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Abstract. Formal modelling is indispensable for engineering higrépendable
systems. However, a wider acceptance of formal methodsidehed by their in-
sufficient usability and scalability. In this paper, we ainassisting developers in
rigorous modelling and design by increasing automationevetbpment steps.
We introduce a notion of refinement patterns — generic reptations of typi-
cal correctness-preserving model transformations. Ofimitien of a refinement
pattern contains a description of syntactic model tramsédions, as well as the
pattern applicability conditions and proof obligations ferification of correct-
ness preservation. This establishes a basis for buildinglesupporting formal
system development via pattern reuse and instantiatiomprééent a prototype of
such a tool and some examples of refinement patterns for atedrdevelopment
in the Event B formalism.

1 Introduction

Over the recent years model-driven development has becdesding paradigm in
software engineering. System development by stepwiseeraént is &ormal model-
driven development approach that advocates developmesytstéms correct by con-
struction. Development starts from an abstract model, ivligradually transformed
into implementation. Each model transformation step ecbdirefinementstep, allows
a designer to incorporate implementation details into tloeleh Correctness of each
refinement step is validated by mathematical proofs.

The refinement approach significantly reduces the requiistohy efforts and, at the
same time, supports a clear traceability of system pragsettirough various abstraction
levels. However, it is still poorly integrated into exigjisoftware engineering process.
Among the main reasons hindering its application are coxitglef carrying proofs,
lack of expertise in abstract modelling, and insufficieraability.

In this paper we propose an approach that aims at facilifatiregration of formal
methods into the existing development practice by levaggutomation of refinement
process and increasing reuse of models and proofs. We aimaahating certain model
transformation steps via instantiation and reuse of prefated solutions, which we
call refinement patternsSuch patterns generalise certain typical model transitioms
reoccurring in a particular development method. They cathbeght of as "refinement
rules in large”.

In general, a refinement pattern is a generic model trangforfassentially it con-
sists of three parts. The first part is the pattern appligglgibnditions, i.e., the syntactic
and semantic conditions that should be fulfilled by the mdolel refinement pattern
to be applicable. The second part contains definition ofatitt manipulations over



the model to be transformed. Finally, the third part cossigtthe proof obligations
that should be discharged to verify that the performed mwdekformation is indeed a
refinement step.

Application of refinement patterns is compositional. Hesmme large model trans-
formation steps can be represented by a certain combinatr@finement patterns, and
therefore can also be seen as refinement patterns per sesibdifitysto compose pat-
terns significantly improves scalability of formal modedii Moreover, reducing execu-
tion of a refinement step to a number of syntactic manipulataver a model provides a
basis for automation. Finally, our approach supports ekerreuse of not only models
but also proofs. Indeed, by proving that an application oéaegic pattern produces a
valid refinement of a generic model, we at the same time véréycorrectness of such
a transformation for any of its instances. This allows usdaificantly reduce or even
avoid proving activity in a concrete development.

The theoretical work on defining refinement patterns preskint this paper estab-
lished a basis for building a prototype tool for automatiefimrement process in Event
B[10]. The tool has been developed as a plug-in for the ROD#¥qrm [1] — an open
toolset for supporting modelling and refinement in the Ev@rftamework. We be-
lieve that, by creating a large library of refinement patesand providing automated
tool support for pattern matching and instantiation, we mike formal modelling and
verification more accessible for software engineers andédéarcilitate integration of
formal methods into software engineering practice.

2 Towards Refinement Automation

2.1 Formal Development by Refinement

System development by refinement is a formal counterpartadehdriven develop-
ment process. Refinement allows us to ensure that the refieednore elaborated,
model retains all the essential properties of its abstraghterpart. Since refinement
is transitive, the model-driven refinement-based devetaygmrocess enables develop-
ment of systems correct by construction.

The precise definition of refinement depends on the choserliimagdframework
and hence might have different semantics and the degre@af ihe foundations
of formal reasoning about correctness and stepwise daweopby refinement were
established by Dijkstra [6] and Hoare [9], and then furthevedoped by R.Back[2],
C.Morgan [13], and J. von Wright [3].

In the refinement calculus framework, a model is represemyeal composition of
abstract statements. Formally, we say that state@entefined by statemerft’, writ-
tenS C 5, if, wheneverS establishes a certain postcondition, so dSeg[6]. In
general, refinement process can be seen as a way to reduaeterminism of the
abstract model, to replace abstract mathematical datetstaes by data structures im-
plementable on a computer, and, hence, gradually introidyglementation decisions.

