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The Theoretical Flow Ripple of an
External Gear Pump
In this paper, the theoretical flow ripple of an external gear pump is studied for pump
similar size using different numbers of teeth on the driving and driven gears. In this w
the flow ripple equation is derived based upon the flow of incompressible fluid acros
changing boundaries of a control volume. From this method, it is shown that the in
taneous length of action within the gear mesh determines the instantaneous flow rip
numerical and a closed-form approximation are presented for the instantaneous len
action and it is shown that the difference between these two solutions is negligible.
Fourier transform analysis is employed for identifying the harmonic frequencies
amplitudes of the flow pulse and these results are compared for 16 different pump de
In summary, the results of this study show that the driving gear dictates the flow r
characteristics of the pump while the driven gear dictates the pump size. As a res
may be advantageous to design an external gear pump with a large number of teeth
driving gear and a fewer number of teeth on the driven gear. This design configur
will tend to reduce both the physical pump size (without reducing the volumetric disp
ment of the pump) and the amplitude of the flow pulsation, while increasing the na
harmonic frequencies of the machine.@DOI: 10.1115/1.1592193#
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Introduction

Background. Hydraulic pumps are the power-supplyin
components within hydraulic circuitry. All pumps used in hydr
static pressure systems are of the positive displacement type.
positive displacement pumps, usually characterized by the
tures of low pressure and high flow rate, are incapable
producing sufficient power required by the hydrostatic power s
tems. Among the positive displacement pumps, fixed displa
ment gear pumps are often used in circuit applications where
tomers are sensitive to the initial purchase cost of the system
where the overall operating efficiency does not need to be
tremely high. Also, gear pumps can be operated at high sp
and can be used in applications where the operating pressure
low to moderate. Gear pumps use a very simple mechanism
generate flow, and therefore have a minimum number of p
associated with the design. The simplicity of the gear pump de
translates into higher reliability as compared to other positive
placement pumps that use a more complex design.

Though gear pumps enjoy a high level of reliability and offe
low purchase cost to the end customer, they are often accom
nied with performance characteristics that tend to create hig
noise levels than other types of positive displacement pum
These noise levels are associated with the substantial flow ri
of the pump, which induces a pressure ripple and oscillat
forces within the system. Since the flow ripple is considered to
the first cause of these oscillating forces, it is assumed th
smoother flow delivery of the pump will also attenuate the no
that is generated. This paper is focused on considering the c
acteristics of the flow ripple from an ideal, or theoretical, point
view.

Literature Review. Gear pumps are among the oldest a
most commonly used pumps within the industry. Though the g
pump is extremely simple in its operating principle, the fund
mental understanding of the instantaneous pump flow has be
subject of considerable interest for many years. The complexit
this subject arises due to the nature of the geometry involv
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which has typically required numerical analysis to solve the g
erning equations. Much of the recent research that is most
mane to gear pump technology is briefly summarized in the
lowing paragraph.

Research pertaining to the average flow rate of the gear p
has been conducted by Frith and Scott@1#. In their work, the
authors have related the degradation of the average flow ra
the online generation of wear debris. In other research, aut
have emphasized a prediction in the fluid film thickness betw
the gear end-face and the end wear-plate@2–4#. In this work, the
authors were primarily concerned with volumetric leakage a
pump efficiency. For predicting the cyclic moments and forces
the pump shaft, Foster, Taylor, and Bidhendi@5# conducted an
in-depth analysis of the gear pump using a computer program
generating solutions. This work considered the trapped volum
fluid between meshing teeth and the results were shown to c
pare nicely with actual test data. Still, others have focused
various tooth geometries in an effort to reduce and/or compare
discharge flow amplitude of the pump@6,7#.

Though all of this work has been valuable in and of itself, no
of this work has considered a comparison of same-size exte
gear pumps, which use different numbers of teeth for the driv
and driven gears. The question related to tooth number is sig
cant since other positive-displacement pump types tend to ex
different flow characteristics depending upon the number of d
crete pumping elements that are used. For instance, axial p
pumps have been shown to exhibit significantly different pu
shapes for pumps that use an even versus an odd number o
tons @8#. This present study is aimed at documenting the theo
ical effects of altering the tooth number on the gears that are u
within external gear pump designs.

Research Objectives. The primary objective of this researc
is to study the flow ripple of an external gear pump as it var
using different combinations of teeth for the driving and driv
gear. By conducting this study, it is expected that generali
conclusions will be made regarding the impact of using differ
numbers of gear teeth within pumps of similar size. As no
in the literature review, a study of this type has not yet be
published.

