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Chapter 1

Basic structures: topology,
metrics, semi-norms, norms

1.1 Topological spaces

Definition 1.1.1. Let X be a set and O a family of subsets of X. O is a topology
on X whenever

(1) ∪i∈IOi ∈ O if every Oi ∈ O.

(2) O1 ∩O2 ∈ O if O1, O2 ∈ O.

(3) X, ∅ ∈ O.

We shall say that (X, O) is a topological space. The open sets are defined as the
elements of O, the closed sets are defined as the subsets of X whose complement
is open: a union of open sets is open, a finite intersection of open sets is open, an
intersection of closed sets is a closed set, a finite union of closed sets is a closed set.
If O1, O2 are two topologies on X such that O1 ⊂ O2, we shall say that O2 is finer
than O1.

We may notice that the third condition can be considered as a consequence of
the two previous ones since a union (resp. an intersection) on an empty set of indices
of subsets of X is the empty set (resp. X).

Examples of topological spaces.
· The most familiar example is certainly the real line R equipped with the standard
topology: a subset O of R is open, when for all x ∈ O there exists an open-interval
I =]a, b[ such that x ∈ I ⊂ O. The property (1) above is satisfied as well as
(2) since the intersection of two open-intervals is an open-interval. Note that the
open-intervals are also open sets.
· Also Rn has the following standard topology: a subset O of Rn is open, when for all
x ∈ O there exists some open-intervals Ij =]aj, bj[ such that x ∈ I1 × · · ·× In ⊂ O.
The property (1) above is satisfied as well as (2) since the intersection of two open-
intervals is an open-interval.
· Let us give some more abstract examples. The Discrete Topology on a set X is
P(X), a topology on X for which all the subsets of X are open. Naturally, it is

7



8 CHAPTER 1. BASIC STRUCTURES: TOPOLOGY, METRICS

the finest possible topology on X. The Trivial Topology on X is {∅, X}: it is the
coarsest topology on X, since all topologies on X are finer.
· The Cofinite Topology on a set X is O = {∅} ∪ {Ω ⊂ X, Ωc finite}. It is obviously
a topology since an intersection of finite sets is a finite set, and a finite union of
finite sets is a finite set. Note that the cofinite topology on a finite set is the discrete
topology.
· The Cocountable topology on a set X is O = {∅} ∪ {Ω ⊂ X, Ωccountable}. It is
obviously a topology since an intersection of countable sets is a countable set, and a
finite union of countable sets is a countable set. Note that the cocountable topology
on a countable set is the discrete topology.
· On the other hand if (Oα)α∈A is a family of topologies on a set X, ∩α∈AOα is also
a topology on X. As a consequence, it is possible to define the coarsest (smallest)
topology on a set X containing a family A of subsets of X: it is the intersection
of the topologies which contain A (this makes sense since A ⊂ P(X) which is a
topology on X, so that the set of topologies containing A is not empty).
· If (X,≤) is a totally ordered set, we define the open-intervals as the sets ]x1, x2[=
{x ∈ X, x1 < x < x2} (here x′ < x′′ means x′ ≤ x′′ and x′ *= x′′) or the sets

]−∞, x[= {y ∈ X, y < x}, ]x, +∞[= {y ∈ X, x < y}.

The set I = {∪a∈AIa, Ia open-interval} ∪ {X} is a topology on X. The set I is
obviously stable by union, contains the empty set and X. We note also that, since
X is totally ordered, the intersection of two open-intervals is an open-interval:

]x1, x2[∩]y1, y2[ =] max(x1, y1), min(x2, y2)[,

with the convention max(−∞, x) = x = min(+∞, x). As a consequence, taking the
intersection of two elements of I leads to

(
∪a∈AIa

)
∩

(
∪b∈BIb

)
= ∪(a,b)∈A×B(Ia ∩ Ib),

so that I is also stable by finite intersection.
We have seen in the section 1.1, that given a family (O)α∈A of topologies on a

set X, ∩α∈AOα is also a topology on X: that topology is of course weaker than each
Oα.

Remark 1.1.2. Let us consider a set X, a family of topological spaces (Yj, Oj) and
a family of mappings ϕj : X −→ Yj. If O is a topology on X such that all the ϕj

are continuous, then for all j ∈ J , for all ωj ∈ Oj, ϕ−1
j (ωj) ∈ O. Let us now consider

the family F = {ϕ−1
j (ωj)}j∈J,ωj∈Oj and we define OF as the intersection of the

topologies on X which contain F : this makes sense because the discrete topology
P(X) contains F and an intersection of topologies on X is also a topology on X.
Naturally, all the mappings ϕj are continuous for the topology OF and if Õ is a

topology on X such that all the mappings ϕj are continuous, then Õ ⊃ F and

thus, by the very definition of OF , we have OF ⊂ Õ. The topology OF is thus the
weakest topology on X such that all the mappings ϕj are continuous.
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Definition 1.1.3. Let (X,O) be a topological space and A a subset of X. The
interior of A is defined as

A
◦

=
⋃

Ω open ⊂ A

Ω, (the largest open set included in A, noted also as int A).

The closure of A is defined as

Ā =
⋂

F closed ⊃ A

F, (the smallest closed set containing A).

The set A is said to be dense in X whenever Ā = X. The boundary of A is (the
closed set) defined as

∂A = Ā\ int A = Ā ∩ Ac.

Definition 1.1.4. Let X be a topological space, x ∈ X, V ⊂ X. We say that V is
a neighborhood of x if it contains an open set containing x. We shall note Vx the
set of neighborhoods of x. We note that Vx is stable by extension (V ∈ Vx, W ⊃ V
implies W ∈ Vx), by finite intersection and that no element of Vx is empty. A subset
of X is open if and only if it is a neighborhood of all its points.

Let us prove that last assertion: an open set is a neighborhood of all its points
by definition and conversely if Ω ⊂ X is a neighborhood of all its points, then for
all x ∈ Ω, there exists an open set ωx ⊂ Ω with x ∈ ωx, so that Ω = ∪x∈Ωωx union
of open sets, thus open.

Definition 1.1.5. A topological space (X, O) is said to be a Hausdorff space if, when
x1 *= x2 in X, there exist Uj ∈ Vxj , j = 1, 2 such that U1 ∩ U2 = ∅.

N.B. We shall see that most of the examples of topological spaces that we encounter
in functional analysis are indeed Hausdorff spaces, as it is the case in particular for
the metric spaces, whose definition is given in the next section. However, let us
consider N (or any infinite set) equipped with the cofinite topology, for which the
closed sets are the finite sets. Let U0, U1 be open sets containing respectively 0, 1.
Then U0 ∩ U1 *= ∅, otherwise U c

0 ∪ U c
1 = N, which is not possible since U c

0 and U c
1

are both finite. However, singletons {n} are closed for the cofinite topology on N.
This is also the case in a Hausdorff space, since for x0 *= x ∈ X, there exists ωx

open such that x0 /∈ ωx . x implying that {x0}c = ∪x *=x0ωx thus open. Within the
various notions of separation for topological spaces, one may single out the notion
of Hausdorff space, or T2 space, as defined above, and the weaker notion of T1 space,
defined as topological spaces for which the singletons are closed. We have just proven
that a T2 space is T1 but that the converse is not true in general.

A very general approach of topology is outlined in the appendix with the notions
of filters and ultrafilters. We note also that for a subset A of a topological space X
we have

x ∈ Ā ⇐⇒ ∀V ∈ Vx, V ∩ A *= ∅. (1.1.1)

In fact the complement of Ā is the interior of Ac: x /∈ Ā is thus equivalent to Ac ∈ Vx,
which is indeed the previous claim.
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Exercise 1.1.6. Verify that, for A, B subsets of a topological space X,

(Ā)c = int (Ac), (int A)c = Ac

A ∪B = Ā ∪ B̄, int (A ∩B) = int A ∩ int B.

Show that the inclusion A ∩B ⊂ A ∩B holds and may be strict.

Lemma 1.1.7. Let (X, O) be a topological space and U ⊂ X. The following prop-
erties are equivalent:

(i) U = X.

(ii) ∀Ω ∈ O, Ω *= ∅ =⇒ Ω ∩ U *= ∅.

Proof. If (i) is satisfied and if Ω is open, we have

Ω ∩ U = ∅ =⇒ U ⊂ Ωc =⇒ X = U ⊂ Ωc =⇒ Ω = ∅, proving (ii).

Conversely, if (i) is violated, the open set Ω =
(
U

)c

*= ∅, but

Ω ∩ U =
(
Ū

)c ∩ U =
(
int (U c)

)
∩ U ⊂ U c ∩ U = ∅.

proving non-(ii).

Definition 1.1.8. Let X, Y be topological spaces, f : X −→ Y . Let x0 ∈ X; the
mapping f is said to be continuous at x0 if

∀V ∈ Vf(x0),∃U ∈ Vx0 , f(U) ⊂ V.

The mapping f is said to be continuous on X if it is continuous at all points of X.
That property is satisfied if and only if, for all open sets V of Y , f−1(V ) is an open
set of X. The mapping f is an homeomorphism if it is bijective and bicontinuous
(f and f−1 are continuous).

Let us prove the property stated above. Let f be a continuous mapping, B
an open set of Y and x ∈ f−1(B) (f(x) ∈ B which is thus a neighborhood of
f(x)). From the continuity of f , there exists a neighborhood U of x such that
f(U) ⊂ B, which means U ⊂ f−1(B), and thus f−1(B) is a neighborhood of x,
so that f−1(B) is open. Conversely if the inverse image by f of any open set is
open, and if x ∈ X, V is a neighborhood of f(x) containing an open set B . f(x),
f−1(B) is open and contains x; as a consequence, f−1(B) is a neighborhood of x
and f

(
f−1(B)

)
⊂ B ⊂ V , qed.

Exercise 1.1.9. Give an example of a function f : R −→ R continuous at only one
point.

Definition 1.1.10. Let (X, O) be a topological space and S be a subset of X. The
induced topology on S is OS = {Ω ∩ S}Ω∈O .
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Note that the properties of a topology are immediately satisfied and that OS is
the coarsest topology such that the canonical injection ι : S → X is continuous. On
the one hand, ι−1(Ω) = Ω ∩ S is open if Ω ∈ O and ι is thus continuous; on the
other hand, if O ′ is a topology on S that makes ι continuous, OS must be contained
in O ′, since ι−1(Ω) ∈ O ′ for Ω ∈ O.

The next section introduces the class of metric spaces, a very useful class of
topological spaces in functional analysis. Although the notion of metric space is
enough to describe a large part of the most natural functional spaces, the reader may
keep in mind that some interesting and natural examples of functional spaces are not
metrizable. This is the case for instance of some of the test functions spaces used in
distribution theory, such that the continuous functions with compact support from
R to R. Naturally, a good understanding of distribution theory does not necessarily
require a great familiarity with non-metrizable spaces but one should nevertheless
keep in mind that the developments of functional analysis raised various questions
of general topology, which went much beyond the metrizable framework.

1.2 Metric Spaces

Definition 1.2.1. Let X be a set1 et d : X × X → [0, +∞[. We say that d is a
distance on X if for xj ∈ X,

(1) d(x1, x2) = 0 ⇐⇒ x1 = x2, (separation),

(2) d(x1, x2) = d(x2, x1), (symmetry),

(3) d(x1, x3) ≤ d(x1, x2) + d(x2, x3), (triangle inequality).

(X, d) is called a metric space. For r > 0, x ∈ X, we define the open-ball with center
x and radius r, B(x, r) = {y ∈ X, d(y, x) < r}.

Definition 1.2.2. Let (X, d) be a metric space. A subset Ω of X belongs to the
topology Od on X defined by the metric d if

∀x ∈ Ω,∃r > 0, B(x, r) ⊂ Ω.

We note that Od is a topology since the stability by union is obvious and
the stability by finite intersection follows from the fact that B(x, r1) ∩ B(x, r2) =
B(x, min(r1, r2)). Moreover the open-balls are open since, considering for r0 >
0, x0 ∈ X, x ∈ B(x0, r0), we have with ρ = r0 − d(x, x0) (which is > 0)

d(y, x) < ρ =⇒ d(y, x0) ≤ d(y, x) + d(x, x0) < ρ + d(x, x0) = r0,

implying that B(x, ρ) ⊂ B(x0, r0) and B(x0, r0) open.

We note that in a metric space (X, d), for x ∈ X, r ≥ 0, the set

B̃(x, r) = {y ∈ X, d(y, x) ≤ r}
1The reader of Bourbaki will have noticed the ineptitude of that first sentence.
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is closed. In fact, if d(y, x) > r, we have B(y, d(y, x)− r) ⊂
(
B̃(x, r)

)c
: take z such

that d(z, y) < d(y, x)− r. Then by the triangle inequality

d(z, x) ≥ d(y, x)− d(z, y) > d(z, y) + r − d(z, y) = r =⇒ z /∈ B̃(x, r), qed.

Since B̃(x, r) is a closed set containing B(x, r), the closure B(x, r) of the ball
B(x, r) is included in B̃(x, r). However there are some examples where the in-
clusion B(x, r) ⊂ B̃(x, r) is strict. Take on a set X (with at least two elements) the
discrete metric, defined by d(x, y) = 1 if x *= y and d(x, x) = 0. It is obviously a
metric and since {x}c = ∪y *=xB(y, 1/2) is open, {x} is closed and

B(x, 1) = {x} = B(x, 1), B̃(x, 1) = X.

A metric topology is always Hausdorff since for x *= y, we have

B(x, r) ∩B(y, r) = ∅, with r = d(x, y)/2(> 0).

In fact let z ∈ B(x, r)∩B(y, r). By the triangle inequality d(x, y) ≤ d(x, z)+d(z, y) <
2r = d(x, y), which is impossible.

Definition 1.2.3. Let (X, d) be a metric space and (xn)n∈N be a sequence of elements
of X. The sequence (xn)n∈N is said to be converging with limit x whenever

∀ε > 0,∃Nε ∈ N,∀k ≥ Nε, d(xk, x) < ε. We set lim
n

xn = x.

The sequence (xn)n∈N is said to be a Cauchy sequence whenever

∀ε > 0,∃Nε ∈ N,∀k, l ≥ Nε, d(xk, xl) < ε.

A converging sequence is a Cauchy sequence. If (X, d) is such that all Cauchy
sequences are converging, we say that X is complete.

The notation lim xn = x is legitimate since the separation induces the uniqueness
of the limit: if x′, x′′ are limits of a sequence (xn)n∈N, we have 0 ≤ d(x′, x′′) ≤
d(x′, xn) + d(xn, x′′) and since the numerical sequences (d(x′, xn)), (d(xn, x′′)) tend
to 0, we find d(x′, x′′) = 0, i.e. x′ = x′′. On the other hand, if a sequence (xn) is
converging to x, we have d(xn, x) < ε/2 for n ≥ Nε/2 and thus for k, l ≥ Nε/2, we
get d(xk, xl) ≤ d(xk, x) + d(x, xl) < ε, so that (xn) is also a Cauchy sequence.

Proposition 1.2.4. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y be a
mapping. Let x0 ∈ X. The mapping f is continuous at x0 if and only if for every
sequence (xn)n≥1 converging with limit x0, the sequence (f(xn))n≥1 is converging with
limit f(x0).

Proof. Assuming first that f is continuous at x0, we know that for ε > 0, there exists
r > 0 such that f(B(x0, r)) ⊂ B(f(x0), ε). Let (xn)n≥1 be a sequence converging
with limit x0. For n ≥ N , xn ∈ B(x0, r) and thus f(xn) ∈ B(f(x0), ε), so that
limn f(xn) = f(x0). Conversely, if f is not continuous at x0, there exists a neigh-
borhood V of f(x0) such that, for all neighborhoods U of x0, f(U) *⊂ V . In other
words, there exists ε0 > 0 such that for all integers n ≥ 1, there exists xn ∈ X such
that d(xn, x0) < 1/n and d(f(xn), f(x0)) ≥ ε0. As a consequence limn xn = x0 and
the sequence (f(xn))n≥1 is not converging to f(x0);
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Exercise 1.2.5. The set Q of rational numbers, equipped with the standard distance
given by the absolute value |x−y| is not complete. Consider for instance the sequence
of rational numbers defined by

xn+1 =
xn

2
+

1

xn
, x0 = 2

and prove that it is a Cauchy sequence of Q which is not converging in Q.

The reader will see in the appendix that, given a metric space (X, d), it is possible
to construct a complete metric space (X̃, d̃) such that X is dense in X̃ (i.e. X = X̃),
d̃|X×X = d and such that, for all complete metric space Y and all applications f
uniformly continuous 2 from X in Y , there exists a unique uniformly continuous
extension of f to X̃. The space (X̃, d̃) is complete and uniquely determined by the
previous property (up to an isometry of metric spaces3). The space (X̃, d̃) is called
the completion of (X, d) and its construction is very close to the completion of Q
to obtain R. X̃ is constructed as the quotient of the set C [X] of Cauchy sequences
by the following equivalence relation: two Cauchy sequences (xn)n∈N, (yn)n∈N are
equivalent means that limn d(xn, yn) = 0. We define the distance d̃ on C [X] by
d̃((xn), (yn)) = limn d(xn, yn) and we prove that it is well-defined and satisfies the
above properties.

Remark 1.2.6. Note that completeness is a property of the metric and not of
the topology, meaning that a complete metric space can be homeomorphic (see the
definition 1.1.8) to a non-complete one. An example is given by the real line R
with the standard distance given by |x − y|, which is a complete metric space, but
homeomorphic to the open interval ]0, 1[, which is not complete, since the Cauchy
sequence (1/k)k≥1 is not converging in ]0, 1[.

1.3 Topological Vector Spaces

1.3.1 General definitions

Let us recall that a vector space E is an (additive) commutative group such that
a scalar multiplication k × E . (λ, x) 4→ λ · x ∈ E is defined (k is a commutative
field), with the following axioms: for x, y ∈ E, λ, µ ∈ k,

λ · (x + y) = λ · x + λ · y, (here + is the addition in E), a version of Thales theorem,

(λ + µ) · x = λ · x + µ · x, (the first + is the addition in k, the next the addition in E),

λ · (µ · x) = (λµ) · x, (λµ is the product in k),

1 · x = x, (1 is the unit element in k).

2∀ε > 0,∃α > 0, dX(x1, x2) < α =⇒ dY (f(x1), f(x2)) < ε.
3A mapping F is an isometry between metric spaces (Xj , dj) if F is bijective from X1 on X2

and if d2(F (x1), F (y1)) = d1(x1, y1).
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This implies that for all x ∈ E, 0k ·x = 0E since 0k ·x+x = 0k ·x+1k ·x = 1k ·x = x.
All the vector spaces that we shall consider in this text are vector spaces on the
field R or C, denoted by k in the sequel. These fields are equipped with their usual
topology, given by the distance |x−y| (absolute value in the real case, modulus in the
complex case). We want to deal with topological vector spaces, i.e. to consider vector
spaces equipped with a topology which is somehow compatible with the algebraic
structure of the vector space. We define this more precisely.

Definition 1.3.1. Let E be a vector space and O a topology on E such that the
mappings E×E . (x, y) 4→ x+y ∈ E, k×E . (α, x) 4→ α ·x ∈ E are continuous.
We shall say that (E, O) is a topological vector space (TVS for short).

1.3.2 Vector spaces with a translation-invariant distance

On a vector space E we define a translation-invariant distance d, as a distance on
E such that, for x, y, z ∈ E,

d(x + z, y + z) = d(x, y). (1.3.1)

Lemma 1.3.2. Let E be a vector space and d a translation-invariant distance on
E. Assume that

∀ε > 0,∃r > 0, {λ ∈ k, |λ| < r} ·B(0, r) ⊂ B(0, ε),

∀x ∈ E, ∀ε > 0,∃r > 0, {λ ∈ k, |λ| < r} · x ⊂ B(0, ε),

∀λ ∈ k,∀ε > 0,∃r > 0, λ ·B(0, r) ⊂ B(0, ε).

Then we define V0 = {V ⊂ E, such that ∃r > 0 with B(0, r) ⊂ V } and

O = {Ω ⊂ E, ∀x ∈ Ω,∃V ∈ V0, x + V ⊂ Ω.}

Then (E, O) is a TVS, O is the topology defined by the distance d and V0 is the
set of neighborhoods of 0. For all x ∈ E, the set of neighborhoods of x is x + V0 =
{x + V }V ∈V0.

Proof. Let us first remark that O is the topology on E defined by the metric d.
Let Ω ⊂ E such that for all x ∈ Ω, there exists r > 0 such that B(x, r) ⊂ Ω,
i.e. Ω is an open subset of E for the topology induced by the metric d. Since d is
translation invariant, we have B(x, r) = x + B(0, r) : in fact, for y ∈ E, we have
d(y, x) = d(y − x, 0) so that

d(y, x) < r ⇐⇒ d(y − x, 0) < r ⇐⇒ y = x + z, with d(z, 0) < r.

As a consequence, the open sets of (E, d) are indeed given by the property of the
lemma. To prove the continuity of E × E . (x, y) 4→ x + y ∈ E, we consider for
r > 0 a neighborhood x0 + y0 + B(0, r) of x0 + y0. We note that

x0 + B(0,
r

2
) + y0 + B(0,

r

2
) ⊂ x0 + y0 + B(0, r)
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since d(z′, 0) < r/2 and d(z′′, 0) < r/2 imply that

d(z′ + z′′, 0) ≤ d(z′ + z′′, z′) + d(z′, 0) = d(z′′, 0) + d(z′, 0) < r,

and the continuity property is proven. To prove the continuity of k× E . (λ, x) 4→
λx ∈ E, we consider for ε > 0 a neighborhood λ0x0 + B(0, ε) of λ0x0. Using the
hypothesis of the lemma, we know that there exists r1 > 0 such that for (µ, z) ∈
k × E, |µ| < r1, d(z, 0) < r1, we have d(µz, 0) < ε/3; moreover there exists r2 >
0 such that |µ| < r2 implies d(µx0, 0) < ε/3 and there exists r3 > 0 such that
d(z, 0) < r3 implies d(λ0z, 0) < ε/3. This proves that for (µ, z) ∈ k × E such that
|µ| < min(r1, r2), d(z, 0) < min(r1, r3), we have

(λ0 + µ)(x0 + z) = λ0x0 + µx0 + λ0z + µz ∈ B(0, ε),

proving the continuity property.

1.3.3 Normed spaces

A case in which the verification of the assumptions of the lemma is very simple is
given by the case of a normed vector space.

Definition 1.3.3. Let E be a vector space and N : E → R+. We shall say that N is
a norm on E if for x, y ∈ E, α ∈ k,

(1) N(x) = 0 ⇐⇒ x = 0, (separation),

(2) N(αx) = |α|N(x), (homogeneity),

(3) N(x + y) ≤ N(x) + N(y), (triangle inequality).

(E, N) will be called a normed vector space. We define on E the distance

d(x, y) = N(x− y). (1.3.2)

Proposition 1.3.4. Let (E, N) be a normed vector space and d the distance (1.3.2).
The distance d is translation-invariant and the metric space (E, d) is a topological
vector space.

Proof. We see immediately that d is a translation-invariant distance; to check the
continuity at (0, 0), we note that for (λ, x) ∈ k× E, ε > 0,

d(λx, 0) = N(λx) = |λ|N(x) < ε

provided d(x, 0) = N(x) < ε and |λ| < 1. Checking the two other properties of the
previous lemma amounts, for (λ0, x0) given in k × E, |µ| < r1, d(z, 0) < r2, to look
at

d(µx0, 0) + d(λ0z, 0) = N(µx0) + N(λ0z) = |µ|N(x0) + |λ0|N(z) < ε

provided r1N(x0) + |λ0|r2 < ε.

Definition 1.3.5. A Banach space is a complete normed vector space.
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A Hilbert space is a particular type of Banach space, for which the norm is
derived from a dot-product, also called a scalar product. It is better here to discuss
separately the real and the complex case. If E is a real vector space and E × E .
(x, y) 4→ 〈x, y〉 ∈ R is a bilinear symmetric form4, which is positive-definite, i.e. such
that 〈x, x〉 > 0 for x *= 0, we shall say that (E, 〈·, ·〉) is a real prehilbertian space.
If E is a complex vector space and E × E . (x, y) 4→ 〈x, y〉 ∈ C is a sesquilinear
Hermitian form5, which is positive-definite, i.e. such that 〈x, x〉 > 0 for x *= 0, we
shall say that (E, 〈·, ·〉) is a complex prehilbertian space.

Lemma 1.3.6. Let (E, 〈·, ·〉) be a complex (resp. real) prehilbertian space. Then
‖x‖ = 〈x, x〉1/2 is a norm on E. Moreover, for x, y ∈ E the Cauchy-Schwarz6

inequality holds:
|〈x, y〉| ≤ ‖x‖‖y‖. (1.3.3)

The equality above holds if an only if x∧ y = 0, i.e. x and y are linearly dependent.

Proof. It is enough to deal with the complex case. We define for t ∈ R,

p(t) = 〈x + ty, x + ty〉 = ‖x‖2 + 2t Re〈x, y〉+ t2‖y‖2,

and since p is a non-negative polynomial of degree (less than) two on R, we get
(Re〈x, y〉)2 ≤ ‖x‖2‖y‖2. Writing now with θ ∈ R, 〈x, y〉 = eiθ|〈x, y〉|, we apply
the previous result to get |〈x, y〉|2 = (Re〈e−iθx, y〉)2 ≤ ‖x‖2‖y‖2, which is (1.3.3). If
x∧y = 0, we have y = λx or x = λy and the equality in (1.3.3) is obvious. If x∧y *= 0
the polynomial p above takes only positive7 values so that (Re〈x, y〉)2 < ‖x‖2‖y‖2.
Using the same trick as above with eiθ, we get a strict inequality in (1.3.3). To prove
now that 〈x, x〉1/2 is a norm is easy: (1) and (2) in the definition 1.3.3 are obvious
and we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 Re〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

N.B. Let (E, 〈·, ·〉) be a prehilbertian space. A direct consequence of the Cauchy-
Schwarz inequality (1.3.3). is

‖x‖ = sup
‖y‖=1

|〈x, y〉|. (1.3.4)

It is true for x = 0; also ‖x‖ is greater than the rhs from (1.3.3), and conversely if
x *= 0, ‖x‖ = 〈x, x

‖x‖〉, which gives the result.

Definition 1.3.7. A real (resp. complex) Hilbert space is a Banach space such
that the norm is derived from a bilinear symmetric (resp. sesquilinear Hermitian)
dot-product so that ‖x‖ = 〈x, x〉1/2.

4It means that the mappings E . x 4→ 〈x, y〉 ∈ R are linear and 〈x, y〉 = 〈y, x〉.
5It means that the mappings E . x 4→ 〈x, y〉 ∈ C are C-linear and 〈x, y〉 = 〈y, x〉. In particular

for λ ∈ C, x, y ∈ E, 〈x,λy〉 = λ̄〈x, y〉.
6 One should also associate to this inequality the name of Viktor Yakovlevich Bunyakovsky, who

actually discovered it. References on the history of the Cauchy-Bunyakovsky-Schwarz inequality
appear in http://www-history.mcs.st-and.ac.uk/history/Biographies/Bunyakovsky.html.

7In (mathematical) english, r positive means r > 0 and r nonnegative means r ≥ 0.
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Examples. The simplest example of a normed vector space is Rn with the Euclidean

norm ‖x‖2 =
(∑

1≤j≤n x2
j

)1/2
, or any of the following norms for p ∈ [1, +∞],

‖x‖p =
( ∑

1≤j≤n

|xj|p
)1/p

, ‖x‖∞ = max
1≤j≤n

|xj|. (1.3.5)

It is easy to prove that all the norms on Rn are equivalent, i.e. if N1, N2 are two
norms on Rn, ∃C > 0, ∀x ∈ Rn, C−1N2(x) ≤ N1(x) ≤ CN2(x). This implies
in particular that the topologies on Rn defined by the distances associated to these
norms by the formula (1.3.2) are all the same. Since R is complete, we see that Rn

equipped with a norm is a Banach space.
The infinite-dimensional *p(N) are more interesting: we define for p ∈ [1, +∞],

*p(N) = {(xn)n∈N,
∑

n∈N
|xn|p < +∞}, ‖(xn)n∈N‖p =

(∑

n∈N
|xn|p

)1/p
(1.3.6)

*∞(N) = {(xn)n∈N, sup
n∈N

|xn| < +∞}, ‖(xn)n∈N‖∞ = sup
n∈N

|xn|. (1.3.7)

It is easy to see that for 1 ≤ p ≤ q ≤ +∞, we have8

*1(N) ⊂ *p(N) ⊂ *q(N) ⊂ *∞(N), and for x = (xn)n∈N ∈ *p, ‖x‖q ≤ ‖x‖p,

and all these spaces are Banach spaces (we refer the reader to the website [9], chapter
3, for a proof of the triangle inequality). Moreover, for 1 ≤ p < q ≤ +∞, the norm
‖q is not equivalent on *p(N) to the norm ‖p, i.e. there is no C > 0 such that for
all x ∈ *p(N), ‖x‖p ≤ C‖x‖q. Otherwise, we would have with any N ≥ 1 integer,
xn = n−1/q for 1 ≤ n ≤ N and xn = 0 for other values of n,

(
(N + 1)1− p

q − 1

1− p
q

)1/q

≤
( ∑

1≤n≤N

n−
p
q
)1/q ≤ C

( ∑

1≤n≤N

n−1
)1/p ≤ C(1 + ln N)1/p

which is impossible.
Given a measured space (X,M, µ) where µ is a positive measure, p ∈ [1, +∞],

the space Lp(µ) of class of measurable functions f such that
∫

X |f |pdµ < +∞ (for
p = +∞, esssup |f | < +∞) is a Banach space (see e.g. [9], chapter 3) with the norm

(∫

X

|f |pdµ

)1/p

, esssup |f | for p = +∞. (1.3.8)

For Ω open subset of Rn we shall note simply Lp(Ω) that space for X = Ω, M
the Lebesgue σ-algebra and µ the Lebesgue measure. Note that one may consider
the space Lp(µ) of measurable functions such that

∫
X |f |pdµ < +∞, but that the

separation axiom is not verified: the condition
∫

X |f |pdµ = 0 will imply only that

8For q ≥ p ≥ 1,

‖x‖q
q =

∑

n

|xn|q ≤
∑

n

|xn|p(sup
n
|xn|)q−p ≤ ‖x‖p

p

(∑

n

|xn|p
) q

p−1 = ‖x‖q
p, qed.
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f = 0, µ-almost everywhere, and this is why we have to consider Lp(µ), which is the
quotient of Lp(µ) by the equivalence relation of equality µ-a.e.

An other very important example is C0([0, 1]; R), the vector space of continuous
mappings from [0, 1] to R, equipped with the norm

‖u‖ = sup
x∈[0,1]

|u(x)|. (1.3.9)

It is a good exercise left to the reader to prove that C0([0, 1]; R) with that norm is
a Banach space.

1.3.4 Semi-norms

Let us consider the space C0(]0, 1[; R); what is the natural topology on that space?
Obviously, one cannot take the norm (1.3.9) since it may be infinite (think of u(x) =
1/x). On the other hand it is quite natural to look at

pk(u) = sup
k−1≤x≤1−k−1

|u(x)|, for 1 ≤ k ∈ N.

pk is not a norm since the separation property (3) in the definition 1.3.3 is not sat-
isfied; however, one can use the (pk)k≥1 to give a definition of a converging sequence
(un)n∈N: that sequence converges to 0 means that for each k ≥ 1, limn pk(un) = 0.
This is the uniform convergence on the compact subsets of the open set ]0, 1[. This
example may serve as a motivation to introduce a more general structure than the
normed vector space, namely vector spaces for which the topology is defined by a
countable family of semi-norms.

Definition 1.3.8. Let E be a vector space and p : E −→ R+. We shall say that p
is a semi-norm on E if for x, y ∈ E, α ∈ k,

(1) p(αx) = |α|p(x), (homogeneity),

(2) p(x + y) ≤ p(x) + p(y), (triangle inequality) 9.

Let us consider a countable family (pk)k≥1 of semi-norms on E. We shall say that
the family (pk)k≥1 is separating whenever pk(x) = 0 for all k ≥ 1 implies x = 0.

Let E be a vector space and (pk)k≥1be a separating countable family of semi-
norms on E. We define d : E × E −→ R+ by the formula

d(x, y) =
∑

k≥1

2−k pk(x− y)

1 + pk(x− y)
. (1.3.10)

Lemma 1.3.9. Let E be a vector space and (pk)k≥1be a separating countable family
of semi-norms on E. The formula (1.3.10) defines a translation-invariant distance

9We note that (1) implies p(0) = 0 but that the separation property (1) in the definition 1.3.3
is not satisfied in general.



1.3. TOPOLOGICAL VECTOR SPACES 19

on E and the metric space (E, d) is a TVS. Let (xn)n∈N be a sequence of elements
of E. Then

lim
n

xn = 0 ⇐⇒ ∀k ≥ 1, lim
n

pk(xn) = 0.

Assuming that k 4→ pk(x) is increasing for all x ∈ E, we obtain that a basis of
neighborhoods of 0E is the family (Bk,l)k,l≥1 with

Bk,l = {x ∈ E, pk(x) < 1/l},

i.e. each Bk,l ∈ V0, and for all V ∈ V0, there exists k, l ≥ 1 such that Bk,l ⊂ V .

Proof. The formula above makes sense and is obviously translation-invariant and
symmetric. The separation property (1) of the definition 1.2.1 is a consequence of
the separating property of the family (pk)k≥1. To verify the triangle inequality for
d, we note that the mapping R+ . θ 4→ θ

1+θ = 1 − 1
1+θ is increasing so that, since

pk(x− z) ≤ pk(x− y) + pk(y − z),

d(x, z) =
∑

k≥1

2−k pk(x− z)

1 + pk(x− z)
≤

∑

k≥1

2−k pk(x− y) + pk(y − z)

1 + pk(x− y) + pk(y − z)
≤ d(x, y)+d(y, z).

To check that the metric space (E, d) is a TVS, we use the lemma 1.3.2: for λ ∈
k, x ∈ E, we have10

d(λx, 0) =
∑

k≥1

2−k |λ|pk(x)

1 + |λ|pk(x)
≤ max(|λ|, 1)d(x, 0)

so that d(λx, 0) < ε provided d(x, 0) < ε and |λ| ≤ 1. Also d(λ0x, 0) < ε provided
d(x, 0) < ε/(1 + |λ0|); finally we consider d(λx0, 0). We have for N ≥ 1

d(λx0, 0) =
∑

k≥1

2−k |λ|pk(x0)

1 + |λ|pk(x0)
≤

∑

1≤k≤N

2−k |λ|pk(x0)

1 + |λ|pk(x0)
+

∑

k>N

2−k

and thus, for all N ≥ 1, 0 ≤ lim supλ→0 d(λx0, 0) ≤
∑

k>N 2−k = 2−N which implies
limλ→0 d(λx0, 0) = 0. The assumptions of the lemma 1.3.2 are satisfied and (E, d) is
indeed a TVS. Let us now consider a sequence (xn)n∈N of elements of E, converging
to 0: then, for each k ≥ 1, 0 ≤ pk(xn)/(1 + pk(xn)) ≤ 2kd(xn, 0) so that

lim
n

pk(xn)/(1 + pk(xn)) = 0 =⇒ lim
n

pk(xn) = 0.

Conversely if for all k ≥ 1, limn pk(xn) = 0, we have for all N ≥ 1,

0 ≤ d(xn, 0) ≤
∑

1≤k≤N

2−k pk(xn)

1 + pk(xn)
+

∑

k>N

2−k

and thus, for all N ≥ 1, 0 ≤ lim supn d(xn, 0) ≤ 2−N , i.e. limn d(xn, 0) = 0. Let us
prove now the last statement of the lemma: we have, using k 4→ pk increasing,

d(x, 0) ≤
∑

1≤k≤k0

2−k pk(x)

1 + pk(x)
+ 2−k0 ≤ pk0(x)

1 + pk0(x)
+ 2−k0 ≤ pk0(x) + 2−k0 .

10We use for a, b ≥ 0, ab
1+ab ≤

b
1+b if a ≤ 1 and ab

1+ab ≤
ab

1+b if a ≥ 1.
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Let r0 > 0 be given and k0 such that 2−k0 < r0/2. We have

B(0, r0) ⊃ {x ∈ E, pk0(x) < 1/l0} = Bk0,l0 , 1/l0 < r0/2,

since x ∈ Bk0,l0 implies d(x, 0) ≤ pk0(x) + 2−k0 < r0
2 + r0

2 = r0. Conversely, we have

pk(x)

1 + pk(x)
≤ 2kd(x, 0)

so that, for k, l given integers ≥ 1, there exists r > 0 such that B(0, r) ⊂ Bk,l; in

fact d(x, 0) < r implies pk(x)
1+pk(x) < 2kr and taking r = 2−k−2l−1 gives

pk(x) ≤ 1

4l
+

1

4l
pk(x) =⇒ pk(x)

(
1− 1

4l

)
≤ 1

4l
=⇒ pk(x) ≤ 1

4l − 1
<

1

l

since 3l ≥ 3 > 1. The proof of the lemma is complete.

N.B. Note that for a TVS as above, whose topology is defined by a separating
countable family of semi-norms, the closure of the open ball B(x, r) is indeed the
closed ball B̃(x, r) = {y ∈ E, d(y, x) ≤ r} (see the remark after the definition
1.2.2). In fact, we have already seen that B(x, r) ⊂ B̃(x, r), so that it is enough to
check the other inclusion. Using the translation-invariance, we may consider only
x0 ∈ E such that d(x0, 0) = r0 with some r0 > 0. Now, we have d((1 − ε)x0, x0) =
d(−εx0, 0) and thus, since the assumptions of the lemma 1.3.2 are proven true, we
have limε→0 d((1 − ε)x0, x0) = 0; on the other hand, (1 − ε)x0 ∈ B(0, r0) for ε > 0
since

d((1− ε)x0, 0) =
∑

k≥1

2−k (1− ε)pk(x0)

1 + (1− ε)pk(x0)
<

∑

k≥1

2−k pk(x0)

1 + pk(x0)
= d(x0, 0) = r0,

where the strict inequality above is due to the fact that pk(x0) > 0 for at least one
k ≥ 1 (otherwise x0 = 0, which is incompatible with d(x0, 0) > 0) and the mapping
R+ . θ 4→ θ/(1 + θ) is strictly increasing. As a result, x0 is a limit of points of
B(0, r0) and thus belongs to the closure of the open ball.

Definition 1.3.10. Let E be a vector space and (pk)k≥1 a separating countable family
of semi-norms on E. The metric space (E, d) with d given by (1.3.10) is a TVS.
We shall say that E is a Fréchet space when (E, d) is complete.

N.B. A sequence (xn)n∈N of elements of a vector space E, equipped with a separating
countable family of semi-norms (pk)k≥1, is a Cauchy sequence means that it is a
Cauchy sequence for the metric d defined by (1.3.10). This is equivalent to the
following properties:

∀k ≥ 1,∀ε > 0,∃Nε,k,∀n′, n′′ ≥ Nε,k, pk(xn′ − xn′′) < ε. (1.3.11)

To prove this, we note first that if (xn)n∈N is a Cauchy sequence for d, since

pk(xn′ − xn′′)

1 + pk(xn′ − xn′′)
≤ 2kd(xn′ , xn′′)
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we have pk(xn′ − xn′′)
(
1 − 2kd(xn′ , xn′′)

)
≤ 2kd(xn′ , xn′′). For a given k ≥ 1, and

ε > 0, since (xn)n∈N is a Cauchy sequence, we can find N such that, for n′, n′′ ≥ N ,
d(xn′ , xn′′) < min(ε2−k−1, 2−k−1): we get

1

2
pk(xn′ − xn′′) ≤ pk(xn′ − xn′′)

(
1− 2kd(xn′ , xn′′)

)
≤ 2kd(xn′ , xn′′) <

ε

2
,

which is (1.3.11). Let us assume now that (1.3.11) holds. For all k ≥ 1, we have

d(xn′ , xn′′) ≤
∑

1≤l≤k

2−l pl(xn′ − xn′′)

1 + pl(xn′ − xn′′)
+

∑

l>k

2−l,

so that for ε > 0, choosing kε such that 2−kε < ε/2, using Mε = max1≤l≤kε N ε
2 ,l

(where the N ε
2 ,l are defined in (1.3.11)), for n′, n′′ ≥ Mε we have

d(xn′ , xn′′) ≤
∑

1≤l≤kε

2−l
ε
2

1 + ε
2

+ 2−kε <
ε

2
+

ε

2
= ε,

proving that (xn)n∈N is a Cauchy sequence.

1.4 A review of the basic structures for TVS

1.4.1 Hilbert spaces

This is the richest structure: a Hilbert space is a complete normed vector space
whose norm is derived from a dot-product (see the definition 1.3.7). The typical
examples are *2(N) and more generally L2(µ) (see (1.3.8)) and the dot-product is

〈f, g〉 =

∫

X

fḡdµ.

One can prove that a separable11 Hilbert space is isomorphic to *2(N).

1.4.2 Banach spaces

A Banach space is a complete normed vector space. The typical examples are
*p(N) and more generally Lp(µ) (see (1.3.8)) for 1 ≤ p ≤ +∞) with the norm
(
∫

X |f |pdµ)1/p. Other examples include C0([0, 1]; R) and more generally C0(K; RN)
where K is a compact topological space (see the next section) with the norm

‖u‖ = sup
x∈K

|u(x)|RN , (here |RN stands for a norm on RN ).

11i.e. containing a countable dense part.
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1.4.3 Fréchet spaces

Fréchet spaces are complete metric vector spaces whose distance is given by a count-
able separating family of semi-norms (pk)k≥1 (see (1.3.10) and the definition 1.3.10).
The most typical examples are Cm(Ω; C) where m ∈ N, Ω open subset of Rn, the
complex-valued Cm functions defined on Ω. Since it is possible (exercise) to write

Ω = ∪l∈NKl, Kl compact,

we consider the countable family of seminorms pl(u) = supx∈Kl,|α|≤m |(∂α
x u)(x)|. An-

other example is C∞(Ω; C), the C∞ complex-valued functions on Ω; the family

pl,m(u) = sup
x∈Kl,|α|≤m

|(∂α
x u)(x)|

defines the topology. For Ω open subset of C, one may also consider H (Ω) the
holomorphic functions on Ω, with the family of semi-norms supx∈Kl

|u(x)|. There are
many other examples that we shall use later on, such as the Schwartz space S (Rn) of
smooth rapidly decreasing functions on Rn: u is in S (Rn) means that it is a smooth
function on Rn such that, for all α, β, pα,β(u) = supx∈Rn |xα(∂β

xu)(x)| < +∞. The
pα,β describe the topology on S (Rn) (an example of such a function is e−‖x‖

2
where

‖x‖ is the Euclidean norm on Rn).

1.4.4 More general structures

Some very interesting and natural topological vector spaces are not metrizable, such
as D(Ω), the smooth complex-valued compactly supported functions defined on Ω,
open set of Rn. They are important in the theory of distributions, but many aspects
of that theory can be acquired without a deep understanding of the topology of D ,
which is defined by an uncountable family of semi-norms.

1.5 Compactness

1.5.1 Compact topological spaces

Definition 1.5.1. A topological space (X, O) is said to be compact when it is a
Hausdorff space (see the definition 1.1.5) and satisfy the Borel-Lebesgue property: if
(Ωi)i∈I is a family of open sets such that X = ∪i∈IΩi, there exists a finite subset J
of I such that X = ∪i∈JΩi.

N.B. If A is a closed subset of a compact space X, then A is also compact. Using the
definition 1.1.10 of the induced topology on A, the separation property is obvious
and we may assume that A ⊂ ∪i∈IΩi, where each Ωi is an open subset of X. Then
we have

X = ∪i∈IΩi ∪ Ac

and since Ac is open, the compactness of X implies that X = ∪i∈JΩi ∪ Ac with a
finite subset J of I. As a consequence A ⊂ ∪i∈JΩi, proving its compactness.
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Proposition 1.5.2. Let X be a Hausdorff topological space.
(1) Let A, B be two compact disjoint subsets of X. Then there exist U, V open
disjoint subsets of X such that A ⊂ U and B ⊂ V .
(2) Let A be a compact subset of X. Then A is a closed subset of X.

Proof. Since X is Hausdorff, for each (x, y) ∈ A × B, there exists some open sets
Ux(y) ∈ Vx, Vy(x) ∈ Vy such that Ux(y) ∩ Vy(x) = ∅. By the compactness of B, we
have for all x ∈ A,

B ⊂ ∪1≤j≤NxVyj(x) = W (x).

As a consequence, with T (x) = ∩1≤j≤NxUx(yj), we have T (x) ∩ W (x) = ∅, W (x)
open containing B and the open set T (x) ∈ Vx. By the compactness of A, we have

A ⊂ ∪1≤k≤MT (xk).

We take then U = ∪1≤k≤MT (xk), V = ∩1≤k≤MW (xk), which are disjoint open sets
containing respectively A, B, proving (1). Let A be a compact subset of X; if a /∈ A,
then A and {a} are disjoint compact subsets and from the now proven (1), there
exists an open set V ∈ Va such that V ∩ A = ∅, i.e. V ⊂ Ac, proving that Ac is
open.

Proposition 1.5.3. Let (Ki)i∈I be a family of compact subsets of a Hausdorff space
X such that ∩i∈IKi = ∅. Then there exists a finite subset J of I such that ∩i∈JKi =
∅.

Proof. Note that from the property (b) of the proposition 1.5.2, the Ki are closed
subsets of X. For a fixed i0 ∈ I,

Ki0 ⊂ ∪i*=i0,i∈IK
c
i =⇒ Ki0 ⊂ ∪i∈JKc

i , J finite subset of I.

As a result, ∩i∈J∪{i0}Ki = ∅.

Theorem 1.5.4. Let X, Y be topological spaces, with Y a Hausdorff space, and
f : X −→ Y be a continuous mapping. If X is compact, then f(X) is compact.

Proof. f(X) is a Hausdorff space as a subset of a Hausdorff space. Let us assume
that f(X) ⊂ ∪i∈IVi where Vi are open subsets of Y . Then

X = ∪i∈I f−1(Vi)︸ ︷︷ ︸
open

since f continuous

so that for some finite J , X = ∪i∈Jf−1(Vi), and thus f(X) = ∪i∈Jf(f−1(Vi)) ⊂
∪i∈JVi, proving the result.

1.5.2 Compact metric spaces

Theorem 1.5.5 (Bolzano-Weierstrass). Let X be a metric space. Then the two
following properties are equivalent.
(i) X is compact.
(ii) From any sequence of elements of X, on can extract a convergent subsequence.
This means that for a metric space the compactness is equivalent to the sequential
compactness (as defined by (ii)).
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Remark 1.5.6. If (xk)k≥1 is a sequence, a subsequence (xκ(l))l≥1 is defined by an
increasing mapping κ : N∗ −→ N∗ (∀l,κ(l) < κ(l+1)); in other words, a subsequence
is

xκ1 , xκ2 , . . . , xκl
, xκl+1

, . . . with κ1 < κ2 < · · · < κl < κl+1 < . . .

Proof. Let us assume that (i) holds and let (xk)k≥1 be a sequence of elements of X.
We have then that

X ⊃ F1 = {xk}k≥1 ⊃ F2 = {xk}k≥2 ⊃ · · · ⊃ Fn = {xk}k≥n ⊃ . . .

and (Fn)n≥1 is a decreasing sequence of non-empty compact sets (since Fn is closed
in a compact set). As a result, the set ∩n≥1Fn is closed ⊂ X and thus compact;
moreover ∩n≥1Fn *= ∅, otherwise

∪n≥1F
c
n = X

and by the compactness of X, we would have X = ∪1≤n≤NF c
n = F c

N since the F c
n are

increasing with n, which is not possible since xN ∈ FN *= ∅. Let y ∈ ∩n≥1Fn: for all
V ∈ Vy, for all n ∈ N, V ∩ {xk}k≥n *= ∅. This means that,

∀ε > 0, ∀n ≥ 1, ∃k ≥ n, d(xk, y) < ε. (1.5.1)

Let us then assume that we have found xk1 , . . . , xkm with 1 ≤ k1 < k2 < · · · < km

such that d(xkj , y) < 1/j. Then using (1.5.1), we can find km+1 ≥ 1 + km such that
d(xkm+1 , y) < 1/(m + 1). Eventually we have constructed an extracted subsequence
(xkj)j≥1 of the sequence (xk)k≥1 with limj xkj = y ∈ X, proving (ii).

Lemma 1.5.7 (Lebesgue numbers of a covering). Let X = ∪i∈IΩi be an open
covering of a metric space X satisfying (ii). Then

∃r0 > 0,∀x ∈ X,∃i ∈ I, B̃(x, r0) ⊂ Ωi, where B̃(x, r0) = {y ∈ X, d(y, x) ≤ r0}.

Proof of the lemma. Otherwise, we would have

∀k ≥ 1,∃xk ∈ X,∀i ∈ I, B̃(xk, 1/k) ∩ Ωc
i *= ∅. (1.5.2)

From the property (ii), we would be able to extract a convergent subsequence
(xkj)j≥1 from the sequence (xk)k≥1. Since limj xkj = y0 which belongs to some
open set Ωi0 , we get B(y0, r) ⊂ Ωi0 with some r > 0. As a result, xkj ∈ B(y0, r/2)
for j ≥ j0 and we have

B̃(xkj , 1/kj) ⊂ B(y0, r)

since if x ∈ B̃(xkj , 1/kj), we get

d(x, y0) ≤ d(x, xkj) + d(y0, xkj) ≤
1

kj
+

r

2
< r if j ≥ j0 and kj > 2/r.

As a consequence B̃(xkj , 1/kj) ⊂ Ωi0 which contradicts (1.5.2). The proof of the
lemma is complete.
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Lemma 1.5.8 (Precompactness). Let X be a metric space satisfying (ii). Then

∀r > 0,∃N ∈ N∗,∃ x1, . . . , xN ∈ X, X = ∪1≤k≤N B̃(xk, r).

Proof of the lemma. Otherwise, we would have

∃r0 > 0,∀N ≥ 1,∀x1, . . . , xN ∈ X, ∪1≤k≤N B̃(xk, r0) *= X. (1.5.3)

Let us assume that we have found x1, . . . , xn ∈ X such that d(xi, xj) > r0 when i *= j
(note that given x1, since B̃(x1, r0) *= X, we can find x2 such that d(x1, x2) > r0).
Using (1.5.3), we can find xn+1 /∈ ∪1≤k≤nB̃(xk, r0) and thus for

for k = 1, . . . , n, d(xk, xn+1) > r0.

Eventually, we can construct a sequence (xk)k≥1 such that d(xk, xl) > r0 if k *= l.
Naturally, such a sequence cannot have a convergent subsequence, which contradicts
the assumption (ii). The proof of the lemma is complete.

Let us now conclude with the proof of the theorem. We assume that X is a metric
space satisfying (ii) and that X = ∪i∈IΩi where the Ωi are some open subsets of X.
From the lemma 1.5.7, we get that there exists r0 > 0 such that for all x ∈ X, there
exists ix ∈ I such that B̃(x, r0) ⊂ Ωix . From the lemma 1.5.8, we obtain that for
that r0 > 0, there exists a finite sequence x1, . . . , xN0 with

X = ∪1≤k≤N0B̃(xk, r0) ⊂ ∪1≤k≤N0Ωixk
,

which is a finite covering sought after. The proof of the theorem is complete.

Lemma 1.5.9. The compact subsets of Rn(equipped with its standard topology) are
the closed and bounded subsets.

Proof. Let K be a compact subset of Rn. By the proposition 1.5.2, K must be closed;
moreover K is bounded, since K ⊂ ∪k≥1B(0, k) and by compactness K ⊂ B(0, k0)
for some k0 ≥ 1. Conversely, let K be a closed bounded subset of Rn: then K is a
closed subset of [−M, M ]n for some positive M . It suffices to show that [−M, M ]n

is a compact subset of Rn since we know from the N.B. after the definition 1.5.1 that
a closed subset of a compact set is compact. To prove that [−M, M ] is a compact
subset of R is easy: we consider a sequence (xk)k≥1 in [−M, M ] and we define

lim inf
k

xk = sup
k

(inf
n≥k

xn) ≤ lim sup
k

xk = inf
k

(sup
n≥k

xn).

We note that k 4→ bk = supn≥k xn (resp. k 4→ ak = infn≥k xn) is a non-increasing12

(resp. non-decreasing) sequence in [−M, M ], so that they are both converging and

a = lim
k

ak = sup
k

ak, b = lim
k

bk = inf
k

bk.

12 In mathematical english, a sequence (ak)k∈N is said to be non-decreasing whenever for all
k, ak ≤ ak+1 and a sequence (bk)k∈N is said to be non-increasing whenever for all k, bk ≥ bk+1.
Saying that the sequence (ak)k∈N is increasing means ak < ak+1 for all k; saying that the sequence
(bk)k∈N is decreasing means bk > bk+1 for all k.
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Moreover since ak ≤ bk and both sequence are converging we get the above inequality.
Moreover, for all ε > 0, N ≥ 1, there exists k ≥ N such that

a− ε < ak ≤ a, ∃n ≥ k, a− ε < ak ≤ xn < ak + ε ≤ a + ε

so that a (as well as b) is the limit of an extracted subsequence of the sequence
(xk)k≥1. One can also prove that a (resp. b) is the smallest (resp. largest) limit
point (i.e. limit of a subsequence) of the sequence (xk)k≥1. So the property (ii) is
satisfied for the metric space [−M, M ] as well as for [−M, M ]n by iterated extraction.
The proof of the lemma is complete.

N.B. It might be the proper time for stating a couple of caveat. We have seen that,
for a metric space, the sequential compactness is equivalent to the compactness.
However, there exist some topological spaces which are sequentially compact and
not compact: this is the case for instance of the ordered [0, ω1) where ω1 is the first
uncountable ordinal. Conversely, there are topological spaces which are compact and
not sequentially compact: this is the case of [0, 1][0,1], the mappings from [0, 1] to
[0, 1], equipped with the product topology. There is a general theorem of topology,
called the Tychonoff theorem, asserting that a product X = Πi∈IXi of compact
spaces is compact, where the topology on X is the natural product-topology, defined
as the coarsest topology for which the projections πi : X → Xi are continuous.
Although that Tychonoff theorem is easy for I countable, it is one of the great success
of the theory of filters 13 to provide a very simple proof of that result, whatever is the
cardinality of I. We shall have little use in these lectures of uncountable products of
topological spaces, but the reader should keep in mind that the metrizability theory
and countable products are far from exhausting the variety of examples and notions
of topological spaces.

Theorem 1.5.10 (Heine theorem). Let X, Y be metric spaces and f : X −→ Y be
a continuous mapping. If X is compact, f is uniformly continuous, i.e.

∀ε > 0,∃α > 0,∀x′, x′′ ∈ X, dX(x′, x′′) < α =⇒ dY

(
f(x′), f(x′′)

)
< ε.

Proof. Reductio ad absurdum: otherwise

∃ε0 > 0,∀k ≥ 1,∃x′k, x′′k ∈ X, dX(x′k, x
′′
k) < 1/k, dY

(
f(x′k), f(x′′k)

)
≥ ε0.

From the sequence (x′k)k≥1, we may extract a convergent subsequence (x′k1(l))l≥1, and
from the sequence (x′′k1(l))l≥1, we may extract a convergent subsequence (x′′k1(k2(m)))m≥1.
With κ = k1 ◦k2, the sequences (x′κ(m))m≥1, (x′′κ(m))m≥1 are both convergent (the first

13A thorough exposition of the theory of filters can be found in the first chapter of the Bourbaki
volume Topologie générale [1] (see also the G. Choquet book, Topology [4]). As a historical note, the
theory of filters and ultrafilters was invented by Henri Cartan in 1937 and developed systematically
by the Bourbaki group later on. It is interesting to notice that, although that theory was criticized
for being too abstract, the essentially equivalent notion of nets is used in the english literature (see
e.g. the chapter 4 of the first volume Functional Analysis of [11]). We cannot resist quoting the
magnificent book [11], in which the authors write on page 118 (notes of chapter IV) “We find the
filter theory of convergence very unintuitive and prefer the use of nets in all cases” before adding
a supplement on page 351 about . . . the theory of filters, a discreet hommage to its efficiency.
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one as a subsequence of a convergent sequence) with the same limit z, since with
z′ = limm x′κ(m), z

′′ = limm x′′κ(m),

dX(z′, z′′) ≤ dX(z′, x′κ(m))︸ ︷︷ ︸
→0

m→+∞

+ dX(x′κ(m), x
′′
κ(m))︸ ︷︷ ︸

≤1/κ(m)

+ dX(x′′κ(m), z
′′)

︸ ︷︷ ︸
→0

m→+∞

.

However, we have

0 < ε0 ≤ dY

(
f(x′κ(m)), f(x′′κ(m))

)
≤ dY

(
f(x′κ(m)), f(z)

)
+ dY

(
f(x′′κ(m)), f(z)

)

although the continuity of f implies

lim
m

dY

(
f(x′κ(m)), f(z)

)
= lim

m
dY

(
f(x′′κ(m)), f(z)

)
= 0,

and thus 0 < ε0 ≤ 0 which is impossible.

