

COMPUTING
SCIENCE

Patterns for Refinement Automation

A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky.

TECHNICAL REPORT SERIES

No. CS-TR-1125 October, 2008

TECHNICAL REPORT SERIES

No. CS-TR-1125 October, 2008

Patterns for Refinement Automation

Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, and Alexander Romanovsky

Abstract

Formal modelling is indispensable for engineering highly dependable systems.
However, a wider acceptance of formal methods is hindered by their in- sufficient
usability and scalability. In this paper, we aim at assisting developers in rigorous
modelling and design by increasing automation of development steps. We introduce a
notion of refinement patterns – generic representations of typical correctness-
preserving model transformations. Our definition of a refinement pattern contains a
description of syntactic model transformations, as well as the pattern applicability
conditions and proof obligations for verification of correctness preservation. This
establishes a basis for building a tool supporting formal system development via
pattern reuse and instantiation. We present a prototype of such a tool and some
examples of refinement patterns for automated development in the Event B
formalism.

© 2008 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

ILIASOV, A., TROUBITSYNA, E., LAIBINIS, L., ROMANOVSKY, A..

Patterns for Refinement Automation
[By] A. Iliasov, E. Troubitsyna, L. Labinis, A. Romanovsky..

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2008.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1125)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1125

Abstract

Formal modelling is indispensable for engineering highly dependable systems. However, a wider acceptance of
formal methods is hindered by their in- sufficient usability and scalability. In this paper, we aim at assisting
developers in rigorous modelling and design by increasing automation of development steps.
We introduce a notion of refinement patterns – generic representations of typical correctness-preserving model
transformations. Our definition of a refinement pattern contains a description of syntactic model transformations,
as well as the pattern applicability conditions and proof obligations for verification of correctness preservation.
This establishes a basis for building a tool supporting formal system development via pattern reuse and
instantiation. We present a prototype of such a tool and some examples of refinement patterns for automated
development in the Event B formalism.

About the author

Alexei Ilasov is a Research Associate within the School of Computing Science, Newcastle University.

Alexander Romanovsky is a Research Professor. He has been involved in a number of ESPRIT, FP and
EPSRC/UK projects on system dependability within which a wide range of general fault tolerance mechanisms
and architectures have been developed (DSoS, PDCS, DeVa, CaberNet, MAFTIA, ReSIST, DISCS, RODIN). He
has been a co-investigator of two EPSRC/UK projects (DOTS and TrAmS). Now he is coordinating a major FP7
Integrated Project DEPLOY aiming to make major advances in engineering methods for dependable systems
through the deployment of formal engineering methods in 5 sectors of European industry. His main interests are in
fault tolerance, rigorous design of resilient systems, software architectures, exception handing, mobile agents and
service oriented architectures.

Suggested keywords

REFINEMENT,
FORMA SYSTEM DEVELOPMENT,
REUSE,
TOOLS,
EVENT-B,
RODIN

Patterns for Refinement Automation

Alexei Iliasov1, Elena Troubitsyna2, Linas Laibinis2, and Alexander Romanovsky1

1 Newcastle University, UK
2 Åbo Akademi University, Finland

{alexei.iliasov, alexander.romanovsky}@ncl.ac.uk
{linas.laibinis, elena.troubitsyna}@abo.fi

Abstract. Formal modelling is indispensable for engineering highly dependable
systems. However, a wider acceptance of formal methods is hindered by their in-
sufficient usability and scalability. In this paper, we aim at assisting developers in
rigorous modelling and design by increasing automation of development steps.
We introduce a notion of refinement patterns – generic representations of typi-
cal correctness-preserving model transformations. Our definition of a refinement
pattern contains a description of syntactic model transformations, as well as the
pattern applicability conditions and proof obligations for verification of correct-
ness preservation. This establishes a basis for building a tool supporting formal
system development via pattern reuse and instantiation. Wepresent a prototype of
such a tool and some examples of refinement patterns for automated development
in the Event B formalism.

1 Introduction

Over the recent years model-driven development has became aleading paradigm in
software engineering. System development by stepwise refinement is aformal model-
driven development approach that advocates development ofsystems correct by con-
struction. Development starts from an abstract model, which is gradually transformed
into implementation. Each model transformation step, called arefinementstep, allows
a designer to incorporate implementation details into the model. Correctness of each
refinement step is validated by mathematical proofs.

The refinement approach significantly reduces the required testing efforts and, at the
same time, supports a clear traceability of system properties through various abstraction
levels. However, it is still poorly integrated into existing software engineering process.
Among the main reasons hindering its application are complexity of carrying proofs,
lack of expertise in abstract modelling, and insufficient scalability.

In this paper we propose an approach that aims at facilitating integration of formal
methods into the existing development practice by leveraging automation of refinement
process and increasing reuse of models and proofs. We aim at automating certain model
transformation steps via instantiation and reuse of prefabricated solutions, which we
call refinement patterns. Such patterns generalise certain typical model transformations
reoccurring in a particular development method. They can bethought of as ”refinement
rules in large”.

