
Author's personal copy

Neural Networks 21 (2008) 458–465
www.elsevier.com/locate/neunet

2008 Special Issue

Toyota Prius HEV neurocontrol and diagnosticsI

Danil V. Prokhorov∗

Toyota Technical Center, A division of Toyota Motor Engineering and Manufacturing North America (TEMA), Ann Arbor, MI 48105, United States

Received 10 August 2007; received in revised form 20 November 2007; accepted 11 December 2007

Abstract

A neural network controller for improved fuel efficiency of the Toyota Prius hybrid electric vehicle is proposed. A new method to detect
and mitigate a battery fault is also presented. The approach is based on recurrent neural networks and includes the extended Kalman filter. The
proposed approach is quite general and applicable to other control systems.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: RNN; Neurocontrol; Battery diagnostics; Fault mitigation; HEV; Control; NN model; NN controller; EKF

1. Introduction

Hybrid powertrains have been gaining popularity due to
their potential to improve fuel economy significantly and
reduce undesirable emissions. Control strategies of the hybrid
electric vehicle (HEV) are more complex than those of
the internal combustion engine-only vehicle because they
have to deal with multiple power sources in sophisticated
configurations. The main function of any control strategy
is power management. It typically implements a high-level
control algorithm which determines the appropriate power split
between the electric motor and the engine to minimize fuel
consumption and emissions, while staying within specified
constraints on drivability, reliability, battery charge sustenance,
etc.

Computational intelligence techniques have previously been
applied to HEV power management by various authors. A rule-
based control was employed in Baumann, Washington, Glenn,
and Rizzoni (2000). Fuel economy improvement with a fuzzy
controller was demonstrated in Salman, Schouten, and Kheir
(2000) and Schouten, Salman, and Kheir (2002), relative to
other strategies which maximized only the engine efficiency.
Another system for improving fuel economy in the form of
fuzzy rule-based advisor was proposed in Syed, Filev, and Ying

I An abbreviated version of some portions of this article appeared in
Prokhorov (2007) as part of the IJCNN 2007 Conference Proceedings,
published under IEE copyright.

∗ Tel.: +1 734 9951017.
E-mail address: dvprokhorov@gmail.com.

(2007). The advisor either lets the driver inputs through intact
(accelerator and brake positions), or adjusts its limits to provide
advantageous corrections even for a fuel efficiency minded
driver.

An intelligent controller combining neural networks and
fuzzy logic which could adapt to different drivers and drive
cycles (profiles of the required vehicle speed over time) was
studied in Baumann, Rizzoni, and Washington (1998). Recently
a neurocontroller was employed in a hybrid electric propulsion
system of a small unmanned aerial vehicle which resulted in
significant energy saving (Harmon, Frank, & Joshi, 2005).

The references cited above indicate a significant potential
for improving HEV performance through more efficient power
management based on application of computational intelligence
(CI) techniques. Though the Toyota HEV Prius efficiency is
quite high already, there is a potential for further improvement,
as illustrated in this paper.

Unlike traditional hybrid powertrain schemes, series or
parallel, the Prius hybrid implements what is called the power
split scheme. This scheme is quite innovative and has not
been studied extensively yet from the standpoint of application
of CI techniques. The Prius powertrain uses a planetary gear
mechanism to connect an internal combustion engine, an
electric motor and a generator. A highly efficient engine can
simultaneously charge the battery through the generator and
propel the vehicle (Fig. 1). It is important to be able to set the
engine operating point to the highest efficiency possible and at
sufficiently low emission levels of undesirable exhaust gases
such as hydrocarbons, nitrogen oxides and carbon monoxide.

0893-6080/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.12.043

Administrator
Text Box
Best Paper Award of IJCNN 2007

Author's personal copy

D.V. Prokhorov / Neural Networks 21 (2008) 458–465 459

Fig. 1. The Prius car and the main components of the Toyota hybrid system.

The motor is physically attached to the ring gear. It can move
the vehicle through the fixed gear ratio and either assist the
engine or propel the vehicle on its own for low speeds. The
motor can also return some energy to the battery by working as
another generator in the regenerative braking mode.