1.5.3 Local compactness

Definition 1.5.11. A topological space is said to be locally compact if it is a Haus-
dorff space (cf. the definition 1.1.5) such that each point has a compact neighborhood.

Proposition 1.5.12. In a locally compact topological space X, every point has a
basis of compact neighborhoods, i.e. ∀x ∈ X,∀U ∈ Vx,∃Lcompact, L ∈ Vx, L ⊂ U.
More generally, let K be a compact subset of a locally compact topological space and
U an open set such that K ⊂ U . Then there exists an open set V with compact
closure such that

K ⊂ V ⊂ V ⊂ U.

Proof. Since every point has a compact neighborhood, we can cover K with finitely
many (Wj)1≤j≤N such that Wj is open with compact closure; the set W = ∪1≤j≤NWj

is also open with compact closure, since a finite union of open sets is open and the
closure of a finite union is the union of the closures. If U = X, we can take V = W .
Otherwise, for each x ∈ U c, the proposition 1.5.2 shows that there exists Vx, V ′

x open
disjoint such that K ⊂ Vx, {x} ⊂ V ′

x; as a result, (U c ∩W ∩ Vx)x∈Uc is a family of
compact sets with empty intersection: we have Vx∩V ′

x = ∅ and thus x /∈ Vx, so that

y ∈ ∩x∈Uc

(
U c ∩W ∩ Vx

)
=⇒ y ∈ U c, y ∈ Wand for all x ∈ U c, y ∈ Vx

=⇒ y ∈ Vy which is impossible.

From the proposition 1.5.3, we can find x1, . . . , xN ∈ U c such that

∅ = ∩1≤j≤N

(
U c ∩W ∩ Vxj

)
=⇒ ∩1≤j≤N

(
W ∩ Vxj

)
⊂ U

We consider now the open set V = W ∩ ∩1≤j≤NVxj . We have by construction K ⊂
Vxj ∩ U and thus K ⊂ V ⊂ V ⊂ W ∩ ∩1≤j≤NVxj which is compact ⊂ U .
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The typical examples of locally compact spaces are the open subsets of Rn.
On the other hand, the Hilbert space *2(N) is not locally compact since the se-
quence (un)n≥0 with un = (δk,n)k≥0 ∈ *2(N) is made with unit vectors such that
〈un, um〉(2(N) = δn,m; as a consequence, if (un)n≥0 had a convergent subsequence
(vj = unj)j≥0, we would have

‖vi − vj‖2 = ‖vi‖2 + ‖vj‖2 − 2〈vi, vj〉 = 2 if i *= j,

so that the Cauchy criterion could not be satisfied. More generally, we shall see
below that any locally compact TVS is finite dimensional.

Theorem 1.5.13. Let E be a locally compact topological vector space. Then E is
finite-dimensional.

Remark 1.5.14. Note that the translation and the multiplication by a non-zero
scalar are homeomorphisms of E, since they are continuous (because E is a TVS),
bijective with a continuous inverse (the inverse mapping of x 4→ x+x0 is y 4→ y−x0

and the inverse mapping of x 4→ λ0x with k . λ0 *= 0 is y 4→ λ−1
0 y).

Proof. Let K be a compact neighborhood of 0. We have thus

K ⊂ ∪x∈K

(
x +

1

2
K
◦)

, and x +
1

2
K
◦

is open from the previous remark,

so that by the compactness of K, we can find x1, . . . , xN ∈ K such that

K ⊂ ∪1≤j≤N(xj +
1

2
K
◦
).

We define then F = Vect(x1, . . . , xN) the vector space generated by the (xj)1≤j≤N .
We have

K ⊂ F +
1

2
K
◦

=⇒ 1

2
K ⊂ F +

1

4
K
◦

=⇒ K ⊂ F + F +
1

4
K
◦
⊂ F +

1

4
K
◦
,

and assuming K ⊂ F + 2−nK
◦
, we obtain

K ⊂ F +
1

2
K
◦
⊂ F +

1

2
K ⊂ F +

1

2
(F + 2−nK

◦
) ⊂ F + 2−n−1K

◦
,

and finally

K ⊂ ∩n≥1(F + 2−nK
◦
). (1.5.4)

Lemma 1.5.15. Let E be a topological vector space. Then there exists B ⊂ V0

such that for all V ∈ V0, there exists B ∈ B such that B is open, B ⊂ V and for
all scalar λ such that |λ| ≤ 1, λB ⊂ B( B is said to be balanced). Moreover B is
absorbing, i.e. E = ∪λ∈kλB. In other words V0 has a basis of balanced and absorbing
neighborhoods of 0.

Proof of the lemma. Let V ∈ V0 be given. From the continuity of the multiplication
by a scalar, there exists U open ∈ V0, r > 0 such that |λ| < r =⇒ λU ⊂ V . We
define

B = ∪0<|λ|<rλU, (for λ *= 0, λU is homeomorphic to U , thus is open).
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B is open, contains 0 (since 0 ∈ U thus 0 ∈ λU), B ⊂ V . Moreover B is balanced
since for |µ| ≤ 1,

µB = ∪0<|λ|<rµλU ⊂ ∪0<|λ|<rλU = B.

On the other hand, the continuity of the multiplication implies that, for x0 ∈ E,
there exists r0 > 0 such that λx0 ∈ B for |λ| ≤ r0, so that x0 ∈ tB for |t| ≥ 1/r0; as
a consequence, we have E = ∪n≥12nB, completing the proof of the lemma.

For V ∈ V0, we can find B ∈ V0 open, B ⊂ V , ∈ V0, balanced with E = ∪n≥12nB.
By the compactness of K, we get that K ⊂ ∪1≤j≤N2jB and since for 1 ≤ j ≤ N ,

2jB = 2N 2j−NB︸ ︷︷ ︸
⊂B

since B balanced

⊂ 2NB,

we get K ⊂ 2NB, so that 2−NK ⊂ B ⊂ V and using (1.5.4), we get

K ⊂ F + 2−NK
◦
⊂ F + V, for any V ∈ V0.

As a result14, we get K ⊂ F̄ .

Lemma 1.5.16. Let F be a finite dimensional subspace in a Hausdorff topological
vector space E. Then F is closed.

That lemma implies our theorem: since K is a neighborhood of 0, the continuity
of the multiplication implies that, for x0 ∈ E, there exists r0 > 0 such that λx0 ∈ K
for |λ| ≤ r0, so that x0 ∈ tK for |t| ≥ 1/r0; as a consequence, we have

λK ⊂ λF̄ = λF ⊂ F, so that E = ∪n≥12
nK ⊂ F,

completing the proof of the theorem.

Let us give the proof of the lemma. We may assume that a basis of F is
(e1, . . . , em) and consider the injective linear mapping km . α 4→ Lα =

∑
1≤j≤m αjej ∈

E. The continuity of the addition in E implies that, for U ∈ V0, there exists V ∈ V0

such that
V + · · ·+ V︸ ︷︷ ︸

m terms

⊂ U.

The continuity of the multiplication implies that, for V ∈ V0,∃r > 0, such that if
|λ| < r, then λej ∈ V for 1 ≤ j ≤ m. Taking now max1≤j≤m |αj| < r implies

∑

1≤j≤m

αjej ∈ U,

proving the continuity of the linear mapping L. Since the unit sphere S of km is
compact (as closed and bounded, see the lemma 1.5.9), L(S) is compact (cf. the

14In a TVS E, for A ⊂ E, we have Ā = ∩V ∈V0(A + V ). In fact x ∈ Ā is equivalent to ∀V ∈
Vx, A ∩ V *= ∅, which is equivalent to ∀V ∈ V0, A ∩ (V + x) *= ∅, which is equivalent to ∀V ∈ V0

∃a ∈ A,∃v ∈ V, x+v = a, which is equivalent to x ∈ ∩V ∈V0(A−V ) = ∩V ∈V0(A+V ) since v 4→ −v
is an homeomorphism: with W ∈ V0 given, we may find V ∈ V0 such that −V ⊂ W and thus
A− V ⊂ A + W so that ∩V ∈V0(A− V ) ⊂ ∩W∈V0(A + W ) and the reverse equality as well.
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theorem 1.5.4) and 0 /∈ L(S). As a consequence, there exists a balanced open
neighborhood V ∈ V0 such that V ∩ L(S) = ∅ and

L−1(V ∩ F ) ∩ S = ∅ otherwise ∅ *= L
(
L−1(V ∩ F ) ∩ S

)
⊂ V ∩ F ∩ L(S) = ∅.

The set A = L−1(V ∩F ) contains 0 and such that for α ∈ A, the segment [0, α] ⊂ A:
in fact, if Lα ∈ V ∩ F , we have for θ ∈ [0, 1],

L(θα) = θL(α) ∈ V ∩ F since V is balanced and F is a vector space.

As a result, A ⊂ B1, where B1 is the open unit ball of km: otherwise, it would
contain a point α0 with ‖α0‖ ≥ 1 and the segment [0, α0], which intersects the unit
sphere S, contradicting the fact that A and S are disjoint. Let us consider now
x0 ∈ F̄ : there exists t0 > 0 such that x0 ∈ t0V (continuity of multiplication, and
t0V is open) and

∀W ∈ V0, (W + x0) ∩ (t0V ) ∩ F *= ∅ =⇒ x0 ∈ t0V ∩ F = t0(V ∩ F ),

but since15

t0(V ∩ F ) = t0L(A) ⊂ t0L(B1) = L(t0B1) ⊂ L(t0B1)︸ ︷︷ ︸
compact

,

we have x0 ∈ t0(V ∩ F ) ⊂ L(t0B1) ⊂ F and x0 ∈ F , completing the proof of the
lemma.

N.B. The consequences of the theorem 1.5.13 are important in functional analysis.
None of the natural spaces of functions that we shall consider, such as the Banach
space C0([0, 1]; R), are finite-dimensional16. As a consequence, these spaces are not
locally compact, which means in particular that, for an infinite-dimensional Banach
space, the closed unit ball is not compact. This is a drastic change from the finite-
dimensional geometry, and the reader has to keep in mind that the ordinary intuition
that we have of the geometry in Rn is radically modified with infinite-dimensional
spaces (by the way, infinite-dimensional means not finite-dimensional).

15Note that since A = L−1(V ∩F ), we have L(A) ⊂ V ∩F ; also if x ∈ V ∩F , we have x = L(α),
thus with α ∈ A: this implies x ∈ L(A) and finally L(A) = V ∩ F .

16The space C0([0, 1]; R) is not finite-dimensional, e.g. because it contains the functions (en)n∈N
defined by en(x) = xn: these functions are independent since a polynomial cannot vanish identically
on [0, 1] unless it is the zero polynomial.



Chapter 2

Basic tools of Functional Analysis

2.1 The Baire theorem and its consequences

René Baire (1874 – 1932) is a french mathematician who made a lasting landmark
contribution to functional analysis, known today as the Baire Category Theorem.
We study in this section that theorem and the manifold consequences in the realm
of functional analysis.

2.1.1 The Baire category theorem

Theorem 2.1.1 (Baire theorem). Let (X, d) be a complete metric space and (Fn)n≥1

be a sequence of closed sets with empty interiors. Then the interior of ∪n≥1Fn is
also empty.

N.B. The statement of that theorem is equivalent to say that, in a complete metric
space, given a sequence (Un)n≥1 of open dense sets the intersection ∩n≥1Un is also
dense. In fact, if (Un) is a sequence of open dense sets, the sets Fn = U c

n are closed
and int Fn = ∅ ⇐⇒ ∅ = int (U c

n) =
(
Un

)c ⇐⇒ Un = X, so that

int (∪n≥1Fn) = ∅ ⇐⇒ ∅ = int (∪n≥1U
c
n) = int

(
(∩n≥1Un)c

)
=

(
(∩n≥1Un)

)c

⇐⇒ (∩n≥1Un) = X.

Proof of the theorem. Let (Un)n≥1 be a sequence of dense open sets. Let x0 ∈ X, r0 >
0 (we may assume that X is not empty, otherwise the theorem is trivial). Using the
lemma 1.1.7 and the density of U1, we obtain B(x0, r0) ∩ U1 *= ∅ so that

∃r1 ∈]0, r0/2[, B(x0, r0) ∩ U1 ⊃ B(x1, 2r1) ⊃ B̃(x1, r1) = {y ∈ X, d(y, x1) ≤ r1}.

Let us assume that we have constructed x0, x1, . . . , xn with n ≥ 1 such that

B(xk, rk) ∩ Uk+1 ⊃ B̃(xk+1, rk+1), 0 < rk+1 < rk/2, 0 ≤ k ≤ n− 1.

Using the density of Un+1, we obtain B(xn, rn) ∩ Un+1 *= ∅ and

∃rn+1 ∈]0, rn/2[, B(xn, rn) ∩ Un+1 ⊃ B(xn+1, 2rn+1) ⊃ B̃(xn+1, rn+1).

31
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Since 0 < rn ≤ 2−nr0 (induction), we have limn rn = 0 and (xn)n≥0 is a Cauchy
sequence since for k, l ≥ n,

B(xk, rk) ∪B(xl, rl) ⊂ B(xn, rn) =⇒ d(xk, xl) < 2rn.

Since the metric space X is assumed to be complete, the sequence (xn)n≥0 converges;
let x = limn xn. We have for all n ≥ 0, B̃(xn+1, rn+1) ⊂ B(xn, rn) so that, for all
k ≥ 1, B̃(xn+k, rn+k) ⊂ B(xn, rn) and thus

sup
k≥0

d(xn+k, xn) ≤ rn =⇒ d(x, xn) ≤ rn =⇒ x ∈ ∩n≥1B̃(xn, rn) ⊂ ∩n≥1Un

and d(x, x0) ≤ r0. As a result, for all x0 ∈ X, all r0 > 0, the set B̃(x0, r0)∩∩n≥1Un *=
∅. This implies that U = ∩n≥1Un is dense since, for x0 ∈ X, for any neighborhood
V of x0, there exists r0 > 0 such that V ⊃ B(x0, 2r0) ⊃ B̃(x0, r0), and thus

V ∩ U ⊃ B̃(x0, r0) ∩ U *= ∅ =⇒ x0 ∈ U.

Theorem 2.1.2. Let X be a locally compact topological space (see the definition
1.5.11) and (Fn)n≥1 be a sequence of closed sets with empty interiors. Then the
interior of ∪n≥1Fn is also empty.

Proof. The proof is essentially the same as for the previous theorem. Let (Un)n≥1

be a sequence of dense open sets. Let B0 a non-empty open subset of X. Since U1

is dense, the open set B0 ∩ U1 is non-empty and thus is a neighborhood of a point.
From the proposition 1.5.12, B0∩U1 contains a compact set with non-empty interior
and thus

B0 ∩ U1 ⊃ B1, B1 compact, B1 open *= ∅.

We get that B1∩U2 is a non-empty open set which contains a compact B2, B2 open
*= ∅. Following the same procedure as in the previous proof, we may consider the
compact set K defined by K = ∩n≥1Bn. The set K is non-empty, otherwise the
proposition 1.5.3 would imply that ∅ = ∩1≤n≤NBn = BN for some N , which is not
possible since at each step, the set BN is compact with non-empty interior. As a
result, we have

∅ *= K ⊂ ∩n≥1Un = U, K ⊂ B0,

and thus, for any open subset B0 of X, the set U ∩ B0 *= ∅, which means that
U = X.

Definition 2.1.3. Let X be a topological space and A ⊂ X.

· The subset A is said to be rare or nowhere dense when A
◦

= ∅.
· The subset A is of first category when it is a countable union of rare subsets. Such
a subset is also said to be meager.
· The subset A of X is of second category when it is not of first category.
A topological space X is a Baire space if for any sequence (Fn)n∈N of closed sets with
empty interiors, the union ∪n∈NFn is also with empty interior. As shown above, X
is a Baire space if and only if, for any sequence (Un)n∈N of dense open sets, the
intersection ∩n∈NUn is also dense.
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Remark 2.1.4. We have proven that a metric complete space, as well as a locally
compact space are both Baire spaces.

Note that Q is a meager subset of R, thus of first category in R, i.e. “small” in
the sense of category but Q is dense in R.

The Cantor set is a compact space, and so is of second category in itself, but it
is of first category in the interval [0, 1] with the usual topology: in fact defining for
a compact interval J = [a, b] the intervals J0 = [a, a + b−a

3 ] and J2 = [b− b−a
3 , b], we

define

K0 = [0, 1] = I,

K1 = [0, 1/3] ∪ [2/3, 1] = I0 ∪ I2, |K1| = 23−1,

K2 = I00 ∪ I02 ∪ I20 ∪ I22, |K2| = 223−2,

. . .

Kn = ∪α∈{0,2}nIα, |Kn| = 2n3−n,

and the Cantor set is C = ∩n≥1Kn so that int C = ∅ since |C| ≤ infn 2n3−n = 0. As
a consequence C is rare in [0, 1].

Here is an example of a set of second category in R, i.e. “large” in the sense of
category, but with Lebesgue measure 0 (small in the sense of the Lebesgue measure).
We define for Q = {xn}n≥1,

A = ∩m≥1Um, Um = ∪n≥1]xn − 2−n−m, xn + 2−n−m[.

The Lebesgue measure |A| is such that

|A| ≤ inf
m≥1

∑

n≥1

21−n−m = inf
m≥1

2−m+1 = 0.

If A were meager,we would have a sequence (Ak) of subsets of R with int (Ak) = ∅,
so that

R = A ∪ Ac = ∪kAk ∪ Ac = ∪kAk ∪ Ac = ∪kAk ∪ ∪mU c
m.

We note that int(U c
m) = ∅ since Um ⊃ Q = R. We would have written R as a

countable union of closed sets with empty interiors: this is not possible from the
Baire theorem.

To convince the reader that the notions of size given respectively by the Lebesgue
measure and by the category are unrelated, we can also give an example of a set of
first category, “small” in the sense of category, but with full Lebesgue measure in
[0, 1]. Let us assume that for any integer k ≥ 1, we can construct a compact subset
Ck of [0, 1] such that

int(Ck) = ∅, |Ck| ≥
k − 1

k
.

We define then A = ∪k≥1Ck and we have |A| ≥ supk≥1 |Ck| ≥ supk≥1(1 − 1
k ) = 1.

Moreover, A is obviously of first category as a countable union of compact sets with
empty interior. The remaining question: how construct such a Ck? We can modify
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the construction of the Cantor set C above as follows. Let k ≥ 1 be given and
ε0 = 1/k. We define

K0 = [0, 1] = I,

K1 = I0 ∪ I2, I0 = [0,
1

2
− ε0

4
], I2 = [

1

2
+

ε0

4
, 1], |Kc

1| =
ε0

2
,

K2 = I00 ∪ I02 ∪ I20 ∪ I22, |Kc
2| = 22 ε0

24
+

ε0

2
,

. . .

Kn = ∪α∈{0,2}nIα, |Kc
n| = 2n ε0

22n
+ · · ·+ 2l ε0

22l
+ · · ·+ ε0

2
,

so that Ck = ∩n≥1Kn is compact, and by the Beppo Levi theorem, we have |Ck| =
limn |Kn| = limn

(
1− ε0(1−2−n)

)
= 1− ε0 = 1−1/k. Moreover, we have int(Ck) = ∅

since no non-empty open interval can be included in Ck: if

∀n ≥ 1, ]x0 − r0, x0 + r0[⊂ Kn = ∪α∈{0,2}nIα,

then, since the Iα are disjoint intervals,

∀n ≥ 1,∃αn ∈ {0, 2}n, ]x0 − r0, x0 + r0[⊂ Iαn .

However the common length ln of Iα is such that 2nln ≤ 1 so that limn ln = 0.

2.1.2 The Banach-Steinhaus theorem

Let us begin with some elementary facts about linear mappings between Banach
spaces.

Proposition 2.1.5. Let E, F be normed vector spaces and L(E, F ) be the vector
space of continuous linear mappings from E into F . A linear mapping L from E to
F belongs to L(E, F ) if and only if

∃C > 0,∀u ∈ E, ‖Lu‖F ≤ C‖u‖E. (2.1.1)

On the vector space L(E, F ), we define the norm

‖L‖ = sup
u∈E,‖u‖E=1

‖Lu‖F . (2.1.2)

If F is a Banach space, the vector space L(E, F ) equipped with that norm is a Banach
space.

Proof. L(E, F ) is obviously a vector space. Moreover, if L ∈ L(E, F ), the set
L−1(BF (0F , 1)) is open, contains 0E and thus contains BE(0E, r0) with some r0 > 0.
As a consequence, for u ∈ E, u *= 0, we have

‖L
(
r0

u

‖u‖E

)
‖F ≤ 1, i.e. ‖Lu‖F ≤ r−1

0 ‖u‖E (also true for u = 0).
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Conversely, if L is a linear mapping between E and F satisfying (2.1.1), then, for
ρ > 0, we have L−1

(
BF (0, ρ)

)
⊃ BE(0, ρC−1), since L(0E) = 0F and

0 < ‖u‖E < ρC−1 =⇒ ‖Lu‖F ≤ C‖u‖E < ρ.

A a result, L is continuous at 0 and since it is a linear mapping, it is continuous
everywhere: to check the continuity at u0, we note that u 4→ Lu is the composition
u 4→ u− u0 4→ L(u− u0) 4→ Lu, where the first and last mappings are translations,
which are homeomorphisms. The formula (2.1.2) is well-defined on L(E, F ), is
obviously homogeneous and separated. Let L1, L2 ∈ L(E, F ): for u ∈ E, we have

‖(L1 + L2)u‖E ≤ ‖L1u‖E + ‖L2u‖E ≤ (‖L1‖+ ‖L2‖)‖u‖E

and the triangle inequality follows. Assuming that F is a Banach space, we consider
a Cauchy sequence (Lk)k≥1 in L(E, F ). For each u ∈ E, the sequence (Lku)k≥1 is a
Cauchy sequence in the Banach space F since ‖Lku − Llu‖F ≤ ‖Lk − Ll‖‖u‖E, so
that we can define

Lu = lim
k

Lku.

We note also that the numerical sequence (‖Lk‖)k≥1 is a Cauchy sequence since,
by the triangle inequality1we get |‖Lk‖ − ‖Ll‖| ≤ ‖Lk − Ll‖, and thus (‖Lk‖)k≥1 is
bounded. The mapping L is obviously linear and satisfies, for u ∈ E,

‖Lu‖F ≤ ‖Lu− Lku‖F + ‖Lku‖F ≤ ‖Lu− Lku‖F + ‖u‖E sup
k≥1

‖Lk‖

and thus ‖Lu‖F ≤ ‖u‖E supk≥1 ‖Lk‖, so that L ∈ L(E, F ). We check now, for u ∈ E

‖(Lk−L)u‖E = lim
l
‖(Lk−Ll)u‖E ≤ ‖u‖E lim sup

l
‖Lk−Ll‖ = ε(k)‖u‖E, lim

k
ε(k) = 0.

As a consequence, ‖L − Lk‖ = sup‖u‖E=1 ‖(Lk − L)u‖E ≤ ε(k) and the sequence
(Lk)k≥1 converges to L in the normed space L(E, F ).

Theorem 2.1.6 (Banach-Steinhaus Theorem, Principle of Uniform Boundedness).
Let E be a Banach space, F be a normed vector space and (Lj)j∈J be a family of
L(E, F ) which is “weakly bounded”, i.e. satisfies

∀u ∈ E, sup
j∈J

‖Lju‖F < +∞. (2.1.3)

Then the family (Lj)j∈J is “strongly bounded”, i.e. satisfies

sup
j∈J

‖Lj‖L(E,F ) < +∞. (2.1.4)

Proof. We consider for n ∈ N∗, the set Fn = {u ∈ E, supj∈J ‖Lju‖F ≤ n}. From
the assumption of the theorem, we have E = ∪n∈NFn. Moreover each Fn is closed:
let (uk)k≥1 be a sequence of elements of Fn converging with limit u. For all j ∈ J ,

1 ‖Lk‖ ≤ ‖Lk − Ll‖+ ‖Ll‖ =⇒ ‖Lk‖ − ‖Ll‖ ≤ ‖Lk − Ll‖ =⇒ |‖Lk‖ − ‖Ll‖| ≤ ‖Lk − Ll‖.
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Lj is continuous and thus limk Ljuk = Lju. By the continuity of the norm2, we
get limk ‖Ljuk‖F = ‖Lju‖F , and since ‖Ljuk‖ ≤ n, we get ‖Lju‖ ≤ n for all
j ∈ J and u ∈ Fn. Note also that Fn is symmetric and convex: for u0, u1 ∈ Fn,
uθ = (1− θ)u0 + θu1, θ ∈ [0, 1], we have uθ ∈ Fn since

‖Ljuθ‖ ≤ (1− θ)‖Lju0‖+ θ‖Lju1‖ ≤ (1− θ)n + θn = n.

Applying the Baire theorem to the Banach space E, we see that there must exist
some n0 ∈ N∗ such that int(Fn0) *= ∅. In other words, Fn0 should contain an interior
point u0, and since Fn0 is symmetric, −u0 is also an interior point, as well as the
whole segment [−u0, u0] by convexity. As a consequence, 0 is an interior point of
Fn0 . This implies that there exists ρ0 > 0 such that B(0, ρ0) ⊂ Fn0 , i.e.

‖u‖ ≤ ρ0 =⇒ sup
j∈J

‖Lju‖ ≤ n0, so that ∀j ∈ J,∀u *= 0, ‖Ljρ0
u

‖u‖‖ ≤ n0,

implying that ∀j ∈ J, ‖Lju‖ ≤ n0
ρ0
‖u‖ and thus ∀j ∈ J, ‖Lj‖ ≤ n0

ρ0
which is (2.1.4).

The proof of the theorem is complete.

We can prove the same theorem in a much more general context than the frame-
work of Banach spaces. We shall limit ourselves to the case of Fréchet spaces, which
are complete metric spaces whose topology is defined by a countable separating fam-
ily of semi-norms (pk)k≥1 (see the definition 1.3.10). There is no loss of generality
to assume that the sequence pk is non-decreasing , i.e. for all u ∈ E, k ≥ 1, pk(u) ≤
pk+1(u), since we may replace the semi-norm pk by the semi-norm

∑
1≤j≤k pj.

Let us recall that for E, F topological vector space, L(E, F ) is the vector space of
continuous linear mappings from E into F ; when E = F , we shall write L(E) instead
of L(E, E). When the topology on E and F is given by a countable separating family
of (non-decreasing) semi-norms (pk)k≥1 on E and (ql)l≥1 on F , the continuity of a
linear mapping L from E to F is equivalent to

∀l ≥ 1,∃k ≥ 1,∃C > 0,∀u ∈ E ql(Lu) ≤ Cpk(u). (2.1.5)

In fact, since L is linear, its continuity is equivalent to the continuity at 0. If L is
continuous at 0, l ≥ 1, the set L−1({v ∈ F, ql(v) < 1}) is open, contains 0E and
thus contains {u ∈ E, pk(u) ≤ r0} with some k ≥ 1, r0 > 0. As a consequence, for
u ∈ E, ε > 0, we have

ql

(
L

(
r0

u

pk(u) + ε

))
≤ 1, i.e. ∀ε > 0,∀u ∈ E, ql(Lu) ≤ r−1

0

(
pk(u) + ε

)
,

which gives (2.1.5), ql(Lu) ≤ r−1
0 pk(u). Conversely, if L is a linear mapping between

E and F satisfying (2.1.5), then, for l ≥ 1, ρ > 0, we have

L−1
(
{v ∈ F, ql(v) ≤ ρ}

)
⊃ {u ∈ E, pk(u) ≤ ρC−1}

since pk(u) ≤ ρC−1 =⇒ ql(Lu) ≤ Cpk(u) ≤ ρ. As a result, L is continuous at 0.

2Let E be a normed space. The mapping E . x 4→ ‖x‖ ∈ R+ is Lipschitz continuous: we have
already seen in the previous footnote that the triangle inequality implies |‖x1‖−‖x2‖| ≤ ‖x1−x2‖.
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A subset B of a topological vector space E is said to be bounded if

∀U ∈ V0,∃s > 0,∀t ≥ s, B ⊂ tU. (2.1.6)

When the topology of E is given by a countable separating family of semi-norms
(pk)k≥1, it follows from the lemma 1.3.9 that a subset B is bounded when

∀k ≥ 1, sup
u∈B

pk(u) < +∞. (2.1.7)

A family F ⊂ L(E, F ) is equicontinuous when

∀l ≥ 1,∃k ≥ 1,∃C > 0,∀L ∈ F ,∀u ∈ E, ql(Lu) ≤ Cpk(u). (2.1.8)

Theorem 2.1.7 (Principle of Uniform Boundedness). Let E, F be topological vector
spaces whose topology is given by a countable separating (non-decreasing) family
of semi-norms, and assume that E is a Fréchet space. Let (Lj)j∈J be a family of
L(E, F ) which is “weakly bounded”, i.e. satisfies

∀u ∈ E, {Lju}j∈J is bounded in F . (2.1.9)

Then the family {Lj}j∈J is “strongly bounded”, i.e. satisfies

∀B bounded of E, ∪j∈JLj(B) is bounded in F (2.1.10)

and the family (Lj)j∈J is equicontinuous.

Proof. Let B0 be a bounded subset of E, l0 ≥ 1. Since, for all u ∈ E, {Lju}j∈J is
bounded in F , we have

∀u ∈ E, sup
j∈J

ql0(Lju) < +∞.

As a consequence, we have E = ∪n≥1Fn, Fn = {u ∈ E, supj∈J ql0(Lju) ≤ n}.
Moreover each Fn is closed: let (uk)k≥1 be a sequence of elements of Fn converging
with limit u. For all j ∈ J , Lj is continuous and thus limk Ljuk = Lju. By the
continuity of the semi-norm3 we get limk ql0(Ljuk) = ql0(Lju), and since ql0(Ljuk) ≤
n, we get ql0(Lju) ≤ n for all j ∈ J and u ∈ Fn. Note also that Fn is symmetric and
convex: for u0, u1 ∈ Fn, uθ = (1− θ)u0 + θu1, θ ∈ [0, 1], we have uθ ∈ Fn since

ql0(Ljuθ) ≤ (1− θ)ql0(Lju0) + θql0(Lju1) ≤ (1− θ)n + θn = n.

Applying the Baire theorem to the complete metric space E, we see that there must
exist some n0 ∈ N∗ such that int(Fn0) *= ∅. In other words, Fn0 should contain an
interior point u0, and since Fn0 is symmetric, −u0 is also an interior point, as well as
the whole segment [−u0, u0] by convexity. As a consequence, 0 is an interior point
of Fn0 . This implies that there exists ρ0 > 0, k0 ≥ 1 such that

pk0(u) ≤ ρ0 =⇒ sup
j∈J

ql0(Lju) ≤ n0,

3The triangle inequality for a semi-norm q implies |q(v1)− q(v2)| ≤ q(v1 − v2).
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so that
∀j ∈ J,∀u ∈ E, ∀ε > 0, ql0

(
Ljρ0

( u

pk0(u) + ε

))
≤ n0,

implying that

∀j ∈ J,∀u ∈ E, ∀ε > 0, ql0(Lju) ≤ n0

ρ0

(
pk0(u) + ε

)

and thus ∀j ∈ J,∀u ∈ E, ql0(Lju) ≤ n0pk0(u)/ρ0, which is the equicontinuity
(2.1.8). Since the bounded set B0 satisfies supu∈B0

pk0(u) = M0 < +∞, we have

B0 ⊂ {u ∈ E, sup
j∈J

ql0(Lju) ≤ M0n0/ρ0}

which implies that

∪j∈JLj(B0) ⊂ {v, ql0(v) ≤ M1}, with M1 = M0n0/ρ0,

so that supv∈∪j∈JLj(B0) ql0(v) < +∞ and ∪j∈JLj(B0) is indeed bounded. The proof
of the theorem is complete.

Corollary 2.1.8. Let E be a Fréchet space, F be a topological vector space whose
topology is defined by a countable separating family of semi-norms and (Ln)n∈N be
a sequence in L(E, F ) such that, for all u ∈ E, the sequence (Lnu)n∈N converges in
F . Then defining L on E by Lu = limn Lnu, we obtain that L ∈ L(E, F ).

Proof. The mapping L is obviously linear, and the previous theorem implies that
the sequence (Ln)n∈N is equicontinuous, i.e.

∀l ≥ 1,∃k ≥ 1,∃C > 0,∀n ∈ N,∀u ∈ E, ql(Lnu) ≤ Cpk(u).

The continuity of ql and the convergence of (Lnu)n∈N imply that

∀l ≥ 1,∃k ≥ 1,∃C > 0,∀u ∈ E, ql(Lu) ≤ Cpk(u),

which is the continuity of L.

N.B. The previous theorem can be proven for more general spaces than the Fréchet
spaces, and in particular the local convexity does not play any rôle in the proof;
nevertheless it is important that the topological vector space E is a Baire space and
F is a Hausdorff TVS. On the other hand, the previous corollary will be very useful
for distribution theory; at this moment one may simply point out that the type
of convergence of the Ln is indeed very weak (“simple” convergence), and the fact
that the continuity is not lost in the limiting process is an important consequence of
the Baire theorem, proving that a simple limit of continuous linear mappings (say
between Fréchet spaces) is still continuous.

Remark 2.1.9. Another point is concerned with the notion of boundedness in a
topological vector space, as given by the definition (2.1.6). That notion is pretty
obvious in a Banach space but more subtle, even in a Fréchet space, where it is given
by (2.1.7). In particular, in a locally convex Hausdorff space E (such as a Fréchet
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space), no neighborhood of 0 is bounded unless E is normable. It is not difficult to
see that, in a general TVS, compact subsets are bounded.

A possible collision – and confusion – of terminology exists around the word
boundedness: that word can be used with a different meaning in a metric space
(not necessarily a vector space). In a metric space (X, d) a subset A is said to be
d-bounded if its diameter is finite, i.e. if supx,y∈A d(x, y) < +∞. Now if (X, d) is a
metric topological vector space, the notions of boundedness and d-boundedness may
differ. Consider for instance the real line R with the metric (which is translation
invariant) d(x, y) = |x−y|

1+|x−y| : R itself is d-bounded and not bounded.
Anyhow, when we deal with a topological vector space E, we shall stick with the

TVS definition of boundedness, as given by (2.1.6), even if E is a metric TVS.

2.1.3 The open mapping theorem

Theorem 2.1.10. Let E, F be Banach spaces and let A be a bijective mapping
belonging to L(E, F ). Then A is an isomorphism, i.e.

∃β, γ > 0, ∀u ∈ E, β‖u‖E ≤ ‖Au‖F ≤ γ‖u‖E. (2.1.11)

Proof. First of all, we note that since A ∈ L(E, F ), the second inequality in (2.1.11)
is satisfied. Moreover, as A is bijective, the inverse mapping A−1 must be shown to
be continuous, i.e. ‖A−1v‖E ≤ C‖v‖F which is equivalent4 to the first inequality in
(2.1.11). To prove this, we first define for N ∈ N∗ the set

ΦN = A
(
BE(0, N)

)
.

We note that each ΦN is closed (and also symmetric and convex) and that E =
∪N∈N∗ΦN since A is onto. Using the Baire theorem, we find N0 ≥ 1 such that ΦN0

contains an interior point, and since ΦN0 is symmetric and convex, 0 is indeed an
interior point so that

∃R0 > 0, BF (0, R0) ⊂ A
(
BE(0, N0)

)
.

Defining A0 = N0R
−1
0 A, which is a bijective mapping of L(E, F ), we have also

BF (0, 1) ⊂ A0

(
BE(0, 1)

)
. Let v0 be in the closed unit ball of F : from the previous

inclusion, we can find u0 ∈ BE(0, 1) such that

‖v0 − A0u0‖F ≤ 1/2, so that ∃u1 ∈ BE(0, 1) with ‖2(v0 − A0u0)− A0u1‖ ≤ 1/2

which means that we have found u0, u1 ∈ BE(0, 1) with ‖v0 − A0u0 − A02−1u1‖ ≤
2−2. Inductively, if we assume that we can find u0, u1, . . . , un ∈ BE(0, 1) such that

4A mapping in L(E,F ) may satisfy (2.1.11) without being an isomorphism: the shift operator
S, defined on $2(N) by

S((un)n≥0) = (vn)n≥0, v0 = 0, vn = un−1, for n ≥ 1,

is bounded from $2(N) into itself and even isometric since ‖Su‖ = ‖u‖, but is not onto since the
sequence (δ0,n)n≥0 is not in its range.
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‖v0−
∑

0≤k≤n A02−kuk‖ ≤ 2−n−1, it is also possible to find un+1 ∈ BE(0, 1) such that

‖2n+1
(
v0 −

∑

0≤k≤n

A02
−kuk

)
− un+1‖ ≤ 2−1.

Eventually, we can construct a sequence (un)n≥0 in BE(0, 1) so that

‖v0 −
∑

0≤k≤n

A02
−kuk‖ ≤ 2−n−1. (2.1.12)

The sequence (Un =
∑

0≤k≤n 2−kuk)n≥0 is a Cauchy sequence since ‖2−kuk‖ ≤ 2−k

and thus converge. As a consequence, with U = limn Un, vn = A0Un, the continuity
of A0 and (2.1.12) give

v0 = lim
n

vn = lim
n

A0Un = A0U =⇒ v0 = A0U, ‖U‖E ≤ 2

which proves that BF (0, 1) ⊂ A0

(
BE(0, 2)

)
. Let us now consider u *= 0 in E; then

A0u *= 0 (A0 is bijective and thus one-to-one) and, from the previous inclusion, there
exists u′ ∈ E such that

BF (0, 1) . A0u

‖A0u‖
= A0u

′, ‖u′‖ ≤ 2 =⇒ u

‖A0u‖
= u′ =⇒ ‖u‖ ≤ 2‖A0u‖,

implying (2.1.11) with β = R0
2N0

(note that the inequality (2.1.11) is trivially satisfied
for u = 0). The proof of the theorem is complete.

Remark 2.1.11. Let E be a vector space, N be a subspace and p : E −→ E/N the
canonical mapping p(u) = u+N . The space E/N is a vector space with the addition
p(u1) + p(u2) = p(u1 + u2) and the multiplication by a scalar λp(u) = p(λu), which
are well-defined operations. If E is a Banach space and N is a closed subspace, then
the quotient space E/N is a Banach space with norm

‖p(u)‖E/N = inf
w∈N

‖u + w‖E.

The homogeneity and triangle inequality are easy to verify and the separation follows
from the fact that if limk(u + wk) = 0, wk ∈ N then limk wk = −u, so that −u and
thus u belong to the closure of N , which is N , ensuring p(u) = 0E/N = N . Moreover,
E/N is a Banach space: if (uk)k≥1 is a sequence of E such that

∑

k≥1

‖p(uk)‖E/N < +∞,

we can find a sequence (wk)k≥1 in N with ‖uk + wk‖E ≤ ‖p(uk)‖E/N + 2−k, so that∑
k≥1(uk +wk) is a converging series in the Banach space E. As a result, there exists

v ∈ E so that

0 = lim
n
‖

∑

1≤k≤n

(uk + wk)− v‖E =⇒ 0 = lim
n
‖

∑

1≤k≤n

p(uk)− p(v)‖E/N ,
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proving the completeness. Moreover, the mapping p is open, i.e. sends open sets onto
open sets: since it is linear, it is enough to verify that p(BE(0, 1)) is a neighborhood
of 0. But we have

BE/N(0, 1) = p(BE(0, 1))

since if ‖p(u)‖E/N < 1, there exists w ∈ N such that ‖u + w‖E < 1 and p(u) =
p(u + w) ∈ p(BE(0, 1)). Conversely, if ‖u‖E < 1, then ‖p(u)‖E/F ≤ ‖u‖E < 1.

Corollary 2.1.12.
(1) Let E, F be Banach spaces and A ∈ L(E, F ). If A is onto, then A is open.
(2) Let E be a vector space and let N1, N2 be two norms such that (E, Nj)(j = 1, 2)
are Banach space and such that N1 ! N2, i.e. ∃C > 0,∀u ∈ E, N1(u) ≤ CN2(u).
Then N2 ! N1 so that

∃C > 0,∀u ∈ E, C−1N2(u) ≤ N1(u) ≤ CN2(u),

i.e. the two norms are equivalent.

Proof. For E, F Banach spaces and A onto ∈ L(E, F ), the continuity of A implies
that ker A is a closed subspace of E and, denoting by p : E −→ E/ ker A the
canonical mapping, the quotient mapping

Ã : E/ ker A −→ F, Ã(p(u)) = Au

is well-defined and bijective. From the previous theorem, Ã is an isomorphism and
thus is an open mapping, as well as the canonical mapping p (from the previous
remark) so that A = Ã ◦ p is also open, providing the first point. The second
property is due to the fact that the assumption expresses that the identity map is
bijective linear continuous from (E, N2) onto (E, N1) and thus is an isomorphism;
as a result it satisfies with a positive β (and for all u ∈ E)

βN2(u) ≤ N1(Id u) = N1(u)

which is the sought result.

Remark 2.1.13. That corollary can be extended far beyond the Banach space
framework. In particular for complete metric TVS with translation-invariant dis-
tances (e.g. Fréchet spaces), if A ∈ L(E, F ) is onto, then it is open; if A is bijective,
it is an isomorphism. Moreover if E is a vector space and Tj, j = 1, 2 are topologies
on E such that (E, Tj) are TVS given by complete metrics with translation-invariant
distances so that T1 ⊂ T2, then T1 = T2.

2.1.4 The closed graph theorem

Theorem 2.1.14. Let E, F be Banach spaces and A : E −→ F be a linear map.
The following properties are equivalent.
(i) A is continuous.
(ii) The graph of A, ΓA = {(u, Au)}u∈E is closed in E × F .
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Proof. Note that ΓA is a vector subspace of E × F which is the range of the linear
mapping LA given by E . u 4→ (u, Au) ∈ E × F . If A is continuous, then ‖Au‖F ≤
C‖u‖E and the mapping LA is also continuous since

‖LAu‖E×F = ‖u‖E + ‖Au‖F ≤ (C + 1)‖u‖E.

Consequently, the range of LA is closed, since if both (uk)k≥1 and (Auk)k≥1 are
converging respectively to u, v, then, by continuity of A, v = limk Auk = Au. Let
us show now the reverse implication, assuming that ΓA is closed. We note that ΓA

is a Banach space, as a closed subspace of the Banach space E × F and that

π1 : ΓA −→ E, π1((u, Au)) = u,

is linear bijective and continuous since ‖π1((u, Au))‖E = ‖u‖E: applying the open
mapping theorem, we find that π1 is an isomorphism, implying that π−1

1 is contin-
uous. As a consequence, considering π2 : ΓA −→ F, π2((u, Au)) = Au, which is a
linear continuous mapping (‖π2((u, Au))‖F = ‖Au‖F ≤ ‖(u, Au)‖E×F ), we have

A = π2 ◦ π−1
1 =⇒ A continuous.

2.2 The Hahn-Banach theorem

2.2.1 The Hahn-Banach theorem, Zorn’s lemma

Let E be a topological vector space; we define the topological dual E∗ of E as
L(E, k), the vector space of linear continuous forms on E. Of course when E is
finite-dimensional, the topological dual E∗ is equal to the algebraic dual E ′, which
is defined as the vector space of linear forms on E, i.e. linear mappings from E to k.
However, when E is infinite-dimensional (i.e. not finite-dimensional), we shall see
that E∗ is much smaller than E ′. We shall devote most of our attention to describing
the properties of E∗, so when we speak about the dual space of a topological vector
space E, it will always mean the topological dual; if we want to deal with E ′, we
shall speak explicitely of the algebraic dual of E. As far as notations are concerned,
for a vector space E and ξ ∈ E ′, x ∈ E, we shall write ξ · x instead of ξ(x).

Theorem 2.2.1 (The Hahn-Banach theorem). Let E be a vector space, M be a
subspace of E, p be a semi-norm on E (see the definition 1.3.8), and ξ be a linear
form on M such that

∀x ∈ M, |ξ · x| ≤ p(x). (2.2.1)

Then there exists ξ̃ ∈ E ′, such that ξ̃|M = ξ and ∀x ∈ E, |ξ̃ · x| ≤ p(x).

Proof. (1) We start with the real case, i.e. k = R. We may assume that M *= E
(otherwise there is nothing to prove). Considering x1 ∈ E\M , we define

M1 = M ⊕ Rx1, (note that M ∩ Rx1 = {0}) .

On M1, we want to define a linear form ξ1 extending ξ and still satisfying (2.2.1).
Let us first remark that, if such a ξ1 exists, we would have

∀y ∈ M, ∀t ∈ R, ξ1 · (y ⊕ tx1) = ξ · y + tξ1 · x1,
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so that we have only to find a proper ξ1 · x1. On the other hand, we note that for
x, y ∈ M

ξ · x− p(x− x1) = ξ · (x + y)− ξ · y − p(x− x1) ≤ p(x + y)− ξ · y − p(x− x1)

≤ −ξ · y + p(x1 + y).

As a consequence, we have

a = sup
x∈M

(
ξ · x− p(x− x1)

)
≤ inf

y∈M

(
p(x1 + y)− ξ · y

)
= b.

Let us choose σ = ξ1 · x1 ∈ [a, b]; then for y ∈ M, t ∈ R, we define ξ1 ∈ M ′
1 by

ξ1 · (y + tx1) = ξ · y + tσ,

so that ξ · y + ξ · (−y)− p(−y − x1) ≤ ξ · y + σ ≤ ξ · y + p(x1 + y)− ξ · y and

−p(−x1 − y) ≤ ξ1 · (y + x1) = ξ · y + σ ≤ p(x1 + y) =⇒ |ξ1 · (y + x1)| ≤ p(x1 + y).

Now if t ∈ R∗, we have for y ∈ M

|ξ1 · (y + tx1)| = |t||ξ1 · (t−1y + x1)| ≤ |t|p(t−1y + x1) = p(y + tx1)

and since ξ1 · y = ξ · y, we get that ξ1 ∈ M ′
1 and ∀z ∈ M1, |ξ1 · z| ≤ p(z).

We shall resort now to a very abstract argument involving the so-called Zorn’s
lemma.

Lemma 2.2.2 (Zorn’s lemma). Let (X,≤) be a non-empty inductive ordered set:
the relation ≤ is an order relation5 on the set X such that if Y is a totally ordered
subset of X (i.e. ∀y′, y′′ ∈ Y, y′ ≤ y′′ or y′′ ≤ y′), there exists x ∈ X which is an
upper bound for Y (i.e. ∀y ∈ Y, y ≤ x). Then there exists a maximal element in X,
i.e.

∃x+ ∈ X,∀x ∈ X, x+ ≤ x =⇒ x+ = x.

Remark 2.2.3. We shall not prove that lemma, a hard piece of mathematics which
can be shown to be equivalent to the axiom of choice as well as to the Zermelo’s
theorem: The Axiom of Choice says that if (Xi)i∈I is a family of sets such that for
all i ∈ I, Xi *= ∅, then the Cartesian product

∏
i∈I Xi is not empty as well6. On the

other hand, Zermelo’s Theorem states that, on any set X, one can define an order
relation ≤ which makes (X,≤) a well-ordered set, i.e. such that any non-empty
subset of X has a smallest element: ∀Y ⊂ X, Y *= ∅,∃y0 ∈ Y, ∀y ∈ Y, y0 ≤ y).

5∀x, y, z ∈ X, x ≤ x,
[
x ≤ y, y ≤ x =⇒ x = y

]
,

[
x ≤ y, y ≤ z =⇒ x ≤ z

]
.

6 The Cartesian product
∏

i∈I Xi is defined as the set of mappings x from I to ∪i∈IXi such
that, for all i ∈ I, x(i) ∈ Xi. A particular case of interest occurs when ∀i ∈ I,Xi = X; then
we note

∏
i∈I Xi = XI which is the set of mappings from I to X. A more academic remark is

concerned with the case when I = ∅: in that case,
∏

i∈∅Xi is not empty since it has a single
element which is the mapping whose graph is the empty set. In fact the real point of the axiom of
choice is concerned with the cases where I is infinite and in particular non-countable.
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N.B. Obviously the set N of the natural integers with the usual order is indeed
well-ordered, and this is the basis for the familiar induction reasoning; considering
a sequence (Pn)n∈N of statements such that P0 is true and ∀n ∈ N, Pn =⇒ Pn+1

we define
S = {n ∈ N, Pn is not true}.

If S is not empty, then it has a smallest element s0 and necessarily s0 > 0 since P0

is true; as a consequence s0 − 1 ∈ Sc, so that Ps0−1 is true, implying that Ps0 is
true, contradicting s0 ∈ S. As a result, S should be empty and Pn is true for all
n ∈ N. In some sense, Zorn’s lemma, or the principle of transfinite induction could
be used in a similar way to handle a non-countable family of statements satisfying
properties analogous to those of the countable family mentioned above. Of course,
it is not difficult to equip a countable set X with an order relation which makes
it a well-ordered set: it suffices to use the bijection with a subset of N. However,
the set Q of rational numbers (which is countable), with the standard order is not a
well-ordered set; consider for instance T = {x ∈ Q+, x2 ≥ 2}, a set which is bounded
from below without a smallest element (exercise). This means that to construct an
order relation on Q which makes it a well-ordered set, one has to use a different
order than the classical one and, for instance, one may use an explicit bijection
between Q and N (exercise). The real difficulties begin when you want to construct
an order relation on R which makes it a well-ordered set; naturally, one cannot use
the standard order, e.g. since ]0, 1] does not have a smallest element, although it
has the greatest lower bound 0. So the construction of that order relation has no
relationship with the standard order on the real line and is in fact a result of set
theory, dealing with order relations on P(N), the set of subsets of N.

Let us now go back to the proof of our theorem. We consider the set

X = {(N, η), N vector subspace of E, N ⊃ M , η ∈ N ′, η|M = ξ, ∀x ∈ N, |η · x| ≤ p(x)}

with the order relation (N1, η1) ≤ (N2, η2) meaning N1 ⊂ N2, η2|N1
= η1. It is a

matter of routine left to the reader to check that it is an order relation. Let us now
consider a totally ordered subset Y = {(Ni, ηi)}i∈I of X . We define

N = ∪i∈INi.

We have N ⊃ M and N is a vector subspace of E since for x, y ∈ N , there exists
i, j ∈ I such that x ∈ Ni, y ∈ Nj and the total order property implies that Ni ⊂ Nj

or Nj ⊂ Ni in such a way that for λ, µ ∈ R, λx + µy ∈ Ni ∪Nj ⊂ N. We note now
that, if x ∈ Ni ∩Nj, since Ni ⊂ Nj, ηj |Ni

= ηi or Nj ⊂ Ni, ηi|Nj
= ηj we have

ηi · x = ηj · x

and we may define η on N so that η · x = ηi · x, if x ∈ Ni. We verify that η ∈ N ′,
since for x, y ∈ N , there exists i ∈ I so that x, y ∈ Ni and the linearity of η follows
from the linearity of ηi. Moreover the very definition of η ensures that η|M = ξ and

∀x ∈ N,∃i ∈ I, x ∈ Ni, η · x = ηi · x =⇒ |η · x| = |ηi · x| ≤ p(x),
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so that (N, η) belongs to X and is indeed an upper bound for Y , proving that (X ,≤)
is an inductive set. Since X contains (M, ξ), it is non-empty and thus, applying
Zorn’s lemma, it has a maximal element (N, η). If N were different from E, the
construction of the beginning of the proof would provide an element (N1, η1) ∈ X
strictly larger than (N, η), a situation which is not compatible with the status of
maximal element of (N, η). Finally we have proven that N = E, which gives the
result of the theorem in the real case.

(2) We tackle now the complex case k = C. We define for x ∈ M ,

u · x =
1

2
(ξ · x + ξ · x)

which is an R-linear mapping from M (which can be seen also as a real vector space)
to R. We have for all x ∈ M , |u · x| ≤ p(x). Applying the now proven result for
the real case, we can find an extension v of u, R-linear from E to R such that
∀x ∈ E, |v · x| ≤ p(x). Let us now define for x ∈ E,

η · x = v · x− i
(
v · (ix)

)
.

The mapping η is C-linear since if z = a + ib, a, b ∈ R, x, y ∈ E,

η · (zx) = v · (zx)− i
(
v · (izx)

)

= v · (ax + ibx)− i
(
v · (iax− bx)

)

= a(v · x) + b(v · (ix))− ia(v · (ix)) + ib(v · x)

= (a + ib)(v · x)− i(a + ib)(v · (ix))

= z
(
η · x

)
,

and moreover η · (x + y) = η · x + η · y by R linearity. We also have η|M = ξ since
for x ∈ M , ix also belongs to M and since v extends u and ξ is C-linear, we get

η · x = v · x− i
(
v · (ix)

)
= u · x− i

(
u · (ix)

)
= Re(ξ · x)− i Re(ξ · (ix))

= Re(ξ · x)− i Re(i(ξ · x)) = Re(ξ · x) + i Im(ξ · x) = ξ · x.

Last, we check |η · x| for x ∈ E. We have |η · x| = eiθx(η · x) so that, since v is
real-valued,

|η · x| = η · (eiθxx) = v · (eiθxx)︸ ︷︷ ︸
∈R

−i
(
v · (ieiθxx)

)
︸ ︷︷ ︸

∈R

and since |η · x| ∈ R we get v · (ieiθxx) = 0 and |η · x| = v · (eiθxx) ≤ p
(
eiθxx

)
= p(x),

completing the proof of the theorem.

2.2.2 Corollary on the topological dual

Theorem 2.2.4. Let E be a Fréchet space (see the definition 1.3.10), M be a closed
subspace of E and x0 ∈ E. Then the following properties are equivalent:

(i) x0 /∈ M ,

(ii) ∃ξ ∈ E∗, ξ · x0 = 1, ker ξ ⊃ M.
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Proof. The property (ii) implies trivially (i), since it gives x0 ∈ (ker ξ)c ⊂ M c. Let
us prove the converse. Let x0 ∈ E\M and (pk)k≥1 be a countable family of semi-
norms describing the topology on E. Since M is closed, there exists U0 ∈ V0 such
that (x0 + U0) ∩M = ∅ and

∃k0 ≥ 1,∃R0 > 0, such that U0 ⊃ {x ∈ E, pk0(x) < R0}.

We consider M1 = M ⊕ kx0 and ξ ∈ M ′
1 defined by ξ · (x ⊕ tx0) = t. We have for

t ∈ k∗, x ∈ M, pk0

(
−x

t − x0

)
≥ R0, otherwise pk0

(
−x

t − x0

)
< R0 and −x

t − x0 ∈ U0,
implying −x

t = x0 − x
t − x0 /∈ M . As a consequence, for t ∈ k∗, x ∈ M,

|ξ · (x⊕ tx0)| = |t| ≤ |t|
R0

pk0

(
−x

t
− x0

)
=

1

R0
pk0

(
x + tx0

)
and ξ · x = 0,

so that, for y ∈ M1, |ξ · y| ≤ R−1
0 pk0(y). Using the Hahn-Banach theorem 2.2.1, we

can find an extension ξ̃ of ξ to the whole E such that, for y ∈ E, |ξ̃ · y| ≤ R−1
0 pk0(y).

This implies that ξ̃ ∈ E∗ and since ξ̃ · x0 = ξ · x0 = 1 as well as ξ̃|M1 = ξ, ξ|M = 0,

the linear form ξ̃ satisfies (ii).

2.3 Examples of Topological Vector Spaces

We have already seen a couple of examples of TVS in the section 1.4. Here we
examine in more details some various examples of Fréchet spaces.

2.3.1 C0(Ω), Ω open subset of Rn.

We consider an open subset Ω of Rn and we start with the proof of the following
lemma.

Lemma 2.3.1. Let Ω be an open subset of Rn. There exists a sequence (Kj)j≥1 of
compact subsets of Ω such that

Ω = ∪j≥1Kj, Kj ⊂ int (Kj+1). (2.3.1)

If K is a compact subset of Ω, there exists j ∈ N∗ such that K ⊂ Kj.

Proof. We define first for A ⊂ Rn and x ∈ Rn,

d(x, A) = inf
a∈A

|x− a|, where | · | is a norm on Rn. (2.3.2)

The function x 4→ d(x, A) is Lipschitz continuous since

|x1 − a| ≤ |x1 − x2|+ |x2 − a| =⇒ ∀a ∈ A, d(x1, A) ≤ |x1 − x2|+ |x2 − a|,

so that d(x1, A) ≤ |x1 − x2|+ d(x2, A) and finally

|d(x1, A)− d(x2, A)| ≤ |x1 − x2|. (2.3.3)

We have also that
d(x, A) = 0 ⇐⇒ x ∈ Ā, (2.3.4)
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since the former is equivalent to the existence of a sequence (al)l≥1 with al ∈ A and
|a− al| ≤ 1/l. Given an open set Ω of Rn, we define for j ≥ 1,

Kj = {x ∈ Rn, d(x, Ωc) ≥ 1/j, |x| ≤ j}.

We note from the continuity of d(·, Ωc) and of the norm that Kj is a closed subset of
Rn; moreover it is also bounded and thus is a compact subset of Rn, and in fact of
Ω since d(x, Ωc) > 0 implies x /∈ Ωc = Ωc (Ω is open). We have also for j ≥ 1 that

Kj ⊂ {x ∈ Rn, d(x, Ωc) >
1

j + 1
, |x| < j + 1} which is open ⊂ Kj+1,

so that Kj ⊂ int Kj+1. Finally, taking x ∈ Ω, we have d(x, Ωc) > 0 (Ωc is closed)
and thus

j ≥ max
( 1

d(x, Ωc)
, E(|x|) + 1

)
=⇒ x ∈ Kj,

proving Ω = ∪j≥1Kj and the lemma, since the very last statement of this lemma
follows from K ⊂ Ω = ∪j≥1 int Kj+1, which implies the result by the Borel-Lebesgue
property and the fact that the sequence (Kj) is non-decreasing.

