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Abstract

In many settings the power of truthful mechanisms is severely bounded. In this paper we use
randomization to overcome this problem. In particular, we construct an FPTAS for multi-unit auctions
that is truthful in expectation, whereas there is evidence that no polynomial-time truthful deterministic
mechanism provides an approximation ratio better than 2.

We also show for the first time that truthful in expectation polynomial-time mechanisms are provably
stronger than polynomial-time universally truthful mechanisms. Specifically, we show that there is a
setting in which: (1) there is a non-polynomial time truthful mechanism that always outputs the optimal
solution, and that (2) no universally truthful randomized mechanism can provide an approximation
ratio better than 2 in polynomial time, but (3) an FPTAS that is truthful in expectation exists.
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1 Introduction

Background and Our Results

The last few years have been quite disappointing for researchers in Algorithmic Mechanism Design. Indeed,
much progress has been made, but in the “wrong” direction: several papers proved that the power of
polynomial time truthful mechanisms is severely bounded, either comparing to polynomial time non-
truthful algorithms, or to non-polynomial time truthful mechanisms [13, 7, 8, 10, 21, 16]. This paper
brings some good news: randomization might help in breaking these lower bounds to achieve better
approximation guarantees.

It is well known that in some algorithmic settings the performance of randomized algorithms is bet-
ter than the performance of deterministic ones (e.g., in online settings). Before studying the power of
randomization in the context of mechanism design, we recall the three common notions of truthfulness:

• Deterministic Truthfulness: A bidder always maximizes his profit by bidding truthfully. No
randomization is allowed.

• Universal Truthfulness: A mechanism that is universally truthful is a probability distribution
over deterministic truthful mechanisms. The mechanism is truthful even when the realization of the
random coins is known.

• Truthfulness in Expectation: A mechanism is truthful in expectation if a bidder always maxi-
mizes his expected profit by bidding truthfully. The expectation is taken over the internal random
coins of the mechanism.

In their seminal paper introducing algorithmic mechanism design, Nisan and Ronen [19] showed that
universally truthful mechanisms can be more powerful than their deterministic counterparts. In this paper
we show that truthfulness in expectation yields more power than universal truthfulness.

For the well-studied problem of multi-unit auctions (e.g., [17, 4, 12, 20, 14, 8, 3]), we show a polynomial
time truthful in expectation mechanism with the best ratio possible from a pure algorithmic point of view:

Theorem: There exists a truthful in expectation FPTAS for multi-unit auctions1.

There are many truthful in expectation mechanisms in the literature [2, 1, 14, 5]. However, somewhat
surprisingly, many truthful in expectation mechanisms were followed by universally truthful mechanisms
with the same performance [4, 6, 9, 8]. As a result, there are only a few settings in which the best known
truthful in expectation algorithms provide better approximation ratios than the best known universally
truthful mechanisms. Furthermore, [15] shows that for digital good auctions the two notions of random-
ization are equivalent in power. In contrast, our second main result shows that truthful in expectation
mechanisms are strictly more powerful than universally truthful ones. We study a variant of multi-unit
auctions that we term restricted multi-unit auctions, and show a first-of-a-kind separation result:

Theorem: Let A be a universally truthful mechanism for restricted multi-unit auctions that provides
an approximation ratio of 2 − ε, for some constant ε > 0. Then, the communication complexity of A is
exponential. However, there exists a truthful in expectation FPTAS for restricted multi-unit auctions.

We note that there exists a deterministic truthful mechanism that optimally solves restricted multi-unit
auctions in exponential time.

Multi-unit Auctions

In a multi-unit auction a set of m identical items is to be allocated to n bidders. Each bidder i has a
valuation function vi : [m] → R+, where vi is non-decreasing, and normalized: vi(0) = 0. The goal is the

1An FPTAS is a (1 + ε)-approximation algorithm with running time that is also polynomial in 1
ε
.
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usual one of finding an allocation of the items (s1, . . . , sn) that maximizes the social welfare: Σivi(si). All
items are identical, so algorithms should run in time polynomial in the number of bits needed to represent
the number m, and the number of bidders: poly(n, log m).

It is not hard to see that in the “single minded” case, where each vi is a single-step function (i.e., for
some s∗, k > 0, vi(s) = k if s ≥ s∗ and vi(s) = 0 otherwise), the problem is just a reformulation of the
NP-hard Knapsack problem. The standard FPTAS for knapsack generalizes easily to multi-unit auctions.

The study of truthfulness in multi-unit auctions has a long history, starting from Vickrey’s 1961 paper
[22]. The VCG mechanism is truthful and solves the problem optimally, but is not computationally-
efficient (see, e.g., [18]). For the single-minded case, Mu’alem and Nisan provided a truthful polynomial-
time 2-approximation algorithm, followed by an FPTAS by Briest et al [4]. In the general case, a
truthful in expectation 2-approximation mechanism was presented by [14], followed by a deterministic
2-approximation mechanism in [8]. Can polynomial-time truthful mechanisms guarantee an approxima-
tion ratio better than 2? This is one of the major open questions in algorithmic mechanism design, and
only a partial answer is known: a deterministic truthful mechanism with an approximation ratio better
than 2 that always allocates all items must run in exponential time2 [13, 8]. As mentioned before, this
paper provides an FPTAS for multi-unit auctions that is truthful in expectation.

A word is in order on how the valuations are accessed. The valuation functions are objects of size
m, whereas we are interested in algorithms that run in time polynomial in log m (the running time of
the non-truthful FPTAS for multi-unit auctions). Hence, we assume that each valuation v is given by
a black box. For our upper bounds, the black box corresponding to v needs to answer only the weak
“value queries”: given s, what is the value of v(s). Our lower bound for the power of universally truthful
mechanisms assumes a black box that can answer any query based on v (the “communication model”).

Main Result I: A Truthful FPTAS for Multi-unit Auctions

We now give a short description of our truthful FPTAS for multi-unit auctions. The only technique
known for designing truthful deterministic mechanisms for “rich” problems like multi-unit auctions is by
designing maximal-in-range (henceforth MIR) algorithms. An algorithm A is called maximal-in-range
if there is a set of allocations R (the “range”) that does not depend on the input, such that A always
outputs the allocation in R that maximizes the welfare: A(v1, ... . . . , vn) = arg max(s1,...,sn)∈RΣivi(si).
Using the VCG payment scheme together with an MIR mechanism results in a truthful mechanism. See
[7] for a more formal discussion.

Therefore, one way to obtain truthful mechanisms is to identify a range that, on one hand, is “rich”
enough to provide a good approximation ratio, and, on the other hand, is “simple” enough so that
exact optimization over this range is computationally feasible. For multi-unit auctions, there is an MIR
mechanism that provides an approximation ratio of 2 in polynomial time, but unfortunately no MIR
algorithm can provide a better ratio in polynomial time [8].

