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Chapter 1

Basic structures: topology,
metrics, semi-norms, norms

1.1 Topological spaces

Definition 1.1.1. Let X be a set and O a family of subsets of X. O is a topology
on X whenever

(1) UsesO; € O if every O; € 0.
(2) OlﬂOQGﬁifOl,OQEﬁ.
3) X,0e 0.

We shall say that (X, O) is a topological space. The open sets are defined as the
elements of O, the closed sets are defined as the subsets of X whose complement
1s open: a union of open sets is open, a finite intersection of open sets is open, an
intersection of closed sets is a closed set, a finite union of closed sets is a closed set.
If 01, 05 are two topologies on X such that 0y C Oy, we shall say that Oy is finer
than O}.

We may notice that the third condition can be considered as a consequence of
the two previous ones since a union (resp. an intersection) on an empty set of indices
of subsets of X is the empty set (resp. X).

Examples of topological spaces.

- The most familiar example is certainly the real line R equipped with the standard
topology: a subset O of R is open, when for all x € O there exists an open-interval
I =]a,b] such that x € I C O. The property (1) above is satisfied as well as
(2) since the intersection of two open-intervals is an open-interval. Note that the
open-intervals are also open sets.

- Also R™ has the following standard topology: a subset O of R™ is open, when for all
x € O there exists some open-intervals I; =|a;, b;[ such that x € [; x --- x I,, C O.
The property (1) above is satisfied as well as (2) since the intersection of two open-
intervals is an open-interval.

- Let us give some more abstract examples. The Discrete Topology on a set X is
Z(X), a topology on X for which all the subsets of X are open. Naturally, it is

7



8 CHAPTER 1. BASIC STRUCTURES: TOPOLOGY, METRICS

the finest possible topology on X. The Trivial Topology on X is {0, X}: it is the
coarsest topology on X, since all topologies on X are finer.

- The Cofinite Topology on a set X is ¢ = {0} U {Q C X, Q° finite}. It is obviously
a topology since an intersection of finite sets is a finite set, and a finite union of
finite sets is a finite set. Note that the cofinite topology on a finite set is the discrete
topology.

- The Cocountable topology on a set X is ¢ = {0} U {Q C X, Q°ountable}. Tt is
obviously a topology since an intersection of countable sets is a countable set, and a
finite union of countable sets is a countable set. Note that the cocountable topology
on a countable set is the discrete topology.

- On the other hand if (0, )aca is a family of topologies on a set X, Naea @, is also
a topology on X. As a consequence, it is possible to define the coarsest (smallest)
topology on a set X containing a family &7 of subsets of X: it is the intersection
of the topologies which contain .27 (this makes sense since o C Z(X) which is a
topology on X, so that the set of topologies containing .27 is not empty).

-If (X, <) is a totally ordered set, we define the open-intervals as the sets |z1, xo[=
{z € X,21 <z < x5} (here 2’ < 2" means 2’ < z” and 2’ # 2”) or the sets

| —o0,z[={y e X,y <z}, |z,+oo[={ye X,z <y}

The set & = {Ugeal,, I, open-interval} U {X} is a topology on X. The set .# is
obviously stable by union, contains the empty set and X. We note also that, since
X is totally ordered, the intersection of two open-intervals is an open-interval:

]ml, x2[m]yla QQ[ :] max(ycl, yl)a min(x% yQ)[?

with the convention max(—oo,z) = x = min(+o00, x). As a consequence, taking the
intersection of two elements of .# leads to

(Uaeals) N (Unenly) = Uapeaxs (Lo N 1),

so that . is also stable by finite intersection.
We have seen in the section 1.1, that given a family (&),ca of topologies on a

set X, Naea O, is also a topology on X: that topology is of course weaker than each
O,.

Remark 1.1.2. Let us consider a set X, a family of topological spaces (Y}, 0;) and
a family of mappings ¢; : X — Y. If € is a topology on X such that all the ¢,
are continuous, then for all j € J, for all w; € &}, gaj’l(wj) € 0. Let us now consider
the family .# = {¢; " (w;)}jesw,co, and we define O as the intersection of the
topologies on X which contain .%: this makes sense because the discrete topology
Z(X) contains .% and an intersection of topologies on X is also a topology on X.
Naturally, all the mappings ¢; are continuous for the topology &z and if O is a
topology on X such that all the mappings ¢; are continuous, then 0 > F and
thus, by the very definition of &', we have 04 C 0. The topology O is thus the
weakest topology on X such that all the mappings ¢; are continuous.
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Definition 1.1.3. Let (X, 0) be a topological space and A a subset of X. The
interior of A is defined as

A= U Q,  (the largest open set included in A, noted also as int A).
Q open C A

The closure of A is defined as

A= m F,  (the smallest closed set containing A).
F closed D A

The set A is said to be dense in X whenever A = X. The boundary of A is (the
closed set) defined as o
OA = A\int A= AN Ac.