As in the previous work (Prokhorov, 2006; Prokhorov,
Puskorius, & Feldkamp, 2001), I employ recurrent neural
networks (RNN) as controllers and train them for robustness to
parametric and signal uncertainties (known bounded variations
of physical parameters, reference trajectories, measurement
noise, etc.). I intend to deploy the trained neurocontroller
with fixed weights. It is still desirable to have a possibility
to influence the closed-loop performance in case some degree
of adaptivity is needed, e.g., when an intermittent fault in the
system occurs which temporarily makes significant changes
in its performance (until repairs are made). It may be not
helpful to adapt weights of the controller because (1) it would
compromise its already trained weights, i.e., its long-term
memory, which is undesirable in the intermittent fault case,
and (2) adaptation in strongly nonlinear systems can cause
bifurcations. It may be safer to augment the fixed-weight RNN
controller by simpler means for adaptation.

This paper is structured as follows. In next section 2 describe
main elements of the off-line training. The approach permits me
to create an RNN controller which is ready for deployment with
fixed weights. I describe my control experiments in Section 3. I
then propose a NN for battery diagnostics and discuss ways to
mitigate a battery fault in Section 4. Battery fault mitigation is
carried out by influencing inputs or outputs of the fixed-weight
NN controller, with a diagnostic NN continuously monitoring
the closed-loop performance.

Fig. 2. Steps of my process for NN controller training and verification.

2. Off-line training

I adopt the approach of indirect or model-based control
development for off-line training. The Prius simulator is a
highly complex, distributed software which makes training
a neurocontroller directly in the simulator difficult. I
implemented an approach in which the most essential elements
of the simulator are approximated sufficiently accurately by
a neural network model. The NN model is used to train
a neurocontroller by effectively replacing the simulator; this
configuration is also known as the parallel identification
scheme, as in Eaton, Prokhorov, and Wunsch (2000) and
Narendra and Parthasarathy (1990). The trained neurocontroller
performance is then verified in the simulator (Fig. 2).

The use of differentiable NN for both model and controller
makes possible application of the industrially proven training
method. I describe here only the main elements of the
method, referring the reader to other references for its more
comprehensive account (Prokhorov et al., 2001; Puskorius,
Feldkamp, & Davis Jr., 1996).

Truncated backpropagation through time (BPTT(h), where
h stands for the truncation depth) offers potential advantages
relative to forward methods for obtaining sensitivity signals
in NN training problems. First, the computational complexity
scales as the product of h with the square of the number of
nodes (for a fully connected NN). The required storage is
proportional to the product of the number of nodes and the
truncation depth h. Second, BPTT(h) often leads to a more
stable computation of dynamic derivatives than do forward
methods because its history is strictly finite. Third, the use
of BPTT(h) permits training to be carried out asynchronously
with the RNN execution. This feature enabled testing a BPTT-
based approach on a real automotive hardware as described in
Puskorius et al. (1996).

After the derivatives are computed via BPTT(h), I can
update the NN weights. Unlike weight update methods that
originate from the field of differentiable function optimization,
the extended Kalman filter (EKF) method treats supervised
learning of a NN as an optimal filtering problem. The NN
weights w are interpreted as states of the trivially evolving
dynamic system, with the measurement equation described by

Author's personal copy

460 D.V. Prokhorov / Neural Networks 21 (2008) 458–465

the NN function h:

w(t + 1) = w(t) + ν(t) (1)

yd(t) = h(w(t), i(t), v(t − 1)) + ω(t) (2)

where yd(t) is the desired output vector, i(t) is the external
input vector, v is the RNN state vector (internal feedback),
ν(t) is the process noise vector, and ω(t) is the measurement
noise vector. The weights w may be organized into g mutually
exclusive weight groups. This trades off performance of the
training method with its efficiency; a sufficiently effective and
computationally efficient choice, termed node decoupling, has
been to group together those weights that feed each node.
Whatever the chosen grouping, the weights of group i are
denoted by wi . The corresponding derivatives of network
outputs with respect to weights wi are placed in Nout columns
of Hi .

