The Theoretical Flow Ripple of an
External Gear Pump

In this paper, the theoretical flow ripple of an external gear pump is studied for pumps of
similar size using different numbers of teeth on the driving and driven gears. In this work,
the flow ripple equation is derived based upon the flow of incompressible fluid across the
changing boundaries of a control volume. From this method, it is shown that the instan-
taneous length of action within the gear mesh determines the instantaneous flow ripple. A
numerical and a closed-form approximation are presented for the instantaneous length of
action and it is shown that the difference between these two solutions is negligible. Fast
Fourier transform analysis is employed for identifying the harmonic frequencies and
amplitudes of the flow pulse and these results are compared for 16 different pump designs.
In summary, the results of this study show that the driving gear dictates the flow ripple
characteristics of the pump while the driven gear dictates the pump size. As a result, it
may be advantageous to design an external gear pump with a large number of teeth on the
driving gear and a fewer number of teeth on the driven gear. This design configuration
will tend to reduce both the physical pump size (without reducing the volumetric displace-
ment of the pump) and the amplitude of the flow pulsation, while increasing the natural
harmonic frequencies of the machif®@Ol: 10.1115/1.1592193
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Introduction which has typically required numerical analysis to solve the gov-
] ~erning equations. Much of the recent research that is most ger-
Background. Hydraulic pumps are the power-supplyindmane to gear pump technology is briefly summarized in the fol-
components within hydraulic circuitry. All pumps used in hydroiowing paragraph.
static pressure systems are of the positive displacement type. NONRasearch pertaining to the average flow rate of the gear pump
positive displacement pumps, usually characterized by the fq@ﬂis been conducted by Frith and Sddt. In their work, the

tures of low pressure and high flow rate, are incapable gf,iqrs have related the degradation of the average flow rate to
producing sufficient power required by the hydrostatic power SY§s

: A th itive disol t fixed displ e online generation of wear debris. In other research, authors
€ms. Among the posilive displacement pumps, Txed diSpladgs, o emphasized a prediction in the fluid film thickness between

ment gear pumps are often used in circuit applications where CYe gear end-face and the end wear-p[ate4]. In this work, the

tomers are sensitive to the initial purchase cost of the system an N ) .
. -t authors were primarily concerned with volumetric leakage and
where the overall operating efficiency does not need to be ex-

tremely high. Also, gear pumps can be operated at high spe%‘éﬁp efficiency. For predicting the cyclic moments and forces on

and can be used in applications where the operating pressures. pump shaft, Foster, Taylor, and Bidhefi] conducted an

low to moderate. Gear pumps use a very simple mechanism"?()gemh analysis of the gear pump using a computer program for

generate flow, and therefore have a minimum number of pa g_nerating solutions_. This work considered the trapped volume of
associated with the design. The simplicity of the gear pump desigH'd between meshing teeth and the results were shown to com-
translates into higher reliability as compared to other positive dip@reé nicely with actual test data. Still, others have focused on
placement pumps that use a more complex design. various tooth geometries in an effort to reduce and/or compare the
Though gear pumps enjoy a high level of reliability and offer fischarge flow amplitude of the punif,7]. _
low purchase cost to the end customer, they are often accompal hough all of this work has been valuable in and of itself, none
nied with performance characteristics that tend to create high¥rthis work has considered a comparison of same-size external
noise levels than other types of positive displacement pumg&ar pumps, which use different numbers of teeth for the driving
These noise levels are associated with the substantial flow ripgled driven gears. The question related to tooth number is signifi-
of the pump, which induces a pressure ripple and oscillatirgnt since other positive-displacement pump types tend to exhibit
forces within the system. Since the flow ripple is considered to Iéfferent flow characteristics depending upon the number of dis-
the first cause of these oscillating forces, it is assumed thatcegte pumping elements that are used. For instance, axial piston
smoother flow delivery of the pump will also attenuate the noiggumps have been shown to exhibit significantly different pulse
that is generated. This paper is focused on considering the crefrapes for pumps that use an even versus an odd number of pis-
acteristics of the flow ripple from an ideal, or theoretical, point afons[8]. This present study is aimed at documenting the theoret-
view. ical effects of altering the tooth number on the gears that are used