Definition 1.1.4. Let X be a topological space, x € X,V C X. We say that V s
a neighborhood of x if it contains an open set containing x. We shall note ¥, the
set of neighborhoods of x. We note that ¥, is stable by extension (V € ¥,,W DV
implies W € ¥, ), by finite intersection and that no element of ¥, is empty. A subset
of X is open if and only if it is a neighborhood of all its points.

Let us prove that last assertion: an open set is a neighborhood of all its points
by definition and conversely if 2 C X is a neighborhood of all its points, then for
all z € €, there exists an open set w, C ) with z € w,, so that Q = U,cqw, union
of open sets, thus open.

Definition 1.1.5. A topological space (X, O) is said to be a Hausdorff space if, when
x1 # xy in X, there exist Uy € V., 7 = 1,2 such that Uy N Uy = 0.

N.B. We shall see that most of the examples of topological spaces that we encounter
in functional analysis are indeed Hausdorff spaces, as it is the case in particular for
the metric spaces, whose definition is given in the next section. However, let us
consider N (or any infinite set) equipped with the cofinite topology, for which the
closed sets are the finite sets. Let Uy, U; be open sets containing respectively 0, 1.
Then Uy NU; # 0, otherwise U U Uf = N, which is not possible since U§ and Uf
are both finite. However, singletons {n} are closed for the cofinite topology on N.
This is also the case in a Hausdorff space, since for o # x € X, there exists w,
open such that zy ¢ w, > = implying that {z(}® = U,z,,w, thus open. Within the
various notions of separation for topological spaces, one may single out the notion
of Hausdorff space, or T5 space, as defined above, and the weaker notion of T} space,
defined as topological spaces for which the singletons are closed. We have just proven
that a Th space is T7 but that the converse is not true in general.

A very general approach of topology is outlined in the appendix with the notions
of filters and ultrafilters. We note also that for a subset A of a topological space X
we have

r€A=VV eV, VNALID. (1.1.1)

In fact the complement of A is the interior of A°: = ¢ A is thus equivalent to A° € 7,
which is indeed the previous claim.
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Exercise 1.1.6. Verify that, for A, B subsets of a topological space X,

(A)° = int (4°), (int A)° = A°
UB=AUB, int(ANB)=intANintB.

N

Show that the inclusion AN B C AN B holds and may be strict.

Lemma 1.1.7. Let (X, 0) be a topological space and U C X. The following prop-
erties are equivalent:

(i) U=X.
(it) Ve 0,Q# 0= QnU # 0.
Proof. 1f (i) is satisfied and if €2 is open, we have

QNU=0=UCQ=X=UCQ = Q=0, proving (ii).
Conversely, if (i) is violated, the open set Q) = (U)C # (), but

QNU = (0)'nU = (int (U))NU CcUNU = 0.
proving non-(ii). O

Definition 1.1.8. Let X,Y be topological spaces, f : X — Y. Let xqg € X; the
mapping [ is said to be continuous at xq if

vve%f(ﬂﬁo)?Eer%ov f(U) C‘/‘

The mapping f is said to be continuous on X if it is continuous at all points of X .
That property is satisfied if and only if, for all open sets V of Y, f~Y(V') is an open
set of X. The mapping f is an homeomorphism if it is bijective and bicontinuous
(f and f~1 are continuous).

Let us prove the property stated above. Let f be a continuous mapping, B
an open set of Y and # € f~Y(B) (f(x) € B which is thus a neighborhood of
f(z)). From the continuity of f, there exists a neighborhood U of z such that
f(U) € B, which means U C f~!(B), and thus f~!(B) is a neighborhood of z,
so that f~1(B) is open. Conversely if the inverse image by f of any open set is
open, and if z € X, V is a neighborhood of f(x) containing an open set B 3 f(z),
f7Y(B) is open and contains x; as a consequence, f~'(B) is a neighborhood of x
and f(f7(B)) C BCV, qged.

Exercise 1.1.9. Give an example of a function f : R — R continuous at only one
point.

Definition 1.1.10. Let (X, 0) be a topological space and S be a subset of X. The
induced topology on S is Os = {Q2N S}aeco.



