
Injecting Realistic Burstiness to a Traditional Client-Server
Benchmark ∗

Ningfang Mi1 Giuliano Casale2 Ludmila Cherkasova3 Evgenia Smirni1
1 College of William and Mary, Williamsburg, VA, USA. Email: {ningfang,esmirni}@cs.wm.edu

2 SAP Research, CEC Belfast, UK. Email: giuliano.casale@sap.com
3 HP Labs, Palo Alto, CA, USA. Email: lucy.cherkasova@hp.com

ABSTRACT
The design of autonomic systems often relies on represen-
tative benchmarks for evaluating system performance and
scalability. Despite the fact that experimental observations
have established that burstiness is a common workload char-
acteristic that has deleterious effects on user-perceived per-
formance, existing client-server benchmarks do not provide
mechanisms for injecting burstiness into the workload. In
this paper, we introduce a new methodology for generating
workloads that emulate the temporal surge phenomenon in
a controllable way, thus provide a mechanism that enables
testing and evaluation of client-server system performance
under reproducible bursty workloads. This new methodol-
ogy allows to inject different amounts of burstiness into the
arrival stream using the index of dispersion, a single param-
eter that is as simple to use as a turnable knob.

We exemplify the effectiveness of this new methodology
by introducing a new module into the TPC-W, a benchmark
that is routinely used for capacity planning of e-commerce
systems. This new module injects burstiness into the arrival
process of clients in a controllable manner, and hence, en-
ables understanding system performance degradation due to
burstiness. Detailed experimentation on a real system shows
that this benchmark modification can stress the system un-
der different degrees of burstiness, making a strong case for
the usefulness of this modification for capacity planning of
autonomic systems.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Reliability, availability, and serviceability; H.3.4
[Systems and Software]: Performance evaluation (efficiency
and effectiveness)

General Terms: Experimentation, Performance, Measure-
ment.

Keywords: Client-server benchmarks, burstiness, index of
dispersion, performance evaluation of self-managed systems.

∗This work is partially supported by NSF grants CNS-
0720699 and CCF-0811417, and a gift from HP Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’09, June 15–19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-564-2/09/06 ...$5.00.

1. INTRODUCTION
Resource provisioning in contemporary Internet systems

that operate using the client-server paradigm requires to
take into account emerging Internet phenomena such as the
Slashdot effect, where a web page linked by a popular blog or
media site suddenly experiences a huge increase of the num-
ber of hits [23]. Traffic surges are also frequent in other con-
texts not immediately related to the Slashdot effect, such as
in auction sites (e.g., eBay) where users compete to buy an
object that is going to be soon assigned to the customer with
the best offer, but also in e-business sites as a result of spe-
cial offers and marketing campaigns. Burstiness or temporal
surges1 in the incoming requests in an e-commerce server
generally turns out to be catastrophic for performance, lead-
ing to dramatic server overloading, uncontrolled increase of
response times and, in the worst case, service unavailabil-
ity. In such environments, autonomic resource provisioning
becomes key to business effectiveness.

Benchmarking is a critical step for effective capacity plan-
ning and resource provisioning, and consequently may guide
the design of autonomic systems. An effective benchmark
should evaluate the system responsiveness under a wide range
of client demands from low to high, but most existing bench-
marks are designed to assess the system responsiveness un-
der a steady client demand. The system behavior under
high yet steady client demand may actually be very differ-
ent than under bursty conditions [18, 17] and mainstream
capacity planning models grossly underestimate the nega-
tive effects of burstiness. Our thesis is that, because of its
tremendous performance implications, burstiness must be
accounted in capacity planning and must be incorporated
into benchmarking of client-server systems.

In this paper, we propose a robust methodology to inject
burstiness into a traditional client-server benchmark via a
simple “turnable knob”. Extensive research has been carried
out in recent years on mechanisms to neutralize the impact
of burstiness on web architectures. However, little research
has been carried out on workload benchmarks that emulate
the traffic surge phenomenon and that are also easily re-
producible, scalable, and representative of real workloads.
In this paper, we provide a new extension to traditional
client-server benchmarks, which enables testing and evalua-
tion of client-server system performance under reproducible
and controllable bursty workloads, validation of efficiency of
the corresponding management/provisioning solution, and
comparison across different management solutions for client-
server systems in a reproducible way.

In order to derive a credible benchmark that can emulate

1We use the terms traffic burstiness and traffic surge, inter-
changeably.

burstiness, we observe that standard benchmarks, such as
TPC-W that is routinely used to evaluate multi-tier archi-
tecture, lack the ability to produce burstiness because user
arrivals are defined by a Poisson process, i.e., they are al-
ways assumed to be independent of their past activity and
independent of each other. Here we inject burstiness using
simple two-state Markov-modulated processes [8, 19] to reg-
ulate the arrival rate of requests to the system. These pro-
cesses are variations of the popular ON/OFF traffic models
used in networking and can be easily shaped to create corre-
lated inter-arrival times. Markov-modulated processes can
capture very well the time-varying characteristics of a work-
load and describe fluctuations at different time scales, e.g.,
both variability between different surges and fluctuations
within the same traffic surge. Starting from this basic idea,
we define a modified TPC-W benchmark where sequences of
surges with different intensities and durations are created.
We provide to the user a single parameter, called the index of
dispersion of the traffic, that controls completely the degree
of burstiness in the system. The index of dispersion is used
to modulate dynamically the think times of users between
submission of consecutive requests. Since this approach is
independent of the specific nature of the requests sent to
the system and only changes their inter-arrival times, it can
be easily generalized to benchmarks other than TPC-W. In
addition, the use of a single parameter for burstiness tun-
ing makes it simple to implement and reproduce the same
experiment on different systems, thus enabling performance
comparisons across different architectures.

Using a real experimental testbed, we show experimen-
tally that this methodology is able to stress the architecture
at different levels of performance degradation, thus mak-
ing the point of being a useful tool for performance ro-
bustness assessment of real web systems. We have also re-
leased the modified code of TPC-W and related scripts at
http://www.cs.wm.edu/~ningfang/tpcw_codes/.

The remainder of the paper is organized as follows. Sec-
tion 2 presents motivation for this work. Section 3 defines
the new benchmarking methodology starting from an eval-
uation of the standard TPC-W limitations. Detailed exper-
imentation on a real testbed is presented in Section 4 where
we demonstrate that our modified TPC-W benchmark is ex-
tremely effective in stressing system performance at different
levels. A review of existing research efforts in benchmarking
is given in Section 5. Finally, Section 6 draws conclusions.

