

Designing BOTs with BDI Agents

Purvag Patel, and Henry Hexmoor
Computer Science Department, Southern Illinois University, Carbondale, IL, 62901, USA

purvag@siu.edu and hexmoor@cs.siu.edu

ABSTRACT

In modern computer games, ‘bots’ - Intelligent
realistic agents play a prominent role in success of a
game in market. Typically, bots are modeled using finite-
state machine and then programmed via simple
conditional statements which are hard-coded in bots logic.
Since these bots have become quite predictable to an
experienced games player, she might lose her interest in
game. We present a model of bots using BDI agents,
which will show more human-like behavior, more
believable and will provide more realistic feel to the
game. These bots will use the inputs from actual game
players to specify her Beliefs, Desires, and Intentions
while game playing.

KEYWORDS: Agents, BDI, bots, games, collaboration.

1. INTRODUCTION

It is incontrovertible that computer and video game
industry have become a billion dollar industry. With the
development of 3D game engines, gaming technologies
have reached new heights of success. Online gaming
community collaborates using contemporary video game
consoles, for example, Xbox, Playstations, and Wii.
Beyond the gaming aspects these collaborative
technologies are sought to be used by The US Army in
training staffers in thinking complex military decision
making processes. It is time for using these gaming
technologies for designing agents for Multi-agents
collaboration. We have embarked in formalizing agent
based systems that automate the collaborative processes
with First Person shooter (FPS) game ‘bots’.

A ‘bot’ (short for robot) is a Non-Player Character (NPC)
in a multiplayer video game that is designed to behave
similar to a human-controlled player[1]. Examples of
such bots are the bots used in games like Counter-
Strike[15], Half-Life[16] and Quake[19]. Several bots
and their source code are available online to game players

and game developers. J. Broome on his website has
provided information about development of a bots for the
game of Half-Life and had designed several bots for the
same[3]. He also explains the creation of ‘Half-Life
MOD’1, getting the source code of the game, compiling
the code, and finally using it for the bot development or
modification. Our main focus for this research is the game
called Counter-Strike and its bot, which itself is a MOD
for Half-Life and runs on Half-Life game engine. These
3D games provide a readily available real world
environment with game maps loaded with artifacts such
as boxes, bridges, big gates, and tunnels for hiding, taking
covers, and ambush for agents to interact with the world.
Therefore, bots can be used to simulate collaborative war
theaters wherein we can simulate human-like behavior for
coordinating and plan sharing. In addition to this, game
developers can use these improved collaborative bots to
make games more interesting to game players and
increasing their revenue.

In section II, we are providing an overview on the related
work carried out by various people. Section II provides a
background on the game of counter-strike, which is used
as a case study along with a more detailed description on
bots and its types. Finally, we characterized the bots as
agents and presented a model of BDI agents that can be
used to replace bots in section III.

2. RELATEDWORK

N. Cole et. al. argues that to save computation and
programmer’s time, the game AI uses many hard-coded
parameters for bots’ logic, which results in usage of
enormous amount of time for setting these parameters[4].
Therefore, N. Cole et. al. proposed use of genetic
algorithm for the task of tuning these parameters and
showed that these methods resulted in bots which are

1A Half-Life MOD' is a modification that someone has made to the
single player or multiplayer version of the game Half-Life. These
MODs usually incorporate new weapons, new levels (maps), and/or new
methods or rules for playing the game[3].

competitive with bots tuned by a human with expert
knowledge in the game. N. Cole at. al. selected the
parameters to tune, allowed them to tune while running
genetic algorithms, evolved bot against each other, and
finally tested these evolved bots against original bots to
test their performance. Another related work is done by S.
Zanetti et. al. who used the bot from FPS game Quake 3
and demonstrated the use of Feed Forward Multi-Layer
Neural Network trained by a Genetic Algorithm to tune
parameters as tuned by N. Cole at. al.[5]. Albeit, their
resulting bot did not reach the competitive playable level.