To minimize at time step t a cost function cost =∑
t

1
2ξ(t)TS(t)ξ(t), where S(t) > 0 is a weighting matrix

and ξ(t) is the vector of errors, ξ(t) = yd(t) − y(t), where
y(t) = h(·) from (2), the decoupled EKF equations are as
follows (Puskorius et al., 1996):

A∗(t) =

[
1

η(t)
I +

g∑
j=1

H∗

j (t)
TP j (t)H∗

j (t)

]−1

(3)

K∗

i (t) = Pi (t)H∗

i (t)A
∗(t) (4)

wi (t + 1) = wi (t) + K∗

i (t)ξ
∗(t) (5)

Pi (t + 1) = Pi (t) − K∗

i (t)H
∗

i (t)
TPi (t) + Qi (t). (6)

In these equations, the weighting matrix S(t) is distributed into
both the derivative matrices and the error vector: H∗

i (t) =

Hi (t)S(t)
1
2 and ξ∗(t) = S(t)

1
2 ξ(t). The matrices H∗

i (t)
thus contain scaled derivatives of network (or the closed-loop
system) outputs with respect to the i th group of weights;
the concatenation of these matrices forms a global scaled
derivative matrix H∗(t). A common global scaling matrix
A∗(t) is computed with contributions from all g weight groups
through the scaled derivative matrices H∗

j (t), and from all of
the decoupled approximate error covariance matrices P j (t).
A user-specified learning rate η(t) appears in this common
matrix. (Components of the measurement noise matrix R are
inversely proportional to η(t).) For each weight group i , a
Kalman gain matrix K∗

i (t) is computed and is then used in
updating the values of the group’s weight vector wi (t) and
in updating the group’s approximate error covariance matrix
Pi (t). Each approximate error covariance update is augmented
by the addition of a scaled identity matrix Qi (t) that represents
additive data deweighting.

I employ a multi-stream version of the algorithm above.
A concept of multi-stream was proposed in Feldkamp and
Puskorius (1994) for improved training of RNN via EKF.
It amounts to training Ns copies (Ns streams) of the same
RNN with Nout outputs. Each copy has the same weights
but different, separately maintained states. With each stream
contributing its own set of outputs, every EKF weight update is
based on information from all streams, with the total effective

Fig. 3. Pictorial representation of unfolding the closed-loop system consisting
of neurocontroller C and plant model M. The variables predicted by the model
R are compared with their desired values Rd , generating the error e. While this
is done only for the last step of the unfolding, the unfolding process itself is
repeated many times, starting from t = k + 1, k + 2,

number of outputs increasing to M = Ns Nout. The multi-
stream training may be especially effective for heterogeneous
data sequences because it resists the tendency to improve local
performance at the expense of performance in other regions.

Fig. 3 illustrates how the neurocontroller is trained in my
off-line training. After the NN model of the simulator (or plant
in general) is trained, we carry out the following procedure:

1. Initiate states of the NN model and NN controllers,
assuming RNN is used. Generate a trajectory {i(t), yd(t)}, t =

k, k + 1, k + 2, . . . , N .
2. Run the closed-loop system forward from time step k to

step k + h, where 1 � h ≤ N , and compute the cost function.
The pair NN model controller, or the entire closed-loop system,
is run forward for h time steps, thereby generating its h copies
(Fig. 3). It may be helpful to think of the current time step as
step k + h, rather than step k.

3. Backpropagate through the temporal chain of the closed-
loop system copies from step k + h to step k while computing
derivatives of the relevant outputs with respect to NN controller
weights, i.e., carry out BPTT(h).

4. Adjust the weights according to the EKF algorithm with
the goal of incremental minimization of the cost in the mean
square sense.

5. Move forward one time step (run the closed-loop system
forward from step k + h to step k + h + 1), then repeat the
procedure beginning from step 3, etc., until the end of trajectory
is reached.

6. Optionally, generate a new trajectory and resume training
from step 1.

The training is stopped when sufficiently small values of the
cost are obtained.