2. MOTIVATION
Burstiness in the arrival streams and/or service processes

is often found in client-server systems. In this section, we
argue that burstiness may impact in an unexpected way the
performance of different resource allocation mechanisms de-
signed for autonomic system management, and hence test-
ing and evaluating these mechanisms under reproducible and
controllable bursty workloads is critical for autonomic sys-
tem design.

Session-based admission control (SBAC) [9] is proposed
as a mechanism to prevent e-commerce web sites from over-
load caused by flash crowds and unexpected bursts in arrival
traffic. Typically, access to a web service occurs in the form
of a session consisting of many individual requests. Plac-
ing an order through the web site involves further requests
relating to selecting a product, providing shipping informa-
tion, arranging payment agreement and finally receiving a
confirmation. So, for a customer trying to place an order,
or a retailer trying to make a sale, the real measure of a

web server performance is its ability to process the entire
sequence of requests needed to complete a transaction.

The intuition behind the SBAC mechanism is that it ac-
cepts a new session only when the system has enough ca-
pacity to process all future requests related to the session,
i.e., the system can guarantee the successful session comple-
tion. If the system is functioning near its capacity, a new
session will be rejected (or redirected to another server if
one is available).

In [9], the authors proposed an SBAC implementation
based on web server CPU utilizations. The server utilization
is measured during predefined time intervals (e.g., each sec-
ond). Using this measured utilization (for the last interval)
and some data characterizing server utilization in the recent
past, the system computes an “observed” utilization. If the
observed utilization is above a specified threshold, then for
the next time interval (i.e., the next second), the admission
controller rejects all new sessions and will only serve the re-
quests from already admitted sessions. Once the observed
utilization drops below the given threshold, the admission
controller changes its policy for the next time interval and
begins admitting and processing new sessions again. The
client requests enter the system via the front (web) server
and are stored in the server queue. The limit on the queue
size further controls the number of simultaneous requests
processed by the server. If requests from sessions that are
already accepted arrive when the server queue is full, then
they are aborted. Since the useful throughput of the sys-
tem is measured as a number of completed sessions, the
aborted requests of already accepted sessions are highly un-
desirable because they compromise the server’s ability to
process all requests needed to complete a transaction and
result in wasted system resources.

We have implemented the SBAC mechanism in a simula-
tion model of a client-server system that is built according
to the TPC-W specifications. The SBAC mechanism uses
a server utilization threshold equal to 80% for new sessions
and we explore its functionality for various fixed queue sizes
under non-bursty (traditional, as defined by the TPC-W
specifications) versus bursty traffic conditions. Details on
how to create bursty arrivals are provided in Section 3.2. In
all experiments, the session length is fixed to 5, and we set
different limits on the server queue size as 250, 512, and 800.

The aborted session ratio, that is the percentage of aborted
sessions of the already accepted sessions, is a very important
measure of the effectiveness of SBAC. Table 1 illustrates the
aborted ratio of requests in SBAC under non-bursty and
bursty traffic conditions. While the SBAC mechanism reli-
ably guarantees the completion of already accepted sessions
under non-bursty traffic (practically no aborted sessions),
the situation is very different for SBAC performance under
bursty traffic: there is a high percentage of aborted sessions.

Queue aborted ratio (%)
size Non-bursty Bursty

250 0.04 11.37
512 0.00 6.28
800 0.00 2.50

Table 1: Illustrating aborted session ratio when the uti-
lization threshold is 80%.

The considered SBAC implementation [9] based on CPU
utilization may be sufficient for autonomic system manage-
ment under non-bursty traffic, but it clearly exhibits its de-
ficiency under bursty traffic conditions. It is apparent, that
the admission control mechanism has to take traffic bursti-
ness into account and adapt the system configuration and

threshold accordingly in order to effectively deal with chang-
ing traffic conditions.

Often, the admission control mechanism is used not only
to prevent the overload conditions but to support the SLAs
guarantees, i.e., to support given response time guarantees
for accepted sessions. The limit on the server queue size is
actively used in achieving this goal. Figure 1 shows 90-, 95-,
and 98-percentiles of the session response times under non-
bursty and bursty traffic arrival models. For non-bursty
workloads, it is clear that setting the queue size to 250 is
sufficient to guarantee 98-percentiles in user times less than
1.2 seconds. But if the workload is bursty, the response time
percentiles become very sensitive to the queue size and may
result in significant SLA violations. Therefore, calibrating
the SBAC parameters using a non-bursty arrival assumption
leads to severe SLA violations when traffic becomes bursty.

(a) Non−bursty

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

250 512 800

re
sp

on
se

 ti
m

e
(s

)

queue size

(b) Bursty

90 percentile

95 percentile

98 percentile

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

250 512 800

re
sp

on
se

 ti
m

e
(s

)

queue size

 1

Figure 1: The percentiles of end-to-end response times

when the utilization threshold is 80%.

We conclude that supporting SLA guarantees for bursty
arrivals is a challenging task that involves understanding
and tuning of system parameters under bursty traffic sce-
narios. In the remainder of the paper, by enhancing the
traditional TPC-W benchmark with a turnable knob for
burstiness generation, we analyze system and application
performance under non-bursty versus bursty traffic in more
detail. Section 4 shows that bursty traffic impacts system
behavior and the observed metrics in unexpected way. For
example, burstiness significantly changes the system utiliza-
tion profile (it explains why SBAC performs so differently
under the bursty traffic conditions). We reveal how bursti-
ness increases the number of simultaneously active clients in
the system, and how significantly this impacts the response
time distribution. This further justifies that the evaluation
of new mechanisms for self-managed systems under repro-
ducible and controllable bursty workloads is a critical and
necessary step in autonomic system design.

3. METHODOLOGY
In this section, we describe our approach to inject bursti-

ness into the TPC-W benchmark. Section 3.1 discusses lim-
itations of the standard benchmark with respect to the gen-
eration of traffic surges. A new model for think time gen-
eration is presented in Section 3.2 and its parameterization
approach is introduced in Section 3.3. Section 3.4 defines
the modified TPC-W benchmark.