. . ithin external gear pump designs.
Literature Review. Gear pumps are among the oldest an&v 9 pump 9

most commonly used pumps within the industry. Though the gearResearch Objectives. The primary objective of this research

pump is extremely simple in its operating principle, the fundds to study the flow ripple of an external gear pump as it varies
mental understanding of the instantaneous pump flow has beensing different combinations of teeth for the driving and driven
subject of considerable interest for many years. The complexity §éar. By conducting this study, it is expected that generalized
this subject arises due to the nature of the geometry involvasbnclusions will be made regarding the impact of using different
numbers of gear teeth within pumps of similar size. As noted

Contributed by the Dynamic Systems, Meausrements, and Control Division i the literature review, a study of this type has not yet been
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the published
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manu- : : . . . . .
script received by the ASME Dynamics Systems and Control Division February 1, This research begins by nondimensionalizing the variables that

2002; final revision, November 6, 2002. Associate Editor, A. Alleyne. will be used in the analysis. The motivation for conducting non-
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Fig. 1 Gear pump configuration tooth gap by a mating tooth and is thereby displaced into the

. . . ) discharge line of the pump. On the intake side, the gear teeth are
dimensional analysis is to make the results applicable for pumgsming out of the mesh. In this condition, fluid backfills for the
of any size. This means that the final results can be simply scalgg,me of the mating teeth that are now evacuating each tooth
for a specific design situation. The second task of this researcrbbcace_ This backfilling draws fluid into the pump through the in-
to derive the governing equations for the flow ripple of the pumRaye nort of the pump housing. This process repeats itself for each

This is done using a control volume approach and it is shown thalo|ytion of the pump and thereby displaces fluid at a rate pro-
the flow ripple equation is dependent upon the |nstantaneob§rtiona| to the pump speed.

length of action for the two teeth that instantaneously define the

discharge chamber of the pump. Recognizing this, the third task9fmensionless Variables

this research is to find a solution for the instantaneous length of . . N

action for the two contacting teeth. Both numerical and closed- Before conducting this research, it is important to non-
form approximations for this parameter are sought. Finally, 1(amen3|onallze the variables that WI|.| be used. .th only doeg this
different pumps are designed with the same average volume®Ig'Plify the development of equations by eliminating various
displacement but with different numbers of teeth on both the drigc@/€ factors within each equation, but it also makes the results
ing and the driven gears. The flow ripple characteristics of the§¥St general and useful to the end user of this research. By de-
pumps are systematically compared using fast Fourier transfol{fOPing nondimensional equations, the results are applicable to

(FFT) methods and generalized conclusions are drawn from thedar Pumps of any physical size. The final results may be simply
scaled according to the rules that were used to nondimensionalize

results. o the specific quantity of interest. The dimensionless variables that
Pump Description will be used in this work are generally given as follows:

Figure 1 shows a cross-sectional view taken through the gears r X y p
of a typical gear pump. Note: like most actual gear pump designs, l=—, f=—, X=—, §y=—, p=—,
this pump is shown with two identical gears that are used for Mo, Moy Mo, Mo, Mo,
displacing fluid. In the analysis that follows, the numbers of teeth
on each gear will be allowed to vary and therefore, in general, the A Q Tt = g_ VY

: : : ' P =, =tw;=60;, V=—p, (1)

two gears will not be identical. The number of teeth on gear 1 is Waqlp, wrp,

given byN; and the number of teeth on gear 2 is givenNyy. In

any case, the addendum radius of each gear will be identified W€re all symbols are defined in the Nomenclature section of this

paper. Note: all dimensionless quantities throughout this paper

the dimensionr, , the pitch radius is given by, , and the . e : !
ter dist éZt hafts is qi by the di Lzrﬁ'dﬂ te: will be identified by carets over the top. All length dimensions
center distance between shalts IS given by the dIMenSIANGLE:  hay6 peen nondimensionalized using the radius of the base circle
the subscripts 1 and 2 denote the driving and driven gear respee-ihe driving gearr,,
.