In general, a refinement pattern is a generic model transformer. Essentially it con-
sists of three parts. The first part is the pattern applicability conditions, i.e., the syntactic
and semantic conditions that should be fulfilled by the modelfor a refinement pattern
to be applicable. The second part contains definition of syntactic manipulations over

the model to be transformed. Finally, the third part consists of the proof obligations
that should be discharged to verify that the performed modeltransformation is indeed a
refinement step.

Application of refinement patterns is compositional. Hencesome large model trans-
formation steps can be represented by a certain combinationof refinement patterns, and
therefore can also be seen as refinement patterns per se. A possibility to compose pat-
terns significantly improves scalability of formal modelling. Moreover, reducing execu-
tion of a refinement step to a number of syntactic manipulations over a model provides a
basis for automation. Finally, our approach supports extensive reuse of not only models
but also proofs. Indeed, by proving that an application of a generic pattern produces a
valid refinement of a generic model, we at the same time verifythe correctness of such
a transformation for any of its instances. This allows us to significantly reduce or even
avoid proving activity in a concrete development.

The theoretical work on defining refinement patterns presented in this paper estab-
lished a basis for building a prototype tool for automating refinement process in Event
B[10]. The tool has been developed as a plug-in for the RODIN platform [1] – an open
toolset for supporting modelling and refinement in the EventB framework. We be-
lieve that, by creating a large library of refinement patterns and providing automated
tool support for pattern matching and instantiation, we will make formal modelling and
verification more accessible for software engineers and hence facilitate integration of
formal methods into software engineering practice.

2 Towards Refinement Automation

2.1 Formal Development by Refinement

System development by refinement is a formal counterpart of model-driven develop-
ment process. Refinement allows us to ensure that the refined,i.e., more elaborated,
model retains all the essential properties of its abstract counterpart. Since refinement
is transitive, the model-driven refinement-based development process enables develop-
ment of systems correct by construction.

The precise definition of refinement depends on the chosen modelling framework
and hence might have different semantics and the degree of rigor. The foundations
of formal reasoning about correctness and stepwise development by refinement were
established by Dijkstra [6] and Hoare [9], and then further developed by R.Back[2],
C.Morgan [13], and J. von Wright [3].

In the refinement calculus framework, a model is representedby a composition of
abstract statements. Formally, we say that statementS is refined by statementS′, writ-
ten S ⊑ S′, if, wheneverS establishes a certain postcondition, so doesS′ [6]. In
general, refinement process can be seen as a way to reduce non-determinism of the
abstract model, to replace abstract mathematical data structures by data structures im-
plementable on a computer, and, hence, gradually introduceimplementation decisions.

To facilitate the refinement process, the typical refinementtransformations have
been generalized into a set of refinement rules [3, 13]. Theserules can be seen as generic
templates (or patterns) that define the general form of the statement to be transformed,
the resultant statement, and the proof obligations that should be discharged to verify
refinement for that particular transformation. However, a refinement rule usually de-
scribes a small localized transformation of a certain modelpart. Obviously, the tools
developed to automate application of such refinement rules [5, 14] lack scalability.

On the other hand, such frameworks as Z, VDM, Event B support the formal de-
velopment by entire model transformation. For instance, the RODIN platform – a tool
support for refinement in Event B allows us to perform refinement by introducing many
changes at once and verify by proofs that these changes result in a correct model refine-
ment. Often a refinement step can be seen as a composition of ”standard” (frequently
reoccurring) localized transformations distributed all over the model. It remains un-
clear, though, if we can employ transformational approach to automate execution of
these transformations, i.e., reuse the models and proofs constructed previously.

In this paper we propose to tackle this problem via definitionand reuse of refinement
patterns. Our definition of refinement patterns builds on theidea of refinement rules. A
refinement pattern in general is a model transformer. Unlikedesign patterns [7], a re-
finement pattern is ”dynamic” in a sense that it takes a model as an input and produces
a new model as an output. Our definition of a refinement patternconsists of three parts.
The first part is the pattern applicability conditions, i.e., the syntactic and semantic con-
ditions that should be fulfilled by the model for a refinement pattern to be applicable.
The second part contains definition of syntactic manipulations on the model to be trans-
formed. Finally, the third part consists of the proof obligations that should be discharged
to verify that the performed model transformation is indeeda refinement step. It is easy
to see, that a refinement pattern manipulates a model on both syntactic and semantic
level.

Although the notion of a refinement pattern is independent ofthe chosen modelling
framework, for clarity we explain our idea of refinement patterns and describe a proto-
type tool that implements them for the Event B formalism. Next we briefly introduce
Event B and give semantic and syntactic views on its models.

2.2 Event B

Event B uses the Abstract Machine Notation for constructingand verifying models.
An abstract machine encapsulates a state (the variables) ofthe model and provides
operations on the state. A simple abstract machine has the following general form:

SYSTEM AM

VARIABLES v

INVARIANT I

INITIALISATION INIT
EVENTS

E1

. . .