1.2. METRIC SPACES 11

Note that the properties of a topology are immediately satisfied and that Oy is
the coarsest topology such that the canonical injection ¢ : S — X is continuous. On
the one hand, :71(Q) = QNS is open if 2 € & and ¢ is thus continuous; on the
other hand, if &” is a topology on S that makes ¢ continuous, &s must be contained
in 0’ since t71(Q) € 0" for Q € 0.

The next section introduces the class of metric spaces, a very useful class of
topological spaces in functional analysis. Although the notion of metric space is
enough to describe a large part of the most natural functional spaces, the reader may
keep in mind that some interesting and natural examples of functional spaces are not
metrizable. This is the case for instance of some of the test functions spaces used in
distribution theory, such that the continuous functions with compact support from
R to R. Naturally, a good understanding of distribution theory does not necessarily
require a great familiarity with non-metrizable spaces but one should nevertheless
keep in mind that the developments of functional analysis raised various questions
of general topology, which went much beyond the metrizable framework.

1.2 Metric Spaces

Definition 1.2.1. Let X be a set' et d : X x X — [0,+00[. We say that d is a
distance on X if for x; € X,

(1) d(z1,22) =0 <= 21 =29, (separation),
(2) d(z1,79) = d(x2,71), (symmetry),
(3) d(zy,x3) < d(xy,x0) + d(x2,3), (triangle inequality).

(X, d) is called a metric space. Forr >0,z € X, we define the open-ball with center
x and radius v, B(z,r) ={y € X,d(y,z) <r}.

Definition 1.2.2. Let (X,d) be a metric space. A subset Q of X belongs to the
topology Oy on X defined by the metric d if

Ve e Q,3r > 0,B(x,r) C .

We note that &, is a topology since the stability by union is obvious and
the stability by finite intersection follows from the fact that B(z,r;) N B(x, 1) =
B(z,min(ry,73)). Moreover the open-balls are open since, considering for ry >
0,20 € X, x € B(x,70), we have with p = rq — d(x,z¢) (which is > 0)

d(y,x) < p = d(y,z0) < d(y, ) + d(x,z0) < p+ d(x,20) = 70,
implying that B(z, p) C B(xg,ro) and B(xg,ry) open.

We note that in a metric space (X, d), for x € X, r > 0, the set

B(x,r) ={y € X,d(y,x) <r}

IThe reader of Bourbaki will have noticed the ineptitude of that first sentence.
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is closed. In fact, if d(y,x) > r, we have B(y,d(y,x) —r) C (B(z,r))": take z such
that d(z,y) < d(y,z) — r. Then by the triangle inequality

d(z,x) > d(y,x) —d(z,y) > d(z,y) +r—d(z,y) =r =z ¢ B(x, ), qed.

Since B(z,r) is a closed set containing B(zx,r), the closure B(z,r) of the ball
B(xz,r) is included in B(z,r). However there are some examples where the in-
clusion B(x,r) C B(x,r) is strict. Take on a set X (with at least two elements) the
discrete metric, defined by d(x,y) = 1 if © # y and d(z,z) = 0. It is obviously a
metric and since {x}° = U,.,B(y, 1/2) is open, {z} is closed and

B(z,1) ={z} = B(z,1), B(z,1)=X.
A metric topology is always Hausdorff since for x # y, we have
B(z,r)N B(y,r) =0, with r =d(x,y)/2(> 0).

In fact let z € B(x,r)NB(y,r). By the triangle inequality d(z,y) < d(z, 2)+d(z,y) <
2r = d(z,y), which is impossible.

Definition 1.2.3. Let (X, d) be a metric space and (x,,)nen be a sequence of elements
of X. The sequence (x,)nen @s said to be converging with limit x whenever

Ve > 0,3N, € N,Vk > N, d(zg, x) < €. We set limz,, = x.

The sequence (x,)nen is said to be a Cauchy sequence whenever
Ve > 0,3N,. € N,Vk,l > N, d(xg, x;) < €.

A converging sequence is a Cauchy sequence. If (X,d) is such that all Cauchy
sequences are converging, we say that X is complete.

The notation lim x,, = x is legitimate since the separation induces the uniqueness
of the limit: if 2/, 2" are limits of a sequence (x,)nen, we have 0 < d(2/,2") <
d(z',x,) + d(z,,2") and since the numerical sequences (d(z’,x,)), (d(z,,2")) tend
to 0, we find d(2/,2") = 0, i.e. 2’ = 2”. On the other hand, if a sequence (z,) is
converging to x, we have d(x,,z) < €/2 for n > N/, and thus for k,l > N, we
get d(xy, x;) < d(zg, z) + d(z, x;) < €, so that (z,,) is also a Cauchy sequence.