To facilitate the refinement process, the typical refinemerisformations have
been generalized into a set of refinement rules [3, 13]. Thass can be seen as generic
templates (or patterns) that define the general form of titerstent to be transformed,
the resultant statement, and the proof obligations thatildhioe discharged to verify
refinement for that particular transformation. Howevergéinement rule usually de-
scribes a small localized transformation of a certain m@aet. Obviously, the tools
developed to automate application of such refinement rélell] lack scalability.



On the other hand, such frameworks as Z, VDM, Event B supperfarmal de-
velopment by entire model transformation. For instance R®DIN platform — a tool
support for refinement in Event B allows us to perform refinetby introducing many
changes at once and verify by proofs that these changesireaudorrect model refine-
ment. Often a refinement step can be seen as a compositiotaofigsd” (frequently
reoccurring) localized transformations distributed aleothe model. It remains un-
clear, though, if we can employ transformational approachutomate execution of
these transformations, i.e., reuse the models and pron&rceted previously.

In this paper we propose to tackle this problem via defini¢ind reuse of refinement
patterns. Our definition of refinement patterns builds ondkea of refinement rules. A
refinement pattern in general is a model transformer. Urdigign patterns [7], a re-
finement pattern is "dynamic” in a sense that it takes a moslahanput and produces
a new model as an output. Our definition of a refinement pattemsists of three parts.
The first part is the pattern applicability conditions,,ithe syntactic and semantic con-
ditions that should be fulfilled by the model for a refinemeatt@rn to be applicable.
The second part contains definition of syntactic manipoitetion the model to be trans-
formed. Finally, the third part consists of the proof obtigas that should be discharged
to verify that the performed model transformation is indaedfinement step. It is easy
to see, that a refinement pattern manipulates a model on potactic and semantic
level.

Although the notion of a refinement pattern is independetti®thosen modelling
framework, for clarity we explain our idea of refinement pats and describe a proto-
type tool that implements them for the Event B formalism. Neg briefly introduce
Event B and give semantic and syntactic views on its models.

2.2 EventB

Event B uses the Abstract Machine Notation for construcéind verifying models.
An abstract machine encapsulates a state (the variabldbeahodel and provides
operations on the state. A simple abstract machine has lbe/fiog general form:

SYSTEM AM
VARIABLES v
INVARIANT 1
INITIALISATION INIT
EVENTS
B
En
The machine is uniquely identified by its namkl. The state variables of the machine,
v, are declared in th&#ARIABLES clause and initialised inNIT as defined in the
INITIALISATION clause. The variables are strongly typed by constrainiadipates
of the machine invariant given in theINVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates lam@redicates defining the
properties of the system that should be preserved duririgraysxecution.

The dynamic behaviour of the system is defined by the set ofiatevents specified
in EVENTS clause. An event is defined as follows:

E = WHEN g THEN S END



where guardy is conjunction of predicates over state variableand actionSis an
assignment to state variables.

The occurrence of events represents the observable behafithe system. The
guard defines the conditions under which the action can beute@, i.e., when the
event isenabled The action can be either a deterministic assignment totéte gari-
ables or a non-deterministic assignment from a given seh@saignment according
to a given postcondition. These assignments are denoted,as and:| correspond-
ingly. If several events are enabled then any of them can bsechfor execution non-
deterministically. If none of the events is enabled therstfstem deadlocks.

Assume that the refinement machind/’ is a result of refinement of the abstract
machineAM:

SYSTEM AM’
VARIABLES v/
INVARIANT I’
INITIALISATION INIT
EVENTS
B
En
In AM'’ we replace the abstract data structureé\Bfwith the concrete ones. The
invariant of AM’ — I’ — defines now not only the invariant properties of the refined
model, but also the connection between the newly introduagdbles and the abstract
variables that they replace. For a refinement step to be,\alaty possible execution
of the refined machine must correspond (ijpto some execution of the abstract ma-
chine. To demonstrate this, we should prove thst/'7” is a valid refinement ofNIT,

each event oA’ is a valid refinement of its counterpartAM and that the refined
specification does not introduce additional deadlocks, i.e

wp(INIT', ~wp(INIT,—=I")) = true,
IANT Ag; = gi ANwp(S', —~wp(S, =InvC)), and
INI Ngi = Y g