Nareyek argues that role of AI techniques currently used
in game AI is very different from those studied in the
academic AI [6]. Nareyek used Wooldridge and Jenning’s
work as starting point and classified game agents
according to their trade-offs between computation time
and the realization of sophisticated goal-oriented
behavior[8]. Narayek classified agents as reactive agents,
triggering agents, deliberative agents, hybrid agents, and
anytime agents [6]. Nareyek also provided insight on how
autonomous agents (bots in our case) can be used in
games[6]. Nareyek’s work guides us to a new direction of
programming for games agents.

BDI model of human rational actions was originally
developed by M. Bratman which has been adopted by
agent community[7]. M. Wooldridge says following
about an agent[9]:

“Intuitively, an agent’s ‘beliefs’ correspond to
information the agent has about the world. These
beliefs may be incomplete or incorrect. An agent’s
‘desires’ represents states of affairs that the agent
would, in an ideal world, wish to be brought about.
Finally, an agent’s ‘intentions’ represent desires that
it has committed to achieving.”

There are efforts to use the BDI model of rational agency
to implement a bot in FPS games.

A. Bartish et. al. in his experiment showed how the
choice of implementation, i.e. agents and FSM, may
affect the performance and complexity of games. They
proved that complexity measure of function of various
numbers of behaviors was linear for agents and quadratic
for FSM. Although runtime performance is comparable
for small number of entities, it degrades at higher rate for
agents[10].

N.P. Davies et. al. researched creating a human-like AI,
based on BDI paradigm, and design of framework for
implementing deliberative agents in computer
games[11][12]. To test the behavior of AI they proposed
an architecture using JACK[14] and linked it to Unreal
Tournament[17] game engine via use of
GameBots/JavaBot[18] technology which they used in

both of their works [11][12]. E. Norling et. al. in a similar
work presents the usage of BDI agents for development
of human-like synthetic characters using JACK[13]. They
modeled expert players in existing game to build bots in
game of Quake 2 and demonstrated that same techniques
can be used to build complete original characters in
games. E. Norling et. al. used a form of knowledge
elicitation known as ‘Applied Cognitive Task Analysis’
(ACTA) to capture player’s strategies[13]. In interview
with the players, with different playing styles, they
presented them sets of questions to know their reaction in
a particular situation[13]. Based on that they
demonstrated how the BDI paradigm facilitated the
capture of the strategic thinking of the players using
JACK programming language for implementation.

3. BACKGROUND

3.1. Game of Counter-Strike

It is necessary to study the environments in which bot
need to interact with and know how they are used in
computer games. Therefore, we selected the game of
Counter-Strike as a case study for our project which is
one of most popular and open source computer game
played by thousands of players simultaneously on internet.
Basically Counter-Strike is a ‘team based’ first-person
shooter game with two teams Terrorist and Counter-
Terrorist. Each team consists of five players, but
depending on game play team size might be set up to 30
players per team. Both the teams play against one another
and the team that wins more number of rounds is the
winner. Normally, teams play approximately ten to fifteen
rounds within an hour.

Figure 1 shows a standard map of Counter-Strike called
DE_DUST. On the map, two sites labeled A, and B are
bomb sites where a terrorist makes effort to plant bomb.
On the contrary, a counter-terrorist makes effort to defend
these bomb sites and if the bomb gets planted by terrorist
counter-terrorist tries to defuse the bomb before it
explodes. In the beginning of each round, both the teams
are located at designated locations on map, for example,
again the position marked by label A in figure 1 is
‘counter-terrorist camp’ from where the counter-terrorist
starts the round. Once the round starts they start moving
around the map, fighting with each other and try to
achieve their respective goals. Similarly, the position
marked by label B on in figure 1 is ‘terrorist camp’ for
terrorists. Each map in the game has many paths/plans
that players may use to go from their base camp to target
place and usually they use different path/plans for each
round. Again, figure 1 shows two such ‘critical position’,
marked by arrows label W, and X, on terrorist path

through which terrorist needs to pass through to reach the
bomb sites and counter-terrorist having the knowledge of
these positions would plan to defend at these places.
There are many other such ‘critical positions’ on the map,
for example bomb sites.