In this paper we let the range R consist of distributions over allocations. An algorithm that al-
ways selects the allocation that maximizes the expected welfare and uses VCG payments is truthful in
expectation. We term these mechanisms maximal in distributional range (MIDR).

Before discussing our truthful FPTAS, recall the spirit of the standard non-truthful FPTAS for multi-
unit auctions: each valuation is simplified by rounding down each value to the nearest power of (1 + ε).
Then, the best solution that uses only the ”breakpoints” of the rounded valuations is found. This solution
has a value close to the optimal unrestricted solution. However, to guarantee truthfulness via a maximal-
in-range algorithm we must find the solution with the optimal welfare in the range. Thus, we give a
“weight” w~s to each allocation ~s: when ~s is selected by the algorithm, the output will be ~s with probability
w~s, and with probability 1−w~s no bidder will receive any items, effectively reducing the expected welfare
of the allocation by a factor of w~s. The weight of a less “structured” allocation is smaller than the weight

2Indeed, it can be assumed that a non-truthful algorithm always allocates all items without loss of generality from a pure
algorithmic perspective. However, this assumption has game-theoretic implications.
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of a more “structured” one. We show that in the optimal solution among these “weighted allocations”
each bidder is assigned a bundle that is a breakpoint, or very close to a breakpoint of his valuation. Thus
the optimal solution can be found efficiently using exhaustive search, when the number of bidders is a
constant, since the number of breakpoints of each bidder is polynomial in the number of bits.

Efficiently handling any number of bidders is more involved. Given two bidders we define a “meta-
bidder” by merging their valuations: the value of the meta bidder for s items is equal to the value of the
optimal solution that allocates s items between the two bidders, using the weighted allocations mentioned
above. We recursively define new meta-bidders given the previous ones, until we are left with only two
meta bidders. Now the optimal solution can be found efficiently.

We note that MIDR mechanisms were used in [14], although only implicitly. The beautiful construction
of [14] is general and applies to many settings. However, its strength and weakness is its generality: for
some settings, a specifically-tailored mechanism might have more power than a mechanism obtained from
the general construction of [14]. Indeed, for some of the most important settings discussed in [14] better
constructions have been found [9, 6, 8]. Moreover, the LP-based techniques of [14] cannot guarantee an
approximation ratio better than the integrality gap for multi-unit auctions, which is 2 (see [14]). The
techniques in this paper may help in designing better mechanisms in settings where [14] performs poorly,
like combinatorial auctions with submodular bidders (see below).

Main Result II: Truthful in Expectation Mechanisms are more Powerful

Next we prove that truthful in expectation mechanisms are strictly more powerful than universally truthful
ones. Ideally, we would like to prove that universally truthful mechanisms for multi-unit auctions cannot
provide an approximation ratio better than 2 in polynomial time. However, it is an open question to
prove this even for deterministic mechanisms. Hence, we study a close variant of multi-unit auctions,
called restricted multi-unit auctions. The FPTAS for multi-unit auctions extends almost immediately
to restricted multi-unit auctions. It is more involved to show that universally truthful polynomial time
mechanisms cannot provide an approximation ratio better than 2.

Roughly speaking, we first show that a polynomial-time universally truthful mechanism with an ap-
proximation ratio of α must yield a polynomial-time deterministic truthful mechanism with an approx-
imation ratio of α on “many” instances. We then show that this deterministic mechanism must be an
affine maximizer (a slight generalization of MIR algorithms). Finally, we prove that deterministic truth-
ful mechanisms cannot provide an approximation ratio better than 2 for restricted multi-unit auctions
in polynomial time for “many” instances, hence no polynomial-time universally truthful mechanism for
restricted multi-unit auctions with an approximation ratio better than 2 exists.

Open Questions

The obvious open question is whether the techniques of this paper can be extended to improve the approx-
imation guarantees of other questions in algorithmic mechanism design, such as variants of combinatorial
auctions, or combinatorial public projects [21]. In particular:

Main Open Question: Is there a truthful mechanism for combinatorial auctions with subadditive (or
submodular) bidders that provides a constant approximation ratio?

There are non-truthful algorithms with constant approximation ratios for combinatorial auctions with
subadditive bidders[11, 23]. However, the best known polynomial-time truthful mechanisms provide a
ratio that is no better than logarithmic [6, 9]. It seems that our current techniques reached a dead
end: random sampling methods do not seem to guarantee an approximation factor that is better than
logarithmic, deterministic MIR mechanisms cannot provide an approximation ratio better than m

1
6 in

polynomial time [7], and the techniques of [14] are not applicable to this setting. The methods of this
paper might be helpful in constructing truthful in expectation mechanisms. On the other hand, proving
lower bounds on the power of MIDR mechanisms would also be extremely interesting.
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2 Preliminaries

2.1 The Setting

In a multi-unit auction there is a set of m identical items, and a set N = {1, 2, . . . , n} of bidders. Each
bidder i has a valuation function vi : [m] → R+, which is normalized (vi(0) = 0) and non-decreasing.
Denote by V the set of possible valuations. An allocation of the items ~s = (s1, . . . , sn) to N is a vector of
non-negative integers with Σisi ≤ m. Denote the set of allocations by S. The goal is to find an allocation
that maximizes the welfare: max~s∈S Σivi(si).

The valuations are given to us as black boxes. For algorithms, the black box v will only answer the
weak value queries: given s, what is the value of v(s). For the impossibility result, we assume that the
black box v can answer any query that is based on v (the “communication model”). Our algorithms run in
time poly(n, log m), while our impossibility result gives a lower bound on the number of bits transferred,
and holds even if the mechanism is computationally unbounded.

2.2 Truthfulness

An n-bidder mechanism for multi-unit auctions is a pair (f, p) where f : V n → S and p = (p1, · · · , pn),
where pi : V n → R. (f, p) might be either randomized or deterministic.

Definition 2.1 Let (f, p) be a deterministic mechanism. (f, p) is truthful if for all i, all vi, v
′
i and all

v−i we have that vi(f(vi, v−i)i)− pi(vi, v−i) ≥ v′i(f(v′i, v−i)i)− p(v′i, v−i).

Definition 2.2 (f, p) is universally truthful if it is a probability distribution over truthful deterministic
mechanisms.

Definition 2.3 (f, p) is truthful in expectation if for all i, all vi, v
′
i and all v−i we have that E[vi(f(vi, v−i)i)−

p(vi, v−i)] ≥ E[v′i(f(v′i, v−i)i)− pi(v′i, v−i)], where the expectation is taken over the internal random coins
of the algorithm.