2.3 Event-B Models as Syntactic Objects

To define refinement patterns, we now consider an Event B nasdelsyntactic math-
ematical object. For brevity, we omit representations aheanodel elements here,
though they are supported in our tool implementation [10§uhxset of Event-B models
used in this paper can be described by the following datatsire:.

model :: var : VAR* event :: name : EVENT action :: var : VAR

inv : PRED* param : PARAM style : STYLE

evt : event™ guqrds : PRED* expr : EXPR
actions : action

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressievsnt names and parameters.
An event is represented by a tuple containing the event néiist of) its parameters,
guards, and actions. The reserved event name denotes the initialisation event.



An action, in its turn, is a tuple containing a variable, atiaatstyle and an expression,

where an action style denotes one of the assignment tygesSSTYLE = {:=,:€,:|}.
Sub-elements of a model element can be accessed by usingt thygedlatoract. style

is the style of an actionct. Instances of the models, events and actions are constructe

using a special notatiofu; | - - - | a,,). The following example shows how an Event B

model is represented in our notation:

SYSTEM m0
VARIABLES z ((x) |
INVARIANT 2 € Z ("xeZ’) |
INITIALISATION x :=0 ({dnit | — | = | {z |:=]70")),
EVENTS
count = BEGIN z := 2 + 1 END (count | — | — | (z |:'=| "z + 17))))

In the examplex is an element ofVAR, init and count are event names from
EVENT,”z € 7 is a predicate, ant)”, ”z + 1” are model expressions.

Now we have set a scene for a formal definition of refinemernepa that aim at
automating refinement process in general and Event B incpiati

3 Refinement Patterns

3.1 Definitions

Definition 1. Let.S be a set of all well-formed models defined according to a syota
a chosen modelling language. Then a transformation fuie a function computing a
new model for a given input model:

T:SxC—+ S

whereC' contains a set of all possible configurations (i.e., additibparameters) of a
transformation rule.

Note that?" is defined as a partial function, i.e., it produces a new modkifor some
acceptable input modejsand configurations, i.e., when(s, ¢) € dom(T).

Definition 2. A refinement pattern is a transformation rute: S x C -+ S that, for
any acceptable input model and configuration, construct®dehrefinement:

Vs, c.(s,¢) € dom(P) = sC P(s,c)
whereC denotes a refinement relation.

In this paper we use the Event-B modelling method to give mteaneanings to the
concepts of modelS, configurations”, and a refinement relatian. This allows us to
reuse much of the Event-B proof theory when demonstratiagethransformation rule
is indeed a refinement pattern.



3.2 The Language of Transformations

We propose a special language to construct transformati@s.rThe proposed lan-
guage contains basic transformation rules as well as thstremts allowing to com-
pose complex rules from simpler ones. For instance, a reénémpattern is usually
composed from several basic transformation rules. Thdss themselves might not
be refinement patterns. However, by attaching to them additiproof obligations, we
can verify that their composition becomes a refinement patte

The structure of the basic rules reflects the way a transfiiomaule or a refine-
ment pattern is applied. First, rule applicability for agivinput model and configura-
tion parameters is checked. The applicability conditiobeéachecked can contain both
syntactic and semantic constraints on input models andgumatfions. Mathematically,
for a transformation ruld’, its applicability condition corresponds tom(7"). Then,
the input modek for given configuratior is syntactically transformed into the output
model calculated as function applicatidls, c). Finally, in case of a refinement pattern,
the resultl’'(s, ¢) should be demonstrated to be a refinement of the input model.,
s C T'(s,c). The last expression, using the proof theory of Event B, aaitmplified
to specific proof obligations on model elements to be verified

A basic rule has the following general form:

rule name(c)
context Q(c, s)
effect E(c, s)
proof obligation PO (c, s)

proof obligation PO, (c, s)

Herename andc are correspondingly the rule name and list of its parameRed-
icate Q(c, s) defines the rule application context (applicability coiudis), wheres
is the model being transformed. The effect functiBrx, s) computes a new model
from a current mode$ and parameters The proof obligation part contains a list of
theorems to be discharged to establish that the rule is & ¢fjarefinement pattern
and not just a transformation rule. From now on, we weitatext(r), effect(r) and
proof_obligations(r) to refer to the context, effect computation function, antems
tion of proof obligations of a rule.