Proposition 1.2.4. Let (X,dy),(Y,dy) be metric spaces and f : X — Y be a
mapping. Let xy € X. The mapping f s continuous at xy if and only if for every
sequence (Tp)n>1 converging with limit xo, the sequence (f(xy))n>1 is converging with
limit f(xo).

Proof. Assuming first that f is continuous at z(, we know that for e > 0, there exists
r > 0 such that f(B(zg,r)) C B(f(xo),€). Let (z,)n>1 be a sequence converging
with limit zg. For n > N, z,, € B(zo,r) and thus f(z,) € B(f(zo),€), so that
lim,, f(z,) = f(zo). Conversely, if f is not continuous at x¢, there exists a neigh-
borhood V' of f(zg) such that, for all neighborhoods U of zy, f(U) ¢ V. In other
words, there exists ¢y > 0 such that for all integers n > 1, there exists z,, € X such
that d(x,, o) < 1/n and d(f(z,), f(zo)) > €. As a consequence lim,, x,, = z¢ and
the sequence (f(x,)),>1 is not converging to f(z); ]
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Exercise 1.2.5. The set QQ of rational numbers, equipped with the standard distance
given by the absolute value |z—y| is not complete. Consider for instance the sequence
of rational numbers defined by

T 1

Tpp1= 4 +—, To=2
2 Ty

and prove that it is a Cauchy sequence of Q which is not converging in Q.

The reader will see in the appendix that, given a metric space (X, d) it is poss1ble
to construct a complete metric space (X d) such that X is dense in X (i.e. X = X )
d| xxx = d and such that, for all complete metric space Y and all applications f
uniformly continuous 2 from X in Y, there exists a unique uniformly continuous
extension of f to X. The space (X d) is complete and uniquely determined by the
previous property (up to an isometry of metric spaces®). The space (X , d) is called
the completion of (X, d) and its construction is very close to the completion of Q
to obtain R. X is constructed as the quotient of the set €[X] of Cauchy sequences
by the following equivalence relation: two Cauchy sequences (,)nen, (Yn)nen are
equivalent means that lim, d(z,,y,) = 0. We define the distance d on €[X] by
d((xn), (Yn)) = lim, d(2,, yn) and we prove that it is well-defined and satisfies the
above properties.

Remark 1.2.6. Note that completeness is a property of the metric and not of
the topology, meaning that a complete metric space can be homeomorphic (see the
definition 1.1.8) to a non-complete one. An example is given by the real line R
with the standard distance given by |z — y|, which is a complete metric space, but
homeomorphic to the open interval |0, 1[, which is not complete, since the Cauchy
sequence (1/k)g>1 is not converging in |0, 1].

1.3 Topological Vector Spaces

1.3.1 General definitions

Let us recall that a vector space F is an (additive) commutative group such that
a scalar multiplication k x E 3> (\,7) — A -z € E is defined (k is a commutative
field), with the following axioms: for z,y € E, A\, u € k,

A(x+y)=A-x+ Ay, (here+ is the addition in E), a version of Thales theorem,
(A p)-x=A-x+ p-x, (the first + is the addition in k, the next the addition in E),
A (p-x)=(Ap) -z, (A is the product in k),

1.2 ==z, (1isthe unit element in k).

2Ve > 0,da > O,dx(xl,l‘g) <o=— dy(f(l'l),f(x2)) <e
3A mapping F is an isometry between metric spaces (X j,dj) if F' is bijective from X; on X»
and if dg(F(ﬂh), F(y1)) = d1($1,y1).



14 CHAPTER 1. BASIC STRUCTURES: TOPOLOGY, METRICS

This implies that for all z € E, Ox-x = Og since Ox-x4+2x =0 -2+ 12 = 1y - = z.
All the vector spaces that we shall consider in this text are vector spaces on the
field R or C, denoted by k in the sequel. These fields are equipped with their usual
topology, given by the distance |x—y| (absolute value in the real case, modulus in the
complex case). We want to deal with topological vector spaces, i.e. to consider vector
spaces equipped with a topology which is somehow compatible with the algebraic
structure of the vector space. We define this more precisely.

Definition 1.3.1. Let E be a vector space and O a topology on E such that the
mappings EX E > (x,y)— x+y € E, kxXE>S (a,x) — a-x € E are continuous.
We shall say that (E, O) is a topological vector space (TVS for short).