3.1 Limitations of Standard TPC-W
TPC-W is a widely used e-commerce benchmark that sim-

ulates the operation of an online bookstore [11]. This multi-
tier application uses a three-tier architecture paradigm, which
consists of a web server, an application server, and a back-
end database. The TPC-W benchmark implements a fixed
number of emulated browsers in the system that is equal
to the maximum number of client connections. Each emu-

lated browser send requests in the system with an average
think time E[Z] that represents the time between receiving
a Web page and the following page download request. Fluc-
tuations of the number of jobs in the system is regulated by
the average user think time E[Z].

Here, we propose to inject burstiness into the incoming
traffic by modifying the way think times are generated in
the client machines. Think times in the standard TPC-W
benchmark are drawn randomly from an exponential distri-
bution that is identical for all clients [11]. Because of the
memoryless property of the exponential distribution, this is
equivalent to imposing that clients operate independently of
their past actions. However, exponential think times are in-
compatible with the notion of burstiness for several reasons:
Temporal locality: intuitively, under conditions of burstiness,
arrivals from different customers cannot happen at random
instants of time, but they are instead condensed in short
periods across time. Therefore, the probability of sending
a request inside this period is much larger than outside
it. This behavior is inconsistent with classic distributions
considered in performance engineering of web architectures,
such as Poisson, hyper-exponential, Zipf, and Pareto, which
all miss the ability of describing temporal locality within a
process.
Variability of different time scales: Variability within a traf-
fic surge is a relevant characteristic for testing peak perfor-
mance degradation. Therefore, a benchmarking model for
burstiness should not only create surges of variable intensity
and duration, but also create fluctuations within a surge.
This implies a hierarchy of variability levels that cannot be
described by a simple exponential distribution and instead
requires a more structured arrival process.
Lack of aggregation: in the standard TPC-W, each thread
on the client machines uses a dedicated stream of random
numbers, thus think times of different users are always inde-
pendent. This is representative of normal traffic, but fails in
capturing the essential property of traffic surges: users act
in an aggregated fashion which is mostly incompatible with
independence assumptions2. As remarked in Section 5, this
is a common problem to many request generation techniques
based on the user-equivalents approach [6].

In order to address all above points, we propose to regu-
late the arrival rate of requests to the system using a class of
Markov-modulated processes known as Markovian Arrival
Processes (MAPs) [19], which have the ability of provid-
ing variability at different levels as well as temporal locality
effects. Here, we depart from the traditional approach to
model increased load in the systems by simply increasing the
fixed number of jobs (connections) in the system. Instead,
burstiness can occur now in a system with few or many con-
nections by simply handling the duration of user think time.
In particular, we propose a new module that creates a set of
identical MAPs which are replicated over the different client
machines and here shared for generation of think times by
all clients running on that particular client machine. We ex-
emplify the fluctuation of loads in client-server systems via
this new module in our experiments, see Figures 9 and 12.
We further stress that this new module can be added to any
benchmark with a closed loop structure for clients that use
think time.

2As already observed in the introduction, we do not assume
in any point of this paper that users explicitly coordinate
their submission of requests. Instead, we impose a loose syn-
chronization which leaves large room for fluctuations within
a traffic surge.

NORMAL

TRAFFIC

TRAFFIC

SURGE

pl,s

 ps,l

long think times short think times

ps,spl,l

λlong λshort

Figure 2: Model of traffic surges based on regulation of
think times

3.2 Modeling Traffic Surges
A MAP can be seen as a simple mathematical model of

a time series, such as a sequence of think times, for which
we can accurately shape distribution and correlations be-
tween successive values. Correlations among consecutive
think times are instrumental to capture periods of the time
series where think times are consecutively small and thus a
surge occurs, as well as to determine the surge duration.

We use a class of MAPs with two states only, one respon-
sible for the generation of “short” think times implying that
users produce closely spaced arrivals, possibly resulting in
surges, while the other is responsible for the generation of
“long” think times associated to periods of normal traffic. In
the “short” state, think times are generated with mean rate
λshort, similarly they have mean rate λlong < λshort in the
“long” state. We explain in Section 3.4 how to assign values
for λshort and λlong starting from standard TPC-W mea-
surements. In order to create correlation between different
events, after the generation of a new think time sample, our
model has a probability ps,s that two consecutive think times
are short and a different probability pl,l of two consecutive
think times being both long. The probability ps,l = 1− ps,s

(resp., pl,s = 1−pl,l) determines the frequency of jump from
the short (resp., long) state to the long (resp., short) state.
Thus, the values of ps,s, ps,l, pl,s and pl,l shape the correla-
tions between consecutive think times and are instrumental
to determine the duration of the traffic surge, see the next
subsection for further details. Henceforth, we focus only on
the independent values pl,s and ps,l.

In order to gain intuition on the way this model works, we
provide the following pseudo code to generate a sample of
nt think time values Z1, Z2, . . ., Zn, . . ., Znt

from a MAP
parameterized by the tuple (λlong, λshort, pl,s, ps,l):

function: MAP sample(λlong , λshort, pl,s, ps,l, nt)
/* initialization in normal traffic state */
active state = “long”;
for n = 1, 2, . . . , nt

/* generate sample in current state */
Zn = sample from exponential distribution

with rate λactive state;
/* update MAP state */

r = random number in [0, 1];
if active state =“long” and r ≤ pl,s

active state = “short”;
else if active state =“short” and r ≤ ps,l

active state = “long”;
end

end

Figure 2 summarizes the traffic surge model described
above. Note from the pseudo code that the problem of vari-
ability of different time scales is solved effectively in MAPs:
if the MAP is in a state i, then samples are generated by an
exponential distribution with rate λi associated to state i.
This creates fluctuations within the traffic surge. It is also

compatible with the observations in Section 3.1 against the
exponential think times because the probability of arrival
inside the traffic surge is larger than outside it, thanks to
the state change mechanism that alters the rate of arrival
from λlong to λshort.

3.3 A Turnable Burstiness Knob and Its Real-
istic Values

We propose to use the index of dispersion as a regulator
of the intensity of traffic surges. The index of dispersion I is
a measure of burstiness in networking engineering [12] and
recently has been also introduced for evaluating multi-tier
architectures [17].

Consider a sequence of values (e.g., think times, inter-
arrival times, service times) with variability quantified by
the squared-coefficient of variation (SCV), where the differ-
ence in magnitude between consecutive values is summarized
by the lag-k autocorrelations3 ρk. Assuming that SCV and
ρk do not change over time, then the index of dispersion is
the quantity I = SCV

`

1 + 2
P

∞

k=1
ρk

´

. For finite length
sequences, this value can be estimated accurately, without
resorting to an infinite summation, using the methods out-
lined in [12].