2.3 Maximal in Range, Maximal in Distributional range, and Affine Maximizers

Definition 2.4 f is an affine maximizer if there exist a set of allocations R, a constant αi ≥ 0 for i ∈ N ,
and a constant β~s ∈ < for each ~s ∈ S, such that f(v1, ..., vn) ∈ arg max~s=(s1,...,sn)∈R(Σi(αivi(si)) + βs). f
is called maximal-in-range (MIR) if αi = 1 for i ∈ N , and βs = 0 for each ~s ∈ R.

Definition 2.5 f is a distributional affine maximizer if there exist a set of distributions over allocations
D, a constant αi ≥ 0 for i ∈ N , and a constant βD ∈ < for each D ∈ D) such that:

f(v1, ..., vn) ∈ arg max
D∈D

(Σiαi(Σs≤m Pr
D

[i is allocated s] · vi(s)) + βD)

f is called maximal in distributional range (MIDR) if αi = 1 for all i in N , and βD = 0 for each D ∈ D.

The following proposition is standard:

Proposition 2.6 The following statements are true:

1. Let f be an affine maximizer (in particular, maximal in range). There are payments p such that
(f, p) is a truthful mechanism.

2. Let f be a distributional affine maximizer (in particular, maximal in distributional range). There
are payments p such that (f, p) is a truthful in expectation mechanism.
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3 A Truthful FPTAS for Multi-Unit Auctions

This section provides a (1 + ε)-approximation algorithm for multi-unit auctions that is truthful in ex-
pectation by providing a maximal-in-distributional-range mechanism. The running time is polynomial in
n, log m, and 1

ε . The construction has several stages. We start by defining a certain family of ranges,
structured ranges. The main property of this family is that finding the optimal solution in a structured
range is computationally feasible when the number of bidders is fixed. To handle any number of bidders,
we use a more involved tree-like construction, where structured ranges serve as the basic building block.
We start by defining structured ranges.

3.1 Structured Ranges

3.1.1 Definition

Towards constructing an FPTAS, fix the approximation parameter ε such that 0 < ε < 1
2 . It will be useful

to let δ =
ln 1

1−ε

2 log m+2 . We construct ranges that consist only of weighted allocations:

Definition 3.1 A weighted allocation w · ~s is a distribution over allocations of the following form: with
some probability w the allocation ~s = (s1, . . . , sn) is chosen, and with probability 1−w the empty allocation
(where each bidder is allocated an empty set) is chosen. w is called the weight of the weighted allocation.

The weight of a weighted allocation of m items to n bidders is determined using the following function
weightε : S → [1− ε, 1], where S is the set of all allocations of m items to n bidders. Let t be the maximal
(non-negative) integer such that for each i, si is a multiple of 2t. Let p = (1 + 2δ) if si 6= 0 for n − 1

bidders, let p = 1 otherwise. Now define weightε(~s) = (1− ε)(1 +
ln 1

1−ε

log m+2)t+1p. Observe that the number
of different outputs of weightε is O(log m), where increasing t by 1 makes the output value increase by a
factor of (1 + 2δ), by our choice of δ.

A structured range consists only of weighted allocations whose weight is determined by weightε.
Informally, in a structured range “structurally simpler” allocations have greater weight.

Definition 3.2 An ε-structured range for n bidders and m items is the following set of weighted alloca-
tions: {weightε(~s) · ~s}~s∈S, where S is the set of allocations for these n bidders. We sometimes call an
ε-structured range a structured range when ε is clear from context.

The optimal solution in a structured range provides a good approximation to the (unweighted) op-
timal solution: every allocation is in the range with weight at least (1 − ε). In particular, the optimal
(unweighted) allocation is in the range with a weight of at least (1− ε).

Lemma 3.3 The expected approximation ratio of an algorithm that optimizes over an ε-structured range
is at least (1− ε).

3.1.2 The Optimal Solution is in Neighborhoods of Breakpoints

The important property of structured ranges is that finding an optimal weighted allocation is computa-
tionally easy. We show that the optimal solution consists of bundles that are near breakpoints, where
breakpoints are bundles at which the valuation first exceeds a power of 1 + δ.

Definition 3.4 A bundle s is called a b-breakpoint of a valuation v if it is the smallest multiple of b s.t.
v(s) ≥ (1 + δ)lv(b), for some integer l ≥ 0. The bundle 0 is also considered a b-breakpoint of v, for all b.

Definition 3.5 Let s be a b-breakpoint of v. The neighborhood of s consists of the bundles s, s + b, s +
2b, . . . , s + n · b.
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Lemma 3.6 Let weightε(~o) · ~o be a weighted allocation that maximizes the welfare in a structured range
among all allocations with Σisi ≤ s, for some m ≥ s ≥ 0. Let t be the maximal non-negative integer s.t.
each oi is a multiple of 2t. Then, each oi is in the neighborhood of a 2t-breakpoint.

Proof: Suppose towards a contradiction that there is some bidder k, where ok is not in the neighborhood
of a 2t-breakpoint. Round down each oi (that is not a 2t-breakpoint) to the nearest 2t-breakpoint of vi

denoted oi. Let ci be such that oi = ci · 2t. For each i, define c′i as follows:

c′i =
{

ci + 1, ci is odd;
ci, ci is even.

For each i, let ai = c′i · 2t. We will show that the expected welfare of weightε(~a) · ~o is greater than that of
the optimal solution weightε(~o) · ~o. Note that Σiai ≤ s: on one hand by our assumption, ok − ok ≥ n · 2t.
On the other hand, Σi(ai − oi) ≤ n · 2t, since for each i, ai − oi = 2t if oi is odd, else ai − oi = 0. (In a
sense, we “take” items from bidder k and spread them among the other bidders.)

We now calculate the expected welfare of ~a. All c′i’s are even, thus each ai is a multiple of 2t+1. In
addition, the number of bidders that receive no items is larger in ~a. Hence weightε(~a) ≥ (1+2δ)weightε(~o),
by the definition of weightε. Since for each i, ai ≥ oi, the monotonicity of the valuations implies that:

weightε(~a) · Σivi(ai) ≥ (1 + 2δ)weightε(~o) · Σivi(ai) ≥ (1 + 2δ)weightε(~o) · Σivi(oi)

Using the definition of a breakpoint, the value of each vi(oi) is close to the value of vi(oi):

(1 + 2δ)weightε(~o) · Σivi(oi) ≥ (1 + 2δ)weightε(~o) · Σi
vi(oi)
1 + δ

> weightε(~o) · Σivi(oi)

I.e., the expected welfare of the distribution weightε(~a) · ~a is greater than that of the optimal one:
weightε(~o) · ~o. A contradiction.