1.3.2 Vector spaces with a translation-invariant distance

On a vector space E we define a translation-invariant distance d, as a distance on
E such that, for x,y,z € F,

dz+z,y+2) =d(z,y). (1.3.1)

Lemma 1.3.2. Let E be a vector space and d a translation-invariant distance on
E. Assume that

Ve>0,3r >0, {Aek|A <r}-B(0,r)C B(0,¢),
Ve EVe>0,3r >0, {Aek|A <r}-zC B(0,¢),
VA €k, Ve>0,3r >0, A-B(0,r) C B(0,e).

Then we define %y = {V C E, such that Ir > 0 with B(0,r) C V'} and
O={QCENxeQIVet x+V CQ}

Then (E,0) is a TVS, O is the topology defined by the distance d and ¥, is the
set of neighborhoods of 0. For all x € E, the set of neighborhoods of x is v + ¥ =

{$ + V}Ve‘//o'

Proof. Let us first remark that & is the topology on E defined by the metric d.
Let Q C E such that for all x € ), there exists » > 0 such that B(z,r) C Q,
i.e. € is an open subset of E for the topology induced by the metric d. Since d is
translation invariant, we have B(z,r) = x + B(0,r) : in fact, for y € F, we have
d(y,z) = d(y — x,0) so that

dy,z) <r<=dly—2,0) <r<=y=x+z with d(z0) <r.

As a consequence, the open sets of (E,d) are indeed given by the property of the
lemma. To prove the continuity of £ x E > (x,y) — x +y € E, we consider for
r > 0 a neighborhood zg + yo + B(0,7) of o + yo. We note that

r
2

r

$0+B(0, 5

)+y0+B(07 )C$0+yo+B(0aT>
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since d(z',0) < r/2 and d(z",0) < r/2 imply that
d(z' +2",0) <d(z' + 2", 2")+d(Z,0) = d(2",0) + d(',0) < r,

and the continuity property is proven. To prove the continuity of k x E > (A, x) —
Ar € E, we consider for € > 0 a neighborhood A\gzy + B(0,¢€) of Agxo. Using the
hypothesis of the lemma, we know that there exists 1 > 0 such that for (u,z) €
k X B, |p| < ri,d(z,0) < r, we have d(uz,0) < €/3; moreover there exists ro >
0 such that |p] < 7o implies d(uxo,0) < €/3 and there exists 3 > 0 such that
d(z,0) < r3 implies d(Apz,0) < €/3. This proves that for (i, z) € k x E such that
\p| < min(ry,re),d(z,0) < min(rq,73), we have

(Ao + 1) (o + 2) = Xoxo + pxo + Aoz + pz € B(0,¢),

proving the continuity property. O

1.3.3 Normed spaces

A case in which the verification of the assumptions of the lemma is very simple is
given by the case of a normed vector space.

Definition 1.3.3. Let E be a vector space and N : E — R,. We shall say that Nis
a norm on E if for x,y € E,a €k,

(1) N(z) =0<«<= 2 =0, (separation),
(2) N(azx) = |a|N(z),  (homogeneity),
(3) N(x+y) < N(z)+ N(y), (triangle inequality).
(E,N) will be called a normed vector space. We define on E the distance
d(xz,y) = N(x —y). (1.3.2)

Proposition 1.3.4. Let (E, N) be a normed vector space and d the distance (1.3.2).
The distance d is translation-invariant and the metric space (E,d) is a topological
vector space.

Proof. We see immediately that d is a translation-invariant distance; to check the
continuity at (0,0), we note that for (\,z) €k X F,e > 0,

d(\z,0) = N(\z) = [\ N(z) < €

provided d(z,0) = N(z) < € and |A| < 1. Checking the two other properties of the
previous lemma amounts, for (Ao, ) given in k X E, |u| < r1,d(z,0) < ra, to look
at

d(pzo, 0) + d(Xoz,0) = N(uxo) + N(Xoz) = |p|N(x0) + |Xo|N(2) < €

provided 71 N (xq) + |Ao|re < €. O

Definition 1.3.5. A Banach space is a complete normed vector space.
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A Hilbert space is a particular type of Banach space, for which the norm is
derived from a dot-product, also called a scalar product. It is better here to discuss
separately the real and the complex case. If E is a real vector space and £ x E >
(z,y) — (z,y) € Ris a bilinear symmetric form®*, which is positive-definite, i.e. such
that (x,z) > 0 for x # 0, we shall say that (E, (-,-)) is a real prehilbertian space.
If E is a complex vector space and E x E > (z,y) — (z,y) € C is a sesquilinear
Hermitian form®, which is positive-definite, i.e. such that (z,z) > 0 for x # 0, we
shall say that (£, (-,-)) is a complex prehilbertian space.