This research begins by nondimensionalizing the variables
will be used in the analysis. The motivation for conducting no

of

1,
© 2003 by ASME Transactions of the ASME



m
a

t

h
e

e
r
e

e

e

t
:
t
t
t

e

the
are
e
oth
in-
ach
ro-

n-
this
us
ults
de-

e to
ply

alize
that

this
per

ns
ircle

by

the
t in

of
ter-
the
es

par-
is

ble,
of
dimensional analysis is to make the results applicable for pu
of any size. This means that the final results can be simply sc
for a specific design situation. The second task of this researc
to derive the governing equations for the flow ripple of the pum
This is done using a control volume approach and it is shown
the flow ripple equation is dependent upon the instantane
length of action for the two teeth that instantaneously define
discharge chamber of the pump. Recognizing this, the third tas
this research is to find a solution for the instantaneous lengt
action for the two contacting teeth. Both numerical and clos
form approximations for this parameter are sought. Finally,
different pumps are designed with the same average volum
displacement but with different numbers of teeth on both the d
ing and the driven gears. The flow ripple characteristics of th
pumps are systematically compared using fast Fourier transf
~FFT! methods and generalized conclusions are drawn from th
results.

Pump Description
Figure 1 shows a cross-sectional view taken through the g

of a typical gear pump. Note: like most actual gear pump desig
this pump is shown with two identical gears that are used
displacing fluid. In the analysis that follows, the numbers of te
on each gear will be allowed to vary and therefore, in general,
two gears will not be identical. The number of teeth on gear 1
given byN1 and the number of teeth on gear 2 is given byN2 . In
any case, the addendum radius of each gear will be identified
the dimensionr a1,2

, the pitch radius is given byr p1,2
, and the

center distance between shafts is given by the dimensionC. Note:
the subscripts 1 and 2 denote the driving and driven gear res
tively. The thickness of the gears into the paper is given by
dimensionw ~not shown in Fig. 1!. The gears are contained in
close-tolerance housing that separates the discharge port from
intake port. An external shaft is connected to gear 1 while
other gear is supported by an internal shaft and bearing. Note
shafts connected to the gears are not shown in Fig. 1 as
would protrude out of the paper. The driving gear and shaft ro
at an angular velocityv1 . The driven gear rotates in the opposi
direction at an angular velocityv2 .

When considering the operation of a gear pump, it is a comm
mistake to assume that the fluid flow occurs through the cente
the pump~i.e., through the meshed gear geometry!. This is not
what happens. To produce flow with a gear pump, fluid is carr
around theoutsideof each gear~within each tooth gap! from the
intake side of the pump to the discharge side of the pump. As
gear teeth mesh within the gearset, fluid is squeezed out of

Fig. 1 Gear pump configuration
Journal of Dynamic Systems, Measurement, and Control
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tooth gap by a mating tooth and is thereby displaced into
discharge line of the pump. On the intake side, the gear teeth
coming out of the mesh. In this condition, fluid backfills for th
volume of the mating teeth that are now evacuating each to
space. This backfilling draws fluid into the pump through the
take port of the pump housing. This process repeats itself for e
revolution of the pump and thereby displaces fluid at a rate p
portional to the pump speed.

Dimensionless Variables
Before conducting this research, it is important to no

dimensionalize the variables that will be used. Not only does
simplify the development of equations by eliminating vario
scale factors within each equation, but it also makes the res
most general and useful to the end user of this research. By
veloping nondimensional equations, the results are applicabl
gear pumps of any physical size. The final results may be sim
scaled according to the rules that were used to nondimension
the specific quantity of interest. The dimensionless variables
will be used in this work are generally given as follows:

l̂ 5
l

r b1

, r̂ 5
r

r b1

, x̂5
x

r b1

, ŷ5
y

r b1

, r̂5
r

r b1

,

Q̂5
Q

wv1r b1

2 , t̂5tv15u1 , V̂5
V

wrb1

2 , (1)

where all symbols are defined in the Nomenclature section of
paper. Note: all dimensionless quantities throughout this pa
will be identified by carets over the top. All length dimensio
have been nondimensionalized using the radius of the base c
for the driving gear,r b1

.