As an example, let us consider two primitive rules for theriiv® method. The first
transformation adds one or more new variables:

rule newvar(vv)
context vv N s.var = J
effect (s.var Uvv | s.inv | s.evt)
proof_obligation Yv € vv - (3a- a € s.init.action A v € a.var)

The rule applicability condition requires that the new ghtes have fresh names for the
input model. The effect function simply adds the new vagalib the model structure.
The rule also has a single proof obligation requiring that\vhriable(s) is assigned in
the initialisation action. Such an action would have to bdeatlby some other basic
rule for the same refinement step.

Another example is the rule for adding new model invarignt(s



p(c) = basic(c) primitive rule

| piq sequential composition
| plla parallel composition
| if Q(c,s) thenpend conditional rule

| confi: Q(i,c,s)dop(iUc) end parameterised rule
| pari: Q(i,c,s)dop(i Uc) end generalised parallel composition

Fig. 1. The language of transformation rules

rule newinv(ii)
context it C PRED A Vi € ii - FV (ii) C s.var
effect (s.var | inv Ui | evt)
proof obligation
V(e,v,v") - e € s.evt A
Inv(v) A Guardse(v) A BA(v,v") = Inv(v')
proof_obligation Jv - Inv(v)

Here FV (x) is set of free variables im, Inv stands for {\,., ;... 9), ahdGuards,

is defined asA\ ,c. ,uaras 9)- MoOreover,BA is the before-after relation describing the
action execution in terms of the before and after values aleheariables. Both proof
obligations are taken directly from the Event-B semanties, (the corresponding proof
obligationrules). The first obligation requires to showt tha new invariant is preserved
by all model events, while the second one checks feasilwfitsuch an addition by
asking to prove that the new invariant is not contradictohys example illustrates how
the underlying Event B semantics is used to derive proofgalibns for refinement
patterns.

The table below lists the basic rules for the chosen subsEwenft B. There are
two classes of rules — for adding new elements and for rengogiisting ones. All
the rules implicitly take an additional argument — the modeing transformed. A
double-character parameter name signifies that a rule &caeget of elements, e.g.,
newgrd(e, gg) adds all the guards from a given getto an event.

rule newvar(vv) rule delvar(vv)
rule newinv(iz) rule delinv(i7)
rule newevt(ee) rule delevt(ee)
rule newgrd(e, gg) rule delgrd(e, gg)
rule newact(e, aa) rule delact(e, aa)

rule newactexp(e,a,p)

To construct more complex transformations, we introduceralyer of composition
operators into our language. They include the sequential,and parallelp||q, com-
position constructs. In addition, there is the condition# constructif ¢ thenp end, as
well as a construct allowing to introduce additional rulegmaeters eonfi : Q dop(i) end.
Finally, to handle rule repetitions, generalised paraitehposition is introduced in the
form of a loop constructpar ¢ : @ do p(c) end. The language summary is given in
Figure 1.

3.3 Examples

In this section we present a couple of simple examples of@efent patterns con-
structed using the proposed language.



Example 1 (New VariableA refinement step adding a new variable can be accom-
plished in three steps. First, the new variable is addededish of model variables.
Second, the typing invariant is added to the model. Finalfyjnitialisation action is
provided for the variable. The following refinement pattexds a new variable de-
clared to be a natural number and initalised with zero:
confv : = (v € s.var) do
newvar({v});
(newinv({"v € N7}, s) || newact(init, {{v |:=| 707)}))
end
The only pattern parameter (apart from the implicit inpuis some fresh name for the
new model variable.
A pattern application example is given below. The left-hait® model is an input
model and the righ-hand side is the refined version constuloy the pattern. The
example assumes that variable napier chosen for parameter

SYSTEM m0 SYSTEM m1
VARIABLES x VARIABLES x,q
INVARIANT x € Z INVARIANT = € Z A q < N
INITIALISATION z:=0 INITIALISATION x := OHq =0
EVENTS EVENTS

count = BEGIN x :=x + 1 END count = BEGIN x := x + 1 END

A more general (and also useful) pattern version could acéyping predicate and
initialisation action as additional pattern parameters.