Figure 1. Game Map

3.2. Bots in Computer Games

Bots in counter-strike, also called NPCs are used to
replace human players. Bots play as a part of the team and
achieve goals similar to humans. Bots simulate human
players and are aimed to give game players ‘illusion’ of
playing against actual human player similar to computer
in the Turing test. Currently, bots used in counter-strike
are programmed to find the path, attack opponent players,
or run away from the site if they have heavy retaliation or
if their energy is less providing an illusion they are
intelligent. Similar species of bots are also used in many
other FPS games, with similar method of programming.

Bots are usually pre-programmed according to the
requirements of a game and play for or against human
players. Based on how bots are programmed, there can be
two styles of bots[2]:

1. Static: Static bots are static in the levels and
maps have already been processed. This means
that they need to have all information about the
maps and level prior to the start of game.

2. Dynamic: Dynamic bots learn as they go through
the level. They can be played at any level while
static bots cannot.

Both these techniques produce good quality bots, with a
single difference that dynamic bots can learn through
level while static cannot.

Usually, bots in computer games are modeled using a
FSM as shown in figure 2 where rectangle represents a
possible state whereas leading edges shows transition
between states. It is just a miniature representation of
actual bot where many more such states exist with more
complicated transitions. FSM for bots is quite self
explanatory wherein first the bot start by making initial
decisions viz. game strategies, buying weapon, etc. and
then start searching for enemies. Once the enemy is
spotted it makes a transition to attack state in which she
fires bullets at enemy. A Bot may kill an enemy; therefore
in that case it will again start searching for enemy as
shown in figure 2. Also, a bot could be in any of the
above mentioned states and might get killed by the enemy.

Figure 2. A prototypical FSM for a bots

FSM for bots are implemented using simple if-else or
switch-case statements usually using c/c++ programming
language. Problem with this style of programming is that
their behavior becomes very predictable to even little
experienced players. Players will be able to predict their
action and what path they will use. In addition to this, the
main problem is that all the team members will act in a
similar manner and will follow same strategy. This is not
in the case with human players where all players play
differently irrespective of playing styles of other
teammates. Some players may play aggressively while
others may play cautiously and it also depends on the type
of weapon a player may select. Bots need to be made
more sophisticated to improve gaming experience and
keep players' interest alive in the game by making them
more realistic.

4. APPROACH

4.1. Bots as Agents

View of a bot as a typical agent which operates in a world
or a game map, scan percept from environment, and is
able to take autonomous decision viz. whether to attack,
hide, or reload gun is show in figure 3. Objectives of the
agent in games similar to Counter-strike is to

• kill maximum number of enemies, and
• accomplish their goals, i.e. to plant the bomb or

to defuse the bomb.

Figure 3. Bot actions and sensors

Agent needs to be programmed to ‘sense or observe’ the
world through its visual, auditory, and sensational sensors.
Agent will get the ‘percept’ about the world through these
‘sensors’, for example, an agent may spot an enemy or
friend, hear a gun fire, sense that she herself was hit, etc..
Based on her ‘percepts’, agent will make decisions and
perform ‘actions’ such as whether to attack, hide, reload,
and defuse the bomb or plant the bomb. Many agents will
be simultaneously active in the world and their ‘actions’
will affect world. All bots will have no control on ‘action’
of other agent in the world making each agent
autonomous. Even though, a game world is predictable to
an agent as she has knowledge of effects of her action on
the world, still it is unpredictable as she cannot predict the
actions of other agents.