Pump Flow Analysis
In the following analysis, the ideal pump will be considered

assuming the following things:~1! the fluid is incompressible,~2!
fluid leakage is neglected, and~3! the pump parts are rigid and
inflexible. Figure 2 shows a crosshatched area that defines
discharge chamber of the gear pump. At a particular instan
time, the boundaries of this chamber define the control volume
interest. Since the fluid is incompressible, the total volume en
ing the discharge chamber must equal the total volume leaving
discharge chamber. Figure 2 shows infinitesimally small volum
that are crossing the boundaries of the control volume at a
ticular instant in time. Note: the material within these volumes
irrelevant since everything is considered to be incompressi
however, the infinitesimally small volumes generally consist

Fig. 2 Control volume of the discharge chamber
SEPTEMBER 2003, Vol. 125 Õ 397
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Fig. 3 Gear mesh geometry at the first point of tooth contact
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both gear pump material~e.g., steel! and fluid. In Fig. 2, the input
volume from the driving gear~i.e., gear 1! is given by dVi 1

,
however, a certain amount of gear volume is also leaving
control volume. This exiting volume from gear 1 is given b
dVo1

. Similarly, the input and exiting volumes from gear 2 a
given by dVi 2

and dVo2
, respectively. Setting the input volume

equal to the output volumes yields the dimensionless govern
equation for this problem:

dV̂d5~dV̂i 1
2dV̂o1

!1~dV̂i 2
2dV̂o2

!. (2)

From geometry it can be shown that dimensionless express
for the entering and exiting volumes are given by

dV̂i 1
5

1

2
r̂ a1

2 du1 , dV̂o1
5

1

2
r̂1

2du1 ,

dV̂i 2
5

1

2
r̂ a2

2 du2 , dV̂o2
5

1

2
r̂2

2du2 , (3)

wherer a1,2
is the addendum radius,r1,2 is the contact radius be

tween the two sealing teeth in the mesh, andu1,2 is the angle of
rotation. Note: in Eq.~3!, the subscripts, 1 and 2, denote th
driving gear and driven gear, respectively. From the fundame
law of gearing, we know that

du25
r̂ p1

r̂ p2

du1 , (4)

wherer p1,2
is the pitch radius. Substituting Eqs.~3! and ~4! into

Eq. ~2!, and dividing the result by an infinitesimal amount of tim
dt, yields the following dimensionless result for the theoretic
flow rate of the gear pump:

Q̂d5
dV̂d

d t̂
5

1

2 H ~ r̂ a1

2 2 r̂1
2!1

r̂ p1

r̂ p2

~ r̂ a2

2 2 r̂2
2!J . (5)

As shown in Eq.~5!, the instantaneous radii of tooth contact,r1
andr2 , must be determined to evaluate the theoretical discha
flow of the pump. Using the law of cosines, and the geometry
Fig. 4 ~to be discussed later!, it can be shown that the instanta
neous radii of tooth contact between the two meshing gear
given by

r̂1
25 l̂ 21 r̂ p1

2 22r̂ p1
l̂ sin~a!, r̂2

25 l̂ 21 r̂ p2

2 12r̂ p2
l̂ sin~a!,

(6)
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wherea is the pressure angle andl is the instantaneous length o
action shown in Fig. 4. Substituting Eq.~6! into Eq.~5! yields the
following result for the instantaneous flow rate of the pump:

Q̂d5
1

2 H r̂ a1

2 1 r̂ a2

2
r̂ p1

r̂ p2

2 r̂ p1
~ r̂ p1

1 r̂ p2
!2S 11

r̂ p1

r̂ p2

D l̂ 2J . (7)

Results very similar to this have also been reported in previ
literature@5,9#. Using this equation, the instantaneous flow rate
the pump may be determined once the instantaneous lengt
action, l , is known. The length of action can be determined fro
the mesh geometry of the gear.

Mesh Geometry

Coordinate Systems. Figures 3 and 4 show schematics of th
gear mesh that occurs between two teeth that instantaneousl
fine the control volume of the discharge chamber. Figure 3 sh
the first point of tooth contact between the teeth while Fig
shows an intermediate point of tooth contact. In these schema
two Cartesian coordinate systems are shown:~1! there is a fixed
Cartesian coordinate system denoted by the largeX-Y coordi-
nates, and~2! there is a rotating Cartesian coordinate system
noted by the smallx-y coordinates. The fixedX-Y coordinate
system is oriented by the fixed angular dimensionj ~which will be
determined later!. Thex axis of the small rotatingx-y coordinate
system is attached to the centerline of the gear tooth on gear 1
moves with this gear tooth as it rotates with the angular dimens
u1 . By definition, u150 when the largeX-Y and the smallx-y
coordinate systems are coincident and when the meshing t
first make contact.