tively. The thickness of the gears into the paper is given by the
dimensionw (not shown in Fig. 1 The gears are contained in a .
close-tolerance housing that separates the discharge port from Ft’ﬁ,gnp Flow Analysis
intake port. An external shaft is connected to gear 1 while the In the following analysis, the ideal pump will be considered by
other gear is supported by an internal shaft and bearing. Note: #ssuming the following thingg1) the fluid is incompressiblg?)
shafts connected to the gears are not shown in Fig. 1 as tHkyd leakage is neglected, ar{8) the pump parts are rigid and
would protrude out of the paper. The driving gear and shaft rotatglexible. Figure 2 shows a crosshatched area that defines the
at an angular velocityw, . The driven gear rotates in the oppositelischarge chamber of the gear pump. At a particular instant in
direction at an angular velocity, . time, the boundaries of this chamber define the control volume of
When considering the operation of a gear pump, it is a commanterest. Since the fluid is incompressible, the total volume enter-
mistake to assume that the fluid flow occurs through the centeringj the discharge chamber must equal the total volume leaving the
the pump(i.e., through the meshed gear geomgtihis is not discharge chamber. Figure 2 shows infinitesimally small volumes
what happens. To produce flow with a gear pump, fluid is carrigtat are crossing the boundaries of the control volume at a par-
around theoutsideof each geafwithin each tooth gapfrom the ticular instant in time. Note: the material within these volumes is
intake side of the pump to the discharge side of the pump. As thieelevant since everything is considered to be incompressible,
gear teeth mesh within the gearset, fluid is squeezed out of eddwever, the infinitesimally small volumes generally consist of
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Fig. 3 Gear mesh geometry at the first point of tooth contact

both gear pump materié.g., stegland fluid. In Fig 2, the input wherea is the pressure angle ahds the instantaneous length of
volume from the driving geafi.e., gear 1 is given by dV| , action shown in Fig. 4. Substituting E() into Eq.(5) yields the
however, a certain amount of gear volume is also Ieavmg tii@llowing result for the instantaneous flow rate of the pump:
control volume. This exiting volume from gear 1 is given by ?
P1
== = 2. (@
given bde and dV0 , respectively. Setting the input volumes 2 azrpz P2 ]

S > - f
dV,_ . Similarly, the input and exiting volumes from gear 2 are Og=={72 +2 L (P +f )| 142
. d a P2V P T P2
equal to the’ output volumes yields the dimensionless governip@sults very similar to this have also been reported in previous

equation for this problem: literature[5,9]. Using this equation, the instantaneous flow rate of
- - - - - the pump may be determined once the instantaneous length of
dVg=(dV; —dV, ) +(dV; —dV,,). (2)  action,l, is known. The length of action can be determined from

. . . . the mesh geometry of the gear.
From geometry it can be shown that dimensionless expressions 9 y 9

for the entering and exiting volumes are given by
N Mesh Geometry

Coordinate Systems. Figures 3 and 4 show schematics of the
1 1 gear mesh that occurs between two teeth that instantaneously de-
V. = _32 ; — =2 : . .
dVi. = =t2df,, dV, ==p3db,, (3) fine the control volume of the discharge chamber. Figure 3 shows
the first point of tooth contact between the teeth while Fig. 4
shows an intermediate point of tooth contact. In these schematics,

wherera is the addendum radiug, , is the contact radius be- . - . .
N th i ling teeth in th h, th le of two Cartesian coordinate systems are sho@@hzthere is a fixed
ween e 0 seaing tee in the mesh, @hg is the angle o Cartesian coordinate system denoted by the lafg¥ coordi-

rotation. Note: in Eq.(3), the subscripts, 1 and 2, denote they,ioq "an2) there is a rotating Cartesian coordinate system de-
driving gear and driven gear, respectively. From the fundamen

| : . K that ted by the smalk-y coordinates. The fixeK-Y coordinate
aw ot gearing, we know tha system is oriented by the fixed angular dimensfgwhich will be
P determined latgr The x axis of the small rotating-y coordinate

d02_ 1do,, (4) Systemis attached to the centerline of the gear tooth on gear 1 and