EN

The machine is uniquely identified by its nameAM. The state variables of the machine,
v, are declared in theVARIABLES clause and initialised inINIT as defined in the
INITIALISATION clause. The variables are strongly typed by constraining predicates
of the machine invariantI given in theINVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates and the predicates defining the
properties of the system that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events specified
in EVENTS clause. An event is defined as follows:

E = WHEN g THEN S END

where guardg is conjunction of predicates over state variablesv, and actionS is an
assignment to state variables.

The occurrence of events represents the observable behaviour of the system. The
guard defines the conditions under which the action can be executed, i.e., when the
event isenabled. The action can be either a deterministic assignment to the state vari-
ables or a non-deterministic assignment from a given set or an assignment according
to a given postcondition. These assignments are denoted as:=, :∈ and:| correspond-
ingly. If several events are enabled then any of them can be chosen for execution non-
deterministically. If none of the events is enabled then thesystem deadlocks.

Assume that the refinement machineAM ′ is a result of refinement of the abstract
machineAM:

SYSTEM AM ′

VARIABLES v′

INVARIANT I ′

INITIALISATION INIT′

EVENTS

E1

. . .

EN

In AM ′ we replace the abstract data structures ofAM with the concrete ones. The
invariant ofAM ′ – I ′ – defines now not only the invariant properties of the refined
model, but also the connection between the newly introducedvariables and the abstract
variables that they replace. For a refinement step to be valid, every possible execution
of the refined machine must correspond (viaI ′) to some execution of the abstract ma-
chine. To demonstrate this, we should prove thatINIT ′ is a valid refinement ofINIT,
each event ofAM ′ is a valid refinement of its counterpart inAM and that the refined
specification does not introduce additional deadlocks, i.e.,

wp(INIT ′, ¬wp(INIT,¬I ′)) = true,

I ∧ I ′ ∧ g′

i ⇒ gi ∧ wp(S′,¬wp(S,¬InvC)), and
I ∧ I ′ ∧ gi ⇒

W

N

i
g′

i

2.3 Event-B Models as Syntactic Objects

To define refinement patterns, we now consider an Event B modelas a syntactic math-
ematical object. For brevity, we omit representations of some model elements here,
though they are supported in our tool implementation [10]. Asubset of Event-B models
used in this paper can be described by the following data structure:

model :: var : VAR∗

inv : PRED∗

evt : event∗

event :: name : EVENT
param : PARAM∗

guards : PRED∗

actions : action∗

action :: var : VAR
style : STYLE
expr : EXPR

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressions,event names and parameters.
An event is represented by a tuple containing the event name,(a list of) its parameters,
guards, and actions. The reserved event nameinit denotes the initialisation event.

An action, in its turn, is a tuple containing a variable, an action style and an expression,
where an action style denotes one of the assignment types : i.e.,STYLE = {:=, :∈, :|}.

Sub-elements of a model element can be accessed by using the dot operator:act.style

is the style of an actionact. Instances of the models, events and actions are constructed
using a special notation〈a1 | · · · | an〉. The following example shows how an Event B
model is represented in our notation:

SYSTEM m0
VARIABLES x

INVARIANT x ∈ Z

INITIALISATION x := 0
EVENTS

count = BEGIN x := x + 1 END

〈 〈x〉 |
〈”x ∈ Z”〉 |

〈 〈init | − | − | 〈x |:=| ”0”〉〉,

〈count | − | − | 〈x |:=| ”x + 1”〉〉〉〉

In the example,x is an element ofVAR, init and count are event names from
EVENT, ”x ∈ Z” is a predicate, and”0”, ”x + 1” are model expressions.

Now we have set a scene for a formal definition of refinement patterns that aim at
automating refinement process in general and Event B in particular.

3 Refinement Patterns

3.1 Definitions

Definition 1. LetS be a set of all well-formed models defined according to a syntax of
a chosen modelling language. Then a transformation ruleT is a function computing a
new model for a given input model:

T : S × C 7→ S

whereC contains a set of all possible configurations (i.e., additional parameters) of a
transformation rule.

Note thatT is defined as a partial function, i.e., it produces a new modelonly for some
acceptable input modelss and configurationsc, i.e., when(s, c) ∈ dom(T).

Definition 2. A refinement pattern is a transformation ruleP : S × C 7→ S that, for
any acceptable input model and configuration, constructs a model refinement:

∀ s, c.(s, c) ∈ dom(P) ⇒ s ⊑ P (s, c)

where⊑ denotes a refinement relation.

In this paper we use the Event-B modelling method to give concrete meanings to the
concepts of modelsS, configurationsC, and a refinement relation⊑. This allows us to
reuse much of the Event-B proof theory when demonstrating that a transformation rule
is indeed a refinement pattern.

3.2 The Language of Transformations

We propose a special language to construct transformation rules. The proposed lan-
guage contains basic transformation rules as well as the constructs allowing to com-
pose complex rules from simpler ones. For instance, a refinement pattern is usually
composed from several basic transformation rules. These rules themselves might not
be refinement patterns. However, by attaching to them additional proof obligations, we
can verify that their composition becomes a refinement pattern.