We can define now a countable separating family of semi-norms (pj)j≥1 on C0(Ω),
the vector space of (complex-valued) continuous functions defined on Ω with

pj(u) = sup
x∈Kj

|u(x)|, (which makes sense since u(Kj) is a compact subset of C).

Note that this family is non-decreasing, obviously made with semi-norms, and sep-
arating from the fact that Ω = ∪j≥1Kj. Let us prove that it is a complete space; we
consider a Cauchy sequence (ul)l≥1, i.e. a sequence satisfying

∀j ≥ 1,∀ε > 0,∃Nε,j,∀l′, l′′ ≥ Nε,j, pj(ul′ − ul′′) < ε.

As a consequence, for each j ≥ 1, the sequence (ul|Kj
)l≥1 converges uniformly to

a continuous function vj on Kj. Since Kj ⊂ Kj+1, we have vj+1|Kj
= vj and we

can define v unambiguously on Ω by v|Kj = vj. That function v is continuous on Ω
since for j ≥ 1, v| int Kj+1 = vj+1| int Kj+1

which is continuous and Ω ⊃ ∪j≥1 int Kj+1 ⊃
∪j≥1Kj = Ω. We find easily as well that

∀j ≥ 1, lim
l

pj(ul − v) = 0,

so that the sequence (ul)l≥1 converges in C0(Ω). The reader will check in the exercises
that the vector space C0(Ω) with that topology is not normable.

2.3.2 Cm(Ω), Ω open subset of Rn, m ∈ N.

With the family of compact sets Kj as above, we consider the family of semi-norms

pj(u) = sup
x∈Kj ,|α|≤m

|(∂α
x u)(x)|, (2.3.5)
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where we have used the multi-index notation with

∂α
x = ∂α1

x1
. . . ∂αn

xn
, α = (α1, . . . ,αn) ∈ Nn, |α| = α1 + · · ·+ αn. (2.3.6)

For a multi-index α we define α! = α1! . . . αn! and for ξ ∈ Rn, ξα = ξα1
1 . . . ξαn

n so
that we have, for ξ, η ∈ Rn, using Taylor’s formula7,

(ξ + η)α

α!
=

∑

β,γ∈Nn

β+γ=α

ξβ

β!

ηγ

γ!
. (2.3.7)

We get a Fréchet space following essentially the same arguments as for the pre-
vious example. The only point to verify is the following, that we formulate in one
dimension for simplicity, leaving to the reader to filling the details in higher di-
mension. Take a sequence (ul)l≥1 of C1 functions on Ω, open interval of R, which
converges in C0(Ω) as well as (u′l)l≥1. We define

v0 = lim
l

ul, v1 = lim
l

u′l.

Then v0 ∈ C1(Ω) and v′0 = v1 (exercise).

2.3.3 C∞(Ω), Ω open subset of Rn.

With the family of compact sets Kj as above, we consider the countable family of
semi-norms

pj,m(u) = sup
x∈Kj ,|α|≤m

|(∂α
x u)(x)|. (2.3.8)

We get a Fréchet space following essentially the same arguments as for the previous
example.

2.3.4 The space of holomorphic functions H(Ω), Ω open sub-
set of C.

This is a Fréchet space with the family of semi-norms

pj(u) = sup
z∈Kj

|u(z)|,

where the compact sets Kj are as in the lemma 2.3.1. It is a remarkable fact, due
to the Cauchy formula, that whenever a sequence (ul)l≥1 of holomorphic functions
in Ω is converging uniformly on the compact subsets of Ω, the limit (say in C0(Ω))
is also holomorphic (exercise).

7In fact, (ξ+η)α

α! =
∑

γ
ηγ

γ! ∂
γ
η

(ξ+η)α

α! |η=0
=

∑
γ,γ≤α

ηγ

γ!
ξα−γ

(α−γ)! , which is the sought formula (the
inequality γ ≤ α means ∀j, γj ≤ αj).
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2.3.5 The Schwartz space S (Rn) of rapidly decreasing func-
tions.

We define, using the multi-index notation for α ∈ Nn, x ∈ Rn, xα = xα1
1 . . . xαn

n ,

S (Rn) = {u ∈ C∞(Rn),∀α, β ∈ Nn, xα∂β
xu ∈ L∞(Rn)}, (2.3.9)

for u ∈ S (Rn), pk(u) = sup
max(|α|,|β|)≤k

x∈Rn

|xα(∂β
xu)(x)|, (2.3.10)

is a family of semi-norms which makes S (Rn) a Fréchet space8. A good example of
such functions is given by u(x) = e−‖x‖

2
where ‖ · ‖ is the Euclidean norm on Rn,

and more generally by
vA,p(x) = p(x)e−〈Ax,x〉,

where A is a n × n complex-valued symmetric matrix so that Re A ; 0 and p is a
polynomial. The Schwartz space plays an important rôle in Fourier analysis and we
shall return to its study in chapter 3.

2.4 Ascoli’s theorem

2.4.1 An example and the statement

Let us start with a simple example: we consider a sequence (uk)k≥1 of continuous
functions from [0, 1] to R and we assume that it is simply converging, i.e. for all
x ∈ [0, 1], the sequence (uk(x))k≥1 converges. Defining u(x) = limk uk(x), we know
that in general u need not to be continuous (exercise). We are looking for a simple
and tractable condition ensuring that u is continuous: a good way to get this is to
obtain the uniform convergence, i.e. the convergence in the Banach space C0([0, 1]).
We shall assume some equicontinuity property for the sequence (uk). To simplify
matters in this presentation, let us assume that

∃L > 0, ∀k ≥ 1,∀x1, x2 ∈ [0, 1], |uk(x1)− uk(x2)| ≤ L|x1 − x2|.

Then we have for x, t ∈ [0, 1],

|uk(x)− ul(x)| ≤ |uk(x)− uk(t)|+ |uk(t)− ul(t)|+ |ul(t)− ul(x)|
≤ 2L|x− t|+ |uk(t)− u(t)|+ |u(t)− ul(t)|,

so that if t ∈ D ⊂ [0, 1], ‖uk − ul‖ ≤ 2L supx∈[0,1] d(x, D) + supt∈D |uk(t) − u(t)| +
supt∈D |ul(t)−u(t)|. We choose now ε > 0 and we take Dε as a finite subset of [0, 1],
such that

2L sup
x∈[0,1]

d(x, Dε) ≤ ε/3 (it is enough to consider Dε =
ε

3L
N ∩ [0, 1]).

8 Laurent Schwartz (1915-2002) is the french mathematician (http://www-history.mcs.st-
and.ac.uk/history/Biographies/Schwartz.html) who introduced the space S (Rn) as the Spherical
Functions, since they can be viewed as C∞ functions on the unit sphere Sn of Rn+1 which are
flat (vanishing as well as all their derivatives) at the “north pole” (Sn is a compactification of Rn

and the stereographic projection maps Sn\{NPole} onto Rn). L. Schwartz is not related to Her-
man Amandus Schwarz, a german mathematician co-credited with Cauchy for the Cauchy-Schwarz
inequality (1.3.3).
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Since Dε is finite, for k ≥ Nε, supt∈D |uk(t) − u(t)| ≤ ε/3 and ‖uk − ul‖ ≤ ε for
k, l ≥ Nε, proving that (uk)k≥1 is a Cauchy sequence in the Banach space C0([0, 1])
and the sought result. The following theorem is providing a generalization of the
previous discussion, for which we point out that, for this result, the key property of
[0, 1] is to be a metric compact space, for the target R to be a complete metric space
and of course that the equicontinuity should hold.

Theorem 2.4.1. Let X be a compact metric space and Y be a complete metric
space. Let (uα)α∈A be a family of continuous mappings from X to Y such that

(1) (uα)α∈A is pointwise relatively compact,

(2) (uα)α∈A is equicontinuous.

Then (uα)α∈A is strongly relatively compact.

Remark 2.4.2. We need first to clarify the meaning of the assumptions: the fam-
ily (uα)α∈A is pointwise relatively compact means that, for each x ∈ X, the set
{uα(x)}α∈A has a compact closure in Y . The equicontinuity of the family (uα)α∈A

means

∀ε > 0,∃δ > 0,∀α ∈ A,∀x′, x′′ ∈ X, d(x′, x′′) < δ =⇒ d
(
uα(x′), uα(x′′)

)
< ε (2.4.1)

where the first d is the distance on X and the second one the distance on Y . The
strong relative compactness of the family (uα)α∈A means that, given a sequence
(uαj)j∈N, there exists a subsequence (uαjk

)k∈N converging uniformly to a continuous
function u:

∀ε > 0,∃Nε ∈ N,∀k, k ≥ Nε =⇒ sup
x∈X

d
(
uαjk

(x), u(x)
)

< ε.

We may notice that, thanks to the compactness of X, the equicontinuity property
(2.4.1) is a consequence of the weaker

∀x0 ∈ X, ∀ε > 0,∃δ > 0,∀α ∈ A,∀x ∈ X, d(x, x0) < α =⇒ d
(
uα(x), uα(x0)

)
< ε. (2.4.2)

This can be proven by reductio ad absurdum: assuming that (2.4.2) holds and that
(2.4.1) is violated, we obtain

∃ε0 > 0,∀k ∈ N∗,∃αk ∈ A,∃x′k, x′′k ∈ X, with d(x′k, x
′′
k) < 1/k

and d
(
uαk

(x′k), uαk
(x′′k)

)
≥ ε0.

Since X is compact, one may extract subsequences of the sequences (x′k), (x
′′
k) and

assume that they are both convergent in X with the same limit x0. As a consequence,
we get a contradiction since

0 < ε0 ≤ lim sup
k

d
(
uαk

(x′k), uαk
(x′′k)

)

≤ lim sup
k

d
(
uαk

(x′k), uαk
(x0)

)
+ lim sup

k
d
(
uαk

(x0), uαk
(x′′k)

)
= 0,

where the last equality follows from (2.4.2). Note that we have followed the reasoning
of the proof of the Heine theorem 1.5.10.
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Remark 2.4.3. A more more elegant statement can be proven, involving the intro-
duction of a topology on the set C(X; Y ): for X, Y metric spaces with Y complete
and X compact, we define (see the proposition 2.4.6) a distance D on C(X; Y ) by

D(u, v) = sup
x∈X

dY

(
u(x), v(x)

)
. (2.4.3)

The metric space C(X; Y ) is then complete9. We consider now a subset F of C(X; Y )
and we assume that (1) is satisfied, i.e. ∀x ∈ X, {u(x)}u∈F has a compact closure in
Y . Assuming as well the equicontinuity (2), the Ascoli theorem says that the closure
of F is compact in the metric space C(X; Y ). More general statements hold as well,
and in particular, it is enough to assume that X is compact (and not necessarily
compact metrizable).

Remark 2.4.4. We note also that a compact metric space is separable, i.e. contains
a countable dense subset: we have from the compactness of the metric space X,
k ∈ N∗,

X = ∪x∈XB(x, 1/k) = ∪1≤j≤Nk
B(xj,k, 1/k)

and the countable set {xj,k} 1≤k
1≤j≤Nk

is dense in X.

We begin with a key lemma on the diagonal process.

2.4.2 The diagonal process

Lemma 2.4.5. Let (aij)i,j∈N∗ be an infinite matrix of elements of a metric space A.
We assume that each line is relatively compact, i.e. for all i ∈ N∗, the set {ai,j}j≥1 is
relatively compact. Then, there exists a strictly increasing mapping ν from N∗ into
itself such that, for all i ∈ N∗, the sequence

(
ai,ν(k)

)
k∈N∗converges.

Proof of the lemma. The reader will find the definition of a subsequence in 1.5.6.
·We can extract a converging subsequence (a1,n1(k))k≥1 from the first line (a1,j)j≥1,
· We can extract a converging subsequence (a2,n1(n2(k)))k≥1 from (a2,n1(k))j≥1.
·We can extract a converging subsequence (a3,n1(n2(n3(k))))k≥1 from (a3,n1(n2(k)))j≥1.
. . . For all i ≥ 1, we can extract a converging subsequence

(
ai,(n1◦···◦ni)(k)

)
k≥1

.

Note that the mappings nl are strictly increasing from N∗ into itself and thus satisfy
∀k ≥ 1, nl(k) ≥ k (true for k = 1 and nl(k +1) > nl(k) ≥ k gives nl(k +1) ≥ k +1).
We define

bi,k = ai,ν(k), with ν(k) = (n1 ◦ · · · ◦ nk)(k).

The mapping ν sends N∗ into itself and is strictly increasing:

ν(k + 1) = (n1 ◦ · · · ◦ nk+1)(k + 1)

since nk+1(k + 1) ≥ k + 1︷︸︸︷
≥ (n1 ◦ · · · ◦ nk)(k + 1)

>︸︷︷︸
n1◦···◦nk↗strict

(n1 ◦ · · · ◦ nk)(k) = ν(k).

9In particular, if Y is a Banach space (and X a compact space), C(X;Y ) is a vector space
which is a Banach space with the norm ‖u‖C(X;Y ) = supx∈X ‖u(x)‖Y .
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Moreover, the sequence (bi,k)k,k>i is a subsequence of the converging sequence

(
ai,(n1◦···◦ni)(k)

)
k≥1

since for k > i ≥ 1, ν(k) = (n1 ◦ · · · ◦ ni)
(
(ni+1 ◦ · · · ◦ nk)(k)

)
and

µi(k+1) = (ni+1◦· · ·◦nk+1)(k+1) ≥ (ni+1◦· · ·◦nk)(k+1) > (ni+1◦· · ·◦nk)(k) = µi(k).

As a result, the sequence (ai,ν(k))k≥1 is converging, which proves the lemma.

Proof of the Ascoli theorem. Using the lemma 2.4.4, we consider X0 = {xi}i≥1 a
countable dense part of X. We consider a sequence (uαj)j∈N and we note vj = uαj .
Considering the infinite matrix

(
vj(xi)

)
i,j≥1

, thanks to the assumption (1), we see

that for all i ≥ 1 the line {vj(xi)}j≥1 is relatively compact and, using the lemma
2.4.5, we find ν : N∗ → N∗ strictly increasing such that

(
vν(k)(xi)

)
k≥1

converges

for all i ≥ 1. Let ε > 0 be given and α > 0 such that (2.4.1) holds. We have
X = ∪i≥1B(xi, α) and by the compactness of X, we can find M such that

X = ∪1≤i≤MB(xi, α).

Since the sequences
(
vν(k)(xi)

)
k≥1

are convergent,

∃Nε,∀i ∈ {1, . . . ,M},∀k, l ≥ Nε, d
(
vν(k)(xi), vν(l)(xi)

)
< ε. (2.4.4)

Let x ∈ X: there exists i ∈ {1, . . . ,M} such that x ∈ B(xi, α), and from the
assumption (2), we have

∀j ≥ 1 d
(
vj(x), vj(xi)

)
< ε. (2.4.5)

As a consequence, we get for k, l ≥ Nε and all x ∈ X,

d
(
vν(k)(x), vν(l)(x)

)

≤
(
vν(k)(x), vν(k)(xi)

)
︸ ︷︷ ︸

<ε from (2.4.5)

+ d
(
vν(k)(xi), vν(l)(xi)

)
︸ ︷︷ ︸

<ε from (2.4.4)

+ d
(
vν(l)(xi), vν(l)(x)

)
︸ ︷︷ ︸

<ε from (2.4.5)

< 3ε,

so that the uniform Cauchy criterion is satisfied for the sequence (vν(k))k≥1. The
result of the theorem will be a consequence of the following

Proposition 2.4.6. Let X,Y be metric spaces with Y complete and X compact and
C(X,Y ) be the set of continuous mappings from X to Y . The following formula
defines a distance on C(X, Y ),

D(u, v) = sup
x∈X

dY

(
u(x), v(x)

)
, (2.4.6)

and makes it a complete metric space.
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Proof. Let u, v ∈ C(X, Y ): then D(u, v) < +∞, otherwise we would be able to find
a sequence xk ∈ X such that dY

(
u(xk), v(xk)

)
≥ k. From the compactness of X, we

can extract a convergent subsequence (xkl
)l≥1 with limit a. Then we have

kl ≤ dY

(
u(xkl

), v(xkl
)
)

≤ dY

(
u(xkl

), u(a)
)

︸ ︷︷ ︸
−→0

l→+∞

+dY

(
u(a), v(a)

)
+ dY

(
v(xkl

), v(a)
)

︸ ︷︷ ︸
−→0

l→+∞

(2.4.7)

which is impossible since liml kl = +∞. Moreover the separation and symmetry
properties of D are obviously satisfied; for u, v, w ∈ C(X, Y ), we have

dY

(
u(x), w(x)

)
≤ dY

(
u(x), v(x)

)
+ dY

(
v(x), w(x)

)

which implies readily that D satisfies the triangle inequality. Let us now consider
a Cauchy sequence (uk)k≥1 in the metric space C(X, Y ); since Y is complete, for
all x ∈ X, the sequence (uk(x))k≥1 converges and we define u(x) = limk uk(x). We
have, since (uk) is a Cauchy sequence in C(X, Y ),

d
(
uk(x), u(x)

)
= lim

l
d
(
uk(x), ul(x)

)
≤ lim sup

l
D(uk, ul) = τ(k), lim

k
τ(k) = 0,

and thus limk

(
supx∈X d

(
uk(x), u(x)

))
= 0. Let us prove that the function u is

continuous: otherwise, we could find x0 ∈ X, a sequence (xj)j≥1 with limj xj = x0

and ε0 > 0 such that d
(
u(xj), u(x0)

)
≥ ε0. We would have for j, k ≥ 1,

0 < ε0 ≤ d
(
u(xj), uk(xj)

)
+ d

(
uk(xj), uk(x0)

)
+ d

(
uk(x0), u(x0)

)

≤ 2τ(k) + d
(
uk(xj), uk(x0)

)
,

and thus, since uk is continuous for all k,

0 < ε0 ≤ 2τ(k) + lim sup
j

d
(
uk(xj), uk(x0)

)
= 2τ(k) =⇒ 0 < ε0 ≤ lim

k
2τ(k) = 0,

which is impossible. We have proven that u ∈ C(X, Y ) and limk D(uk, u) = 0,
completing the proof of the proposition.

Going back to the proof of the theorem, we see from the previous proposition
and the fact that the sequence (vν(k)) satisfies the uniform Cauchy criterion that it
converges in C(X, Y ), which proves the theorem 2.4.1.

2.5 Duality in Banach spaces

2.5.1 Definitions

For E, F Banach spaces, we have defined the Banach space L(E, F ) in the propo-
sition 2.1.5 with the norm (2.1.2). We recall that the topological dual of E is the
Banach space E∗ = L(E, k) of continuous linear forms. When ξ ∈ E∗, x ∈ E, we
shall write ξ · x instead of ξ(x).
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Theorem 2.5.1. Let E be a Banach space and E∗ its topological dual. Then

∀x ∈ E, ‖x‖E = sup
‖ξ‖E∗=1

|ξ · x|.

Proof. From the proposition 2.1.5, we have ‖ξ‖E∗ = supx∈E,‖x‖E=1 |ξ · x|. Let 0 *=
x0 ∈ E. Applying the Hahn-Banach theorem 2.2.1 with M = kx0, p(x) = ‖x‖E,
defining on M the linear form η by η · λx0 = λ‖x0‖E, we have |η · λx0| ≤ ‖λx0‖ =
p(λx0) and we find a linear form ξ0 defined on E such that

|ξ0 · x0| = ‖x0‖E, ∀x ∈ E, |ξ0 · x| ≤ ‖x‖E.

As a consequence, ξ0 ∈ E∗ with ‖ξ0‖ = 1. Finally we have proven

‖x0‖E = |ξ0 · x0| ≤ sup
‖ξ‖E∗=1

|ξ · x0| ≤ ‖x0‖E.

2.5.2 Weak convergence on E

Using the very general notion introduced in the remark 1.1.2, we can define the weak
topology on a Banach space as follows.

Definition 2.5.2. Let E be a Banach space. The weak topology σ(E, E∗) on E is
the weakest topology such that for all ξ ∈ E∗ the mappings E . x 4→ 〈ξ, x〉E∗,E ∈ k
are continuous.

Remark 2.5.3. Let E be a Banach space. For each ξ ∈ E∗, we define the semi-norm
pξ on E by pξ(x) = |〈ξ, x〉E∗,E|; the properties of the definition 1.3.8 are obviously
satisfied. Moreover the family (pξ)ξ∈E∗ is separating from the theorem 2.5.1. The
neighborhoods of 0 for the weak topology on E, say V0, have the following basis:
taking Ξ a finite subset of E∗ and r > 0, we define

WΞ,r = {x ∈ E, ∀ξ ∈ Ξ, pξ(x) < r}. (2.5.1)

Note that the WΞ,r are convex and symmetric. Every neighborhood of 0 for the weak
topology contains a WΞ,r which is also a neighborhood of 0 for that topology. The
neighborhoods Vx of a point x are defined as Vx = {x + V }V ∈V0 ; E equipped with
that topology is a TVS. Note that the separating property of the family (pξ)ξ∈E∗

is implying that the weak topology is separated (i.e. Hausdorff, see the definition
1.1.5): in fact {0} is closed for the weak topology, since for x0 *= 0, from the theorem
2.5.1, there exists ξ0 ∈ E∗ such that 〈ξ0, x0〉 = 1, so that

0 /∈ x0 + {x ∈ E, pξ0(x) < 1} : otherwise, 1 = 〈ξ0, x0〉 = 〈ξ0, x0 + x︸ ︷︷ ︸
=0

〉 − 〈ξ0, x〉 < 1.

Moreover, to check that the addition is continuous, we take x1, x2 ∈ E, WΞ0,r0 as
above a neighborhood of zero (Ξ0 finite and r0 > 0), and we try to find WΞj ,rj , j = 1, 2
such that

x1 + WΞ1,r1 + x2 + WΞ2,r2 ⊂ x1 + x2 + WΞ0,r0 .



2.5. DUALITY IN BANACH SPACES 55

It is enough to take WΞj ,rj = WΞ0,r0/2. Checking the continuity of the multiplication
by a scalar is similar: given λ0 ∈ k, x0 ∈ E, WΞ0,r0 as above, we want to find WΞ1,r1

and t1 > 0 such that

∀t ∈ R, |t| ≤ t1, (λ0 + θt)(x0 + WΞ1,r1) ⊂ λ0x0 + WΞ0,r0 .

It is enough to require t1WΞ1,r1 ∪ λ0WΞ1,r1 ⊂ WΞ0,r0/3, t1x0 ∈ WΞ0,r0/3; this is
satisfied for Ξ1 = Ξ0, |λ0|r1 < r0/3, t1r1 < r0/3.

Remark 2.5.4. Let E be a Banach space; the weak topology σ(E, E∗) on E is
weaker than the norm-topology on E (also called the strong topology): this is obvious
from the very definition of the weak topology since all the mappings x 4→ 〈ξ, x〉 are
continuous for the norm-topology since pξ(x) = |〈ξ, x〉| ≤ ‖ξ‖E∗‖x‖E.

Let E be a Banach space and x ∈ E; a sequence (xn)n∈N in E is weakly converging
to x means that

∀ξ ∈ E∗, lim
n
〈ξ, xn〉E∗,E = 〈ξ, x〉E∗,E. We write xn ⇀ x, (2.5.2)

or to avoid confusion between the arrows ⇀ and →, we may write xn −−−−→
σ(E,E∗)

x.

Proposition 2.5.5. Let E be a Banach space and (xn)n∈N be a weakly converging
sequence with limit x in E. Then ‖xn‖E is bounded and ‖x‖E ≤ lim infn ‖xn‖E. If
(ξn)n∈N is a strongly converging sequence in E∗ with limit ξ, then limn〈ξn, xn〉E∗,E =
〈ξ, x〉E∗,E.

Proof. We consider the sequence of linear forms on E∗ given by E∗ . ξ 4→ 〈ξ, xn〉.
Since for all ξ ∈ E∗, the numerical sequence 〈ξ, xn〉 is converging, we may apply
the corollary 2.1.8 of the Banach-Steinhaus theorem to get that E∗ . ξ 4→ 〈ξ, x〉 is
continuous on E∗, i.e

∃C > 0,∀ξ ∈ E∗, |〈ξ, x〉| ≤ C‖ξ‖E∗ .

Using the theorem 2.5.1, this implies ‖x‖E ≤ C. The Banach-Steinhaus theorem
2.1.6 implies also that the norms of the linear forms E∗ . ξ 4→ 〈ξ, xn〉 make a
bounded sequence, and since that norm is ‖xn‖E, we get that sequence (‖xn‖E) is
bounded. We have for ξ ∈ E∗ with ‖ξ‖E∗ = 1, using again the theorem 2.5.1,

|〈ξ, x〉| = lim
n
|〈ξ, xn〉| ≤ lim inf

n
‖xn‖E =⇒ ‖x‖E ≤ lim inf

n
‖xn‖E.

Moreover, we have

|〈ξn, xn〉−〈ξ, x〉| ≤ |〈ξn−ξ, xn〉|+|〈ξ, xn−x〉| ≤ ‖ξn − ξ‖E∗︸ ︷︷ ︸
→0

sup
n
‖xn‖E +|〈ξ, xn − x〉|︸ ︷︷ ︸

→0

,

which implies limn〈ξn, xn〉 = 〈ξ, x〉.
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Remark 2.5.6. When the Banach space E is infinite-dimensional, the weak topol-
ogy σ(E, E∗) is strictly weaker than the strong topology given by the norm of E.
Let us prove that the unit sphere of E, S = {x ∈ E, ‖x‖E = 1} is not closed in the
weak topology σ(E, E∗) if E is not finite-dimensional. Let us consider x0 ∈ E with
‖x0‖E < 1; let WΞ0,r0 be a neighborhood of zero for the weak topology as in (2.5.1).
We claim that

(x0 + WΞ0,r0) ∩ S *= ∅. (2.5.3)

This will imply that x0 belongs to the closure of S for the σ(E, E∗) topology. To
prove (2.5.3), we consider the finite subset Ξ0 = {ξj}1≤j≤N of E∗; each ker ξj is a
closed hyperplane, and since E is infinite-dimensional, ∩1≤j≤N ker ξj is not reduced to
{0} (otherwise the mapping E . x 4→ L(x) = (〈ξj, x〉)1≤j≤N ∈ RN would be injective
and L would be an isomorphism from E onto L(E), implying E finite-dimensional).
Taking now a non-zero x1 ∈ ∩1≤j≤N ker ξj, we see that with the continuous function
f on R given by f(θ) = ‖x0 + θx1‖

f(R+) ⊃ [‖x0‖, +∞[=⇒ ∃θ ∈ R, x0 + θx1 ∈ S.

This proves (2.5.3) since x0 + θx1 ∈ x0 + WΞ0,r0 because 〈ξj, x1〉 = 0 for all j ∈
{1, . . . , N}.

Examples of weak convergence

We consider the space Lp(R) for some p ∈ [1, +∞[ (we shall see in the section 2.5.6
that, for p ∈ [1, +∞[, the dual space of Lp is canonically identified with Lp′ with
1
p+ 1

p′ = 1). We want to provide some examples of a sequence (uk)k∈N of Lp(R) weakly
converging to 0, but not strongly converging to 0. Here we assume 1 < p < +∞.

A first phenomenon is strong oscillations: take uk(x) = eikx1[0,1](x): the Lp norm
of uk is constant equal to 1 but for v ∈ Lp′ , the sequence 〈uk, v〉 =

∫
uk(x)v̄(x)dx

has limit zero (a consequence of the Riemann-Lebesgue lemma).
The sequence (uk)k∈N may also concentrate at a point: take uk(x) = k1/pu1(kx),

where u1 has norm 1 in Lp. Here also the Lp-norm of uk is constant equal to 1.

However for v ∈ Lp′ , 〈uk, v〉 =
∫

uk(x)v̄(x)dx =
∫

u1(t)v̄(t/k)dtk−
1
p′ , with p, p′ ∈

]1, +∞[. With ϕ, ψ ∈ C0
c (R) we have

|〈uk, v〉| ≤ |〈uk, v − ϕ〉|+ |〈uk − ψk, ϕ〉|+ |〈ψk, ϕ〉|
≤ ‖u1‖Lp‖v − ϕ‖Lp′ + ‖u1 − ψ‖Lp‖ϕ‖Lp′ + |〈ψk, ϕ〉|,

which implies lim supk |〈uk, v〉| ≤ ‖u1‖Lp‖v−ϕ‖Lp′ +‖u1−ψ‖Lp‖ϕ‖Lp′ , and this gives
the weak convergence to 0 since p, p′ are both in ]1, +∞[.

The sequence (uk)k∈N may also escape to infinity: take uk(x) = u0(k + x), where
u0 has norm 1 in Lp. Reasoning as above, we need only to check

∫
ψ(x + k)ϕ(x)dx,

for ϕ, ψ ∈ C0
c (R): that quantity is 0 for k large enough.

2.5.3 Weak-∗ convergence on E∗

Definition 2.5.7. Let E be a Banach space and E∗ its topological dual. The weak-∗
topology on E∗, denoted by σ(E∗, E), is the weakest topology such that the mappings
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E∗ . ξ 4→ ξ · x ∈ k are continuous for all x ∈ E. A sequence (ξk)k∈N of E∗ is
weally-∗ converging means that ∀x ∈ E, the sequence (ξk · x)k∈N converges.

Proposition 2.5.8. Let E be a Banach space and (ξn)n∈N be a weakly-∗ converging
sequence with limit ξ in E∗. Then ‖ξn‖E∗ is bounded and ‖ξ‖E∗ ≤ lim infn ‖ξn‖E∗.
Let (xn)n∈N be a strongly converging sequence in E with limit x. Then we have

lim
n
〈ξn, xn〉E∗,E = 〈ξ, x〉E∗,E.

Proof. We have for x ∈ E with ‖x‖E = 1,

|〈ξ, x〉| = lim
n
|〈ξn, x〉| ≤ lim inf

n
‖ξn‖E∗ =⇒ ‖ξ‖E∗ ≤ lim inf

n
‖ξn‖E.

From the Banach-Steinhaus theorem 2.1.6, the sequence (ξn)n∈N is bounded in the
normed space E∗ and we define supn ‖ξn‖E∗ = M < ∞. We have then

|〈ξn, xn〉 − 〈ξ, x〉| ≤ |〈ξn, xn − x〉|+ |〈ξn − ξ, x〉| ≤ M‖xn − x‖E + |〈ξn − ξ, x〉|,

and since limn ‖xn − x‖E = 0 = limn〈ξn − ξ, x〉, we obtain the result.

Theorem 2.5.9. Let E be a separable Banach space. The closed unit ball of E∗

equipped with the weak-∗ topology is (compact and) sequentially compact.

Proof. Let (ξj)j∈N be a sequence of E∗ with supj∈N ‖ξj‖E∗ ≤ 1. Let {xi}i∈N be a
countable dense part of E. For each i ∈ N, we define yi : E∗ −→ k by yi(ξ) = ξ · xi.
Let us now consider the matrix with entries (ξj · xi)i,j∈N. For all i ∈ N, we have

sup
j∈N

|ξj · xi| ≤ ‖xi‖E

so that we can apply the diagonal process given by the lemma 2.4.5 and find ν strictly
increasing from N to N such that ∀i ∈ N, the sequence (ξν(k) · xi)k∈N is converging.
As a consequence, for x ∈ E,

|ξν(k) · x− ξν(l) · x|
≤ |ξν(k) · x− ξν(k) · xi|+ |ξν(k) · xi − ξν(l) · xi|+ |ξν(l) · xi − ξν(l) · x|

≤ 2‖x− xi‖E + |ξν(k) · xi − ξν(l) · xi|.

Let ε > 0 be given and x ∈ E. Let i ∈ N such that ‖x − xi‖E < ε/4; since the
sequence (ξν(k) ·xi)k∈N is converging, for k, l ≥ Nε, |ξν(k) ·xi−ξν(l) ·xi| < ε/2 and thus
for k, l ≥ Nε, |ξν(k) · x− ξν(l) · x| < ε, proving the weak convergence of the sequence
(ξν(k))k∈N.

Remark 2.5.10. Let E be a Banach space and E∗ its topological dual. For x ∈
E, ξ ∈ E∗, we define px(ξ) = |ξ · x|. For each x ∈ E, px is (trivially) a semi-norm on
E∗. The family (px)x∈E is a separating10 (uncountable) family of semi-norms on E∗.
We shall say that U is a neighborhood of 0 in the weak-∗ topology if it contains a
finite intersection of sets

Vpx,r = {ξ ∈ E∗, px(ξ) < r}, x ∈ E, r > 0.

The family of semi-norms (px)x∈E describes the weak-∗ topology on E∗, also denoted
by σ(E∗, E).

10If for some ξ ∈ E∗, we have ∀x ∈ E, px(ξ) = 0, it means ∀x ∈ E, ξ · x = 0, i.e. ξ = 0E∗ .
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Remark 2.5.11. Let E be a Banach space and E∗ its topological dual. It is also
possible to define on E the weak topology, denoted by σ(E, E∗), given by the family
of semi-norms (pξ)ξ∈E∗ such that pξ(x) = |ξ · x|. That family is separating since for
x ∈ E, ξ · x = 0 for all ξ ∈ E∗ implies x = 0, thanks to the Theorem 2.5.1. We
shall say that U is a neighborhood of 0 in the weak topology if it contains a finite
intersection of sets

Vpξ,r = {x ∈ E, pξ(x) < r}, ξ ∈ E∗, r > 0.

The family of semi-norms (pξ)ξ∈E∗ describes the weak topology on E.

Remark 2.5.12. Given a Banach space E and its topological dual E∗, we can define
on E∗ several weak topologies: the weak-∗ topology σ(E∗, E) described above, but
also the weak topology on E∗, σ(E∗, E∗∗), where E∗∗ is the bidual of E, i.e. the
topological dual of the Banach space E∗. Note that the weak topology on E∗ is
stronger than the weak-∗ topology, since E ⊂ E∗∗ as shown below.

2.5.4 Reflexivity

Proposition 2.5.13. Let E be a Banach space. The bidual of E is defined as the
(topological) dual of E∗. The mapping E . x 4→ j(x) ∈ E∗∗ defined by

〈j(x), ξ〉E∗∗,E∗ = 〈ξ, x〉E∗,E

is linear isometric and is an isomorphism on its image j(E) which is a closed sub-
space of E∗∗. A Banach space is said to be reflexive when j is bijective (this implies
in particular that E∗∗ and E are isometrically isomorphic).

Proof. For x ∈ E, we have

‖j(x)‖E∗∗ = sup
‖ξ‖E∗=1

|〈j(x), ξ〉E∗∗,E∗| = sup
‖ξ‖E∗=1

|〈ξ, x〉E∗,E| =︸︷︷︸
thm 2.5.1

‖x‖E, (2.5.4)

and thus j is isometric and obviously linear. The image j(E) is closed: whenever a
sequence (j(xk))k≥1 converges, it is also a Cauchy sequence as well as (xk)k≥1 since
‖xk−xl‖E ≤ ‖j(xk−xl)‖E∗∗ = ‖j(xk)− j(xl)‖E∗∗ . As a result, the sequence (xk)k≥1

converges to some limit x ∈ E, and the continuity of j (consequence of the isometry
property) ensures limk j(xk) = j(x), proving that j(E) is closed, and thus a Banach
space for the norm of E∗∗. The mapping j : E −→ j(E) is an isometric isomorphism
of Banach spaces.

Remark 2.5.14. Let E be a Banach space; then the bidual of E∗ is equal to the
dual of E∗∗, so that

(
E∗)∗∗ =

(
(E∗∗)

)∗
, that we shall note simply E∗∗∗: we have by

definition (
E∗)∗∗ =

((
E∗)∗

)∗
, as well as

(
(E∗∗)

)∗
=

((
E∗)∗

)∗
.

Theorem 2.5.15 (Banach-Alaoglu). Let E be a Banach space. The closed unit ball
B of E∗ is compact for the weak-∗ topology.
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Proof. For each x ∈ E, the mapping E∗ . ξ 4→ ξ ·x ∈ C is continuous in the weak-∗
topology; since |ξ · x| ≤ ‖ξ‖E∗‖x‖E we see that

B ⊂
∏

x∈E

(‖x‖ED1), D1 = {z ∈ C, |z| ≤ 1},

and the product topology on
∏

x∈E(‖x‖ED1) induces the weak-∗ topology on B. We
shall use the following theorem.

Theorem 2.5.16 (Tychonoff). Let (Xi)i∈I be a family of compact spaces. Then the
product

∏
i∈I Xi equipped with the product topology is a compact space.

The set B is thus a closed subset of a compact set and is thus compact.

Proposition 2.5.17. Let E be a Banach space and B its closed unit ball. The
following properties are equivalent.

(i) E is reflexive,

(ii) E∗ is reflexive,

(iii) B is weakly compact, i.e. compact for the σ(E, E∗) topology.

Proof. Let us assume that (i) is satisfied. Then the mapping j defined by the propo-
sition 2.5.13 is an isometric isomorphism from E to E∗∗ and the weak-∗ topology on
E is well-defined as the topology σ(E = E∗∗, E∗), which is simply the weak topology
on E. The Banach-Alaoglu theorem implies that the unit ball of E∗∗ = E, which is
thus B, is weak-∗ compact, i.e. is weakly compact, proving (iii).

Lemma 2.5.18. Let E be a Banach space, B its closed unit ball and j be defined
by the proposition 2.5.13. Then j is an homeomorphism of the topological space(
E, σ(E, E∗)

)
onto a dense subspace of the topological space

(
E∗∗, σ(E∗∗, E∗)

)
. The

set j(B) is dense for the σ(E∗∗, E∗) topology in the closed unit ball of E∗∗.

Proof of the lemma. The mapping j : E → j(E) ⊂ E∗∗ is bijective and continuous
whenever E is equipped with the weak topology σ(E, E∗) and E∗∗ with the weak-∗
topology σ(E∗∗, E∗): we consider a semi-norm qξ on E∗∗, ξ ∈ E∗, defined by

qξ(X) = |〈X, ξ〉E∗∗,E∗|.

We evaluate for x ∈ E, qξ(j(x)) = |〈j(x), ξ〉E∗∗,E∗| = |〈ξ, x〉E∗,E| = pξ(x), where pξ

is a semi-norm on E (for the weak topology). The previous equality proves that j
is an homeomorphism from E to j(E). A consequence of the isometry property of
j given in the proposition 2.5.13 is that j(B) is included in the closed unit ball B∗∗

of E∗∗. Let B̃ be the closure for σ(E∗∗, E∗) of j(B). First of all, B∗∗ is σ(E∗∗, E∗)
compact from the Banach-Alaoglu theorem and thus is σ(E∗∗, E∗) closed, so that
B̃ ⊂ B∗∗. If there is some X0 ∈ B∗∗\B̃, the Hahn-Banach theorem implies that
there exists ξ0 ∈ E∗, α ∈ R, ε > 0 with

∀x ∈ B, Re〈ξ0, x〉 < α < α + ε < Re〈X0, ξ0〉.
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Since 0 ∈ B, this implies α > 0. We may thus multiply the previous inequality by
1/α and find ξ1 ∈ E∗, ε1 > 0 such that

∀x ∈ B, Re〈ξ1, x〉 < 1 < 1 + ε1 < Re〈X0, ξ1〉.

Using that B is stable by multiplication by z ∈ C with |z| = 1, we get ‖ξ1‖E∗ ≤ 1,
implying that 1 + ε1 < Re〈X0, ξ1〉 ≤ ‖X0‖E∗∗ ≤ 1 which is impossible. The proof of
the lemma is complete.

Going back to the proof of the proposition, we assume that (iii) holds. Then,
using the previous lemma, we see that j is continuous from

(E, σ(E, E∗)) in (E∗∗, σ(E∗∗, E∗))

and B is compact for the (E, σ(E, E∗)) topology, we infer that j(B) is compact. But
the same lemma gives that j(B) is dense for the σ(E∗∗, E∗) topology in the closed
unit ball of E∗∗, so j(B) is closed and equal to the closed unit ball of E∗∗, implying
that j is onto and (i).

We know now that (i) is equivalent to (iii), so that (ii) is equivalent to the
compactness of the closed unit ball B∗ of E∗ in the topology σ(E∗, E∗∗). The
Banach-Alaoglu theorem shows that B∗ is compact for σ(E∗, E) and if (i) holds,
that topology is σ(E∗, E∗∗), so that (i) implies (ii).

Finally we assume that (ii) holds, i.e. E∗ is reflexive. Let us first consider
the norm-closed subspace j(E) of E∗∗. The space E∗∗ is reflexive since E∗ = E∗∗∗

by (ii) and thus E∗∗ = E∗∗∗∗. As a consequence, the unit ball of E∗∗ is compact
for the topology σ(E∗∗, E∗∗∗) = σ(E∗∗, E∗) and thus the unit ball of the norm-
closed subspace j(E) is compact for the σ(j(E), E∗) = σ(j(E), (j(E))∗) topology,
which proves that j(E) and thus E is reflexive. The proof of the proposition is
complete.

2.5.5 Examples

The Banach spaces c0, *p

These are spaces of sequences of complex numbers (xk)k≥1. We have

c0 = {(xk)k≥1, lim
k

xk = 0}, ‖(xk)k≥1‖ = sup
k≥1

|xk|, (2.5.5)

for p ≥ 1, *p = {(xk)k≥1,
∑

k≥1

|xk|p < +∞}, ‖(xk)k≥1‖ =
(∑

k≥1

|xk|p
)1/p

, (2.5.6)

*∞ = {(xk)k≥1, sup
k≥1

|xk| < +∞}, ‖(xk)k≥1‖ = sup
k≥1

|xk|. (2.5.7)

We leave to the reader as an exercise to check that these spaces are Banach spaces
(see e.g. the Théorème 3.2.5 in [9]) and *2 is a Hilbert space. Note also that the
space c0 is a closed subspace of *∞ (exercise). The spaces c0, *p, for 1 ≤ p < +∞
are separable since the finite sequences of complex numbers with rational real and
imaginary part are dense (exercise). The space *∞ is not separable (see e.g. the
Exercice 5.2 in “Quatre-vingt exercices corrigés” on the page [9]).
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Duality results

Let us prove that c∗0 = *1. We consider the mapping

c0 × *1 −→ C
(x, y) 4→

∑
k≥1 xkyk := (x, y)

and we have |(x, y)| ≤ ‖x‖c0‖y‖(1 . (2.5.8)

As a consequence, we have a mapping *1 . y 4→ j(y) ∈ c∗0 with j(y) · x = (x, y).
The mapping j is linear, sends *1 into c∗0 (from (2.5.8)) and that inequality proves
as well that j is continuous: ‖j(y)‖c∗0

≤ ‖y‖(1 . On the other hand, for a given y in
*1, N ∈ N∗, choosing xk = yk/|yk| when yk *= 0 and k ≤ N , xk = 0 otherwise, we
have x = (xk)k≥1 ∈ c0, ‖x‖c0 ≤ 1,

‖j(y)‖c∗0
= sup

‖x‖c0≤1

|(x, y)| ≥
∑

1≤k≤N

|yk|, for all N ≥ 1,

so that ‖j(y)‖c∗0
= ‖y‖(1 . As a result j(*1) is a closed subspace of c∗0 which is

isomorphic to *1. We need to prove that j is onto. Let us take ξ ∈ c∗0; we define for
j ≥ 1, ej = (δj,k)k≥1 (∈ c0). We choose some real numbers θj so that eiθjξ ·ej = |ξ ·ej|
and we consider x = (eiθ1 , . . . , eiθn , 0, 0, 0 . . . ) ∈ c0, ‖x‖c0 = 1, so that

ξ · x =
∑

1≤j≤n

eiθjξ · ej =
∑

1≤j≤n

|ξ · ej|.

As a result, we have for all n ≥ 1 ,
∑

1≤j≤n |ξ · ej| ≤ ‖ξ‖c∗0
‖x‖c0 = ‖ξ‖c∗0

, proving
that y = (ξ · ej)j≥1 ∈ *1. Now, we have for x = (xj)j≥1 ∈ c0, by the continuity of ξ,

ξ · x = lim
n→+∞

∑

1≤j≤n

xj(ξ · ej) = (x, (ξ · ej)j≥1) = (x, y),

proving that ξ = j(y) for some y ∈ *1 and the sought surjectivity.
We leave to the reader the proof that (*1)∗ = *∞, which is somewhat analogous

to the previous one.
Let us now prove that (*∞)∗, which is the bidual of *1, is (much) larger than *1.

The space c0 is a closed proper subspace of *∞, and the corollary of the Hahn-Banach
theorem 2.2.4 allows us to construct ξ0 ∈ (*∞)∗ such that

ξ0|c0 = 0, ξ0 · x0 = 1, x0 = (1, 1, 1, . . . ) ∈ *∞\c0. (2.5.9)

As a consequence, the mapping j : *1 −→ (*1)∗∗ = (*∞)∗, defined in the proposition
2.5.13, is not onto since there is no y ∈ *1 such that j(y) = ξ0: otherwise, we would
have for x ∈ *∞,

〈ξ0, x〉((∞)∗,(∞ = 〈j(y), x〉((1)∗∗,((1)∗ = 〈x, y〉((1)∗,(1 =
∑

j≥1

xjyj,

and since 〈ξ0, ej〉((∞)∗,(∞ = 0, that would imply yj = 0 for all j ≥ 1, and ξ0 = 0,
contradicting (2.5.9). The next proposition is summarizing the situation.
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Proposition 2.5.19. We consider the spaces c0, *p defined above. When 1 < p <
+∞ we define p′ ∈]1, +∞[ by the identity 1

p + 1
p′ = 1. Then we have

(*1)∗ = *∞, (*1)∗∗ *= *1, *1 is not reflexive, (2.5.10)

1 < p < ∞, (*p)∗ = *p′ , (*p)∗∗ = *p, *p is reflexive (1 < p < ∞), (2.5.11)

*∞ is not reflexive, (2.5.12)

c∗0 = *1, c∗∗0 = (*1)∗ = *∞ *= c0, c0 is not reflexive. (2.5.13)

Proof. The first and the fourth line are proven above, the second line will be proven
in the next section in a more general setting, the third line is a consequence of the
proposition 2.5.17, since *1 is not reflexive.

2.5.6 The dual of Lp(X,M, µ), 1 ≤ p < +∞.

Let (X,M, µ) be a measured space and µ a positive measure. We consider the
Banach spaces Lp(X,M, µ) and we want to determine their dual spaces whenever
1 ≤ p < +∞ and the measure µ is σ-finite. The definitions and first properties of
these spaces can be found for instance in the section 3.2 of the third chapter, Espaces
de fonctions intégrables, on the page [9]. When X = Rn and µ is the Lebesgue
measure, we shall simply write Lp(Rn) to denote that space. For 1 ≤ p < +∞, we
shall note p′ the conjucate index such that

1

p
+

1

p′
= 1

(p′ = p/(p− 1) if 1 < p < +∞ and p′ = +∞ if p = 1).

Theorem 2.5.20. Let (X,M, µ) be a measured space, µ a σ-finite positive measure
and 1 ≤ p < +∞. We shall note Lp(X,M, µ) = Lp(µ). Let ξ ∈ (Lp(µ))∗. Then
there exists a unique g ∈ Lp′(µ) such that

∀f ∈ Lp(µ), 〈ξ, f〉 =

∫

X

fgdµ, ‖ξ‖(Lp(µ))∗ = ‖g‖Lp′ (µ),

so that, for 1 ≤ p < +∞, (Lp(µ))∗ = Lp′(µ).

N.B. We may consider the sesquilinear mapping

Φ : Lp(µ)× Lp′(µ) −→ C
(f, g) 4→

∫
X fḡdµ.

which is well-defined, thanks to the Hölder inequality, |Φ(f, g)| ≤ ‖f‖Lp‖g‖Lp′ (see
e.g. the Théorème 3.1.5 in the third chapter of [9]). Let us check that the mapping
Lp′(µ) . g 4→ Φg ∈ (Lp(µ))∗ given by Φg(f) = Φ(f, g) is isometric, i.e.

‖Φg‖(Lp)∗ = sup
‖f‖Lp=1

∣∣∣∣
∫

X

fḡdµ

∣∣∣∣ = ‖g‖Lp′ . (2.5.14)
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In fact the inequality ‖Φg‖(Lp)∗ ≤ ‖g‖Lp′ follows from the Hölder inequality and for
a given 0 *= g ∈ Lp′ and 1 < p < +∞ we have, with

f =
g

|g| |g|
p′/p1g *=0‖g‖−p′/p

Lp′ , ‖f‖p
Lp =

∫

X

|g|p′dµ‖g‖−p′

Lp′ = 1,

the equality
∫

X fḡdµ =
∫

X |g|1+
p′
p dµ‖g‖−p′/p

Lp′ = ‖g‖
− p′

p +p′

Lp′ = ‖g‖Lp′ . The same type
of argument works for p = 1: here p′ = +∞ and for 0 *= g ∈ L∞ we choose ε > 0
such that µ

(
{|g| ≥ ‖g‖L∞ − ε}

)
> 0 and we set

f =
g

|g|
1
(
|g| ≥ ‖g‖L∞ − ε

)

µ
(
{|g| ≥ ‖g‖L∞ − ε}

) , so that ‖f‖L1 = 1,

and

Φg(f) =

∫

X

|g|
1
(
|g| ≥ ‖g‖L∞ − ε

)

µ
(
{|g| ≥ ‖g‖L∞ − ε}︸ ︷︷ ︸

Gε

)dµ =
1

µ(Gε)

∫

‖g‖L∞−ε≤|g|≤‖g‖L∞

|g|dµ

≥ 1

µ(Gε)
(‖g‖L∞ − ε)µ(Gε) = ‖g‖L∞ − ε.

As a result ‖Φg(f)‖(L1)∗ = ‖g‖L∞ . As a result the mapping

ψ : Lp′(µ) −→ (Lp(µ))∗, ψ(g) = Φg

is injective and isometric and thus has a closed image isomorphic to Lp′(µ). The main
difficulty of the above theorem is the proof that ψ is indeed onto when 1 ≤ p < +∞.
We have already seen some examples (see (2.5.10)) showing that for p = ∞, the
dual space of L∞, i.e. the bidual of L1 is much larger than L1 and that the mapping
ψ is not onto in general in that case11.

Proof of the theorem. Let then 1 ≤ p < ∞ and ξ ∈ (Lp(µ))∗. We assume first that
µ(X) < ∞. For E ∈M, we define

λ(E) = ξ(1E). (2.5.15)

If A, B are measurable and disjoint, we have 1A∪B = 1A + 1B, which implies that
λ is finitely additive. Let us consider E = ∪j∈NEj with Ej ∩ Ek = ∅ if j *= k (all
Ej ∈M). With Ak = ∪j≤kEk, we have

‖1E − 1Ak
‖p

Lp =

∫

E\Ak

dµ = µ(E\Ak).

By the Lebesgue dominated convergence theorem, we know that limk µ(E\Ak) = 0,
and since ξ is continuous on Lp, we get that limk λ(Ak) = λ(E), i.e.

λ(E) =
∑

k∈N
λ(Ej),

11It is true however that ψ is an isometric one-to-one mapping, even for p = ∞: for g ∈ L1, we
have Φg( g

|g|1{g )=0}) = ‖g‖L1 .
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so that λ is a complex measure. Moreover if µ(E) = 0, we have 1E = 0 µ-a.e. and
1E = 0 in Lp implying λ(E) = 0. As a result we have λ < µ. We may apply the
Radon-Nikodym theorem: there exists g ∈ L1(µ) such that

ξ(1E) = λ(E) =

∫

E

gdµ =

∫

X

g1Edµ.

Thus, by the linearity of ξ, for any simple function f (finite linear combination of
characteristic functions of measurable sets) we get

ξ(f) =

∫

X

fgdµ, which is true as well for f ∈ L∞(µ), (2.5.16)

since a function in L∞(µ) is a uniform limit of simple functions. If p = 1, for all
E ∈M, we have

∣∣∣∣
∫

X

1Egdµ

∣∣∣∣ = |ξ(1E)| ≤ ‖ξ‖(L1)∗‖1E‖L1 = µ(E)‖ξ‖(L1)∗ ,

and thus |g(x)| ≤ ‖ξ‖(L1)∗ µ-a.e., implying

‖g‖L∞(µ) ≤ ‖ξ‖(L1)∗ . (2.5.17)

If 1 < p < ∞, we consider a measurable function α such that αg = |g|, and we
define

fn = 1En|g|p
′−1α, En = {|g| ≤ n}.

We have |α| = 1 on the set {g *= 0} and p(p′ − 1) = p′ so that

|f |pn = 1En|g|p
′
, |fn| ≤ np′ ,

and applying (2.5.16) to the L∞ function fn, we get

ξ(fn) =

∫

X

1En|g|p
′−1αgdµ =

∫

En

|g|p′dµ

and
∣∣∣
∫

En
|g|p′dµ

∣∣∣ ≤ ‖ξ‖(Lp)∗‖fn‖Lp = ‖ξ‖(Lp)∗

(∫
En
|g|p′dµ

)1/p

and this implies

∣∣∣∣
∫

En

|g|p′dµ

∣∣∣∣
1− 1

p= 1
p′

≤ ‖ξ‖(Lp)∗ .

The Beppo-Levi theorem then implies that ‖g‖Lp′ ≤ ‖ξ‖(Lp)∗ . Since ξ and f 4→∫
fgdµ coincide (and are continuous) on L∞(µ), which is dense in Lp(µ), they coin-

cide on Lp(µ) and ‖ξ‖(Lp)∗ = ‖g‖Lp′ . The proof is complete in the case µ(X) < ∞.
Let us now assume that µ(X) = +∞.

Lemma 2.5.21. There exists w ∈ L1(µ) such that ∀x ∈ X, 0 < w(x) < 1.
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Proof. Since µ is σ-finite, we have X = ∪n≥1En, En ∈M, µ(En) < ∞. We define

wn(x) =
1En(x)

2n(1 + µ(En))
, w(x) =

∑

n≥1

wn(x). (2.5.18)

Since X = ∪n≥1En, we have always w(x) > 0 and

w(x) ≤
∑

n≥1

2−n(1+µ(En))−1 <
∑

n≥1

2−n = 1,

∫

X

wdµ =
∑

n≥1

µ(En)

2n(1 + µ(En))
< ∞.

We consider now the finite measure dν = wdµ (ν(X) =
∫

X wdµ < ∞) and the
linear isometries

Lp(ν) −→ Lp(µ)
F 4→ Fw1/p

}
,

{
Lp(µ) −→ Lp(ν)

f 4→ fw−1/p , (2.5.19)

noting that we have

‖F‖p
Lp(ν) =

∫

X

|F |pwdµ = ‖Fw1/p‖p
Lp(µ), ‖f‖

p
Lp(µ) =

∫

X

|f |pw−1dν = ‖fw−1/p‖p
Lp(ν).

As a consequence, if ξ ∈ (Lp(µ))∗ we can define η ∈ (Lp(ν))∗ by

∀F ∈ Lp(ν), 〈η, F 〉(Lp(ν))∗,Lp(ν) = 〈ξ, w1/pF 〉(Lp(µ))∗,Lp(µ), and ‖η‖(Lp(ν))∗ = ‖ξ‖(Lp(µ))∗ .

We can use the proven result on finite measures to find G ∈ Lp′(ν) such that
‖G‖Lp′ (ν) = ‖η‖(Lp(ν))∗ with 〈η, F 〉(Lp(ν))∗,Lp(ν) =

∫
X FGdν so that

〈ξ, f〉(Lp(µ))∗,Lp(µ) =

∫

X

fw−1/pGwdµ =

∫

X

fgdµ, g = Gw1− 1
p ,

and, if p′ < ∞, ‖ξ‖p
(Lp(µ))∗ = ‖G‖p

Lp′ (ν)
=

∫
X |G|p′wdµ =

∫
X(|G|w1− 1

p )p′dµ =

‖g‖p

Lp′ (µ)
. If p = 1, p′ = ∞, we have g = G and ‖ξ‖(L1(µ))∗ = ‖G‖L∞(ν) = ‖g‖L∞(ν).

The proof of the theorem is complete.

2.5.7 Transposition

Definition 2.5.22. Let E, F be Banach spaces and A ∈ L(E, F ). The transposed
of A is the mapping tA of L(F ∗, E∗) defined by

∀η ∈ F ∗,∀x ∈ E, 〈tAη, x〉E∗,E = 〈η, Ax〉F ∗,F .