Instantaneous Point of Tooth Contact. The instantaneous
point of tooth contact must always lie somewhere on the line
action and is located with respect to the rotatingx-y coordinate
system by the polar coordinatesr1 andb1 . From Fig. 4, it may be
shown that the equation for the line of action with respect to
rotatingx-y coordinate system is

ŷ sin~a1u12j!512 x̂ cos~a1u12j!, (8)

where it has been recognized from gear geometry thatr b1

5r p1
cos(a). At the point of tooth contact, it is clear from Fig.

thatx5r1 cos(b1) andy52r1 sin(b1). Substituting these expres
sions into Eq.~8! yields the following equation which describe
the point of tooth contact in terms ofr1 andb1 :

r̂15sec~a1b11u12j!. (9)
Transactions of the ASME
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Fig. 4 Gear mesh geometry at an intermediate point of tooth contact
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From the geometry of the involute tooth profile~see the Appen-
dix! it may be shown that

b15c12Ar̂1
2211cos21S 1

r̂1
D , (10)

wherec15p/(2 N1) and N1 is the number of teeth on gear 1
Equations~9! and ~10! must be solved numerically for a give
rotational positionu1 . The numerical solution may then be use
to describe the instantaneous point of tooth contact using the p
coordinatesr1 andb1 .

Starting Mesh Position. Figure 3 shows the starting positio
within the mesh when the gear teeth first make contact. This
entation of the gear mesh is a special case of the preceding a
sis where the angular rotation of the driving gear is given byu1
50. In this position, the two Cartesian coordinate systems~i.e.,
the largeX-Y and smallx-y coordinate systems! are coincident.
The point of first contact between the gear teeth occurs when
tip of the driven gear~gear 2! first touches the surface profile o
the driving gear~gear 1!. In this position, it may be shown from
geometry that

r̂1s
5Al̂ s

21 r̂ p1

2 22r̂ p1
l̂ s sin~a!, (11)

where the starting length of action is given by

l̂ s5Ar̂ a2

2 2 r̂ p2

2 cos2~a!2 r̂ p2
sin~a!. (12)

Also, from the general form of Eq.~10!, it may be shown that

b1s
5c12Ar̂1s

2 211cos21S 1

r̂1s
D . (13)

In Eqs. ~11!–~13!, the subscripts is used to denote that thes
dimensions are given for the starting position only. From the
ometry of Fig. 3, the angular dimensionj, which orients the fixed
X-Y coordinate system, may be determined as

j5b1s
1sin21S l̂ s cos~a!

r̂1s

D , (14)

wherer1s
, l s , andb1s

are given in Eqs.~11!–~13!, respectively.

Instantaneous Length of Action

Numerical Solutions. To determine the instantaneous pum
flow, Eq. ~7! must be used with the appropriate result for t
instantaneous length of action,l . From the geometry of right tri-
angles, and using Fig. 4, it can be shown that the instantan
length of action is given by
stems, Measurement, and Control
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l̂ 5 r̂1 sin~j2u12b1!sec~a!, (15)

wherer1 and b1 are given in Eqs.~9! and ~10!. The nonlinear
relationship betweenr1 andb1 ~see Eqs.~9! and~10!! requires a
numerical solution for determining the instantaneous length
action according to Eq.~15!. The numerical solution to thes
equations will yield the most accurate results possible; howeve
closed-form approximation to these solutions would be more c
venient to use.

Closed-Form Approximation. For generating a closed form
solution for the instantaneous pump flow, a Taylor series exp
sion of Eq.~15! may be taken for small values ofu1 . This result
is given by

l̂ 5 l̂ s2 r̂1s
cos~j2b1s

!sec~a!u1 , (16)

wherel s is given in Eq.~12!, r1s
is given in Eq.~11!, b1s

is given
in Eq. ~13!, and j is given in Eq.~14!. As it turns out, an even
better approximation can be consistently made by assuming
r̂1s

cos(j2b1s
)sec(a)51. Using this assumption, Eq.~16! may be

written as

l̂ 5 l̂ s2u1 , (17)

where, again,l̂ s is given in Eq.~12!. By subtracting Eq.~17! from
the numerical solution of Eq.~15!, an error associated with th
approximation of Eq.~17! may be written as

«̂5 r̂1 sin~j2u12b1!sec~a!2 l̂ s1u1 . (18)

This error is zero foru150 but increases slightly asu1 gets larger.
Numerical studies of this error have shown it to be negligible
the pump designs examined in this research.