The index of dispersion I has the fundamental property
that it grows proportionally with both variability and corre-
lations, thus can be immediately used to identify burstiness
in a trace. We point to the experiments in Section 4 and
in particular to Figure 4 for a graphical outlook of how in-
creasing values of I in the think times produce increasingly
larger traffic surges.

When there is no burstiness, the value of I is equal to
the squared coefficient-of-variation of the distribution, e.g.,
I = SCV = 1 for the exponential distribution, while it
grows to values of thousands on bursty processes. For ex-
ample, we have examined the 1998 FIFA World Cup web-
site trace available at [4] over a period of ten days, finding
that dramatic traffic surges connected to sport events can
reach values of I slightly larger than 6300,4 see Figure 3.
We remark that although the 1998 FIFA World Cup trace
is old, Web workload many characteristics including bursti-
ness persist in recent years [24]. Thus, a parameterization of
I spanning a range from single to multiple digits can give a
good sense of scalability between workloads with “no bursti-
ness” and workloads with “dramatic burstiness”.

3.4 Integrating Burstiness in TPC-W
To avoid inter-machine communication and keep the mod-

ifications to TPC-W simple, we propose to use a shared MAP
process to draw think times for all users emulated on the
same client machine5. This solves immediately the problem
of independence between requests of different users and is a
paradigm change, because we no longer model in the TPC-
W benchmark the individual think times; instead we shape
directly the behavior of all clients.

3We recall that the lag-k autocorrelation coefficient is a
normalized measure of correlation between random vari-
ables Xt and Xt−k, with position in the trace differing
by k lags. For a trace with mean µ and variance σ2,
ρk = E[(Xt − µ)(Xt−k − µ)]/σ2, k ≥ 1.
4Our analysis has focused on the server with label “0”during
the period going from day 61 to day 71. The estimation of
the index of dispersion I has been done using the theoretical
formulas reported in [12], Eq. (6).
5Often, TPC-W setup involves multiple client machines to
generate enough user requests to load the benchmarked sys-
tem.

Figure 3: Burstiness of arrivals to server 0 in the 1998

FIFA World Cup trace over ten consecutive days

The most complex aspect of this new approach is the pa-
rameterization of the MAP process: how should we define
the arrival stream in order to stress effectively a system?
The fundamental problem is how to determine a parame-
terization (λlong, λshort, pl,s, ps,l) that produces a sequence
of surges in the incoming traffic that is always capable of
stressing the system and highlighting scalability problems.
Further, this parameterization must remaining representa-
tive of a realistic (i.e., probabilistic, non DDoS-like) scenario.
Henceforth, we assume that the user gives to the modified
TPC-W benchmark the desired values of the mean think
time E[Z] and of the index of dispersion I which specifies
the burstiness level. The benchmark automatically gener-
ates a parameterization (λlong, λshort, pl,s, ps,l) capable of
stressing the system. We also assume that the standard
TPC-W benchmark has been previously run on the archi-
tecture and that the mean service demand E[Di] of each
server i has been estimated from utilization measurements,
e.g., using linear regression methods [25, 7].

The mean think time E[Z] can be parameterized as in the
standard TPC-W benchmark as Z = 7 seconds, while the
index of dispersion I , is the additional parameter that can
be used to tune the level of burstiness of the benchmark.
Our approach to fully define the properties of MAP think
times other than the mean E[Z] starts by the following pa-
rameterization equations:

λ−1

short =(
P

i
E[Di])/f, (1)

λ−1

long =f max(N(
P

i E[Di]), E[Z]]). (2)

Here, f ≥ 1 is a free parameter, N is the maximum number
of client connections considered in the benchmarking exper-
iment,

P

i
E[Di] is the minimum time taken by a request to

complete at all servers, and N(
P

i E[Di]) provides an up-
per bound to the time required by the system to respond to
all requests. Eq. (1) states that, in order to create surges,
the think times should be smaller than the time required
by the system to respond to requests. Thus, assuming that
all N clients are simultaneously waiting to submit a new re-
quest, one may reasonably expect that after a few multiples
of λ−1

short all clients have submitted requests and the architec-
ture has been yet unable to cope with the traffic surge. Con-
versely, (2) defines think times that on average give to the
system enough time to cope with any request, i.e., the nor-
mal traffic regime. Note that the condition λ−1

long ≥ fE[Z]

is imposed to ensure that the mean think time can be E[Z],
which would not be possible if both λ−1

short > λ−1

long > E[Z]

since f > 1 and in MAPs the moments E[Z], E[Z2], . . . are

E[Zk] = k!

„

pl,s

pl,s + ps,l

λ−k
short +

ps,l

pl,s + ps,l

λ−k
long

«

(3)

The above formula for k = 1 implies that E[Z] has a value
in between of λ−1

short and λ−1

long, which is not compatible with

λ−1

short ≥ λ−1

long ≥ fE[Z]. According to the last formula, the
MAP parameterization can always impose the user-defined

E[Z] if

pl,s = ps,l

λ−1

long − E[Z]

E[Z] − λ−1

short

!

, (4)

and we use this condition in the modified TPC-W bench-
mark to impose the mean think time.

In order to fix the values of ps,l and f in the above equa-
tions, we first do a simple search on the space (0 ≤ ps,l ≤ 1,
f ≥ 1) where at each iteration we check the value of the
index of dispersion I and lag-1 autocorrelation coefficient ρ1

from the current values of ps,l and f . We stop searching
when we find a MAP with an I that is within 1% of the
target user-specified index of dispersion and the lag-1 auto-
correlation is at least ρ1 ≥ 0.4 in order to have consistent
probability of formation of surges within short time peri-
ods6. The index of dispersion of the MAP can be evaluated
at each iteration as 7 [?, 19]:

I = 1 +
2 ps,lpl,s(λshort − λlong)

2

(ps,l + pl,s)(λshortps,l + λlongpl,s)2
, (5)

while the lag-1 autocorrelation coefficient is computed as

ρ1 =
1

2
(1 − pl,s − ps,l)

„

1 −
E[Z]2

E[Z2] − E[Z]2

«

, (6)

where E[Z2] is obtained from (3) for k = 2. We remark that
if no MAP exists with at least ρ1 ≥ 0.4, then the bench-
mark should search for the MAP with largest ρ1 in order to
facilitate the formation of surges which persists over several
units of time.

