catadioptric
system can be seen as a scalar function on a special riemannian
surface whose metric can be explicitly computed from parame-
ters of the system. We showed that it is important to take these
geometric effects into account when using such images for com-
puter vision and methods based on partial differential equations
offer the necessary flexibility. First, we derived explicit expres-
sions for standard differential operators used for smoothing or
edge detection. Then, we introduced new energy functionals
suited for solving segmentation problems on catadioptric im-
ages and solved for curve evolution equations using standard
calculus of variations. The obtained geometric active contours
are appealing because they are able to deal with some of the
apparent distortions that plague omnidirectional images. More-
over, for the class of riemannian surfaces studied in this paper,

computations involve only standard euclidean finite differences
on the image plane, which means we work directly with sensor
pixels.

In a more general perspective, performing smoothing or
solving segmentation problems on arbitrary manifolds is a
challenge of significant importance for processing large higher
dimensional data sets. For example, emerging bioimaging
techniques easily acquire 3-D time varying images that need
to be automatically segmented [31]. Extending the framework
based on the Polyakov action introduced in Section IV could
be an interesting way to leverage our results to a much more
general case and will be the main topic of a forthcoming paper.
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