We claim that this agent which will be used to replace bot
will have following four classic agent properties:

1. autonomy: an agent will be autonomous as she needs

to make her own decisions based on her own beliefs
and goals. There is no other authority that may affect
her decision making process.

2. proactiveness: an agent has a very ‘definite goals’,
for example, to win the round, which makes him a
proactive agent.

3. reactiveness: an agent will have to abort her current
plan if she deliberates that some other plan is more
fruitful. For example, if bot is currently searching for
enemy and she finds out that bomb is planted then
she will have to abort her current plan and start
running toward bomb sites to defuse.

4. social ability: an agent certainly has social ability,
she needs to communicate with other team members
via audio messages on radio or by sending typed
messages.

Having viewed bot as agent, in next section we will see
more specifically, the model of agent that can be used to
replace currently bot.

4.2. Model of BDI agent for bot

Humans have ability to perform multiple task
simultaneously. A critical observation may lead humans
to abort their current task to re-think and start a different
task. For example, a player while defusing a bomb may
notice that opposite team player is about to attack her, and
she may stop defusing the bomb to attack back at
opponent. This basic observation leads us to design a
BDI agent which can perform multiple tasks
simultaneously for which an agent will fork two distinct
processes which will run simultaneously.

• First process will perform the task of observing
the world, and

• second process will be responsible for agent's
deliberation, and means-ends reasoning.

We propose to use Algorithm 1 and 2, each
corresponding to one process respectively which are
adopted from M. Wooldridge's Agent Loop Algorithm for
the agents. Agent will fork two processes, first process
viz. algorithm 2 for observing the world, and updating the
internal beliefs while second viz. algorithm 1 will
perform the tasks of deliberating and means-end
reasoning. Both these processes will share following data
structure:

• agent's Belief set(B),
• agent's Intention set(I), and
• semaphore(reconsiderflag) an agent will use

make reconsideration decision.

In algorithm 1, agent runs a continuous loop starting with
initial beliefs(Bo), and initial intentions(Io). Agent
deliberates about her desires, generates her intentions
based on those desires, selects a plan to achieve those
intentions, and finally execute that plan. In algorithm 1,

agent does not observe the world or updates her beliefs
which are done in algorithm 2 that we will discuss in due
course.

Agent deliberates in two steps, ‘option generation’, and
‘filtering’. In ‘option generation’ agents generated set of
possible alternatives using function ‘options(...)’ which
produces desires of agent. Function option will have
signature

Next step is ‘filtering’ in which agent chooses between
current desires and commit to achieving few of them
producing a set of intentions using function ‘filter(...)’
with signature

After deliberation, next step for agent is means-ends
analysis which results in selection of a plan(π) - a set of
actions, to accomplish those generated intentions. After
plan is selected, the agent picks one action from the
head(hd(π)) of action set in plan and executes that action.
Agent will continue this process until she”

• has executed all actions in plan (empty(π)),
• has achieved current intentions (succeeded(I,B)),

and
• believes current intentions are not possible

(impossible(I,B)).

In each step agent checks semaphore - reconsiderflag, if
the flag is set, then agent stops to re-deliberate her desires

and intentions. Deliberation is a costly process, hence, an
agent deliberates only when it is absolutely necessary i.e.
when shared semaphore - reconsiderflag is set, which in
turn is modified by a loop in algorithm 2. Finally, agent
checks whether her current plan is sound(sound(π,I,B))
with her current intentions and beliefs, and if not she re-
plans i.e. performs means-end analysis.

Now, agent's second process runs another continuous
loop which is shown in algorithm 2. This loop is faster
than the loop in algorithm 1, and performs the task of
belief update and reconsideration. At each step in this
algorithm agent observe the world to get the next percept,
and based on that percept agent updates her beliefs. Now
an agent uses Boolean function ‘reconsider(..)’, which
returns true if agent needs to reconsider its intention
based on her current beliefs, and intention. In that case,
agent will set shared semaphore i.e. ‘reconsiderflag’ to
true and fire a trigger which will force agent to abort its
current action. Again, function ‘execute(...)’ used in
algorithm 1 is not an atomic function which will be
programmed to abort after the ABORT trigger is fired by
second process.