4. EXPERIMENTS
In our experimental environment, we have four Pentium

D machines running Linux Redhat 9.0 with 4 GB memory
each. Two Pentium D machines are used to emulate client
activities. If there are N maximum number of clients in
the client-server system, then each machine simulates N/2
clients. One Pentium D machine is used as the front server
with Apache/Tomcat 5.5 installed. The fourth Pentium D
machine is used as the back-end database server, which uses
a MySQL 5.0 database of 10,000 items in inventory.

TPC-W defines 14 different transactions and three trans-
action mixes, namely the browsing mix, the shopping mix,
and the ordering mix. Capacity planning with TPC-W is
typically done as follows: performance measures (e.g., client
end-to-end response times and system throughput) are ob-
tained for different maximum number of client connections.
Within each experiment, the maximum number of client con-
nections is constant.

For each transaction mix, we run a set of experiments
with different number of maximum client connections (fixed
within each experiment) ranging from 200 to 1200. As a re-
sult, we evaluate the new methodology under various system
loads with utilization levels at the front and the database
servers within the range of 12%-98% and 6%-74%, respec-
tively. In all experiments, the average user think time is
set to E[Z] = 7 seconds, which is the default value for the

6The threshold 0.4 has been chosen since it is the closest
round value to the maximum autocorrelation that can be
obtained by a two-state MAP.
7Note that Eq. (5) slightly differs in the denominator from
other expressions of I , such as those reported in [12], because
here we consider a MAP that is a generalization of an MMPP
process.

TPC-W benchmark. We use a 2-state MAP to generate the
user think times as described in the previous section. Our
experiments are done with two different MAPs that result
in index of dispersion equal to I = 400 (mild burstiness) and
I = 4000 (severe burstiness).

For comparison, we also do experiments with the standard
configuration, i.e., think times are exponentially distributed
with mean E[Z] = 7 seconds and squared coefficient-of-
variation SCV = 1. All experiments run for 3 hours each,
where the first 5 minutes and the last 5 minutes are consid-
ered as warm-up and cool-down periods and thus omitted in
the measurements.

Figure 4 demonstrates the arrival processes to the sys-
tem under the shopping mix8, where we depict the number
of arriving clients to the system (i.e., the front server) in
monitoring windows of 1 second. In the standard TPC-W
experiment, there is no burstiness in the number of arriving
clients, which remains stable around 150, see Figure 4(a).
When we adopt two-state MAPs in think times, surges are
generated in the arrivals as shown by periods of continuous
peak arrival rates, see Figure 4(b) and Figure 4(c). We stress
that all three arrival processes have the same mean. As the
index of dispersion increases from I = 400 to I = 4000, there
are sharp surges in the number of active clients, consistently
with our purpose to “create” bursty conditions.

4.1 Average Performance
Figure 5 presents the average latency for a client trans-

action, which is the interval from the moment when the
client sends an HTTP request to the moment when an en-
tire HTTP web page (including embedded objects) is re-
trieved. We first direct the reader’s attention to the system
performance under the standard TPC-W experiment (i.e.,
exponential think times, labeled non-bursty in Figure 5, see
all solid curves). As shown in Figure 5 across all work-
loads, average latencies increase as the maximum number
of client connections increases. Especially for the browsing
mix, the latency becomes two orders of magnitude larger
when N is increased from 200 to 1200. This is due to the
presence of burstiness in the service times at the database
server, which dramatically degrades the overall system per-
formance, see more details in [17]. For the shopping and the
ordering mixes, there is no burstiness in neither the front nor
the database service processes, although these two workload
mixes are highly variable. Consequently, a large number of
clients does not deteriorate performance as severely as in the
browsing mix.

When burstiness is injected into the arrival flows, the over-
all system performance becomes significantly worse for all
three transaction mixes. For instance, for the shopping and
the ordering mixes, when the index of dispersion in the two-
state MAP for user think times is I = 4000 and the maxi-
mum number of client connections is beyond 600, the aver-
age latency is increased by at least 13 times and 35 times,
respectively, compared to the non-bursty case. As the in-
dex of dispersion decreases, e.g., I = 400, the degradation
caused by burstiness on the overall system performance be-
comes weaker yet visible as latencies remain at least 6 times
slower. For the browsing mix, the newly injected burstiness
in arrivals further deteriorates average latencies. Yet, as the
maximum number of client connections reaches 1200, the
system performance under I = 400 is similar to the non-

8The results for the browsing and the ordering mixes are
qualitatively the same and are not presented here due to
lack of space.

bursty case. This happens because the system is already
overloaded, regardless of burstiness.

In addition to average latency values, we also evaluate
the distribution of latencies. Figure 6 shows the cumula-
tive distribution function (CDF) of the latency of the three
transaction mixes when N = 1000. The corresponding av-
erage latencies are also marked in the figure. With bursty
arrivals, the mass of clients experience significantly worse
performance and much longer tails in the latency distribu-
tions. This essentially argues that QoS guarantees cannot
be given for significant percentiles of the workload and fur-
ther highlights the pressing need to evaluate client-server
systems under bursty conditions.

4.2 Transient Performance
Here, we examine the performance metrics including the

transient CPU utilizations of the front and the database
servers, the empirical frequencies of CPU utilizations, and
the transient number of active clients in the system as given
by the summation of queue lengths at the front server and
at the back-end database. The maximum number of client
connections in the system is fixed to N = 1000.9

The Shopping Mix. We first present CPU utilizations of
the front and the database servers across time for the shop-
ping mix. We remark that the results for the ordering mix
have qualitatively the same trends. In this workload mix,
there is no burstiness in either the front or the database
service processes. Therefore, if burstiness in CPU utiliza-
tions exists, then this must be a direct result of surges. As
shown in Figure 7(a), when there are no traffic surges, the
utilization at the front server remains stable around 70%
while for the database server the utilization levels vary from
10% to 80%, due to high variability in its service times.
When surges are generated, the phenomenon of stable uti-
lizations at the front server disappears. Instead, we observe
very bursty CPU utilizations at the front server, where the
server remains fully utilized (i.e., 100%) for some periods,
but then it sharply drops to only 20% during other periods,
see Figure 7(b). Meanwhile, the range for the utilizations
at the database server is further enlarged up to even 100%.
As the intensity of traffic surges increases, the trend for the
front server being either overloaded or lightly loaded be-
comes more evident, see Figure 7(c).