We have
‖A‖L(E,F ) = ‖tA‖L(F ∗,E∗). (2.5.20)

We note that tA is obviously a linear mapping and that tAη ∈ E∗ for η ∈ F ∗

since sup‖x‖E=1 |〈tAη, x〉E∗,E| = sup‖x‖E=1 |〈η, Ax〉E∗,E| ≤ ‖η‖F ∗‖A‖L(E,F ). On the
other hand, the theorem 2.5.1 implies that

‖A‖L(E,F ) = sup
‖x‖E=1

‖Ax‖F = sup
‖x‖E=1,‖η‖F∗=1

|〈η, Ax〉F ∗,F |

= sup
‖x‖E=1,‖η‖F∗=1

|〈tAη, x〉E∗,E| = sup
‖η‖F∗=1

‖tAη‖E∗ = ‖tA‖L(F ∗,E∗).
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2.6 Appendix

2.6.1 Filters

Definition 2.6.1. Let X be a set. A set F ⊂ P(X) is said to be a filter on X if

(1) F ∈ F , X ⊃ V ⊃ F =⇒ V ∈ F ,

(2) F1, F2 ∈ F =⇒ F1 ∩ F2 ∈ F ,

(3) ∅ /∈ F .

Of course (2) is equivalent to the fact that a finite intersection of elements of F
is still an element of F . Let us give a couple of examples.

Let (X, O) be a non-empty topological space, x ∈ X, and Vx the set of neigh-
borhoods of x. Since V ∈ Vx is equivalent to ∃Ω ∈ O, x ∈ Ω ⊂ V, the properties
(1), (3) are obviously satisfied as well as (2) from (2) in the definition 1.1.1.

Let X be a set and ∅ *= A ⊂ X. We define F as the set of subsets of X containing
A: it is obviously a filter on X.

Let X be an infinite set and F be the set of subsets of X with a finite comple-
ment: (3) is satisfied since X is infinite, (1) is obvious as well as (2) since a finite
union of finite sets is finite.

Definition 2.6.2. Let X be a set and F1, F2 be filters on X. We shall say that F2

is finer than F1 whenever F1 ⊂ F2.

Remark 2.6.3. Let (Fj)j∈J be a non-empty family of filters on a set X; then
∩j∈JFj is (obviously) a filter on X.

Proposition 2.6.4. Let X be a set and E be a family of subsets of X such that for
any finite family {Ej}1≤j≤N ⊂ E , ∩1≤j≤NEj *= ∅ (this property is called the non-

empty-finite-intersection-property). Then there exists a unique filter Ẽ on X such
that Ẽ ⊃ E and if F is a filter on X containing E , one has F ⊃ Ẽ . The filter Ẽ is
called the filter generated by E and is the intersection of the filters containing E .

Proof. We define Ẽ = {Y ⊂ X,∃E1, . . . , EN ∈ E , Y ⊃ ∩1≤j≤NEj}. It is a filter
on X since the non-empty-finite-intersection-property ensures that (3) is satisfied
and (1), (2) are obvious. If F is a filter as in the proposition, it must contain all
the subsets ∩1≤j≤NEj whenever Ej ∈ E and thus Ẽ . The last statement and the
uniqueness follow from the remark 2.6.3.



Chapter 3

Introduction to the Theory of
Distributions

3.1 Test Functions and Distributions

3.1.1 Smooth compactly supported functions

Let Ω be an open subset of Rn; we define C∞
c (Ω) as the vector space of complex-

valued compactly supported functions defined on Ω. Even in the case n = 1 and
Ω = R, it is not completely obvious that this space is not reduced to {0}. We leave
to the reader as an exercise to check that the function

ρ0(t) =

{
e−t−1

if t > 0,

0 if t ≤ 0,
(3.1.1)

is a C∞ function on R. Starting with ρ0, we may define a function ρ on Rn by

ρ(x) = ρ0(1− ‖x‖2) (3.1.2)

and we see right away that ρ ∈ C∞
c (Rn) with supp ρ = B̄(0, 1). Here we have defined

the support of ρ as the closure of the set {x ∈ Rn, ρ(x) *= 0}. Although that
definition is fine when we deal with a continuous function, it will produce strange
results if we want to define the support of a function in L1(R): for instance the
characteristic function of Q is 0 a.e. and thus 0 as a function of L1(R), nevertheless
the above set is R. It is better to use the following definition, say for a function in
u ∈ L1

loc(Ω), Ω open subset of Rn:

suppu = {x ∈ Ω, * ∃Uopen ∈ Vx, u|U = 0}, (supp u)c = {x ∈ Ω,∃Uopen ∈ Vx, u|U = 0}.
(3.1.3)

The above definition makes sense for an L1
loc function with u|U = 0 meaning u = 0

a.e. in U . The smooth compactly supported functions are very useful as mollifiers,
as shown by the next proposition.

Proposition 3.1.1. Let φ ∈ C∞
c (Rn) with

∫
Rn φ(x)dx = 1. For ε > 0, we define

φε(x) = ε−nφ(xε−1). Then, if f ∈ Cm
c (Rn), limε→0+ φε ∗ f = f (convergence in

Cm
c (Rn)) and if f ∈ Lp(Rn) with 1 ≤ p < +∞, limε→0+ φε ∗ f = f (convergence in

Lp(Rn)). In both cases the function φε ∗ f is C∞.

67
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Proof. We write

(φε ∗ f)(x)− f(x) =

∫
φε(x− y)f(y)dy − f(x) =

∫
φ(y)

(
f(x− εy)− f(x)

)
dy,

so that, if supp φ ⊂ B̄(0, R0),

|(φε ∗ f)(x)− f(x)| ≤
∫
|φ(y)|dy sup

|x1−x2|≤εR0

|f(x1)− f(x2)|.

The function f is continuous and compactly supported, so is uniformly continuous
on Rn (an easy consequence of the Heine theorem 1.5.10), thus

lim
ε→0+

(
sup
x∈Rn

|(φε ∗ f)(x)− f(x)|
)

= 0,

yielding the uniform convergence of φε ∗ f towards f . If f is Cm
c , a simple dif-

ferentiation under the integral sign (see e.g. the Théorème 3.3.2. in [9]) gives as
well the uniform convergence of the derivatives, up to order m. The smoothness
of φε ∗ f for ε > 0 is due to the same theorem when f ∈ Cm

c (Rn), since we have
(φε ∗ f)(x) =

∫
φε(x− y)f(y)dy.

Remark 3.1.2. We have not defined a topology on the vector space Cm
c (Rn), but at

the moment it will be enough for us to say that a sequence (uk)k∈N of functions in
Cm

c (Rn) is converging if it converges in Cm(Rn) and if there exists a compact set K
such that, for all k ∈ N, supp uk ⊂ K.

We note in particular that these conditions are satisfied by the “sequences”
(φε ∗ f)ε>0 since for ε ≤ 1, supp(φε ∗ f) ⊂ supp f + supp φε ⊂ supp f + supp φ.

Let us now take f ∈ Lp(Rn) with 1 ≤ p < ∞. With ψ ∈ C0
c (Rn), we have

f ∗ φε − f = (f − ψ) ∗ φε + ψ ∗ φε − ψ + ψ − f,

so that

‖f ∗ φε − f‖Lp(Rn) ≤ (1 + ‖φ‖L1)‖f − ψ‖Lp(Rn) + ‖ψ ∗ φε − ψ‖Lp(Rn)

≤ (1 + ‖φ‖L1)‖f − ψ‖Lp(Rn) + | supp φ + ε|︸ ︷︷ ︸
Lebesgue measure

1/p‖ψ ∗ φε − ψ‖L∞(Rn).

Since ψ ∈ C∞
c (Rn), the previous convergence argument implies the inequality

lim sup
ε→0+

‖f ∗ φε − f‖Lp(Rn) ≤ (1 + ‖φ‖L1)‖f − ψ‖Lp(Rn), for all ψ ∈ C∞
c (Rn).

The density of C∞
c (Rn) in Lp(Rn) for 1 ≤ p < ∞ (see e.g. the Théorème 3.4.1 in

[9]) yields the result. For ε > 0, R > 0, all the functions

ψR,ε(y) = sup
|x|≤R

|(∂α
x φε)(x− y)f(y)|

belong to L1(Rn
y ) since

∫
ψR,ε(y)dy ≤ ‖f‖Lp(Rn)

(∫
sup
|x|≤R

|(∂α
x φε)(x− y)|p′dy

)1/p′

,
1

p
+

1

p′
= 1,

and supp φ ⊂ B̄R0 gives that |x − y| ≤ εR0, |x| ≤ R imply |y| ≤ εR0 + R, and the
finiteness of the integral above, proving the smoothness of φε ∗ f for ε > 0.
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N.B. The result of the proposition does not extend to the case p = ∞, since the
uniform convergence of the continuous function f ∗φε would imply the continuity of
the limit.

It will be also useful to use the compactly supported functions to construct some
partitions of unity and, to begin with, to find C∞

c functions identically equal to 1
near a compact set.

Lemma 3.1.3. Let Ω be an open subset of Rn and K be a compact subset of Ω.
Then there exists a function ϕ ∈ C∞

c (Ω; [0, 1]) such that ϕ = 1 on a neighborhood of
K.

Proof. We claim that there exists ε0 > 0 such that K + ε0B1 ⊂ Ω, (B1 is the open
unit ball). First we note that

d(K, Ωc) = inf
x∈K,y∈Ωc

|x− y| > 0, (3.1.4)

otherwise, we could find sequences (xk)k≥1 in K, (yk)k≥1 in Ωc such that limk |xk −
yk| = 0, and since K is compact, we may suppose that (xk) converges with limit
x ∈ K, implying Ωc . limk yk = x, which is impossible since K ⊂ Ω. As a result, we
have with ε0 = d(K, Ωc)

K + ε0B1 ⊂ Ω,

otherwise, we could find |t| < 1, x ∈ K such that x + ε0t = y ∈ Ωc, implying
|x − y| < ε0 = d(K, Ωc), which is impossible. With the function ρ defined in 3.1.2,
we define with 0 < ε ≤ ε1

2 < ε0
4 ,

ϕ(x) =

∫
1K+ε1B̄1

(y)ρ
(
(x− y)ε−1

)
ε−ndy

(∫
ρ(t)dt

)−1

.

The function ϕ is C∞ and such that

supp ϕ ⊂ K + ε1B̄1 + εB̄1 ⊂ K +
3

2
ε1B̄1 ⊂ K +

3

4
ε0B̄1

︸ ︷︷ ︸
compact

⊂ K + ε0B1 ⊂ Ω.

Moreover ϕ = 1 on K + ε1
2 B̄1 (which is a neighborhood of K), since if x ∈ K + ε1

2 B̄1,
we have, for y satisfying |x − y| ≤ ε, that y ∈ K + ε1

2 B̄1 + εB̄1 ⊂ K + ε1B̄1. As a

result, with ρ̃ = ρ
(∫

ρ(t)dt
)−1

, for x ∈ K + ε1
2 B̄1, we have

1 =

∫
ρ̃((x− y)ε−1)ε−ndy =

∫
ρ̃((x− y)ε−1)ε−n1K+ε1B̄1

(y)dy = ϕ(x).

We note also that, since ρ̃ ≥ 0 with integral 1, 1L(y) ∈ [0, 1], we have, for all x ∈ Rn,
0 ≤ ϕ(x) ≤ 1. The proof of the lemma is complete.
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3.1.2 Distributions

Definition 3.1.4. Let Ω be an open set of Rn and let T : C∞
c (Ω) −→ C be a linear

form with the following continuity property,

∀Kcompact ⊂ Ω,∃CK > 0,∃NK ∈ N,∀ϕ ∈ C∞
K (Ω), |〈T,ϕ〉| ≤ CK sup

|α|≤NK
x∈Rn

|(∂α
x ϕ)(x)|,

(3.1.5)
where C∞

K (Ω) = {ϕ ∈ C∞
c (Ω), supp ϕ ⊂ K}.

N.B. We shall use also the notation D(Ω) for the space of test functions C∞
c (Ω) and

D ′(Ω) for the space of distributions on Ω. We have not introduced a topology on
D(Ω) but we have defined a notion of converging sequence with the remark 3.1.2.
It would have been certainly more elegant to start with the display of the natural
topological structure on D(Ω), at the (heavy) cost of having to deal with a non-
metrizable locally convex topology defined by an uncountable family of semi-norms.
The study of inductive limits of increasing sequences of Fréchet spaces is outlined
in the appendix ??. Anyhow, one should think of D ′(Ω) as the topological dual of
D(Ω), a view supported by the next lemmas and remarks.

Remark 3.1.5. With DK(Ω) = C∞
K (Ω), we have, using the sequence of compact

sets (Kj)j≥1 of the lemma 2.3.1

D(Ω) = ∪j≥1DKj(Ω)

and it is not difficult to see that each DKj(Ω) is a Fréchet space with the natural
countable family of semi-norms given by pKj ,m(u) = sup |α|≤m

x∈Kj

|(∂α
x u)(x)|. If we want

to use the countable family pKj ,m, we end-up with the topology on the Fréchet space
C∞(Ω) as described in the subsection 2.3.3; the actual topology on D(Ω) is finer
and it is important to understand that, with ρ defined in (3.1.2) (say with n = 1),
the sequence (uk)k∈N, given by

uk(x) = ρ(x− k)

does converge to 0 in the Fréchet space C∞(R) but is not convergent in C∞
c (R),

since the second condition of the remark 3.1.2 is not satisfied: there is no compact
subset K of R such that ∀k ∈ N, supp uk ⊂ K.

Remark 3.1.6. Note that a linear form T on C∞
c (Ω) is a distribution if and only

if, for all compact subsets K of Ω, its restriction to the Fréchet space DK(Ω) is
continuous.

A L1
loc function is a distribution: for Ω open subset of Rn, for f ∈ L1

loc(Ω), we
define for ϕ ∈ D(Ω)

〈T, ϕ〉 =

∫
f(x)ϕ(x)dx =⇒ |〈T,ϕ〉| ≤ ‖ϕ‖L∞(Rn)

∫

supp ϕ

|f(x)|dx, (3.1.6)

so that (3.1.5) is satisfied with CK =
∫

K |f(x)|dx, NK = 0. Moreover the canonical
mapping from L1

loc(Ω) into D ′(Ω) is injective, as shown by the next lemma.
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Lemma 3.1.7. Let Ω be an open subset of Rn, f ∈ L1
loc(Ω) such that, for all ϕ ∈

D(Ω),
∫

f(x)ϕ(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Ω and χ ∈ D(Ω) equal to 1 on a neighbor-
hood of K as in the lemma 3.1.3. With φ as in the proposition 3.1.1, we get that
limε→0+

φε ∗ (χf) = χf in L1(Rn). We have

(
φε ∗ (χf)

)
(x) =

∫
f(y) χ(y)φ

(
(x− y)ε−1

)
ε−n

︸ ︷︷ ︸
=ϕx(y)

dy, supp ϕx ⊂ K, ϕx ∈ D(Ω),

and from the assumption of the lemma, we obtain
(
φε ∗ (χf)

)
(x) = 0 for all x,

implying χf = 0 from the convergence result; the conclusion follows.

We note that it makes sense to restrict a distribution T ∈ D ′(Ω) to an open
subset U ⊂ Ω: just define

〈T|U , ϕ〉D ′(U),D(U) = 〈T, ϕ〉D ′(Ω),D(Ω), (3.1.7)

and T|U is obviously a distribution on U . With this in mind, we can define the
support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Ω be an open subset of Rn and T ∈ D ′(Ω). We define the
support of T as

supp T = {x ∈ Ω,∀Uopen ∈ Vx, T|U *= 0}. (3.1.8)

We define the C∞ singular support of T as

singsupp T = {x ∈ Ω,∀Uopen ∈ Vx, T|U /∈ C∞(U)}. (3.1.9)

Note that the support and the singular support are closed subset of Ω since their
complements in Ω are open: we have

(supp T )c = {x ∈ Ω,∃Uopen ∈ Vx, T|U = 0}, (3.1.10)

(singsupp T )c = {x ∈ Ω,∃Uopen ∈ Vx, T|U ∈ C∞(U)}. (3.1.11)

A simple consequence of that definition is that, for T ∈ D ′(Ω), ϕ ∈ D(Ω),

supp ϕ ⊂ (supp T )c =⇒ 〈T, ϕ〉 = 0. (3.1.12)

3.1.3 First examples of distributions

The Dirac mass

We define for ϕ ∈ C0
c (Rn), 〈δ0, ϕ〉 = ϕ(0); the property (3.1.5) is satisfied with

CK = 1, NK = 0. We have supp δ0 = {0}. From this, the Dirac mass cannot be an
L1

loc function, otherwise, since it is 0 a.e., it would be 0. Let φ, ε as in the proposition
3.1.1: then we have from that proposition

lim
ε→0+

∫
φε(x)ϕ(x)dx = ϕ(0),

so that the Dirac mass appears as the weak limit of ε−nφ(xε−1).
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The simple layer

We consider in Rn the hypersurface Σ = {(x′, xn) ∈ Rn−1 × R, xn = f(x′)}, where
f ∈ C1(Rn−1). We define for ϕ ∈ C0

c (Rn),

〈δΣ, ϕ〉 =

∫

Rn−1

ϕ
(
x′, f(x′)

)(
1 + |∇f(x′)|2

)1/2
dx′.

The property (3.1.5) is satisfied with CK = area(Σ∩K), NK = 0, supp δΣ = Σ, and
since Σ has Lebesgue measure 0 in Rn, the simple layer potential cannot be an L1

loc

function.

The principal value of 1/x

We define for ϕ ∈ C1
c (R),

〈pv
1

x
, ϕ〉 = lim

ε→0+

∫

|x|≥ε

ϕ(x)

x
dx. (3.1.13)

Let us check that this limit exists. We have for parity reasons,

∫

|x|≥ε

ϕ(x)

x
dx =

∫ +∞

ε

(
ϕ(x)− ϕ(−x)

)dx

x

=
[
ln x

(
ϕ(x)− ϕ(−x)

)]x=+∞
x=ε

−
∫ +∞

ε

(
ϕ′(x) + ϕ′(−x)

)
ln xdx

and thus, using that limε→0+ ε ln ε = 0, ln |x| ∈ L1
loc(R), we get

〈pv
1

x
, ϕ〉 = −

∫ +∞

0

(
ϕ′(x) + ϕ′(−x)

)
ln xdx = −

∫

R
ϕ′(x)(ln |x|)dx,

yielding |〈pv 1
x , ϕ〉| ≤

∫
supp ϕ′ | ln |x||dx‖ϕ′‖L∞ .

3.1.4 Continuity properties

Definition 3.1.9. Let Ω be an open subset of Rn and let (ϕj)j≥1 be a sequence of
functions in C∞

c (Ω). We shall say that limj ϕj = 0 in C∞
c (Ω) when the two following

conditions are satisfied:
(1) there exists a compact set K ⊂ Ω, such that ∀j ≥ 1, supp ϕj ⊂ K,
(2) limj ϕj = 0 in the Fréchet space C∞

K (Ω), i.e. ∀α ∈ Nn, limj
(
supx∈K |(∂α

x ϕj)(x)|
)

= 0.

Proposition 3.1.10. Let Ω be an open subset of Rn and T be a linear form defined
on C∞

c (Ω). The linear form T is a distribution on Ω if and only if it is sequentially
continuous.

Proof. Assuming |〈T, ϕ〉| ≤ CK max|α|≤NK
‖∂α

x ϕ‖L∞ for all ϕ ∈ C∞
K (Ω) and all K

compact ⊂ Ω implies readily the sequential continuity. Conversely, if T does not
satisfy (3.1.5), we have

∃K0compact ⊂ Ω,∀k ≥ 1,∀N ∈ N,∃ϕk,N ∈ C∞
K0

(Ω), |〈T,ϕk,N〉| > k max
|α|≤N

‖∂α
x ϕk,N‖L∞ .
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From the strict inequality, we infer that the function ϕk,N is not identically 0, and
we may define

ψk =
ϕk,k

k max|α|≤k ‖∂α
x ϕk,k‖L∞

, so that |〈T,ψk〉| > 1.

But the sequence (ψk)k≥1 converges to 0 since supp ψk ⊂ K0 and for |β| ≤ k,
‖∂β

xψk‖L∞ ≤ 1/k, implying for each multi-index β that limk ‖∂β
xψk‖L∞ = 0. The

sequential continuity is violated since |〈T,ψk〉| > 1 and the converse is proven.

Definition 3.1.11. Let Ω be an open subset of Rn, T ∈ D ′(Ω) and N ∈ N. The
distribution T will be said of finite order N if

∃N ∈ N,∀Kcompact ⊂ Ω,∃CK > 0,∀ϕ ∈ C∞
K (Ω), |〈T,ϕ〉| ≤ CK sup

|α|≤N
x∈Rn

|(∂α
x ϕ)(x)|.

(3.1.14)
The vector space of distributions of order N on Ω will be denoted by D ′N(Ω). The

vector space D ′0(Ω) is called the space of Radon measures on Ω.

Proposition 3.1.12. Let Ω be an open subset of Rn and m ∈ N. The vector
space D ′m(Ω) is equal to the sequentially continuous1 linear forms on Cm

c (Ω): if
T ∈ D ′m(Ω), it can be extended to a sequentially continuous linear form on Cm

c (Ω).
If T is a sequentially continuous linear form on Cm

c (Ω), then T ∈ D ′m(Ω).

Proof. Let us first consider T ∈ D ′m(Ω), ϕ ∈ Cm
c (Ω). Applying the proposition 3.1.1,

we find a sequence (ϕk)k≥1 in C∞
c (Ω), converging in Cm

c (Ω) with limit ϕ. Since we
may assume that all the functions ϕk and ϕ are supported in a fixed compact subset
K of Ω, we have, according to the estimate (3.1.14),

|〈T,ϕk − ϕl〉| ≤ C max
|α|≤m

‖∂α
x (ϕk − ϕl)‖L∞ = Cp(ϕk − ϕl),

where p is the norm in the Banach space Cm
K (Ω). Since the sequence (ϕk)k≥1 con-

verges in Cm
K (Ω), we get that the sequence (〈T,ϕk〉)k≥1 is a Cauchy sequence in C,

thus converges; moreover, if for some compact subset L of Ω, (ψk)k≥1 is another
sequence of Cm

L (Ω) converging to ϕ, we have

|〈T, ψk−ϕk〉| ≤ C ′ max
|α|≤m

‖∂α
x (ϕk−ψk)‖L∞ = C ′p(ϕk−ψk) ≤ C ′p(ϕk−ϕ)+C ′p(ϕ−ψk)

and limk〈T,ψk−ϕk〉 = 0 so that, we can extend the linear form to Cm
c (Ω) by defining

〈T, ϕ〉 = limk〈T,ϕk〉. We get also immediately that (3.1.14) holds with N = m and
C∞

K (Ω) replaced by Cm
K (Ω), so that T is obviously sequentially continuous.

Let us now consider a sequentially continuous linear form T on Cm
c (Ω); reproduc-

ing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with
N = m, proving that T ∈ D ′m(Ω). The proof of the proposition is complete.

Remark 3.1.13. We have already proven directly that functions in L1
loc(Ω)(see

(3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions
of order 0. It is an exercise left to the reader to prove that the distribution pv 1

x
defined in (3.1.13) is of order 1 and not of order 0.

1The convergence of a sequence in Cm
c (Ω) is analogous to the convergence given in the definition

3.1.9, except that (2) is required in the Banach space Cm
K (Ω), i.e. |α| ≤ m.
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3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let Ω be an open subset of Rn, K a compact
subset of Ω and Ω1, . . . , Ωm open subsets of Ω such that K ⊂ Ω1 ∪ · · · ∪ Ωm. Then
for 1 ≤ j ≤ m, there exists ψj ∈ C∞

c (Ωj; [0, 1]) and V open such that

Ω ⊃ V ⊃ K, ∀x ∈ V,
∑

1≤j≤m

ψj(x) = 1,

and for all x ∈ Ω,
∑

1≤j≤m ψj(x) ∈ [0, 1].

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider
now m > 1 and we note that, since x ∈ K implies x ∈ one of the Ωj,

K ⊂ ∪x∈KB(x, rx), B̄(x, rx) ⊂ one of the Ωj, rx > 0.

From the compactness of K, we get that K ⊂ ∪1≤l≤NB(xl, rxl
) and we may assume

that

B̄(xl, rxl
) ⊂ Ω1, for 1 ≤ l ≤ N1,

B̄(xl, rxl
) ⊂ Ω2, for N1 < l ≤ N2,

. . . . . . . . . . . . . . .

B̄(xl, rxl
) ⊂ Ωm, for Nm−1 < l ≤ Nm = N.

We define then the compact sets

K1 = ∪1≤l≤N1B̄(xl, rxl
), . . . , Km = ∪Nm−1<l≤NmB̄(xl, rxl

),

and we have K ⊂ ∪1≤j≤mKj, and for each j, Kj ⊂ Ωj. Using the lemma 3.1.3, we
find ϕj ∈ C∞

c (Ωj; [0, 1]) such that ϕj = 1 on a neighborhood Vj(⊂ Ωj) of Kj. We
define then

ψ1 = ϕ1,

ψ2 = ϕ2(1− ϕ1),

. . . . . .

ψj = ϕj(1− ϕ1) . . . (1− ϕj−1),

so that ψj ∈ C∞
c (Ωj; [0, 1]) and we have

∑

1≤j≤m

ψj =
∑

1≤j≤m

ϕj

( ∏

1≤k<j

(1− ϕk)
)

= 1−
∏

1≤k≤m

(1− ϕk), (3.1.15)

since the formula (second equality above) is true for m = 1 and inductively,

∑

1≤j≤m+1

ϕj

( ∏

1≤k<j

(1− ϕk)
)

= 1−
∏

1≤k≤m

(1− ϕk) + ϕm+1

∏

1≤k≤m

(1− ϕk)

= 1− (1− ϕm+1)
∏

1≤k≤m

(1− ϕk) = 1−
∏

1≤k≤m+1

(1− ϕk).

We have thus for x ∈ ∪1≤j≤mVj (which is a neighborhood of K in Ω), using (3.1.15)
and ϕj = 1 on Vj,

∑
1≤j≤m ψj(x) = 1. On the other hand, (3.1.15) and ϕj valued in

[0, 1] show that
∑

1≤j≤m ψj(x) ∈ [0, 1] for all x. The proof is complete.
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Theorem 3.1.15. Let Ω be an open set of Rn and (Ωj)j∈J be an open covering of
Ω: each Ωj is open and ∪j∈JΩj = Ω. Let us assume that for each j ∈ J , we are
given Tj ∈ D ′(Ωj) in such a way that

Tj |Ωj∩Ωk
= Tk |Ωj∩Ωk

. (3.1.16)

Then there exists a unique T ∈ D ′(Ω) such that for all j ∈ J , T|Ωj = Tj.

Proof. Uniqueness: if T, S are such distributions, we get that (T − S)|Ωj = 0, so
that for all j ∈ J , Ωj ⊂ (supp (T − S))c and thus Ω = ∪j∈JΩj ⊂ (supp (T − S))c,
i.e. T − S = 0.
Existence: let ϕ ∈ D(Ω) and let us consider the compact set K = supp ϕ. We
have K ⊂ ∪j∈MΩj with M a finite subset of J . Using the theorem on partitions
of unity, we find some function ψj ∈ C∞

c (Ωj) for j ∈ M such that
∑

j∈M ψj =
1 on a neighborhood of K. As a consequence, we have ϕ =

∑
j∈M ψjϕ and we define

〈T, ϕ〉 =
∑

j∈M

〈Tj, ψjϕ〉.

The required estimates (3.1.5) are easily checked, but the linearity and the indepen-
dence with respect to the decomposition deserve some attention. Assume that we
have ϕ =

∑
k∈N φkϕ, where N is a finite subset of J and φk ∈ C∞

c (Ωk): we have

∑

k∈N

〈Tk, φkϕ〉 =
∑

j∈M,k∈N

〈Tk, φkψjϕ〉 =︸︷︷︸
from (3.1.16)

∑

j∈M,k∈N

〈Tj, φkψjϕ〉 =
∑

j∈M

〈Tj, ψjϕ〉,

proving that T is defined independently of the decomposition. The linearity follows
at once. The proof is complete.

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions D(Ω), although we
gave the definition of convergence of a sequence (see the definition 3.1.9); we shall
need also a simple notion of weak-dual convergence of a sequence of distributions,
which is the σ(D ′, D) convergence.

Definition 3.1.16. Let Ω be an open set of Rn, (Tj)j≥1 be a sequence of D ′(Ω) and
T ∈ D ′(Ω). We shall say that limj Tj = T in the weak-dual topology if

∀ϕ ∈ D(Ω), lim
j
〈Tj, ϕ〉 = 〈T,ϕ〉. (3.1.17)

Remark 3.1.17. We have already seen (see the section 3.1.3) that for ρ ∈ C∞
c (Rn),

ε > 0, ρε(x) = ε−nρ(xε−1), limε→0+ ρε = δ0

∫
ρ(t)dt. Moreover, on D ′(R), we have

with Tλ(x) = eiλx, limλ→+∞ Tλ = 0 since for ϕ ∈ D(R),

∫

R
eiλxϕ(x)dx = (iλ)−1

∫

R

d

dx
(eiλx)ϕ(x)dx = −(iλ)−1

∫

R
eiλxϕ′(x)dx.
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Theorem 3.1.18. Let Ω be an open set of Rn, (Tj)j≥1 be a sequence of D ′(Ω) such
that, for all ϕ ∈ D(Ω), the (numerical) sequence (〈Tj, ϕ〉)j≥1 converges. Defining the
linear form T on D(Ω), by 〈T, ϕ〉 = limj〈Tj, ϕ〉, we obtain that T belongs to D ′(Ω).

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let
us consider a compact subset K of Ω. Then defining Tj,K as the restriction of Tj

to the Fréchet space DK(Ω), we see that the assumptions of the corollary 2.1.8 are
satisfied since Tj,K belongs to the topological dual of DK(Ω), according to the remark
3.1.6. As a consequence the restriction of T to DK(Ω) belongs to the topological
dual of DK(Ω) and from the same remark 3.1.6, it gives that T ∈ D ′(Ω).

N.B. The reader may note that we have used E = D(Ω) = ∪j∈NDKj(Ω) = ∪jEj,
and that our definition of the topological dual of E as linear forms T on E such that,
for all j, T|Ej ∈ the topological dual of the Fréchet space Ej. This structure allows
us to use the Banach-Steinhaus theorem, although we have not defined a topology
on E; this observation is a good introduction to the more abstract setting of LF
spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication
by C∞ functions

3.2.1 Differentiation

Definition 3.2.1. Let Ω be an open set of Rn and T ∈ D ′(Ω). We define the
distributions ∂xjT and for a multi-index α ∈ Nn (see (2.3.6)), ∂α

x T by

〈∂xjT, ϕ〉 = −〈T, ∂xjϕ〉, 〈∂α
x T,ϕ〉 = (−1)|α|〈T, ∂α

x ϕ〉. (3.2.1)

We note that ∂α
x T is indeed a distribution on Ω, since the mappings ϕ 4→ ∂α

x ϕ
are continuous on each Fréchet space DK(Ω).

Remark 3.2.2. If limj Tj = T in the weak-dual topology of D ′(Ω), then, for all
multi-indices α, limj ∂α

x Tj = ∂α
x T (in the weak-dual topology): we have, for each

ϕ ∈ D(Ω),

〈∂α
x Tj, ϕ〉 = (−1)|α|〈Tj, ∂

α
x ϕ〉 −→

j→+∞

(−1)|α|〈T, ∂α
x ϕ〉 = 〈∂α

x T, ϕ〉.

Remark 3.2.3. If u ∈ C1(Ω), its derivative ∂xju as a distribution coincides with
the distribution defined by the continuous function ∂u/∂xj: for ϕ ∈ D(Ω),

〈∂xju, ϕ〉 = −〈u, ∂xjϕ〉 = −
∫

u(x)
∂ϕ

∂xj
(x)dx =

∫
∂u

∂xj
(x)ϕ(x)dx = 〈 ∂u

∂xj
, ϕ〉.

Also, if u, v ∈ C0(Ω) are such that ∂x1u = v in D ′(Ω), then the function u admits v
as a partial derivative with respect to x1. To prove this, we may assume that u, v
are both compactly supported in Ω: in fact it is enough to prove that for χ ∈ C∞

c (Ω)
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identically equal to 1 near a point x0, the function χu (compactly supported) has
a partial derivative with respect to x1 which is χv + u∂x1χ (compactly supported)
and we know that in D ′(Ω) we have

〈∂x1(χu), ϕ〉 = −〈u, χ∂x1ϕ〉 = −〈u, ∂x1(χϕ)〉+ 〈u, ϕ∂x1χ〉 = 〈∂x1u, χϕ〉+ 〈u∂x1χ, ϕ〉

which implies a particular case of Leibniz’ formula ∂x1(χu) = χ∂x1u + u∂x1χ =
χv + u∂x1χ. Assuming then that u, v are compactly supported, we have from the
proposition 3.1.1, u = limε(u ∗ φε) in C0

c (Ω) and the functions u ∗ φε ∈ C∞
c (Ω). Also

we have, with the ordinary differentiation,

(∂x1(u∗φε))(x) =

∫
u(y)(∂x1φε)(x−y)dy = 〈u(·),−∂y1

(
φε(x−·)

)
〉 =

∫
v(y)φε(x−y)dy,

and limε(v ∗ φε) = v in C0
c (Ω). As a result the sequences (u ∗ φε), (∂x1(u ∗ φε)) are

both uniformly converging sequences of (compactly supported) continuous functions
with respective limits u, v, and this implies that the continuous function u has v as
a partial derivative with respect to x1.

3.2.2 Examples

Defining the Heaviside function H as 1R+ , we get

H ′ = δ0 (3.2.2)

since for ϕ ∈ D(R), we have 〈H ′, ϕ〉 = −〈H, ϕ′〉 = −
∫ +∞

0 ϕ′(t)dt = ϕ(0). Still in
one dimension, we have

〈δ(k)
0 , ϕ〉 = (−1)kϕ(k)(0), (3.2.3)

since it is true for k = 0 and inductively 〈δ(k+1)
0 , ϕ〉 = −〈δ(k)

0 , ϕ′〉 = −(−1)kϕ′(k)(0) =
(−1)k+1ϕ(k+1)(0). Looking at the definition (3.1.13), we see that we have proven

pv (
1

x
) =

d

dx
(ln |x|), (distribution derivative). (3.2.4)

Let f be a finitely-piecewise C1 function defined on R: it means that there is an
increasing finite sequence of real numbers (an)1≤n≤N , so that f is C1 on all closed
intervals [an, an+1] for 1 ≤ n < N and on ] −∞, a1] and [aN , +∞[. In particular,
the function f has a left-limit f(a−n ) and a right-limit f(a+

n ) which may be different.
Let us compute the distribution derivative of f ; for ϕ ∈ D(R), since f is locally
integrable, we have, setting a0 = −∞, aN+1 = +∞,

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫

R
f(x)ϕ′(x)dx = −

∑

0≤n≤N

∫ an+1

an

f(x)ϕ′(x)dx

=
∑

0≤n≤N

∫ an+1

an

df

dx
(x)ϕ(x)dx +

∑

0≤n≤N

(
f(a+

n )ϕ(an)− f(a−n+1)ϕ(an+1)
)

=

∫
ϕ(x)

( ∑

0≤n≤N

df

dx
(x)1[an,an+1](x)

)
+

∑

1≤n≤N

f(a+
n )ϕ(an)−

∑

1≤n≤N

f(a−n )ϕ(an),
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so that we have obtained the so-called formula of jumps

f ′ =
∑

0≤n≤N

df

dx
1[an,an+1] +

∑

1≤n≤N

(
f(a+

n )− f(a−n )
)
δan , (3.2.5)

where δan is the Dirac mass at an, defined by 〈δan , ϕ〉 = ϕ(an).
We consider now the following determination of the logarithm given for z ∈ C\R−

by

Log z =

∮

[1,z]

dξ

ξ
, (3.2.6)

which makes sense since C\R− is star-shaped with respect to 1, i.e. the segment
[1, z] ⊂ C\R− for z ∈ C\R−. Since the function Log coincides with ln on R∗

+ and is
holomorphic on C\R−, we get by analytic continuation that

eLog z = z, for z ∈ C\R−. (3.2.7)

Also by analytic continuation, we have for | Im z| < π, Log(ez) = z. We want now
to study the distributions on R,

uy(x) = Log(x + iy), where y *= 0 is a real parameter.

We leave as an exercise for the reader to prove that

lim
y→0±

Log(x + iy) = ln |x| ± iπ
(
1−H(x)

)
, (3.2.8)

where the limits are taken in the sense of the definition 3.1.16; also the reader can
check

1

x± i0
= pv

(1

x

)
∓ iπδ0, (3.2.9)

where we have defined

〈 1

x± i0
, ϕ〉 = lim

ε→0+

∫
ϕ(x)

x± iε
dx (3.2.10)

(part of the exercise is to prove that these limits exist for ϕ ∈ D(R)). We conclude
that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of R. The solutions in D ′(I) of u′ = 0
are the constants. The solutions in D ′(I) of u′ = f make a one-dimensional affine
subspace of D ′(I).

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution.
Conversely, let us assume that u ∈ D ′(I) satisfies u′ = 0. Let χ0 ∈ C∞

c (I) such
that

∫
R χ0(x)dx = 1; then we have for any ϕ ∈ C∞

c (I), with J(ϕ) =
∫

R ϕ(x)dx,
ψ(x) =

∫ x

−∞

(
ϕ(t)− J(ϕ)χ0(t)

)
dt, noting that ψ belongs2 to C∞

c (I),

〈u, ϕ− J(ϕ)χ0〉 = 〈u, ψ′〉 = −〈u′, ψ〉 = 0,

2The function ψ is obviously smooth and if ϕ, χ0 are both supported in {a ≤ x ≤ b}, a, b ∈ I,
so is ψ, thanks to the condition

∫
χ0 = 1.
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which gives 〈u, ϕ〉 = J(ϕ)〈u, χ0〉, i.e. u = 〈u, χ0〉 proving that u is indeed a constant.
We have proven that the solutions u ∈ D ′(I) of u′ = 0 are simply the constants.
If f ∈ D ′(I), we need only to construct a solution v0 of v′0 = f and then use the
previous result to obtain that the set of solutions of u′ = f is v0+R. Let us construct
such a solution v0. For ϕ ∈ D(I), we define with the same ψ as above,

〈v0, ϕ〉 = −〈f, ψ〉. (3.2.11)

It is a distribution since for supp ϕ compact ⊂ I, we define (the compact set) K1 =
supp ϕ ∪ supp χ0, and we have

|〈v0, ϕ〉| = |〈f, ψ〉| ≤ CK1 max
0≤j≤NK1

‖ψ(j)‖L∞ ≤ C max
0≤j≤(NK1−1)+

‖ϕ(j)‖L∞ .

Moreover the formula (3.2.11) implies the sought result

〈v′0, ϕ〉 = −〈v0, ϕ
′〉 = 〈f, ψϕ′〉 = 〈f, ϕ〉,

since ψϕ′(x) =
∫ x

−∞

(
ϕ′(t) − J(ϕ′)χ0(t)

)
dt = ϕ(x) because J(ϕ′) = 0. The proof of

the lemma is complete.

3.2.3 Product by smooth functions

We define now the product of a C∞ (resp. CN) function by a distribution (resp. of
order N).

Definition 3.2.5. Let Ω be an open subset of Rn and u ∈ D ′(Ω). For f ∈ C∞(Ω),
we define the product f · u as the distribution defined by

〈f · u, ϕ〉D ′(Ω),D(Ω) = 〈u, fϕ〉D ′(Ω),D(Ω). (3.2.12)

If u is of order N and f ∈ CN(Ω), we define the product f · u as the distribution of
order N defined by

〈f · u, ϕ〉D ′N (Ω),CN
c (Ω) = 〈u, fϕ〉D ′N (Ω),CN

c (Ω). (3.2.13)

Remark 3.2.6. Since the multiplication by a C∞(Ω) (resp. CN(Ω)) function is a
continuous linear operator from C∞

c (Ω) (resp. CN
c (Ω)) into itself, we get that the

above formulas actually define the products as distributions on Ω with the right order
(see the proposition 3.1.12). Also the product defined in the second part coincides
with the first definition whenever f ∈ C∞

c (Ω) and if u ∈ L1
loc(Ω), f ∈ C0(Ω), the

usual product fu coincides with the f · u defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz’ formula for
the derivatives of a product.

Theorem 3.2.7. Let Ω be an open set of Rn, u ∈ D ′(Ω), f ∈ C∞(Ω) and α ∈ Nn

be a multi-index (see (2.3.6)). Then we have

∂α
x (fu)

α!
=

∑

β,γ∈Nn

β+γ=α

∂β
x (f)

β!

∂γ
x(u)

γ!
. (3.2.14)
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Proof. We get immediately by induction on |α| the formula

∂α
x (fu)

α!
=

∑

β,γ∈Nn

β+γ=α

σβ,γ
∂β

x (f)

β!

∂γ
x(u)

γ!
, with σβ,γ ∈ R+.

To find the σβ,γ, we choose f(x) = ex·ξ, u(x) = ex·η, with ξ, η ∈ Rn. We find then
for all ξ, η ∈ Rn, the identity

(ξ + η)α

α!
=

∂α
x (ex·(ξ+η))

α! |x=0
=

∑

β,γ∈Nn

β+γ=α

σβ,γ
∂β

x (ex·ξ)

β!

∂γ
x(ex·η)

γ! |x=0

=
∑

β,γ∈Nn

β+γ=α

σβ,γ
ξβ

β!

ηγ

γ!
,

and the formula (2.3.7) shows that for β, γ such that β + γ = α

σβ,γ = ∂β
ξ ∂γ

η

((ξ + η)α

α!

)
|ξ=η=0

= 1,

completing the proof of the theorem.

Examples. Let f be a continuous function on R and δ0 be the Dirac mass at 0.
The product f · δ0 is equal to f(0)δ0: since δ0 is a distribution of order 0, we can
multiply it by a continuous function and if ϕ ∈ C0

c (R), we have

〈f · δ0, ϕ〉 = 〈δ0, fϕ〉 = f(0)ϕ(0) = 〈f(0)δ0, ϕ〉 =⇒ f · δ0 = f(0)δ0. (3.2.15)

On the other hand if f ∈ C1(R) we have

f · δ′0 = f(0)δ′0 − f ′(0)δ0, (3.2.16)

since the Leibniz’ formula (3.2.14) gives f(0)δ′0 = (f · δ0)′ = f ′ · δ0 + f · δ′0 =
f ′(0)δ0 + f · δ′0. In particular xδ′0 = −δ0.

3.2.4 Division of distribution on R by xm

We want now to address the question of division of a function (or a distribution) by a
polynomial; a typical example is the division of 1 by the linear function x expressed
by the identity

x pv(1/x) = 1 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous
examples that, for any constant c, we have x

(
pv(1/x)+ cδ0

)
= 1. The next theorem

shows that T = pv(1/x) + cδ0 are the only distributions solutions of the equation
xT = 1.

Theorem 3.2.8. Let m ≥ 1 be an integer.
(1) If u ∈ D ′(R) is such that xmu = 0, then u =

∑
0≤j<m cjδ

(j)
0 .

(2) Let v ∈ D ′(R); there exists u ∈ D ′(R) such that v = xmu.
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Proof. Let us first prove (1). For ϕ, χ0 ∈ C∞
c (R) with χ0 = 1 near 0, we have

ϕ(x) =
∑

0≤j<m

ϕ(j)(0)

j!
xj

︸ ︷︷ ︸
pϕ,m(x)

+

∫ 1

0

(1− t)m−1

(m− 1)!
ϕ(m)(tx)dt

︸ ︷︷ ︸
ψm,ϕ(x)

xm, ψm,ϕ ∈ C∞(R),

and thus, since xmu = 0,

〈u, ϕ〉 =

=0︷ ︸︸ ︷
〈xmu, x−m(1− χ0)ϕ〉+〈u, χ0ϕ〉 = 〈u, χ0pm,ϕ〉+

=0︷ ︸︸ ︷
〈xmu, χ0ψϕ,m〉

=
∑

0≤j<m

ϕ(j)(0)

j!
〈u, χ0〉 =

∑

0≤j<m

〈cjδ
(j)
0 , ϕ〉,

which the sought result. To obtain (2), for ϕ ∈ C∞
c (R), and a given v0 ∈ D ′(R), we

define, using the above notations,

〈u, ϕ〉 = 〈v0, χ0ψm,ϕ〉+ 〈v0, x
−m(1− χ0)ϕ〉.

This defines obviously a distribution on R and 〈xmu, ϕ〉 = 〈u, xmϕ〉; for the func-
tion φ(x) = xmϕ(x), we have pφ,m = 0, xmψm,φ(x) = xmϕ(x), so that the smooth
functions ψm,φ = ϕ,

〈xmu, ϕ〉 = 〈v0, χ0ϕ〉+ 〈v0, x
−m(1− χ0)x

mϕ〉 = 〈v0, ϕ〉.

3.3 Distributions with compact support

3.3.1 Identification with E ′

Let Ω be an open subset of Rn. We have already seen that the space C∞(Ω) (also
denoted by E (Ω)) is a Fréchet space. Denoting by E ′(Ω) the topological dual of
E (Ω), we can consider T ∈ E ′(Ω) as a distribution T̃ on Ω by defining

〈T̃ , ϕ〉D ′(Ω),D(Ω) = 〈T,ϕ〉E ′(Ω),E (Ω) (this makes sense since D(Ω) ⊂ E (Ω)).

The linearity is obvious and the continuity of T as a linear form on the Fréchet space
E (Ω) implies that there exists C > 0, N ∈ N, K compact subset of Ω such that

∀ϕ ∈ E (Ω), |〈T, ϕ〉E ′(Ω),E (Ω)| ≤ C sup
|α|≤N, x∈K

|(∂α
x ϕ)(x)|.

This estimates also proves that T̃ belongs to D ′(Ω); moreover, it has compact sup-
port in the sense of the definition (3.1.8): we have 〈T̃ , ϕ〉 = 0 for ϕ ∈ C∞

c (Ω),
supp ϕ ⊂ Kc, so that T̃|Kc = 0 and thus supp T̃ ⊂ K. The next theorem proves that
we can identify the space E ′(Ω) with the distributions on Ω with compact support,
denoted by D ′

comp(Ω).

Theorem 3.3.1. Let Ω be an open subset of Rn. The mapping ι : E ′(Ω) →
D ′

comp(Ω), defined as above by ι(T ) = T̃ is bijective.
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Proof. The mapping ι is linear and if ι(T ) = 0, we know that T vanishes on all
functions of D(Ω).

Lemma 3.3.2. Let Ω be an open subset of Rn. The space D(Ω) is dense in E (Ω).

Proof of the lemma. We consider a sequence (Kj)j≥1 of compact subsets of Ω such
that the lemma 2.3.1 is satisfied. For each j ≥ 1, we may use the lemma 3.1.3 to
construct a function χj ∈ D(Ω) with χj = 1 near Kj. For a given ϕ ∈ E (Ω), the
sequence (ϕχj)j≥1 of functions in D(Ω) converges in E (Ω) to ϕ, thanks to the last
property of the lemma 2.3.1, proving the lemma.

Since T is continuous on E (Ω), 〈T,ϕ〉E ′(Ω),E (Ω) = limj〈T,ϕχj〉E ′(Ω),E (Ω), = 0 since
T vanishes on D(Ω). Let us consider now T ∈ D ′

comp(Ω) with supp T = L (compact
subset of Ω). Using the lemma 3.1.3, we consider χ0 ∈ D(Ω) such that χ0 = 1 on a
neighborhood of L. For ϕ ∈ E (Ω), we define S ∈ E ′(Ω) by

〈S, ϕ〉E ′(Ω),E (Ω) = 〈T,χ0ϕ〉D ′(Ω),D(Ω) (note that |〈S, ϕ〉| ≤ C sup
|α|≤N, x∈supp χ0

|∂α
x ϕ|),

We have ι(S) = T because

〈ι(S), ϕ〉D ′(Ω),D(Ω) = 〈S, ϕ〉E ′(Ω),E (Ω) = 〈T, χ0ϕ〉D ′(Ω),D(Ω) = 〈χ0T, ϕ〉D ′(Ω),D(Ω),

and since for ϕ ∈ D(Ω), the function (1 − χ0)ϕ vanishes on an open neighborhood
V of L implying

supp
(
(1− χ0)ϕ

)
⊂ V c ⊂ Lc =⇒ 〈T, (1− χ0)ϕ〉 = 0,

so that ι(S) = χ0T = χ0T + (1− χ0)T︸ ︷︷ ︸
=0

= T. The proof of the theorem is complete.

Remark 3.3.3. We can then identify D ′
comp(Ω) with E ′(Ω), and we may note that

for T ∈ D ′
comp(Ω) with supp T = L, T is of finite order N , and for all neighborhoods

K of L, there exists C > 0 such that, for all ϕ ∈ E (Ω),

|〈T, ϕ〉| ≤ C sup
|α|≤N, x∈K

|(∂α
x ϕ)(x)|. (3.3.1)

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in {0}.

Theorem 3.3.4. Let Ω be an open subset of Rn, x0 ∈ Ω and let u ∈ D ′(Ω) such

that supp u = {x0}. Then u =
∑

|α|≤N cαδ(α)
x0 , where the cα are some constants.
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Proof. Let ϕ ∈ C∞(Ω); we have for x ∈ V0 ⊂ open neighborhood of x0 (included in
Ω), N0 the order of u,

ϕ(x) =
∑

|α|≤N0

(∂α
x ϕ)(x0)

α!
(x−x0)

α+

∫ 1

0

(1− θ)N0

N0!
ϕ(N0+1)(x0 + θ(x− x0))dθ

︸ ︷︷ ︸
ψ(x), ψ∈C∞(V0)

(x−x0)
N0+1,

and thus for χ ∈ C∞
c (V0), χ = 1 near x0,

〈u, ϕ〉 = 〈u, χ0ϕ〉 =
∑

|α|≤N0

(∂α
x ϕ)(x0)

α!
〈u, χ0(x)(x−x0)

α〉+〈u, χ0(x)ψ(x)(x−x0)
N0+1〉.

(3.3.2)
We have also

|〈u, χ0(x)ψ(x)(x− x0)
N0+1〉| ≤ C0 sup

|α|≤N0

|∂α
x

(
χ0(x)ψ(x)(x− x0)

N0+1
)
|. (3.3.3)

We can take χ0(x) = ρ(x−x0
ε ), where ρ ∈ C∞

c (Rn) is supported in the unit ball B1,
ρ = 1 in 1

2B1 and ε > 0. We have then

χ0(x)ψ(x)(x− x0)
N0+1 = εN0+1ρ(

x− x0

ε
)ψ

(
x0 + ε

(x− x0)

ε

)(x− x0)N0+1

εN0+1

= εN0+1ρ1(
x− x0

ε
)

with ρ1(t) = ρ(t)ψ(x0 + εt)tN0+1, so that ρ1 ∈ C∞
c (Rn) is supported in the unit ball

B1 has all its derivatives bounded independently of ε. From (3.3.3), we get for all
ε > 0,

|〈u, χ0(x)ψ(x)(x− x0)
N0+1〉| ≤ C0 sup

|α|≤N0

εN0+1−|α||(∂α
t ρ1)(

x− x0

ε
)| ≤ C1ε,

which implies that the left-hand-side of (3.3.3) is zero. The result of the theorem
follows from (3.4.15).

3.4 Tensor products

Let X be an open subset of Rm, Y be an open subset of Rn and f ∈ C∞
c (X), g ∈

C∞
c (Y ). The tensor product f⊗g is defined by (f⊗g)(x, y) = f(x)g(y) and belongs

to C∞
c (X × Y ). Now if T ∈ D ′(X), S ∈ D ′(Y ), we want to define a distribution

T ⊗ S ∈ D ′(X × Y ) such that

〈T ⊗ S, f ⊗ g〉 = 〈T, f〉〈S, g〉.

This triggers several questions: is such a construction possible? Is the definition
above sufficient to determine unambiguously the distribution T⊗S? We shall answer
positively to these questions, but we first address a related question of derivation of
an “integral” depending on a parameter.
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3.4.1 Differentiation of a duality product

Theorem 3.4.1. Let Ω be an open subset of Rn, u ∈ D ′(Ω), U an open subset of
Rm and φ ∈ C∞(Ω× U) such that

∀t ∈ U,∃Vt ∈ Vt,∃Kt compact subset of Ω, ∀s ∈ Vt, supp φ(·, s) ⊂ Kt. (3.4.1)

Then the function f defined on U by f(t) = 〈u, φ(·, t)〉 makes sense and belongs to
C∞(U). Moreover we have for all α ∈ Nm, (∂α

t f)(t) = 〈u, (∂α
t φ)(·, t)〉.

Proof. The function f makes sense since for all t ∈ U , the function φ(·, t) belongs
to C∞

c (Ω). Let t0 ∈ U and B0 be a closed ball with center t0 and positive radius r0

included in Vt0 given by (3.4.1). For |h| ≤ r0, we have

f(t0 + h)− f(t0) = 〈u, φ(·, t0 + h)− φ(·, t0)︸ ︷︷ ︸
supported in Kt0 ,

〉

and using Taylor’s formula with integral remainder, we get

f(t0 + h)− f(t0) = 〈u, (∂tφ)(·, t0)〉h + 〈u,

∫ 1

0

(1− θ)

support in Kt0︷ ︸︸ ︷
∂2

sφ(·, t0 + θh) dθ〉h2

︸ ︷︷ ︸
r(t0,h)

.

We have, since Kt0 ×B0 is a compact subset of Ω× U ,

|r(t0, h)| ≤ |h|2C0 sup
x∈Kt0 ,|α|≤N0

∫ 1

0

(1− θ)|(∂α
x ∂2

sφ) (x, t0 + θ0h)︸ ︷︷ ︸
∈Kt0×B0

|dθ ≤ C1|h|2,

proving the differentiability of f on U along with df(t) = 〈u, ∂tφ(·, t)〉. Inductively,
we get that f is smooth and the result of the theorem.

Corollary 3.4.2. Let X, Y be open subsets of Rn, Rm, φ ∈ C∞(X × Y ) and u ∈
D ′(X).
(1) If φ is compactly supported in X×Y , the function ψ defined by ψ(y) = 〈u, φ(·, y)〉
belongs to C∞

c (Y ).
(2) If u ∈ E ′(X), the function ψ defined by ψ(y) = 〈u, φ(·, y)〉 belongs to C∞(Y ).

Proof. To prove (1), we need only to verify (3.4.1): we have indeed for all y ∈ Y

supp φ(·, y) ⊂ projX(supp φ) which is a compact subset of X,

which implies that ψ ∈ C∞(Y ); moreover the function φ(·, y) = 0 on the open subset
of Y ,

(
projY (supp φ)

)c
, and thus supp ψ ⊂ projY (supp φ) which is a compact subset

of Y . To obtain (2), we consider χ ∈ C∞
c (X) equal to 1 near the compact support

of u. We have then u = χu and consequently,

〈u, φ(·, y)〉 = 〈u, φ(·, y)χ(·)〉.

The function Φ(x, y) = φ(x, y)χ(x) is smooth on X × Y and supp Φ(·, y) ⊂ supp χ
so that we can apply the theorem 3.4.1 whose assumptions are satisfied.
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3.4.2 Pull-back by the affine group

Let us now recall the definition of the affine group of Rn: it is the group of mappings
from Rn into itself of the form x 4→ Ax + t = θA,t(x) where A ∈ Gl(n, R)(n ×
n invertible matrices) and t ∈ Rn. When A is the identity, ΘId,t is simply the
translation of vector t; we have also θ−1

A,t = ΘA−1,−A−1t. If u belongs to L1
loc(Rn) and

ΘA,t is in the affine group of Rn, we can define the pull-back of u by the map Θ by
the identity

Θ∗
A,tu = u ◦ΘA,t, so that (Θ∗

A,tu)(x) = u(Ax + t). (3.4.2)

As a result for ϕ ∈ C0
c (Rn), we find

〈Θ∗
A,tu, ϕ〉 =

∫

Rn

u(Ax + t)ϕ(x)dx =

∫

Rn

u(y)ϕ(A−1y − A−1t)| det A|−1dy. (3.4.3)

We want to use that formula to define the pull-back of a distribution on Rn by an
affine transformation.

Definition 3.4.3. Let A ∈ Gl(n, R), t ∈ Rn, ΘA,t the affine transformation defined
above and let u ∈ D ′(Rn). We define the distribution Θ∗

A,tu by the identity

〈Θ∗
A,tu, ϕ〉 = 〈u, ϕ ◦Θ−1

A,t〉| det A|−1. (3.4.4)

Remark 3.4.4. (1) Note that this defines a distribution on Rn, since the mapping
ϕ 4→ ϕ ◦ Θ−1

A,t is an isomorphism of D(Rn). Moreover, if u ∈ L1
loc(Rn), the previous

definition ensures that Θ∗
A,tu = u ◦ΘA,t, thanks to the lemma 3.1.7.

(2) The mapping u 4→ Θ∗
A,tu is sequentially continuous from D ′(Rn) into itself.

(3) A distribution u on Rn is even (resp. odd) if Θ∗
− Id,0u = u (resp. −u). Using the

notation
ǔ = Θ∗

− Id,0u (for a function u, ǔ(x) = u(−x)), (3.4.5)

u is even means ǔ = u, odd means ǔ = −u.

3.4.3 Homogeneous distributions

Definition 3.4.5. Let u ∈ D ′(Rn) and λ ∈ C. The distribution u is said to be
homogeneous with degree λ if for all t > 0, u(t·) = tλu(·) (here u(t·) = θ∗t Id,0u).