Lemma 1.3.6. Let (F,{(-,-)) be a complex (resp. real) prehilbertian space. Then
lz|| = (z,2)"? is a norm on E. Moreover, for x,y € E the Cauchy-Schwar?’
inequality holds:

[, 9)] < ll=lllyll- (1.3.3)

The equality above holds if an only if t ANy =0, i.e. x and y are linearly dependent.

Proof. 1t is enough to deal with the complex case. We define for ¢ € R,
p(t) = (z +ty,z + ty) = ||]|* + 2t Re(z,y) + *[|y]*,

and since p is a non-negative polynomial of degree (less than) two on R, we get
(Re(z,y))? < ||lz|*||y||?>. Writing now with § € R, (x,y) = €“|(z,y)|, we apply
the previous result to get |(z,y)|? = (Rele "z, y))? < ||=]|?||ly||?, which is (1.3.3). If
xAy = 0, we have y = Az or z = Ay and the equality in (1.3.3) is obvious. If zAy # 0
the polynomial p above takes only positive’ values so that (Re(z,y))* < ||z[]*||y|]*.
Using the same trick as above with e, we get a strict inequality in (1.3.3). To prove
now that (r,x)/? is a norm is easy: (1) and (2) in the definition 1.3.3 are obvious
and we have

Iz +ylI* = [l2l* + lyll* + 2Re(z, y) < 2)I* + lyl* + 22llllyll = (l=]| + lyI)*. O

N.B. Let (E, (-,-)) be a prehilbertian space. A direct consequence of the Cauchy-
Schwarz inequality (1.3.3). is

|z]| = sup [{z,y)l. (1.3.4)
lyll=1

It is true for = = 0; also ||x|| is greater than the rhs from (1.3.3), and conversely if
x#0, [|z]| = (=, Hi—H>’ which gives the result.

Definition 1.3.7. A real (resp. complex) Hilbert space is a Banach space such
that the norm is derived from a bilinear symmetric (resp. sesquilinear Hermitian)
dot-product so that ||z|| = (x,x)'/2.

41t means that the mappings E > x — (z,y) € R are linear and (z,y) = (y, z).

5Tt means that the mappings E 3  +— (z,7) € C are C-linear and (z,y) = (y,z). In particular
for A € C,z,y € E, (x,\y) = Xz, y).

6 One should also associate to this inequality the name of Viktor Yakovlevich Bunyakovsky, who
actually discovered it. References on the history of the Cauchy-Bunyakovsky-Schwarz inequality
appear in http://www-history.mes.st-and.ac.uk/history /Biographies/Bunyakovsky.html.

"In (mathematical) english, r positive means » > 0 and r nonnegative means r > 0.
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Examples. The simplest example of a normed vector space is R™ with the Euclidean
norm ||z||; = (Z1§jgn x?)l/Q, or any of the following norms for p € [1, +o0],

1/
Izl = (D Jai”) ", 2]l = max |ay]. (1.3.5)

1<j<n
1<j<n

It is easy to prove that all the norms on R™ are equivalent, i.e. if Ny, Ny are two
norms on R”, 3C > 0, Vz € R", C 'Ny(z) < Ni(x) < CNy(x). This implies
in particular that the topologies on R™ defined by the distances associated to these
norms by the formula (1.3.2) are all the same. Since R is complete, we see that R"
equipped with a norm is a Banach space.

The infinite-dimensional (?(N) are more interesting: we define for p € [1, +00],

gp(N) = {(-Tn)nel\h Z ’$n|p < +OO}> H Tn nGNHp Z ‘xn‘p l/p (136)

neN neN
(2°(N) = {(2n)nen, sug |zn| < 400}, ||(Zn)nenlloo = sug |z (1.3.7)
ne ne

It is easy to see that for 1 < p < ¢ < 400, we have®
(Y(N) C °(N) C (*(N) C £*°(N), and for z = (¥,)nen €, ||z|ly < [|2]l,,

and all these spaces are Banach spaces (we refer the reader to the website [9], chapter
3, for a proof of the triangle inequality). Moreover, for 1 < p < ¢ < +o0, the norm
|lg is not equivalent on ¢?(N) to the norm ||,, i.e. there is no C' > 0 such that for
all z € (°(N), ||z]|, < C||z||,- Otherwise, we would have with any N > 1 integer,
z, =n"Y9for 1 <n < N and x, = 0 for other values of n,

_» 1/q
<<N+f)_ pq_l) (X a o X w) e nm

q 1<n<N 1<n<N

which is impossible.