Figure 8 illustrates the empirical frequencies (i.e., empir-
ical PDF) of CPU utilizations at both the front server (see
the first row in the figure) and the back-end database (see
the second row in the figure). If the arrival process to the
system is not bursty, then there is a large mass around 60%-
80% in the distribution of utilizations at the front server,
which is consistent with the transient results shown in Fig-
ure 7(a). For the two cases with burstiness in the arrival
process, the distributions are bimodal, an effect that is fur-
ther accentuated as burstiness increases, see Figure 8(c) and
Figure 8(f).

To better understand how traffic surges are generated by
using two-state MAPs in user think times, we present the
number of active clients (i.e., summation of queue lengths at
the front and the database servers) across time for the shop-
ping mix, see Figure 9. This performance metric directly
indicates how many active clients are in the system wait-
ing for service. First, as shown in Figure 9(a), we cannot
observe any burstiness in the overall queue length, despite
the fact that the shopping mix workload is highly variable.

9For other numbers of maximum client connections, the per-
formance trends are qualitatively similar.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200
time (s)

(a) Non−bursty (I=1)

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200
time (s)

(b) I = 400

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200
time (s)

(c) I = 4000

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

Figure 4: Arriving clients to the system (front server) for the shopping mix with (a) non-bursty (standard TPC-W),

(b) I = 400, and (c) I = 4000 in user think times, where the maximum number of client connections is set to N = 1000.

(a) Browsing (b) Shopping (c) Ordering

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 200 400 600 800 1000 1200

cl
ie

nt
 r

es
po

ns
e

tim
e

(m
s)

non−bursty
I=4000
I=400

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 200 400 600 800 1000 1200

non−bursty
I=4000
I=400

 0

 500

 1000

 1500

 2000

 2500

 200 400 600 800 1000 1200

non−bursty
I=4000
I=400

maximum client connections (N)

cl
ie

nt
 r

es
po

ns
e

tim
e

(m
s)

cl
ie

nt
 r

es
po

ns
e

tim
e

(m
s)

maximum client connections (N) maximum client connections (N)

Figure 5: Average latencies as a function of the number of maximum client connections N for (a) browsing mix, (b)

shopping mix, and (c) ordering mix with non-bursty and bursty of I = 4000 and 400 in the user think times.
(b) Shopping(a) Browsing (c) Ordering

1.24

0.02

1.25

0.04

0.45 0.381.06

0.83

2.98

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10

cd
f(

%
)

client response time (s)

non−bursty
I=4000
I=400

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4
cd

f(
%

)
client response time (s)

non−bursty
I=4000
I=400

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

cd
f(

%
)

client response time (s)

non−bursty
I=4000
I=400

Figure 6: CDFs of latencies for (a) browsing mix, (b) shopping mix, and (c) ordering mix with non-bursty and bursty
of I = 4000 and 400 in user think times, where N = 1000 and the corresponding average latencies are also marked.

When the two-state MAP with I = 400 and I = 4000 is
adopted for user think times, the number of active clients
in the system fluctuates dramatically. When I = 4000, the
system is congested with more than 700 clients for some pe-
riods, while it sharply drops to as low as 10 clients during
other periods. This exactly matches the burstiness in the
CPU utilizations of the front and the database servers.
The Browsing Mix. We now turn to investigate the brows-
ing mix. The distinct difference of this browsing versus shop-
ping or ordering is that there is burstiness in the flows which
originates in the database service process. We direct the
reader to [17] for detailed discussion on this phenomenon.

In the browsing mix, even if no additional burstiness is
injected into the system (i.e., think times are exponential),
there does exist burstiness in the CPU utilizations of the
front and the database servers, see Figure 10(a). If there
is burstiness in think times as well, the burstiness in CPU
utilizations becomes more prominent.

We depict the empirical PDF of the CPU utilizations for
the browsing mix in Figure 11 for N = 1000. Different from
the shopping mix, the database utilizations have a bimodal
distribution with two peaks around 8% and 100%, this is due
to the database correlated service process, see Figure 11(d).
For the front server, although most of CPU utilizations are
still gathered around 60%-80%, the probabilities of having
the front server fully utilized (100%) and fully idle (0%) are
as high as 0.16 and 0.06, respectively. CPU utilizations at
the front server and the back-end database become extreme,

i.e., either very high or very low.
Figure 12 illustrates the number of active clients in the

system across time for the browsing mix in the network with
N = 1000. The observation of the transient number of ac-
tive clients is consistent with the transient CPU utilizations:
under the non-bursty case, the curve of the number of active
clients is no longer flat but contains a lot of spikes caused
by the burstiness in the database service process; while the
additional burstiness in the arrival process continuously in-
creases the spikes in the number of active clients, making
the system performance erratic and extremely variable.

5. RELATED WORK
The workload of web sites has been extensively studied

and characterized in many research and industrial papers [2,
3, 5, 6, 10]. A number of studies of different sites identified
that Internet and web traffic is bursty across several time
scales and showed the importance of multiscale analysis of
web requests [10, 1, 16, 21, 14]. In [16, 14], the authors
consider the relationship between response time percentiles
and CPU utilization for a web-based shopping system. The
authors noted that for bursty workloads it is important to
consider different time scales; they noted that the frequency
of intervals with high or low utilization increased at a finer
time scales, and this can impact SLA’s guarantees for a sig-
nificant portion of requests. We are making similar observa-
tions in our work. While at a coarser time scale the system
CPU utilization may be lower, but at a finer time granu-

Front DB

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

ut
ili

za
tio

n
(%

)

time (s)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

ut
ili

za
tio

n
(%

)

time (s)

(a) Non−bursty (I=1) (b) I = 400 (c) I = 4000

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

ut
ili

za
tio

n
(%

)

time (s)

Figure 7: Shopping mix: transient utilizations at the front server and the database server for (a) non-bursty, (b)

I = 400, and (c) I = 4000 in user think times, where N = 1000.