Proposition 3.4.6. Let u ∈ D ′(Rn) and λ ∈ C. The distribution u is homogeneous
of degree λ if and only if the Euler equation is satisfied, namely

∑

1≤j≤n

xj∂xju = λu. (3.4.6)

Proof. A distribution u on Rn is homogeneous of degree λ means:

∀ϕ ∈ C∞
c (Rn),∀t > 0, 〈u(y), ϕ(y/t)t−n〉 = tλ〈u(x), ϕ(x)〉,

which is equivalent to ∀ϕ ∈ C∞
c (Rn),∀s > 0, 〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉, also

equivalent to

∀ϕ ∈ C∞
c (Rn),

d

ds

(
〈u(y), ϕ(sy)sn+λ〉

)
= 0 on s > 0. (3.4.7)
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Note that the differentiability property is due to the theorem 3.4.1 and that

〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉 at s = 1.

As a consequence, applying the theorem 3.4.1, we get that the homogeneity of degree
λ of u is equivalent to

∀s > 0, 〈u(y), sn+λ−1
(
(n + λ)ϕ(sy) +

∑

1≤j≤n

(∂jϕ)(sy)syj

)
〉 = 0,

also equivalent to 0 = 〈u(y), (n + λ +
∑

1≤j≤n yj∂j)
(
ϕ(sy)

)
〉 and by the definition of

the differentiation of a distribution, it is equivalent to (n+λ)u−
∑

1≤j≤n ∂j(yju) = 0,
which is (3.4.6) by the Leibniz rule (3.2.14).

Remark 3.4.7. (1) The Dirac mass at 0 in Rn is homogeneous of degree −n: we
have for t > 0

〈δ0(tx), ϕ(x)〉 = 〈δ0(y), ϕ(y/t)t−n〉 = t−nϕ(0) = t−n〈δ0, ϕ〉.

(2) If T is an homogeneous distribution of degree λ, then ∂α
x T is also homogeneous

with degree λ− |α|: taking the derivative of the Euler equation (3.4.6), we get

∂xk
u +

∑

1≤j≤k

xj∂xj∂xk
u− λ∂xk

u = 0,

proving that ∂xk
u is homogeneous of degree λ− 1 and the result by iteration.

(3) It follows immediately from the definition (3.1.13) that the distribution pv( 1
x) is

homogeneous of degree −1. The same is true for the distributions 1
x±i0 as it is clear

from (3.2.9)and (3.2.10).
(4) For λ ∈ C with Re λ > −1 we define the L1

loc(R) functions

xλ
+ =

{
xλ if x > 0,

0 if x ≤ 0.,
χλ

+ =
xλ

+

Γ(λ + 1)
. (3.4.8)

The distributions χλ
+ and xλ

+ are homogeneous of degree λ and by an analytic con-
tinuation argument, we can prove that χλ

+ may be defined for any λ ∈ C, is an
homogeneous distribution of degree λ and satisfies

χλ
+ = (

d

dx
)k(χλ+k

+ ), χ−k
+ = δ(k−1)

0 , k ∈ N∗.

Lemma 3.4.8. Let (uj)1≤j≤m be non-zero homogeneous distributions on Rn with
distinct degrees (λj)1≤j≤m (j *= k implies λj *= λk). Then they are independent in
the complex vector space D ′(Rn).

Proof. We assume that m ≥ 2 and that there exists some complex numbers (cj)1≤j≤m

such that
∑

1≤j≤m cjuj = 0. Then applying the operator E =
∑

1≤j≤m xj∂xj , we get
for all k ∈ N,

0 =
∑

1≤j≤m

cjEk(uj) =
∑

1≤j≤m

cjλ
k
j uj.
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We consider now the Vandermonde matrix m×m

Vm =





1 1 . . . 1
λ1 λ2 . . . λm

. . . .
λm−1

1 λm−1
2 . . . λm−1

m



 , det Vm =
∏

1≤j<k≤m

(λk − λj) *= 0.

We note that for ϕ ∈ C∞
c (Rn), and X ∈ Cm given by

X =





c1〈u1, ϕ〉
c2〈u2, ϕ〉
. . . . . . . . .
cm〈um, ϕ〉



 ,

we have VmX = 0, so that X = 0, i.e. ∀j,∀ϕ ∈ C∞
c (Rn), cj〈uj, ϕ〉 = 0, i.e. cjuj = 0

and since uj is not the zero distribution, we get the sought conclusion cj = 0 for all
j.

3.4.4 Tensor products of distributions

We begin with a lemma.

Lemma 3.4.9. Let φ ∈ C∞
c (]0, 1[n); one can find a sequence of functions in

Vect(⊗nC∞
c (]0, 1[) (the vector space generated by the tensor products)

converging to φ in C∞
c (]0, 1[n) in the sense of the definition 3.1.9.

Proof. We define for k ∈ Zn, φ̂(k) =
∫

e−2iπx·kφ(x)dx, and we note that, with
∆ =

∑
1≤j≤n ∂2

xj
, m ∈ N,

φ̂(k) = (1 + |k|2)−m

∫
(1− 1

4π2
∆)m

(
e−2iπx·k)φ(x)dx

= (1 + |k|2)−m

∫
e−2iπx·k((1− 1

4π2
∆)mφ

)
(x)dx

so that
|φ̂(k)| ≤ (1 + |k|2)−mCm max

|α|≤2m
‖∂α

x φ‖L∞ . (3.4.9)

As a result the series Φ(x) =
∑

k∈Zn φ̂(k)e2iπx·k converges and is a smooth function,
periodic with periods Zn: we need only to check that

∑
k∈Zn(1 + |k|)−n−1 < +∞.3

Moreover,
for x ∈ [0, 1]n, Φ(x) = φ(x). (3.4.10)

3In fact, with Qk = k + (0, 1)n we have, replacing the Euclidean norm |k| by the (equivalent)
sup-norm ‖k‖ = max1≤j≤k |kj |, we have for x ∈ Qk, kj < xj < kj + 1 and thus

‖x‖ = max |xj | ≤ 1 + ‖k‖ =⇒ 1 + ‖x‖ ≤ 2 + ‖k‖

and
∑

k∈Zn(2 + ‖k‖)−n−1 ≤
∫ ∑

k∈Zn 1Qk(x)(1 + ‖x‖)−n−1dx =
∫

(1 + ‖x‖)−n−1dx < +∞.



88 CHAPTER 3. INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

We verify this first for n = 1. We have in that case

Φ(x) = lim
N→+∞

∫ ∑

|k|≤N

e2iπk(x−y)φ(y)dy,

and since
∑

|k|≤N

e2iπkt = 1 + 2 Re
∑

1≤k≤N

e2iπkt = 1 + 2 Re
(
e2iπt e

2iπNt − 1

e2iπt − 1

)

= 1 + 2 Re
(
eiπ(N+1)t sin(πNt)

sin(πt)

)
=

sin(πt(2N + 1))

sin(πt)
,

we get that, since φ ∈ C∞
c (]0, 1[), and for x ∈]0, 1[,

Φ(x) = lim
N→+∞

∫
sin

(
π(x− y)(2N + 1)

)

sin(π(x− y))
φ(y)dy

= lim
N→+∞

(∫ 1

0

sin
(
π(x− y)(2N + 1)

)

sin(π(x− y))

(
φ(y)− φ(x)

)
dy + φ(x)

∫ 1

0

∑

|k|≤N

e2iπk(x−y)dy
)

= φ(x),

because with ψ ∈ C∞(R2), θ(s) = s
sin πs (which is in C∞(R\πZ∗) and in particular

on ]− 1, +1[), we have

∫ 1

0

sin
(
π(x− y)(2N + 1)

)

sin(π(x− y))

(
φ(y)− φ(x)

)
dy

=

∫ 1

0

sin
(
π(x− y)(2N + 1)

)
smooth of y on [0, 1]

since x ∈]0, 1[︷ ︸︸ ︷
ψ(x, y)θ(x− y) dy −→

N→+∞

0,

since with ω ∈ C∞([0, 1]), we have

∫ 1

0

sin
(
π(x− y)(2N + 1)

)
ω(y)dy =

[cos
(
π(x− y)(2N + 1)

)

π(2N + 1)
ω(y)

]y=1

y=0
−

∫ 1

0

cos
(
π(x− y)(2N + 1)

)

π(2N + 1)
ω′(y)dy.

We have proven (3.4.10) for n = 1 and x ∈]0, 1[. Since Φ, φ are both smooth on
[0, 1] the equality holds as well for x ∈ {0, 1}.

N.B. We could have used the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in [9]),
but we have preferred a simple self-contained argument with an integration by parts since
there was no shortage of regularity for the function ω.

To handle the case n ≥ 2, we use an induction and in n + 1 dimensions, we have
for φ ∈ C∞

c (]0, 1[n+1),

∀x ∈ [0, 1]n, Φ(x, xn+1) =
∑

k∈Zn

∫

(0,1)n

e2iπ(x−y)·kφ(y, xn+1)dy = φ(x, xn+1),
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and thus ∀x ∈ [0, 1]n,∀xn+1 ∈ [0, 1], Φ(x, xn+1) =

∑

k∈Zn

∫

(0,1)n

e2iπ(x−y)·k
( ∑

kn+1∈Z

∫ 1

0

e2iπ(xn+1−yn+1)kn+1φ(y, yn+1)dyn+1

)
dy = φ(x, xn+1),

which is (3.4.10) since the series are uniformly converging. Since supp φ ⊂]0, 1[n,
there exists ε0 > 0 such that4 supp φ ⊂ [ε0, 1 − ε0]n, and with χ ∈ C∞

c (]0, 1[) equal
to 1 on [ε0, 1− ε0], we have

χ(x1) . . . χ(xn)φ(x) = φ(x) =
∑

k∈Zn

e2iπx·kφ̂(k)χ(x1) . . . χ(xn). (3.4.11)

The series is uniformly converging as well as all its derivatives, thanks to the fast
decay of φ̂(k) expressed by (3.4.9), and the functions

∑

|k|≤N

e2iπx1k1 . . . e2iπxnknφ̂(k)χ(x1) . . . χ(xn)

belong to Vect(⊗nC∞
c (]0, 1[) with fixed compact support in ]0, 1[n. The proof of the

lemma is complete.

As a consequence, we get the following result.

Proposition 3.4.10. Let X be an open subset of Rm, Y be an open subset of Rn.
Vect C∞

c (X)⊗ C∞
c (Y ) is dense in C∞

c (X × Y ).

Proof. Let K be a compact subset of X×Y . For each point (x, y) ∈ K, we can find
some open bounded intervals I1, . . . , Im, J1, . . . , Jn of R such that

(x, y) ∈ Q = I1 × · · ·× Im × J1 × · · ·× Jn ⊂ X × Y.

As a result, we can cover K with a finite number of open “cubes” (Ql)1≤l≤N included
in X × Y . Using a partition of unity given by the theorem 3.1.14, we can find
ψl ∈ C∞

c (Ql) such that
∑

1≤l≤N ψl(x) = 1 for x ∈ V open such that K ⊂ V ⊂ X×Y .
For ϕ ∈ C∞

c (X × Y ), supp ϕ = K compact subset of X × Y , we have

ϕ =
∑

1≤l≤N

ϕψl, ϕψl ∈ C∞
c (Ql).

We can then apply the lemma 3.4.9 for each ϕψl (rescaling the cube Ql to ]0, 1[n)
to obtain the conclusion of the proposition.

Theorem 3.4.11. Let X be an open subset of Rm, Y be an open subset of Rn,
and u ∈ D ′(X), v ∈ D ′(Y ). Then there exists a unique w ∈ D ′(X × Y ) such that,
∀φ ∈ D(X),∀ψ ∈ D(Y ),

〈w, φ⊗ ψ〉D ′(X×Y ),D(X×Y ) = 〈u, φ〉D ′(X),D(X)〈v, ψ〉D ′(Y ),D(Y ), (3.4.12)

where (φ⊗ ψ)(x, y) = φ(x)ψ(y). We shall denote w by u ⊗ v and call it the tensor
product of u and v.

4In fact, each projection Kj = projj(supp φ) is a compact subset of ]0, 1[, thus 0 < inft∈Kj t ≤
supt∈Kj

t < 1.
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Proof. The uniqueness follows from the proposition 3.4.10. To find such a w, we
define for Φ ∈ C∞

c (X × Y ), with obvious notations,

〈w, Φ〉 =
〈
v(y), 〈u(x), Φ(x, y)〉

〉
. (3.4.13)

As a matter of fact, thanks to the corollary 3.4.2 (1), the function Y . y 4→
〈u(·), Φ(·, y)〉 belongs to C∞

c (Y ) so that (3.4.13) makes sense. Using the theorem
3.4.1, we obtain ∂α

y 〈u(·), Φ(·, y)〉 = 〈u(·), ∂α
y Φ(·, y)〉. If K = supp Φ (compact subset

of X × Y ), both projections projXK, projY K are compact so that

|〈u(·), ∂α
y Φ(·, y)〉| ≤ C1 sup

|β|≤N1, x∈projXK
|(∂β

x∂α
y Φ)(x, y)|

and thus

|
〈
v(y), 〈u(x), Φ(x, y)〉

〉
| ≤ C2 sup

|α|≤N2
y∈projY K

|∂α
y 〈u(·), Φ(·, y)〉|

≤ C1C2 sup
|β|≤N1,|α|≤N2

(x,y)∈K

|(∂β
x∂α

y Φ)(x, y)|,

implying that w is indeed a distribution on X×Y . Since the formula (3.4.12) follows
from (3.4.13), this concludes the proof of the theorem.

Remark 3.4.12. (1) The uniqueness ensures that w = u⊗ v is also defined by

〈w, Φ〉 =
〈
u(x), 〈v(y), Φ(x, y)〉

〉
, (3.4.14)

a formula for which (3.4.12) also holds.
(2) If u ∈ L1

loc(X), v ∈ L1
loc(Y ), then u⊗ v belongs to L1

loc(X × Y ) and is defined by
u(x)v(y), thanks to the lemma 3.1.7 and to the proposition 3.4.10.
(3) For u ∈ D ′(X), v ∈ D ′(Y ), we have

supp(u⊗ v) = supp u× supp v. (3.4.15)

In fact, if Φ ∈ C∞
c (X×Y ) with supp Φ ⊂ X×(supp v)c or with supp Φ ⊂ (supp u)c×

Y , it follows from (3.4.14) or (3.4.13) that 〈u⊗ v, Φ〉 = 0; this holds as well when

supp Φ ⊂ (supp u× supp v)c =
(
(supp u)c × Y

)
∪

(
X × (supp v)c

)
,

since supp Φ ⊂ Ω1 ∪ Ω2 with Ωj open subset of X × Y and, thanks to the theorem
3.1.14, the compactly supported Φ = Φ1 + Φ2, with supp Φj ⊂ Ωj (it is also a
direct consequence of the theorem 3.1.15 since (u⊗ v)|Ωj = 0). We have proven that
supp(u ⊗ v) ⊂ supp u × supp v. Conversely, if x0 ∈ supp u, y0 ∈ supp v, and U, V
are respective open neighborhoods of x0, y0 in X, Y , we can find φ0 ∈ C∞

c (U), ψ0 ∈
C∞

c (V ) such that 〈u, φ0〉 *= 0 and 〈v, ψ0〉 *= 0. As a result φ0⊗ψ0 ∈ C∞
c (U ×V ) and

〈u ⊗ v, φ0 ⊗ ψ0〉 = 〈u, φ0〉〈v, ψ0〉 *= 0, so that (u ⊗ v)|U×V is not zero, proving that
(x0, y0) ∈ supp(u⊗ v) and the sought result.
(4) With the notations of the previous theorem, we have obviously from the expres-
sion (3.4.13) and the theorem 3.4.1 that ∂α

x ∂β
y (u⊗ v) = (∂α

x u)⊗ (∂β
y v).
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Proposition 3.4.13. Let n ∈ N∗, U be an open subset of Rn−1, I an interval of
R. Let u ∈ D ′(U × I) such that ∂xnu = 0. Then, there exists v ∈ D ′(U) such that
u = v ⊗ 1. In other words, the differential equation ∂xnu = 0 has the only solutions
u(x′, xn) = v(x′).

Proof. From the remark 3.4.12 (3) above, the tensor products v(x′) ⊗ 1 are indeed
solutions of ∂xnu = 0. Conversely the proposition is proven for n = 1 by the lemma
3.2.4. Let us assume n ≥ 2; we consider χ0 ∈ C∞

c (I) such that
∫

χ0(t)dt = 1 and
we define v ∈ D ′(U) by the identity

〈v, ϕ〉D ′(U),D(U) = 〈u, ϕ⊗ χ0〉D ′(U×I),D(U×I).

For ϕ ∈ D(U), ψ ∈ D(I), we have with J(ψ) =
∫

ψ(t)dt,

〈v ⊗ 1, ϕ⊗ ψ〉 = 〈u, ϕ⊗ χ0〉J(ψ).

From the proof of the lemma 3.2.4, we see that ψ−χ0J(ψ) = θ′ with θ ∈ C∞
c (I), and

we get 〈u, ϕ⊗
(
χ0J(ψ)−ψ

)
〉 = 〈u, ∂xn(ϕ⊗θ)〉 = 0 so that 〈v⊗1, ϕ⊗ψ〉 = 〈u, ϕ⊗ψ〉,

which is the sought result.

3.5 Convolution

We want to define the convolution of two distributions on Rn, provided one of them
has compact support. Assuming first that u ∈ L1

comp(Rn), v ∈ L1
loc(Rn), φ ∈ C∞

c (Rn)
the integral

∫∫
u(x− y)v(y)φ(x)dxdy =

∫∫
u(x)v(y)φ(x + y)dxdy, (3.5.1)

makes sense since x and x + y are moving in a compact set in the last integral (and
so is y). This formula allows us to define

(u ∗ v)(x) =

∫
u(x− y)v(y)dy =

∫
u(y)v(x− y)dy

and can naturally be extended to u, v ∈ L1(Rn) so that ‖u∗v‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn),
making L1(Rn) a Banach algebra (without unit). The inequality of Young (see e.g.
the Théorème 6.2.1 in [9]) is a non-trivial extension of that inequality. Anyhow, at
the moment, we want to use the formula (3.5.1) for our general definition.

3.5.1 Convolution E ′(Rn) ∗D ′(Rn)

Definition 3.5.1. Let u ∈ E ′(Rn), v ∈ D ′(Rn). We define the convolution u ∗ v by
the following bracket of duality

〈u ∗ v, φ〉D ′(Rn),D(Rn) =
〈
u(x), 〈v(y), φ(x + y)〉

〉
=

〈
v(y), 〈u(x), φ(x + y)〉

〉
. (3.5.2)
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We note that the theorem 3.4.1 shows that the function Rn . x 4→ 〈v(y), φ(x+y)〉
is C∞ and thus that the first definition makes sense from the corollary 3.4.2 (2). To
check the second equality above, we note that with χ ∈ C∞

c (Rn) equal to 1 near the
support of u, we have χu = u and thus from the remark 3.4.12(1) and the formula
(3.4.13),

〈
u(x), 〈v(y), φ(x+ y)〉

〉
=

〈
u(x), 〈v(y), χ(x)φ(x+ y)〉

〉
= 〈u(x)⊗ v(y), χ(x)φ(x+ y)〉,

which is also equal to
〈
v(y), 〈u(x), χ(x)φ(x + y)〉

〉
=

〈
v(y), 〈u(x), φ(x + y)〉

〉
. This

proves as well that u ∗ v is a distribution on Rn since the mapping C∞
c (Rn) . φ 4→

Φ ∈ C∞
c (R2n), with Φ(x, y) = φ(x + y)χ(x) is continuous.

Remark 3.5.2. We note that whatever is χ ∈ C∞
c (Rn) equal to 1 near the support

of u, we have for u ∈ E ′(Rn), v ∈ D ′(Rn),

〈u ∗ v, φ〉 = 〈u(x)⊗ v(y), χ(x)φ(x + y)〉. (3.5.3)

Proposition 3.5.3. Let u ∈ E ′(Rn), v ∈ D ′(Rn). We have

supp(u ∗ v) ⊂ supp u + supp v. (3.5.4)

Proof. Note first that supp u+supp v is a closed subset of Rn as the sum of a compact
set and a closed set (exercise). Now if φ ∈ C∞

c (Rn) with supp φ ⊂ (supp u+supp v)c,
then

supp
(
(x, y) 4→ φ(x + y)

)
⊂ (supp u× supp v)c. (3.5.5)

In fact, if (x0, y0) ∈ supp u× supp v, then x0 + y0 ∈ supp u+ supp v ⊂ (supp φ)c, the
latter being open so that there exists U open in V0 with φ(x0 + U + y0 + U) = 0. As
a consequence, the open set (x0 + U)× (y0 + U) ⊂

(
supp((x, y) 4→ φ(x + y))

)c
and

this implies (x0, y0) ∈
(
supp((x, y) 4→ φ(x+ y))

)c
and proves (3.5.5), so that (3.5.3),

(3.4.15) give the conclusion of the proposition.

Remark 3.5.4. For u, v both in E ′(Rn), the formula (3.5.2) ensures that u∗v = v∗u.

3.5.2 Regularization

Proposition 3.5.5. Let u ∈ D ′(Rn), ρ ∈ C∞
c (Rn). Then ρ ∗ u belongs to C∞(Rn).

Proof. We have from the definitions, with χ ∈ C∞
c (Rn) equal to 1 near supp ρ,

φ ∈ C∞
c (Rn),

〈ρ ∗ u, φ〉 = 〈ρ(x)⊗ u(y), χ(x)φ(x + y)〉 = 〈u(y), 〈ρ(x), χ(x)φ(x + y)〉〉, (3.5.6)

and we note that 〈ρ(x), χ(x)φ(x + y)〉 =
∫

ρ(x)φ(x + y)dx =
∫

ρ(x− y)φ(x)dx. As
a result, we have

〈ρ ∗ u, φ〉 = 〈u(y),

∫
ρ(x− y)φ(x)︸ ︷︷ ︸

∈C∞c (R2n)

dx〉 =

∫
φ(x)〈u(y), ρ(x− y)〉dx
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where the last equality is due to the theorem 3.4.15 which gives also that ψ(x) =
〈u(y), ρ(x − y)〉 is C∞; we have proven ρ ∗ u = ψ and the result. We note also the
formula following from (3.5.6)

〈ρ ∗ u, φ〉 = 〈u, ρ̌ ∗ φ〉. (3.5.7)

Lemma 3.5.6. Let Ω be an open subset of Rn and T ∈ D ′(Ω). There exists a
sequence (ψj)j≥1 in D(Ω) such that limj ψj = T in the weak-dual topology sense of
the definition 3.1.16.

Proof. We consider first a sequence (Kj)j≥1 of compact subsets of Ω as in the lemma
2.3.1 and a sequence (χj)j≥1 such that χj ∈ C∞

c (int Kj+1), χj = 1 near Kj (see the
lemma 3.1.3). In the weak-dual topology sense, we have limj χjT = T : let ϕ ∈ D(Ω),
K = supp ϕ. From the lemma 2.3.1, there exists j such that supp ϕ ⊂ Kj and
thus ϕχj = ϕ, implying 〈Tχj, ϕ〉 = 〈T, χjϕ〉 = 〈T,ϕ〉. We can also consider the
compactly supported distribution χjT and see it as a distribution on Rn. We take
now a function ρ ∈ C∞

c (Rn) such that
∫

ρ(x)dx = 1. According to the first example
in the section 3.1.3, we define ρε (it tends to the Dirac mass at 0 in the weak-dual
topology when ε → 0+). For ϕ ∈ D(Ω), using (3.5.7), we have

〈ρε ∗ (χjT ), ϕ〉 = 〈χjT, ρ̌ε ∗ ϕ〉. (3.5.8)

Considering now a decreasing sequence of positive numbers (εj) with limit 0 such
that

supp χj + εj supp ρ ⊂ int(Kj+1) ⊂ Ω,

and we define Tj = ρεj ∗ χjT. We have from the proposition 3.5.3 that supp Tj is
compact included in Ω and also that Tj ∈ C∞ (proposition 3.5.5). Going back to
(3.5.8), for a fixed ϕ, we can find j such that supp ϕ ⊂ Kj−1 for j ≥ j0, implying
that

supp(ρ̌εj ∗ ϕ) ⊂ Kj−1 + εj supp ρ ⊂ supp χj−1 + εj−1 supp ρ ⊂ Kj,

implying that χj(ρ̌εj ∗ ϕ) = ρ̌εj ∗ ϕ and 〈ρεj ∗ (χjT ), ϕ〉 = 〈T, ρ̌εj ∗ ϕ〉. The result
follows from the proposition 3.1.1 (implying limj(ρ̌εj ∗ ϕ) = ϕ in C∞

c (Ω)) and the
(sequential) continuity of the distribution T .

Proposition 3.5.7. Let u ∈ E ′(Rn), v ∈ D ′(Rn). We have

singsupp(u ∗ v) ⊂ singsupp u + singsupp v. (3.5.9)

Proof. We can choose χ ∈ C∞
c (Rn) equal to 1 near the singsupp u, ψ ∈ C∞ equal to

1 near the singular support of v. We have from the proposition 3.5.5

u ∗ v = (χu) ∗ v + (

∈C∞c (Rn)︷ ︸︸ ︷
(1− χ)u) ∗ v︸ ︷︷ ︸

∈C∞(Rn)

≡ (χu) ∗ (ψv) +

∈E ′(Rn)︷︸︸︷
(χu) ∗(

∈C∞(Rn)︷ ︸︸ ︷
(1− ψ)v)︸ ︷︷ ︸

∈C∞(Rn)

mod C∞(Rn)

and thus we get for all ε > 0

singsupp(u ∗ v) ⊂ supp ψ + supp ψ ⊂ singsupp u + εB̄1 + singsupp v + εB̄1,

which gives the result.

5For Φ ∈ C∞
c (Rn × Rn), u ∈ D ′(Rn), 〈1⊗ u, Φ〉 = 〈u(y),

∫
Φ(x, y)dx〉 =

∫
〈u(y),Φ(x, y)〉dx.
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3.5.3 Convolution with a proper support condition

Looking at the formula (3.5.1), we see that we can extend it easily for L1
loc(Rn)

functions u, v so that the mapping

supp u× supp v . (x, y) 4→ x + y = σ(x, y) ∈ Rn (3.5.10)

is proper, i.e. such that σ−1(K) is compact for K compact subset of Rn. In fact
if u, v ∈ L1

loc(Rn) are such that the map σ of (3.5.10) is proper, the function u ∗ v
defined by

(u ∗ v)(x) =

∫
u(x− y)v(y)dy

is also L1
loc(Rn), since for K compact subset of Rn, we have

∫∫
|u(x− y)||v(y)|1K(x)dydx =

∫∫
|u(x)||v(y)|1K(x + y)dxdy

=

∫∫

σ−1(K)

|u(x)||v(y)|dxdy < ∞, since σ−1(K) is compact in R2n.

We can extend as well the convolution product of distributions u, v, provided σ in
(3.5.10) is proper. Before doing so, we prove a simple lemma.

Lemma 3.5.8. Let F1, . . . , Fm be closed subsets of Rn such that the mapping σ :
F1 × · · · × Fm → Rn, defined by σ(x1, . . . , xm) = x1 + · · · + xm is proper. Defining
for ε > 0, Fj,ε = {x ∈ Rn, |x − Fj| ≤ ε}, the mapping σε : F1,ε × · · · × Fm,ε → Rn,
defined by σε(x1, . . . , xm) = x1 + · · ·+ xm is also proper.

Proof. We note first that Fj,ε = Fj + εB̄1 (B̄1 is the closed unit ball of Rn) is
closed as the sum of a compact and a closed set. Let K be compact subset of
Rn; if (x1, . . . , xm) ∈ σ−1

ε (K), then there exists yj ∈ Fj, tj ∈ Rn, |tj| ≤ ε, such
that xj = yj + tj,

∑
1≤j≤m(yj + tj) ∈ K and thus

∑
1≤j≤m yj ∈ K + mεB̄1, so

that (yj)1≤j≤m ∈ σ−1(K + mεB̄1), a compact subset of
∏

Fj. As a consequence,
(xj)1≤j≤m ∈ σ−1(K + mεB̄1) + εB̄1,nm (B̄1,nm is the closed unit ball of Rnm), which
is compact. As a result, σ−1

ε (K) is compact as a closed subset of
∏

Fj,ε (σε is
continuous) included in a compact set.

Definition 3.5.9. Let u1, . . . , um ∈ D ′(Rn) such that the mapping σ
∏

1≤j≤m

supp uj . (xj)1≤j≤m 4→
∑

1≤j≤m

xj ∈ Rn is proper. (3.5.11)

For ε > 0, we take χj,ε ∈ C∞(Rn) such that supp χj,ε ⊂ supp uj + εB̄1 and supp χj,ε

is 1 on a neighborhood of supp uj. We define then

〈u1 ∗ · · · ∗ um, φ〉D ′(Rn),D(Rn) = 〈u1 ⊗ · · ·⊗ um, φ̃〉D ′(Rnm),D(Rnm) (3.5.12)

with φ̃(x1, . . . , xm) =
∏

1≤j≤m χj,ε(xj)φ(
∑

1≤j≤m xj) : we note that φ̃ is in D(Rnm)
since

supp φ̃ ⊂ {(xj)1≤j≤m ∈
∏

1≤j≤m

supp χj,ε with σ((xj)) ∈ supp φ}

which is compact from the previous lemma and (3.5.11).
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It is also easy to prove that this definition does not depend on the choices of the
functions χj,ε having the properties listed above and that this definition coincides
with the definition of convolution in the previous section. In particular, we can prove
the associativity of the convolution using the identity (3.5.12), provided the condition
(3.5.11) is satisfied. As a counterexample we can take u1 = 1, u2 = δ′0, u3 = H and
we have since 1 ∗ δ′0 = 0, δ′0 ∗H = δ0,

(u1 ∗ u2) ∗ u3 = 0, u1 ∗ (u2 ∗ u3) = 1 ∗ δ0 = 1.

Naturally the hypothesis (3.5.11) is violated here since the mapping σ defined on
R× {0}×R+ is not proper: σ−1({0}) ⊃ {(−N, 0, N)}N∈N. The assumption (3.5.11)
is satisfied for m = 2 if supp u1 is compact and also for distributions on R with
support in R+. We get also that

∀u ∈ D ′(Rn), u ∗ δ = u, since 〈u(x1)⊗ δ(x2),φ(x1 + x2)〉 = 〈u, φ〉. (3.5.13)

and for u, v ∈ D ′(Rn) such that (3.5.11) holds

∂α
x (u ∗ v) = (∂α

x u) ∗ v = u ∗ (∂α
x v), (3.5.14)

since 〈∂α
x (u ∗ v), φ〉 = (−1)|α|〈u ∗ v, ∂α

x φ〉 = (−1)|α|〈u(x) ⊗ v(y), (∂αφ)(x + y)〉 =
〈(∂α

x u)(x)⊗ v(y), φ(x + y)〉 and putting inside the brackets the cut-off functions χε

does not change the outcome of the computation.

3.6 Some fundamental solutions

3.6.1 Definitions

Definition 3.6.1. We consider a constant coefficients differential operator

P = P (D) =
∑

|α|≤m

aαDα
x , where aα ∈ C, Dα

x =
1

(2iπ)|α|
∂α

x . (3.6.1)

A distribution E ∈ D ′(Rn) is called a fundamental solution of P when PE = δ0.

We note that if f ∈ E ′(Rn) and E is a fundamental solution of P , we have from
(3.5.14), (3.5.13),

P (E ∗ f) = PE ∗ f = δ0 ∗ f = f,

which allows to find a solution of the Partial Differential Equation (PDE for short)
P (D)u = f , at least when f is a compactly supported distribution.

Examples. We have on the real line already proven (see (3.2.2)) that dH
dt = δ0, so

that the Heaviside function is a fundamental solution of d/dt (note that from the
lemma 3.2.4, the other fundamental solutions are C + H(t)). This also implies that

∂x1

(
H(x1)⊗ δ0(x2)⊗ · · ·⊗ δ0(xn)

)
= δ0(x), (the Dirac mass at 0 in Rn).

Let N ∈ N. With xλ
+ defined in (3.4.8), we get, since ∂N+1

x1
(xN+1

1,+ ) = H(x1)(N + 1)!,
that

(∂x1 . . . ∂xn)N+2
( ∏

1≤j≤n

( xN+1
j,+

(N + 1)!

)
= δ0(x).
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The last example has the following interesting consequence.

Proposition 3.6.2. Let u ∈ D ′(Rn) and Ω a bounded open set. Then u|Ω is a
derivative of finite order of a continuous function.

Proof. We consider for χ ∈ C∞
c (Rn) equal to 1 on Ω the distribution χu ∈ E ′(Rn)

whose restriction to Ω coincides with u|Ω. The distribution χu has finite order N

(see the remark 3.3.3). We have with E(x) =
∏

1≤j≤n

xN+1
j,+

(N+1)!

χu = χu ∗ δ0 = (∂x1 . . . ∂xn)N+2
(
χu ∗ E

)
. (3.6.2)

Since the function E is CN with Nth derivatives (Lipschitz) continuous, we may
consider the function ψ defined by

ψ(x) = 〈χ(y)u(y), E(x− y)〉.

Since χu is compactly supported with order N , we have with K compact subset of
Rn,

|ψ(x + h)− ψ(x)| ≤ C sup
|α|≤N,y∈K

|∂α
y

(
E(x + h− y)− E(x− y)

)
|.

Since the function E is CN with Nth derivatives Lipschitz continuous, we find that
ψ is Lipschitz continuous. We have from the definitions, with φ ∈ C∞

c (Rn),

〈E ∗ χu,φ〉 = 〈E(x)⊗ (χu)(y), φ(x + y)〉 = 〈(χu)(y), 〈E(x), φ(x + y)〉〉,

and we note that 〈E(x), φ(x + y)〉 =
∫

E(x− y)φ(x)dx. As a result, we have

〈E ∗ χu,φ〉 = 〈u(y),

∫
χ(y)E(x− y)φ(x)︸ ︷︷ ︸

∈CN
c (R2n)

dx〉 =

∫
φ(x)〈(χu)(y), E(x− y)〉dx

where the last equality is due to the theorem 3.4.16 and gives also that ψ = χu ∗E.
The result follows from the continuity of ψ and (3.6.2).

3.6.2 The Laplace and Cauchy-Riemann equations

We define the Laplace operator ∆ in Rn as

∆ =
∑

1≤j≤n

∂2
xj

. (3.6.3)

In one dimension, we have from (3.2.2) that d2

dt2 (t+) = δ0 and for n ≥ 2 the following
result describes the fundamental solutions of the Laplace operator. In R2

x,y, we define
the operator ∂̄ (a.k.a. the Cauchy-Riemann operator) by

∂̄ =
1

2
(∂x + i∂y). (3.6.4)

6For Φ ∈ CN
c (Rn × Rn), v ∈ D ′(Rn), order(v) ≤ N 〈1 ⊗ v,Φ〉 = 〈v(y),

∫
Φ(x, y)dx〉 =∫

〈v(y),Φ(x, y)〉dx.
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Theorem 3.6.3. We have ∆E = δ0 with ‖ · ‖ standing for the Euclidean norm,

E(x) =
1

2π
ln ‖x‖, for n = 2, (3.6.5)

E(x) = ‖x‖2−n 1

(2− n)|Sn−1| , for n ≥ 3, with |Sn−1| = 2πn/2

Γ(n/2)
, (3.6.6)

∂̄
( 1

πz

)
= δ0, with z = x + iy (equality in D ′(R2

x,y)). (3.6.7)

Proof. We start with n ≥ 3, noting that the function ‖x‖2−n is L1
loc and homogeneous

with degree 2−n, so that ∆‖x‖2−n is homogeneous with degree −n (see the remark

3.4.7 (2)). Moreover, the function ‖x‖2−n = f(r2), r2 = ‖x‖2, f(t) = t
1−n

2
+ is smooth

outside 0 and we can compute there

∆(f(r2)) =
∑

j

∂j(f
′(r2)2xj) =

∑

j

f ′′(r2)4x2
j + 2nf ′(r2) = 4r2f ′′(r2) + 2nf ′(r2),

so that with t = r2,

∆(f(r2)) = 4t(1− n

2
)(−n

2
)t−

n
2−1 + 2n(1− n

2
)t−

n
2 = t−

n
2 (1− n

2
)(−2n + 2n) = 0.

As a result, ∆‖x‖2−n is homogeneous with degree −n and supported in {0}. From
the theorem 3.3.4, we obtain that

∆‖x‖2−n = cδ0︸ ︷︷ ︸
homogeneous
degree −n

+
∑

1≤j≤m

∑

|α|=j

cj,αδ(α)
0

︸ ︷︷ ︸
homogeneous
degree −n− j

.

The lemma 3.4.8 implies that for 1 ≤ j ≤ m, 0 =
∑

|α|=j cj,αδ(α)
0 and ∆‖x‖2−n = cδ0.

It remains to determine the constant c. We calculate, using the previous formulas
for the computation of ∆(f(r2)), here with f(t) = e−πt,

c = 〈∆‖x‖2−n, e−π‖x‖2〉 =

∫
‖x‖2−ne−π‖x‖2(4‖x‖2π2 − 2nπ

)
dx

= |Sn−1|
∫ +∞

0

r2−n+n−1e−πr2
(4π2r2 − 2nπ)dr

= |Sn−1|
( 1

2π
[e−πr2

(4π2r2 − 2nπ)]0+∞ +
1

2π

∫ +∞

0

e−πr2
8π2rdr

)

= |Sn−1|(−n + 2),

giving (3.6.6). For the convenience of the reader, we calculate explicitely |Sn−1|. We
have indeed

1 =

∫

Rn

e−π‖x‖2dx = |Sn−1|
∫ +∞

0

rn−1e−πr2
dr

=︸︷︷︸
r=t1/2π−1/2

|Sn−1|π(1−n)/2

∫ +∞

0

t
n−1

2 e−t 1

2
t−1/2dtπ−1/2 = |Sn−1|π−n/22−1Γ(n/2).
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Turning now our attention to the Cauchy-Riemann equation, we see that 1/z is also
L1

loc(R2), homogeneous of degree −1, and satisfies ∂̄(z−1) = 0 on the complement of
{0}, so that the same reasoning as above shows that

∂̄(π−1z−1) = cδ0.

To check the value of c, we write c = 〈∂̄(π−1z−1), e−πzz̄〉 =
∫

R2 e−πzz̄π−1z−1πzdxdy =
1, which gives (3.6.7). We are left with the Laplace equation in two dimensions and
we note that with ∂

∂z = 1
2(∂x − i∂y),

∂
∂z̄ = 1

2(∂x + i∂y), we have in two dimensions

∆ = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
. (3.6.8)

Solving the equation 4∂E
∂z = 1

πz leads us to try E = 1
2π ln |z| and we check directly7

that ∂
∂z

(
ln(zz̄)

)
= z−1

∆(
1

2π
ln |z|) = π−12−24

∂

∂z̄

∂

∂z

(
ln(zz̄)

)
= π−1 ∂

∂z̄

(
z−1

)
= δ0.

3.6.3 Hypoellipticity

Definition 3.6.4. Let P be a linear operator of type (3.6.1). We shall say that P
is hypoelliptic when for all open subsets Ω of Rn and all u ∈ D ′(Ω), we have

singsupp u = singsupp Pu. (3.6.9)

It is obvious that singsupp Pu ⊂ singsupp u, so the hypoellipticity means that
singsupp u ⊂ singsupp Pu, which is a very interesting piece of information since we
can then determine the singularities of our (unknown) solution u, which are located
at the same place as the singularities of the source f , which is known when we try
to solve the equation Pu = f.

Theorem 3.6.5. Let P be a linear operator of type (3.6.1) such that P has a fun-
damental solution E satisfying

singsupp E = {0}. (3.6.10)

Then P is hypoelliptic. In particular the Laplace and the Cauchy-Riemann operators
are hypoelliptic.

N.B. The condition (3.6.10) appears as an iff condition for the hypoellipticity of the
operator P since it is also a consequence of the hypoellipticity property.

7Noting that ln(x2 + y2) and its first derivatives are L1
loc(R2), we have for ϕ ∈ C∞

c (R2),
〈 ∂

∂z

(
ln |z|2

)
,ϕ〉 =

1
2

∫∫

R2
(−∂xϕ+i∂yϕ) ln(x2+y2)dxdy =

∫∫
ϕ(x, y)(xr−2−iyr−2)dxdy =

∫∫
(x−iy)−1ϕ(x, y)dxdy.
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Proof. Assume that (3.6.10) holds, let Ω be an open subset of Rn and u ∈ D ′(Ω).
We consider f = Pu ∈ D ′(Ω), x0 /∈ singsupp f , χ0 ∈ C∞

c (Ω), χ0 = 1 near x0. We
have from the proposition 3.5.5 that

χu = χu ∗ PE = (Pχu) ∗ E = ([P, χ]u) ∗ E +

∈C∞c (Rn)︷︸︸︷
(χf) ∗E︸ ︷︷ ︸
∈C∞(Rn)

and thus, using the the proposition 3.5.7 for singular supports, we get

singsupp(χu) ⊂ singsupp([P, χ]u) + singsupp E = singsupp([P, χ]u) ⊂ supp(u∇χ),

and since χ is identically 1 near x0, we get that x0 /∈ supp(u∇χ), implying x0 /∈
singsupp(χu), proving that x0 /∈ singsupp u and the result.

3.7 Appendix

3.7.1 The Gamma function

The gamma function Γ is a meromorphic function on C given for Re z > 0 by the
formula

Γ(z) =

∫ +∞

0

e−ttz−1dt. (3.7.1)

For n ∈ N, we have Γ(n + 1) = n!; another interesting value is Γ(1/2) =
√

π. The
functional equation

Γ(z + 1) = zΓ(z) (3.7.2)

is easy to prove for Re z > 0 and can be used to extend the Γ function into a mero-

morphic function with simple poles at −N and Res(Γ,−k) = (−1)k

k! . For instance, for
−1 < Re z ≤ 0 with z *= 0 we define

Γ(z) =
Γ(z + 1)

z
, where we can use (3.7.1) to define Γ(z + 1).

More generally for k ∈ N, −1− k < Re z ≤ −k, z *= −k, we can define

Γ(z) =
Γ(z + k + 1)

z(z + 1) . . . (z + k)
.

There are manifold references on the Gamma function. One of the most compre-
hensive is certainly the chapter VII of the Bourbaki volume Fonctions de variable
réelle [2].
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Chapter 4

Introduction to Fourier Analysis

4.1 Fourier Transform of tempered distributions

4.1.1 The Fourier transformation on S (Rn)

Let n ≥ 1 be an integer. The Schwartz space S (Rn) is defined in the section 2.3.5,
is a Fréchet space, as the space of C∞ functions u from Rn to C such that, for all
multi-indices1 α, β ∈ Nn,

sup
x∈Rn

|xα∂β
xu(x)| < +∞.

A simple example of such a function is e−|x|
2
, (|x| is the Euclidean norm of x) and

more generally if A is a symmetric positive definite n× n matrix the function

vA(x) = e−π〈Ax,x〉

belongs to the Schwartz class.

Definition 4.1.1. For u ∈ S (Rn), we define its Fourier transform û as

û(ξ) =

∫

Rn

e−2iπx·ξu(x)dx. (4.1.1)

Lemma 4.1.2. The Fourier transform sends continuously S (Rn) into itself.

Proof. Just notice that ξα∂β
ξ û(ξ) =

∫
e−2iπxξ∂α

x (xβu)(x)dx(2iπ)|β|−|α|(−1)|β|.

Lemma 4.1.3. For a symmetric positive definite n× n matrix A, we have

v̂A(ξ) = (det A)−1/2e−π〈A−1ξ,ξ〉. (4.1.2)

1Here we use the multi-index notation: for α = (α1, . . . ,αn) ∈ Nn we define

xα = xα1
1 . . . xαn

n , ∂α
x = ∂α1

x1
. . . ∂αn

xn
, |α| =

∑

1≤j≤n

αj .

101
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Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (4.1.2), i.e. to check

∫
e−2iπxξe−πx2

dx =

∫
e−π(x+iξ)2dxe−πξ2

= e−πξ2
,

where the second equality is obtained by taking the ξ-derivative of
∫

e−π(x+iξ)2dx :
we have indeed

d

dξ

(∫
e−π(x+iξ)2dx

)
=

∫
e−π(x+iξ)2(−2iπ)(x + iξ)dx = −i

∫
d

dx

(
e−π(x+iξ)2

)
dx = 0.

For a > 0, we obtain
∫

R e−2iπxξe−πax2
dx = a−1/2e−πa−1ξ2

, which is the sought result
in one dimension. If n ≥ 2, and A is a positive definite symmetric matrix, there
exists an orthogonal n× n matrix P (i.e. tPP = Id) such that

D =tPAP, D = diag(λ1, . . . ,λn), all λj > 0.

As a consequence, we have, since | det P | = 1,

∫

Rn

e−2iπx·ξe−π〈Ax,x〉dx =

∫

Rn

e−2iπ(Py)·ξe−π〈APy,Py〉dy =

∫

Rn

e−2iπy·(tP ξ)e−π〈Dy,y〉dy

(with η =tP ξ) =
∏

1≤j≤n

∫

R
e−2iπyjηje−πλjy2

j dyj =
∏

1≤j≤n

λ−1/2
j e−πλ−1

j η2
j

= (det A)−1/2e−π〈D−1η,η〉 = (det A)−1/2e−π〈tPA−1P tP ξ,tP ξ〉 = (det A)−1/2e−π〈A−1ξ,ξ〉.

Proposition 4.1.4. The Fourier transformation is an isomorphism of the Schwartz
class and for u ∈ S (Rn), we have

u(x) =

∫
e2iπxξû(ξ)dξ. (4.1.3)

Proof. Using (4.1.2) we calculate for u ∈ S (Rn) and ε > 0, dealing with absolutely
converging integrals,

uε(x) =

∫
e2iπxξû(ξ)e−πε2|ξ|2dξ

=

∫∫
e2iπxξe−πε2|ξ|2u(y)e−2iπyξdydξ

=

∫
u(y)e−πε−2|x−y|2ε−ndy

=

∫ (
u(x + εy)− u(x)

)
︸ ︷︷ ︸

with absolute value≤ε|y|‖u′‖L∞

e−π|y|2dy + u(x).

Taking the limit when ε goes to zero, we get the Fourier inversion formula

u(x) =

∫
e2iπxξû(ξ)dξ. (4.1.4)
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We have also proven for u ∈ S (Rn) and ǔ(x) = u(−x)

u = ˇ̂̂u. (4.1.5)

Since u 4→ û and u 4→ ǔ are continuous homomorphisms of S (Rn), this completes
the proof of the proposition.

Proposition 4.1.5. Using the notation

Dxj =
1

2iπ

∂

∂xj
, Dα

x =
n∏

j=1

Dαj
xj

with α = (α1, . . . ,αn) ∈ Nn, (4.1.6)

we have, for u ∈ S (Rn)

D̂α
xu(ξ) = ξαû(ξ), (Dα

ξ û)(ξ) = (−1)|α|x̂αu(x)(ξ) (4.1.7)

Proof. We have for u ∈ S (Rn), û(ξ) =
∫

e−2iπx·ξu(x)dx and thus

(Dα
ξ û)(ξ) = (−1)|α|

∫
e−2iπx·ξxαu(x)dx,

ξαû(ξ) =

∫
(−2iπ)−|α|∂α

x

(
e−2iπx·ξ)u(x)dx =

∫
e−2iπx·ξ(2iπ)−|α|(∂α

x u)(x)dx,

proving both formulas.

N.B. The normalization factor 1
2iπ leads to a simplification in the formulas (4.1.7),

but the most important aspect of these formulas is certainly that the Fourier trans-
formation exchanges the operation of derivation against the operation of multiplica-
tion. For instance if P (D) is given by a formula (3.6.1), we have

P̂ u(ξ) =
∑

|α|≤m

aαξαû(ξ) = P (ξ)û(ξ).

Remark 4.1.6. We have the following continuous inclusions2

D(Rn) ↪→ S (Rn) ↪→ E (Rn), (4.1.8)

triggering the (continuous) inclusions of topological duals,

E ′(Rn) ↪→ S ′(Rn) ↪→ D ′(Rn). (4.1.9)

The space S ′(Rn) is the topological dual of the Fréchet space S (Rn) and is called
the space of tempered distributions on Rn. We shall sometimes omit the “Rn” in
S (Rn), S ′(Rn), at least when it is clear that the dimension is fixed equal to n.

The Fourier transformation can be extended to S ′(Rn).

2The first inclusion is certainly sequentially continuous according to the definition 3.1.9 and the
second is an inclusion of Fréchet spaces: for each semi-norm p on E (Rn), there exists a semi-norm
q on S (Rn) such that for all u ∈ S (Rn), p(u) ≤ q(u).
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4.1.2 The Fourier transformation on S ′(Rn)

Definition 4.1.7. Let T be a tempered distribution ; the Fourier transform T̂ of T
is the tempered distibution defined by the formula

〈T̂ , ϕ〉S ′,S = 〈T, ϕ̂〉S ′,S . (4.1.10)

The linear form T̂ is obviously a tempered distribution since the Fourier transfor-
mation is continuous on S . Thanks to the lemma 3.1.7, if T ∈ S , the present
definition of T̂ and (4.1.1) coincide.

Note that for T,ϕ ∈ S , we have 〈T̂ , ϕ〉 =
∫∫

T (x)e−2iπx·ξϕ(ξ)dxdξ = 〈T, ϕ̂〉.
This definition gives that

δ̂0 = 1, (4.1.11)

since 〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =
∫

ϕ(x)dx = 〈1, ϕ〉.

Theorem 4.1.8. The Fourier transformation is an isomorphism of S ′(Rn). Let T
be a tempered distribution. Then we have3

T =
ˇ̂̂
T. (4.1.12)

With obvious notations, we have the following extensions of (4.1.7),

D̂α
xT (ξ) = ξαT̂ (ξ), (Dα

ξ T̂ )(ξ) = (−1)|α|x̂αT (x)(ξ). (4.1.13)

Proof. Using the notation (ϕ̌)(x) = ϕ(−x) for ϕ ∈ S , we define Š for S ∈ S ′ by
(see the remark 3.4.4), 〈Š, ϕ〉S ′,S = 〈S, ϕ̌〉S ′,S and we obtain for T ∈ S ′

〈
ˇ̂̂
T,ϕ〉S ′,S = 〈 ˆ̂T , ϕ̌〉S ′,S = 〈T̂ , ˆ̌ϕ〉S ′,S = 〈T, ˆ̌̂ϕ〉S ′,S = 〈T, ϕ〉S ′,S ,

where the last equality is due to the fact that ϕ 4→ ϕ̌ commutes4 with the Fourier

transform and (4.1.4) means ˇ̂̂ϕ = ϕ, a formula also proven true on S ′ by the previous
line of equality. The formula (4.1.7) is true as well for T ∈ S ′ since, with ϕ ∈ S
and ϕα(ξ) = ξαϕ(ξ), we have

〈D̂αT , ϕ〉S ′,S = 〈T, (−1)|α|Dαϕ̂〉S ′,S = 〈T, ϕ̂α〉S ′,S = 〈T̂ , ϕα〉S ′,S ,

and the other part is proven the same way.

The following lemma will be useful.

Lemma 4.1.9. Let T ∈ S ′(Rn) be a homogeneous distribution of degree m. Then
its Fourier transform is a homogeneous distribution of degree −m− n

Proof. We check

(ξ ·Dξ)T̂ = −ξ · x̂T = − ̂(Dx · xT ) = − n

2iπ
T̂ − 1

2iπ
̂(x · ∂xT ) = −(n + m)

2iπ
T̂ ,

so that the Euler equation (3.4.6) ξ∂̇ξT̂ = −(n + m)T̂ is satisfied.

3According to the remark 3.4.4, Ť is the distribution defined by 〈Ť , ϕ〉 = 〈T, ϕ̌〉 and if T ∈ S ′,
Ť is also a tempered distribution since ϕ 4→ ϕ̌ is an involutive isomorphism of S .

4If ϕ ∈ S , we have ̂̌ϕ(ξ) =
∫

e−2iπx·ξϕ(−x)dx =
∫

e2iπx·ξϕ(x)dx = ϕ̂(−ξ) = ˇ̂ϕ(ξ).
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4.1.3 The Fourier transformation on L1(Rn)

Theorem 4.1.10. The Fourier transformation is linear continuous from L1(Rn)
into L∞(Rn) and for u ∈ L1(Rn), we have

û(ξ) =

∫
e−2iπx·ξu(x)dx, ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn). (4.1.14)

Proof. The formula (4.1.1) can be used to define directly the Fourier transform of
a function in L1(Rn) and this gives an L∞(Rn) function which coincides with the
Fourier transform: for a test function ϕ ∈ S (Rn), and u ∈ L1(Rn), we have by the
definition (4.1.10) above and the Fubini theorem

〈û, ϕ〉S ′,S =

∫
u(x)ϕ̂(x)dx =

∫∫
u(x)ϕ(ξ)e−2iπx·ξdxdξ =

∫
ũ(ξ)ϕ(ξ)dξ

with ũ(ξ) =
∫

e−2iπx·ξu(x)dx which is thus the Fourier transform of u.

4.1.4 The Fourier transformation on L2(Rn)

We refer the reader to the section 5.3 in Chapter 5.

4.1.5 Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(x) = 1 for x > 0, H(x) = 0
for x ≤ 0 ; it is obviously a tempered distribution, so that we can compute its Fourier
transform. With the notation of this section, we have, with δ0 the Dirac mass at 0,
Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1

iπ
=

1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ

so that ξ
(
ŝignξ − 1

iπpv(1/ξ)
)

= 0 and from the theorem 3.2.8, we get

ŝignξ − 1

iπ
pv(1/ξ) = cδ0,

with c = 0 since the lhs is odd. We obtain

ŝign(ξ) =
1

iπ
pv

1

ξ
, (4.1.15)

̂
pv(

1

πx
) = −i sign ξ, (4.1.16)

Ĥ =
δ0

2
+

1

2iπ
pv(

1

ξ
) =

1

(x− i0)

1

2iπ
. (4.1.17)

Let us consider now for 0 < α < n the L1
loc(Rn) function uα(x) = |x|α−n (|x| is

the Euclidean norm of x); since uα is also bounded for |x| ≥ 1, it is a tempered
distribution. Let us calculate its Fourier transform vα. Since uα is homogeneous of
degree α − n, we get from the lemma 4.1.9 that vα is a homogeneous distribution
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of degree −α. On the other hand, if S ∈ O(Rn) (the orthogonal group), we have in
the distribution sense (see the definition 3.4.3), since uα is a radial function,

vα(Sξ) = vα(ξ). (4.1.18)

The distribution |ξ|αvα(ξ) is homogeneous of degree 0 on Rn\{0} and is also “radial”,
i.e. satisfies (4.1.18). Moreover on Rn\{0}, the distribution vα is a C1 function which
coincides with

∫
e−2iπx·ξχ0(x)|x|α−ndx + |ξ|−2N

∫
e−2iπx·ξ|Dx|2N

(
χ1(x)|x|α−n

)
dx,

where χ0 ∈ C∞
c (Rn) is 1 near 0 and χ1 = 1 − χ0, N ∈ N, α + 1 < 2N . As a result

|ξ|αvα(ξ) = cα on Rn\{0} and the distribution on Rn (note that α < n)

T = vα(ξ)− cα|ξ|−α

is supported in {0} and homogeneous (on Rn) with degree −α. From the theorem
3.3.4 and the lemma 3.4.8, the condition 0 < α < n gives vα = cα|ξ|−α. To find cα,
we compute

∫
|x|α−ne−πx2

dx = 〈uα, e−πx2〉 = cα

∫
|ξ|−αe−πξ2

dξ

which yields

2−1Γ(
α

2
)π−

α
2 =

∫ +∞

0

rα−1e−πr2
dr = cα

∫ +∞

0

rn−α−1e−πr2
dr = cα2−1Γ(

n− α

2
)π−

n−α
2 .

We have proven the following lemma.

Lemma 4.1.11. Let n ∈ N∗ and α ∈]0, n[. The function uα(x) = |x|α−n is L1
loc(Rn)

and also a temperate distribution on Rn. Its Fourier transform vα is also L1
loc(Rn)

and given by

vα(ξ) = |ξ|−απ
n
2−α Γ(α

2 )

Γ(n−α
2 )

.