Given a measured space (X, M, 1) where p is a positive measure, p € [1, +0o0],
the space LP(u1) of class of measurable functions f such that [, |f|Pdu < +oo (for
p = +00, esssup | f| < +00) is a Banach space (see e.g. [9], chapter 3) with the norm

1/p
(/ \f]pdu) , esssup|f]| for p = +o0. (1.3.8)
b

For © open subset of R™ we shall note simply LP(£2) that space for X = Q, M
the Lebesgue o-algebra and i the Lebesgue measure. Note that one may consider
the space £P(u) of measurable functions such that [, |f[’du < 400, but that the
separation axiom is not verified: the condition [ « [fIPdp = 0 will imply only that

SForq>p=>1,

_ a_q
2§ =D lzal” < D lzalP(suplaa)177 < 2l5 (Y enl?)* ™ = l|z]g,  ed.
n

n n n
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f =0, p-almost everywhere, and this is why we have to consider LP(u), which is the
quotient of L£P(u) by the equivalence relation of equality p-a.e.

An other very important example is C°([0, 1];R), the vector space of continuous
mappings from [0, 1] to R, equipped with the norm

Jull = sup [u(z)]. (1.3.9)

z€[0,1

It is a good exercise left to the reader to prove that C°([0, 1]; R) with that norm is
a Banach space.

1.3.4 Semi-norms

Let us consider the space C°(]0, 1[; R); what is the natural topology on that space?
Obviously, one cannot take the norm (1.3.9) since it may be infinite (think of u(z) =
1/x). On the other hand it is quite natural to look at

pr(u) = sup  |u(z)|, for1<keN.
k1 <a<i—k1

Pk 1s not a norm since the separation property (3) in the definition 1.3.3 is not sat-
isfied; however, one can use the (pg)r>1 to give a definition of a converging sequence
(un)nen: that sequence converges to 0 means that for each k& > 1, lim,, pg(u,) = 0.
This is the uniform convergence on the compact subsets of the open set ]0, 1[. This
example may serve as a motivation to introduce a more general structure than the
normed vector space, namely vector spaces for which the topology is defined by a
countable family of semi-norms.

Definition 1.3.8. Let E be a vector space and p : E — R,. We shall say that p
15 a semi-norm on E if for x,y € F,a € k,

(1) p(az) = |alp(x),  (homogeneity),

(2) p(x +vy) <p(x)+ply), (triangle inequality) ®.

Let us consider a countable family (px)r>1 of semi-norms on E. We shall say that
the family (pr)r>1 is separating whenever pp(x) = 0 for all k > 1 implies x = 0.

Let E be a vector space and (px)r>1be a separating countable family of semi-
norms on F. We define d: £ x F — R, by the formula

k (z — )
Z 2% + (1.3.10)

2% Ty

Lemma 1.3.9. Let E be a vector space and (py)r>1be a separating countable family
of semi-norms on E. The formula (1.3.10) defines a translation-invariant distance

9We note that (1) implies p(0) = 0 but that the separation property (1) in the definition 1.3.3
is not satisfied in general.
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on E and the metric space (E,d) is a TVS. Let (z,)nen be a sequence of elements
of E. Then
limz, =0 <= Vk > 1,limpy(z,) = 0.

Assuming that k +— pg(x) is increasing for all x € E, we obtain that a basis of
neighborhoods of O is the family (B )ki>1 with

By = {z € E,pp(x) < 1/1},
i.e. each By, € %, and for all V € ¥, there exists k,l > 1 such that By, C V.
Proof. The formula above makes sense and is obviously translation-invariant and
symmetric. The separation property (1) of the definition 1.2.1 is a consequence of

the separating property of the family (pk)k>1 To verify the triangle inequality for
d, we note that the mapping R, 3 0 — - =1 — L is increasing so that, since

1+9 1+6
pe(r —2) <pe(r —y) +pr(y — 2),

d(z,z) =) ph M=) > e ) —2) g ) vay, 2.

o1 1—|—pk(x—z) B 1 1+pk<x—y)—|—pk<y—z)

To check that the metric space (E,d) is a TVS, we use the lemma 1.3.2: for \ €
k,z € E, we have!”