3.2 Warmup: An FPTAS for a Fixed Number of Bidders

As a warm-up we provide an MIDR (1+ε)-approximation algorithm for a fixed number of bidders. The idea
is to fully optimize over a structured range. Specifically, the number of value queries the algorithm makes
is poly(n, log m, 1

δ , log maxi
vi(m)
vi(1) ) = poly(n, log m, 1

ε , log maxi
vi(m)
vi(1) ). This algorithm has two drawbacks.

The first major one is that while the number of value queries is small, the running time of the algorithm
is exponential in n: exhaustive search is used to find the best allocation that consists only of bundles
in the neighborhood of breakpoints. However, for a fixed number of bidders the exhaustive search (and
hence the algorithm) is also computationally efficient3.

The second drawback is that the running time and the number of value queries depends (polynomially)
on log maxi

vi(m)
vi(1) (in a sense, the algorithm is only “weakly polynomial”). This can be fixed (using

“significant breakpoints” – see the next section), but to keep the presentation of this warmup simple we
do not address this here. We stress that the FPTAS for a general number of bidders we present in the
next subsection is “strongly polynomial”. I.e., runs in time poly(n, log m, 1

ε ).

1. For each t = 0, . . . , blog mc:
• Find the 2t-breakpoints of each bidder i.

• Let ~st = (st
1, . . . , s

t
n) be the allocation maximizing welfare among all allocations (s1, . . . sn)

where for each i, si is in the neighborhood of a 2t-breakpoint of vi.
3Fixing the number of bidders is still an interesting case, as the communication lower bound [20] and the lower bound

for MIR algorithms [8] use only 2 bidders. Furthermore, interestingly enough an FPTAS for a constant number of bidders
implies a computationally efficient PTAS for a general numbers of bidders, as a straightforward extension of the result of [8].
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2. Let weightε(~s) · ~s be the welfare maximizing distribution in {weightε(~s0) · ~s0, . . . , weightε( ~sblog mc) ·
~sblog mc}. Return weightε(~s) · ~s.

Lemma 3.7 The number of value queries the algorithm makes is poly(log m,n, 1
ε , log maxi

vi(m)
vi(1) ).

Proof: Let R = max(m,maxi
vi(m)
vi(1) ). For each one of the possible blog mc values of t, we find all

O(log1+δ R) breakpoints of each bidder i, and then query the n bundles in the neighborhood of the
breakpoints. Binary search finds a single breakpoint in O(log m) queries, thus the total number of queries
is O(n2 · log2 m log1+δ R) = poly(log m,n, 1

δ , log R) = poly(log m, n, 1
ε , log maxi

vi(m)
vi(1) ).

The following is an immediate corollary of Lemma 3.6 (setting s = m in the statement of the lemma):

Lemma 3.8 The algorithm finds a welfare maximizing distribution in an ε-structured range.

Using Lemma 3.3 we now have:

Theorem 3.9 There is a (1 − ε)-approximation algorithm for multi-unit auctions that is truthful in
expectation and makes poly(n, log m, 1

ε , log maxi
vi(m)
vi(1) ) value queries.

3.3 The Main Result: An FPTAS for a General Number of Bidders

This section presents a computationally-efficient FPTAS for a general number of bidders. We use struc-
tured ranges as a basic building block.

Let u and v be valuations of two bidders. Informally speaking, define a “meta bidder” with valuation w
as follows: the value w(s) is set to the optimal expected welfare of allocating at most s items in a structured
range for m items and the two bidders. Note that, by lemma 3.6 and a straightforward modification of
the algorithm in the previous section, each query to w can be calculated in time poly(log m, 1

ε ). Apply
this construction recursively, combining two meta bidders into one “larger” meta bidder (see Figure 1).
We end up with two meta-bidders at the top level, a case solved in the previous section. We will show
that this algorithm runs in time poly(n, log m, 1

ε ), and that the solution obtained well-approximates the
optimal welfare. We will also show that this algorithm optimizes over some range of distributions, yielding
truthfulness in expectation. Throughout this section we assume, without loss of generality, that n is a
power of 2 (as we can always add bidders that have a value of 0 for each bundle).

3.3.1 The Range

Before defining the range of the algorithm, we define a binary hierarchal division of the bidders, illustrated
in Figure 1. We think of each node in the hierarchy as a meta-bidder representing a subset of the bidders.
The root meta-bidder, representing {1, . . . , n}, is composed of two meta-bidders representing {1, . . . , n

2 }
and {n

2 +1, . . . , n}, respectively. Applying the division recursively, meta-bidder {a, . . . , b} has two children:
{a, . . . , a+b−1

2 } is the left child and {a+b−1
2 + 1, . . . , b} is the right child. The leaves correspond to single

bidders. Number the tree levels from 1 to log n, where the leaves are in level log n, and the top vertex is
in level 1. The following definitions will prove helpful in defining the range of the algorithm R.

Definition 3.10 Let A and B be two disjoint set of bidders. Let DA and DB be two distributions over
allocations to bidders in A and B, respectively. Let w ∈ [0, 1]. A weighted composition w · (DA ⊕DB) is
the following distribution over allocations to bidders in A ∪ B: with probability w, allocate to bidders in
A according to DA and to bidders in B according to DB, and with probability (1 − w) allocate no items
to all bidders in A ∪B.
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{n/2+1, ... , n}{1, ... , n/2}

{1, ... , n}

{1} {2} {n−1} {n}

{1, 2} {n−1, n} 

Figure 1: Meta-Bidder Hierarchy

Definition 3.11 The set of components of a weighted composition distribution w · (DA ⊕DB) includes
DA and DB. If DA and DB are weighted composition distributions then the components of DA and DB

are also contained in the set of components of w · (DA ⊕DB).

Let ε′ =
ln 1

1−ε

log n . In the remainder of this section, every reference to a structured range refers to an
ε′-structured range on m items and two bidders, though we often refer to a subset of the structured range
that allocates at most k items, for some k ≤ m. For each vertex T in the hierarchical tree with two leaf
children l and r, let Rk

T be the set of all weighted allocations of at most k items in a ε′-structured range
of bidders l and r. For a vertex T with two non-leaf children L and R, let

Rk
T = {weightε′(a, b) · (DL ⊕DR)|a + b ≤ k, DL ∈ Ra

L, DR ∈ Rb
R}

Now let the range of the algorithm be R = Rm
N .

Consider some distribution D ∈ Rt
U (for some U and t). Let T be a descendant of U in the hierarchical

tree. There is a unique k ≤ t such that some Dk
T ∈ Rk

T is a component of D. The distribution Dk
T is said

to be induced by D on T , and k is said to be the number of items associated with T in D. Let si be the
number of items associated with bidder i in D. The (feasible) allocation (s1, . . . , sn) is called the base
allocation of D. Notice that for every allocation ~s there is at least one allocation D ∈ R such that ~s is
the base allocation of D. Moreover, distribution D always allocates either si items or 0 items to bidder i.