(II) DB Server

(I) Front Server

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

pd
f

utilization (%)

(a) Non−bursty (I=1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

pd
f

utilization (%)

(b) I = 400

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

pd
f

utilization (%)

(c) I = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

pd
f

utilization (%)

(e) I = 400

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

pd
f

utilization (%)

(d) Non−bursty (I=1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100
pd

f
utilization (%)

(f) I = 4000

Figure 8: Shopping mix: PDFs of utilizations at (I) the front server and (II) the database server for non-bursty,
I = 400, and I = 4000 in user think times, where N = 1000.

larity there are many time periods with high and low CPU
utilization periods, and this burstiness significantly impacts
the transaction response time.

Several studies have shown that the arrival of requests
in a web-based system is self-similar [10, 16]. Self-similar
workloads exhibit significant request correlations or bursts
over multiple timescales [1]. If a system is not able to sup-
port bursts at some timescale, significant queuing delays
may occur [22]. Burstiness in TPC-W has been previously
observed in the flows of a multi-tier system [18, 17]. The
source of burstiness can be located in the front server [18]
or in the back-end database [17] and is an effect of the hard-
ware/software configuration of the system. The experiments
in [18] and [17] are done on different platforms and show
that burstiness may originate in different system compo-
nents. We stress that experiments in both [18] and [17] are
done using the standard TPC-W benchmark, which assumes
that there is no burstiness in the inter-arrival times of re-
quests into the front server. The main focus of [18, 17] is
on the development of effective queueing theory models that
capture burstiness.

When choosing an e-commerce site’s hardware and soft-
ware configuration, one needs to access whether considered
configurations could handle a desired load level while provid-
ing acceptable performance. Considerable effort has been fo-
cused on synthetic workload generators for traditional Web-
based systems [6, 13, 20, 15].

SURGE [6] is a workload generator for testing Web servers.
An offline trace generation engine is used to create a trace of

HTTP requests: the tool controls distributions for file size,
response size, file popularity, temporal locality, and think
time. Users can specify the values of parameters for the
distributions or use default values as observed from a large
number of traditional Web-based systems. The behavior of
a typical Web user can be characterized by durations of ac-
tivity followed by durations of inactivity [6]. Studies of web
and e-commerce workloads have shown that both the active
duration, defined as ON time, and inactive duration, defined
variously as OFF time or think time, may follow heavy-tailed
distributions [6, 10]. While user emulation allows easily con-
vey many user behavioral aspects, this approach is difficult
to apply for controlling or enforcing the aggregate traffic
characteristics, especially the network impact on the indi-
vidual user arrival process.

The two commonly used request generation techniques are
user-equivalents [6] and aggregate workload generation [13].
The request generation engine submits requests in the trace
to the Web server by employing user-equivalents. User-
equivalents are software processes that alternate in a loop
between issuing a request in the trace (ON state), waiting
for the response, and lying idle for a period determined by
the think time distribution (OFF state). The limitation of
such an approach is that it does not permit control over ag-
gregate request arrival process in the system, and it is not
possible to specify the time instances at which requests have
to arrive to the system under study. Request generation en-
gines that employ aggregate workload generation address
this limitation.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

(a) Non−bursty (I=1)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

(b) I = 400

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

(c) I = 4000

Sample Sequence Number (x 100) Sample Sequence Number (x 100) Sample Sequence Number (x 100)

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

Figure 9: Shopping mix: transient number of active clients in the system, i.e., summation of queue length at the front

and the database servers, for (a) non-bursty, (b) I = 400, and (c) I = 4000 in user think times, where N = 1000.

Front DB

(a) Non−bursty (I=1)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

ut
ili

za
tio

n
(%

)

time (s)

(b) I = 400

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

ut
ili

za
tio

n
(%

)

time (s)

(c) I = 4000

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
time (s)

ut
ili

za
tio

n
(%

)

Figure 10: Browsing mix: transient utilizations at the front server and the database server for (a) non-bursty, (b)

I = 400, and (c) I = 4000 in user think times, where N = 1000.

The GEIST tool [13] attempts to match the aggregate
workload characteristics and models attributes of the re-
quest arrival process at the system level. Aggregate work-
load generation is useful for studies that require explicit con-
trol over the characteristics such as the distribution and cor-
relation of inter-arrival times between successive requests to
the system. However, the request generator is designed in
such a way that it is possible to issue a request in a ses-
sion before the response to the previous request has been
received. This approach may violate inter-request depen-
dencies specific to session-based traffic.

The Httperf [20] tool provides a flexible facility for gener-
ating various http workload for measuring web server perfor-
mance. In Httperf, request generators initiate http calls in
two different ways: i) under the first approach, http connec-
tions are generated deterministically, at a fixed rate, ii) in
the second approach, the request generator creates sessions
(sequences of requests) deterministically and at a fixed rate.
The authors discuss in [20], a set of difficulties in generating
uniformly distributed, average request rates. They notice
that generating bursty traffic could severely affect the ob-
served server behavior, and therefore, they make a special
effort to avoid generating bursty request arrivals. The au-
thors stress that while measuring web servers under bursty
traffic may be an interesting and useful idea, there should be
a special, controlled way of enforcing burstiness. However,
no such mechanism is proposed by the authors.

The SWAT workload generator [15] is built on top of
Httperf. SWAT can accurately emulate such workload at-
tributes as a request mix, session length distribution, and
think time distribution. There are two modes for SWAT
operation. One mode is for session-based workload genera-
tion and it is based on the user emulation approach, with
a drawback that it can not enforce certain aggregate traf-
fic (and request arrival) characteristics.. The second mode
– the request generation mode – allows better control on
the aggregate workload generation at a price of loosing the
session-based workload nature.

In our work, we implement a hybrid approach which sup-
ports session-based workload and in addition enables a fine

control over the aggregate request arrival process in the sys-
tem.

6. CONCLUSIONS
The evaluation of new mechanisms for self-managed sys-

tems under reproducible and controllable bursty workloads
is a critical and necessary step in autonomic system design.
In this paper, we provide a robust methodology to inject
burstiness into the traditional client-server benchmark that
can be of great practical use for assessing the effectiveness
of mechanisms that counteract burstiness.

To the best of our knowledge, the work presented in this
paper is the first concentrated effort to provide a robust
methodology to explicitly introduce burstiness in a client-
server benchmark. We exemplify the methodology in the
well established TPC-W benchmark. Our methodology in-
jects burstiness into the arrival process of the server in a con-
trollable way using simple parameterization. Traffic bursti-
ness is introduced using the index of dispersion, a single
parameter. This simple parameterization allows the user
to easily introduce traffic surges of different intensity into
the system, thus allowing for accurate benchmarking as well
as evaluation of the system under various what-if scenarios.
Extensive experimentation in a real testbed demonstrates
the effectiveness and robustness of the proposed methodol-
ogy and further demonstrates the importance of evaluating
the system under bursty conditions as its performance de-
cidedly worsens as burstiness increases. The proposed ex-
tensions to TPC-W benchmark are available to download at
http://www.cs.wm.edu/~ningfang/tpcw_codes/.