The structure of the basic rules reflects the way a transformation rule or a refine-
ment pattern is applied. First, rule applicability for a given input model and configura-
tion parameters is checked. The applicability condition tobe checked can contain both
syntactic and semantic constraints on input models and configurations. Mathematically,
for a transformation ruleT , its applicability condition corresponds todom(T). Then,
the input models for given configurationc is syntactically transformed into the output
model calculated as function applicationT (s, c). Finally, in case of a refinement pattern,
the resultT (s, c) should be demonstrated to be a refinement of the input models, i.e.,
s ⊑ T (s, c). The last expression, using the proof theory of Event B, can be simplified
to specific proof obligations on model elements to be verified.

A basic rule has the following general form:

rule name(c)
context Q(c, s)
effect E(c, s)
proof obligation PO1(c, s)
. . .

proof obligation POn(c, s)

Herename andc are correspondingly the rule name and list of its parameters. Pred-
icate Q(c, s) defines the rule application context (applicability conditions), wheres
is the model being transformed. The effect functionE(c, s) computes a new model
from a current models and parametersc. The proof obligation part contains a list of
theorems to be discharged to establish that the rule is a (part of) refinement pattern
and not just a transformation rule. From now on, we writecontext(r), effect(r) and
proof obligations(r) to refer to the context, effect computation function, and collec-
tion of proof obligations of a ruler.

As an example, let us consider two primitive rules for the Event-B method. The first
transformation adds one or more new variables:

rule newvar(vv)
context vv ∩ s.var = ∅

effect 〈s.var ∪ vv | s.inv | s.evt〉
proof obligation ∀ v ∈ vv · (∃ a · a ∈ s.init.action ∧ v ∈ a.var)

The rule applicability condition requires that the new variables have fresh names for the
input model. The effect function simply adds the new variables to the model structure.
The rule also has a single proof obligation requiring that the variable(s) is assigned in
the initialisation action. Such an action would have to be added by some other basic
rule for the same refinement step.

Another example is the rule for adding new model invariant(s).

p(c) = basic(c) primitive rule
| p; q sequential composition
| p‖q parallel composition
| if Q(c, s) then p end conditional rule
| conf i : Q(i, c, s) do p(i ∪ c) end parameterised rule
| par i : Q(i, c, s) do p(i ∪ c) end generalised parallel composition

Fig. 1.The language of transformation rules

rule newinv(ii)
context ii ⊆ PRED ∧ ∀ i ∈ ii · FV (ii) ⊆ s.var

effect 〈s.var | inv ∪ ii | evt〉
proof obligation

∀(e, v, v′) · e ∈ s.evt ∧
Inv(v) ∧ Guardse(v) ∧ BA(v, v′) ⇒ Inv(v′)

proof obligation ∃ v · lnv(v)

HereFV (x) is set of free variables inx, Inv stands for (
∧

i∈s.inv∪ii i), andGuardse

is defined as (
∧

g∈e.guards g). Moreover,BA is the before-after relation describing the
action execution in terms of the before and after values of model variables. Both proof
obligations are taken directly from the Event-B semantics (i.e., the corresponding proof
obligation rules). The first obligation requires to show that the new invariant is preserved
by all model events, while the second one checks feasibilityof such an addition by
asking to prove that the new invariant is not contradictory.This example illustrates how
the underlying Event B semantics is used to derive proof obligations for refinement
patterns.

The table below lists the basic rules for the chosen subset ofEvent B. There are
two classes of rules – for adding new elements and for removing existing ones. All
the rules implicitly take an additional argument – the modelbeing transformed. A
double-character parameter name signifies that a rule accepts a set of elements, e.g.,
newgrd(e, gg) adds all the guards from a given setgg to an evente.

rule newvar(vv) rule delvar(vv)
rule newinv(ii) rule delinv(ii)
rule newevt(ee) rule delevt(ee)
rule newgrd(e, gg) rule delgrd(e, gg)
rule newact(e, aa) rule delact(e, aa)
rule newactexp(e, a, p)

To construct more complex transformations, we introduce a number of composition
operators into our language. They include the sequential,p; q, and parallel,p‖q, com-
position constructs. In addition, there is the conditionalrule construct,if c thenp end, as
well as a construct allowing to introduce additional rule parameters -conf i : Q dop(i) end.
Finally, to handle rule repetitions, generalised parallelcomposition is introduced in the
form of a loop construct:par c : Q do p(c) end. The language summary is given in
Figure 1.

3.3 Examples

In this section we present a couple of simple examples of refinement patterns con-
structed using the proposed language.

Example 1 (New Variable).A refinement step adding a new variable can be accom-
plished in three steps. First, the new variable is added to the list of model variables.
Second, the typing invariant is added to the model. Finally,an initialisation action is
provided for the variable. The following refinement patternadds a new variable de-
clared to be a natural number and initalised with zero:

conf v : ¬ (v ∈ s.var) do
newvar({v});
(newinv({”v ∈ N”}, s) ‖ newact(init, {〈v |:=| ”0”〉}))

end

The only pattern parameter (apart from the implicit inputs) is some fresh name for the
new model variable.

A pattern application example is given below. The left-handside model is an input
model and the righ-hand side is the refined version constructed by the pattern. The
example assumes that variable nameq for chosen for parameterv.