An algorithm that optimizes over R is truthful in expectation. It also provides a good approximation:

Lemma 3.12 An algorithm that optimizes over R provides an approximation ratio of at least 1− ε.

Proof: The lemma follows from the following claim:

Claim 3.13 Let D ∈ R. Let ~s be its base allocation. PrD[bidder i receives si] ≥ 1− ε.

Proof: If si = 0 the claim is true. Otherwise, for a non-leaf vertex T with children L and R, let
wT · (DL ⊕DR) denote the weighted composition distribution induced by D on T . wT is the probability
that the child vertices of T receive a non-empty bundle. By definition, wT ≥ 1− ε′. The probability that
a bidder i receives si is the probability that all non-leaf vertices containing i ”allocate” items to their
children. Let P be the set of all non-leaf vertices on the path in the hierarchal tree from the leaf {i} to

the root N . We can bound this probability as follows:
∏

T∈P

wT ≥ (1− ε′)log n = (1− ln 1
1−ε

log n
)log n ≥ 1− ε

Observe that the optimal (unweighted) allocation (o1, . . . , on) is induced by some D ∈ R. Hence,
each bidder i receives oi with probability at least (1 − ε) in D. The expected welfare of D is therefore
at least (1− ε) times the welfare of the optimal unweighted allocation. The algorithm optimizes over all
distributions in the the range R, and thus returns an allocation with at least that expected welfare.

We now make the meta-bidder intuition formal.
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Definition 3.14 Let D be a range of distributions of m items to a set U of bidders. Let Dk be the set
of all distributions in D that never allocate more than k items. Let SU

k be the set of all allocations that
allocate at most k items to bidders in U . Define v to be the valuation of a meta-bidder over U using D
as follows:

v(k) = max
D∈Dk

∑

~s∈SU
k

Pr
D

[~s is chosen] ·
∑

i∈U

vi(si)

Note that a valuation of a meta bidder is monotone and normalized. We now define a meta-bidder for
each vertex T . The definition is recursive. For a vertex T with two leaf children l and r, let vT be the
valuation of the meta bidder T defined over {l, r} using the range of distributions D = ∪kRk

T (i.e., an
ε′-structured range). For a vertex T with two meta-bidder children L and R, let vT be the valuation of
the meta-bidder T defined over {L,R} using the the ε′-structured range of allocations to (meta-) bidders
L and R. The meta-bidder idea is powerful for precisely the following reason:

Lemma 3.15 Let O be a welfare maximizing distribution in Rs
T . Let OU be the distribution of allocations

to bidders in U induced by O on U , where U is a descendant of T in the hierarchical tree or U = T .
Denote the expected welfare of OU by |U |. Let oU be the bundle that is associated with U in O. Then,
vU (oU ) = |U |.

Proof: The proof is by induction on the level of U . For a vertex U with two leaf children l and r, vU (oU )
equals the value of the welfare maximizing solution that allocates at most oU items in a structured range.
On the other hand, observe that O induces a weighted allocation that allocates at most oU items in a
structured range, and that O is welfare maximizing. Hence, the expected welfare of OU equals vU (oU ).

Consider a vertex U with two leaf children L and R, and let OU = weightε′(a, b) · (OL ⊕OR) ∈ RoU
U .

The expected welfare of OU is by induction weightε′(l, r)·(vL(a)⊕vR(b)), i.e., OU is the welfare maximizing
weighted allocation in a structured range with bidders L and R that allocates at most oU items, which is
by definition the value of vU (oU ).

Fix δ =
ln 1

1−ε′
2 log m+2 . The important property of distributions in the range is that, similar to structured

ranges, the bundle k that is associated with a vertex is in the neighborhood of a breakpoint of the
corresponding (meta-) bidder.

Lemma 3.16 Let O be a welfare maximizing distribution in Ra
T . Let L and R be two sibling vertices that

are descendants of O. Let oL and oR be the bundles associated with L and R in O, respectively. Let t be
the maximal non-negative integer such that oL and oR are multiples of 2t. Then, oL and oR are in the
neighborhood of a 2t-breakpoint of vL and vR, respectively.

Proof: Let P be the parent of L and R, let its associated bundle in O be oP . By Lemma 3.15 and
the definition of meta bidders, vP (oP ) is equal to the expected welfare of a distribution of the form
weightε′((oL, oR)) · (oL, oR) – the welfare maximizing distribution that allocates at most oP items to
bidders L and R in a structured range. By Lemma 3.6, oL and oR are in neighborhoods of 2t-breakpoints
of vL and vR, respectively.

3.3.2 The FPTAS

The FPTAS we construct is the obvious one: find the optimal allocation to meta-bidders {1, . . . n/2} and
{n/2 + 1, n} in a structured range, then proceed recursively to find the best allocation between bidders
{1, . . . , n

4 } and {n
4 +1, . . . , n

2 }, and so on. In a naive implementation of this algorithm every value query to
the valuations of the two meta-bidders is calculated recursively “on the fly”. However, a short calculation
shows that in this implementation the number of value queries is polynomial in (log m)log n, n, 1

ε . To
improve the running time, we use the fact that to calculate vT (s), for any bundle s, we only need to know
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the value of a relatively small number of bundles in the neighborhood of breakpoints of the two (meta-)
bidders that are T ’s children.

We are also interested in a “strongly polynomial” algorithm. I.e., the running time should be inde-
pendent of log maxi vi(m)

mini vi(1) . Towards this end, define:

Definition 3.17 A bundle s is an r-significant b-breakpoint of v if it is a b-breakpoint of v and if either
s = 0 or v(s) ≥ r.

By the next lemma, we can “ignore” insignificant breakpoints (proof in the appendix):

Lemma 3.18 Let O be a welfare maximizing distribution in Rs
T . Denote its expected welfare by |O|.

Let R,L be two sibling descendants of T in level l. Let oL, oR be the bundles associated with L,R in O,
respectively. Let t > 0 be the largest integer s.t. both oL and oR are multiples of 2t. Then, oL and oR are
in the neighborhood of an r-significant 2t-breakpoint of vL and vR, respectively, for r = δl|O|.

An FPTAS for a General Number of Bidders

1. For each vertex T in level l evaluate (recursively, from bottom to top) all bundles that are in the
neighborhood of an rl-significant 2t-breakpoint of vT (for t = 1, 2 . . . , blog mc, and rl = δl maxi∈N vi(m)/2)

2. Evaluate (recursively, from top to bottom starting from the top vertex N and oN = m) for each
vertex T with children L and R a welfare maximizing weighted distribution weightε′((oL, oR)) ·
(oL, oR) of (meta-) bidders L and R, where oL + oR ≤ oT . Let wT = weightε′((oL, oR)).