Pump Flow Characteristics
The general form of Eq.~7! will be used to describe the flow

characteristics of the pump. From Eq.~7!, it can be shown that the
maximum flow output of the pump will occur whenl 2 is a mini-
mum. For the case of each pump analyzed in this study, minl̂2)
50. Therefore,

Q̂dmax
5

1

2 H r̂ a1

2 1 r̂ a2

2
r̂ p1

r̂ p2

2 r̂ p1
~ r̂ p1

1 r̂ p2
!J . (19)

Similarly, the minimum flow output of the pump will occur whe
l 2 is a maximum. Since max(l̂2)5l̂ s

2 , the minimum pump flow rate
is given by
SEPTEMBER 2003, Vol. 125 Õ 399



Table 1 Pump designs with identical average flow rates „QR dÄ0.297… and varying numbers of teeth on the driving and driven
gears. The boldface row designs are shown in Fig. 5.

N1 N2 a r̂ p1
r̂ p2

r̂ a1
r̂ a2 l̂ s l̂ f

13 13 0.208 1.022 1.022 1.179 1.179 0.414 20.075
13 14 0.214 1.023 1.102 1.181 1.259 0.419 20.069
13 15 0.219 1.024 1.182 1.182 1.340 0.424 20.065
13 16 0.223 1.025 1.262 1.183 1.420 0.428 À0.060
14 13 0.276 1.039 0.965 1.188 1.114 0.352 20.097
14 14 0.280 1.041 1.041 1.189 1.189 0.356 20.093
14 15 0.283 1.042 1.116 1.190 1.265 0.360 À0.089
14 16 0.286 1.042 1.191 1.191 1.340 0.364 20.085
15 13 0.345 1.062 0.921 1.204 1.062 0.304 20.115
15 14 0.347 1.063 0.992 1.205 1.134 0.307 À0.112
15 15 0.349 1.064 1.064 1.206 1.206 0.310 20.109
15 16 0.351 1.065 1.136 1.207 1.278 0.313 20.106
16 13 0.408 1.089 0.885 1.226 1.021 0.268 À0.125
16 14 0.410 1.090 0.954 1.226 1.090 0.270 20.122
16 15 0.411 1.091 1.023 1.227 1.159 0.273 20.120
16 16 0.412 1.091 1.091 1.228 1.228 0.275 20.118
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Q̂dmin
5

1

2 H r̂ a1

2 1 r̂ a2

2
r̂ p1

r̂ p2

2 r̂ p1
~ r̂ p1

1 r̂ p2
!2S 11

r̂ p1

r̂ p2

D l̂ s
2J .

(20)

The amplitude of the flow pulse is then given by

DQ̂d5Q̂dmax
2Q̂dmin

5
1

2 S 11
r̂ p1

r̂ p2

D l̂ s
2. (21)

The average flow rate for one flow pulsation is given by

QC d5
1

~ l̂ s2 l̂ f !
E

l̂ f

l̂ s
Q̂dd l̂5

1

2 H r̂ a1

2 1 r̂ a2

2
r̂ p1

r̂ p2

2 r̂ p1
~ r̂ p1

1 r̂ p2
!2 k̂J ,

(22)

wherel s is the length of action when the mating teeth just tou
andl f is the length of action that occurs just prior to another se
teeth making contact within the mesh~i.e., whenu152p/N1).
Both of these dimensions are shown in Fig. 3. Note: the dim
sion l f can be~and usually is! negative. In Eq.~22!, the term
denoted by the symbolk is given explicitly by

k̂5S 11
r̂ p1

r̂ p2

D S ~ l̂ s1 l̂ f !
22 l̂ s l̂ f

3
D . (23)

Pump Design
In this study, pumps with different numbers of gear teeth

designed for the purposes of comparing flow ripple characte
tics. To make an apple-to-apple comparison between pumps
average flow rate of each pump is maintained as a prescr
constant in the design process. In other words, Eq.~22! is held
constant for all pump designs. In this equation, the starting
final length of action (l s and l f) is needed to make this computa
tion. The starting length of action is explicitly given in Eq.~12!.
The final length of action may be determined from the gene
form of Eq. ~15! as

l̂ f5 r̂1 f
sin~j2u1 f

2b1 f
!sec~a!, (24)

where

r̂1 f
5sec~a1b1 f

1u1 f
2j!, b1 f

5c12Ar̂1 f

2 211cos21S 1

r̂1 f
D ,

u1 f
5

2p

N1
, c15

p

2 N1
, (25)

andj is given in Eq.~14!. The pitch radius of each gear is dete
mined from the following geometry requirements:
400 Õ Vol. 125, SEPTEMBER 2003
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r̂ p1
5sec~a!, r̂ p2

5
N2

N1
r̂ p1

, (26)

whereN1 is the number of teeth on the driving gear andN2 is the
number of teeth on the driven gear. The addendum radius of e
gear is designed according the American Gear Manufacturing
sociation ~AGMA ! recommended standards@10#. These recom-
mendations are given by

r̂ a1
5~21N1!

r̂ p1

N1
, r̂ a2

5~21N2!
r̂ p2

N2
. (27)

By selecting the number of teeth on each gear (N1 andN2), speci-
fying the average flow rate of the pump~Eq. ~22!!, and enforcing
the constraints of Eqs.~24!–~27!, the pressure anglea may be
solved for numerically. This method has been used to generate
designs that are shown in Table 1.