4.2 The Poisson summation formula

4.2.1 Wave packets

We define for x ∈ Rn, (y, η) ∈ Rn × Rn

ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y)·η = 2n/4e−π(x−y−iη)2e−πη2
, (4.2.1)

where for ζ = (ζ1, . . . , ζn) ∈ Cn, ζ2 =
∑

1≤j≤n

ζ2
j . (4.2.2)

We note that the function ϕy,η is in S(Rn) and with L2 norm 1. In fact, ϕy,η appears
as a phase translation of a normalized Gaussian. The following lemma introduces
the wave packets transform as a Gabor wavelet.
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Lemma 4.2.1. Let u be a function in the Schwartz class S(Rn). We define

(Wu)(y, η) = (u, ϕy,η)L2(Rn) = 2n/4

∫
u(x)e−π(x−y)2e−2iπ(x−y)·ηdx (4.2.3)

= 2n/4

∫
u(x)e−π(y−iη−x)2dxe−πη2

. (4.2.4)

For u ∈ L2(Rn), the function Tu defined by

(Tu)(y + iη) = eπη2
Wu(y,−η) = 2n/4

∫
u(x)e−π(y+iη−x)2dx (4.2.5)

is an entire function. The mapping u 4→ Wu is continuous from S(Rn) to S(R2n)
and isometric from L2(Rn) to L2(R2n). Moreover, we have the reconstruction for-
mula

u(x) =

∫∫

Rn×Rn

Wu(y, η)ϕy,η(x)dydη. (4.2.6)

Proof. For u in S(Rn), we have

Wu(y, η) = e2iπyηΩ̂
1
(η, y)

where Ω̂
1

is the Fourier transform with respect to the first variable of the S(R2n)
function Ω(x, y) = u(x)e−π(x−y)22n/4. Thus the function Wu belongs to S(R2n). It
makes sense to compute

2−n/2(Wu,Wu)L2(R2n) =

lim
ε→0+

∫
u(x1)u(x2)e

−π[(x1−y)2+(x2−y)2+2i(x1−x2)η+ε2η2]dydηdx1dx2. (4.2.7)

Now the last integral on R4n converges absolutely and we can use the Fubini theorem.
Integrating with respect to η involves the Fourier transform of a Gaussian function
and we get ε−ne−πε−2(x1−x2)2 . Since

2(x1 − y)2 + 2(x2 − y)2 = (x1 + x2 − 2y)2 + (x1 − x2)
2,

integrating with respect to y yields a factor 2−n/2. We are left with

(Wu,Wu)L2(R2n) = lim
ε→0+

∫
u(x1) u(x2)e

−π(x1−x2)2/2ε−ne−πε−2(x1−x2)2dx1dx2. (4.2.8)

Changing the variables, the integral is

lim
ε→0+

∫
u(s + εt/2) u(s− εt/2)e−πε2t2/2e−πt2dtds = ‖u‖2

L2(Rn)

by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-
timate |u(x)| ≤ C(1 + |x|)−n−1 imply, with v = u/C,

|v(s + εt/2) v(s− εt/2)| ≤ (1 + |s + εt/2|)−n−1(1 + |s + εt/2|)−n−1

≤ (1 + |s + εt/2|+ |s− εt/2|)−n−1

≤ (1 + 2|s|)−n−1.
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Eventually, this proves that

‖Wu‖2
L2(R2n) = ‖u‖2

L2(Rn) (4.2.9)

i.e.
W : L2(Rn) → L2(R2n) with W ∗W = idL2(Rn). (4.2.10)

Noticing first that
∫∫

Wu(y, η)ϕy,ηdydη belongs to L2(Rn) (with a norm smaller
than ‖Wu‖L1(R2n)) and applying Fubini’s theorem, we get from the polarization of
(4.2.9) for u, v ∈ S(Rn),

(u, v)L2(Rn) = (Wu,Wv)L2(R2n)

=

∫∫
Wu(y, η)(ϕy,η, v)L2(Rn)dydη

= (

∫∫
Wu(y, η)ϕy,ηdydη, v)L2(Rn),

yielding the result of the lemma u =
∫∫

Wu(y, η)ϕy,ηdydη.

4.2.2 Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions
in one dimension.

Lemma 4.2.2. For all complex numbers z, the following series are absolutely con-
verging and ∑

m∈Z
e−π(z+m)2 =

∑

m∈Z
e−πm2

e2iπmz. (4.2.11)

Proof. We set ω(z) =
∑

m∈Z e−π(z+m)2 . The function ω is entire and 1-periodic since

for all m ∈ Z, z 4→ e−π(z+m)2 is entire and for R > 0

sup
|z|≤R

|e−π(z+m)2| ≤ sup
|z|≤R

|e−πz2 |e−πm2
e2π|m|R ∈ l1(Z).

Consequently, for z ∈ R, we obtain, expanding ω in Fourier series5,

ω(z) =
∑

k∈Z
e2iπkz

∫ 1

0

ω(x)e−2iπkxdx.

5 Note that we use this expansion only for a C∞ 1-periodic function. The proof is simple and
requires only to compute 1 + 2 Re

∑
1≤k≤N e2iπkx = sin π(2N+1)x

sin πx . Then one has to show that for a
smooth 1-periodic function ω such that ω(0) = 0,

lim
λ→+∞

∫ 1

0

sinλx

sinπx
ω(x)dx = 0,

which is obvious since for a smooth ν (here we take ν(x) = ω(x)/ sinπx), |
∫ 1
0 ν(x)sinλxdx| =

O(λ−1) by integration by parts.
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We also check, using Fubini’s theorem on L1(0, 1)× l1(Z)
∫ 1

0

ω(x)e−2iπkxdx =
∑

m∈Z

∫ 1

0

e−π(x+m)2e−2iπkxdx

=
∑

m∈Z

∫ m+1

m

e−πt2e−2iπktdt

=

∫

R
e−πt2e−2iπkt = e−πk2

.

So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation.

It is now straightforward to get the n-th dimensional version of the previous
lemma: for all z ∈ Cn, using the notation (4.2.2), we have

∑

m∈Zn

e−π(z+m)2 =
∑

m∈Zn

e−πm2
e2iπm·z. (4.2.12)

Theorem 4.2.3 (The Poisson summation formula). Let n be a positive integer and
u be a function in S(Rn). Then we have

∑

k∈Zn

u(k) =
∑

k∈Zn

û(k), (4.2.13)

where û stands for the Fourier transform of u. In other words the tempered distri-
bution D0 =

∑
k∈Zn δk is such that D̂0 = D0.

Proof. We write, according to (4.2.6) and to Fubini’s theorem

∑
k∈Zn u(k) =

∑

k∈Zn

∫∫
Wu(y, η)ϕy,η(k)dydη

=

∫∫
Wu(y, η)

∑

k∈Zn

ϕy,η(k)dydη.

Now, (4.2.12), (4.2.1) give
∑

k∈Zn ϕy,η(k) =
∑

k∈Zn ϕ̂y,η(k), so that (4.2.6) and Fu-
bini’s theorem imply the result.

4.3 Fourier transformation and convolution

4.3.1 Fourier transformation on E ′(Rn)

Theorem 4.3.1. Let u ∈ E ′(Rn). Then û is an entire function on Cn.

Proof. We have for ϕ ∈ D(Rn), according to the definition (3.4.14),

〈û, ϕ〉 = 〈u, ϕ̂〉 = 〈u(x),

∫
e−2iπx·ξϕ(ξ)dξ〉 = 〈u(x)⊗ ϕ(ξ), e−2iπx·ξ〉E ′(R2n),E (R2n)

= 〈ϕ(ξ), 〈u(x), e−2iπx·ξ〉︸ ︷︷ ︸
ũ(ξ)

〉,
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an identity which implies û = ũ and moreover the function ũ is indeed entire, since
with ζ ∈ Cn, and ũ(ζ) = 〈u(x), e−2iπx·ζ〉 the function ũ is C∞(Cn) from the corollary
3.4.2, and we can check that ∂̄ũ = 0 (a direct computation of ũ(ζ+h)−u(ζ) provides
elementarily the holomorphy of ũ).

Definition 4.3.2. The space OM(Rn) of multipliers of S (Rn) is the subspace of the
functions f ∈ E (Rn) such that,

∀α ∈ Nn,∃Cα > 0,∃Nα ∈ N, ∀x ∈ Rn, |(∂α
x f)(x)| ≤ Cα(1 + |x|)Nα . (4.3.1)

It is easy to check that, for f ∈ OM(Rn), the operator u 4→ fu is continuous
from S (Rn) into itself, and by transposition from S ′(Rn) into itself: we have for
T ∈ S ′(Rn), f ∈ OM(Rn),

〈fT, ϕ〉S ′,S = 〈T, fϕ〉S ′,S ,

and if p is a semi-norm of S , the continuity on S of the multiplication by f implies
that there exists a semi-norm q on S such that for all ϕ ∈ S , p(fϕ) ≤ q(ϕ). A
typical example of a function in OM(Rn) is eiP (x) where P is a real-valued polynomial:
in fact the derivatives of eiP (x) are of type Q(x)eiP (x) where Q is a polynomial so
that (4.3.1) holds.

Lemma 4.3.3. Let u ∈ E ′(Rn). Then û belongs to OM(Rn).

Proof. We have already seen that û(ξ) = 〈u(x), e−2iπx·ξ〉 is a smooth function so that

(Dα
ξ u)(ξ) = 〈u(x), e−2iπx·ξxα〉(−1)|α|

which implies |(Dα
ξ u)(ξ)| ≤ C0 sup |β|≤N0

x∈K0

|∂β
x (e−2iπx·ξxα)| ≤ C1(1+ |ξ|)N0 , proving the

sought result.

4.3.2 Convolution and Fourier transformation

Theorem 4.3.4. Let u ∈ S ′(Rn), v ∈ E ′(Rn). Then the convolution u ∗ v belongs
to S ′(Rn) and

û ∗ v = ûv̂. (4.3.2)

N.B. We note that both sides of the equality (4.3.2) make sense since the lhs is the
Fourier transform of u ∗ v which belongs to S ′(this has to be proven) and v̂ belongs
to OM(Rn) so that the product of û ∈ S ′ with v̂ makes sense.

Proof. Let us prove first that u ∗ v belongs to S ′. We have for ϕ ∈ D(Rn) and
χ ∈ D(Rn) equal to 1 near the support of v,

〈u ∗ v, ϕ〉D ′(Rn),D(Rn) = 〈u(x)⊗ v(y), ϕ(x + y)χ(y)〉D ′(R2n),D(R2n).

Now if ϕ ∈ S (Rn) the function (x, y) 4→ ϕ(x+y)χ(y) = Φ(x, y) belongs to S (R2n):
it is a smooth function and xαyβ∂γ

x∂ρ
yΦ is a linear combination of terms of type

(x + y)ω(∂νϕ)(x + y)yλ(∂µχ)(y)
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which are bounded as product of bounded terms. Moreover, if Φ ∈ S (R2n), the
function ψ(x) = 〈v(y), Φ(x, y)〉 is smooth (see the corollary 3.4.2(2)) and belongs to
S (Rn) since xα(∂β

xψ)(x) = 〈v(y), xα∂β
xΦ(x, y)〉 and for some compact subset K0 of

Rn,

|xα(∂β
xψ)(x)| = |〈v(y), xα∂β

xΦ(x, y)〉| ≤ C sup
|γ|≤N0
y∈K0

|xα∂β
x∂γ

y Φ(x, y)| = p(Φ),

where p is a semi-norm on S (R2n). As a result, we can extend u ∗ v to a continuous
linear form on S (Rn) so that u ∗ v ∈ S ′(Rn). Let w ∈ S ′ such6 that ŵ = ûv̂. For
ϕ ∈ S (Rn), we have

〈w,ϕ〉S ′,S = 〈ûv̂, ˇ̂ϕ〉S ′,S = 〈û, v̂ ˇ̂ϕ〉S ′,S .

On the other hand, we have

v̂(ξ) ˇ̂ϕ(ξ) = 〈v(x), e−2iπx·ξ〉
∫

ϕ(y)e2iπy·ξdy = 〈v(x)⊗ ϕ(y), e2iπ(y−x)·ξ〉

= 〈v(x), 〈ϕ(y), e2iπ(y−x)·ξ〉〉 = 〈v(x), 〈ϕ̌(y), e−2iπ(y+x)·ξ〉〉 = (̂v ∗ ϕ̌)(ξ),

so that

〈w, ϕ〉 = 〈û, (̂v ∗ ϕ̌)〉 = 〈ǔ, v ∗ ϕ̌〉 = 〈u(−x), 〈v(x− y), ϕ(−y)〉〉
= 〈u(x), 〈v(y − x), ϕ(y)〉〉 = 〈(u ∗ v), ϕ〉,

which gives w = u ∗ v and (4.3.2).

4.3.3 The Riemann-Lebesgue lemma

Lemma 4.3.5. Let u ∈ L1(Rn). Then from (4.1.14) û(ξ) =
∫

e−2iπx·ξu(x)dx; more-
over û belongs to C0

(0)(Rn), where C0
(0)(Rn) stands for the space of continuous func-

tions on Rn tending to 0 at infinity. In particular û is uniformly continuous.

Proof. This follows from the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in
[9]); moreover,

|û(ξ + h)− û(ξ)| =
∫
|u(x)||e−2iπx·h − 1|dx = σu(h),

and the Lebesgue dominated convergence theorem implies that limh→0 σu(h) = 0,
implying as well the uniform continuity.

4.4 Some fundamental solutions

4.4.1 The heat equation

The heat operator is the following constant coefficient differential operator on Rt×Rn
x

∂t −∆x, (4.4.1)

where the Laplace operator ∆x on Rn is defined by (3.6.3).

6Take w = ˇ̂̂
uv̂ .
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Theorem 4.4.1. We define on Rt × Rn
x the L1

loc function

E(t, x) = (4πt)−n/2H(t)e−
|x|2
4t . (4.4.2)

The function E is C∞ on the complement of {(0, 0)} in R×Rn. The function E is
a fundamental solution of the heat equation, i.e. ∂tE −∆xE = δ0(t)⊗ δ0(x).

Proof. To prove that E ∈ L1
loc(Rn+1), we calculate for T ≥ 0,

∫ T

0

∫ +∞

0

t−n/2rn−1e−
r2

4t dtdr =︸︷︷︸
r=2t1/2ρ

∫ T

0

∫ +∞

0

t−n/22n−1t(n−1)/2ρn−1e−ρ2
2t1/2dtdρ

= 2nT

∫ +∞

0

ρn−1e−ρ2
dρ < +∞.

Moreover, the function E is obviously analytic on the open subset of R1+n {(t, x) ∈
R × Rn, t *= 0}. Let us prove that E is C∞ on R × (Rn\{0}). With ρ0 defined in
(3.1.1), the function ρ1 defined by ρ1(t) = H(t)t−n/2ρ0(t) is also C∞ on R and

E(t, x) = H(
|x|2

4t
)
( |x|2

4t

)n/2
e−

|x|2
4t |x|−nπ−n/2 = |x|−nπ−n/2ρ1

( 4t

|x|2
)
,

which is indeed smooth on Rt×(Rn
x\{0}). We want to solve the equation ∂tu−∆xu =

δ0(t)δ0(x). If u belongs to S ′(Rn+1), we can consider its Fourier transform v with
respect to x (well-defined by transposition as the Fourier transform in (4.1.10)), and
we end-up with the simple ODE with parameters on v,

∂tv + 4π2|ξ|2v = δ0(t). (4.4.3)

It remains to determine a fundamental solution of that ODE: we have

d

dt
+ λ = e−tλ d

dt
etλ,

( d

dt
+ λ

)
(e−tλH(t)) =

(
e−tλ d

dt
etλ

)
(e−tλH(t)) = δ0(t), (4.4.4)

so that we can take v = H(t)e−4π2t|ξ|2 , which belongs to S ′(Rt × Rn
ξ ). Taking

the inverse Fourier transform with respect to ξ of both sides of (4.4.3) gives7 with
u ∈ S ′(Rt × Rn

ξ )
∂tu−∆xu = δ0(t)⊗ δ0(x). (4.4.5)

To compute u, we check with ϕ ∈ D(R), ψ ∈ D(Rn),

〈u, ϕ⊗ ψ̌〉 = 〈v̂x, ϕ⊗ ψ〉 = 〈v, ϕ⊗ ψ̂〉 =

∫ +∞

0

∫

Rn

ϕ(t)ψ̂(ξ)e−4π2t|ξ|2dtdξ.

We can use the Fubini theorem in that absolutely converging integral and use (4.1.2)
to get

〈u, ϕ⊗ ψ̌〉 =

∫ +∞

0

ϕ(t)

(∫

Rn

(4πt)−n/2e−π |x|2
4πt ψ(x)dx

)
dt = 〈E, ϕ⊗ ψ̌〉,

where the last equality is due to the Fubini theorem and the local integrability of
E. We have thus E = u and E satisfies (4.4.5). The proof is complete.

7The Fourier transformation obviously respects the tensor products.
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Corollary 4.4.2. The heat equation is C∞ hypoelliptic (see the definition 3.6.4) ,
in particular for w ∈ D ′(R1+n),

singsupp w ⊂ singsupp(∂tw −∆xw),

where singsupp stands for the C∞ singular support as defined by (3.1.9).

Proof. It is an immediate consequence of the theorem 3.6.5, since E is C∞ outside
zero from the previous theorem.

Remark 4.4.3. It is also possible to define the analytic singular support of a dis-
tribution T in an open subset Ω of Rn: we define

singsuppA T = {x ∈ Ω,∀Uopen ∈ Vx, T|U /∈ A(U)}, (4.4.6)

whereA(U) stands for the analytic8 functions on the open set U . It is a consequence9

of the proof of theorem 4.4.1 that

singsuppA E = {0}× Rn
x. (4.4.7)

In particular this implies that the heat equation is not analytic-hypoelliptic since

{0}× Rn
x = singsuppA E *⊂ singsuppA(∂tE −∆xE) = singsuppA δ0 = {0R1+n}.

4.4.2 The Schrödinger equation

We move forward now with the Schrödinger equation,

1

i

∂

∂t
−∆x (4.4.8)

which looks similar to the heat equation, but which is in fact drastically different.

Lemma 4.4.4.

D(Rn+1) 4→
∫ +∞

0

e−i(n−2)π
4 (4πt)−n/2

(∫

Rn

Φ(t, x)ei |x|
2

4t dx

)
dt = 〈E, Φ〉 (4.4.9)

is a distribution in Rn+1 of order ≤ n + 2.

8A function f is said to be analytic on an open subset U of Rn if it is C∞(U), and for each
x0 ∈ U there exists r0 > 0 such that B̄(x0, r0) ⊂ U and

∀x ∈ B̄(x0, r0), f(x) =
∑

α∈Nn

1
α!

∂α
x f(x0)(x− x0)α.

9In fact, in the theorem, we have noted the obvious inclusion singsuppA E ⊂ {0} × Rn
x , but

since E is C∞ in t *= 0, vanishes identically on t < 0, is positive ( it means > 0) on t > 0, it cannot
be analytic near any point of {0}× Rn

x .
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Proof. Let Φ ∈ D(R× Rn); for t > 0 we have, using (4.6.7),

e−i(n−2)π
4 (4πt)−n/2

∫

Rn

Φ(t, x)ei |x|
2

4t dx = i

∫

Rn

Φ̂x(t, ξ)e−4iπ2t|ξ|2dξ,

so that with N . ñ even > n, using (4.1.7) and (4.1.14),

sup
t>0

∣∣∣∣e
−i(n−2)π

4 (4πt)−n/2

∫

Rn

Φ(t, x)ei |x|
2

4t dx

∣∣∣∣ ≤ sup
t>0

∫

Rn

|Φ̂x(t, ξ)|dξ

≤ sup
t>0

∫
(1 + |ξ|2)−ñ/2| (1 + |ξ|2)ñ/2

︸ ︷︷ ︸
polynomial

Φ̂(t, ξ)|dξ ≤ Cn max
|α|≤ñ

‖∂α
x Φ‖L∞(Rn+1).

As a result the mapping

D(Rn+1) 4→
∫ +∞

0

e−i(n−2)π
4 (4πt)−n/2

(∫

Rn

Φ(t, x)ei |x|
2

4t dx

)
dt = 〈E, Φ〉

is a distribution of order ≤ n + 2.

Theorem 4.4.5. The distribution E given by (4.4.9) is a fundamental solution of
the Schrödinger equation, i.e. 1

i ∂tE −∆xE = δ0(t)⊗ δ0(x). Moreover, E is smooth
on the open set {t *= 0} and equal there to

e−i(n−2)π
4 H(t)(4πt)−n/2ei |x|

2

4t . (4.4.10)

The distribution E is the partial Fourier transform with respect to the variable x of
the L∞(Rn+1) function

Ẽ(t, ξ) = iH(t)e−4iπ2t|ξ|2 . (4.4.11)

Proof. We want to solve the equation −i∂tu − ∆xu = δ0(t)δ0(x). If u belongs to
S ′(Rn+1), we can consider its Fourier transform v with respect to x (well-defined by
transposition as the Fourier transform in (4.1.10)), and we end-up with the simple
ODE with parameters on v,

∂tv + i4π2|ξ|2v = iδ0(t). (4.4.12)

Using the identity (4.4.4), we see that we can take v = iH(t)e−i4π2t|ξ|2 , which belongs
to S ′(Rt×Rn

ξ ). Taking the inverse Fourier transform with respect to ξ of both sides
of (4.4.12) gives with u ∈ S ′(Rt × Rn

ξ )

∂tu− i∆xu = iδ0(t)⊗ δ0(x) i.e.
1

i
∂tu−∆xu = δ0(t)⊗ δ0(x). (4.4.13)

To compute u, we check with ϕ ∈ D(R), ψ ∈ D(Rn),

〈u, ϕ⊗ ψ〉 = 〈v̂x, ϕ⊗ ψ̌〉 = 〈v, ϕ⊗ ˇ̂ψ〉 = i

∫ +∞

0

ϕ(t)

(∫

Rn

ψ̂(ξ)eiπ(−4πt)|ξ|2dξ

)
dt.

(4.4.14)
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We note now that, using (4.6.7) and (4.1.10), for t > 0,

i

∫

Rn

ψ̂(ξ)eiπ(−4πt)|ξ|2dξ = i

∫

Rn

ψ(x)(4πt)−n/2ei |x|
2

4t dxe−n iπ
4

= e−i(n−2)π
4 (4πt)−n/2

∫

Rn

ei |x|
2

4t ψ(x)dx.

As a result, u is a distribution on Rn+1 defined by

〈u, Φ〉 = e−i(n−2)π
4 (4π)−n/2

∫ +∞

0

t−n/2

(∫

Rn

Φ(t, x)ei |x|
2

4t dx

)
dt

and coincides with E, so that E satisfies (4.4.13). The identity (4.4.14) is proving
(4.4.11). The proof of the theorem is complete.

Remark 4.4.6. The fundamental solution of the Schrödinger equation is unbounded
near t = 0 and, since E is smooth on t *= 0, its C∞ singular support is equal to
{0} × Rn

x. In particular, the Schrödinger equation is not hypoelliptic. We shall see
that it looks like a propagation equation with an infinite speed, or more precisely
with a speed depending on the frequency of the wave.

4.4.3 The wave equation

Presentation

The wave equation in d dimensions with speed of propagation c > 0, is given by the
operator on Rt × Rd

x

"c = c−2∂2
t −∆x. (4.4.15)

We want to solve the equation c−2∂2
t u−∆xu = δ0(t)δ0(x). If u belongs to S ′(Rd+1),

we can consider its Fourier transform v with respect to x, and we end-up with the
ODE with parameters on v,

c−2∂2
t v + 4π2|ξ|2v = δ0(t), ∂2

t v + 4π2c2|ξ|2v = c2δ0(t). (4.4.16)

Lemma 4.4.7. Let λ, µ ∈ C. A fundamental solution of Pλ,µ = ( d
dt −λ)( d

dt −µ) (on
the real line) is 





(etλ − etµ

λ− µ

)
H(t) for λ *= µ,

tetλH(t) for λ = µ.
(4.4.17)

Proof. If λ *= µ, to solve ( d
dt − λ)( d

dt − µ) = δ0(t), the method of variation of
parameters gives a solution a(t)eλt + b(t)eµt with

(
etλ etµ

λetλ µetµ

) (
ȧ
ḃ

)
=

(
0
δ

)
=⇒

(
ȧ
ḃ

)
=

1

λ− µ

(
δ
−δ

)
=⇒ (4.4.17) for λ *= µ,

which gives also the result for λ = µ by differentiation with respect to λ of the
identity Pλ,µ

(
etλ − etµ

)
= (λ− µ)δ.
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Going back to the wave equation, we can take v as the temperate distribution10

given by

v(t, ξ) = c2H(t)
e2iπct|ξ| − e−2iπct|ξ|

4iπc|ξ| = c2H(t)
sin

(
2πct|ξ|

)

2πc|ξ| . (4.4.18)

Taking the inverse Fourier transform with respect to ξ of both sides of (4.4.16) gives
with u ∈ S ′(Rt × Rd

ξ)
c−2∂2

t u−∆xu = δ0(t)⊗ δ0(x). (4.4.19)

To compute u, we check with Φ ∈ D(R1+d),

〈u, Φ〉 = 〈v̂x(t, ξ), Φ(t,−ξ)〉 =

∫ +∞

0

∫

Rn

Φ̂x(t, ξ)c
sin

(
2πct|ξ|

)

2π|ξ| dξdt. (4.4.20)

We have found an expression for a fundamental solution of the wave equation in d
space dimensions and proven the following proposition.

Proposition 4.4.8. Let E+ be the temperate distribution on Rd+1 such that

Ê+

x
(t, ξ) = cH(t)

sin
(
2πct|ξ|

)

2π|ξ| . (4.4.21)

Then E+ is a fundamental solution of the wave equation (4.4.15), i.e. satisfies
"cE+ = δ0(t)⊗ δ0(x).

Remark 4.4.9. Defining the forward-light-cone Γ+,c as

Γ+,c = {(t, x) ∈ R× Rd, ct ≥ |x|}, (4.4.22)

one can prove more precisely that E+ is the only fundamental solution with support
in {t ≥ 0} and that

supp E+ = Γ+, when d = 1 and d ≥ 2 is even, (4.4.23)

supp E+ = ∂Γ+, when d ≥ 3 is odd, (4.4.24)

singsupp E+ = ∂Γ+, in any dimension. (4.4.25)

Lemma 4.4.10. Let E1, E2 be fundamental solutions of the wave equation such that
supp E1 ⊂ Γ+,c, supp E2 ⊂ {t ≥ 0}. Then E1 = E2.

Proof. Defining u = E1 − E2, we have supp u ⊂ {t ≥ 0} and the mapping

{t ≥ 0}× Γ+,c .
(
(t, x), (s, y)

)
4→ (t + s, x + y) ∈ Rd+1

is proper since

t, s ≥ 0, cs ≥ |y|, |t + s| ≤ T, |x + y| ≤ R =⇒ t, s ∈ [0, T ], |x| ≤ R + cT, |y| ≤ cT,

so that the section 3.5.3 allows to perform the following calculations

u = u ∗ δ0 = u ∗"cE1 = "cu ∗ E1 = 0.

10The function R . s 4→ sin s
s =

∑
k≥0(−1)k s2k

(2k+1)! = S(s2) is a smooth bounded function of
s2, so that v(t, ξ) = c2H(t)tS(4π2c2t2|ξ|2) is continuous and such that |v(t, ξ)| ≤ CtH(t), thus a
tempered distribution.
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The wave equation in one space dimension

Theorem 4.4.11. On Rt×Rx, the only fundamental solution of the wave equation
supported in Γ+,c is

E+(t, x) =
c

2
H(ct− |x|). (4.4.26)

where E+ is defined in (4.4.21). That fundamental solution is bounded and the
properties (4.4.23), (4.4.25) are satisfied.

Proof. We have c−2∂2
t − ∂2

x = (c−1∂t − ∂x)(c−1∂t + ∂x) and changing (linearly) the
variables with x1 = ct + x, x2 = ct − x, we have t = 1

2c(x1 + x2), x = 1
2(x1 − x2),

using the notation

(x1, x2) 4→ (t, x) 4→ u(t, x) = v(x1, x2),

∂u

∂t
=

∂v

∂x1
c +

∂v

∂x2
c,

∂u

∂x
=

∂v

∂x1
− ∂v

∂x2
, c−1∂t − ∂x = 2∂x2 , c

−1∂t + ∂x = 2∂x1 ,

and thus "c = 4 ∂2

∂x1∂x2
, so that a fundamental solution is v = 1

4H(x1)H(x2). We
have now to pull-back this distribution by the linear mapping (t, x) 4→ (x1, x2): we
have the formula

ϕ(0, 0) = 〈4 ∂2v

∂x1∂x2
(x1, x2), ϕ(x1, x2)〉 = 〈("cu)(t, x), ϕ(ct + x, ct− x)〉2c

which gives the fundamental solution 2c
4 H(ct+x)H(ct−x) = c

2H(ct− |x|). Moreover
that fundamental solution is supported in Γ+,c and since E+ is supported in {t ≥ 0},
we can apply the lemma 4.4.10 to get their equality.

The wave equation in two space dimensions

We consider (4.4.15) with d = 2, i.e. "c = c−2∂2
t − ∂2

x1
− ∂2

x2
.

Theorem 4.4.12. On Rt×R2
x, the only fundamental solution of the wave equation

supported in Γ+,c is

E+(t, x) =
c

2π
H(ct− |x|)(c2t2 − |x|2)−1/2, (4.4.27)

where E+ is defined in (4.4.21). That fundamental solution is L1
loc and the properties

(4.4.23), (4.4.25) are satisfied.

Proof. From the lemma 4.4.10, it is enough to prove that the rhs of (4.4.27) is
indeed a fundamental solution. The function E(t, x) = c

2πH(ct− |x|)(c2t2− |x|2)−1/2

is locally integrable in R× R2 since

∫ T

0

∫ ct

0

(c2t2 − r2)−1/2rdrdt =

∫ T

0

[(c2t2 − r2)1/2]r=0
r=ctdt = cT 2/2 < +∞.

Moreover E is homogeneous of degree −1, so that "cE is homogeneous with degree
−3 and supported in Γ+,c. We use now the independently proven three-dimensional



118 CHAPTER 4. INTRODUCTION TO FOURIER ANALYSIS

case (theorem 4.4.13). We define with E+,3 given by (4.4.29), ϕ ∈ D(R3
t,x1,x2

), χ ∈
D(R) with χ(0) = 1,

〈u, ϕ〉D ′(R3),D(R3) = lim
ε→0
〈E+,3, ϕ(t, x1, x2)⊗ χ(εx3)〉D ′(R4),D(R4)

= lim
ε→0

1

4π

∫∫∫

R3

ϕ(c−1
√

x2
1 + x2

2 + x2
3, x1, x2)√

x2
1 + x2

2 + x2
3

χ(εx3)dx1dx2dx3

=
1

4π
2

∫∫∫

R2
x1,x2

×{x3≥0}

ϕ(c−1
√

x2
1 + x2

2 + x2
3, x1, x2)√

x2
1 + x2

2 + x2
3

dx1dx2dx3 (t = c−1
√

x2
1 + x2

2 + x2
3)

=
1

2π

∫∫∫

R2
x1,x2

×{ct≥
√

x2
1+x2

2}

ϕ(t, x1, x2)

ct

1

2
(c2t2 − x2

1 − x2
2)
−1/22c2tdx1dx2dt

=
c

2π

∫∫∫

R2
x1,x2

×{ct≥
√

x2
1+x2

2}
ϕ(t, x1, x2)(c

2t2 − x2
1 − x2

2)
−1/2dx1dx2dt

= 〈E, ϕ〉D ′(R3),D(R3), so that E = u.

With "c,d standing for the wave operator in d dimensions with speed c, we have,
since

"c,3

(
ϕ(t, x1, x2)⊗ χ(εx3)

)
= "c,2

(
ϕ(t, x1, x2)

)
⊗ χ(εx3)− ϕ(t, x1, x2)ε

2χ′′(εx3)

〈"c,2u, ϕ〉 = lim
ε→0
〈E+,3, ("c,2ϕ)(t, x1, x2)⊗ χ(εx3)〉

= lim
ε→0

(
〈E+,3, "c,3

(
ϕ(t, x1, x2)⊗ χ(εx3)

)
)〉+ 〈E+,3, ϕ(t, x1, x2)ε

2χ′′(εx3)〉
)

= ϕ(0, 0, 0),

which gives "c,2E = "c,2u = δ0,R3 and the result.

The wave equation in three space dimensions

We consider (4.4.15) with d = 3, i.e. "c = c−2∂2
t − ∂2

x1
− ∂2

x2
− ∂2

x3
.

Theorem 4.4.13. On Rt×R3
x, the only fundamental solution of the wave equation

supported in Γ+,c is

E+(t, x) =
1

4π|x|δ0,R(t− c−1|x|), (4.4.28)

i.e. for Φ ∈ D(Rt × R3
x), 〈E+, Φ〉 =

∫

R3

1

4π|x|Φ(c−1|x|, x)dx. (4.4.29)

where E+ is defined in (4.4.21). The properties (4.4.24), (4.4.25) are satisfied.

Proof. The formula (4.4.29) is defining a Radon measure E with support ∂Γ+,c,
so that the last statements of the lemmas are clear. From the lemma 4.4.10, it is
enough to prove that (4.4.29) defines indeed a fundamental solution. We check for
ϕ ∈ D(R), ψ ∈ D(R3)

〈"cE, ϕ(t)⊗ ψ(x)〉 = 〈E, "c(ϕ⊗ ψ)〉

=
1

4π

∫

R3

|x|−1
(
c−2ϕ′′(c−1|x|)ψ(x)− ϕ(c−1|x|)(∆ψ)(x)

)
dx.
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If we assume that supp ϕ ⊂ R∗
+, we get

∫

R3

|x|−1ϕ(c−1|x|)(∆ψ)(x)dx =

∫

R3

∆
(
|x|−1ϕ(c−1|x|)

)
ψ(x)dx

=

∫

R3

((
r−1ϕ(c−1r)

)′′
+ 2r−1

(
r−1ϕ(c−1r)

)′)
ψ(x)dx (r = |x|)

=

∫
ψ(x)

(
r−1ϕ′′(c−1r)c−2 + 2(−r−2)ϕ′(c−1r)c−1 + 2r−3ϕ(c−1r)

+ 2r−1r−1ϕ′(c−1r)c−1 + 2r−1(−r−2)ϕ(c−1r)
)
dx,

which gives 〈"cE, ϕ(t)⊗ ψ(x)〉 = 0. As a result,

supp("cE) ⊂ ∂Γ+,c ∩ {t ≤ 0} = {(0R, 0R3)},

and since E is homogeneous with degree −2, the distribution "cE is homogeneous
with degree −4 with support at the origin of R4: the lemma 3.4.8 and the theorem
3.3.4 imply that "cE = κδ0,R4 . To check that κ = 1, we calculate for ϕ ∈ D(R)
(noting that |t| ≤ C and |x| ≤ c|t|+ 1 implies |x| ≤ cC + 1)

〈"cE, ϕ(t)⊗ 1〉 =
1

4π

∫ +∞

0

r−1c−2ϕ′′(c−1r)r2dr4π =

∫ +∞

0

ϕ′′(r)rdr

= [ϕ′(r)r]+∞0 −
∫ +∞

0

ϕ′(r)dr = ϕ(0),

so that κ = 1 and the theorem is proven.

4.5 Periodic distributions

4.5.1 The Dirichlet kernel

For N ∈ N, the Dirichlet kernel DN is defined on R by

DN(x) =
∑

−N≤k≤N

e2iπkx = 1 + 2 Re
∑

1≤k≤N

e2iπkx =︸︷︷︸
x/∈Z

1 + 2 Re

(
e2iπx e2iπNx − 1

e2iπx − 1

)

= 1 + 2 Re
(
e2iπx−iπx+iπNx

)sin(πNx)

sin(πx)
= 1 + 2 cos(π(N + 1)x)

sin(πNx)

sin(πx)

= 1 +
1

sin(πx)

(
sin

(
πx(2N + 1)

)
− sin(πx)

)
=

sin
(
πx(2N + 1)

)

sin(πx)
,

and extending by continuity at x ∈ Z that 1-periodic function, we find that

DN(x) =
sin

(
πx(2N + 1)

)

sin(πx)
. (4.5.1)

Now, for a 1-periodic v ∈ C1(R), with

(DN ; u)(x) =

∫ 1

0

DN(x− t)u(t)dt, (4.5.2)
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we have

lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x) + lim
N→+∞

∫ 1

0

sin(πt(2N + 1))

(
v(x− t)− v(x)

)

sin(πt)
dt,

and the function θx given by θx(t) = v(x−t)−v(x)
sin(πt) is continuous on [0, 1], and from the

Riemann-Lebesgue lemma 4.3.5, we obtain

lim
N→+∞

∑

−N≤k≤N

e2iπkx

∫ 1

0

e−2iπktv(t)dt = lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x).

On the other hand if v is 1-periodic and C1+l, the Fourier coefficient

ck(v) =

∫ 1

0

e−2iπktv(t)dt
for k *= 0︷︸︸︷

=
1

2iπk
[e−2iπktv(t)]t=0

t=1+

∫ 1

0

1

2iπk
e−2iπktv′(t)dt, (4.5.3)

and iterating the integration by parts, we find ck(v) = O(k−1−l) so that for a 1-
periodic C2 function v, we have

∑

k∈Z
e2iπkxck(v) = v(x). (4.5.4)

4.5.2 Pointwise convergence of Fourier series

Lemma 4.5.1. Let u : R −→ R be a 1-periodic L1
loc(R) function and let x0 ∈ [0, 1].

Let us assume that there exists w0 ∈ R such that the Dini condition is satisfied, i.e.

∫ 1/2

0

|u(x0 + t) + u(x0 − t)− 2w0|
t

dt < +∞. (4.5.5)

Then, limN→+∞
∑

|k|≤N ck(u)e2iπkx0 = w0 with ck(u) =
∫ 1

0 e−2iπtku(t)dt.

Proof. Using the calculations of the previous section 4.5.1, we find

∑

|k|≤N

ck(u)e2iπkx0 = (DN ∗ u)(x0) = w0 +

∫ 1

0

sin
(
πt(2N + 1)

)

sin(πt)

(
u(x0 − t)− w0

)
dt,

so that, using the periodicity of u and the fact that DN is an even function , we get

(DN ∗ u)(x0)− w0 =

∫ 1/2

0

sin
(
πt(2N + 1)

)

sin(πt)

(
u(x0 − t) + u(x0 + t)− 2w0

)
dt.

Thanks to the hypothesis (4.5.5), the function t 4→ 1[0,1](t)
u(x0 − t) + u(x0 + t)− 2w0

sin(πt)
belongs to L1(R) and the Riemann-Lebesgue lemma 4.3.5 gives the conclusion.
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Theorem 4.5.2. Let u : R −→ R be a 1-periodic L1
loc function.

(1) Let x0 ∈ [0, 1], w0 ∈ R. We define ωx0,w0(t) = |u(x0 + t) + u(x0 − t)− 2w0| and
we assume that ∫ 1/2

0

ωx0,w0(t)
dt

t
< +∞. (4.5.6)

Then the Fourier series (DN ∗ u)(x0) converges with limit w0. In particular, if
(4.5.6) is satisfied with w0 = u(x0), the Fourier series (DN ∗ u)(x0) converges with
limit u(x0). If u has a left and right limit at x0 and is such that (4.5.6) is satisfied
with w0 = 1

2

(
u(x0 + 0) + u(x0 − 0)

)
, the Fourier series (DN ∗ u)(x0) converges with

limit 1
2

(
u(x0 − 0) + u(x0 + 0)

)
.

(2) If the function u is Hölder-continuous11, the Fourier series (DN ∗u)(x) converges
for all x ∈ R with limit u(x).
(3) If u has a left and right limit at each point and a left and right derivative at each
point, the Fourier series (DN ∗u)(x) converges for all x ∈ R with limit 1

2

(
u(x− 0)+

u(x + 0)
)
.

Proof. (1) follows from the lemma 4.5.1; to obtain (2), we note that for a Hölder
continuous function of index θ ∈]0, 1], we have for t ∈]0, 1/2]

t−1ωx,u(x)(t) ≤ Ctθ−1 ∈ L1([0, 1/2]).

If u has a right-derivative at x0, it means that

u(x0 + t) = u(x0 + 0) + u′r(x0)t + tε0(t), lim
t→0+

ε0(t) = 0.

As a consequence, for t ∈]0, 1/2], t−1|u(x0 + t)− u(x0 + 0)| ≤ |u′r(x0) + ε0(t)|. Since
limt→0+ ε0(t) = 0, there exists T0 ∈]0, 1/2] such that |ε0(t)| ≤ 1 for t ∈ [0, T0]. As a
result, we have

∫ 1/2

0

t−1|u(x0 + t)− u(x0 + 0)|dt

≤
∫ T0

0

(|u′r(x0)|+ 1)dt +

∫ 1/2

T0

|u(x0 + t)− u(x0 + 0)|dtT−1
0 < +∞,

since u is also L1
loc. The integral

∫ 1/2

0 t−1|u(x0 − t) − u(x0 − 0)|dt is also finite and
the condition (4.5.6) holds with w0 = 1

2

(
u(x0 − 0) + u(x0 + 0)

)
. The proof of the

lemma is complete.

4.5.3 Periodic distributions

We consider now a distribution u on Rn which is periodic with periods Zn. Let
χ ∈ C∞

c (Rn) such that χ = 1 on [0, 1]n. Then the function χ1 defined by

χ1(x) =
∑

k∈Zn

χ(x− k)

11 Hölder-continuity of index θ ∈]0, 1] means that ∃C > 0,∀t, s, |u(t)− u(s)| ≤ C|t− s|θ.



122 CHAPTER 4. INTRODUCTION TO FOURIER ANALYSIS

is C∞ periodic12 with periods Zn. Moreover since Rn . x ∈
∏

1≤j≤n[E(xj), E(xj)+1[,
the bounded function χ1 is also bounded from below and such that 1 ≤ χ1(x). With
χ0 = χ/χ1, we have

∑

k∈Zn

χ0(x− k) = 1, χ0 ∈ C∞
c (Rn).

For ϕ ∈ C∞
c (Rn), we have from the periodicity of u

〈u, ϕ〉 =
∑

k∈Zn

〈u(x), ϕ(x)χ0(x− k)〉 =
∑

k∈Zn

〈u(x), ϕ(x + k)χ0(x)〉,

where the sums are finite. Now if ϕ ∈ S (Rn), we have, since χ0 is compactly
supported in |x| ≤ R0,

|〈u(x), ϕ(x + k)χ0(x)〉| ≤ C0 sup
|α|≤N0,|x|≤R0

|ϕ(α)(x + k)|

≤ C0 sup
|α|≤N0,|x|≤R0

|(1 + R0 + |x + k|)n+1ϕ(α)(x + k)|(1 + |k|)−n−1

≤ p0(ϕ)(1 + |k|)−n−1,

where p0 is a semi-norm of ϕ (independent of k). As a result u is a tempered
distribution and we have for ϕ ∈ S (Rn),

〈u, ϕ〉 = 〈u(x),
∑

k∈Zn

ϕ(x + k)χ0(x)︸ ︷︷ ︸
ψx(k)

〉 = 〈u(x),
∑

k∈Zn

ψ̂x(k)〉.

Now we see that ψ̂x(k) =
∫

Rn ϕ(x + t)χ0(x)e−2iπktdt = χ0(x)e2iπkxϕ̂(k), so that
〈u, ϕ〉 =

∑
k∈Zn〈u(x), χ0(x)e2iπkx〉ϕ̂(k) which means

u(x) =
∑

k∈Zn

〈u(t), χ0(t)e
2iπkt〉e−2iπkx =

∑

k∈Zn

〈u(t), χ0(t)e
−2iπkt〉e2iπkx.

Theorem 4.5.3. Let u be a periodic distribution on Rn with periods Zn. Then u is a
tempered distribution and if χ0 is a C∞

c (Rn) function such that
∑

k∈Zn χ0(x−k) = 1,
we have

u =
∑

k∈Zn

ck(u)e2iπkx, (4.5.7)

û =
∑

k∈Zn

ck(u)δk, with ck(u) = 〈u(t), χ0(t)e
−2iπkt〉, (4.5.8)

and convergence in S ′(Rn). If u is in Cm(Rn) with m > n, the previous formulas
hold with uniform convergence for (4.5.7) and

ck(u) =

∫

[0,1]n
u(t)e−2iπktdt. (4.5.9)

12Note that the sum is locally finite since for K compact subset of Rn, (K − k) ∩ suppχ0 = ∅
except for a finite subset of k ∈ Zn.
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Proof. The first statements are already proven and the calculation of û is immediate.
If u belongs to L1

loc we can redo the calculations above choosing χ0 = 1[0,1]n and get
(4.5.7) with ck given by (4.5.9). Moreover, if u is in Cm with m > n, we get by
integration by parts that ck(u) is O(|k|−m) so that the series (4.5.7) is uniformly
converging.

Theorem 4.5.4. Let u be a periodic distribution on Rn with periods Zn. If u ∈ L2
loc

(i.e. u ∈ L2(Tn) with Tn = (R/Z)n), then

u(x) =
∑

k∈Zn

ck(u)e2iπkx, with ck(u) =

∫

[0,1]n
u(t)e−2iπktdt, (4.5.10)

and convergence in L2(Tn). Moreover ‖u‖2
L2(Tn) =

∑
k∈Zn |ck(u)|2. Conversely, if the

coefficients ck(u) defined by (4.5.8) are in *2(Zn), the distribution u is L2(Tn)

Proof. As said above the formula for the ck(u) follows from changing the choice of
χ0 to 1[0,1]n in the discussion preceding the theorem 4.5.3. The formula (4.5.7) gives
the convergence in S ′(Rn) to u. Now, since

∫
[0,1]n e2iπ(k−l)tdt = δk,l we see from the

theorem 4.5.3 that for u ∈ Cn+1(Tn), 〈u, u〉L2(Tn) =
∑

k∈Zn |ck(u)|2. As a consequence
the mapping L2(Tn) . u 4→ (ck(u))k∈Zn ∈ *2(Zn) is isometric with a range containing
the dense subset *1(Zn) (if (ck(u))k∈Zn ∈ *1(Zn), u is a continuous function); since
the range is closed, the mapping is onto and is an isometric isomorphism from the
open mapping theorem.
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4.6 Appendix

4.6.1 The logarithm of a nonsingular symmetric matrix

The set C\R− is star-shaped with respect to 1, so that we can define the principal
determination of the logarithm for z ∈ C\R− by the formula

Log z =

∮

[1,z]

dζ

ζ
. (4.6.1)

The function Log is holomorphic on C\R− and we have Log z = ln z for z ∈ R∗
+

and by analytic continuation eLog z = z for z ∈ C\R−. We get also by analytic
continuation, that Log ez = z for | Im z| < π.

Let Υ+ be the set of symmetric nonsingular n×n matrices with complex entries
and nonnegative real part. The set Υ+ is star-shaped with respect to the Id: for
A ∈ Υ+, the segment [1, A] =

(
(1−t) Id +tA

)
t∈[0,1]

is obviously made with symmetric

matrices with nonnegative real part which are invertible13, since for 0 ≤ t < 1,
Re

(
(1− t) Id +tA

)
≥ (1 − t) Id > 0 and for t = 1, A is assumed to be invertible.

We can now define for A ∈ Υ+

Log A =

∫ 1

0

(A− I)
(
I + t(A− I)

)−1
dt. (4.6.2)

We note that A commutes with (I + sA) (and thus with Log A), so that, for θ > 0,

d

dθ
Log(A + θI) =

∫ 1

0

(
I + t(A + θI − I)

)−1
dt

−
∫ 1

0

(
A + θI − I

)
t
(
I + t(A + θI − I)

)−2
dt,

and since d
dt

{(
I + t(A+θI−I)

)−1
}

= −
(
I + t(A+θI−I)

)−2
(A+θI−I), we obtain

by integration by parts d
dθ Log(A + θI) = (A + θI)−1. As a result, we find that for

θ > 0, A ∈ Υ+, since all the matrices involved are commuting,

d

dθ

(
(A + θI)−1eLog(A+θI)

)
= 0,

so that, using the limit θ → +∞, we get that ∀A ∈ Υ+,∀θ > 0, eLog(A+θI) = (A+θI),
and by continuity

∀A ∈ Υ+, eLog A = A, which implies det A = etrace Log A. (4.6.3)

Using (4.6.3), we can define for A ∈ Υ+, using (4.6.2)

(det A)−1/2 = e−
1
2 trace Log A = | det A|−1/2e−

i
2 Im(trace Log A). (4.6.4)

13Note that a symmetric matrix B with a positive-definite real part is indeed invertible since for
u ∈ Cn, Bu = 0 implies 0 = Re〈Bu, ū〉 = 〈(Re B)u, ū〉 ≥ c0‖u‖2 with c0 > 0 and thus u = 0.
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• When A is a positive definite matrix, Log A is real-valued and (det A)−1/2 =
| det A|−1/2.

• When A = −iB where B is a real nonsingular symmetric matrix, we note that
B = PDtP with P ∈ O(n) and D diagonal. We see directly on the formulas
(4.6.2),(4.6.1) that

Log A = Log(−iB) = P (Log(−iD))tP, trace Log A = trace Log(−iD)

and thus, with (µj) the (real) eigenvalues of B, we have Im (trace Log A) =
Im

∑
1≤j≤n Log(−iµj), where the last Log is given by (4.6.1). Finally we get,

Im (trace Log A) = −π

2

∑

1≤j≤n

sign µj = −π

2
sign B

where sign B is the signature of B. As a result, we have when A = −iB, B
real symmetric nonsingular matrix

(det A)−1/2 = | det A|−1/2ei π
4 sign(iA) = | det B|−1/2ei π

4 sign B. (4.6.5)

4.6.2 Fourier transform of Gaussian functions

Proposition 4.6.1. Let A be a symmetric nonsingular n × n matrix with complex
entries such that Re A ≥ 0. We define the Gaussian function vA on Rn by vA(x) =
e−π〈Ax,x〉. The Fourier transform of vA is

v̂A(ξ) = (det A)−1/2e−π〈A−1ξ,ξ〉, (4.6.6)

where (det A)−1/2 is defined according to the formula (4.6.4). In particular, when
A = −iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = | det B|−1/2ei π
4 sign Be−iπ〈B−1ξ,ξ〉. (4.6.7)

Proof. Let us define Υ∗
+ as the set of symmetric n × n complex matrices with a

positive definite real part (naturally these matrices are nonsingular since Ax = 0 for
x ∈ Cn implies 0 = Re〈Ax, x̄〉 = 〈(Re A)x, x̄〉, so that Υ∗

+ ⊂ Υ+).
Let us assume first that A ∈ Υ∗

+; then the function vA is in the Schwartz class
(and so is its Fourier transform). The set Υ∗

+ is an open convex subset of Cn(n+1)/2

and the function Υ∗
+ . A 4→ v̂A(ξ) is holomorphic and given on Υ∗

+ ∩ Rn(n+1)/2 by

(4.6.6). On the other hand the function Υ∗
+ . A 4→ e−

1
2 trace Log Ae−π〈A−1ξ,ξ〉 is also

holomorphic and coincides with previous one on Rn(n+1)/2. By analytic continuation
this proves (4.6.6) for A ∈ Υ∗

+.
If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =

∫
vA(x)ϕ̂(x)dx so that

Υ+ . A 4→ 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A 4→ A−1 is an
homeomorphism of Υ+), using the previous result on Υ∗

+,

〈v̂A, ϕ〉 = lim
ε→0+

〈v̂A+εI , ϕ〉 = lim
ε→0+

∫
e−

1
2 trace Log(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ

(by continuity of Log on Υ+ and domin. cv.) =

∫
e−

1
2 trace Log Ae−π〈A−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result.
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Chapter 5

Analysis on Hilbert spaces

5.1 Hilbert spaces

5.1.1 Definitions and characterization

The definition and basic examples of Hilbert spaces were given in the section 1.4.1
and in the definition 1.3.7. Some important properties, such as the Cauchy-Schwarz
inequality (1.3.3) were derived above. We shall always deal with complex Hilbert
spaces and derive in this section a few more general properties for these spaces.

Theorem 5.1.1 (Jordan – von Neumann theorem). Let E be a Banach space, such
that the parallelogram identity holds, i.e. for all u, v ∈ E,

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2. (5.1.1)

Then E is a Hilbert space with the scalar product

〈u, v〉 =
1

4

(
‖u + v‖2 − ‖u− v‖2

)
+

i

4

(
‖u + iv‖2 − ‖u− iv‖2

)
. (5.1.2)

Conversely both properties hold for a Hilbert space.

Proof. Let us first check the last statement: in a Hilbert space

‖u + v‖2 = 〈u + v, u + v〉 = ‖u‖2 + 2 Re〈u, v〉+ ‖v‖2, (5.1.3)

which implies readily (5.1.1), (5.1.2). Conversely, if E is a Banach space satisfying
(5.1.1), the formula (5.1.2) defines a sesquilinear Hermitian form: it satisfies

〈u, u〉 = ‖u‖2 +
i

4
(2‖u‖2 − 2‖u‖2) = ‖u‖2 and 〈u, v〉 = 〈v, u〉 (5.1.4)

since

〈v, u〉 =
1

4

(
‖v + u‖2 − ‖v − u‖2

)
− i

4

(
‖v + iu‖2 − ‖v − iu‖2

)

=
1

4

(
‖u + v‖2 − ‖u− v‖2

)
− i

4

(
‖u− iv‖2 − ‖u + iv‖2

)
.
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It is linear with respect to u since, using (5.1.1),

4 Re〈u1, v〉+ 4 Re〈u2, v〉 = ‖u1 + v‖2 − ‖u1 − v‖2 + ‖u2 + v‖2 − ‖u2 − v‖2

=
1

2
‖u1 + u2 + 2v‖2 +

1

2
‖u1 − u2‖2 − 1

2
‖u1 + u2 − 2v‖2 − 1

2
‖u1 − u2‖2

=
1

2
‖u1 + u2 + 2v‖2 − 1

2
‖u1 + u2 − 2v‖2 =

1

2
4 Re〈u1 + u2, 2v〉

and thus, using the obvious identity 〈u, 0〉 = 0,

Re〈u1, v〉+ Re〈u2, v〉 =
1

2
Re〈u1 + u2, 2v〉, (5.1.5)

which implies for u2 = 0, 2 Re〈u1, v〉 = Re〈u1, 2v〉, (5.1.6)

so that using (5.1.6) in (5.1.5), we obtain

Re〈u1, v〉+ Re〈u2, v〉 = Re〈u1 + u2, v〉. (5.1.7)

We have similarly 4 Im〈u1, v〉+ 4 Im〈u2, v〉 = ‖u1 + iv‖2−‖u1− iv‖2 + ‖u2 + iv‖2−
‖u2 − iv‖2 = 1

2‖u1 + u2 + 2iv‖2 − 1
2‖u1 + u2 − 2iv‖2 = 1

24 Im〈u1 + u2, 2v〉 and thus,
Im〈u1, v〉 + Im〈u2, v〉 = 1

2 Im〈u1 + u2, 2v〉, which implies for u2 = 0, 2 Im〈u1, v〉 =
Im〈u1, 2v〉 and we obtain

Im〈u1, v〉+ Im〈u2, v〉 = Im〈u1 + u2, v〉, (5.1.8)

finally getting from (5.1.7), (5.1.8), (5.1.4)

〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉, 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉. (5.1.9)

The identity (5.1.9) implies

〈λu, v〉 = λ〈u, v〉 (5.1.10)

for λ ∈ Q and we have also

4〈iu, v〉 =
1

4

(
‖u− iv‖2 − ‖u + iv‖2

)
+

i

4

(
‖u + v‖2 − ‖u− v‖2

)
= i4〈u, v〉,

so that (5.1.10) holds as well for λ ∈ Q + iQ. Now the function C . λ 4→ 〈λu, v〉 is
continuous since

〈λu, v〉 =
1

4

(
‖λu + v‖2 − ‖λu− v‖2

)
+

i

4

(
‖λu + iv‖2 − ‖λu− iv‖2

)
,

and for λ, h ∈ C, the triangle inequality and the homogeneity of the norm imply∣∣‖(λ + h)u + v‖ − ‖λu + v‖
∣∣ ≤ ‖hu‖ = |h|‖u‖. The continuous function C . λ 4→

〈λu, v〉 − λ〈u, v〉 vanishes on the dense subset Q + iQ and thus everywhere. The
proof of the theorem is complete.
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5.1.2 Projection on a closed convex set. Orthogonality

We shall now prove a theorem of projection on closed convex subsets of a Hilbert
space H. We recall that a subset M of a vector space is said to be convex whenever

∀u, v ∈ M, ∀θ ∈ [0, 1], (1− θ)u + θv ∈ M. (5.1.11)

Theorem 5.1.2. Let H be a Hilbert space and M a (non-empty) convex closed subset
of H. Then for all u ∈ H, there exists a unique vu ∈ M such that

inf
w∈M

‖u− w‖ = ‖u− vu‖.

We shall note vu = pM(u) and call it the projection of u on M . The mapping
pM : H → M is the identity on M and p2

M = pM .

Proof. Let u ∈ H and (wk)k≥1 a sequence in M such that limk ‖u−wk‖ = d(u, M) =
infw∈M ‖u− w‖. We have from (5.1.1)

2‖u− wk‖2 + 2‖u− wl‖2 = 4‖u−

∈M︷ ︸︸ ︷
1

2
(wk + wl) ‖2 + ‖wk − wl‖2

≥ 4d(u, M)2 + ‖wk − wl‖2, (5.1.12)

so that ‖wk −wl‖2 ≤ 2‖u−wk‖2 + 2‖u−wl‖2− 4d(u, M)2 and (wk)k≥1 is a Cauchy
sequence, thus converging to a point v, which is in M since M is closed. We have
thus by the continuity of the norm (see e.g. the footnote 2 in the section 2.1.2)

d(u, M) = lim
k
‖u− wk‖ = ‖u− v‖.

Now if w ∈ M also satisfies d(u, M) = ‖u− w‖, the inequality (5.1.12) with wk, wl

replaced by v, w gives 4d(u, M)2 ≥ 4d(u, M)2 + ‖v − w‖2 and v = w, proving the
uniqueness, which implies also that pM is the identity on M and p2

M = pM . The
proof is complete.