3. Each bidder i receives oi items with probability ΠT∈P wT where P is the set that includes all the
proper ancestors of i in the hierarchal tree.

Theorem 3.19 The algorithm above is a truthful-in-expectation FPTAS for multi-unit auctions.

The proof can be found in the appendix.

4 Truthful in Expectation Mechanisms Have More Power

This section shows that polynomial-time truthful-in-expectation mechanisms are strictly more powerful
than universally-truthful polynomial-time mechanisms. Ideally, we would like to prove this for multi-unit
auctions. However, finding a non-trivial lower bound on the power of polynomial time mechanisms for
multi-unit auctions, even deterministic ones, is a big open question. Hence we study a variant of multi-
unit auctions that is artificially restricted, with the sole purpose of proving such a separation for the first
time. We prove that universally truthful polynomial time mechanisms cannot provide an approximation
ratio better than 2 for this variant, while we provide a truthful in expectation FPTAS. As in multi-unit
auctions, the (deterministic) VCG mechanism solves this problem optimally, but in exponential time.

In a restricted multi-unit auction, a set of m items, where m is a power of 2, is to be allocated to two
bidders. The set of feasible allocations is restricted as follows: either no items are allocated, or all items
are allocated with at least one item per bidder. Each bidder i ∈ {1, 2} has a valuation function vi, given
as a black box, specifying the bidder’s value for each number of items. We restrict vi to be normalized
(vi(0) = 0) and strictly increasing. The objective is to maximize social welfare, the sum of the values of
the bidders. Our algorithms should run in time polynomial in log m.

Theorem 4.1 The following statements are true:
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1. For every constant ε > 0, every universally truthful (2− ε)-approximation mechanism for restricted
multi-unit auction requires Ω(m) communication.

2. There exists an (1 + ε)-approximation algorithm for restricted multi-unit auctions that is truthful in
expectation and runs in time poly(log m, 1

ε ) (an FPTAS).

The proof can be found in the appendix, as well as a discussion of the differences between multi-unit
auctions and restricted multi-unit auctions and their role in the proof.
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A Missing Proofs of the FPTAS

A.1 Proof of Lemma 3.18

From Lemma 3.16 we know that oL and oR are in the neighborhood of 2t-breakpoints of vL and vR. It
remains to show that they are r-significant. We make use of the following claim:

Claim A.1 Let weightε(~o) ·~o be a welfare maximizing distribution of s items in an ε-structured range for
2 bidders. Denote its expected welfare by |o|. For each i ∈ T with oi 6= 0 we have that vi(oi) ≥ δ|o|.
Proof: The proof is almost identical to the proof of Lemma 3.6, and therefore it is only sketched.
Suppose for contradiction that there is some bidder k with vk(ok) < δ|o| and ok > 0. Let t > 0 be
the maximal integer s.t. each oi is a multiple of 2t. Define the following allocation ~a: ak = 0, and for
the other bidder i 6= k, let ai = oi (notice that Σiai ≤ s). All bidders but one receive no items, thus
weightε(~a) ≥ (1 + 2δ)weightε(~o), by definition of weightε. We have that Σivi(ai) ≥ (1 − δ)Σivi(oi).
However, now weightε(~a)Σivi(ai) > weightε(~o)Σivi(oi), a contradiction.

We prove the lemma using the claim by induction on the level of the tree, starting with children of T
to the leaves. By Lemma 3.15, vT (s) = |O|. vT is a meta bidder, thus vT (s) is also equal to the value of a
welfare maximizing allocation in a structured range: w · (oL, oR). By the claim vL(oL) ≥ δ|O|. Similarly,
vR(oR) ≥ δ|O|.

Assume correctness for level l and prove for l + 1. For L and R in level l + 1 with parent P , from
arguments similar to those above it follows that vL(oL), vR(oR) ≥ δ

2vP (oP ), where oL, oR, and oP are
the bundles associated with L, R and P in O, respectively. By induction we get that: vR(oR), vL(oL) ≥
δvp(oP ) ≥ δl+1vT (s), as needed.

A.2 Proof of Theorem 3.19

Before proving the theorem, we comment on the definition of rl in the algorithm. Let |O| be the expected
welfare of O. On one hand, observe that |O| ≥ maxi vi(m)

2 (allocating all items to bidder i that maximizes
vi(m) is an allocation that is induced by some D ∈ R. D has an expected welfare of at least (1−ε)vi(m)),
and on the other hand |O| ≤ nmaxi vi(m). In other words, rl is on one hand small enough so we can
calculate the significant breakpoints of the valuations according to Lemma 3.18, and on the other hand
is not too small, so we do not have too many significant points to evaluate. The proofs below make this
discussion formal.

Lemma A.2 The algorithm finds a welfare maximizing distribution O ∈ R.

Proof: We prove the following claim first:

Claim A.3 Let T be a vertex in level l. The δl|O|-significant 2t-breakpoint are evaluated correctly (for
t = 1, 2, ..., blog nc).
Proof: The proof is by induction on the level l, starting from the leaves to the top. For T with two
leaf children L and R, the claim is trivially true, since |O| ≥ maxi vi(m)

2 and by Lemma 3.18.
We assume correctness for l+1 and prove for l. Consider vertex T in level l with meta-bidder children

L and R. By induction the values of bundles in the neighborhood of rl+1-significant breakpoints of vL and
vR are computed correctly. Consider some bundle aT in the neighborhood of an rl-significant breakpoint
of vT . Denote by weightε′((aL, aR)) · (aL, aR) the welfare maximizing weighted allocation to vL and vR

that allocates at most aT items. By induction, the values of vL(aL), vR(aR) are calculated correctly, since
they are δl+1-significant breakpoints of vL and vR (Lemma 3.18). Hence vT (aT ) is calculated correctly,
as needed.

Now we can prove the lemma by induction from the top vertex to the leaves. The welfare of the
distribution induced by O on the top vertex N is, by Lemma 3.15, equal to a welfare maximizing weighted
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allocation to bidders {1, . . . , n
2 } and {n

2 + 1, . . . , n} in a structured range weightε((o{1,..., n
2
}, o{n

2
+1,...,n})) ·

(o{1,..., n
2
}, o{n

2
+1,...,n}). By the same arguments as above, the algorithm finds a welfare maximizing weighted

allocation to bidders {1, . . . , n
4 } and {n

4 + 1, . . . , n
2 } of at most o{1,..., n

2
} items. Proceeding similarly until

we reach the leaves, we end up with a distribution in R with an expected welfare equal to that of O.