Notice that, agent sets the ‘reconsiderflag’ to true before
triggering the ABORT command. Hence, next step an
agent will perform in process one is of re-deliberation i.e.
generating new desires and intentions. This is absolutely
necessary because an agent now believes that an
important event occurred in the world and agent needs to
re-deliberate.

Original M. Wooldridge's algorithm would not stop to
scan next percept and re-consider until agent completely
executes her current action. Separation of the two
processes is necessary for our agents because agent
should not continue executing her current action if she
believes that there is other action with more utilities is
possible. This behavior is desired for our agent as the
world is very dynamic and agent cannot predict the
behavior of other agents playing in map. Again, the world
being very dynamic it is also not necessary that with
every new percept agent needs to stop for reconsideration.
Let us consider an example to support this approach.
Suppose counter-terrorist agent is executing her current
action which is ‘going to terrorist's camp' and she spots a

terrorist agent on the way. An ideal behavior will be to
stop and start attacking terrorist agent which would be
achieved with current approach. While with original
algorithm, agent would continue executing her current
action i.e. ‘going to terrorist camp' and on reaching the
camp she would re-consider and find out that she spotted
terrorist agent on the way which will be late to respond.
In a similar case, if agent spots friendly agents, then she
need not stop to reconsider; she can continue doing her
current action i.e. of going to terrorist's camp.

4.3. Usage of BDI model for bots

Basically, we want our bots to behave similar to actual
game players who are experts and play the game in teams.
At the start of every round, players collaborate and
deliberate about team strategy; for example, whether they
would play aggressive or defensive. Apart from the
collaborative team strategy each player has her own style
of playing, again a player may be aggressive or defensive
which also may depend on the type of weapon they buy at
the start of each round. With our BDI model, we want to
capture this basic difference in player's strategies. Each
agent in the team having different style of playing based
on the inputs from experts will collaborate with one
another to achieve team's goal.

All the bots regardless of what collaborative strategies
they may employ, they will have similar sets of beliefs
and intentions. For example, at any time period a counter-
terrorist agent may have beliefs and intentions as shown
in figure 4. Basically, a game programmer need to build a
generic module for scanning percept and belief update,
which will remain same irrespective of the player's
strategies, i.e. process two of our algorithm is reusable
for all bots. Even the ‘reconsider(...)’ function need not to
be changed because an ‘urgent situation' for one agent
will also be an ‘urgent situation’ for another agent no
matter what strategy agent may use.

For two distinct agents to capture different styles, viz.
aggressive or cautious, both of them will have to produce
different desires. Thus, the only function which needs to
be customized to produce bots with different
collaborative style of playing will be function
‘options(...)’. This function will generate different sets of
desires accounting for type of bot we want to model as
shown in figure 5. Notice that a more aggressive agent
will have desire to kill more players, on the contrary a
cautious agent would like to go to specific spots and wait
for her target. In the future, agent is supposed to produce
intentions which are subset of her desires. In this manner
we will be able to capture different collaborative styles of
playing of different players.

Figure 4. Bots’ Belief and Intention Set

Figure 5. Bots’ desire set

We are planning on implementing above mentioned
approach using JAVA. We will develop a miniature
simulation of Counter-Strike using JAVA applets to
simulate agents and its environment. Even though, our
simulation will be small as compared to real game
Counter-Strike, the usage of Algorithm 1 and 2 to prove
its effectiveness can be demonstrated. The reason is there
already are related work ([10],[11],[12], and [13]) that
have demonstrated the integration of JAVA and Game
Engines to implement BDI agent for bots in games, to
proves that our miniature simulation of the game can be
easily extended for use with current Game Engines in
future. Henceforth, with this research we demonstrate the
use of enhanced BDI model to fit the needs of bots in
games and make them more human-like, believable, and
to provide more realistic feel to the game.

