
OpenCL
Taking the graphics processor beyond graphics.

Features
•	Hardware abstraction
•	Familiar C-based language
•	IEEE 754–based precision
•	Optimized at runtime
•	Works with OpenGL

Technology Brief
OpenCL

Modern graphics processing units (GPUs) have evolved from single-purpose chips
into flexible processors that offer levels of performance once reserved for room-sized
supercomputers. OpenCL is a new API, language, and runtime in Mac OS X version 10.6
Snow Leopard that lets any application tap into the vast computing power of the GPU,
opening up incredible performance opportunities.

Supercomputer Performance
Each new generation of GPUs pushes the graphics-rendering envelope forward by
delivering increased realism, fidelity, and resolution. As a result, today’s GPUs are
capable of rendering billions of pixels per second. Each pixel is the end-result of a
complex set of mathematical operations. When viewed from the computational
perspective, GPUs are performing operations at supercomputer performance levels,
with the fastest GPUs performing around one trillion computations per second
(1000 gigaFLOPS).

2002 2003 2004 2005 2006 2007 2008 2009
0

200

400

600

800

1000

1200
GFLOPS

Source: NVIDIA

2Technology Brief
OpenCL

Massive Parallelism
Behind the remarkable rise in GPU computing power is the dramatic increase in the
amount of work a GPU performs at once. Because there are over a million pixels on a
typical screen, the best way to rapidly render graphics is to process more than one pixel
at a time. GPU designers now include large numbers of pixel processing elements on
their chips. The more pixel processing elements a GPU has, the faster it can calculate all
the pixels and produce the resulting graphics onscreen. The latest GPUs process over a
hundred pixels simultaneously to fluidly render even the most complex 3D scenes.

Moving Beyond Graphics
Early GPUs were designed to specifically implement graphics programming standards
such as OpenGL. The tight coupling between the language used by graphics programmers
and the inner workings of the chips ensured good performance for most applications.
However, this relationship limited the graphics-rendering realism to only that which
was defined in the graphics language. To overcome this limitation, GPU designers
eventually made the pixel processing elements customizable using specialized programs
called graphics shaders.

Over time, developers and GPU vendors evolved shaders from simple assembly language
programs into high-level programs that create the amazingly rich scenes found in today’s
3D software. To handle increasing shader complexity, the vertex and pixel processing
elements were redesigned to support more generalized math, logic, and flow control
operations. This set the stage for a new way to accelerate computation.

Harnessing the Power of the GPU
Apple realized that the trends in GPU designs offered an incredible opportunity to take
the GPU beyond graphics. All that was needed was a nongraphics API that could engage
the emerging programmable aspects of the GPU and access its immense power. OpenCL
is that technology, delivering the means for any application to access the supercomputer-
like performance of the modern GPU.

OpenCL Up Close
OpenCL is designed from the ground up to accelerate application performance by using
the GPU for general-purpose computations. It is a complete framework composed of
an approachable C-based language with support for parallelism, and an API that allows
applications to use one or more OpenCL devices (GPUs, CPUs, and so on) in the system.

OpenCL API

Application

OpenCL runtime

Driver

GPU hardware

Open CL kernels

Open CL C language

The OpenCL architecture

More on graphics shaders
Shaders are very specialized programs that
allow specific processing steps in a GPU to
be reprogrammed. Shaders allow common
3D graphics operations, such as vertex
transformation and pixel color calculations,
to be changed to suit the needs of the
software developer without requiring a
whole new graphics API.

Also works with the CPU
OpenCL is able to efficiently use
multicore CPUs, which allows systems
without an OpenCL-capable GPU to
benefit from its capabilities.

3Technology Brief
OpenCL

OpenCL C
OpenCL defines OpenCL C, which is a variant of the familiar C99 language optimized
for GPU programming. It incorporates changes necessary to adapt the C programming
language for use with GPUs and to support parallel processing. OpenCL C includes
comprehensive support for vector types to streamline data flow and increase efficiency.
Well-defined numerical precision requirements (based on IEEE 754-2008) are specified to
provide mathematical consistency across the GPU hardware of different vendors.

Developers use OpenCL C to rewrite just the performance- or data-intensive routines in
their applications. During the rewrite, the routine is factored down to its most elemental
state: a series of discrete operations that describe the computations that can be performed
in parallel over a data set. The resulting code, which is similar to a traditional C function,
is called an OpenCL kernel.

OpenCL C kernel Kernel executable

Compile for GPU GPU
code

__kernel void
horizontal_reflect(__rd image2d_t src,
 __wr image2d_t dst)
{
 int x = get_global_id(0); // x-coord
 int y = get_global_id(1); // y-coord
 int width = get_image_width(src);
 float4 src_val = read_imagef(src, sampler,
 (int2)(width-1-x, y));
 write_imagef(dst, (int2)(x, y), src_val);

}

Unlike traditional C code, OpenCL kernels are incorporated into the application in an
uncompiled state. They are compiled on the fly and optimized for the user’s hardware
before being sent to the GPU for processing.