Example 2 (Action Splitin Event B, an abstract event may be refined into a choice
between two or more concrete events, each of which must limameent of the abstract
event. A simple case of such refinementis implemented byefireament pattern below.
The pattern creates a copy of an abstract event and adds auaesivamnd its negation to
the original and new events. The guard expression is supai@ pattern parameter.

confe,en :e € s.evt A = (en € s.evt) do
newevt(en, s);
newgrd(en, e.guard) ||
newact(en, e.action);
confg : g € PRED A FV(g) C s.var
donewgrd(e, g) || newgrd(en,—g) end
end

The pattern configuration requires three parameters. Raeaarefers to the event to
be refined from the input modeJ en is some fresh event name, ané a predicate on
the model variables.

The pattern is applicable to models with at least one evér@r&sult is a model with
an additional event and a constrained guard of the origiraite As an input model we
use the model from the previous example.

SYSTEM ml

VARIABLES x

INVARIANT z € Z

INITIALISATION z:=0

EVENTS
count = WHEN x mod 2 = 0 THEN = := 2 + 1 END
inc = WHEN —(x mod 2 = 0) THEN z := x + 1 END



Here, the pattern parameters are instantiated as folloascount, en asinc, andx as
x mod 2 = 0.

4 Pattern Composition

In the previous section we defined the notion of a basic toansdtion rule as a combi-
nation of the applicability conditions, transformatioffféet) function, and refinement
proof obligations. Moreover, In Figure 1, we also introddizarious composition con-
structs for creating complex transformation rules. In thestion we will show how
we can inductively define the applicability conditions geff, and proof obligations for
composed rules.

4.1 Rule Applicability Conditions

For a basic rule, the rule applicability condition is definedts context clause. For
more complex rules constructed using the proposed langofagensformation rules,
rule applicability is derived inductively according to tfidlowing definition:

app(basic)(c, s) = context(basic)(c, s)

app(p; )( ¢, s) = app(p)(c, s) A app(q)(c, eff(p)(c, s))

app(pllq)(c, s) = app(p)(c, s) A app(q)(c,s) A
inter(scopép), Scopéq)) =

app(if G(c, s) thenp end)(c, s) = G(c, s) = app(p)(c, s)

app(confi : Q(i, ¢, s) dop(i) end)(c, s) = Vi- Q(i, ¢, s) = app(p(i))(c, s)
app(par i : Q(i, ¢, s) dop(i) end)(c,s) = Vi-Q(i,c,s) = app(p(i))(c,s) A
V(i,5) - Qi e, 8) A QG c,8) Ni# j =
inter(scopép(i)), scop&p(j))) = @

The consistency requirements for the sequential compasitonditional and parame-
terised rules are quite standard. Two rules can be appligdrallel if they are work-
ing on disjoint scopes. For instance, a rule transforming\amt (e.g., adding a new
guard) cannot be composed with another rule transformiagéme event. A similar
requirement is formulated for the loop rule, since it is imsad as generalised parallel
composition.

The rule scopes are calculated by using the predefined &umatbpe, which re-
turns a pair of lists, containing the model elements thattleeupdates or depends on.
Intersection of rule scopes is computed as an intersecfitimeoelements updated by
the transformations and the pair-wise intersection of elesupdated by one rule and
depended on by another:

inter((ri,wy), (ro, wa)) = (w1 Nws) U (r1 Nwe) U (re Nwy)

4.2 Effect of Pattern Application

Once the rule applicability conditions are met, an outputiedl@an be syntactically
constructed in a compositional way. For a basic rule, theceéfunction is directly ap-
plied to transform an input model. For more complex rulesg\a model is constructed
according to an inductive definition of the functieff given below.



eff(basic)(c, s)
eff(p; g)(c, s)
eff(pllq)(c, s)

eff(if G(c, s) thenp end)(c, )

effect(basic)(c, s)

eff(q)(c, eff(p)(c, 5))

eff(q)(c, eff(p)(c, s)), or

eff(p)(c, eff(q)(c, 5))

eff(p)(c, s), if G(c, s)

s, otherwise

eff(p(2))(c, s), if Q(i,c,s)

s, otherwise

(Ili € Q(i, s, ) - eff(p(i)) (c, 5)),
if 3(i,¢,8)-Qi,¢,8)

= s, otherwise

eff(confi : Q(i, ¢, s) dop(i) end)(c, s)

eff(par i : Q(i, ¢, s) dop(i) end)(c, s)