5. CONCLUSION

There is a strong affinity between online bots and agents.
We have proposed a BDI agent system that models
computational bots. Current bots system is very
predictable. After a player spends couple of days playing
the game she can predict the behavior of all the bots.
Furthermore, all the bots will behave in a similar fashion.
This makes the game less interesting to the game players
who eventually may lose interest in the game. Our BDI
model will make bots more human-like, believable, and
will provide more realistic feel to the game. BDI agents
are computationally inefficient, but with growing
processing power game developers can afford to dedicate

additional CPU cycles to these agents. We have not yet
explored the machine learning techniques, like neural
network or genetic algorithm, which can make bots adapt
the game playing strategies against human's players.

REFERENCES

[1] Valve Developer Community, viewed 5th oct. 2008.
http://developer.valvesoftware.com/wiki/Bots

[2] THE BOT FAQ, viewed 5th oct. 2008.
http://members.cox.net/randar/botfaq.html

[3] J. Broome. Botman’s bots Half-Life bot development,
http://botman.planethalflife.gamespy.com/index.shtml

[4] N. Cole, S. J. Louis, and C. Miles, “Using a Genetic
Algorithm to Tune First-Person Shooter Bot,” In Proceedings of
the International Congress on Evolutionary Computation, 2004

[5] S. Zanetti and A. Rhalibi, “Machine Learning Techniques
for FPS in Q3,” ACE’04, June 3-5. 2004, Singapore

[6] A. Nareyek, “Intelligent Agents for Computer Games,” In
Marsland, T. A., and Frank, I. (eds.), Computers and Games,
Second International Conference, CG 2000, Springer LNCS
2063, 414-422.

[7] M. Bratman, INTENTIONS, PLANS, AND PRACTICAL
REASON, CLSI Publications, 1999

[8] M. Wooldridge, and N. R. Jenning, “Intelligent Agents:
Theory and practice,” Knowledge Engineering Review
Volume 10 No 2, June 1995.

[9] M. Wooldridge, REASONING ABOUT RATIONAL
AGENTS, Massachusetts Institute of Technology, 2000, pages
1-45

[10] A. Bartish, and C. Thevathayan, “BDI Agents for Game
Development,” AAMAS’02, July 15-19. 2002, Bologna, Italy

[11] N.P. Davies, Q.H. Mehdi, and N. Gough, “Creating and
Visualizing an Intelligent NPC using Game Engine and AI
Tool,” European Conference on Modeling and Simulation,
ECMS, 2005, Riga, Latvia, 721-726, ISBN 1-84233-112-4

[12] N.P. Davies, Q.H. Mehdi, and N. Gough, “A Framework
for Implementing Deliberative Agents in Computer Games,” In
Proceedings 20th European Conference on Modeling and
Simulation Wolfgang Borutzky, Alessandra Orsoni, Richard
Zobel l’ ECMS, 2006 ISBN 0-9553018-0-7 / ISBN 0-9553018-
1-5 (CD)

[13] E. Norling, and L. Sononberg, “Creating Interactive
Characters with BDI Agents,” In Proceedings of the Australian
Workshop on Interactive Entertainment IE, 2004

[14] Agent Oriented Software Group, JACK Intelligent
Agents(2006).

[15] Valve Corporation. Counter-Strike: Source.
www.counter-strike.net/

[16] Valve Corporation. Half-Life II.
http://orange.half-life2.com/

[17] Midway Home Entertainment, Inc. Unreal Tournament 3.
http://www.unrealtournament3.com/

[18] Gamebots.
http://gamebots.planetunreal.gamespy.com/index.html

[19] Id Software, Inc. Quake II.
http://www.idsoftware.com/games/quake/quake2/

	ABSTRACT

