
OpenCL
Taking the graphics processor beyond graphics.

Features
•	Hardware	abstraction
•	Familiar	C-based	language
•	IEEE	754–based	precision
•	Optimized	at	runtime
•	Works	with	OpenGL

Technology Brief
OpenCL

Modern	graphics	processing	units	(GPUs)	have	evolved	from	single-purpose	chips	
into	flexible	processors	that	offer	levels	of	performance	once	reserved	for	room-sized	
supercomputers.	OpenCL	is	a	new	API,	language,	and	runtime	in	Mac	OS	X	version	10.6	
Snow	Leopard	that	lets	any	application	tap	into	the	vast	computing	power	of	the	GPU,	
opening	up	incredible	performance	opportunities.	

Supercomputer	Performance
Each	new	generation	of	GPUs	pushes	the	graphics-rendering	envelope	forward	by	
delivering	increased	realism,	fidelity,	and	resolution.	As	a	result,	today’s	GPUs	are	
capable	of	rendering	billions	of	pixels	per	second.	Each	pixel	is	the	end-result	of	a	
complex	set	of	mathematical	operations.	When	viewed	from	the	computational	
perspective,	GPUs	are	performing	operations	at	supercomputer	performance	levels,	
with	the	fastest	GPUs	performing	around	one	trillion	computations	per	second	
(1000	gigaFLOPS).

2002 2003 2004 2005 2006 2007 2008 2009
0

200

400

600

800

1000

1200
GFLOPS

Source:	NVIDIA

2Technology Brief
OpenCL

Massive	Parallelism
Behind	the	remarkable	rise	in	GPU	computing	power	is	the	dramatic	increase	in	the	
amount	of	work	a	GPU	performs	at	once.	Because	there	are	over	a	million	pixels	on	a	
typical	screen,	the	best	way	to	rapidly	render	graphics	is	to	process	more	than	one	pixel	
at	a	time.	GPU	designers	now	include	large	numbers	of	pixel	processing	elements	on	
their	chips.	The	more	pixel	processing	elements	a	GPU	has,	the	faster	it	can	calculate	all	
the	pixels	and	produce	the	resulting	graphics	onscreen.	The	latest	GPUs	process	over	a	
hundred	pixels	simultaneously	to	fluidly	render	even	the	most	complex	3D	scenes.

Moving	Beyond	Graphics
Early	GPUs	were	designed	to	specifically	implement	graphics	programming	standards	
such	as	OpenGL.	The	tight	coupling	between	the	language	used	by	graphics	programmers	
and	the	inner	workings	of	the	chips	ensured	good	performance	for	most	applications.	
However,	this	relationship	limited	the	graphics-rendering	realism	to	only	that	which	
was	defined	in	the	graphics	language.	To	overcome	this	limitation,	GPU	designers	
eventually	made	the	pixel	processing	elements	customizable	using	specialized	programs	
called	graphics	shaders.

Over	time,	developers	and	GPU	vendors	evolved	shaders	from	simple	assembly	language	
programs	into	high-level	programs	that	create	the	amazingly	rich	scenes	found	in	today’s	
3D	software.	To	handle	increasing	shader	complexity,	the	vertex	and	pixel	processing	
elements	were	redesigned	to	support	more	generalized	math,	logic,	and	flow	control	
operations.	This	set	the	stage	for	a	new	way	to	accelerate	computation.

Harnessing	the	Power	of	the	GPU
Apple	realized	that	the	trends	in	GPU	designs	offered	an	incredible	opportunity	to	take	
the	GPU	beyond	graphics.	All	that	was	needed	was	a	nongraphics	API	that	could	engage	
the	emerging	programmable	aspects	of	the	GPU	and	access	its	immense	power.	OpenCL	
is	that	technology,	delivering	the	means	for	any	application	to	access	the	supercomputer-
like	performance	of	the	modern	GPU.

OpenCL	Up	Close
OpenCL	is	designed	from	the	ground	up	to	accelerate	application	performance	by	using	
the	GPU	for	general-purpose	computations.	It	is	a	complete	framework	composed	of	
an	approachable	C-based	language	with	support	for	parallelism,	and	an	API	that	allows	
applications	to	use	one	or	more	OpenCL	devices	(GPUs,	CPUs,	and	so	on)	in	the	system.