Figure 5 shows the boldface-row designs given in Table 1. I
interesting to observe that as the number of teeth on the driv
gear increases, the teeth become more pointed and sharp at th
Furthermore, it is also significant to observe that as the numbe
teeth on the driven gear decreases, the physical pump size
smaller while maintaining the same volumetric displacement
revolution.

Results

Center Distance and Physical Pump Size. As shown in Fig.
1, the center distance is the distance between the shaft cente
of the gears. From geometry, this distance is given by

Ĉ5 r̂ p1
1 r̂ p2

, (28)

where r p1
and r p2

are the pitch radii of the driving and drive
gear, respectively. The center distance can be used to gaug
physical size of the pump. Generally speaking, if the center
tance is large, the pump will be large. If the center distance
small, the pump will be small. While designing the pumps for th
research, it was observed that the center distance incre
strongly as the number of teeth on the driven gear increases
decreases weakly as the number of teeth on the driving gea
creases. This result says that physically smaller pumps~of the
same displacement per revolution! may be designed if the numbe
of teeth on the driven gear is decreased while the number of t
on the driving gear is increased. A qualitative assessment of F
shows that this is indeed the case. Figure 6 shows a plot of
center distance as it varies with tooth number on both the driv
and driven gears. Note: Figure 6 plots the center distance in
mensionless form. To dimensionalize this quantity, it must be m
tiplied by the radius of the base circle on the driving gear,r b1

.
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Instantaneous Flow Ripple. The instantaneous flow ripple o

Fig. 5 Gear pumps of the same displacement designed with
different numbers of teeth on the driving and driven gears

Fig. 6 Dimensionless center distance variation for gear
pumps of the same displacement utilizing various combina-
tions of teeth on the driving and driven gears
Journal of Dynamic Systems, Measurement, and Control
f

the pump is given by the solution to Eq.~7!. This solution may be
determined by solving for the length of action numerically, as
Eq. ~15!, or it may be determined using the closed-form appro
mations for the length of action, as presented in Eq.~17!. Figure 7
shows a plot of the flow ripple calculation for the pumps that a
shown in Fig. 5. From this figure, it can be seen that the amplit
of the flow ripple decreases significantly as the number of teeth
the driving gear increases. Note: these results are numerica
sults; however, the approximate closed-form results yield
tremely close solutions as well.

Flow Pulse Amplitude. The amplitude of the flow pulse is
given by Eq. ~21!. Figure 8 shows a graph of the flow puls
amplitude as it varies with the numbers of teeth on both the d
ing and driven gears~i.e., gear 1 and gear 2, respectively!. Note:
this figure shows a strong dependence on the number of teet
the driving gear. The flatness of the curves tends to show a w
dependence on the number of teeth on the driven gear.

FFT Results. The fast Fourier transform~FFT! is used to
identify the amplitudes and frequencies of the harmonic sign
that may be added together to create the flow pulse results tha
typically shown in Fig. 7. FFT analysis was conducted on the fl
pulse signal that was generated for each pump design in this s
Note: the numerical results were used to conduct this analysi
opposed to the closed-form approximation. Figure 9 shows a c
parison of these results for gear sets with equal numbers of t
on each gear. Figures 10–13 show a comparison of FFT result
gears with differing numbers of teeth on each gear. The freque

Fig. 7 The theoretical flow pulse solution „Eq. „7…… for the
pumps shown in Fig. 5. „Note: these results have been normal-
ized using the average flow rate of the pump. As the number of
teeth on the driving gear increases, the flow pulse amplitude is
reduced. …

Fig. 8 The theoretical flow pulse amplitude „Eq. „21…… normal-
ized by the average flow rate of the pump. As the number of
teeth on the driving gear increases, the flow pulse amplitude is
reduced.
SEPTEMBER 2003, Vol. 125 Õ 401
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scale of these plots is normalized by the tooth pass frequenc
the driving gear. This normalizing frequency is given by

v t5
N1

2p
v1 , (29)

whereN1 is the number of teeth on the driving gear andv1 is the
angular velocity of the driving gear. In Figs. 9–13, tooth numb
are the gears are designated byN1 , N2 . For example, tooth num
bers designated by 15, 14 indicate that there are 15 teeth on
driving gear and 14 teeth on the driven gear. This conventio
used throughout this paper.