The described procedure is similar to both model predictive
control (MPC) with receding horizon (see, e.g., Allgoewer
and Zheng (2000)) and optimal control based on the adjoint
(Euler–Lagrange/Hamiltonian) formulation (Stengel, 1994).
The most significant differences are that this scheme uses a
parametric nonlinear representation for controller (NN) and that

Author's personal copy

D.V. Prokhorov / Neural Networks 21 (2008) 458–465 461

updates of RNN weights are incremental, not “greedy” as in the
receding-horizon MPC.

3. Control experiments

I first train a NN model to enable off-line training the
neurocontroller as discussed in Section 2. To do supervised
training of the NN model in Fig. 4, I gather the input–output
pairs from 20 diverse drive cycles generated in the Prius
simulator. I trained a 25-node structured RNN for 3000 epochs
using the multi-stream EKF with g = 1 in (3) (Prokhorov
et al., 2001) and attained the training root mean squared error
(RMSE) of 5 × 10−4 (the largest generalization RMSE was
within 20% of the training RMSE). One part of the structured
RNN approximates fuel rate, whereas another part does SOC.
The parts are decoupled.

The closed-loop control system for training the NN
controller is shown in Fig. 4. The converter determines the
required values of the speed ωd

r and the torque T d
r at the ring

gear of the planetary mechanism to achieve the desired vehicle
speed specified in the drive cycle. This is done on the basis
of the Prius model of motion. The constraint verifier assures
satisfaction of various constraints which must hold for the
engine, the motor and the generator speeds and torques in the
planetary gear mechanism, i.e., ωe and Te, ωm and Tm , ωg and
Tg , respectively.

The first control goal is to minimize the average fuel
consumed by the engine. However, fuel minimization only
is not feasible. The Prius nickel-metal hydride battery is the
most delicate nonlinear component of the system with long-
term dynamics due to discharging, charging and temperature
variations. It is important to avoid rapid and deep discharges of
the battery which can drastically reduce its life, requiring costly
repairs or even battery replacement. Thus, the second goal of
the HEV control is to maintain the battery State Of Charge
(SOC) throughout the drive cycle in the safe zone. The SOC
can vary between 0.0 (fully discharged) and 1.0 (fully charged),
but the safe zone is typically above 0.4.

I combine the two control goals to obtain cost(t) =

λ1s f 2(t) + λ2(t)(SOCd(t) − SOC(t))2, where s f (t) stands
for specific fuel or fuel rate consumed by the engine at time
t , λ1 = 1, and λ2(t) ∈ [10, 50] due to about one order
of magnitude difference between values of s f and those of
SOC. The desired SOCd(t) is constant in my experiments for
simplicity. I encourage the controller to pay approximately
the same level of attention to both s f and SOC, although the
optimal balance between λ1 and λ2 is yet to be determined.
I also penalize reductions of the SOC below SOCd five times
heavier than its increases to discourage the controller from
staying in the low-SOC region for long. Thus, λ2(t) = 10 if
SOC(t) ≥ SOCd , and λ2(t) = 50 if SOC(t) < SOCd .

Ultimately, I would also like to minimize emissions of the
harmful gases. In this paper emission reduction is influenced
indirectly through reducing the fuel consumption because they
are often correlated.

The RNN controller has 5-10R-2 architecture of the
recurrent multi-layer perceptron (RMLP), i.e., five inputs, ten

Fig. 4. Block diagram of the closed-loop system for training the NN controller.
The converter determines the required values of speed ωd

r and torque T d
r at

the ring gear of the planetary mechanism to achieve the desired vehicle speed
profile. The constraint verifier makes sure not only that the torques and speeds
are within their specified physical limits but also that they are consistent with
constraints of the planetary gear mechanism. The trained NN model takes care
of the remaining complicated dynamics of the plant. The feedback loop is
closed via SOC and the fuel rate s f , but the required ωd

r and T d
r are guaranteed

to be achieved through the appropriate design of the constraint verifier.

recurrent nodes in the fully recurrent hidden layer, and two
bipolar sigmoids as output nodes. The RNN receives as inputs
the required output drive speed ωd

r and torque T d
r , the current

engine fuel rate s f , the current SOC and the desired SOC,
SOCd (see Fig. 4; the desired fuel rate is implicit, and it is set to
zero). Additional, potentially useful inputs could be the coolant
or the battery temperatures, to be added in the future.