Definition 5.1.3. Let H be a Hilbert space and u, v ∈ H. The vectors u, v are
said to be orthogonal when 〈u, v〉 = 0. Let F be a subset of H: we define F⊥, the
orthogonal of F , as

F⊥ = {u ∈ H,∀v ∈ F, 〈u, v〉 = 0} (5.1.13)

Theorem 5.1.4. Let u1, . . . , um be pairwise orthogonal vectors in H, then the Pytha-
gorean identity holds:

‖
∑

1≤j≤m

uj‖2 =
∑

1≤j≤m

‖uj‖2. (5.1.14)

Let F be a subset of H. Then F⊥ is a closed subspace of H and if F is a closed
subspace of H, we have

F ⊕ F⊥ = H. (5.1.15)
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Proof. When m = 2, the first part is (5.1.1) ; an induction on m gives the result. F⊥

is closed as an intersection of closed sets (each linear form u 4→ 〈u, v〉 is continuous
from (1.3.3)) and F⊥ is obviously stable by linear combination. We postpone the
proof of (5.1.15) to the end of the proof of the next theorem.

Theorem 5.1.5. Let H be a Hilbert space and F be a closed subspace of H (thus
F is closed, convex and. . . not empty). The mapping pF : H → F defined in the
theorem 5.1.2 is a bounded linear operator, such that ‖pF‖ = 1 (if F is not reduced
to {0}) and

p2
F = pF , ker pF = F⊥, ran(pF ) = F, (5.1.16)

pF is selfadjoint, i.e. ∀u, v ∈ H, 〈pF u, v〉 = 〈u, pF v〉. (5.1.17)

Proof. Let u ∈ H. We have for w ∈ F

d(u, F )2 ≤ ‖u− pF (u) + w‖2 = ‖u− pF (u)‖2 + ‖w‖2 + 2 Re〈u− pF (u), w〉

so that
∀w ∈ F, 0 ≤ 2 Re〈u− pF (u), w〉+ ‖w‖2.

If 〈u−pF (u), w〉 = ρeiθ, ρ ≥ 0, θ ∈ R, we shall get for all t ∈ R, 〈u−pF (u), tweiθ〉 = tρ
and tweiθ ∈ F so that

∀t ∈ R, 0 ≤ 2 Re〈u− pF (u), tweiθ〉+ ‖tweiθ‖2 = tρ + t2‖w‖2 =⇒ ρ = 0,

i.e. 〈u− pF (u), w〉 = 0 for all w ∈ F , giving

u− pF (u) ∈ F⊥ and, with (5.1.14), ‖u‖2 = ‖u− pF u‖2 + ‖pF u‖2. (5.1.18)

Claim: If u ∈ H, v ∈ F are such that u− v ∈ F⊥, then v = pF (u): (5.1.19)

we have indeed from (5.1.18) and (5.1.14),

2‖v − pF (u)‖2 + 2‖u‖2 = ‖v − u− pF (u)‖2 + ‖v + u− pF (u)‖2

= ‖v − u‖2 + ‖pF u‖2 + ‖v‖2 + ‖u− pF u‖2 = ‖v − u‖2 + ‖v‖2 + ‖u‖2,

so that 2‖v − pF (u)‖2 + 2‖u‖2 = ‖u‖2 + ‖u‖2 and v = pF (u), proving the claim.
With this characterization of pF (u), we get immediately that pF is linear since, for
u1, u2 ∈ H, λ1, λ2 ∈ C,

λ1pF (u1) + λ2pF (u2) ∈ F, λ1u1 + λ2u2− λ1pF (u1)− λ2pF (u2) ∈ F⊥ (a vector space),

so that (5.2.5) implies λ1pF (u1)+λ2pF (u2) = pF (λ1u1 +λ2u2). The identity (5.1.18)
implies ‖pF‖ ≤ 1 and if F is not reduced to zero, we have with 0 *= v ∈ F, ‖v‖ =
‖pF v‖, giving also ‖pF‖ = 1. The first equality of (5.1.16) is already proven, while
the second follows from (5.2.5), (5.1.18): if u ∈ F⊥, u − 0 ∈ F⊥ and 0=pF (u),
whereas if pF u = 0, we have u = u − pF u ∈ F⊥. The third equality follows from
ran pF ⊂ F and from the fact that for v ∈ F , pF v = v. To get (5.1.17), we note
that for u, v ∈ H, from (5.1.18), 〈pF u, v〉 = 〈pF u, pF v〉 = 〈u, pF v〉. The proof of the
theorem 5.1.5 is complete. Let us now check (5.1.15). Let F be a closed subspace
of H; from (5.1.18), we have F + F⊥ = H since u = u − pF u + pF u and moreover
F ∩ F⊥ = {0} since u ∈ F ∩ F⊥ implies u = pF u = 0. This completes as well the
proof of the theorem 5.1.4.
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Proposition 5.1.6. Let H be a Hilbert space and F be a subset of H. Then (F⊥)
⊥

is the closed linear span of F . If F is a closed subspace of H, then (F⊥)
⊥

= F.

Proof. We have always F ⊂ (F⊥)
⊥

since for u ∈ F, v ∈ F⊥, 〈u, v〉 = 0. If F is a

closed subspace of H, then F, F⊥ are both closed subspace of H and (F⊥)
⊥

= ker pF⊥ .
Now we have pF⊥ = Id−pF since for u ∈ H,

u− pF u ∈ F⊥, u− (u− pF u) ∈ F ⊂ (F⊥)
⊥

=⇒(5.2.5) pF⊥u = u− pF u.

As a result, if u ∈ (F⊥)
⊥
, pF⊥u = 0 and thus u = pF u ∈ F . We assume now that F

is a subset of H; the closed linear span F̃ of F is defined as

F̃ =
⋂

E closed subspace
E⊃F

E. (5.1.20)

It is easy to verify that F̃ is a closed subspace of H and that

F̃ = closure{
∑

1≤k≤m

λkuk, λk ∈ C, uk ∈ F}. (5.1.21)

Since F ⊂ (F⊥)
⊥
, we get that F̃ ⊂ (F⊥)

⊥
. On the other hand, we have F ⊂ F̃ and

thus (F̃ )⊥ ⊂ F⊥ so that, using the already proven part of the theorem, we get

(F⊥)
⊥ ⊂

(
(F̃ )⊥

)⊥
= F̃ ⊂ (F⊥)

⊥
=⇒ (F⊥)

⊥
= F̃ .

Remark 5.1.7. Let H be a Hilbert space and F be a subspace of H. The subspace
F is dense in H if and only if F⊥ = {0}: F is dense means that F̃ = F = H,
which is equivalent (from (5.1.15)) to (F̃ )⊥ = {0}. Now if F⊥ = {0}, we have
(F̃ )⊥ ⊂ F⊥ = {0} and conversely if (F̃ )⊥ = {0}, F is dense and for u ∈ H if
∀v ∈ F, 〈u, v〉 = 0 =⇒ u ∈ H⊥ = {0} so that F⊥ = {0}.

5.1.3 The Riesz representation theorem

Theorem 5.1.8. [Riesz representation theorem1] Let H be a Hilbert space and ξ ∈
H∗. Then there exists a unique u ∈ H such that ∀v ∈ H, 〈v, u〉 = ξ(v). Moreover
‖ξ‖H∗ = ‖u‖H.

Proof. The uniqueness is obvious since for u ∈ H, 〈v, u〉 = 0 for all v ∈ H implies
u = 0. Since ξ is a continuous linear form, ker ξ is a closed linear subspace and
ker ξ⊕(ker ξ)⊥ = H. If ξ *= 0, (ker ξ)⊥ is not reduced to {0}: let us take u0 ∈ (ker ξ)⊥

such that ξ(u0) *= 0. We have for v ∈ H,

ξ
(
v−ξ(v)ξ(u0)

−1u0

)
= 0 =⇒ v−ξ(v)ξ(u0)

−1u0 ∈ ker ξ =⇒ 〈v−ξ(v)ξ(u0)
−1u0, u0〉 = 0,

so that ξ(v) = 〈v, u0〉‖u0‖−2ξ(u0) and the result with u = u0‖u0‖−2ξ(u0). The norm
of ξ is defined as ‖ξ‖H∗ = sup‖v‖=1 |ξ(v)| = ‖u‖H (from (1.3.3)). This implies that

1Biographical details on Frigyes Riesz (1880-1956) can be found on the website http://www-
history.mcs.st-and.ac.uk/history/Biographies/Riesz.html
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there is an isometric (anti)linear2 mapping κ from H . u 4→ κ(u) ∈ H∗, given
by κ(u)(v) = 〈v, u〉 which is also bijective; we have also proven κ is an isometric
isomorphism identifying H with H∗. Moreover, looking at the mapping j : H → H∗∗

defined in the proposition 2.5.13, we consider U0 ∈ H∗∗, we have that U0 ◦ κ ∈ H∗,
so that U0 ◦ κ = κ(u0); but for ξ ∈ H∗,∃w ∈ H, ξ = κ(w),

j(u0)(ξ) = ξ(u0) = (κ(w))(u0) = 〈u0, w〉, (U0 ◦ κ)(w) = κ(u0)(w) = 〈u0, w〉H,

so that j(u0) = U0 and j is onto.

We have also proven the following result.

Theorem 5.1.9. Let H be a Hilbert space. Then the mapping κ : H → H∗ defined
by κ(u)(v) = 〈v, u〉H is an isometric antilinear isomorphism and H is reflexive.

5.1.4 Hilbert basis

Definition 5.1.10. Let H be a Hilbert space.
(1) Let S be a subset of H . The subset S is said to be an orthonormal subset of H
if ∀e ∈ S, ‖e‖H = 1 and for e1 *= e2 ∈ S, 〈e1, e2〉H = 0.
(2) A Hilbert basis of H is a maximal orthornormal subset.

Theorem 5.1.11. Let H be a Hilbert space. If S is an orthonormal subset of H,
there exists a Hilbert basis containing S. In particular, in every Hilbert space there
exists a Hilbert basis.

Proof. The proof follows from a simple Zornification (see the lemma 2.2.2). Given an
orthonormal subset S0 of H, we consider the set X = {S ⊂ H, S ⊃ S0, S orthonormal},
ordered by the inclusion. X is not empty (it contains S0) and is inductive: if (Sj)j∈J

is a totally ordered family in X , we consider S = ∪j∈JSj, an obvious upper bound
in X (note that for e1, e2 ∈ S, ek ∈ Sjk

but Sj1 ⊂ Sj2 or Sj2 ⊂ Sj1).

Theorem 5.1.12 (Gram-Schmidt orthonormalization process). Let H be a Hilbert
space and {uk}1≤k≤N be a linearly independent subset of H. Then there exists an
orthonormal subset {ek}1≤k≤Nof H such that Vect{ek}1≤k≤N = Vect{uk}1≤k≤N (it
means that the vector spaces generated by the two families are the same).

Proof. Obvious for N = 1: take e1 = u1/‖u1‖. Induction: if N ≥ 1 and {uk}1≤k≤N+1

is a linearly independent subset of H, we consider the orthonormal subset {ek}1≤k≤N

obtained inductively such that E = Vect{ek}1≤k≤N = Vect{uk}1≤k≤N , and we define

eN+1 =
uN+1 − prE(uN+1)

‖uN+1 − prE(uN+1)‖
,

which makes sense since uN+1 /∈ Vect{uk}1≤k≤N = E; moreover eN+1 is a unit vector
orthogonal to E.

2The mapping κ satisfies κ(λu) = λ̄κ(u) for λ ∈ C, u ∈ H and also κ(u + v) = κ(u) + κ(v) for
u, v ∈ H.
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Remark 5.1.13. Note that this is a constructive process since with E = Vect{ek}1≤k≤N

when {ek}1≤k≤N is an orthonormal family, we have

prE(u) =
∑

1≤j≤N

〈u, ek〉ek. (5.1.22)

In fact according to the theorem 5.1.5, since E is a closed subspace, writing H =
E ⊕ E⊥, prE is the (unique) linear map given by the identity on E and 0 on E⊥,
which is exactly the case for the mapping defined by (5.1.22): since E⊥ = {u ∈
H,∀k ∈ {1, . . . , N}, 〈u, ek〉 = 0}, we have indeed prEE⊥ = 0 and also prE(ek) = ek.

Theorem 5.1.14. Let H be a Hilbert space and {ek}k∈N∗ be an orthonormal subset
of H. Then Bessel’s inequality holds:

∀u ∈ H,
∑

k≥1

|〈u, ek〉|2 ≤ ‖u‖2. (5.1.23)

Moreover if H is separable and infinite-dimensional 3, there exists a countable Hilbert
basis {ek}k∈N∗ such that ∀u ∈ H,

u = lim
n

∑

1≤k≤n

〈u, ek〉ek,
∑

k≥1

|〈u, ek〉|2 = ‖u‖2. (5.1.24)

Proof. To prove (5.1.23), we may assume that {ek}1≤k≤N is finite; from the remark
5.1.23, with E = Vect {ek}1≤k≤N , the formulas (5.1.22) and (5.1.14) give

‖u‖2 = ‖ prE(u)‖2 + ‖u− prE(u)‖2 ≥ ‖ prE(u)‖2 =
∑

1≤k≤N

|〈u, ek〉|2.

Let H be a separable infinite-dimensional Hilbert space and {uk}k∈N∗ be a dense
countable subset of H. We define En = Vect {uk}1≤k≤n and we note that ∪n≥1En

is a dense vector subspace of H. The finite dimensional En has dimension dn (the
sequence (dn)n≥1 is non-decreasing with limit +∞ since H is not finite-dimensional).
We may assume that d1 = 1. We claim that we can find a sequence (vj)j≥1 such
that for each n ≥ 1, Vect{vj}1≤j≤dn = En. Since we have assumed d1 = 1, we define
v1 = u1; inductively, assuming that Vect{vj}1≤j≤dn = En, we look at dn = dn+pn−1 <
dn + 1 = dn+pn and

En = · · · = En+pn−1 = Vect {vj}1≤j≤dn , En+pn = Vect{vj}1≤j≤dn+pn
, vdn+1 = un+pn .

Using the theorem 5.1.12, we can find an orthonormal subset {ej}j≥1, such that
F = Vect {ej}j≥1 is dense in H so that from the remark 5.1.7, F⊥ = {0} and
prF̄ = Id. Let u ∈ H: we consider the sequence wn =

∑
1≤j≤n〈u, ej〉ej. We have for

n ≤ m
wm − wn =

∑

n<j≤m

〈u, ej〉ej, ‖wm − wn‖2 =
∑

n<j≤m

|〈u, ej〉|2

3If H is finite dimensional, it is isomorphic to CN with the standard scalar product.
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and since the series
∑

j |〈u, ej〉|2 is converging from the already proven (5.1.23), we
get that (wn) is a Cauchy sequence, thus a converging one with limit w. Now for
each k ≥ 1,

〈u− w, ek〉 = lim
n
〈u− wn, ek〉 = 〈u, ek〉 − 〈u, ek〉 = 0,

so that u − w ∈ F⊥ and thus u = w, i.e. u = limn

∑
1≤j≤n〈u, ej〉ej, and taking the

norms of both sides, we get (5.1.24).

Corollary 5.1.15. All separable infinite dimensional Hilbert spaces are isomorphic.

Proof. Let H be a separable Hilbert space. According to the previous theorem, we
can find on H a countable Hilbert basis (ej)j≥1. Let us now consider now the linear
mapping Φ

H . u 4→ (〈u, ek〉)k∈N∗ ∈ *2(N).

This mapping is obviously one-to-one and also onto: if (xk)k∈N∗ ∈ *2(N), the sequence
(
∑

1≤k≤n xkek)n∈N∗ is a Cauchy sequence in H with limit u (same proof as above)
and 〈u, ek〉 = xk. Moreover, Φ is isometric as well as its inverse so that

4 Re〈Φu, Φv〉(2(N∗) = ‖Φ(u+v)‖2
(2(N∗)−‖Φ(u−v)‖2

(2(N∗) = ‖u+v‖2
H−‖u−v‖2

H = 4 Re〈u, v〉H

and using also (5.1.2), we get 〈Φu, Φv〉(2(N∗) = 〈u, v〉H.

Remark 5.1.16. Except for the finite dimensional case, a Hilbert basis of a Hilbert
space is never an algebraic basis (also called Hamel basis). A Hamel basis of a vector
space is a linearly independent and generating family (ej)j∈J . It is also a maximal
linearly independent family; using Zorn’s lemma, it can be proven that every vector
space has a Hamel basis. If (ej)j∈J is a Hamel basis of a vector space E, every vector
u ∈ E can be written is a unique way as a finite linear combination of the ej. For
instance, looking at *2(N) with the Hilbert basis (ej)j∈N defined by ej = (δj,k)k∈N,
it is clear that (ej)j∈N is not a Hamel basis: for instance, u = ( 1

1+k )k≥0 belongs to
*2(N) and is not a finite linear combination of the ej.

Remark 5.1.17. Let J be an uncountable set. We define *2(J) as the set of map-
pings x from J to C, x = (xj)j∈J , such that

N(x) = sup
L finite ⊂J

∑

j∈L

|xj|2 < +∞.

It is possible to prove that *2(J) equipped with the norm N is actually a Hilbert
space which is nonseparable since J is uncountable.

5.2 Bounded operators on a Hilbert space

Let H1, H2 be Hilbert spaces; the first properties of the Banach space L(H1, H2) are
given in the proposition 2.1.5. If H1 = H2, we shall use the notation L(H1) for that
space.
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Definition 5.2.1. Let H be a Hilbert space and L(H) the Banach algebra4 of the
bounded linear maps from H to H. For A ∈ L(H), we define the adjoint of A,
denoted by A∗ as the unique operator in L(H) such that

∀u, v ∈ H, 〈A∗u, v〉H = 〈u, Av〉H. (5.2.1)

Remark 5.2.2. For A ∈ L(H), u0 ∈ H, the mapping H . v 4→ 〈Av, u0〉 ∈ C is
linear continuous (|〈Av, u0〉| ≤ ‖Av‖‖u0‖ ≤ ‖A‖‖v‖‖u0‖) and thus an element of
H∗. From the Riesz representation theorem 5.1.8,

∀u0 ∈ H,∃!w(u0) ∈ H,∀v ∈ H, 〈Av, u0〉 = 〈v, w(u0)〉.

The uniqueness of w implies that it depends linearly on u0: take u0, u1 ∈ H, λ0, λ1 ∈
C, then

∀v ∈ H, 〈Av, λ0w(u0) + λ1w(u1)〉 = λ0〈Av, u0〉+ λ1〈Av, u1〉
= 〈Av, λ0u0 + λ1u1〉 = 〈v, w(λ0u0 + λ1u1)〉, (5.2.2)

so that λ0w(u0) + λ1w(u1) − w(λ0u0 + λ1u1) ∈ H⊥ = {0}. Moreover we have from
(1.3.4),

‖w(u0)‖ = sup
‖v‖=1

|〈v, w(u0)〉| = sup
‖v‖=1

|〈Av, u0〉| ≤ ‖A‖‖u0‖.

We define then A∗ by A∗u = w(u) and we have proven A∗ ∈ L(H) as well as (5.2.1).
Moreover if (5.2.1) is satisfied, this implies A∗u = w(u). As a result, the previous
definition is consistent.

N.B. There is of course a close relationship between tA, the transposed operator of
A, as given by the definition 2.5.22, and its adjoint. For a Hilbert space H, we have
the following characterization of the transposed operator

∀η ∈ H∗,∀x ∈ H, 〈〈tAη, x〉〉H∗,H = 〈〈η, Ax〉〉H∗,H,

where the brackets here are brackets of duality that we have denoted by 〈〈, 〉〉H∗,H.
Using the isometric antilinear map κ of the theorem 5.1.11, we get that this is
equivalent to require

∀y ∈ H,∀x ∈ H, 〈〈tAκ(y), x〉〉H∗,H = 〈〈κ(y), Ax〉〉H∗,H

and since5 〈〈κ(y), Ax〉〉H∗,H = 〈Ax, y〉H = 〈x, A∗y〉H = 〈〈κ(A∗y), x〉〉H∗,H we find that

tAκ = κA∗, i.e. A∗ = κ−1(tA)κ, tA = κA∗κ−1. (5.2.3)

Since κ,κ−1 are isometric, we get from (2.5.20), (5.2.3) that

‖A‖L(H) = ‖A∗‖L(H), (5.2.4)

although we have in the sequel more informations on this topic and also a simpler
proof in the Hilbertian case.

4We have seen in the proposition 2.1.5 that L(H) is a Banach space; a Banach algebra is
a Banach space which is also an associative algebra and such that the multiplication (here the
composition of maps) satisfy ‖AB‖ ≤ ‖A‖‖B‖.

5Here 〈, 〉H is the scalar product on H.
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Proposition 5.2.3. Let H be a Hilbert space and A, B ∈ L(H), λ, µ ∈ C. Then we
have

(λA + µB)∗ = λ̄A∗ + µ̄B∗, (AB)∗ = B∗A∗, (A∗)∗ = A. (5.2.5)

If A ∈ L(H) is invertible6 with inverse A−1, then A∗ is invertible and (A∗)−1 =
(A−1)∗. For A ∈ L(H), we have

‖A‖L(H) = ‖A∗‖L(H) = ‖A∗A‖1/2
L(H) (5.2.6)

Proof. The properties (5.2.5) are trivial consequences of (5.2.1). For the next prop-
erty, we see from (5.2.5) that (A−1)∗A∗ = (AA−1)∗ = Id∗ = Id = (A−1A)∗ =
A∗(A−1)∗. The first equality in (5.2.6) follows from (5.2.4), but can be proven di-
rectly with

‖A‖L(H) = sup
‖u‖H=1

‖Au‖H = sup
‖u‖H=1=‖v‖H

|〈Au, v〉H| = sup
‖u‖H=1=‖v‖H

|〈u, A∗v〉H| = ‖A∗‖L(H),

and we have also

‖A‖2
L(H) = sup

‖u‖H=1
|〈Au, Au〉H| = sup

‖u‖H=1
|〈A∗Au, u〉H|

≤ ‖A∗A‖L(H) ≤ ‖A∗‖L(H)‖A‖L(H) = ‖A‖2
L(H), proving (5.2.6).

Definition 5.2.4. Let H be a Hilbert space and A ∈ L(H). The operator A is said
to be selfadjoint (resp. normal) if A = A∗ (resp. A∗A = AA∗).

Proposition 5.2.5. Let H be a complex7 Hilbert space and A ∈ L(H). The operator
A is selfadjoint if and only if ∀u ∈ H, 〈Au, u〉 ∈ R.

Proof. If A is selfadjoint we have 〈Au, u〉 = 〈u, Au〉 = 〈Au, u〉 and thus 〈Au, u〉 ∈ R.
Conversely, if 〈Au, u〉 ∈ R for all u ∈ H, since

〈A(u + iv), u + iv〉 = 〈Au, u〉+ 〈Av, v〉 − i〈Au, v〉+ i〈Av, u〉,

we have Im
(
−i〈Au, v〉+ i〈Av, u〉

)
= 0 so that

Re(〈Av, u〉) = Re(〈Au, v〉).

Changing u in iu, we get Re(−i〈Av, u〉) = Re(i〈Au, v〉), which is Im(〈Av, u〉) =
− Im(〈Au, v〉), so that

∀u, v ∈ H, 〈u, Av〉 = 〈Av, u〉 = 〈Au, v〉 =⇒ A∗ = A.

Proposition 5.2.6. Let H be a Hilbert space and A be a selfadjoint bounded opera-
tor. Then ‖A‖ = sup‖u‖=1 |〈Au, u〉|.

6It means that there exists A′ ∈ L(H) such that AA′ = A′A = Id; in that case A′ is uniquely
determined, since AA′′ = Id implies A′′ = A′AA′′ = A′. We denote the inverse by A−1. The open
mapping theorem (theorem 2.1.10) shows that if A ∈ L(H) is only bijective, it is invertible.

7It was already said on page 127 that we dealt with complex Hilbert spaces, but we emphasize
this here since the result is not true for a real Hilbert space (exercise).
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Proof. We have T = sup‖u‖=1 |〈Au, u〉| ≤ ‖A‖ and also

〈A(u + v), u + v〉 − 〈A(u− v), u− v〉 = 2〈Au, v〉+ 2〈Av, u〉
= 2〈Au, v〉+ 2〈v, Au〉 = 4 Re〈Au, v〉,

so that for ‖u‖ = ‖v‖ = 1,

4|〈Au, v〉| ≤ T (‖u + v‖2 + ‖u− v‖2) = T (2‖u‖2 + 2‖v‖2) = 4T,

which gives ‖A‖ = sup‖u‖=‖v‖=1 |〈Au, v〉| ≤ T and the result.

Theorem 5.2.7. Let H be a Hilbert space and A ∈ L(H). Then

ker A = (ran A∗)⊥. (5.2.7)

Proof. u ∈ ker A means Au = 0, which is equivalent to ∀v ∈ H, 〈Au, v〉 = 0, i.e.
∀v ∈ H, 〈u, A∗v〉 = 0, i.e. u ∈ (ran A∗)⊥.

Remark 5.2.8. The property above implies ker A∗ = (ran A)⊥, and from the propo-
sition 5.1.6,

(ker A)⊥ = ran A∗. (5.2.8)

5.3 The Fourier transform on L2(Rn)

5.3.1 Plancherel formula

Theorem 5.3.1. The Fourier transformation can be extended into a unitary oper-
ator of L2(Rn), i.e. there exists a unique linear operator F : L2(Rn) −→ L2(Rn),
such that for u ∈ S (Rn), Fu = û and we have F ∗F = FF ∗ = IdL2(Rn). Moreover

F ∗ = CF = FC, F 2C = IdL2(Rn) . (5.3.1)

where C is the involutive isomorphism of L2(Rn) defined by (Cu)(x) = u(−x). This
gives the Plancherel formula: for u, v ∈ L2(Rn),

∫

Rn

û(ξ)v̂(ξ)dξ =

∫
u(x)v(x)dx. (5.3.2)

Proof. For the test functions ϕ, ψ ∈ S (Rn), using the Fubini theorem and (4.1.4),
we get8

(ψ̂, ϕ̂)L2(Rn) =

∫
ψ̂(ξ)ϕ̂(ξ)dξ =

∫∫
ψ̂(ξ)e2iπx·ξϕ(x)dxdξ = (ψ, ϕ)L2(Rn).

Next, the density of S in L2 shows that there is a unique continuous extension
F of the Fourier transform to L2 and that extension is an isometric operator (i.e.

8We have to pay attention to the fact that the scalar product (u, v)L2 in the complex Hilbert
space L2(Rn) is linear with respect to u and antilinear with respect to v: for λ, µ ∈ C, (λu, µv)L2 =
λµ̄(u, v)L2 .
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satisfying for all u ∈ L2(Rn), ‖Fu‖L2 = ‖u‖L2 , i.e. F ∗F = IdL2). We note that the
operator C defined by Cu = ǔ is an involutive isomorphism of L2(Rn) and that for
u ∈ S (Rn),

CF 2u = u = FCFu = F 2Cu.

By the density of S (Rn) in L2(Rn), the bounded operators CF 2, IdL2(Rn), FCF, F 2C
are all equal. On the other hand for u, ϕ ∈ S (Rn)

(F ∗u, ϕ)L2 = (u, Fϕ)L2 =

∫
u(x)ϕ̂(x)dx =

∫∫
u(x)ϕ̄(ξ)e2iπx·ξdxdξ = (CFu, ϕ)L2 ,

so that F ∗u = CFu for all u ∈ S and by continuity F ∗ = CF as bounded operators
on L2(Rn), thus FF ∗ = FCF = Id. The proof is complete.

5.3.2 Convolution of L2 functions

Let u, v ∈ L2(Rn). We consider
∫

u(y)v(x − y)dy = ω(u, v)(x), which makes sense
since

∫
|u(y)v(x− y)|dy ≤ ‖u‖L2‖v‖L2 < +∞, so that ω(u, v) ∈ L∞(Rn). Moreover

ω(u, v) ∈ C0(Rn) since, with (τhw)(x) = w(x− h), we have

ω(u, v)(x + h)− ω(u, v)(x) =

∫
u(y)

(
(τ−hv)(x− y)− v(x− y)

)
dy,

and thus

|ω(u, v)(x + h)− ω(u, v)(x)| ≤ ‖u‖L2(Rn)‖τ−hv − v‖L2(Rn),

and since9 limh→0 ‖τhv− v‖L2(Rn) = 0, we get the uniform continuity of ω(u, v). The
reader may check the chapter 6 in [9] to see that ω(u, v) is the convolution of u with
v and that ω(u, v) = ω(v, u) by a change of variables. However, we have to pay
attention to the fact that we have given earlier in the section 3.5 another definition
of the convolution when u ∈ E ′(Rn), v ∈ D′(Rn), and we have to verify that these
definitions coincide when u ∈ L2

comp(Rn), v ∈ L2(Rn). In fact, for u, v ∈ L2(Rn), ϕ ∈
C0

c (Rn) we have from the Fubini theorem
∫

ω(u, v)(x)ϕ(x)dx =

∫∫
u(x)v(y)ϕ(x + y)dxdy, (5.3.3)

since with w(x) =
∫
|v(y)||ϕ(x + y)|dy = ω(|ϕ|, |v̌|)(x), we have10

‖ω(|ϕ|, |v̌|)‖L2 ≤ ‖v‖L2‖ϕ‖L1 ,

9For v ∈ L2(Rn),ϕ ∈ C0
c (Rn), τhv − v = τh(v − ϕ) + τh(ϕ)− ϕ + ϕ− v, and thus

‖τhv − v‖L2 ≤ 2‖v − ϕ‖L2 + ‖τh(ϕ)− ϕ‖L2 =⇒ lim sup
h→0

‖τhv − v‖L2 ≤ 2‖v − ϕ‖L2 ,

and since C0
c (Rn) is dense in L2(Rn) this implies limh→0 ‖τhv − v‖L2 = 0.

10This follows from Young’s inequality (see e.g. the Théorème 6.2.1 in [9]) but there is a simpler
argument: for w1 ∈ L1, w2 ∈ L2, then w1 ∗ w2 ∈ L2 with ‖w1 ∗ w2‖L2 ≤ ‖w1‖L1‖w2‖L2 : we have

∫ ∣∣∣∣
∫

w1(y)w2(x− y)dy

∣∣∣∣
2

dx ≤
∫
‖|w1|1/2‖2L2

∫
|w1(y)||w2(x− y)|2dydx = ‖w1‖2L1‖w2‖2L2 .
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∫∫
|u(x)||v(y)||ϕ(x + y)|dxdy ≤ ‖u‖L2‖w‖L2 ≤ ‖u‖L2‖v‖L2‖ϕ‖L1 < +∞,

and (5.3.3) gives ω(u, v) = u ∗ v, where the convolution is taken in the distribution
sense. We have proven the first part of the following lemma.

Lemma 5.3.2.
(1) The mapping L2(Rn) × L2(Rn) . (u, v) 4→ u ∗ v ∈ C0(Rn) ∩ L∞(Rn) as defined
above is symmetric and

‖u ∗ v‖L∞(Rn) ≤ ‖u‖L2(Rn)‖v‖L2(Rn) (5.3.4)

and coincides with the convolution in the distribution sense when u (or v) is com-
pactly supported.
(2) For u, v ∈ L2(Rn), we have û ∗ v = ûv̂.

N.B. The formula (2) was proven for u ∈ E ′(Rn), v ∈ D ′(Rn) in (4.3.2); here, we
know that both sides of the equality makes sense, since u∗v ∈ L∞(Rn) and thus is a
tempered distribution whose Fourier transform has a meaning. On the other hand,
ûv̂ is a product of L2 functions and thus is a L1 function.

Proof. We shall see that an approximation argument, the continuity property ex-
pressed by the inequality (5.3.4) and (4.3.2) will imply the result. For ϕ ∈ S (Rn),
we have with χ ∈ C∞

c (Rn), equal to 1 near 0 and χk(x) = χ(x/k),

〈û ∗ v, ϕ〉S ′,S = 〈u ∗ v, ϕ̂〉S ′,S =

∫
(u ∗ v)(x)ϕ̂(x)dx = lim

k→+∞

∫
(χku ∗ v)(x)ϕ̂(x)dx,

since χku tends to u in L2(Rn) and thus
∫
|
(
(χku− u) ∗ v

)
(x)ϕ̂(x)|dx ≤

∫
|ϕ̂(x)|dx‖χku− u‖L2‖v‖L2 .

On the other hand, using (4.3.2), we get, since χku, v ∈ L2(Rn),

∫
(χku ∗ v)(x)ϕ̂(x)dx = 〈χ̂ku ∗ v, ϕ〉S ′,S = 〈χ̂kuv̂, ϕ〉S ′,S

=

∫
(Fχku)(x)(Fv)(x)ϕ(x)dx = 〈F (χku), ϕFv〉L2 −→

k→+∞

〈Fu, ϕFv〉L2 ,

a limit which is equal to
∫

(Fu)(x)(Fv)(x)ϕ(x)dx. This completes the proof of (2)
in the lemma.

5.4 Sobolev spaces

5.4.1 Definitions, Injections

For ξ ∈ Rn, we define
〈ξ〉 =

√
1 + |ξ|2. (5.4.1)
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It is easy to see that this function as well as all functions ξ 4→ 〈ξ〉s when s ∈ R
are elements of the space of multipliers OM as given by the definition 4.3.2. In
particular, it means that for u ∈ S ′(Rn), the product 〈ξ〉sû(ξ) makes sense and
belongs to S ′(Rn).

Definition 5.4.1. Let s ∈ R. We define the Sobolev space Hs(Rn) as

Hs(Rn) = {u ∈ S ′(Rn), 〈ξ〉sû(ξ) ∈ L2(Rn)}. (5.4.2)

Proposition 5.4.2. Let s ∈ R. The space Hs(Rn) equipped with the scalar product

〈u, v〉Hs(Rn) =

∫
〈ξ〉2sû(ξ)v̂(ξ)dξ = 〈û(ξ)〈ξ〉s, v̂(ξ)〈ξ〉s〉L2(Rn), (5.4.3)

is a Hilbert space. The space S (Rn) is dense in Hs(Rn).

Proof. It is obvious that 〈u, v〉Hs(Rn) is a sesquilinear Hermitian and positive-definite
form: note in particular that 0 = 〈u, u〉Hs(Rn) = ‖û(ξ)〈ξ〉s‖2

L2(Rn) implies û(ξ)〈ξ〉s = 0

in L2(Rn) and thus in S ′(Rn), so that we can muliply that identity by the multiplier
〈ξ〉−s, get û = 0 and thus u = 0. On the other hand, if (uk)k≥1 is a Cauchy sequence
in Hs(Rn), the sequence (vk)k≥1, vk(ξ) = ûk(ξ)〈ξ〉s converges in L2(Rn). Let v ∈ L2

be its limit; the tempered distribution w defined by the product w(ξ) = 〈ξ〉−sv(ξ) is
such that u = ˇ̂w ∈ Hs(Rn) since 〈ξ〉sw(ξ) ∈ L2: we have

‖uk − u‖Hs = ‖〈ξ〉sûk(ξ)− 〈ξ〉sw(ξ)‖L2 = ‖vk − v‖L2 −→ 0,

and the result that Hs is complete. Next we see that, since ξ 4→ 〈ξ〉sû(ξ) is in
S (Rn) ⊂ L2(Rn), when u ∈ S (Rn), each Hs(Rn) contains S (Rn). To prove the
density of S (Rn), we note that if u ∈ (S (Rn))⊥s , i.e.

u ∈ Hs(Rn),∀ϕ ∈ S (Rn),

∫
〈ξ〉2sû(ξ)ϕ̂(ξ)dξ = 0,

this11 implies ∀ψ ∈ S (Rn), 〈û, ψ〉S ′(Rn),S (Rn) = 0, i.e. û = 0 as a tempered distri-
bution, thus u = 0.

Theorem 5.4.3. . Let s1 ≤ s2 be real numbers. Then Hs2(Rn) ⊂ Hs1(Rn) with a
continuous injection: for u ∈ Hs2(Rn) we have

‖u‖Hs1 (Rn) ≤ ‖u‖Hs2 (Rn). (5.4.4)

For a multi-index α ∈ Nn with |α| = m, the operator ∂α
x is continuous from Hs(Rn)

into Hs−m(Rn).

Proof. The inequality (5.4.4) holds true for u ∈ S (Rn). Now if u ∈ Hs2 , u = limk uk

in Hs2 with uk ∈ S (Rn); from (5.4.4) on S (Rn), we see that (uk) is a Cauchy
sequence in Hs1 , thus converges to v ∈ Hs1 . Now the convergence in Hs implies the
weak-dual convergence in S ′(Rn), since for ϕ ∈ S (Rn), ∃ψ ∈ S (Rn) with

〈uk, ϕ〉S ′(Rn),S (Rn) = 〈ûk, ˇ̂ϕ〉S ′(Rn),S (Rn) = 〈〈ξ〉sûk(ξ), 〈ξ〉−s ˇ̂ϕ(ξ)︸ ︷︷ ︸
ψ̂(ξ)〈ξ〉s

〉L2 = 〈uk, ψ〉Hs .

11The mapping χ 4→ χ̃ given by χ̃(ξ) = 〈ξ〉sχ(ξ) is an isomorphism of S (Rn).
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As a result, the sequence (uk) converges in the weak-dual topology on S ′(Rn) with
limit u (convergence in Hs2) and limit v (convergence in Hs1), thus u = v and the
injection property. The inequality (5.4.4) follows from its version with u ∈ S (Rn)
and the density, and it implies the continuity. The last property follows from (4.1.7),
the density of S (Rn) in Hs(Rn) and the inequality for m ≥ 0, |ξ|m〈ξ〉s−m ≤ 〈ξ〉s.

5.4.2 Identification of (Hs)∗ with H−s

Let s ∈ R. We consider now the following pairing

Hs(Rn)×H−s(Rn) −→ C
(u, v) 4→ 〈〈ξ〉sû(ξ), 〈ξ〉−sv̂(ξ)〉L2(Rn) = T (u, v)

(5.4.5)

so that
|T (u, v)| ≤ ‖u‖Hs‖v‖H−s . (5.4.6)

We see that it gives a mapping

Φ : H−s(Rn) −→ (Hs(Rn))∗ (5.4.7)

defined by

〈Φ(v), u〉(Hs)∗,Hs = T (u, v), with ‖Φ(v)‖(Hs)∗ = sup
‖u‖Hs=1

|T (u, v)| = ‖v‖H−s ,

since the inequality sup‖u‖Hs=1 |T (u, v)| ≤ ‖v‖H−s follows from (5.4.6) and, for v *= 0,

taking u such that û(ξ) = 〈ξ〉−2sv̂(ξ)‖v‖−1
H−s , we see that u ∈ Hs with ‖u‖Hs = 1

so that T (u, v) = ‖v‖H−s , providing the equality. The mapping Φ is isometric (thus
injective) and to prove that it is an isometric isomorphism, using the open mapping
theorem 2.1.10, it is enough to prove that Φ is onto. Let us take L0 ∈ (Hs)∗:
according to the Riesz representation theorem 5.1.8, there exists u0 ∈ Hs such that

〈L0, u〉(Hs)∗,Hs = 〈u, u0〉Hs = 〈〈ξ〉sû(ξ), 〈ξ〉sû0(ξ)〉L2 = 〈〈ξ〉sû(ξ), 〈ξ〉−s 〈ξ〉2sû0(ξ)︸ ︷︷ ︸
bv0(ξ)

〉L2 ,

with v0 ∈ H−s since 〈ξ〉−sv̂0(ξ) = 〈ξ〉sû0(ξ) ∈ L2, and this gives

〈L0, u〉(Hs)∗,Hs = T (u, v0) = Φ(v0),

and the surjectivity of Φ0. We have proven the following theorem

Theorem 5.4.4. The pairing (5.4.5) gives a canonical isometric isomorphism Φ
(5.4.7) from H−s(Rn) onto the dual of Hs(Rn).

5.4.3 Continuous functions and Sobolev spaces

Theorem 5.4.5. Let m ∈ N. Then

Hm(Rn) = {u ∈ D ′(Rn),∀α ∈ Nn such that |α| ≤ m, ∂α
x u ∈ L2(Rn)}. (5.4.8)

Moreover, Hm(Rn) is the completion of C∞
c (Rn) for the norm

( ∑

|α|≤m

‖∂α
x u‖2

L2(Rn)

)1/2
. (5.4.9)
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Proof. Taking u ∈ Hm(Rn) in the sense of the definition 5.4.1, we get that u ∈
S ′(Rn), 〈ξ〉mû(ξ) ∈ L2(Rn) and as a consequence û ∈ L2

loc, D̂α
xu = ξαû(ξ) belongs

to L2(Rn) if |α| ≤ m since

∫
|ξαû(ξ)|2dξ ≤

∫
〈ξ〉2m|û(ξ)|2dξ < +∞.

Conversely, if u satisfies (5.4.8), u belongs to L2(Rn) ⊂ S ′(Rn), and ξαû(ξ) is in
L2(Rn) for |α| ≤ m. We have also from Hölder’s inequality

〈ξ〉2m = (1 +
∑

1≤j≤n

ξ2
j )

m ≤
(
1 +

∑

1≤j≤n

ξ2m
j

)
(n + 1)m−1, (5.4.10)

so that
∫
〈ξ〉2m|û(ξ)|2dξ ≤

(
‖u‖2

L2(Rn) +
∑

1≤j≤n ‖Dm
j u‖2

L2(Rn)

)
(n + 1)m−1 < +∞.

We have thus proven the first statement of the theorem and also that the Hilbertian
norms of Hm(Rn) and (5.4.9) are equivalent. We have already seen in the proposition
5.4.2 that S (Rn) is dense in Hm(Rn), with a continuous injection since for ϕ ∈
S (Rn),

‖ϕ‖2
Hs =

∫
〈ξ〉2s+n+1|ϕ̂(ξ)|2〈ξ〉−n−1dξ ≤ C(n)ps(ϕ), (5.4.11)

where ps is a semi-norm on S (Rn).

Lemma 5.4.6. C∞
c (Rn) is dense in S (Rn).

Proof of the lemma. Let ϕ ∈ S (Rn) and χ ∈ C∞
c (Rn; [0, 1]) equal to 1 on the unit

ball of Rn, the sequence of functions ϕk ∈ C∞
c (Rn) defined by ϕk(x) = χ(x/k)ϕ(x)

has limit ϕ in S (Rn): we calculate with the standard Leibniz formula

1

α!
(∂α

x ϕk)(x) =
∑

β+γ=α

1

β!γ!
k−|β|(∂β

xχ)(x/k)(∂γ
xϕ)(x)

so that

|xλ
(
∂α

x (ϕk−ϕ)
)
(x)| ≤ |xλ

∑

β+γ=α
|β|≥1

α!

β!γ!
k−|β|(∂β

xχ)(x/k)(∂γ
xϕ)(x)|+|xλ (χ(x/k)− 1)︸ ︷︷ ︸

|x|≥k
on its support

(∂α
x ϕ)(x)|

and

sup
x∈Rn

|xλ
(
∂α

x (ϕk − ϕ)
)
(x)| ≤ k−1p(ϕ)C(χ, α) +

2

k + 1
sup
|x|≥k

|(1 + |x|)xλ(∂α
x ϕ)(x)|,

proving that the sequence (ϕk) converges to ϕ in S (Rn) and the lemma.

The inequality (5.4.11) and the lemma give the density of C∞
c (Rn) in Hs(Rn): for

ε > 0 and u ∈ Hs, there exists ϕ ∈ S (Rn) such that ‖u−ϕ‖Hs < ε/2 and for that ϕ
there exists ψ ∈ C∞

c (Rn) such that ps(ϕ− ψ) < ε
2C(n)+1 , implying ‖ϕ− ψ‖Hs < ε/2

and then ‖u− ψ‖Hs < ε.
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If f ∈ OM(Rn) (see the definition 4.3.2), we define the operator, called a Fourier

multiplier, f(D) on S ′(Rn) by f̂(D)u = f(ξ)û(ξ) and we note that f(D) is an endo-
morphism of S (Rn). The notation is consistent with the fact that for a polynomial
P on Rn, the differential operator P (D) is indeed the Fourier multiplier P (D).

Lemma 5.4.7. Let s, t ∈ R. Then the Fourier multiplier 〈D〉s is an isomorphism
from Hs+t(Rn) onto H t(Rn) whose inverse is 〈D〉−s. If f ∈ OM is bounded, then
f(D) is an endomorphism of Hs(Rn). If m ∈ N, H−m(Rn) is the set of linear
combinations of derivatives of order ≤ m of functions of L2(Rn).

Proof. We assume first t = 0; we have indeed for u ∈ Hs, ‖u‖Hs = ‖〈D〉su‖L2 , and
for u ∈ L2, ‖u‖L2 = ‖〈D〉−su‖Hs , with 〈D〉s〈D〉−s = 〈D〉−s〈D〉s = IdS ′(Rn) . If t *= 0,
we use the identity 〈D〉s = 〈D〉−t〈D〉s+t, (valid on S ′(Rn)), so that

Hs+t 〈D〉s+t

−−−−→
≈

H0 〈D〉−t

−−−→
≈

H t.

Now if f ∈ OM is bounded, f(D) is bounded on H0 and the identity f(D) =
〈D〉−sf(D)〈D〉s (valid on S ′(Rn)) proves the boundedness on Hs. For the second
part, we consider for a multi-index α with |α| ≤ m, the Fourier multiplier Dα is
bounded from L2 into H−m from the theorem 5.4.3. With χj(ξ) = ξj〈ξ〉−1, the
Fourier multiplier

(1 +
∑

1≤j≤n

χj(D)Dj)
m

is an isomorphism from H0 onto H−m. This implies that for u ∈ H−m,∃v ∈ L2 such
that

u = (1 +
∑

1≤j≤n

χj(D)Dj)
mv =

∑

|α|≤m

Dαψα(D)v

with each ψα(D) bounded on L2 as a product of χj(D).

Theorem 5.4.8. Let s > n/2. Then Hs(Rn) ⊂ C0
(0)(Rn) with continuous injection

(see the lemma 4.3.5 for the definition of that space).

Proof. For u ∈ Hs(Rn), we have û ∈ L2(Rn) and û(ξ) = 〈ξ〉−s〈ξ〉sû(ξ) with 〈ξ〉−s ∈
L2(Rn), 〈ξ〉sû(ξ) ∈ L2(Rn) so that û ∈ L1(Rn) and we can apply the lemma 4.3.5.
The injection is continuous since (4.1.14) applied to the L1 function û gives

‖u‖L∞ ≤ ‖û‖L1 ≤
(∫

〈ξ〉−2sdξ

)1/2 (∫
〈ξ〉2s|û(ξ)|2dξ

)1/2

= c(s, n)‖u‖Hs . (5.4.12)

5.5 The Littlewood-Paley decomposition

Let ϕ0 ∈ C∞
c (Rn), 1 ≥ ϕ0(ξ) ≥ 0 such that

ϕ0(ξ) = 1 if |ξ| ≤ 1 and ϕ0(ξ) = 0 if |ξ| ≥ 2, ϕ0 radial decreasing of |ξ|.



144 CHAPTER 5. ANALYSIS ON HILBERT SPACES

We set
ϕ(ξ) = ϕ0(ξ)− ϕ0(2ξ).

The function ϕ is supported in the ring 1/2 ≤ |ξ| ≤ 2 : if |ξ| ≥ 2, ϕ(ξ) = 0 and if
|ξ| ≤ 1/2, ϕ0(ξ) = 1 = ϕ0(2ξ) so that ϕ(ξ) = 0. We have also 0 ≤ ϕ(ξ) ≤ 1. We
define, for a positive integer ν, ϕν to be

ϕν(ξ) = ϕ(
ξ

2ν
)

which is supported in the ring {2ν−1 ≤ |ξ| ≤ 2ν+1}. We have then

ϕν(ξ)ϕµ(ξ) = 0 if |ν − µ| ≥ 2.

We set, for ν ∈ N,
Sν(ξ) =

∑

0≤µ≤ν

ϕµ(ξ).

and we have

Sν(ξ) = ϕ0(ξ) +
∑

1≤µ≤ν

ϕ0(
ξ

2µ
)− ϕ0(

ξ

2µ−1
),

so that

Sν(ξ) = ϕ0(
ξ

2ν
) = 1 if |ξ| ≤ 2ν and 0 if |ξ| ≥ 2ν+1.

Consequently, we obtain

1 =
+∞∑

µ=0

ϕµ(ξ).

Moreover, we get (with ϕ−1 ≡ 0)

1 =
∑

µ,ν

ϕµ(ξ)ϕν(ξ) =
∑

µ≥0

ϕµϕµ−1 + ϕ2
µ + ϕµϕµ+1

and thus
1

3
≤

+∞∑

µ=0

ϕµ(ξ)2 ≤ 1,

the last inequality follows from 0 ≤ ϕµ(ξ) ≤ 1. We’ll use that ϕν(Dx) is the
convolution with ϕ̂(2νx)2νn.

Theorem 5.5.1. Let s ∈ R. Then there exists Cs > cs > 0 such that

∀u ∈ Hs(Rn), cs‖u‖2
Hs ≤

+∞∑

µ=0

‖ϕµ(Dx)u‖2
L2(Rn)2

2µs ≤ Cs‖u‖2
Hs .

Let ρ ∈ (0, 1). We define the space

Cρ(Rn) = {u ∈ L∞(Rn), sup
x′ *=x′′

|u(x′)− u(x′′)|
|x′ − x′′|ρ < +∞}, (5.5.1)

‖u‖Cρ(Rn) = ‖u‖L∞(Rn) + sup
x′ *=x′′

|u(x′)− u(x′′)|
|x′ − x′′|ρ . (5.5.2)
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For ρ ∈ (0, 1), Cρ(Rn) equipped with the above norm is a Banach space; moreover,
there exists C > c > 0 such that

∀u ∈ Cρ(Rn), c‖u‖Cρ(Rn) ≤ sup
µ≥0

‖ϕµ(Dx)u‖L∞(Rn)2
µρ ≤ C‖u‖Cρ(Rn).

Proof. Defining the Besov space Bs
p,q(Rn) for s ∈ R, p, q ≥ 1 by

Bs
p,q(Rn) = {u ∈ S ′(Rn),

(
2νs‖ϕν(D)u‖Lp(Rn)

)
ν≥0

∈ *q(N)}, (5.5.3)

the theorem is stating that

∀s ∈ R, Bs
2,2(Rn) = Hs(Rn), ∀ρ ∈ (0, 1), Bρ

∞,∞(Rn) = Cρ(Rn).

The first statement is quite obvious since for ξ ∈ supp ϕ0, we have 1 ≤ 〈ξ〉 ≤ 51/2,
and for

ξ ∈ supp ϕν , ν ≥ 1, 2−1 ≤ 2−ν(1 + 22ν−2)1/2 ≤ 〈ξ〉
2ν

≤ 2−ν(1 + 22ν+2)1/2 ≤ 51/2,

so that
1

23|s|3
〈ξ〉2s ≤ 2−3|s|

∑

ν≥0

〈ξ〉2sϕν(ξ)
2 ≤

∑

ν≥0

22νsϕν(ξ)
2 ≤ 23|s|

∑

ν≥0

〈ξ〉2sϕν(ξ)
2 ≤ 23|s|〈ξ〉2s.

Let us now assume that u ∈ Cρ(Rn), i.e. u is a continuous bounded function on Rn

such that ‖u‖Λρ < +∞. Then, with ‖u‖Cρ = ‖u‖L∞ + ‖u‖Λρ , we have

‖ϕν(D)u‖L∞(Rn) = ‖ϕ̂(2ν ·)2νn ∗ u‖L∞(Rn) ≤ 2−νρ‖u‖CρC(ϕ0),

since it is obvious for ν = 0 and for ν ≥ 1, since ϕ(0) = 0 (thus
∫

ϕ̂ = 0), we have

(ϕ̂(2ν ·)2νn ∗ u)(x) =

∫
ϕ̂(2νy)2νn

(
u(x− y)− u(x)

)
dy,

which implies ‖ϕν(D)u‖L∞(Rn) ≤
∫
|ϕ̂(2νy)|2νn‖u‖Λρ|y|ρdy = C(ϕ0)‖u‖Λρ2−νρ. Con-

versely if u ∈ Bρ
∞,∞, then u =

∑
ν≥0 ϕν(D)u and

‖u‖L∞ ≤
∑

ν≥0

‖ϕν(D)u‖L∞ ≤
∑

ν≥0

2−νρ‖u‖Bρ
∞,∞ ,

so that u ∈ L∞. Moreover for x, h ∈ Rn, we have

|u(x + h)− u(x)| ≤
∑

ν
|h|≤2−ν

|(ϕν(D)u)(x + h)− (ϕν(D)u)(x)|

︸ ︷︷ ︸
=A(h)

+2
∑

ν
|h|>2−ν

2−νρ

︸ ︷︷ ︸
≤C|h|ρ

‖u‖Bρ
∞,∞ .

On the other hand, with ψ ∈ C∞
c (Rn), ψ = 1 on the support of ϕ, ψ = 0 near 0, so

that with ν ≥ 1, ϕν(ξ) = ϕν(ξ)ψν(ξ) with ψν(ξ) = ψ(ξ2−ν), ψ0 ∈ C∞
c (Rn), ψ0 = 1

on the support of ϕ0, we have

A(h) ≤
∑

ν
|h|≤2−ν

2π|h|‖Dϕν(D)ψν(D)u‖L∞ ≤ 2π|h|
∑

ν
|h|≤2−ν

2ν‖2−νDψν(D)ϕν(D)u‖L∞

≤ 2π|h|
∑

1≤ν
|h|≤2−ν

2ν‖ϕν(D)u‖L∞ ≤ 2π|h|
∑

1≤ν
|h|≤2−ν

2ν(1−ρ)‖u‖Bρ
∞,∞

≤ C‖u‖Bρ
∞,∞|h|

(
|h|−1

)1−ρ
,

so that |u(x + h)− u(x)| ≤ C ′|h|ρ‖u‖Bρ
∞,∞ and the sought result u ∈ Cρ.
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Theorem 5.5.2. The space B1
∞,∞(Rn) given by (5.5.3) has the following character-

ization: u ∈ B1
∞,∞(Rn) if and only if u ∈ L∞(Rn) and

|||u|||1 = sup
x∈Rn,0 *=h∈Rn

|u(x + h) + u(x− h)− 2u(x)||h|−1 < +∞. (5.5.4)

There exists C > c > 0 such that, ∀u ∈ B1
∞,∞(Rn),

c‖u‖B1
∞,∞(Rn) ≤ ‖u‖L∞(Rn) + |||u|||1 ≤ C‖u‖B1

∞,∞(Rn). (5.5.5)

Moreover, if u ∈ B1
∞,∞(Rn), ∃C > 0 such that

∀x ∈ Rn,∀h ∈ Rn, |u(x + h)− u(x)| ≤ C|h|
(
1 + ln(|h|−1)

)
. (5.5.6)

We define Lip(Rn) = {u ∈ L∞(Rn),∇u ∈ L∞(Rn)}; this is a Banach space for the
norm ‖u‖L∞(Rn) + ‖∇u‖L∞(Rn). The inclusion Lip(Rn) ⊂ B1

∞,∞ is continuous and
strict.

Proof. Let us consider u ∈ L∞(Rn) such that |||u|||1 < +∞. Then we have

‖ϕν(D)u‖L∞(Rn) = ‖ϕ̂(2ν ·)2νn ∗ u‖L∞(Rn) ≤ 2−ν(‖u‖L∞ + |||u|||1)C(ϕ0),

since it is obvious for ν = 0 and for ν ≥ 1, since ϕ(0) = 0 (thus
∫

ϕ̂ = 0), we have,
using that ϕ is even,

2(ϕ̂(2ν ·)2νn ∗ u)(x) =

∫
ϕ̂(2νy)2νn

(
u(x− y) + u(x + y)− 2u(x)

)
dy,

which implies 2‖ϕν(D)u‖L∞(Rn) ≤
∫
|ϕ̂(2νy)|2νn|||u|||1|y|dy = 2C(ϕ0)|||u|||12−ν , and

the first inequality in (5.5.5). Conversely if u ∈ B1
∞,∞, then u =

∑
ν≥0 ϕν(D)u and

‖u‖L∞ ≤
∑

ν≥0

‖ϕν(D)u‖L∞ ≤
∑

ν≥0

2−ν‖u‖B1
∞,∞ = 2‖u‖B1

∞,∞ ,

so that u ∈ L∞. Moreover for x, h ∈ Rn, we have

|u(x + h) + u(x− h)− 2u(x)| ≤
∑

ν
|h|≤2−ν

|(ϕν(D)u)(x + h) + (ϕν(D)u)(x− h)− 2(ϕν(D)u)(x)|

︸ ︷︷ ︸
=A(h)

+4
∑

ν
|h|>2−ν

2−ν

︸ ︷︷ ︸
≤C|h|

‖u‖B1
∞,∞ .