OpenCL API

Application

OpenCL runtime

Driver

GPU hardware

Open CL kernels

Open CL C language

The OpenCL architecture

More on graphics shaders
Shaders	are	very	specialized	programs	that	
allow	specific	processing	steps	in	a	GPU	to	
be	reprogrammed.	Shaders	allow	common	
3D	graphics	operations,	such	as	vertex	
transformation	and	pixel	color	calculations,	
to	be	changed	to	suit	the	needs	of	the	
software	developer	without	requiring	a	
whole	new	graphics	API.

Also works with the CPU
OpenCL	is	able	to	efficiently	use	
multicore	CPUs,	which	allows	systems	
without	an	OpenCL-capable	GPU	to	
benefit	from	its	capabilities.

3Technology Brief
OpenCL

OpenCL	C
OpenCL	defines	OpenCL	C,	which	is	a	variant	of	the	familiar	C99	language	optimized	
for	GPU	programming.	It	incorporates	changes	necessary	to	adapt	the	C	programming	
language	for	use	with	GPUs	and	to	support	parallel	processing.	OpenCL	C	includes	
comprehensive	support	for	vector	types	to	streamline	data	flow	and	increase	efficiency.	
Well-defined	numerical	precision	requirements	(based	on	IEEE	754-2008)	are	specified	to	
provide	mathematical	consistency	across	the	GPU	hardware	of	different	vendors.

Developers	use	OpenCL	C	to	rewrite	just	the	performance-	or	data-intensive	routines	in	
their	applications.	During	the	rewrite,	the	routine	is	factored	down	to	its	most	elemental	
state:	a	series	of	discrete	operations	that	describe	the	computations	that	can	be	performed	
in	parallel	over	a	data	set.	The	resulting	code,	which	is	similar	to	a	traditional	C	function,	
is	called	an	OpenCL	kernel.

OpenCL C kernel Kernel executable

Compile for GPU GPU
code

__kernel void
horizontal_reflect(__rd image2d_t src,
 __wr image2d_t dst)
{
 int x = get_global_id(0); // x-coord
 int y = get_global_id(1); // y-coord
 int width = get_image_width(src);
 float4 src_val = read_imagef(src, sampler,
 (int2)(width-1-x, y));
 write_imagef(dst, (int2)(x, y), src_val);

}

Unlike	traditional	C	code,	OpenCL	kernels	are	incorporated	into	the	application	in	an	
uncompiled	state.	They	are	compiled	on	the	fly	and	optimized	for	the	user’s	hardware	
before	being	sent	to	the	GPU	for	processing.

The	OpenCL	API
The	OpenCL	API	provides	functions	that	allow	an	application	to	manage	parallel	comput-
ing	tasks.	It	enumerates	the	OpenCL-capable	hardware	in	a	system,	sets	up	the	sharing	
of	data	structures	between	the	application	and	OpenCL,	controls	the	compilation	and	
submission	of	kernels	to	the	GPU,	and	has	a	rich	set	of	functions	that	manage	queuing	
and	synchronization.

OpenCL	Runtime
The	OpenCL	runtime	executes	tasks	submitted	by	the	application	via	the	OpenCL	API.	
The	runtime	efficiently	transfers	data	between	main	memory	and	the	dedicated	VRAM	
used	by	the	GPU,	and	directs	execution	of	the	kernels	on	the	GPU	hardware.	During	exe-
cution,	the	OpenCL	runtime	manages	the	in-order	or	out-of-order	dependencies	between	
the	kernels,	and	utilizes	the	GPU’s	processing	elements	in	the	most	efficient	manner.

4Technology Brief
OpenCL

OpenCL	at	Work
The	following	describes	how	an	application	interacts	with	OpenCL	to	perform	GPU-
accelerated	computations.

At	startup,	the	application	calls	the	OpenCL	API	to	determine	which	GPUs	are	available	
in	the	system.	It	then	selects	the	appropriate	GPUs	and	creates	command	queues.	The	
application	loads	and	compiles	the	OpenCL	C	kernels	it	will	use.

Data

OpenCL kernel

GPU

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

When	the	application	is	ready	to	execute	a	kernel,	it	calls	the	OpenCL	API	to	specify	the	
data	and	the	number	of	parallel	kernel	instances	required.	The	OpenCL	runtime	moves	
the	data	required	by	the	kernel	up	to	the	GPU’s	VRAM.	The	GPU	then	executes	the	kernel	
simultaneously	on	its	processing	elements.	