Mo, moves with this gear tooth as it rotates with the angular dimension
. ) o . By definition, ;=0 when the largeX-Y and the smalk-y

wherer,, _is the pitch radius. Substituting Eq&) and (4) into coordlnate systems are coincident and when the meshing teeth
Eq.(2), and dividing the result by an infinitesimal amount of timefirst make contact.
dt, yields the following dimensionless result for the theoretical

flow rate of the gear pump: Instantaneous Point of Tooth Contact. The instantaneous

point of tooth contact must always lie somewhere on the line of

av 1 Py action and is located with respect to the rotatirg coordinate
Qy=— d_ (F2 —pH+ _( 7,32) ) (5) System by the polar coordinates and3; . From Fig. 4, it may be
dt fp, shown that the equation for the line of action with respect to the

rotatingx-y coordinate system is
As shown in Eq.5), the instantaneous radii of tooth contaet, o N
andp,, must be determined to evaluate the theoretical discharge ysin(a+ ;- §)=1-Xcoga+ ;- &), ®)
flow of the pump. Using the law of cosines, and the geometry gfhere it has been recognized from gear geometry that

Fig. 4 (to be discussed latgrit can be shown that the instanta- =1, CoS@). At the point of tooth contact, it is clear from F|g 4

neous radii of tooth contact between the two meshing gears s
given by 99 thatx= p, cos(B;) andy= — p, sin(B;). Substituting these expres-

sions into Eq.(8) yields the following equation which describes
ﬁ§:i2+?;2)1_2fp Tsin(a), i)§:[2+f'2)2+2fpj sin(a@), the point of tooth contact in terms @f, and B, :

(6) pi=seta+ B+ 60,—§). ©)
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Fig. 4 Gear mesh geometry at an intermediate point of tooth contact

From the geometry of the involute tooth profileee the Appen- T i i
dix) it may be shown that |=p1sin(E— 01— By)seca), (15)
1 where p; and B; are given in Eqs(9) and (10). The nonlinear
o [r2_ a4 1 = relationship betweep, and 3, (see Eqs(9) and(10)) requires a
P1= ¢~ Vpi~1tcos (;31>' (10)  umerical ‘solution for determining the instantaneous length of
action according to Eq(15). The numerical solution to these
equations will yield the most accurate results possible; however, a
losed-form approximation to these solutions would be more con-
Inient to use.

where ;= m/(2 N;) and N; is the number of teeth on gear 1.
Equations(9) and (10) must be solved numerically for a given
rotational positiond;. The numerical solution may then be used
to describe the instantaneous point of tooth contact using the po\fg
coordinatesp; andg; . Closed-Form Approximation. For generating a closed form
solution for the instantaneous pump flow, a Taylor series expan-
jon of Eq.(15) may be taken for small values @f . This result
iven by

Starting Mesh Position. Figure 3 shows the starting position
within the mesh when the gear teeth first make contact. This onl
entation of the gear mesh is a special case of the preceding anéﬁy9
sis where the angular rotation of the driving gear is givend 1=7.—5 —
=0. In this positi%n, the two Cartesian cogrdginate sgst(é'ms?y =l P, c08¢ ﬂls)sec(a)el, (16)
the largeX-Y and smallx-y coordinate systemsare coincident. wherel, is given in Eq.(12), p1 is given in Eq.(11), B,_is given
The point of first contact between the gear teeth occurs when taerq (13), and ¢ is given in Eq.(14). As it turns out, an even
tip of the driven geargear 2 first touches the surface profile of hetter approximation can be consistently made by assuming that

the driving gear(gear 1. In this position, it may be shown from 1 cos@fﬁls)sec(x)=1. Using this assumption, E¢L6) may be
geometry that s

written as
pr=\12+72 2%, [ sin(a), (11) Z1—a,, a7
where the starting length of action is given by where, againl, is given in Eq.(12). By subtracting Eq(17) from
o Ty, 2 el o 1) e el i
Also, from the general form of Eq10), it mfy be shown that 8= p, sin(£— 0,— By)seda)—T.+ ;. (18)
— ~2 — H : _ . .
1,1 B~ cos ( ,7) | (1) Nimerical st of his erfor have shoin it 1o b negligile fo

In Egs. (11)—(13), the subscripts is used to denote that thesethe pump designs examined in this research.

dimensions are given for the starting position only. From the ge-
ometry of Fig. 3, the angular dimensiégnwhich orients the fixed