As expected, the result of sequential composition of twegig computed by applying
the second rule to the result of the first rule. For parallehposition, the result is
computed in the same manner but the order of the rules shatldffect the overall
result. The resulting model of the loop construct is comgwe generalised parallel
composition of an indexed family of transformation rulebeTast three cases depend
on some additional application conditions (i@€(¢, s) or Q(i, c, s)). If these conditions
are not true, rule application leaves the input model ungbdn

The rule application procedure based on the presentedtitefinan be easily auto-
mated. The only interesting detail is in providing inputued for the rule parameters.
In our tool implementation for the Event-B method, brieflweced later, the user is
requested to provide the parameter values during ruleritigteon, while appropriate
contextual hints and descriptions are provided by the tool.

4.3 Pattern Proof Obligations

To demonstrate that a rule is a refinement pattern, we havistbatge all the prooof
obligations of individual basic rules occuring in the ruledy. These proof obligations
cannot be discharged without considering the context predby the neighbour rules.
The following inductive definition shows how the list of pfaabligations is built for

a particular refinement pattern. The context informationgach proof obligation is
accumulated, while traversing the structure of a pattera,set of additional hypotheses
that can be then used in automated proofs.

po(I, basic)(c, s) = {I" = proof_obligations(basic) }

po(T’, p; q)(c, s) = po(I"U {s" = eff(p; q)(c, 5)},p(c,s")) U
po(I"U {s" = eff(p; q)(c, )}, q(c, s"))

po(I’, pllg)(c, s) = po(I',p) U po(I’, q)

po(I,if G(c, s) then p end)(c, s) = po(I"U{G(c,s)},p)

po(I,confi: Q(i,c,s) dop(i) end)(c,s) =i € Q(4,¢,s) - po(I" U{Q(i,c, )}, p(i))

po(I',pari: Q(i,c,s) dop(i) end)(c,s) =i € Qi,c¢,s) po(I"U{Q(:,c,s)}, p(i))

Here! is a set of accumulated hypothesis containing pattern peteasa and the
initial model s as free variables. For each basic rule, we formulate a theerkose
right-hand side is a list of the rule proof obligations and téft-hand side is a set of
hypotheses containing the knowledge about the context iohathe rule is applied.

4.4 Assertions

The described procedure of building a list of proof obligas tries to include every
possible fact as a proof obligation hypothesis. This can®blem for larger patterns



as the size of a list of accumulated hypotheses makes a pbiightion intractable.

To rectify the problem, we allow a modeller to manually adtinfif hypotheses, called
assertions, that can be inferred from the context they agpe@n assertion would

be typically simple enough to be discharged automaticalls theorem prover. At the
same time, it can be used to assist in demonstrating the plaigfations of the rule

immediately following the assertion.

An assertion is written aasser{ A(c, s)) and is delimited from the neighboring
rules by semicolons. An assertion has no effect on rule mtisttton and application.
The following additional cases of the definition are used to generate additional proof
obligations for assertions as well as insert an assertedlkdge into the set of collected
hypotheses of a refinement pattern.

po(I, p;asser(A(c, s)))(c,s) = I'U{s" = eff(p)(c,s)} = Alc,s’)
po(I', asser(A(c, 5)); p)(c, s) = po(I" U{A(c, s)},p)(c, 5)

5 Triple Modular Redundancy Pattern

Triple Modular Redundancy (TMR) is a fault-tolerance matkin in which three com-
ponents produce in parallel results that are processed logimgvelement [12]. The
mechanism masks a single component failure. In this papatenenstrate that a re-
finement step that introduces TMR arrangement into the mzatebe generalized as a
refinement pattern as shown below.

Our initial specification should have a variable represeng component for which
TMR is introduced. Moreover, it should have an event that-deterministically up-
dates this variable. Non-determinism is used to modelyatd hence unpredictable
results produced by the component. We do not make any assunm®pbout the variable
type. Furthermore, the event can contain some other adticaddition to updating the
variable modelling component.

In the refined model we replace the single abstract compaomigmthree compo-
nents. The new components are modelled by fresh variables variable types and
initialisation are simply copied from the variable modajjiabstract component.