The OpenCL API
The OpenCL API provides functions that allow an application to manage parallel comput-
ing tasks. It enumerates the OpenCL-capable hardware in a system, sets up the sharing
of data structures between the application and OpenCL, controls the compilation and
submission of kernels to the GPU, and has a rich set of functions that manage queuing
and synchronization.

OpenCL Runtime
The OpenCL runtime executes tasks submitted by the application via the OpenCL API.
The runtime efficiently transfers data between main memory and the dedicated VRAM
used by the GPU, and directs execution of the kernels on the GPU hardware. During exe-
cution, the OpenCL runtime manages the in-order or out-of-order dependencies between
the kernels, and utilizes the GPU’s processing elements in the most efficient manner.

4Technology Brief
OpenCL

OpenCL at Work
The following describes how an application interacts with OpenCL to perform GPU-
accelerated computations.

At startup, the application calls the OpenCL API to determine which GPUs are available
in the system. It then selects the appropriate GPUs and creates command queues. The
application loads and compiles the OpenCL C kernels it will use.

Data

OpenCL kernel

GPU

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

When the application is ready to execute a kernel, it calls the OpenCL API to specify the
data and the number of parallel kernel instances required. The OpenCL runtime moves
the data required by the kernel up to the GPU’s VRAM. The GPU then executes the kernel
simultaneously on its processing elements.

Data ResultGPU

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

This massively parallel execution of the kernel is the key to incredible performance, and
differentiates OpenCL from other programming techniques such as multithreading on
traditional processors. OpenCL using a modern 200-processing-element GPU performs
1000-element computation in only five iterations as 200 computations are performed in
parallel with each iteration.

During execution, OpenCL manages the in-order or out-of-order dependencies between
the kernels, so truly complex tasks composed of multiple OpenCL kernels can be sched-
uled to run efficiently across all of a GPU’s processing elements.

OpenCL also performs its calculations asynchronously; the application can continue to
run its main thread on the CPU while the GPU is executing kernels.

5Technology Brief
OpenCL

OpenCL Performance Possibilities
By executing massive numbers of calculations in parallel, OpenCL can dramatically
improve the speed and responsiveness of a wide-variety of applications such as games
and scientific software. OpenCL also lets applications efficiently use very complex algo-
rithms to deliver new functionality or tackle large processing tasks. Possibilities include
realtime facial recognition, advanced video noise reduction and accelerated media
transcoding.

The OpenCL Standard
While initially developing OpenCL, it became clear to Apple that the technology offered
an opportunity for the industry to work together to define a standard for parallel pro-
gramming. With the support of AMD, Intel, and NVIDIA, Apple proposed OpenCL to the
Khronos Group consortium as the basis for a new standard. Demonstrating the strength
of the proposal, OpenCL was expanded to include digital signal processors (DSPs) and
other specialized processor architectures. It was ratified as an open, royalty-free open
standard in December 2008.

Conclusion
Mac OS X Snow Leopard ushers in a new generation of computing performance with
OpenCL. Using this powerful new technology, Mac developers can easily access the
incredible performance potential of the GPU for more than just graphics tasks. The
comprehensive approach that OpenCL brings to parallel computation can accelerate
a wide range of applications, from entertainment software to scientific solutions to
image and video processing. With such huge potential, OpenCL is poised to become
a pivotal technology not only for Mac developers, but for the entire computer industry.

For More Information
For more information about Mac OS X v10.6
Snow Leopard, visit www.apple.com/macosx.

© 2009 Apple Inc. All rights reserved. Apple, the Apple logo, and Mac OS are trademarks of Apple Inc., registered in the U.S. and
other countries. OpenCL and Snow Leopard are trademarks of Apple Inc. OpenGL is a registered trademark of Silicon Graphics, Inc.
Other product and company names mentioned herein may be trademarks of their respective companies. Product specifications
are subject to change without notice. This material is provided for information purposes only; Apple assumes no liability related to
its use. June 2009 L409097A

The Khronos OpenCL Working Group
3DLABS, Activision Blizzard, AMD, Apple, ARM,
Broadcom, Codeplay, Electronic Arts, Ericsson,
Freescale, Fujitsu, GE, Graphic Remedy, HI,
IBM, Intel, Imagination Technologies, Los
Alamos National Laboratory, Motorola,
Movidia, Nokia, NVIDIA, Petapath, QNX,
Qualcomm, RapidMind, Samsung, Seaweed
Systems, S3, STMicroelectronics, Takumi
Technology, Texas Instruments, and Toshiba.