SYSTEM m0
VARIABLES x

INVARIANT x ∈ Z

INITIALISATION x := 0
EVENTS

count = BEGIN x := x + 1 END

SYSTEM m1
VARIABLES x, q

INVARIANT x ∈ Z ∧ q ∈ N

INITIALISATION x := 0‖q := 0
EVENTS

count = BEGIN x := x + 1 END

A more general (and also useful) pattern version could accept a typing predicate and
initialisation action as additional pattern parameters.

Example 2 (Action Split).In Event B, an abstract event may be refined into a choice
between two or more concrete events, each of which must be a refinement of the abstract
event. A simple case of such refinement is implemented by the refinement pattern below.
The pattern creates a copy of an abstract event and adds a new guard and its negation to
the original and new events. The guard expression is supplied as a pattern parameter.

conf e, en : e ∈ s.evt ∧ ¬ (en ∈ s.evt) do
newevt(en, s);
newgrd(en, e.guard) ‖
newact(en, e.action);
conf g : g ∈ PRED ∧ FV (g) ⊆ s.var

do newgrd(e, g) ‖ newgrd(en,¬g) end
end

The pattern configuration requires three parameters. Parametere refers to the event to
be refined from the input models, en is some fresh event name, andg is a predicate on
the model variables.

The pattern is applicable to models with at least one event. The result is a model with
an additional event and a constrained guard of the original event. As an input model we
use the model from the previous example.

SYSTEM m1
VARIABLES x

INVARIANT x ∈ Z

INITIALISATION x := 0
EVENTS

count = WHEN x mod 2 = 0 THEN x := x + 1 END

inc = WHEN ¬(x mod 2 = 0) THEN x := x + 1 END

Here, the pattern parameters are instantiated as follows:e ascount, en asinc, andx as
x mod 2 = 0.

4 Pattern Composition

In the previous section we defined the notion of a basic transformation rule as a combi-
nation of the applicability conditions, transformation (effect) function, and refinement
proof obligations. Moreover, In Figure 1, we also introduced various composition con-
structs for creating complex transformation rules. In thissection we will show how
we can inductively define the applicability conditions, effect, and proof obligations for
composed rules.

4.1 Rule Applicability Conditions

For a basic rule, the rule applicability condition is definedin its context clause. For
more complex rules constructed using the proposed languageof transformation rules,
rule applicability is derived inductively according to thefollowing definition:

app(basic)(c, s) = context(basic)(c, s)
app(p; q)(c, s) = app(p)(c, s) ∧ app(q)(c, eff(p)(c, s))
app(p‖q)(c, s) = app(p)(c, s) ∧ app(q)(c, s) ∧

inter(scope(p), scope(q)) = ⊘
app(if G(c, s) then p end)(c, s) = G(c, s) ⇒ app(p)(c, s)
app(conf i : Q(i, c, s) do p(i) end)(c, s) = ∀ i · Q(i, c, s) ⇒ app(p(i))(c, s)
app(par i : Q(i, c, s) do p(i) end)(c, s) = ∀ i · Q(i, c, s) ⇒ app(p(i))(c, s) ∧

∀(i, j) · Q(i, c, s) ∧ Q(j, c, s) ∧ i 6= j ⇒
inter(scope(p(i)), scope(p(j))) = ⊘

The consistency requirements for the sequential composition, conditional and parame-
terised rules are quite standard. Two rules can be applied inparallel if they are work-
ing on disjoint scopes. For instance, a rule transforming anevent (e.g., adding a new
guard) cannot be composed with another rule transforming the same event. A similar
requirement is formulated for the loop rule, since it is realised as generalised parallel
composition.

The rule scopes are calculated by using the predefined function scope, which re-
turns a pair of lists, containing the model elements that therule updates or depends on.
Intersection of rule scopes is computed as an intersection of the elements updated by
the transformations and the pair-wise intersection of elements updated by one rule and
depended on by another:

inter((r1, w1), (r2, w2)) = (w1 ∩ w2) ∪ (r1 ∩ w2) ∪ (r2 ∩ w1)

4.2 Effect of Pattern Application

Once the rule applicability conditions are met, an output model can be syntactically
constructed in a compositional way. For a basic rule, the effect function is directly ap-
plied to transform an input model. For more complex rules, a new model is constructed
according to an inductive definition of the functioneff given below.

eff(basic)(c, s) = effect(basic)(c, s)
eff(p; q)(c, s) = eff(q)(c, eff(p)(c, s))
eff(p‖q)(c, s) = eff(q)(c, eff(p)(c, s)), or

= eff(p)(c, eff(q)(c, s))
eff(if G(c, s) then p end)(c, s) = eff(p)(c, s), if G(c, s)

= s, otherwise
eff(conf i : Q(i, c, s) do p(i) end)(c, s) = eff(p(i))(c, s), if Q(i, c, s)

= s, otherwise
eff(par i : Q(i, c, s) do p(i) end)(c, s) = (‖i ∈ Q(i, s, c) · eff(p(i))(c, s)),

if ∃(i, c, s) · Q(i, c, s)
= s, otherwise

As expected, the result of sequential composition of two rules is computed by applying
the second rule to the result of the first rule. For parallel composition, the result is
computed in the same manner but the order of the rules should not affect the overall
result. The resulting model of the loop construct is computed as generalised parallel
composition of an indexed family of transformation rules. The last three cases depend
on some additional application conditions (i.e.,G(c, s) orQ(i, c, s)). If these conditions
are not true, rule application leaves the input model unchanged.