The pattern uses a number of configuration parameters. Thepéerss selects a
variable modelling the component;is an event updating the variablejs an action
from v updating variable (u is allowed to contain actions assigning to other variables)
ph, fl, s; andr; are the new variables defined by the pattern. The varigbleeeps
track of the current phase in the TMR implementatifhis a flag indicating a failure
to get a majority vote; variables, ¢ = 1..3, record the output from the three new
components introduced by the pattern; flagndicates the availability of a result from
component;.



confs,u, a,ph, fl, s1, s2, s3,71,72,73 :
s € s.var Au € s.evt A\ a € u.actions A a.style # (:=) A {s} = a.var A
{s1, 82, 83,71, 72,73, Dh, fl} C (VAR —var) A

part({{51}7 {82}7 {53}7 {T1}7 {T2}7 {T3}7 {ph}7 {fl}})
(0}

d
vardefs; evtdefs; evtrefine; invariants
end
vardefs L
blocky || blocks || blocks ||
(newinv(”ph € BOOL”); newini({ph |:=|” FALSE”))) |
(newinv(” fl € BOOL”); newini((fl |:==| " FALSE")))
block, £
(newinv(”s1 € s.type”);newini({s1 | init(s).style | init(s).expr)))||

(newinv("r1 € BOOL”); newini({r1 |:=|” FALSE”)))

eventdefs L
conf U, U2, U3
{u1,u2,us} C EVENT \ s.evt A part({{ui}, {u2}, {us}})

do I
copys || copys || copys
end
newevt({(alt | — | 7s2 = s3” | (s |:=| 7s2”)))||
newevt((fail | — | 7s1 # sa A sa # s3 A s1 # s3” | (fl |:==| ” TRUE")))
ot
copy; =
newevt((uy | — | {’r1 = FALSE”} Uu.guards |
(s1 | a.style | a.expression), (r1 |:=| " TRUE”), (ph |:==| ” FALSE"))

evtrefine L
newgrd(u,”r1, = TRUE ANrg = TRUE Nrs = TRUE”);
newgrd(u,”s1 = s2 V s1 = s37);
delact(u, a); newact(u, (s |:=| 7s1”));
(newact(u, (r1 |:=| ? FALSE”)) ||
newact(u, (rz |:==|”? FALSE")) ||
newact(u, (r3 |:==|” FALSE")));
newact({ph |:=|” TRUE"Y))

invariants <
newinv("ph = TRUE A (s1 = s2 V s2 = s3)) = s = 51”);
newinv("ph = TRUE A s2 = s3) = s = s27);
newinv(’ph = TRUE A s1 # s2 A s2 # s3 A\ s1 # s3) = fl = TRUE")

The shortcut notationewini(a) used in the pattern source stands for declaration of
the initialisation actionnewini(a) = newact(init, a). The shortcuinit(v) refers to
an action of the initialisation event assigning to a vagablThe predicateart, used
in eventdef s, requires that its argument is a set of disjoint subsets.
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Fig. 2. The Event-B refinement patterns tool architecture.

6 Tool for Refinement Automation

A proof of concept implementation of the pattern tool for Eaeent B method has been
realised as a plug-in to the RODIN Platform [1]. The plug@asilessly integrates with
the RODIN Platform interface so that a user does not have iiclslwetween different

tools and environments while applying patterns in an Evead®lopment. The plug-in

relies on two major RODIN Platform components: the Platfaiatabase, which stores
models, proof obligations and proofs constituting a dewedent; and the prover which
is a collection of automated theorem provers supplementéldedinteractive prover.

The overall tool architecture is presented in Figure 2. Tdre of the tool is theat-
tern instantiation engineThe engine uses an input model, imported from the Platform
database, and a pattern, from the pattern library, to p@dumodel refinement. The
engine implements only the core pattern language: the séiquand parallel compo-
sition, andforall construct. The method-specific model transformationshis tase,
Event-B model transformations) are imported from tin@del transformation library

The process of a pattern instantiation is controlled bypigern instantiation wiz-
ard. The wizard is an interactive tool which inputs pattern ogunfation from a user. It
validates user input and provides hints on selecting cordigan values. Pattern con-
figuration is constructed in a succession of steps: the sadugered at a previous step
influence the restrictions imposed on the values of a custeptconfiguration.