Discussion
As shown in Fig. 6, the center distance between the gear sh

decreases dramatically as the number of teeth on the driven

Fig. 9 FFT results for the flow pulse of pumps with equal num-
bers of teeth on the driving and driven gear

Fig. 10 FFT results for the flow pulse of pumps with 13 teeth
on the driving gear 13 to 16 teeth on the driven gear

Fig. 11 FFT results for the flow pulse of pumps with 14 teeth
on the driving gear 13 to 16 teeth on the driven gear
402 Õ Vol. 125, SEPTEMBER 2003
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goes down. Indeed, Fig. 5 bears this quality as well. From Fig
it may also be observed that a slight decrease in the center
tance may be achieved if the number of teeth on the driving g
goes up. This trend suggests that a smaller pump~with the same
average flow rate! may be designed if the number of teeth on t
driven gear is reduced compared to the number of teeth on
driving gear. For designs of this type, the driven gear will rota
faster than the driving gear according to the speed ratio that c
acterizes the gearset~i.e., the ratio of teeth!. From a packaging
point of view, this is a very useful result that may be used to cre
a smaller machine so long as an unacceptable increase in the
ripple does not occur. Fortunately, as we have shown already
amplitude of the flow ripple is fairly insensitive to the number
teeth on the driven gear~see Fig. 8!. Therefore, a reduction in the
number of teeth on the driven gear, for the purposes of reduc
the physical pump size, may be a feasible design alternative
ought to be examined carefully.

Figure 8 shows that the flow-pulse amplitude is significan
reduced by increasing the number of teeth on the driving gea
the pump. It is also shown that increasing the number of teeth
the driven gear can reduce the pulse amplitude only slightly. T
characteristic is shown by the flatness of the curves in Fig. 8.
insensitivity of the flow pulse amplitude to the number of teeth
the driven gear is not an obvious result; however, it is one that
be used to one’s advantage for making a smaller pump as
cussed in the previous paragraph. The FFT results of this s
confirm the findings presented in Fig. 8 as well.

The FFT results of Figs. 9–13 show that the harmonic frequ
cies of the pump occur at integer multiples of the tooth pass
quency of the driving gear. The number of teeth on the driv
gear also predominantly controls the amplitude of the harmo
components. As the number of teeth on the driving gear increa
the amplitude of these harmonic components decreases sig

Fig. 12 FFT results for the flow pulse of pumps with 15 teeth
on the driving gear 13 to 16 teeth on the driven gear

Fig. 13 FFT results for the flow pulse of pumps with 16 teeth
on the driving gear 13 to 16 teeth on the driven gear
Transactions of the ASME
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cantly. As the number of teeth on the driven gear increases,
amplitude of each harmonic component is only decreased slig
This result is in basic agreement with the previous informat
presented in Fig. 8.

Conclusion
The following conclusions are supported by the analysis

results of this research:

1. To solve the instantaneous flow ripple equation of the g
pump, a numerical solution is generally required.

2. A closed-form approximation for the flow ripple equatio
can be used without introducing significant error into the soluti
Therefore, Eqs.~7! and ~17! may be used for quick calculation
that do not require a computer for the solutions.

3. Reducing the numbers of teeth on the driven gear may
used to reduce the center distance and physical pump size.
can be done without altering the average flow rate of the pu
and without increasing the flow pulsation dramatically.

4. The center distance can be reduced slightly by increasing
number of teeth on the driving gear as well; however, this imp
is not as significant as the one noted in item 3.

5. The pulse amplitude of the flow ripple is primarily dete
mined by the number of teeth on the driving gear of the pump.
increasing the number of teeth on the driving gear, the flow pu
amplitude can be significantly reduced.

6. Increasing the number of teeth on the driven gear can
reduce the pulse amplitude of the flow ripple; however, this i
pact is not as significant as the one noted in item 5.

7. The harmonic frequencies of the flow ripple pulse occur
integer multiples of the tooth pass frequency on the driving ge
therefore, by increasing the number of teeth on the driving g
the harmonic frequencies may be increased as well.