The RNN produces two control signals normalized in the
range of ±1. The first output is the engine torque τe, and the
second output is the engine speed we which become Te and ωe,
respectively, after passing through the constraint verifier.

The RNN controller is trained off-line using the multi-stream
EKF algorithm described in Section 2. I train according to the 5-
stream EKF algorithm and BPTT(h) with h = 20 in which each
stream is assigned to a particular instantiation of the NN model.
Each stream has a slightly different copy of the NN model to
imitate parametric and signal uncertainties in the Prius system.
More specifically, the NN models differ in their output node
weights only.

Every stream is assigned to its own 50-point segment of the
reference trajectory (drive cycle), with the starting point chosen
at random. I also choose SOCd(0) randomly from the range
[0.5, 0.8] and keep it constant for the entire drive cycle. The
NN models and drive cycles are redrawn randomly every 20
training epochs, each epoch consisting of processing all 250
points for all streams. I train for 1200 epochs total (about 60 000
weight updates) with η = 0.01 and diag(Q) = 10−4I. These are
reasonably effective values for the training control parameters,
although they are not fine-tuned.

When training of the NN controller from Fig. 4 is finished,
I can deploy it inside the high-fidelity simulator which
approximates well the behavior of the real Prius and all its
powertrain components (Step III in Fig. 2). As expected,
I observed some differences between the neurocontroller

Author's personal copy

462 D.V. Prokhorov / Neural Networks 21 (2008) 458–465

Fig. 5. Illustration of the NN model accuracy in matching the simulator and
NN controller performance on a fragment of a very long drive cycle. The
SOC is matched accurately enough to produce a good NN controller, and the
simulator MPG = 49.6 vs. the NN model prediction of 49.0. MPH and MPG
stand for speed in miles per hour and fuel consumption in miles per gallon,
respectively. The engine torque (the bottom panel) and speed are in N m and
rad/s, respectively.

performance in the closed loop with the NN model and
its performance in the high-fidelity simulator because the
NN model and the verifier only approximate the simulator’s
behavior (see Fig. 5). My results below pertain to the simulator,
rather than its NN approximation.

The basic idea of the current Prius HEV control logic
is discussed in Hermance (1999). When the power demand
is low and the battery SOC is sufficiently high, the motor
powers the vehicle. As the power demand and vehicle speed
increase, or the SOC reduces below a threshold, the engine
is started. The engine power is split between propelling the
vehicle and charging the battery through the generator. As the
power demand continues to grow, the engine might not be able
to stay within its efficiency limits. In those cases the motor
can provide power assistance by driving the wheels to keep the
engine efficiency reasonably high, as long as the battery can
supply the required power. During decelerations the motor is
commanded to operate as a generator to recharge the battery,
thereby implementing regenerative braking. It is hard to make

Fig. 6. Illustrative performance of the neurocontroller on a typical drive cycle.
The top panel shows the vehicle speed and SOC (in percent), the second panel
shows the motor (red) and the generator (blue) torques, Tm and 10 × Tg ,
respectively; the third panel shows the motor ωm (red) and the generator ωg
(blue) speeds, and the bottom panel shows the engine torque Te (blue) and
speed ωe (red). Note that ωm = ωd

r due to the system design constraint. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

this baseline strategy optimal for such a complex powertrain.
A strategy based on a data-driven learning system presents an
opportunity to improve over the baseline strategy because of
its ability to discern differences in driving patterns and take
advantage of them for improved performance.

I compare my RNN controller trained for robustness
with the baseline control strategy of the Prius on many
drive cycles including both standard cycles (required by
government agencies) and nonstandard cycles (e.g., random
driving patterns). The RNN controller is better by 17% on
average than the baseline controller in terms of fuel efficiency.
It also reduces variance of the SOC over the drive cycles by
35% on average.

Fig. 6 shows an example of the neurocontroller results,
which should be compared with Fig. 7. The latter depicts the
baseline controller results on the same drive cycle. The NN
controller advantage appears to be in more efficient usage of the
engine, e.g., longer idling at higher torque values. The engine
efficiency is 37% vs. 31% for the baseline controller. An even
bigger improvement is achieved in the generator efficiency:
72% vs. 49%; other component efficiencies remain basically
unchanged.