X-Y coordinate system, may be determined as Pump Flow Characteristics
) Tscoqa) The general form of Eq(7) will be used to describe the flow
E=py tsint ———/|, (14)  characteristics of the pump. From E@), it can be shown that the
Py maximum flow output of the pump will occur whé# is a mini-

wherep, , |5, andB;_are given in Eqs(11)—(13), respectively. mum. For the case of each pump analyzed in this study, Ifin(
=0. Therefore,

Instantaneous Length of Action 1 P
A _T)e2 e P15 o 5
Numerical Solutions. To determine the instantaneous pump Q™ 3 ral+ra2fp P (To, T Tp,) (- (19)
flow, Eq. (7) must be used with the appropriate result for the o 2 _
instantaneous length of actioh, From the geometry of right tri- Similarly, the minimum flow output of the pump will occur when
angles, and using Fig. 4, it can be shown that the instantanedfiss a maximum. Since mab{j=12, the minimum pump flow rate

length of action is given by is given by
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Table 1 Pump designs with identical average flow rates (©d=0.297) and varying numbers of teeth on the driving and driven
gears. The boldface row designs are shown in Fig. 5.

-
-

N1 N, a f

Py P2 a; a, Is I
13 13 0.208 1.022 1.022 1.179 1.179 0.414 —0.075
13 14 0.214 1.023 1.102 1.181 1.259 0.419 —0.069
13 15 0.219 1.024 1.182 1.182 1.340 0.424 —0.065
13 16 0.223 1.025 1.262 1.183 1.420 0.428 —0.060
14 13 0.276 1.039 0.965 1.188 1.114 0.352 —0.097
14 14 0.280 1.041 1.041 1.189 1.189 0.356 —0.093
14 15 0.283 1.042 1.116 1.190 1.265 0.360 —0.089
14 16 0.286 1.042 1.191 1.191 1.340 0.364 —0.085
15 13 0.345 1.062 0.921 1.204 1.062 0.304 —0.115
15 14 0.347 1.063 0.992 1.205 1.134 0.307 —0.112
15 15 0.349 1.064 1.064 1.206 1.206 0.310 —0.109
15 16 0.351 1.065 1.136 1.207 1.278 0.313 —0.106
16 13 0.408 1.089 0.885 1.226 1.021 0.268 —0.125
16 14 0.410 1.090 0.954 1.226 1.090 0.270 —0.122
16 15 0.411 1.091 1.023 1.227 1.159 0.273 —0.120
16 16 0.412 1.091 1.091 1.228 1.228 0.275 —0.118
A 1 o Mo\ 5 5 Np_
~2 a2 1 ~ ~ a 1 2 = = —
dmlnzz ral—i-razﬁ—rpl(rpl-i-rpz)—(1+a |5 . rp1 se((a)i rp2 Nlrp11 (26)
2 2

(20)  whereN; is the number of teeth on the driving gear avgis the
number of teeth on the driven gear. The addendum radius of each

The amplitude of the flow pulse is then given by ) : - ) ;
gear is designed according the American Gear Manufacturing As-

R . 1 o, - sociation (AGMA) recommended standardi$0]. These recom-
AQ¢=Qq,,,~Qu,, = 5| 1+ 7 |ls. (21) mendations are given by
P2
f f
ion is ai R P R P
The average flow rate for one flow pulsation is given by Pa,=(2+Ny) N_ll Pa=(2+N,) N_j @7
i f
éd: lSQddT= 1 $2 4p2 ﬂ_f (f, +7,)—K¢{, By selecting the number of teeth on each gédy &ndN,), speci-
(e—T1p s e fying the average flow rate of the puntiig. (22)), and enforcing

(22) the constraints of Eq924)—(27), the pressure angle may be

. . . . solved for numerically. This method has been used to generate the
wherely is the length of action when the mating teeth just to”dbesigns that are shown in Table 1.

andly is the length of action that occurs just prior to another set of Figure 5 shows the boldface-row designs given in Table 1. It is
teeth making contact within the meshe., when6;=2m/Ny). interesting to observe that as the number of teeth on the driving
Both of these dimensions are shown in Fig. 3. Note: the dimegg,y increases, the teeth become more pointed and sharp at the tip.
sion I can be(and usually i negative. In Eq.(22), the term £y rthermore, it is also significant to observe that as the number of

denoted by the symbd is given explicitly by teeth on the driven gear decreases, the physical pump size gets
f T T2 J smaller while maintaining the same volumetric displacement per
A~ Py (l S+ | f) IS | f .
k=l1+—||l ———"—> (23) revolution.
P, 3