The rule application procedure based on the presented definition can be easily auto-
mated. The only interesting detail is in providing input values for the rule parameters.
In our tool implementation for the Event-B method, briefly covered later, the user is
requested to provide the parameter values during rule instantiation, while appropriate
contextual hints and descriptions are provided by the tool.

4.3 Pattern Proof Obligations

To demonstrate that a rule is a refinement pattern, we have to discharge all the prooof
obligations of individual basic rules occuring in the rule body. These proof obligations
cannot be discharged without considering the context produced by the neighbour rules.
The following inductive definition shows how the list of proof obligations is built for
a particular refinement pattern. The context information for each proof obligation is
accumulated, while traversing the structure of a pattern, as a set of additional hypotheses
that can be then used in automated proofs.

po(Γ, basic)(c, s) = {Γ |= proof obligations(basic)}
po(Γ, p; q)(c, s) = po(Γ ∪ {s′ = eff(p; q)(c, s)}, p(c, s′)) ∪

po(Γ ∪ {s′ = eff(p; q)(c, s)}, q(c, s′))
po(Γ, p‖q)(c, s) = po(Γ, p) ∪ po(Γ, q)
po(Γ, if G(c, s) then p end)(c, s) = po(Γ ∪ {G(c, s)}, p)
po(Γ, conf i : Q(i, c, s) do p(i) end)(c, s) =

S

i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))
po(Γ, par i : Q(i, c, s) do p(i) end)(c, s) =

S

i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))

HereΓ is a set of accumulated hypothesis containing pattern parametersc and the
initial model s as free variables. For each basic rule, we formulate a theorem whose
right-hand side is a list of the rule proof obligations and the left-hand side is a set of
hypotheses containing the knowledge about the context in which the rule is applied.

4.4 Assertions

The described procedure of building a list of proof obligations tries to include every
possible fact as a proof obligation hypothesis. This can be aproblem for larger patterns

as the size of a list of accumulated hypotheses makes a proof obligation intractable.
To rectify the problem, we allow a modeller to manually add fitting hypotheses, called
assertions, that can be inferred from the context they appear in. An assertion would
be typically simple enough to be discharged automatically by a theorem prover. At the
same time, it can be used to assist in demonstrating the proofobligations of the rule
immediately following the assertion.

An assertion is written asassert(A(c, s)) and is delimited from the neighboring
rules by semicolons. An assertion has no effect on rule instantiation and application.
The following additional cases of thepo definition are used to generate additional proof
obligations for assertions as well as insert an asserted knowledge into the set of collected
hypotheses of a refinement pattern.

po(Γ, p; assert(A(c, s)))(c, s) = Γ ∪ {s′ = eff(p)(c, s)} |= A(c, s′)
po(Γ, assert(A(c, s)); p)(c, s) = po(Γ ∪ {A(c, s)}, p)(c, s)

5 Triple Modular Redundancy Pattern

Triple Modular Redundancy (TMR) is a fault-tolerance mechanism in which three com-
ponents produce in parallel results that are processed by a voting element [12]. The
mechanism masks a single component failure. In this paper wedemonstrate that a re-
finement step that introduces TMR arrangement into the modelcan be generalized as a
refinement pattern as shown below.

Our initial specification should have a variable representing a component for which
TMR is introduced. Moreover, it should have an event that non-deterministically up-
dates this variable. Non-determinism is used to model faulty and hence unpredictable
results produced by the component. We do not make any assumptions about the variable
type. Furthermore, the event can contain some other actionsin addition to updating the
variable modelling component.

In the refined model we replace the single abstract componentwith three compo-
nents. The new components are modelled by fresh variables. The variable types and
initialisation are simply copied from the variable modelling abstract component.

The pattern uses a number of configuration parameters. The parameterss selects a
variable modelling the component;u is an event updating the variable;a is an action
fromu updating variables (u is allowed to contain actions assigning to other variables).
ph, fl, si andri are the new variables defined by the pattern. The variableph keeps
track of the current phase in the TMR implementation;fl is a flag indicating a failure
to get a majority vote; variablessi, i = 1..3, record the output from the three new
components introduced by the pattern; flagri indicates the availability of a result from
componentsi.

