Hodrick-Prescott Filter

Hyeongwoo Kim

March 12, 2004

Let's suppose that the original series y_t is composed of a trend component (τ_t) and a cyclical component (c_t) . That is,

$$y_t = \tau_t + c_t , \ t = 1, 2, \cdots, T$$

Hodrick and Prescott (1997) suggest a way to isolate c_t from y_t by following minimization problem.

$$Min_{\{\tau_t\}_{t=1}^T} \left[\sum_{t=1}^T (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} (\nabla^2 \tau_{t+1})^2 \right]$$
(1)

, where λ is the penalty parameter. The first term in the loss function, (1) penalizes the variance of c_t , while the second term puts a prescribed penalty to the lack of smoothness in τ_t . Put it differently, the HP filter identifies the cyclical component c_t from y_t by the trade-off to the extent to which the trend component keeps track of the original series y_t (good fit) against the prescribed smoothness in τ_t . Note that as λ approaches to 0, the trend component becomes equivalent to the original series, while as λ diverge to ∞ , τ_t approaches to the linear trend.

It is customary to set λ to 1,600 for quarterly data. For monthly and annual data, Maravall and del Rio (2001) recommended to use 100,000 < λ_M < 140,000 and 6 < λ_A < 14, respectively.

By taking derivatives of the loss function (1) with respect to τ_t , $t = 1, \dots, T$ and rearranging them, it can be shown that the solution to (1) can be written as following matrix form.

$$\mathbf{y}_T = (\lambda \mathbf{F} + \mathbf{I}_T) \boldsymbol{\tau}_T \tag{2}$$

, where \mathbf{y}_T is the $(T \times 1)$ vector of original series and

	[1]	-2	1	0	• • •									• • •	0 -	1
	-2	5	-4	1	0										0	
$\mathbf{F} = $	1	-4	6	-4	1	0									0	
	0	1	-4	6	-4	1	0								÷	
	÷	·						·								
								·						·	÷	
	0								0	1	-4	6	-4	1	0	
	:									0	1	-4	6	-4	1	
											0	1	-4	5	-2	
	0											0	1	-2	1	

Then, the trend component and the cyclical component can be identified as follows.

$$\boldsymbol{\tau}_T = (\lambda \mathbf{F} + \mathbf{I}_T)^{-1} \mathbf{y}_T \tag{3}$$

$$\mathbf{c}_T = \mathbf{y}_T - \boldsymbol{\tau}_T \tag{4}$$

Reference:

- Hodrick, Robert, and Edward C. Prescott (1997), "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit, and Banking.
- 2. Maravall, Agustín, and Ana del Rio (2001), "Time Aggregation and the Hodrick-Prescott Filter," Banco de España.
- 3. Mark, Nelson C. (2001), International Macroeconomics and Finance.