) Results
Pump Design

In thi q ith diff b f h Center Distance and Physical Pump Size. As shown in Fig.
n this study, pumps with different numbers of gear teeth are 1o center distance is the distance between the shaft centerlines
designed for the purposes of comparing flow ripple character

. ) the gears. From geometry, this distance is given by
tics. To make an apple-to-apple comparison between pumps, the

average flow rate of each pump is maintained as a prescribed C=tp, +Fp, (28)
constant in the design process. In other words, @8) is held v

constant for all pump designs. In this equation, the starting awderer, andr, are the pitch radii of the driving and driven
final length of action ks andl¢) is needed to make this computa-gear, respectively. The center distance can be used to gauge the
tion. The starting length of action is explicitly given in Ed.2).  physical size of the pump. Generally speaking, if the center dis-
The final length of action may be determined from the genergince is large, the pump will be large. If the center distance is

form of Eq.(15) as small, the pump will be small. While designing the pumps for this
N research, it was observed that the center distance increases
'f_l’lf sin(§— 91f_:31f)se¢“)' (24) strongly as the number of teeth on the driven gear increases and

decreases weakly as the number of teeth on the driving gear in-
creases. This result says that physically smaller pufopshe
. — 1 same displacement per revolutyanay be designed if the number
p1,=seta+pBy+0,—&), PB1,=y1—p1—1+cos 5. )" of teeth on the driven gear is decreased while the number of teeth
on the driving gear is increased. A qualitative assessment of Fig. 5
20 T shows that this is indeed the case. Figure 6 shows a plot of the
01f= N ¢1=m, (25) center distance as it varies with tooth number on both the driving
1 1 and driven gears. Note: Figure 6 plots the center distance in di-
and ¢ is given in Eq.(14). The pitch radius of each gear is determensionless form. To dimensionalize this quantity, it must be mul-
mined from the following geometry requirements: tiplied by the radius of the base circle on the driving geqy,

where
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Fig. 5 Gear pumps of the same displacement designed with
different numbers of teeth on the driving and driven gears
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Fig. 7 The theoretical flow pulse solution (Eq. (7)) for the
pumps shown in Fig. 5. (Note: these results have been normal-
ized using the average flow rate of the pump. As the number of
teeth on the driving gear increases, the flow pulse amplitude is
reduced. )

the pump is given by the solution to E). This solution may be
determined by solving for the length of action numerically, as in
Eq. (15), or it may be determined using the closed-form approxi-
mations for the length of action, as presented in#d@). Figure 7
shows a plot of the flow ripple calculation for the pumps that are
shown in Fig. 5. From this figure, it can be seen that the amplitude
of the flow ripple decreases significantly as the number of teeth on
the driving gear increases. Note: these results are numerical re-
sults; however, the approximate closed-form results yield ex-
tremely close solutions as well.

Flow Pulse Amplitude. The amplitude of the flow pulse is
given by Eq.(21). Figure 8 shows a graph of the flow pulse
amplitude as it varies with the numbers of teeth on both the driv-
ing and driven gear§.e., gear 1 and gear 2, respectiveljote:
this figure shows a strong dependence on the number of teeth on
the driving gear. The flatness of the curves tends to show a weak
dependence on the number of teeth on the driven gear.

FFT Results. The fast Fourier transfornFFT) is used to
identify the amplitudes and frequencies of the harmonic signals
that may be added together to create the flow pulse results that are
typically shown in Fig. 7. FFT analysis was conducted on the flow
pulse signal that was generated for each pump design in this study.
Note: the numerical results were used to conduct this analysis as
opposed to the closed-form approximation. Figure 9 shows a com-
parison of these results for gear sets with equal numbers of teeth
on each gear. Figures 10—13 show a comparison of FFT results for

Instantaneous Flow Ripple. The instantaneous flow ripple of gears with differing numbers of teeth on each gear. The frequency

2.60
250 g

240 y
'..-" 4
230 D)

N
N

210 . K‘ ........ N, =14

»