conf s, u, a, ph, fl, s1, s2, s3, r1, r2, r3 :
s ∈ s.var ∧ u ∈ s.evt ∧ a ∈ u.actions ∧ a.style 6= (:=) ∧ {s} = a.var ∧
{s1, s2, s3, r1, r2, r3, ph, fl} ⊆ (VAR − var) ∧
part({{s1}, {s2}, {s3}, {r1}, {r2}, {r3}, {ph}, {fl}})

do
vardefs ; evtdefs ; evtrefine ; invariants

end

vardefs
df
=

block1 ‖ block2 ‖ block3 ‖
(newinv(”ph ∈ BOOL”); newini(〈ph |:=| ”FALSE”〉)) ‖
(newinv(”fl ∈ BOOL”); newini(〈fl |:=| ”FALSE”〉))

block1

df
=

(newinv(”s1 ∈ s.type”);newini(〈s1 | init(s).style | init(s).expr〉))‖
(newinv(”r1 ∈ BOOL”); newini(〈r1 |:=| ”FALSE”〉))

. . .

eventdefs
df
=

conf u1, u2, u3 :
{u1, u2, u3} ⊂ EVENT \ s.evt ∧ part({{u1}, {u2}, {u3}})

do
copy1 ‖ copy2 ‖ copy3

end

‖

newevt(〈alt | − | ”s2 = s3” | 〈s |:=| ”s2”〉〉)‖
newevt(〈fail | − | ”s1 6= s2 ∧ s2 6= s3 ∧ s1 6= s3” | 〈fl |:=| ”TRUE”〉〉)

copy1

df
=

newevt(〈u1 | − | {”r1 = FALSE”} ∪ u.guards |
〈s1 | a.style | a.expression〉, 〈r1 |:=| ”TRUE”〉, 〈ph |:=| ”FALSE”〉〉

. . .

evtrefine
df
=

newgrd(u, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(u, ”s1 = s2 ∨ s1 = s3”);
delact(u, a); newact(u, 〈s |:=| ”s1”〉);
(newact(u, 〈r1 |:=| ”FALSE”〉) ‖

newact(u, 〈r2 |:=| ”FALSE”〉) ‖
newact(u, 〈r3 |:=| ”FALSE”〉));

newact(〈ph |:=| ”TRUE”〉)

invariants
df
=

newinv(”ph = TRUE ∧ (s1 = s2 ∨ s2 = s3)) ⇒ s = s1”);
newinv(”ph = TRUE ∧ s2 = s3) ⇒ s = s2”);
newinv(”ph = TRUE ∧ s1 6= s2 ∧ s2 6= s3 ∧ s1 6= s3) ⇒ fl = TRUE”)

The shortcut notationnewini(a) used in the pattern source stands for declaration of
the initialisation action:newini(a)

df
= newact(init, a). The shortcutinit(v) refers to

an action of the initialisation event assigning to a variable v. The predicatepart, used
in eventdefs, requires that its argument is a set of disjoint subsets.

Fig. 2.The Event-B refinement patterns tool architecture.

6 Tool for Refinement Automation

A proof of concept implementation of the pattern tool for theEvent B method has been
realised as a plug-in to the RODIN Platform [1]. The plug-in seamlessly integrates with
the RODIN Platform interface so that a user does not have to switch between different
tools and environments while applying patterns in an Event Bdevelopment. The plug-in
relies on two major RODIN Platform components: the Platformdatabase, which stores
models, proof obligations and proofs constituting a development; and the prover which
is a collection of automated theorem provers supplemented by the interactive prover.

The overall tool architecture is presented in Figure 2. The core of the tool is thepat-
tern instantiation engine. The engine uses an input model, imported from the Platform
database, and a pattern, from the pattern library, to produce a model refinement. The
engine implements only the core pattern language: the sequential and parallel compo-
sition, andforall construct. The method-specific model transformations (in this case,
Event-B model transformations) are imported from themodel transformation library.

The process of a pattern instantiation is controlled by thepattern instantiation wiz-
ard. The wizard is an interactive tool which inputs pattern configuration from a user. It
validates user input and provides hints on selecting configuration values. Pattern con-
figuration is constructed in a succession of steps: the values entered at a previous step
influence the restrictions imposed on the values of a currentstep configuration.

The result of a successful pattern instantiation is a new model and, possibly, a set of
instantiation proof obligations - additional conditions that must be verified every time
when a pattern is applied. The output model is added to a current development as a
refinement of the input model and is saved in the Platform database. The instantiation
proof obligations are saved in an Event Bcontextfile. The RODIN platform builder
automatically validates and passes them to the Platform prover.

The tool is equipped with apattern editor. The current version (0.1.7)[10] uses the
XML notation and an XML editor to construct patterns. The next release is expected to
employ a more user-friendly visual editor. The available refinement patterns are stored
in the local pattern library. Patterns in the library are organised in a catalogue tree,

according to the categories stated in pattern specifications. A user can browse through
the library catalogue using a graphical dialogue. This dialogue is used to select a pattern
for instantiation or editing.

When constructing a pattern, a user may wish to generate the set of pattern correct-
ness proof obligations. Proof obligations are constructedby the proof obligation gener-
ator component. The component combines a pattern declaration and the definitions of
the used model transformations to generate a complete list of proof obligations, based
on the rules given in Section 4.3. The result is a new context file populated with the-
orems corresponding to the pattern proof obligations. The standard Platform facilities
are used to analyse and discharge the theorems.