8. The number of teeth on the driving gear primarily contro
the amplitude of the harmonic components of the flow rip
pulse. As the number of teeth on the driving gear increases,
harmonic amplitudes decrease. This conclusion is in basic ag
ment with item 5.

9. Changing the number of teeth on the driven gear has a
ligible impact on the harmonic amplitudes of the flow ripp
pulse. This conclusion is in basic agreement with item 6.

In summary, the results of this study show that it may be adv
tageous to design an external gear pump with a large numbe
teeth on the driving gear and a fewer number of teeth on
driven gear. This design configuration will tend to reduce both
physical pump size~without reducing the volumetric displaceme
of the pump! and the amplitude of the flow pulsation, while in
creasing the natural harmonic frequencies of the machine.
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Nomenclature

C 5 center distance between shafts on the gear pump
k 5 pump constant used for defining the average volum

ric flow rate
l 5 instantaneous length of action within the gear mesh

l f 5 length of action within the gear mesh just prior to
another set of teeth making contact

l s 5 length of action within the gear mesh when the tee
make the first point of contact

N1,2 5 number of teeth on the driving and driven gear
Q 5 volumetric flow rate

Qd 5 volumetric discharge flow rate of the pump
Q̄d 5 average volumetric flow rate of the pump
Journal of Dynamic Systems, Measurement, and Control
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Qdmax 5 maximum volumetric flow rate of the pump
Qdmin 5 minimum volumetric flow rate of the pump
DQd 5 amplitude of the volumetric flow rate pulse

r 5 radial dimension
r a1,2 5 addendum radius of the driving and driven gear
r b1,2 5 base circle radius of the driving and driven gear
r p1,2 5 pitch radius of the driving gear

t 5 time
V 5 volume

Vd 5 volume leaving the control volume across the dis-
charge boundary

Vi 1,2 5 volume entering the control volume with the driving
and driven gear

Vo1,2 5 volume leaving the control volume with the driving
and driven gear

w 5 width of the gear teeth
x 5 primary Cartesian coordinate
y 5 secondary Cartesian coordinate
a 5 pressure angle

b1,2 5 angular dimension locating the instantaneous point
contact on the driving and driven gear

b1 f 5 angular dimension locating the point of contact on
the driving gear just prior to another set of teeth
making contact

b1s 5 angular dimension locating the point of contact on
the driving gear when the teeth make the first point
of contact

u1,2 5 angular displacement of the driving and driven gea
u1 f 5 angular displacement of the driving gear just prior t

another set of teeth making contact
j 5 angular orientation of the fixed Cartesian coordinate

system
r 5 radial dimension

r1,2 5 radial dimension locating the instantaneous point o
contact on the driving and driven gear

r1 f 5 radial dimension locating the point of contact on the
driving gear just prior to another set of teeth making
contact

r1s 5 radial dimension locating the point of contact on the
driving gear when the teeth make the first point of
contact

c1 5 half angle of the tooth width measured at the base
circle of the driving gear

v1,2 5 angular velocity of the driving and driven gear
v t 5 tooth pass frequency of the driving gear

Fig. 14 The geometry of the involute tooth profile
SEPTEMBER 2003, Vol. 125 Õ 403
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Appendix
In this Appendix, the geometry of the involute tooth profile

presented. Figure 14 shows the involute geometry that define
surface profile of a single gear tooth. A well-known meth
for visualizing the involute profile is to generate a curve
unwrapping a tight string from the outside edge of a cylinder.
Fig. 14, the outside edge of this cylinder is defined by the rad
of the base circle,r b , and the unwrapped length of the tight strin
is given by the arc lengthr b w. A point on the involute surface
of the tooth is located by the polar coordinatesr and b. This
point also has Cartesian coordinates given byx and y. Note
the x axis is located along the centerline of the tooth. Fro
the geometry of right triangles, the following results can be w
ten for the polar coordinates of a point located on the invol
surface:

r5r bA11w2, b5c2w1g, (30)

wherec is a fixed geometry parameter of the tooth,w is called the
involute angle, andg is the acute angle of the right triangle show
in Fig. 14. The Cartesian transformation of these coordinate
given by

x5r cos~b!, y5r sin~b!. (31)

From the geometry of Fig. 14, it may also be observed that

r b5r cos~g!, r bw5r sin~g!. (32)

Using Eqs.~30! and ~32!, it can be shown that
404 Õ Vol. 125, SEPTEMBER 2003
is
the
d
y
In
ius
g

m
it-
te

n
is

b5c2AS r

r b
D 2

211cos21S r b

r D . (33)

These geometry relationships are referred to and used throug
the analysis of this research.
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