Author's personal copy

D.V. Prokhorov / Neural Networks 21 (2008) 458–465 463

Fig. 7. Illustration of the baseline controller performance. The drive cycle and
notation are the same as in Fig. 6.

I also test robustness of the NN controller to measurement
noise. Practically, the most critical parameter is the SOC
measurement noise because of long delays in the SOC
dynamics. Interestingly, my NN controller exhibits very
graceful degradation to the significant SOC measurement
uniform noise up to 1% in magnitude, resulting in just under
5% reduction of fuel efficiency on average.

4. Battery diagnostics and fault mitigation

The Prius nickel-metal hydride battery is another energy
source in the HEV system. Due to current technology
limitations, it is important to strive for battery charge
sustenance, as large variations of the battery SOC can
drastically reduce its life requiring costly repairs or even a
replacement.

In this section, I wish to discuss a method to diagnose a
battery fault by observing battery inputs and its output (SOC)
and comparing simple statistics of the output with the statistics
of the normally operating battery. Fig. 8 contrasts behaviors of
the normal and the faulty battery. The faulty battery does not
hold its charge as long as the normal battery does. I henceforth
refer to such faulty battery as leaky battery. It is important not
only to detect this fault reliably but also try to mitigate it until
the HEV is properly serviced.

To diagnose the battery, I employ a neural network based
approach using the same NN training method as described
in Section 2. My diagnostic NN inputs are the past SOC,
the current and several past values of the required speed ωd

r

Fig. 8. Evolution of SOC for two different battery states, normal (solid blue)
and leaky (dashed green, discharge 40% faster than normal), for a typical drive
cycle. Values of the leaky battery SOC are higher occasionally than those of
the normal SOC due to feedback control, but the overall MPG is lower for the
leaky battery, as expected. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Block diagram of the diagnostic NN. The required speed ωd
r and torque

T d
r from the converter in Fig. 4 are fed via the tapped-delay line from the current

(t) to the earliest (t − k∆) time step. The current battery temperature Temp and
the past SOC are also provided.

and torque T d
r , and the battery temperature. The diagnostic

NN puts out its estimate of the future SOC of the battery.
Fig. 9 illustrates a slightly different arrangement in which the
diagnostic NN predicts the difference between the past and the
future SOC, which I used in experiments of this section.

I intend to compare the RMSE between the output of the
diagnostic NN trained on the normal battery data with the SOC
observed from the system. The SOC is to be estimated by the
NN with as high accuracy as possible because the estimation
accuracy determines the fault detection threshold. I carried out
several experiments to determine a suitable NN architecture and
its inputs, as well as the required measurement accuracy of the
SOC.

Initially, I trained a feedforward NN with 10 hidden nodes
equipped with the current SOC input, 20 time-delay inputs of
the ring gear torque and speed demand with delay between
adjacent inputs as 1 sec. For the 9 s ahead SOC target, I
obtained the test RMSE of 3.5 × 10−3 on a drive cycle of
approximately 2000 s long after 3000 epochs of training.
The NN should be trained on a sufficiently rich training set,
representing various drive cycles, controller behaviors and other
important variabilities.

Author's personal copy

464 D.V. Prokhorov / Neural Networks 21 (2008) 458–465

Fig. 10. Distributions of the 9 s ahead SOC RMSE values for the normal (left)
and the leaky (right) batteries. The RMSE values are taken over the 100 s
windows.

Compared with the feedforward NN, an RMLP with just five
hidden nodes in its only recurrent layer and the same inputs
in essentially the same training process demonstrated the test
RMSE of 2.3 × 10−3, which is substantially better than that of
the feedforward NN. While it is probably possible to improve
the results of the feedforward NN, the RNN is known to be
generally better for time series predictions (see, e.g., Mandic
and Chambers (2001)). And of course the size of RNN can
always be increased if higher prediction accuracy is required
because the amount of training data is not a hard restriction in
this problem.