Data ResultGPU

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

This	massively	parallel	execution	of	the	kernel	is	the	key	to	incredible	performance,	and	
differentiates	OpenCL	from	other	programming	techniques	such	as	multithreading	on	
traditional	processors.	OpenCL	using	a	modern	200-processing-element	GPU	performs	
1000-element	computation	in	only	five	iterations	as	200	computations	are	performed	in	
parallel	with	each	iteration.

During	execution,	OpenCL	manages	the	in-order	or	out-of-order	dependencies	between	
the	kernels,	so	truly	complex	tasks	composed	of	multiple	OpenCL	kernels	can	be	sched-
uled	to	run	efficiently	across	all	of	a	GPU’s	processing	elements.

OpenCL	also	performs	its	calculations	asynchronously;	the	application	can	continue	to	
run	its	main	thread	on	the	CPU	while	the	GPU	is	executing	kernels.	

5Technology Brief
OpenCL

OpenCL	Performance	Possibilities
By	executing	massive	numbers	of	calculations	in	parallel,	OpenCL	can	dramatically	
improve	the	speed	and	responsiveness	of	a	wide-variety	of	applications	such	as	games	
and	scientific	software.	OpenCL	also	lets	applications	efficiently	use	very	complex	algo-
rithms	to	deliver	new	functionality	or	tackle	large	processing	tasks.	Possibilities	include	
realtime	facial	recognition,	advanced	video	noise	reduction	and	accelerated	media	
transcoding.

The	OpenCL	Standard
While	initially	developing	OpenCL,	it	became	clear	to	Apple	that	the	technology	offered	
an	opportunity	for	the	industry	to	work	together	to	define	a	standard	for	parallel	pro-
gramming.	With	the	support	of	AMD,	Intel,	and	NVIDIA,	Apple	proposed	OpenCL	to	the	
Khronos	Group	consortium	as	the	basis	for	a	new	standard.	Demonstrating	the	strength	
of	the	proposal,	OpenCL	was	expanded	to	include	digital	signal	processors	(DSPs)	and	
other	specialized	processor	architectures.	It	was	ratified	as	an	open,	royalty-free	open	
standard	in	December	2008.

Conclusion
Mac	OS	X	Snow	Leopard	ushers	in	a	new	generation	of	computing	performance	with	
OpenCL.	Using	this	powerful	new	technology,	Mac	developers	can	easily	access	the	
incredible	performance	potential	of	the	GPU	for	more	than	just	graphics	tasks.	The	
comprehensive	approach	that	OpenCL	brings	to	parallel	computation	can	accelerate	
a	wide	range	of	applications,	from	entertainment	software	to	scientific	solutions	to	
image	and	video	processing.	With	such	huge	potential,	OpenCL	is	poised	to	become	
a	pivotal	technology	not	only	for	Mac	developers,	but	for	the	entire	computer	industry.

For	More	Information
For	more	information	about	Mac	OS	X	v10.6	
Snow	Leopard,	visit	www.apple.com/macosx.	

©	2009	Apple	Inc.	All	rights	reserved.	Apple,	the	Apple	logo,	and	Mac	OS	are	trademarks	of	Apple	Inc.,	registered	in	the	U.S.	and	
other	countries.	OpenCL	and	Snow	Leopard	are	trademarks	of	Apple	Inc.	OpenGL	is	a	registered	trademark	of	Silicon	Graphics,	Inc.	
Other	product	and	company	names	mentioned	herein	may	be	trademarks	of	their	respective	companies.	Product	specifications	
are	subject	to	change	without	notice.	This	material	is	provided	for	information	purposes	only;	Apple	assumes	no	liability	related	to	
its	use.			June	2009					L409097A

The Khronos OpenCL Working Group
3DLABS,	Activision	Blizzard,	AMD,	Apple,	ARM,	
Broadcom,	Codeplay,	Electronic	Arts,	Ericsson,	
Freescale,	Fujitsu,	GE,	Graphic	Remedy,	HI,	
IBM,	Intel,	Imagination	Technologies,	Los	
Alamos	National	Laboratory,	Motorola,	
Movidia,	Nokia,	NVIDIA,	Petapath,	QNX,	
Qualcomm,	RapidMind,	Samsung,	Seaweed	
Systems,	S3,	STMicroelectronics,	Takumi	
Technology,	Texas	Instruments,	and	Toshiba.