We believe it is important to facilitate pattern exchange and thus the tool includes
a component for interfacing with an on-line pattern library. The on-line pattern library
and the model transformation library are the two main extension points of the tool. The
pattern specification language can be extended by adding custom model transformations
to the library of model transformation; addition of a model transformation should not
affect the pattern instantiation engine and the proof obligation generator.

The current version of the tool is freely available from our web site [10].Several
patterns developed with this tool were applied during formal modelling of the Ambient
Campus case study of the RODIN Project [11].

7 Conclusions

In this paper we proposed a theoretical basis for automationof refinement process. We
introduced the notion of refinement patterns – model transformers that generically rep-
resent typical refinement steps. Refinement patterns allow us to replace a process of
devising a refined model and discharging proof obligations by a process of pattern in-
stantiation. While instantiating refinement patterns, we reuse not only models but also
proofs. All together, this establishes a basis for automation. In this paper we also demon-
strated how to define refinement patterns for the Event B formalism and described a
prototype tool allowing us to automate refinement steps in Event B.

Our work was inspired by several works on automation of refinement process. The
Refinement Calculator tool [5] has been developed to supportprogram development
using the Refinement Calculus theory by R.Back and J. von Wright. [3] The theory was
formalised in the HOL theorem prover, while specific refinement rules were proved as
HOL theorems. The HOL Window Inference library[8] has been used to to facilitate
transformational reasoning. The library allows us to focuson and transform a particular
part of a model, while guaranteeing that the transformation, if applicable, will produce
a valid refinement of the entire model.

A similar framework consisting of refinement rules (called tactics) and the tool
support for their application has been developed by Oliveira, Cavalcanti, and Wood-
cock [14]. The framework (called ArcAngel) provides support for the C.Morgan’s ver-
sion of the Refinement Calculus. The obvious disadvantage ofboth these frameworks is
that the refinement rules that can be applied usually describe small, localised transfor-
mations. An attempt to perform several transformations on independent parts of the
model at once, would require deriving and discharging additional proof obligations
about the context surrounding transformed parts, that are rather hard to generalise.
However, while implementing our tool, we found the idea of using the transformational
approach for model refinement very useful.

Probably the closest to our tool is the automatic refiner toolcreated by Siemens/Matra
[4]. The tool automatically produces an implementable model in B0 language (a variant
of implementable B) by applying the predefined rewrite rules. A large library of such
rules has been created specifically to handle the specifications of train systems. The
use of this proprietary tool resulted in significant growth of developer productivity. Our
work aims at creating a similar tool yet publicly available and domain-independent.

Obviously the idea to use refinement patterns to facilitate the refinement process
was inspired by the famous collection of software design patterns [7]. However in our
approach the patterns are not just descriptions of the best engineering practice but rather
”active” model transformers that allow a designer to refine the model by reusing and
instantiating the generic prefabricated solutions.

As a future work we are planning to further explore the theoretical aspects of the
proposed language of refinement patterns as well as extend the existing collection of
patterns. Obviously, this work will go hand-in-hand with the tool development. We
believe that by building a sufficiently large library of patterns and providing designers
with automatic tool supporting refinement process, we will facilitate better acceptance
of formal methods in practice.

Acknowledgements

This work is supported by IST FP7 DEPLOY project.

References

1. RODIN Event-B Platform.http://rodin-b-sharp.sourceforge.net/, 2007.
2. R. Back. On correct refinement of programs.Journal of Computer and Systems Sciences,

23(1):49–68, 1981.
3. R. Back and J. von Wright.Refinement Calculus: A Systematic Introduction. Springer, 1998.
4. L. Burdy and J.-M. Meynadier. Automatic Refinement.Workshop on Applying B in an

industrial context : Tools, Lessons and Techniques - Toulouse, FM’99, 1999.
5. M. Butler, J. Grundy, T. Løangbacka, R. Rukšenas, and J. von Wright. The Refinement

Calculator: Proof Support for Program Refinement.Proc. of Formal Methods Pacific, 1997.
6. E.W. Dijkstra.A Discipline of Programming. Prentice-Hall International, 1976.
7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns. Addison-

Wesley. ISBN 0-201-63361-2, 1995.
8. J. Grundy. Transformational Hierarchical Reasoning.The Computer Journal, 39(4):291–

302, 1996.
9. C. A. Hoare. An Axiomatic Basis for Computer Programming.Communications of the ACM,

12(10):576–583, 1969.
10. A. Iliasov. Finer Plugin.http://finer.iliasov.org, 2008.
11. Alexei Iliasov, Alexander Romanovsky, Budi Arief, Linas Laibinis, and Elena Troubitsyna.

On Rigorous Design and Implementation of Fault Tolerant Ambient Systems. InISORC
’07: Proceedings of the 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pages 141–145, Washington, DC, USA, 2007.
IEEE Computer Society.

12. R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Improve Com-
puter Reliability.IBM Journal, pages 200–209, April 1962.

13. Carroll Morgan.Programming From Specifications. Prentice Hall International (UK) Ltd.,
1994.

14. Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Arcangel: a tactic language for refine-
ment.Formal Asp. Comput., 15(1):28–47, 2003.