190
180 A
170

160
150

8 9 10 11 12 13 14 15 16 17 18 19 20 21
NZ

Fig. 6 Dimensionless center distance variation for gear

pumps of the same displacement utilizing various combina-
tions of teeth on the driving and driven gears
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Fig. 8 The theoretical flow pulse amplitude (Eg. (21)) normal-
ized by the average flow rate of the pump. As the number of
teeth on the driving gear increases, the flow pulse amplitude is
reduced.
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Number of Teeth Number of Teeth
Fig. 9 FFT results for the flow pulse of pumps with equal num-

In S Fig. 12 FFT results for the flow pulse of pumps with 15 teeth
bers of teeth on the driving and driven gear

on the driving gear 13 to 16 teeth on the driven gear

scale of these plots is normalized by the tooth pass frequencyg@fes down. Indeed, Fig. 5 bears this quality as well. From Fig. 6,

the driving gear. This normalizing frequency is given by
Ny

wt:27r

w1,

(29)

it may also be observed that a slight decrease in the center dis-
tance may be achieved if the number of teeth on the driving gear
goes up. This trend suggests that a smaller pQwith the same
average flow rajemay be designed if the number of teeth on the

whereN; is the number of teeth on the driving gear angis the ~driven gear is reduced compared to the number of teeth on the
angular velocity of the driving gear. In Figs. 9—13, tooth numbef&iving gear. For designs of this type, the driven gear will rotate
are the gears are designatedNby, N,. For example, tooth num- faster than the driving gear according to the speed ratio that char-
bers designated by 15, 14 indicate that there are 15 teeth on @%erizes the gearséte., the ratio of teeth From a packaging
driving gear and 14 teeth on the driven gear. This convention R@int of view, this is a very useful result that may be used to create

used throughout this paper.

Discussion

a smaller machine so long as an unacceptable increase in the flow
ripple does not occur. Fortunately, as we have shown already, the
amplitude of the flow ripple is fairly insensitive to the number of
teeth on the driven gedsee Fig. 8 Therefore, a reduction in the

As shown in Fig. 6, the center distance between the gear shaftamber of teeth on the driven gear, for the purposes of reducing
decreases dramatically as the number of teeth on the driven ge physical pump size, may be a feasible design alternative that

13,13
13,14
13,15
613,16

Tooth Pass Frequency
Number of Teeth

Fig. 10 FFT results for the flow pulse of pumps with 13 teeth
on the driving gear 13 to 16 teeth on the driven gear

14,13
14,14
14,15
614,16

Tooth Pass Frequency
Number of Teeth

Fig. 11 FFT results for the flow pulse of pumps with 14 teeth
on the driving gear 13 to 16 teeth on the driven gear
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ought to be examined carefully.

Figure 8 shows that the flow-pulse amplitude is significantly
reduced by increasing the number of teeth on the driving gear of
the pump. It is also shown that increasing the number of teeth on
the driven gear can reduce the pulse amplitude only slightly. This
characteristic is shown by the flatness of the curves in Fig. 8. The
insensitivity of the flow pulse amplitude to the number of teeth on
the driven gear is not an obvious result; however, it is one that can
be used to one’s advantage for making a smaller pump as dis-
cussed in the previous paragraph. The FFT results of this study
confirm the findings presented in Fig. 8 as well.

The FFT results of Figs. 9—13 show that the harmonic frequen-
cies of the pump occur at integer multiples of the tooth pass fre-
quency of the driving gear. The number of teeth on the driving
gear also predominantly controls the amplitude of the harmonic
components. As the number of teeth on the driving gear increases,
the amplitude of these harmonic components decreases signifi-

16,13
16,14
16,15
616,16

Tooth Pass Frequency
Number of Teeth

Fig. 13 FFT results for the flow pulse of pumps with 16 teeth
on the driving gear 13 to 16 teeth on the driven gear
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cantly. As the number of teeth on the driven gear increases, 1’
amplitude of each harmonic component is only decreased slight
This result is in basic agreement with the previous informatio
presented in Fig. 8.

Conclusion

The following conclusions are supported by the analysis ar
results of this research:

1. To solve the instantaneous flow ripple equation of the ge
pump, a numerical solution is generally required.

2. A closed-form approximation for the flow ripple equatior
can be used without introducing significant error into the solutiol
Therefore, Eqs(7) and (17) may be used for quick calculations
that do not require a computer for the solutions.