The result of a successful pattern instantiation is a newatrauld, possibly, a set of
instantiation proof obligations - additional conditiomat must be verified every time
when a pattern is applied. The output model is added to a mudevelopment as a
refinement of the input model and is saved in the Platformbdesta. The instantiation
proof obligations are saved in an EventcBntextfile. The RODIN platform builder
automatically validates and passes them to the Platfornepro

The tool is equipped with pattern editor The current version (0.1.7)[10] uses the
XML notation and an XML editor to construct patterns. Thetrekease is expected to
employ a more user-friendly visual editor. The availabfinement patterns are stored
in the local pattern library Patterns in the library are organised in a catalogue tree,



according to the categories stated in pattern specificatidmuser can browse through
the library catalogue using a graphical dialogue. Thisagjak is used to select a pattern
for instantiation or editing.

When constructing a pattern, a user may wish to generatetité pattern correct-
ness proof obligations. Proof obligations are construbtethe proof obligation gener-
ator component. The component combines a pattern declaratid the definitions of
the used model transformations to generate a completef [gbof obligations, based
on the rules given in Section 4.3. The result is a new contkxpbpulated with the-
orems corresponding to the pattern proof obligations. Taedard Platform facilities
are used to analyse and discharge the theorems.

We believe it is important to facilitate pattern exchangd #ius the tool includes
a component for interfacing with an on-line pattern libtariie on-line pattern library
and the model transformation library are the two main extengoints of the tool. The
pattern specification language can be extended by additgousodel transformations
to the library of model transformation; addition of a modealnisformation should not
affect the pattern instantiation engine and the proof albié; generator.

The current version of the tool is freely available from owrbnsite [10].Several
patterns developed with this tool were applied during fdnimadelling of the Ambient
Campus case study of the RODIN Project [11].

7 Conclusions

In this paper we proposed a theoretical basis for automafioefinement process. We
introduced the notion of refinement patterns — model transfos that generically rep-
resent typical refinement steps. Refinement patterns altowe ueplace a process of
devising a refined model and discharging proof obligations Iprocess of pattern in-
stantiation. While instantiating refinement patterns, agse not only models but also
proofs. All together, this establishes a basis for autamnath this paper we also demon-
strated how to define refinement patterns for the Event B flismaand described a
prototype tool allowing us to automate refinement steps enE.

Our work was inspired by several works on automation of refieet process. The
Refinement Calculator tool [5] has been developed to suppogram development
using the Refinement Calculus theory by R.Back and J. vonW!1jig] The theory was
formalised in the HOL theorem prover, while specific refinetreles were proved as
HOL theorems. The HOL Window Inference library[8] has besedito to facilitate
transformational reasoning. The library allows us to fosagnd transform a particular
part of a model, while guaranteeing that the transformatf@pplicable, will produce
a valid refinement of the entire model.

A similar framework consisting of refinement rules (calledtics) and the tool
support for their application has been developed by Olyeravalcanti, and Wood-
cock [14]. The framework (called ArcAngel) provides sugdor the C.Morgan’s ver-
sion of the Refinement Calculus. The obvious disadvantagetbfthese frameworks is
that the refinement rules that can be applied usually dessriall, localised transfor-
mations. An attempt to perform several transformationsmatependent parts of the
model at once, would require deriving and discharging &altil proof obligations
about the context surrounding transformed parts, that @teer hard to generalise.
However, while implementing our tool, we found the idea dhgghe transformational
approach for model refinement very useful.



Probably the closest to our tool is the automatic refinercoedted by Siemens/Matra
[4]. The tool automatically produces an implementable nhivdBO language (a variant
of implementable B) by applying the predefined rewrite ruke$arge library of such
rules has been created specifically to handle the spedadificatf train systems. The
use of this proprietary tool resulted in significant growtldeveloper productivity. Our
work aims at creating a similar tool yet publicly availabfedalomain-independent.

Obviously the idea to use refinement patterns to facilitagerefinement process
was inspired by the famous collection of software desigtepas [7]. However in our
approach the patterns are not just descriptions of the hgsteering practice but rather
"active” model transformers that allow a designer to refine todel by reusing and
instantiating the generic prefabricated solutions.

As a future work we are planning to further explore the thécaéaspects of the
proposed language of refinement patterns as well as extenekibting collection of
patterns. Obviously, this work will go hand-in-hand witrettool development. We
believe that by building a sufficiently large library of patts and providing designers
with automatic tool supporting refinement process, we \aitilitate better acceptance
of formal methods in practice.
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