Fig. 10 illustrates the diagnostic value of the RNN output.
The distribution of the 9 s ahead SOC RMSE values on the
left is for the normal battery, and the distribution on the right
is for a leaky battery The RMSE values are taken over the
100 s windows, rather than over the entire 10 000 s drive cycle.
The 100 s window represents a reasonable balance between
diagnostic speed and statistical significance.

It is useful to discuss a way to mitigate the battery fault
by adapting or reconfiguring the controller. While the common
practice is to resort to NN weight adaptation for this purpose,
I prefer to keep the NN weights fixed and rely on adapting
components external to the NN controller. My rationale for this
is two-fold:

• the NN controller weights are its long-term memory, not
desirable to change especially in the case of transient
(fixable) fault,

• the NN controller would try to compensate for a fault of
some severity even with its weights fixed due to the nature
of feedback, especially the RNN controller.

My proposal is supposed to help the fixed-weight NN
controller to combat faults which are more severe than those
the NN controller can cope with on its own. Fig. 11 illustrates
my proposal implemented in this paper. The system constantly
compares the diagnostic NN output with the observed SOC and
computes the RMSE in a window. This RMSE is compared with

Fig. 11. Block diagram of the battery fault mitigation algorithm. The two
alternative options for fault mitigation are shown together: the one which affects
the NN controller input SOCd , and another which affects its outputs.

the value for the normally operating battery. The mitigating
action is initiated as soon as the first RMSE exceeds the second
RMSE by a calibratable threshold. I envision two types of
mitigating action. First, I can increment the NN controller
outputs, the engine torque and the speed, by some amount.
Second, I can increment the relevant NN input, i.e., SOCd .
In either case, the engine must clearly work harder when the
battery is leaky.

Several comments are in order. The amounts to incrementing
the NN input or the outputs are to be calibrated based on
engine calibration maps to keep the fuel consumption as
low as possible. (Such maps are in common usage among
engine control engineers. They link steady state values of
engine variables such as fuel, torque, speed, etc.) As far
as incrementing the outputs is concerned, I recommend to
increment both the torque and the speed because sometimes
either of these two variables may be at its upper limit. The
battery fault mitigation is quicker when both the variables are
incremented, if at all possible.

The algorithm of Fig. 11 is initialized with i = 0. The
counter i gets incremented every K time steps until the
mitigation process succeeds. The counter is reset once the
battery is repaired or replaced.

The algorithm of Fig. 11 is verified on several drive cycles.
I used K = 100, ε = 10−3, RM SE2 = 2.5 × 10−3 and
either ∆SOCd

= 0.005 or ∆τe = 0.5, ∆we = 1.0 which were
added three times to the input or the outputs, respectively, at the
beginning of the drive cycle when the fault was detected. The
RMSE1 was 4.8 × 10−3

± 0.5 × 10−3 before the application of
mitigating actions, and it reduced to 3.1 × 10−3

± 0.3 × 10−3

after the application. The RMSE reduction was achieved at the
expense of 10% decrease in MPG, as expected.

The length K of the window is also to be calibrated. While I
mentioned above that K = 100 seems reasonable, much longer
windows might be required because of variability in drive
cycles, changes in the NN controller response to mitigating
actions, measurement noise, and simplicity of the RMSE as a

Author's personal copy

D.V. Prokhorov / Neural Networks 21 (2008) 458–465 465

statistical diagnostic measure. Recall that the battery diagnostic
NN is not trained on examples of the closed-loop system
behavior with the mitigated fault because such examples are
hard to procure in a real world. (Even if examples of the
mitigated fault were available, they would be unlikely to match
the richness of the normal behavior examples.)

In principle, the RNN controller can be trained to be robust
to a battery fault in the same process as described in Section 2.
However, it would be of little diagnostic value because of its
nontransparency. The explicit diagnostic system proposed here
is clearly advantageous.

It is probably possible to learn a mapping between the
increments i∆SOCd , or i∆τe, i∆we and other relevant
variables. However, the faulty system does not need to be fine-
tuned. It just has to be properly reconfigured and has to last
long enough until necessary repairs are made (sometimes this
is called “limp home” capability). That is why I adopted the
simpler approach of relatively coarse increments instead of a
more complex learnable function approximator.