Lemma A.4 The algorithm runs in time poly(n, log m, 1
ε ).

Proof: Fix some vertex T with children R and L. Observe that vT (s), for any s, can be computed
using only bundles in the neighborhood of r-significant b-breakpoints of vL and vR (for b = 1, 2, 4, . . . , m).

To see that these values can be obtained efficiently, notice that each valuation v in level l has only
poly(n, 1

δ ) rl-significant b-breakpoints (by our choice of r – since 2n · maxivi(m) ≥ |O|). Recall that
via binary search a b-breakpoint of v can be can be found in poly(log m) value queries to v. For each
breakpoint we also need to query all bundles in its neighborhood. Hence we need to query each valuation
v (of a bidder or a meta bidder) only poly(log m, 1

δ ) times. The number of valuations of bidders and meta-
bidders in the tree is O(n). and thus the total number of queries is still poly(n, log m, 1

δ ). Notice that the
computational overhead is polynomial in the number of value queries: for each value query we compute a
welfare maximizing allocation of the previous level in a structured range of 2 bidders, which can be done
in time poly(log m, 1

δ ). In total, the running time of the algorithm is poly(n, log m, 1
δ ) = poly(n, log m, 1

ε ).

B Appendix of Section 4

We now discuss the differences between restricted multi-unit auctions and the standard multi-unit auctions
discussed in previous sections.

• Strictly Increasing Valuations, m is a power of 2: These restrictions are only there to
simplify the proof. They can be removed without changing the statement of the theorem.

• Allocate all Items with at least One Item per Bidder or Allocate Nothing: The all-
items-are-allocated constraint fulfills the conditions of the characterization of deterministic truthful
mechanisms for multi-unit auctions [10]. The restriction that each bidder must receive at least one
item, and the relaxation allowing the empty allocation, will prove useful in arguing about universally
truthful randomized mechanisms which were not considered in [10].

B.1 Proof of Theorem 4.1

First, we bound the power of universally truthful polynomial time mechanisms for restricted multi-unit
auctions. Then, we show that there exists a truthful in expectation FPTAS for restricted multi-unit
auctions.

B.2 A Lower Bound on Universally Truthful Mechanisms

B.2.1 From Universally Truthful to Deterministic Mechanisms

It is inconvenient to study randomized mechanisms directly. Therefore, we start by showing that the
existence of a universally truthful mechanism with a good approximation ratio implies the existence of
a deterministic mechanism that provides a good approximation on “many” instances. The following
definition and propositions are adapted from [7]. We repeat the proof here for completeness.

Definition B.1 Fix α ≥ 1, β ∈ [0, 1], and a finite set U of instances of restricted multi-unit auctions.
A deterministic algorithm B for restricted multi-unit auctions is (α, β)-good on U if B returns an α-
approximate solution for at least a β-fraction of the instances in U .
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Proposition B.2 (essentially [7]) Let U be some finite set of instances of restricted multi-unit auc-
tions, and let α, γ ≥ 1. Let A be a universally truthful mechanism for restricted multi-unit auctions that
provides an expected welfare of OPT (I)

α for every instance I ∈ U with expected communication complexity
cc(A). Then, there is a γ · cc(A)-time (deterministic) algorithm in the support of A that is ( 1

1
α
− 1

γ

, 1
α − 1

γ )-

good on U and has a communication complexity of γ · cc(A).

Proof: For each mechanism D in the support of A, Let cc(D) denote its expected communication
complexity. Let A′ be the mechanism obtained from A by replacing in the support of A each mechanism
D for which cc(D) ≥ γcc(A) by a mechanism that never allocates any items. Notice that the expected
approximation ratio of A′ is at least α′ = 1

1
α
− 1

γ

.

Fix some instance I ∈ U . The expected welfare of A′(I) is at least OPT (I)
α′ . The probability that A(I)

has welfare at least OPT (I)
α′ is lower-bounded by 1

α′ : this is achieved if A(I) is optimal with probability
1
α′ and has welfare 0 otherwise. Hence, there exists a deterministic algorithm B in the support of A
that returns an α′-approximate solution for at least a 1

α′ -fraction of the instances in U . Notice that the
communication complexity of B is γ · cc(A).

Let A be a universally truthful mechanism for restricted multi-unit auctions with communication
complexity poly(log m) and an approximation ratio of 2 − ε, for a constant ε > 0. By the claim, there
must exist a (2 − ε′, 1

2)-good deterministic mechanism in its support with communication complexity of
log m ·cc(A) (for some constant ε′ > 0 and some set of instances U). We will show that the communication
complexity of this “good” mechanism for that U is Ω(m), thus the communication complexity of A is
Ω( m

log m).

B.2.2 A Lower Bound on “Good” Deterministic Mechanisms

To start, we recall the following characterization result for deterministic mechanisms for multi-unit auc-
tions:

Theorem B.3 ([10]) Let f be a truthful deterministic mechanism for multi-unit auctions with strictly
monotone valuations that always allocates all items with range at least 3. Then, f is an affine maximizer.

Fix some universally truthful mechanism A for restricted multi-unit auctions. The support of A
contains three possible (non-disjoint) types of deterministic mechanisms:

1. Imperfect Mechanisms: Mechanisms B where there exist valuations u, v such B(u, v) = (0, 0).

2. Tiny-Range Mechanisms: Mechanisms that have a range of size at most 2.

3. Affine Maximizers: Mechanisms that are affine maximizers.

Notice that there are no other mechanisms in the support of A: a mechanism for restricted multi-unit
auctions that always allocates some items must always allocate all items. If its range is of size at least 3,
then by Theorem B.3 it must be an affine maximizer.

Claim B.4 Let B be a deterministic imperfect mechanism for restricted multi-unit auctions. Then, there
is a constant CB > 0 such that B(u′, v′) = (0, 0) whenever u′(m), v′(m) < CB.

Proof: Let u, v be such that B(u, v) = (0, 0). Let CB = mink>0 min(u(k), v(k)). Since valuations
are normalized and strictly increasing, CB > 0. Consider some u′, v′ as in the statement of the claim.
Observe that B(u, v′) = (0, 0): by weak monotonicity (see [18]) bidder 1 should be allocated no items,
hence bidder 2 is allocated no items (recall that every non-empty feasible allocation assigns at least one
item to each bidder). Similarly, B(u′, v′) = (0, 0).
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Let A be a universally truthful mechanism for restricted multi-unit auctions that provides an approx-
imation ratio of 2− ε. Define CA = minB CB, where the minimum is taken over all imperfect mechanisms
in A’s support. Fix a constant σ such that σ << ε. For each integer k such that 1 ≤ k ≤ m − 1, define
the instance Ik = (uk, vk) as follows: uk(t) = (σCA/2m)t for all t < k, and uk(t) = CA/2 for all t ≥ k;
vk(t) = (σCA/2m)t for all t < m−k, and vk(t) = CA/2 for all t ≥ m− k. Let U = {Ik}k. Notice that the
optimal welfare for Ik is CA and is achieved by the allocation (k,m − k). Any other allocation provides
a welfare of at most CA/2 + σCA/2 < CA/(2− ε).