We set vν(x) = (ϕν(D))u(x) and we note that vν is a C∞ function; we have

vν(x + h) = vν(x) + v′ν(x)h +

∫ 1

0

(1− θ)v′′ν(x + θh)dθh2

and thus vν(x + h) + vν(x− h)− 2vν(x) =
∫ 1

−1(1− |θ|)v′′ν(x + θh)dθh2. As a result,
we have

A(h) ≤ |h|24π2
∑

ν
|h|≤2−ν

‖D2ϕν(D)u‖L∞ .
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We consider ψ ∈ C∞
c (Rn), ψ = 1 on the support of ϕ, ψ = 0 near 0, and ψ even,

so that with ν ≥ 1, ϕν(ξ) = ϕν(ξ)ψν(ξ) with ψν(ξ) = ψ(ξ2−ν) and ψ0 ∈ C∞
c (Rn),

ψ0 = 1 on the support of ϕ0. We have

A(h) ≤ |h|24π2
∑

ν
|h|≤2−ν

‖D2ϕν(D)u‖L∞ = |h|24π2
∑

ν
|h|≤2−ν

‖D2ϕν(D)ψν(D)u‖L∞

= |h|24π2
∑

ν
|h|≤2−ν

22ν‖2−2νD2ψν(D)ϕν(D)u‖L∞

≤ C|h|24π2
∑

ν
|h|≤2−ν

22ν‖ϕν(D)u‖L∞

≤ C|h|24π2‖u‖B1
∞,∞

∑

ν
|h|≤2−ν

2ν ≤ C1|h|2‖u‖B1
∞,∞|h|

−1,

so that |u(x + h) + u(x− h)− 2u(x)| ≤ C ′|h|‖u‖B1
∞,∞ and the second inequality in

(5.5.5). Let us consider now u ∈ B1
∞,∞. Moreover for x, h ∈ Rn, with h *= 0, we

have

|u(x + h)− u(x)| ≤
∑

ν
|h|≤2−ν

|(ϕν(D)u)(x + h)− (ϕν(D)u)(x)|+ 2
∑

ν
|h|>2−ν

2−ν

︸ ︷︷ ︸
≤C|h|

‖u‖B1
∞,∞ .

With the same ψ as above, we have

|u(x + h)− u(x)| ≤ |h|C1‖u‖B1
∞,∞ +

∑

ν
|h|≤2−ν

|h|2π‖Dψν(D)ϕν(D)u‖L∞

≤ |h|C1‖u‖B1
∞,∞ +

∑

ν
|h|≤2−ν

|h|2π2ν‖2−νDψν(D)ϕν(D)u‖L∞

≤ |h|C1‖u‖B1
∞,∞ + |h|C2

∑

ν
|h|≤2−ν

2ν‖ϕν(D)u‖L∞

≤ |h|C1‖u‖B1
∞,∞ + |h|C2‖u‖B1

∞,∞ Card{ν ∈ N, 2ν ≤ |h|−1}︸ ︷︷ ︸
≤log2(|h|−1)

,

which gives (5.5.6). We consider now u ∈ Lip(Rn). We have ‖ϕ0(D)u‖L∞ ≤ C‖u‖L∞

and for ν ≥ 1,

(ϕν(D)u)(x) = (ϕ̂(2ν ·)2νn ∗ u)(x) =

∫
ϕ̂(2νy)2νn

(
u(x− y)− u(x)

)
dy.

We have also in the distribution sense

u(x− y)− u(x) =

∫ 1

0

u′(x− θy)dθy =⇒ |u(x− y)− u(x)| ≤ ‖u′‖L∞|y|,

so that ‖ϕν(D)u‖L∞ ≤
∫
|ϕ(2νy)|2νn|y|dy‖u′‖L∞ ≤ C‖u′‖L∞2−ν , proving the con-

tinuous inclusion Lip(Rn) ⊂ B1
∞,∞(Rn). Let us prove finally that this inclusion is

strict: we consider

T (x) =

∫ +∞

1

e2iπxξξ−2dξ.
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The Fourier transform of T belongs to L1(R) and thus T is a continuous bounded
function. We have also

(ϕν(D)T )(x) =

∫ +∞

1

e2iπxξξ−2ϕν(ξ)dξ.

and for ν ≥ 1,

(ϕν(D)T )(x) =

∫ +∞

1

e2iπxξξ−2ϕ(2−νξ)dξ = 2−2ν

∫ +∞

2−ν

e2iπx2νξξ−2ϕ(ξ)dξ2ν .

Since the function ϕ is (non-negative and) supported in 1/2 ≤ |ξ| ≤ 2, we get for
ν ≥ 1 that

2ν(ϕν(D)T )(x) =

∫ 2

1/2

e2iπx2νξξ−2ϕ(ξ)dξ =⇒ ‖2νϕν(D)T‖L∞(R) ≤
∫ 2

1/2

ξ−2ϕ(ξ)dξ < +∞.

On the other hand (ϕ0(D)T )(x) =
∫ +∞

1 e2iπxξξ−2ϕ0(ξ)dξ is a bounded function ; we
have proven that T ∈ B1

∞,∞(R). Let us prove that T is not in Lip(Rn). We calculate
for ε > 0,

〈T ′, ε−1e−πε−2x2〉S ′(R),S (R) = 2iπ〈ξT̂ , e−πε2ξ2〉S ′(R),S (R) = 2iπ

∫ +∞

1

ξ−1e−πε2ξ2
dξ−→

ε→0+

+∞,

say from the Fatou theorem, and if T ′ were a bounded function, we would have

|〈T ′, ε−1e−πε−2x2〉| ≤ ‖T ′‖L∞(R)‖ε−1e−πε−2x2‖L1(R) = ‖T ′‖L∞(R) < +∞.

The proof of the theorem is complete.



Chapter 6

Fourier Analysis, continued

6.1 Paley – Wiener’s theorem

Lemma 6.1.1. For u ∈ S ′(Rn) the following properties are equivalent.

(i) u ∈ C∞
c (Rn), supp u ⊂ {x ∈ Rn, |x| ≤ R}.

(ii) û can be extended to Cn as an entire function such that

∀N ∈ N,∃CN > 0, |û(ζ)| ≤ CN(1 + |ζ|)−Ne2πR| Im ζ|. (6.1.1)

Proof. Let us assume (i). Using the notation Cn . ζ = ξ + iη, ξ, η ∈ Rn, the Fourier
transform of u can be extended to Cn as an entire function, simply with the formula

û(ξ + iη) =

∫
e−2iπx·(ξ+iη)u(x)dx (note x · (ξ + iη) = x · ξ + ix · η).

As a result, for a polynomial P on Rn, we have (P̂ (D)u)(ζ) = P (ζ)û(ζ) and thus

|P (ζ)û(ζ)| ≤ ‖P (D)u‖L1(Rn)e
2πR| Im ζ|,

implying for all multi-indices α ∈ Nn, |ζαû(ζ)| ≤ ‖Dαu‖L1(Rn)e2πR| Im ζ|, i.e.

|ζ1|α1 . . . |ζn|αn|û(ζ)| ≤ ‖Dαu‖L1(Rn)e
2πR| Im ζ|.

As a consequence, for m ∈ 2N, we have with ‖u‖W m,1 =
∑

|α|≤m ‖Dαu‖L1(Rn),

(1 + |ζ|2)m/2|û(ζ)| ≤ Cm‖u‖W m,1e2πR| Im ζ| =⇒ (ii).

Conversely, if (ii) holds, the function û is C∞ on Rn and for all N ∈ N, |û(ξ)| ≤
CN〈ξ〉−N . Thus û ∈ L1(Rn) and one can apply the theorem 4.1.10, so that u(x) =∫

Rn e2iπx·ξû(ξ)dξ. Now we have also for all η ∈ Rn and x ∈ Rn,

∫

Rn

e2iπx·ξû(ξ)dξ =

∫

Rn

e2iπx·(ξ+iη)û(ξ + iη)dξ,

149
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where both sides make sense thanks to the estimate (6.1.1), which also allow to shift
integration of the entire function ζ 4→ û(ζ)e2iπx·ζ from Rn to Rn+iη. Now if |x| > R,
we obtain for all η ∈ Rn,

|u(x)| ≤ CNe2π(R|η|−x·η)

∫

Rn

(1 + |ξ|)−Ndξ

and in particular choosing η = λx/|x|, N = n + 1, we get for all λ > 0, |u(x)| ≤
C ′

ne
2π(Rλ−λ|x|), so that for |x| > R we obtain u(x) = 0 and (i).

Lemma 6.1.2. Let Ω be an open set of Rn, x0 ∈ Ω and u ∈ D ′(Ω). The following
properties are equivalent.

(i) x0 /∈ singsupp u,

(ii) ∃V0 ∈ Vx0 such that for all χ ∈ C∞
c (V0), for all N ∈ N, ∃C such that

|χ̂u(ξ)| ≤ C(1 + |ξ|)−N .

(iii) ∃V0 ∈ Vx0, ∃χ0 ∈ C∞
c (V0), such that χ0(x0) *= 0, for all N ∈ N, ∃C such that

|χ̂0u(ξ)| ≤ C(1 + |ξ|)−N .

Proof. If (i) holds, ∃V0 ∈ Vx0 such that for all χ ∈ C∞
c (V0), χu ∈ C∞

c (Rn) ⊂ S (Rn)
and thus χ̂u ∈ S (Rn), implying (ii). If (ii) holds, then it is the case of the weaker
(iii); we take χ0 ∈ C∞

c (V0), different from 0 on a compact neighborhood V1 of x0,
and we get χ̂0u ∈ L1(Rn), so that

(χ0u)(x) =

∫
e2iπx·ξχ̂0u(ξ)dξ

and the estimate of (iii) gives χ0u ∈ C∞
c (Rn) and u|V1 = 1

χ0|V1

(χ0u)|V1 ∈ C∞(V1),

implying (i).

Lemma 6.1.3. For u ∈ S ′(Rn) the following properties are equivalent.

(i) u ∈ E ′(Rn), supp u ⊂ {x ∈ Rn, |x| ≤ R0}, order u = N0.

(ii) û can be extended to Cn as an entire function such that

|û(ζ)| ≤ C0(1 + |ζ|)N0e2πR0| Im ζ|. (6.1.2)

Proof. If (i) holds, the theorem 4.3.1 gives that û is the entire function û(ζ) =
〈u(x), e−2iπx·ζ〉E ′,E . Moreover, since u is compactly supported in B̄(0, R0), we have
for all ε > 0 and χ0 ∈ C∞

c (Rn) equal to 1 on B(0, 1),

û(ζ) = 〈u(x), χ0

( x

R0 + ε

)
e−2iπx·ζ〉E ′,E .

This implies |û(ζ)| ≤ Cχ0,N0 sup |x|≤R0+ε
|α|+|β|≤N0

|e−2iπx·ζζα(∂βχ0)
(

x
R0+ε

)
(R0+ε)−|β|| and thus

∀ε > 0, |û(ζ)| ≤ Cχ0,N0e
2π(R0+ε)| Im ζ| sup

|α|+|β|≤N0

|ζα(R0 + ε)−|β|| sup
|β|≤N0

‖∂βχ0‖L∞ .
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We choose now, assuming R0 > 0 (otherwise the implication follows from the theo-
rem 3.3.4) ε = R0

1+|ζ| . We get then

|û(ζ)| ≤ C ′
χ0,N0

e2πR0| Im ζ|e2π
R0| Im ζ|

1+|ζ| (R−1
0 + |ζ|)N0 =⇒ (ii).

Conversely, if (ii) holds, we consider a standard mollifier ρε given with ε > 0 by
ρε(x) = ε−nρ(x/ε), ρ ∈ C∞

c (Rn),
∫

ρ = 1, ρ supported in the unit ball. We have
from (4.3.2) û ∗ ρε = ûρ̂(ε·) and the function ûρ̂(ε·) is entire with

|û(ζ)ρ̂(εζ)| ≤ CN,ε(1 + |ζ|)−Ne2π(R0+ε)| Im ζ|.

From the first lemma 6.1.1, we have supp(u ∗ ρε) ⊂ B̄(0, R0 + ε). For ϕ ∈ C∞
c (Rn)

we have from the proposition 3.1.1

〈u ∗ ρε, ϕ〉 = 〈u, ρ̌ε ∗ ϕ〉−→
ε→0+

〈u, ϕ〉,

and thus if supp ϕ ⊂
(
B̄(0, R0 + ε)

)c
, we get 〈u ∗ ρε, ϕ〉 = 0 = 〈u, ϕ〉, so that

supp u ⊂ B̄(0, R0 + ε) for all ε > 0 and eventually

supp u ⊂ ∩ε>0B̄(0, R0 + ε) = B̄(0, R0),

yielding the conclusion.

Remark 6.1.4. Let us recall the expression of E+, fundamental solution of the wave
equation, given by (4.4.21):

Ê+

x
(t, ξ) = cH(t)

sin
(
2πct|ξ|

)

2π|ξ| = c2H(t)

∫ t

0

cos(2πcs|ξ|)ds. (6.1.3)

Since cos(2πcs|ξ|) =
∑

k≥0
(−1)k(2πcs)2k

(2k)! (
∑

1≤j≤d ξ2
j )

k the function Ê(t, ·) is entire on

Cd and we have for ζ ∈ Cd, using the notation ζ2 =
∑

1≤j≤d ζ2
j ,

Ê+

x
(t, ζ) = c2H(t)

∫ t

0

∑

k≥0

(−1)k(2πcs)2k

(2k)!
(ζ2)kds = c2H(t)

∫ t

0

cos(2πcs(ζ2)1/2)ds.

We have also for z ∈ C

2| cos z|2 = 2(cos z)(cos z̄) = cos(2 Re z) + cos(2i Im z) ≤ 1 + e2| Im z| ≤ 2e2| Im z|,

and as a consequence

for 0 ≤ s ≤ t, | cos(2πcs(ζ2)1/2)| ≤ exp 2πct| Im
(
(ζ2)1/2

)
|. (6.1.4)

We note that with ζ = ξ + iη, ξ, η ∈ Rn,

ζ2 = |ξ|2 − |η|2 + 2i〈ξ, η〉 = |ξ|2 − |η|2 + 2iσ|ξ||η|, with σ ∈ R, |σ| ≤ 1.
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So if z = a + ib ∈ C, a, b ∈ R is such that z2 = ζ2, we have

a2 − b2 = |ξ|2 − |η|2, |ab| ≤ |ξ||η|.

If we had |b| > |η|, that would imply from the first equation that |a| > |ξ| and
|ab| > |ξ||η|, which contradicts the second equation; as a result we have |b| ≤ |η| and
| Im

(
(ζ2)1/2

)
| ≤ | Im ζ|, implying

|Ê+

x
(t, ζ)| ≤ ctH(t) exp 2πct| Im ζ|,

which gives from the Paley-Wiener theorem 6.1.3 that

supp E+(t, ·) ⊂ {x ∈ Rn, |x| ≤ ct}. (6.1.5)

6.2 Stationary phase method

6.2.1 Preliminary remarks

It is well-known that
∫

R

sin x

x
dx = π, although

∫

R

∣∣∣∣
sin x

x

∣∣∣∣ dx = +∞. (6.2.1)

To get this, we integrate the function eiz/z on the following path: the segment [ε, R],
the half-circle (R, iR,−R), the segment [−R,−ε], the half-circle (−ε, iε, ε). We get

0 = 2i

∫ R

ε

sin x

x
dx +

∫ π

0

eiReiθ

Reiθ
iReiθdθ −

∫ π

0

eiεeiθ

εeiθ
iεeiθdθ.

The third integral has limit iπ for ε → 0. The absolute value of the second integral is
bounded above by

∫ π

0 e−R sin θdθ which goes to zero when R goes1 to infinity, yielding
the value π in (6.2.1). On the other hand, for n ∈ N∗, we have

∫ (2n+1)π

2nπ

∣∣∣∣
sin x

x

∣∣∣∣ dx ≥ 1

(2n + 1)π

∫ (2n+1)π

2nπ

sin xdx =
2

(2n + 1)π
,

the general term of a diverging series, so that (6.2.1) is proven. In the integral∫
R

sin x
x dx, the amplitude 1/x is too large at infinity to guarantee the absolute conver-

gence of the integral, although the oscillations of the term sin x = Im eix compensate
the size of the amplitude and lead to some cancellation phenomena. We want to
study this phenomenon more closely and in more geometrical terms. Although the

1 One may apply Lebesgue’s dominated convergence theorem, but it is way too much: it is
enough to note that 0 ≤ 2θ

π ≤ sin θ for θ ∈ [0,π/2] and

∫ π

0
e−R sin θdθ = 2

∫ π/2

0
e−R sin θdθ ≤ 2

∫ π/2

0
e−2Rθ/πdθ ≤ π/R.
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function sin x/x does not belong to L1(Rn), we still2 have in the sense of weak-dual
convergence (see the definition 3.1.16)

lim
λ→+∞

1

π

sin(λx)

x
= δ0. (6.2.2)

In fact for ϕ ∈ C1
c (R), supp ϕ ⊂ [−M0, M0], the function ψ defined by

ψ(x) = x−1
(
ϕ(x)− ϕ(0)

)
=

∫ 1

0

ϕ′(θx)dθ

is continuous and equal to −ϕ(0)x−1 for |x| ≥ M0(> 0). As a consequence, we have
∫

sin(λx)

x
ϕ(x)dx =

∫
ψ(x)1[−M0,M0](x)
︸ ︷︷ ︸

∈L1(R)

sin(λx)dx + ϕ(0)

∫

|x|≤M0

x−1 sin(λx)dx.

The Riemann-Lebesgue lemma 4.3.5 implies that the first term in the rhs tends to
0 with 1/λ, whereas

∫

|x|≤M0

x−1 sin(λx)dx =

∫

|y|≤λM0

x−1 sin xdx −→
λ→+∞

π,

proving 6.2.2.

6.2.2 Non-stationary phase

Theorem 6.2.1. Let a ∈ C∞
c (Rn) and φ be a real-valued C∞ function defined on

Rn such that dφ *= 0 on the support of a. We define for λ ∈ R,

I(λ) =

∫

Rn

eiλφ(x)a(x)dx. (6.2.3)

Then for all N ≥ 0, supλ∈R |λNI(λ)| < +∞.

Proof. Since the support of a is compact, we know that infx∈supp a |dφ(x)| = c0 > 0.
We define then the differential operator L on the open set Ω = {x ∈ Rn, dφ(x) *=
0} ⊃ supp a by

L =
1

i

∑

1≤j≤n

|dφ|−2 ∂φ

∂xj

∂

∂xj
. (6.2.4)

On Ω, we have L(eiλφ) = λeiλφ
∑

1≤j≤n |dφ|−2 ∂φ
∂xj

∂φ
∂xj

= λeiλφ, as well as for all N ∈ N,

eiλφ = (λ−NLN)(eiλφ), implying that, for λ *= 0,

I(λ) = λ−N

∫

Ω

LN(eiλφ)a(x)dx = λ−N

∫

supp a

eiλφ(x)(tLNa)(x)dx.

2 If u ∈ L1(Rn), ϕ ∈ C0(Rn) ∩ L∞(Rn), then with λ > 0, we have
∫

u(λx)λnϕ(x)dx =∫
u(x)ϕ(λ−1x)dx, and using the Lebesgue dominated convergence theorem, this gives

lim
λ→+∞

∫
u(λx)λnϕ(x)dx = ϕ(0)

∫
u(x)dx.
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As a result we get for λ ∈ R, |λNI(λ)| ≤ ‖tLNa‖L1(Rn) < +∞, since

tL = i
∑

1≤j≤n

∂

∂xj
|dφ|−2 ∂φ

∂xj
, tLN =

∑

|α|≤N

cα(x)∂α
x , cα ∈ C∞(Ω).

This theorem means that the integral (6.2.3) is rapidly decreasing with respect
to the large parameter λ, provided the real phase φ does not have stationary points
on the support of the amplitude a. We shall now concentrate our attention on the
case where the phase does have stationary points ; a first simple model is concerned
with (real) quadratic phases.

6.2.3 Quadratic phase

We recall part of the proposition 4.6.1 as a lemma.

Lemma 6.2.2. Let A be a real symmetric nonsingular n × n matrix. Then x 4→
eiπ〈Ax,x〉 is a bounded measurable function, thus a tempered distribution and we have

Fourier(eiπ〈Ax,x〉)(ξ) = | det A|−1/2ei π
4 sign Ae−iπ〈A−1ξ,ξ〉. (6.2.5)

Theorem 6.2.3. Let a ∈ S (Rn) and A be a real symmetric nonsingular n × n
matrix. Defining I(λ) =

∫
Rn eiλ〈Ax,x〉a(x)dx, we have for λ > 0,

I(λ) =
πn/2e

iπ
4 sign A

λ
n
2 | det A|1/2

( ∑

0≤k<N

λ−k π2k

ikk!

(
〈A−1D, D〉ka

)
(0) + rN(λ)

)
, (6.2.6)

|rN(λ)| ≤ λ−N π2N

N !
‖〈A−1D, D〉Na‖FL1 , (6.2.7)

where ‖u‖FL1 = ‖û‖L1(Rn), so that ‖〈A−1D, D〉Na‖FL1 = ‖〈A−1ξ, ξ〉N â‖L1(Rn) (see
also the notation (4.1.6)).

Proof. We write with λ = πµ that

I(λ) = 〈eiπ〈µAx,x〉, a(x)〉S ′,S = 〈Fourier(eiπ〈µAx,x〉), ˇ̂a〉S ′,S

= µ−n/2| det A|−1/2ei π
4 sign A

∫
e−iπµ−1〈A−1ξ,ξ〉â(ξ)dξ,

and since

∫
e−iπµ−1〈A−1ξ,ξ〉â(ξ)dξ =

∑

0≤k<N

(−iπµ−1)k

k!

∫
〈A−1ξ, ξ〉kâ(ξ)dξ

+

∫ 1

0

∫
e−iθπµ−1〈A−1ξ,ξ〉〈A−1ξ, ξ〉N â(ξ)dξ

(1− θ)N−1

(N − 1)!
dθ

(
−iπ

µ

)N

,

we get (6.2.6) with |rN(λ)| ≤ ‖〈A−1ξ, ξ〉N â(ξ)‖L1
π2N

N !λN .
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Remark 6.2.4. In particular, under the assumptions of the theorem, we have, if
a(0) *= 0,

∫

Rn

eiλ〈Ax,x〉a(x)dx = I(λ) ∼
λ → +∞

π
n
2 e

iπ
4 sign A

λ
n
2 | det A|1/2

a(0), (6.2.8)

a sharp contrast with the results of the previous subsection 6.2.2. Naturally, in this
case, the phase has a (unique) stationary point at the origin. Note also that in one
dimension, we can recover3 the so-called Fresnel integrals

∫

R
eix2

dx = π1/2eiπ/4, i.e.

∫

R
cos(x2)dx =

∫

R
sin(x2)dx =

√
π

2
. (6.2.9)

6.2.4 The Morse lemma

The most important step in the proof is the following lemma.

Lemma 6.2.5. Let U be a neighborhood of 0 in Rn, and f : U → R be a C∞

function such that df(0) = 0, ∂2f
∂x2

1
(0) *= 0. Then there exists a local diffeomorphism ν

of neighborhoods of 0 such that

(f ◦ ν)(y1, y
′) = g(y′) +

1

2

∂2f

∂x2
1

(0)y2
1.

Proof. We may assume that f(0) = 0. Thanks to the implicit function theorem,
we note that the equation ∂f

∂x1
(x1, x′) = 0 has a unique solution x1 = α(x′) near

the origin: there exists r0 > 0, a neighborhood W of 0 in Rn−1 and a C∞ function
α : W → R such that α(0) = 0 and for |x1| < r0, x′ ∈ W ,

∂f

∂x1
(x1, x

′) = 0 ⇐⇒ x1 = α(x′).

As a result, we have for |x1| < r0, x′ ∈ W ,

f(x1, x
′) = f

(
α(x′), x′

)
+

∫ 1

0

(1− θ)
∂2f

∂x2
1

(
α(x′) + θ(x1 − α(x′)), x′

)
dθ

(
x1 − α(x′)

)2
,

i.e. with a C∞ function e defined in ]− r0, r0[×W , a C∞ function g defined in W ,

f(x1, x
′) = g(x′) +

1

2

∂2f

∂x2
1

(0)e(x)
(
x1 − α(x′)

)2
, e(0) = 1.

Shrinking if necessary the neighborhoods, we define near 0 the local diffeomorphism
κ by

κ(x1, x
′) =

(
e(x)1/2(x1 − α(x′)), x′

)
= (y1, y

′)

3We have with χ ∈ C∞
c (R) even, equal to 1 on [−1, 1], supported in [−2, 2],

2
∫ T

0
eix2

dx =
∫

eix2
χ(

x

T
)dx−2

∫

x≥T
eix2

χ(
x

T
)dx =

∫
eiT 2x2

χ(x)dxT−2
∫

x≥T
2ixeix2

χ(
x

T
)(2ix)−1dx.

From (6.2.8), limT→+∞
∫

eiT 2x2
χ(x)dxT = π1/2eiπ/4 and an integration by parts yields that the

last term is O(T−1).
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and we have with ν = κ−1

(f ◦ ν)(y1, y
′) = f(x1, x

′) = g(y′) +
1

2

∂2f

∂x2
1

(0)y2
1,

yielding the conclusion.

Theorem 6.2.6. Let x0 ∈ Rn, U ∈ Vx0 and f : U → R be a C∞ function such that
df(x0) = 0, det f ′′(x0) *= 0. Then there exists an open neighborhood U0 of x0, an
open neighborhood V0 of 0 and a C∞ diffeomorphism ν : V0 → U0 such that U0 ⊂ U ,
det ν ′(0) = 1, and for y ∈ V0,

(f ◦ ν)(y)− (f ◦ ν)(0) =
1

2

∑

1≤j≤n

µjy
2
j , (6.2.10)

where (µ1, . . . , µn) are the eigenvalues of the symmetric matrix f ′′(x0).

Proof. We may assume for notational simplicity that x0 = 0 and f(0) = 0. After
composing f with a rotation, we may assume that e1 is an eigenvector of f ′′(0), so
that in particular, the assumptions of the previous lemma are satisfied. Then we are
reduced to tackle a function g(x′) + 1

2µ1x2
1. We have dg(0) = 0, the eigenvalues of

f ′′(0) are {µ1} ∪ spectrum(g′′(0)). We get the conclusion by an induction on n.

6.2.5 Stationary phase formula

We consider now, for λ > 0 and

I(λ) =

∫
eiλφ(x)a(x)dx, (6.2.11)

where the amplitude a ∈ C∞
c (Rn) and the phase function φ is a Morse function, i.e.

a real-valued smooth function such that

∀x ∈ supp a, dφ(x) = 0 =⇒ det φ′′(x) *= 0. (6.2.12)

Using the Borel-Lebesgue property, we get that

supp a ⊂ {x ∈ Rn, dφ(x) *= 0}︸ ︷︷ ︸
=Ω0

∪1≤j≤NΩj

where Ωj for 1 ≤ j ≤ N is an open set such that there exists a C∞ diffeomorphism
νj : Vj → Ωj, where Vj is a neighborhood of 0 in Rn with

(φ ◦ νj)(y) = (φ ◦ νj)(0) +
1

2
φ′′(νj(0))y2.

Using the theorem 3.1.14, we are able to find (ψj)0≤j≤N with ψj ∈ C∞
c (Ωj), such

that
∑

0≤j≤N ψj is 1 near supp a. We obtain then that

I(λ) =

∫
eiλφ(x)ψ0(x)a(x)dx

︸ ︷︷ ︸
=O(λ−∞) from Theorem 6.2.1

+
∑

1≤j≤N

∫
eiλφ(x)ψj(x)a(x)dx,
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i.e. I(λ) =
∑

1≤j≤N

∫
Vj

eiλ(φ◦νj)(y)(ψja)(νj(y))| det ν ′j(y)|dy + O(λ−∞). We note that,
according to the theorem 6.2.3

∫

Vj

eiλ(φ◦νj)(y)(ψja)(νj(y))| det ν ′j(y)|dy

= eiλφ(νj(0))

∫

Vj

eiλ 1
2φ′′(νj(0))y2

(ψja)(νj(y))| det ν ′j(y)|dy

= λ−
n
2 eiλφ(νj(0)) (2π)n/2ei π

4 sign φ′′(νj(0))

| det φ′′(νj(0))|1/2
(ψja)(νj(0))| det ν ′j(0)|+ O(λ−

n
2−1).

We note also that the stationary points of a Morse function are isolated, since for
an invertible symmetric matrix Q, the only singular point of y 4→ 〈Qy, y〉 is 0. In
particular, there are only finitely many singular points of a Morse function in a
compact set.

Theorem 6.2.7. Let a be a C∞
c (Rn) function and φ be a Morse function (see

(6.2.12)). We define I(λ) by (6.2.11). We have for λ → +∞

I(λ) = λ−
n
2 (2π)n/2

∑

x,dφ(x)=0
x∈supp a

eiλφ(x) ei π
4 sign(φ′′(x))

| det φ′′(x)|1/2
a(x) + O(λ−

n
2−1). (6.2.13)

Proof. We note that the determinant of ν ′(0) is 1 in the theorem 6.2.6 and the
formula of Theorem 6.2.3 gives the result if we replace ψja by a; it is indeed harmless
to do this since we can assume that x1, . . . , xN are the distinct singular points of φ
in supp a and write, with C∞

c (Rn) . ψ̃j = 1 near xj, ψ̃jψ̃k = 0 if 1 ≤ j *= k ≤ N

a =
∑

1≤j≤N

ψ̃ja + a−
∑

1≤j≤N

ψ̃ja

︸ ︷︷ ︸
supported in Ω0

.

6.3 The Wave-Front set of a distribution, the Hs

wave-front set

Let Ω be an open subset of Rn and u ∈ D ′(Ω). Let us recall that the support and
the singular support of u are defined by

supp u = {x ∈ Ω, there is no open V . x with u|V = 0}, (6.3.1)

singsupp u = {x ∈ Ω, there is no open V . x with u|V ∈ C∞(V )}. (6.3.2)

Both sets are closed and we have obviously singsupp u ⊂ supp u. The Fourier
transform allows a more refined analysis of singularities: first we notice that x0 /∈
singsupp u iff there exists a neighborhood U of x0 such that for all χ ∈ C∞

c (U),

∀N ∈ N, sup
ξ∈Rn

|(χ̂u)(ξ)||ξ|N < ∞. (†)



158 CHAPTER 6. FOURIER ANALYSIS, CONTINUED

This is obvious when we assume x0 /∈ singsupp u since there exists a neighborhood
U of x0 such that χu ∈ C∞

c (Rn) and thus χ̂u ∈ S (Rn). Conversely, since χ̂u is the
Fourier transform of a compactly supported distribution, it is an entire function on
Cn, and assuming (†), we see that (χu)(x) =

∫
e2iπx·ξχ̂u(ξ)dξ, and the rhs is a C∞

function, qed.
We use the notation Ω×Rn\{0} = Ṫ ∗(Ω), the cotangent bundle minus the zero

section.

Definition 6.3.1. Let Ω be an open set of Rn and let u ∈ D ′(Ω). The wave-front-set
of u, denoted by WFu, is defined as the complement in Ṫ ∗(Ω) of the set of points
(x0, ξ0) such that there exist some neighborhoods U, V respectively of x0, ξ0 (with
U × V ⊂ Ṫ ∗(Ω)) such that for all χ ∈ C∞

c (U),

∀N ∈ N, sup
ξ∈eV

|(χ̂u)(ξ)||ξ|N < ∞, with Ṽ = ∪τ>0τV. (6.3.3)

Remark 6.3.2. Note that the wave-front-set is a closed (its complement is open)
conic subset of Ṫ ∗(Ω): conic means here that for all τ > 0, (x, ξ) ∈ WFu =⇒
(x, τξ) ∈ WFu. On the other hand, with pr : Ṫ ∗(Ω) → Ω defined by pr((x, ξ)) = x,
we get that

pr WFu = singsupp u. (6.3.4)

Let x0 /∈ singsupp u. Then from (†), we see that for all ξ ∈ Sn−1, (x0, ξ) /∈ WFu, so
that x0 /∈ pr WFu. Conversely, if x0 /∈ pr WFu, for all η ∈ Sn−1, there exists some
neighborhoods Uη, Vη of x0, η such that for all χ ∈ C∞

c (Uη),

∀N ∈ N, sup
ξ∈eVη

|(χ̂u)(ξ)||ξ|N < ∞.

By compactness, we get Sn−1 ⊂ ∪1≤j≤νVηj and defining U = ∩1≤j≤νUηj , we get that
for all χ ∈ C∞

c (U),

∀j ∈ {1, . . . , ν},∀N ∈ N, sup
ξ∈eVηj

|(χ̂u)(ξ)||ξ|N < ∞,

which gives the result (†) since ∪1≤j≤νṼηj = Rn\{0} and χ̂u is a smooth function.

Examples. It is easy to see that
(1) WF (δ0) = {0}× Rn\{0}, δ0 is the Dirac mass at zero in Rn,
(2) WF ( 1

x+i0) = {0}× (0, +∞), 1
x+i0 = d

dx(ln |x|)− iπδ0, distribution on R,
(3) and with H = 1R+ , considering the distribution on R2,

WF
(
H(x1)H(x2)

)
= {(0, x2, ξ1, 0)}x2>0,ξ1 *=0 ∪ {(x1, 0, 0, ξ2)}x1>0,ξ2 *=0

∪ {(0, 0)}× R2\{(0, 0)}.

(4) If u is a distribution, one can easily define the complex conjugate by duality4

and we have

WFū = ˇWFu = {(x, ξ) such that(x,−ξ) ∈ WFu}
4We define ≺ ū, ϕ ED′(Ω),D(Ω)= ≺ u, ϕ̄ ED′(Ω),D(Ω).
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and in particular, a real-valued distribution (i.e. such that ū = u) has a projective
wave-front-set, i.e. (x, ξ) ∈ WFu ⇐⇒ (x,−ξ) ∈ WFu, so that, instead of being
included in the sphere fiber S∗(Ω) image of the fiber bundle Ṫ ∗(Ω) by the mapping
(x, ξ) 4→ (x, ξ/|ξ|), the wave-front-set of a real-valued distribution can be seen as a
part of the projective bundle for which the fibers are the quotient of the sphere Sn−1

by {−1, 1}, that is Pn−1(R). In particular for a real-valued distribution u on an open
set Ω of the real line, then the wave-front-set does not carry more information than
the singular support since WFu = singsupp u× R∗.

The following lemma provides a characterization of the wave-front-set which is
closer of the pseudodifferential approach.

Lemma 6.3.3. Let θ0 ∈ C∞
c (Rn; [0, 1]), supp θ0 ⊂ B(0, 1), θ0 = 1 on B(0, 1/2). Let

Ω be an open set of Rn and u ∈ D ′(Ω). The complement of WFu in Ṫ ∗(Ω) is the
set of (x, ξ) such that there exists r > 0 such that

Tr(D)tru belongs to S (Rn),

where Tr(ξ) = θ0

(
ξ

r|ξ| −
ξ0

r|ξ0|

) (
1− θ0

)
( rξ

2 ), tr(x) = θ0

(
x−x0

r

)
.

Proof. Let us assume first that Ṫ ∗(Ω) . (x0, ξ0) /∈ WFu. Using the definition 6.3.1,
we get that for some positive r, for all N , Tr(ξ)t̂ru(ξ) = O(〈ξ〉−N) and since the
functions Dα

ξ

(
t̂ru

)
= (−1)|α|x̂αtru are also rapidly decreasing on the support of Tr

(from the definition 6.3.1), we get that ξ 4→ Tr(ξ)t̂ru(ξ) is in the Schwartz class as
well as its inverse Fourier transform Tr(D)tru.

Conversely, if for (x0, ξ0) ∈ Ṫ ∗(Ω) (we may assume |ξ0| = 1) and some positive
r, Tr(D)tru ∈ S (Rn), we get indeed as in (6.3.3)

∀N ∈ N, sup
ξ∈eV

|t̂ru(ξ)||ξ|N < ∞, with V neighborhood of ξ0.

Now if χ ∈ C∞
c (B(x0, r/2), we have χ = χtr and

Tr/4(ξ)χ̂u(ξ) = Tr/4(ξ)χ̂tru(ξ) = Tr/4(ξ)

∫
χ̂(ξ − η)︸ ︷︷ ︸
O(〈ξ−η〉−N )

Tr(η)t̂ru(η)︸ ︷︷ ︸
O(〈η〉−2N )

dη

+ Tr/4(ξ)

∫
χ̂(ξ − η) (1− Tr(η))t̂ru(η)︸ ︷︷ ︸

O(〈η〉M0 )

dη.

Using the Peetre inequality5, we get that the first term is O(〈ξ〉−N). To handle the
next term we note that, on the support of Tr/4, we have

|ξ| ≥ 4/r,

∣∣∣∣
ξ

|ξ| −
ξ0

|ξ0|

∣∣∣∣ ≤ r/4

5We use 〈ξ + η〉 ≤ 21/2〈ξ〉〈η〉 so that, for all s ∈ R,

〈ξ + η〉s ≤ 2|s|/2〈ξ〉s〈η〉|s|, (6.3.5)

a convenient inequality (to get it for s ≥ 0, raise the first inequality to the power s, and for s < 0,
replace ξ by −ξ − η) a.k.a. Peetre’s inequality.



160 CHAPTER 6. FOURIER ANALYSIS, CONTINUED

and on the integrand we have either |η| ≤ 1/r (harmless term since χ̂ ∈ S ) or

|η| ≥ 1/r and

∣∣∣∣
η

|η| −
ξ0

|ξ0|

∣∣∣∣ ≥ r/2 =⇒
∣∣∣∣

η

|η| −
ξ

|ξ|

∣∣∣∣ ≥ r/4. (;)

Using the inequality6

∣∣|η|ξ − |ξ|η
∣∣(|ξ|+ |η|

)
≤ 4|ξ||η||ξ − η|, (6.3.6)

we obtain here (for the nonzero vectors ξ, η satisfying (;) ), 4|ξ − η| ≥ r
4

(
|ξ|+ |η|

)
,

so that the rapid decay of χ̂(ξ − η) gives the result of the lemma.

The wave-front-set of a distribution depends only on the manifold structure of
the open set Ω.

Theorem 6.3.4. let κ : Ω2 −→ Ω1 a C∞ diffeomorphism of open subsets of Rn and
let u1 ∈ D ′(Ω1). Then we have

WF
(
κ∗(u1)

)
= κ∗

(
WFu1

)
=

{(
κ−1(x1),

tκ′
(
κ−1(x1)

)
ξ1

)}

(x1,ξ1)∈WFu1

.

Proof. Let us define u2 = κ∗(u1), so that for χ2 ∈ C∞
c (Ω2), we have, for ϕ2 ∈

C∞
c (Ω2), with brackets of duality and ν = κ−1, χ1(x1) = χ2(ν(x1))| det ν ′(x1)| (note

that χ1 belongs to C∞
c (Ω1) and χ1|dx1| is the κ-push-forward of the density χ2|dx2|),

ψ1 ∈ C∞
c (Ω1) equal to 1 on the support of χ1,

χ̂2u2(ξ2) =

∫
χ1(x1)u1(x1)e

−2iπν(x1)·ξ2dx1

=

∫
χ̂1u1(ξ1)

(∫
e2iπ(ξ1x1−ξ2ν(x1))ψ1(x1)dx1

)
dξ1

where the integral with respect to ξ1 is in fact a bracket of duality. We may thus
consider the identity
(
1 +

(
ξ1−tν ′(x1)ξ2

)
·Dx1

)(
e2iπ(ξ1x1−ξ2ν(x1))

)
= e2iπ(ξ1x1−ξ2ν(x1))

(
1 + ‖ξ1−tν ′(x1)ξ2‖2

)

which gives with L =
(
1 + ‖ξ1 −tν ′(x1)ξ2‖2

)−1
(
1 +

(
ξ1 −tν ′(x1)ξ2

)
·Dx1

)
,

∀N ∈ N, LN(e2iπ(ξ1x1−ξ2ν(x1))) = e2iπ(ξ1x1−ξ2ν(x1))

so that χ̂2u2(ξ2) =
∫

χ̂1u1(ξ1)
(∫

e2iπ(ξ1x1−ξ2ν(x1))(tL)N(ψ1)(x1)dx1

)
dξ1 and

|χ̂2u2(ξ2)| ≤ CN

∫∫
|χ̂1u1(ξ1)|〈ξ1 −tν ′(x1)ξ2〉−N1supp ψ(x1)dx1dξ1. (;)

6The proof of (6.3.6) is the following: we have
∣∣|η|ξ− |ξ|η

∣∣ ≤ |η||ξ−η|+ |η|
∣∣|ξ|− |η|

∣∣ ≤ 2|η||ξ−η|
and thus

∣∣|η|ξ − |ξ|η
∣∣ ≤ 2|ξ − η|min(|ξ|, |η|) which gives

∣∣|η|ξ − |ξ|η
∣∣(|ξ|+ |η|

)
≤ 2|ξ − η|min(|ξ|, |η|)2max(|ξ|, |η|) = 4|ξ||η||ξ − η|.
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Let us assume that Ṫ ∗(Ω1) . (x01, ξ01) /∈ WFu1; the point (x02, ξ02) is defined as
(ν(x01),tν ′(x01)−1ξ01). We assume that ξ2 belongs to a conic neighborhood Γ2 of ξ02.
We consider first for r > 0 the conic subset of Rn defined by

Γ1(r) = {ξ1 ∈ Rn,∀ξ2 ∈ Γ2, inf
x1∈supp ψ1

|ξ1 −tν ′(x1)ξ2| < r(|ξ1|+ |ξ2|)}.

The set Γ1(r) is also open and contains ξ01. If r is small enough and the support
of χ2 is included in a small enough ball around x02, we have from our assumption
|χ̂1u1(ξ1)| = O(〈ξ1〉−2N) on Γ1(r). When the integration in (;) takes place in Γ1(r),
we estimate that part of the integral, using the footnote on page 159 by

C ′
N

∫∫
〈ξ1〉−2N+N〈tν ′(x1)ξ2〉−N1supp ψ(x1)dx1dξ1 = O(〈ξ2〉−N).

When the integration in (;) takes place outside Γ1(r), we know that for some r > 0
and all x1 ∈ supp ψ, |ξ1−tν ′(x1)ξ2| ≥ r(|ξ1|+ |ξ2|). We have thus the estimate, with
a fixed M0,

C ′′
N

∫∫
〈ξ1〉M0(〈ξ1〉+ 〈ξ2〉)−2N1supp ψ(x1)dx1dξ1 = O(〈ξ2〉−N), for N > M0 + n.

The proof of the theorem is complete.

Definition 6.3.5. Let Ω be an open set of Rn, let u ∈ D ′(Ω) and s ∈ R. The
Hs-wave-front-set of u, denoted by WFsu, is defined as the complement in Ṫ ∗(Ω) of
the set of points (x0, ξ0) such that there exist some neighborhoods U, V respectively
of x0, ξ0 (with U × V ⊂ Ṫ ∗(Ω)) such that for all χ ∈ C∞

c (U),
∫

eV ∩{|ξ|≥1}
|(χ̂u)(ξ)|2|ξ|2sdξ < ∞, with Ṽ = ∪τ>0τV.

6.4 Oscillatory Integrals

Definition 6.4.1. Let Ω be an open subset of Rn, m ∈ R, N ∈ N∗. The space
Sm(Ω×RN) is defined as the set of functions a ∈ C∞(Ω×RN ; C) such that, for all
K compact subset of Ω, for all α ∈ Nn, β ∈ NN , there exists CK,α,β such that

∀x ∈ K, ∀θ ∈ RN , |(∂α
x ∂β

θ a)(x, θ)| ≤ CK,α,β〈θ〉m−|β|. (6.4.1)

It is a easy exercise left to the reader, consequence of the Leibniz formula, to
prove that the space Sm(Ω× RN) is a Fréchet space and that the mappings

Sm1(Ω× RN)× Sm2(Ω× RN) . (a1, a2) 4→ a1a2 ∈ Sm1+m2(Ω× RN)

are continuous. Moreover for any multi-indices α, β ∈ Nn × NN , the mapping

Sm(Ω× RN) . a 4→ ∂α
x ∂β

θ a ∈ Sm−|β|(Ω× RN)

is continuous.
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Definition 6.4.2. Let Ω be an open subset of Rn, N ∈ N∗, φ ∈ S1(Ω × RN). The
function φ is called a standard phase function on Ω×RN whenever φ ∈ S1(Ω×RN)
is real-valued and such that, for all K compact subset of Ω, there exists cK > 0 such
that

∀x ∈ K, ∀θ ∈ RN with |θ| ≥ 1,

∣∣∣∣
∂φ

∂x
(x, θ)

∣∣∣∣
2

+ |θ|2
∣∣∣∣
∂φ

∂θ
(x, θ)

∣∣∣∣
2

≥ cK |θ|2. (6.4.2)

For a ∈ Sm(Ω× RN) with m < −N and φ a standard phase function, we define

Ta,φ(x) =

∫
eiφ(x,θ)a(x, θ)dθ (6.4.3)

which is a continuous function on Ω ; note also that if m < −N − k with k ∈ N,
Ta,φ belongs to Ck(Ω).

Theorem 6.4.3. Let Ω be an open subset of Rn, m ∈ R, N ∈ N∗, a ∈ Sm(Ω× RN)
and φ be a standard phase function on Ω × RN . Then Ta,φ is a distribution on Ω
with order > m + N in the following sense. The mapping

C∞
c (Ω)× Sm(Ω× RN) −→ C

(u, a) 4→
∫∫

eiφ(x,θ)a(x, θ)u(x)dxdθ
(6.4.4)

extends the formula (6.4.3) defined for m < −N in a unique way and continuously.

6.5 Singular integrals, examples

6.5.1 The Hilbert transform

A basic object in the classical theory of harmonic analysis is the Hilbert transform,
given by the one-dimensional convolution with pv(1/πx) = d

πdx(ln |x|), where we
consider here the distribution derivative of the L1

loc(R) function ln |x|. We can also
compute the Fourier transform of pv(1/πx), which is given by −i sign ξ. As a result
the Hilbert transform H is a unitary operator on L2(R) defined by

Ĥ u(ξ) = −i sign ξû(ξ). (6.5.1)

It is also given by the formula

(H u)(x) = lim
ε→0+

1

π

∫

|x−y|≥ε

u(y)

x− y
dy.

The Hilbert transform is certainly the first known example of a Fourier multiplier
(H u = F−1(aû) with a bounded a).
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6.5.2 The Riesz operators, the Leray-Hopf projection

The Riesz operators are the natural multidimensional generalization of the Hilbert
transform. We define for u ∈ L2(Rn),

R̂ju(ξ) =
ξj

|ξ| û(ξ), so that Rj = Dj/|D| = (−∆)−1/2 ∂

i∂xj
. (6.5.2)

The Rj are selfadjoint bounded operators on L2(Rn) with norm 1.
We can also consider the n × n matrix of operators given by Q = R ⊗ R =

(RjRk)1≤j,k≤n sending the vector space of L2(Rn) vector fields into itself. The
operator Q is selfadjoint and is a projection since

∑
l R

2
l = Id so that Q2 =

(
∑

l RjRlRlRk)j,k = Q. As a result the operator

P = Id−R⊗R = Id−|D|−2(D ⊗D) = Id−∆−1(∇⊗∇) (6.5.3)

is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-
Weyl projector); the operator P is in fact the orthogonal projection onto the closed
subspace of L2 vector fields with null divergence. We have for a vector field u =∑

j uj∂j, the identities grad div u = ∇(∇ · u), grad div = ∇⊗∇ = (−∆)(iR⊗ iR),
so that

Q = R⊗R = ∆−1 grad div, div R⊗R = div,

which implies div Pu = div u − div(R ⊗ R)u = 0, and if div u = 0, Pu = u. The
Leray-Hopf projector is in fact the (n×n)-matrix-valued Fourier multiplier given by
Id−|ξ|−2(ξ ⊗ ξ). This operator plays an important role in fluid mechanics since the
Navier-Stokes system for incompressible fluids can be written for a given divergence-
free v0, 





∂tv − νFv = −P∇(v ⊗ v),
Pv = v,
v|t=0 = v0.

As already said for the Riesz operators, P is not a classical pseudodifferential opera-
tor, because of the singularity at the origin: however it is indeed a Fourier multiplier
with the same functional properties as those of R.

In three dimensions the curl operator is given by the matrix

curl =




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0



 = curl∗ (6.5.4)

so that curl2 = −∆ Id + grad div and (the Biot-Savard law)

Id = (−∆)−1 curl2 +∆−1 grad div, also equal to (−∆)−1 curl2 + Id−P,

which gives curl2 = −∆P, so that

[P, curl] = ∆−1
(
∆P curl−∆ curl P

)
= ∆−1

(
− curl3 + curl(−∆P)

)
= 0,

P curl = curl P = curl(−∆)−1 curl2 = curl
(
Id−∆−1 grad div

)
= curl

since curl grad = 0 (note also that div curl = 0).
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Theorem 6.5.1. Let Ω be a function in L1(Sn−1) such that
∫

Sn−1 Ω(ω)dσ(ω) = 0.
Then the following formula defines a tempered distribution T :

〈T,ϕ〉 = lim
ε→0+

∫

|x|≥ε

Ω
( x

|x|
)
|x|−nϕ(x)dx = −

∫
(x · ∂xϕ(x))Ω

( x

|x|
)
|x|−n ln |x|dx.

The distribution T is homogeneous of degree −n on Rn and, if Ω is odd, the Fourier
transform of T is a bounded function.

N.B. We shall use the principal-value notation

T = pv
(
|x|−nΩ

( x

|x|
))

.

When n = 1 and Ω = sign, we recover the principal value pv(1/x) = d
dx(ln |x|) which

is odd, homogeneous of degree -1, and whose Fourier transform is −iπ sign ξ.

Proof. Let ϕ be in S (Rn) and ε > 0. Using polar coordinates, we check

∫

Sn−1

Ω(ω)

∫ +∞

ε

ϕ(rω)
dr

r
dσ(ω)

=

∫

Sn−1

Ω(ω)
[
ϕ(εω) ln(ε−1)−

∫ +∞

ε

ω · dϕ(rω) ln rdr
]
dσ(ω).

Since the mean value of Ω is 0, we get the first statement of the theorem, noticing
that the function x 4→ Ω(x/|x|)|x|−n+1 ln(|x|)(1 + |x|)−2 is in L1(Rn). We have

〈x · ∂xT,ϕ〉 = −〈T, x · ∂xϕ〉 − n〈T,ϕ〉 (#)

and we see that

〈T, x · ∂xϕ〉 = lim
ε→0+

∫

Sn−1

Ω(ω)

∫ +∞

ε

rω · (dϕ)(rω)
dr

r
dσ(ω)

=

∫

Sn−1

Ω(ω)

∫ +∞

0

ω · (dϕ)(rω)drdσ(ω)

=

∫

Sn−1

Ω(ω)

∫ +∞

0

d

dr

(
ϕ(rω)

)
drdσ(ω) = −ϕ(0)

∫

Sn−1

Ω(ω)dσ(ω) = 0

so that (#) implies that x ·∂xT = −nT which is the homogeneity of degree −n of T .
As a result the Fourier transform of T is an homogeneous distribution with degree
0.

N.B. Note that the formula

−
∫

(x · ∂xϕ(x))Ω
( x

|x|
)
|x|−n ln |x|dx

makes sense for Ω ∈ L1(Sn−1), ϕ ∈ S (Rn) and defines a tempered distribution. For
instance, if n = 1 and Ω = 1, we get the distribution derivative d

dx

(
sign x ln |x|

)
.

However, the condition of mean value 0 for Ω on the sphere is necessary to obtain T
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as a principal value, since in the discussion above, the term factored out by ln(1/ε)
is

∫
Sn−1 Ω(ω)ϕ(εω)dσ(ω) which has the limit ϕ(0)

∫
Sn−1 Ω(ω)dσ(ω). On the other

hand, from the defining formula of T , we get with Ωj(ω) = 1
2(Ω(ω) + (−1)jΩ(−ω))

(Ω1(resp.Ω2) is the odd (resp. even) part of Ω)

〈T, ϕ〉 =

∫

Sn−1

Ω1(ω)〈pv(
1

2t
), ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω)

+

∫

Sn−1

Ω2(ω)〈 d

dt

(
H(t) ln t

)
, ϕ(tω)〉S ′(Rt),S (Rt)dσ(ω). (6.5.5)

Let us show that, when Ω is odd, the Fourier transform of T is bounded. We get

〈T̂ , ψ〉 =

∫

Sn−1

Ω(ω)〈pv(
1

2t
), ψ̂(tω)〉dσ(ω)

= −iπ

2

∫

Rn

∫

Sn−1

Ω(ω) sign(ω · ξ)ϕ(ξ)dξdσ(ω)

proving that

T̂ (ξ) = −iπ

2

∫

Sn−1

Ω(ω) sign(ω · ξ)dσ(ω) (6.5.6)

which is indeed a bounded function.

6.6 Appendix

6.6.1 On the Faà di Bruno formula

That formula7 is dealing with the iterated derivative of a composition of functions.
First of all, let us consider (smooth) functions of one real variable

U
f−→ V

g−→ W, U, V,W open sets of R.

With g(r) always evaluated at f(x), we have

(g ◦ f)′ = g′f ′

(g ◦ f)′′ = g′′f ′2 + g′f ′′

(g ◦ f)′′′ = g′′′f ′3 + g′′3f ′′f ′ + g′f ′′′

(g ◦ f)(4) = g(4)(f ′)4 + 6g(3)f ′2f ′′ + g′′(4f ′′′f ′ + 3f ′′2) + g′f (4)

i.e.
1

4!
(g ◦ f)(4) =

g(4)

4!

(
f ′

1!

)4

+ 3
g(3)

3!

(
f ′′

2!

) (
f ′

1!

)2

+
g(2)

2!

[(f ′′

2!

)2

+ 2
f ′′′

3!
f ′

]
+

g(1)

1!

f (4)

4!
.

7Francesco Faà di Bruno (1825–1888) was an italian mathematician and priest, born at Alessan-
dria. He was beatified in 1988, probably the only mathematician to reach sainthood so far. The
“Chevalier François Faà di Bruno, Capitaine honoraire d’État-Major dans l’armée Sarde”, defended
his thesis in 1856, in the Faculté des Sciences de Paris in front of the following jury: Cauchy (chair),
Lamé and Delaunay.
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More generally we have the remarkably simple

(g ◦ f)(k)

k!
=

∑

1≤r≤k

g(r) ◦ f

r!

∏

k1+···+kr=k
kj≥1

f (kj)

kj!
. (6.6.1)

· There is only one multi-index (1, 1, 1, 1) ∈ N∗4 such that
∑

1≤j≤4 kj = 4.

· There are 3 multi-indices (1, 1, 2), (1, 2, 1), (2, 1, 1) ∈ N∗3 with
∑

1≤j≤3 kj = 4.

· There is 1 multi-index (2, 2) ∈ N∗2 with
∑

1≤j≤2 kj = 4 and 2 multiindices
(1, 3), (3, 1) such that

∑
1≤j≤2 kj = 4.

· There is 1 index 4 ∈ N∗ with
∑

1≤j≤1 kj = 4.
Usually the formula is written in a different way with the more complicated

(g ◦ f)(k)

k!
=

∑

l1+2l2+···+klk=k
r=l1+···+lk

g(r) ◦ f

l1! . . . lk!

∏

1≤j≤k

(
f (j)

j!

)lj

. (6.6.2)

Let us show that the two formulas coincide. We start from (6.6.1)

(g ◦ f)(k)

k!
=

∑

1≤r≤k

g(r) ◦ f

r!

∏

k1+···+kr=k
kj≥1

f (kj)

kj!
.

If we consider a multi-index

(k1, . . . , kr) = (1, . . . , 1︸ ︷︷ ︸
l1times

, 2, . . . , 2︸ ︷︷ ︸
l2times

, . . . , j, . . . , j,︸ ︷︷ ︸
ljtimes

. . . , k, . . . , k︸ ︷︷ ︸
lktimes

)

we get in factor of g(r)/r! the term
∏

1≤j≤k

(
f (j)

j!

)lj
with l1 + 2l2 + · · · + klk =

k, l1 + · · ·+ lk = r and since we can permute the (k1, . . . , kr) above, we get indeed
a factor r!

l1!...lk! which gives (6.6.2).
The proof above can easily be generalized to a multidimensional setting with

U
f−→ V

g−→ W, U, V,W open sets of Rm, Rn, Rp, f, g of class Ck.

Since the derivatives are multilinear symmetric mappings, they are completely de-
termined by their values on the “diagonal” T ⊗ · · ·⊗ T : the symmetrized products
of T1 ⊗ · · · ⊗ Tk, noted as T1 . . . Tk, can be written as a linear combination of k-th
powers. In fact, in a commutative algebra on a field with characteristic 0, using the
polarization formula, the products T1 . . . Tk are linear combination of k-th powers

T1T2 . . . Tk =
1

2kk!

∑

εj=±1

ε1 . . . εk(ε1T1 + · · ·+ εkTk)
k. (6.6.3)

For T ∈ Tx(U), we have

(g ◦ f)(k)

k!
T k =

∑

1≤r≤k

g(r) ◦ f

r!

∏

k1+···+kr=k
kj≥1

f (kj)

kj!
T kj ,

which is consistent with the fact that f (kj)(x)T kj belongs to the tangent space
Tf(x)(V ) of V at f(x) and ⊗1≤j≤rf (kj)(x)T kj is a tensor product in T r,0(Tf(x)(V )) on
which g(r)(f(x)) acts to send it on Tg(f(x))(W ).
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