7. REFERENCES

[1] V. Almeida, M. Arlitt, J. Rolia. Analyzing a web-based system’s
performance measures at multiple time scales. ACM Perf. Eval.
Rev., 30(2), pp. 3-9, Sep. 2002.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira.
Characterizing Reference Locality in the WWW. In IEEE
Conference on Parallel and Distributed Information Systems,
Miami Beach, Florida, pp. 92-103, Dec. 1996.

(II) DB Server

(I) Front Server

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100

pd
f

utilization (%)

(a) Non−bursty (I=1)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 20 40 60 80 100

pd
f

utilization (%)

(b) I = 400

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 20 40 60 80 100

pd
f

utilization (%)

(c) I = 4000

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 20 40 60 80 100

pd
f

utilization (%)

(e) I = 400

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 20 40 60 80 100

pd
f

utilization (%)

(f) I = 4000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100

pd
f

utilization (%)

(d) Non−bursty (I=1)

Figure 11: Browsing mix: PDFs of utilizations at (I) the front server and (II) the database server for non-bursty,

I = 400, and I = 4000 in user think times, where N = 1000.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

qu
eu

e
le

ng
th

Sample Sequence Number (x 100)

(a) Non−bursty (I=1)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

qu
eu

e
le

ng
th

(b) I = 400

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500
qu

eu
e

le
ng

th

(c) I = 4000

Sample Sequence Number (x 100) Sample Sequence Number (x 100)

Figure 12: Browsing mix: transient number of active clients in the system, i.e., summation of queue length at the

front and the database servers, for (a) non-bursty, (b) I = 400, and (c) I = 4000 in user think times, where N = 1000.

[3] M. Arlitt, R. Friedrich, and T. Jin. Workload Characterization
of a Web Proxy in a Cable Environment. ACM Perf. Eval. Rev.,
27 (2), pp. 25-36, Aug. 1999.

[4] M. Arlitt and T. Jin. Workload characterization of the 1998
world cup web site. Technical Report HPL-1999-35R1, HP Labs
Technical Report, 1999.

[5] M. Arlitt and C. Williamson. Web Server Workload
Characterization: the Search for Invariants. In Proc. 1996 ACM
Sigmetrics Conf. Measurement & Modeling of Computer
Systems, Philadelphia, PA, pp. 126-137, May 1996.

[6] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation.
ACM Perf. Eval. Rev., 26 (1), pp. 151-160, 1998.

[7] G. Casale, P. Cremonesi, and R. Turrin. Robust workload
estimation in queueing network performance models. In Proc. of
Euromicro PDP, pp. 183-187, 2008.

[8] G. Casale, E. Zhang, and E. Smirni. KPC-toolbox: Simple yet
effective trace fitting using markovian arrival processes. In Proc.
of QEST, pp. 83-92, 2008.

[9] L. Cherkasova, P. Phaal. Session Based Admission Control: a
Mechanism for Peak Load Management of Commercial Web
Sites. IEEE J. Transactions on Computers, (TOC), 51 (6), pp.
669-685, June 2002.

[10] M. Crovella and A. Bestravos. Self-Similarity in Word Wide
Web Traffic: evidence and possible causes. IEEE/ACM
Transactions on Networking, 5 (6), pp. 835-846, 1997.

[11] D. Garcia, J. Garcia. TPC-W E-commerce benchmark
evaluation. IEEE Computer, pp. 42-48, Feb. 2003.

[12] R. Gusella. Characterizing the variability of arrival processes
with indexes of dispersion. IEEE JSAC, 19(2), pp. 203-211,
1991.

[13] K. Kant, V. Tewary, and R. Iyer. An Internet Traffic Generator
for Server Architecture Evaluation. In Proc. Workshop
Computer Architecture Evaluation Using Commercial
Workloads, Jan. 2001.

[14] D. Krishnamurthy and J. Rolia. Predicting the QoS of an

Electronic Commerce Server: Those Mean Percentiles. ACM
Sigmetrics Performance Evaluation Review, 26 (3), pp. 16-22,
December 1998.

[15] D. Krishnamurthy, J. Rolia, and S. Majumdar. A Synthetic
Workload Generation Technique for Stress Testing Session-Based
Systems. IEEE Transactions on Software Engineering, 32 (11),
pp. 868-882, Nov. 2006.

[16] D. Menasce, V. Almeida, R. Reidi, F. Pelegrinelli, R. Fonesca,
and W. Meira Jr.. In Search of Invariants in E-Business
Workloads. In Proc. ACM Conf. Electronic Commerce, pp.
56-65, Oct. 2000.

[17] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness in
multi-tier applications: Symptoms, causes, and new models. In
ACM/IFIP/USENIX 9th Int’l Middleware Conf., Leuven,
Belgium, pp. 265-286, 2008.

[18] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel.
Performance impacts of autocorrelated flows in multi-tiered
systems. Perform. Eval., 64(9-12), pp. 1082-1101, 2007.

[19] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type
and Their Applications. Marcel Dekker, 1989.

[20] D. Mosberger and T. Jin. httperf: A Tool for Measuring Web
Server Performance. In Proc. Workshop Internet Server
Performance, pp. 59-67, June 1998.

[21] V. Paxon and S. Floyd. Wide Area Traffic: The Failure of
Poisson Modeling. IEEE/ACM Trans. Networking, 3 (3), pp.
226-244, June 1995.

[22] S. Ranjan, J. Rolia, H. Fu, E. Knightly. QoS-Driven Server
Migration for Internet Data Center. In Proc. Int’l Workshop
Quality of Service, pp. 3-12, May 2002.

[23] Slashdot effect, Wikipedia.
[24] A. Williams and M. Arlitt and C. Williamson and K. Barker.

Web Workload Characterization: Ten Years Later. 2, pp. 3-21,
Springer US, 2005.

[25] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based
analytic model for dynamic resource provisioning of multi-tier
applications. In Proc. of 4th ICAC, pp. 27, June 2007.