3. Reducing the numbers of teeth on the driven gear may
used to reduce the center distance and physical pump size. This
can be done without altering the average flow rate of the pump
and without increasing the flow pulsation dramatically.

4. The center distance can be reduced slightly by increasing the
number of teeth on the driving gear as well; however, this impact
is not as significant as the one noted in item 3.

5. The pulse amplitude of the flow ripple is primarily deter-
mined by the number of teeth on the driving gear of the pump. B 0 max
increasing the number of teeth on the driving gear, the flow pulse®%min
amplitude can be significantly reduced. AQq

6. Increasing the number of teeth on the driven gear can also
reduce the pulse amplitude of the flow ripple; however, this im- "a;,
pact is not as significant as the one noted in item 5. b,

7. The harmonic frequencies of the flow ripple pulse occur at r
integer multiples of the tooth pass frequency on the driving gear; 1't2
therefore, by increasing the number of teeth on the driving gear,
the harmonic frequencies may be increased as well.

8. The number of teeth on the driving gear primarily controls
the amplitude of the harmonic components of the flow ripple y/.
pulse. As the number of teeth on the driving gear increases, the '*2
harmonic amplitudes decrease. This conclusion is in basic agreg;
ment with item 5. 012

9. Changing the number of teeth on the driven gear has a neg-
ligible impact on the harmonic amplitudes of the flow ripple W
pulse. This conclusion is in basic agreement with item 6. X

y
In summary, the results of this study show that it may be advan- 4

tageous to design an external gear pump with a large number ofg, , =

teeth on the driving gear and a fewer number of teeth on the
driven gear. This design configuration will tend to reduce both the g,
physical pump sizéwithout reducing the volumetric displacement !
of the pump and the amplitude of the flow pulsation, while in-
creasing the natural harmonic frequencies of the machine. B,
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Nomenclature p
C = center distance between shafts on the gear pump P12

k = pump constant used for defining the average volumet-
ric flow rate P

| = instantaneous length of action within the gear mesh
I; = length of action within the gear mesh just prior to
another set of teeth making contact P1g
Is = length of action within the gear mesh when the teeth
make the first point of contact
N;, = number of teeth on the driving and driven gear U
Q = volumetric flow rate

Qg = volumetric discharge flow rate of the pump w1, =

Qq

average volumetric flow rate of the pump [N
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r =

Fig. 14 The geometry of the involute tooth profile

= maximum volumetric flow rate of the pump

minimum volumetric flow rate of the pump
amplitude of the volumetric flow rate pulse
radial dimension

addendum radius of the driving and driven gear
base circle radius of the driving and driven gear

pitch radius of the driving gear

time

volume

volume leaving the control volume across the dis-
charge boundary

volume entering the control volume with the driving
and driven gear

volume leaving the control volume with the driving
and driven gear

= width of the gear teeth

primary Cartesian coordinate

secondary Cartesian coordinate

pressure angle

angular dimension locating the instantaneous point of
contact on the driving and driven gear

angular dimension locating the point of contact on
the driving gear just prior to another set of teeth
making contact

angular dimension locating the point of contact on
the driving gear when the teeth make the first point
of contact

angular displacement of the driving and driven gear

= angular displacement of the driving gear just prior to

another set of teeth making contact

angular orientation of the fixed Cartesian coordinate
system

radial dimension

radial dimension locating the instantaneous point of
contact on the driving and driven gear

radial dimension locating the point of contact on the
driving gear just prior to another set of teeth making
contact

radial dimension locating the point of contact on the
driving gear when the teeth make the first point of
contact

half angle of the tooth width measured at the base
circle of the driving gear

angular velocity of the driving and driven gear

tooth pass frequency of the driving gear
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Appendix [[p)\? ("o
In this Appendix, the geometry of the involute tooth profile is B=y- (E) ~1tcos (F ' (33)

presented. Figure 14 shows the involute geometry that defines the . .
surface profile of a single gear tooth. A well-known metho ese gieqme:(r)t/hrelatlonshlﬁs are referred to and used throughout
for visualizing the involute profile is to generate a curve by'€ @nalysis ol tnis research.
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