Claim B.5 Let A be a universally truthful mechanism for restricted multi-unit auctions that provides an
approximation ratio of 2− ε, for some constant ε. Then, there exists an affine maximizer in the support
of A with a range of size Ω(m) that is (2− ε′, 1

2)-good on U , for some constant ε′ > 0.

Proof: By Proposition B.2 there exists a deterministic mechanism B in the support of A that provides
a (2 − ε′)-approximation on more than half of the instances in U , for some constant ε′ > 0 (choose
γ = log m). Notice that uk(m), vk(m) < CA for each instance Ik = (uk, vk) in U , and as a result any
imperfect mechanism in the support of A does not allocate any items on any instance in U . Therefore,
B cannot be imperfect. B provides an approximation ratio of 2− ε for more than half of the instances in
U , that is, outputs the optimal allocation for more than half of the instances in U . Every instance in U
has a different optimal allocation, and thus the range of B is of size at least m/2. In particular, B is not
a tiny-range mechanism. Thus, B allocates all items and has a range of size at least m

2 . By Theorem B.3
it must be an affine maximizer.

To finish the proof of the lower bound the following claim suffices:

Claim B.6 (essentially [8]) An affine maximizer with a range of size t has communication complexity
of at least t.

Proof: Let B be an affine maximizer. Denote its range by R. There exists non-negative constants
w1, w2, and constants {c(s1,s2)}(s1,s2)∈R, such that B(u, v) = max(s1,s2)∈Rw1v(s1) + u(s2) + c(s1,s2) for all
valuations u, v.

We reduce from the disjointness problem on t bits. In this problem Alice holds a string (a1, . . . , at) ∈
{0, 1}t and Bob holds a string (b1, . . . , bt) ∈ {0, 1}t. The goal is to determine if there exists some i such
that ai = bi = 1. It is known that any deterministic algorithm for this problem has a communication
complexity of t.

Let p >> max(s1,s2) |c(s1,s2)|. Define some one-to-one and onto correspondence f : R→ [t]. Define the
following valuations: u(i) = (2i · p + af((i,m−i) · p)/wi if (i,m− i) ∈ R, otherwise u(i) = 2i · p. Also define
v(i) = (2i · p + bf((m−i,i)) · p)/wj if (m− i, i) ∈ R, otherwise v(i) = 2i · p. The (optimal) solution returned
by B has value (2m + 2)p if and only if there is some i with ai = bi = 1. Hence, the communication
complexity of B is at least t.

B.3 An FPTAS for Restricted Multi-Unit Auctions

All that is left is to show a better-than-2 truthful in expectation mechanism for restricted multi-unit
auctions:

Lemma B.7 There exists a truthful-in-expectation FPTAS for restricted multi-unit auctions.

We show that a simple variation of the FPTAS for a fixed number of bidders yields an FPTAS for
restricted multi-unit auctions. Specifically, we will show that there is a poly(log m, 1

ε ) algorithm for multi-
unit auctions that provides a (1 + ε)-approximation to the optimal solution in the range of allocations
permitted in restricted multi-unit auctions. Furthermore, this algorithm optimizes over some range of
distributions over allocations R. The support of each distribution D ∈ R contains only allocations that
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permitted in restricted multi-unit auctions. This implies the existence of a truthful in expectation (1+ ε)
approximation algorithm for restricted multi-unit auctions.

We start by defining a new weight function for restricted multi-unit auction:

r − weightε(~s) =
{

0, ~s = (m, 0) or ~s = (0,m);
weightε(~s), otherwise.

A restricted ε-structured weight is defined similarly to a structured range, but with respect to r−weightε:
{r−weightε(~s) ·~s}~s∈S , where S is the set of all allocations of m items to these n bidders. The definition of
a weighted allocation is also done now using r−weightε. The range of the algorithm R will be restricted
ε-structured range of allocations of m items to the two bidders. The algorithm is very similar to the
FPTAS for a constant number of bidders, but with the following changes: the expected welfare of a
weighted allocation calculated in step 2 is defined using r−weightε, and not using weightε; in the second
bullet of step 1 we consider only allocations that are permitted for restricted multi-unit auctions.

We now show that the algorithm outputs an optimal distribution in the range. Furthermore, in an
optimal distribution either all items are allocated to the bidders or no items are allocated at all, and the
algorithm never allocates all items to one bidder. The proofs that that algorithm is truthful and runs
in time poly(log m, 1

ε ) are similar to the corresponding proofs in the FPTAS for a constant number of
bidders.

Claim B.8 The welfare maximizing weighted allocation inR is of the form r−weightε(k, m−k)·(k,m−k),
for some k > 0.

Proof: We use the fact that m is a power of 2. Suppose that bidder 1 is allocated k items in the
optimal weighted allocation in R′. Write k = x · 2t, for the largest possible integer t. Observe that
r − weightε(k, m− k) ≥ r − weightε(k, l), for any l ≤ k. This follows immediately from the definition of
r − weightε, since m− k is also a multiple of 2t:

m− k = 2log m−t · 2t − x · 2t = (2log m−t − x)2t

Therefore the optimal weighted allocation in R is of the form r−weightε(k, m− k) · (k, m− k). Observe
that k 6= 0 since otherwise the expected welfare of r − weightε(k, m− k) is 0.

The next claim suffices to show that the algorithm optimizes over R:

Claim B.9 Let r − weightε(~o) · ~o be an optimal distribution in R′. Let t be the maximal non-negative
integer s.t. each oi is a multiple of 2t. Then, each oi is in the neighborhood of a 2t-breakpoint.

Proof: (sketch) Since the valuations are strictly monotone and from the previous claim we have that
o1, o2 > 0. Proceeding in similar fashion to Lemma 3.6, we assume for a contradiction that some bidder
is not allocated by ~o a bundle in the neighborhood of a 2t-breakpoint. Then we construct an allocation
~a with weighted welfare exceeding that of ~o. The only issue is to verify that in ~a no bidder receives all
items. Indeed, this is the case: note that the bundle that contains only one item is a breakpoint for each
bidder since valuations are strictly increasing. Moreover, examining the construction of ~a, we note that
ai is at least the greatest breakpoint less than oi. Since each oi is at least 1, so is each ai. Therefore ~a is
neither (0,m) nor (m, 0).
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