5. Conclusions

The contribution of this paper is two-fold. First, I propose to
use an effective method for off-line NN training in the three-
step process to obtain a good NN controller for the Prius HEV
high-fidelity simulator. The approach may be applicable to
many real-world control problems. Second, I propose a virtual
sensor to detect a defective battery and a method to mitigate the
battery fault without changing the NN controller weights.

In this paper I used a neural network model of the plant.
This enabled the use of multi-stream EKF as the off-line
training method. It is also possible to employ an existing
nonneural model of a plant and a nonlinear Kalman filter
method for neurocontrol as described in Prokhorov (2006),
however proper care must be taken for adequate simplification
of that substantially more complex method.

Miscellaneous issues remain to be clarified in future work.
The fault mitigation method provides two options, the SOC
correction or the torque and the speed corrections. The full
potential of each option needs to be explored further, as well
as the diagnostic utility of using statistics other than RMSE.
Furthermore, while the battery SOC behavior in different states
estimated by the diagnostic NN demonstrates a clear diagnostic

value, further research is required to fine-tune this promising
diagnostic method.

References

Allgoewer, F., & Zheng, A. (2000). Nonlinear model predictive control. Basel:
Birkhauser Verlag.

Baumann, B., Rizzoni, G., & Washington, G. (1998). Intelligent control of
hybrid vehicles using neural networks and fuzzy logic, SAE technical paper
981061. In SAE int. cong. and exposition.

Baumann, B., Washington, G., Glenn, B., & Rizzoni, G. (2000). Mechatronic
design and control of hybrid electric vehicles. IEEE/ASME Transactions on
Mechatronics, 5(1), 58–72.

Eaton, P., Prokhorov, D., & Wunsch, D. (2000). Neurocontroller alternatives for
‘fuzzy’ ball-and-beam systems with nonlinear, nonuniform friction. IEEE
Transactions on Neural Networks, 11(2), 423–435.

Feldkamp, L. A., & Puskorius, G. V. (1994). Training controllers for robustness:
Multi-stream dekf. In Proceedings of the IEEE international conference on
neural networks (pp. 2377–2382).

Harmon, F., Frank, A., & Joshi, S. (2005). The control of a parallel hybrid-
electric propulsion system for a small unmanned arial vehicle using a cmac
neural network. Neural Networks, 18(June/July), 772–780.

Hermance, D. (1999). Toyota hybrid system. In Sae toptec conference proc.
Mandic, D., & Chambers, J. (2001). Recurrent neural networks for prediction.

Wiley.
Narendra, K. S., & Parthasarathy, P. (1990). Identification and control of

dynamical systems using neural networks. IEEE Transactions on Neural
Networks, 1(1), 4–27.

Prokhorov, D. V. (2006). Training recurrent neurocontrollers for robustness
with derivative-free kalman filter. IEEE Transactions on Neural Networks,
17(6), 1606–1616.

Prokhorov, D. V. (2007). Toyota Prius HEV neurocontrol. In Proceedings of the
international joint conference on neural networks.

Prokhorov, D. V., Puskorius, G. V., & Feldkamp, L. A. (2001). Dynamical
neural networks for control. In J. Kolen, & S. Kremer (Eds.), A field guide
to dynamical recurrent networks (pp. 257–289). IEEE Press.

Puskorius, G. V., Feldkamp, L. A., & Davis, L. I., Jr. (1996). Dynamic neural
network methods applied to on-vehicle idle speed control. Proceedings of
the IEEE, 84(10), 1407–1420.

Salman, M., Schouten, N., & Kheir, N. (2000). Control strategies for parallel
hybrid vehicles. In Proc. American control conference (pp. 524–528).

Schouten, N., Salman, M., & Kheir, N. (2002). Fuzzy logic control for parallel
hybrid vehicles. IEEE Transactions on Control Systems Technology, 10(3),
460–468.

Stengel, R. (1994). Optimal control and estimation. Dover.
Syed, F., Filev, D., & Ying, H. (2007). A rule-based fuzzy driver advisory

system for fuel economy improvement in a hybrid electric vehicle. In
Proceedings of North American fuzzy information processing society
conference (pp. 178–183).