Alpe(2)
=> 27* _lpelz) < 1
d(Azx,0) T+ (@ max(|A], 1)d(z,0)

k>1

so that d(Ax,0) < € provided d(z,0) < € and |A| < 1. Also d(\ox,0) < € provided
d(z,0) < €/(1+ |Ao|); finally we consider d(Azg,0). We have for N > 1

_ |)\|pk xo) K |/\|pk %) k
d(\zo, 0 9k < 2 2
’ Z 1+ [Apr (o) Z 1+ [ Alpx(o) Z

E>1 1<k<N

and thus, for all N > 1, 0 < limsup,_d(Azo,0) < >, 5y 27F = 27V which implies
limy o d(Azg,0) = 0. The assumptions of the lemma 1.3.2 are satisfied and (FE, d) is
indeed a TVS. Let us now consider a sequence (x,),en of elements of F, converging
to 0: then, for each k > 1, 0 < pp(z,)/(1 + pr(x,)) < 2%d(z,,,0) so that

liTrLrlpk(xn)/(l + pp(z,)) =0 = lirlznpk(:vn) = 0.
Conversely if for all £ > 1, lim,, py(x,) = 0, we have for all N > 1,

0<dz,0)< Y 2k1i’“p::”$n PR

1<k<N k>N

and thus, for all N > 1, 0 < limsup,, d(z,,0) < 27V ie. lim, d(z,,0) = 0. Let us
prove now the last statement of the lemma: we have, using k — p; increasing,

x
S 3 ot e < I T < ) 27
1<k<ko +pk ) + Pro ()

< -eb ifg > 1.

10We use for a,b >0, 122 < 25 if a <1 and {225 < 2%

? 14ab



20 CHAPTER 1. BASIC STRUCTURES: TOPOLOGY, METRICS

Let 79 > 0 be given and kg such that 27% < r4/2. We have
B(0,79) D {z € E,pg,(z) <1/lo} = Biyiy» 1/lo <10/2,
since © € By, implies d(x,0) < py,(x) +277 < 2 4+ 2 = ry. Conversely, we have

pr(7)

< 2%d(z,0
1+ pp(x) — (z,0)

so that, for k,[ given integers > 1, there exists r > 0 such that B(0,7) C Byy; in
fact d(z,0) < r implies 25 < 21 and taking r = 272! gives

14pg(z)
1 1 1 1
1— )< — < -
prle) < gt @) = p(@) (L= ) < = ple) < g <
since 31 > 3 > 1. The proof of the lemma is complete. O

N.B. Note that for a TVS as above, whose topology is defined by a separating
countable family of semi-norms, the closure of the open ball B(z,r) is indeed the
closed ball B(z,r) = {y € E,d(y,z) < r} (see the remark after the definition
1.2.2). In fact, we have already seen that B(z,r) C B(z,r), so that it is enough to
check the other inclusion. Using the translation-invariance, we may consider only
xg € E such that d(xp,0) = r¢ with some 1y > 0. Now, we have d((1 — €)xg,xg) =
d(—€xg,0) and thus, since the assumptions of the lemma 1.3.2 are proven true, we
have lim._o d((1 — €)xg,z9) = 0; on the other hand, (1 — €)zy € B(0,ry) for e > 0
since

d(1 = c)ay, 0) = Y27+ 1_””“(’”0) <3 ok P 0y,

o1 (1 =e)pr(ro) &= 1+ pr(z0)

where the strict inequality above is due to the fact that pg(zo) > 0 for at least one
k > 1 (otherwise zg = 0, which is incompatible with d(zo,0) > 0) and the mapping
Ry 30 +— 0/(1 4 0) is strictly increasing. As a result, xy is a limit of points of
B(0,r0) and thus belongs to the closure of the open ball.

Definition 1.3.10. Let E be a vector space and (pi)r>1 a separating countable family
of semi-norms on E. The metric space (E,d) with d given by (1.3.10) is a TVS.
We shall say that E is a Fréchet space when (E,d) is complete.

N.B. A sequence (z,),en of elements of a vector space F, equipped with a separating
countable family of semi-norms (px)r>1, is a Cauchy sequence means that it is a
Cauchy sequence for the metric d defined by (1.3.10). This is equivalent to the
following properties:

Vk > 1,Ve > 0,3Nx,Vn',n" > N,  pr(zp — xp0) <e. (1.3.11)
To prove this, we note first that if (z,,),en is a Cauchy sequence for d, since

Pk (xn’ - xn”)
1+ Pk (xn’ - mn”)

< de<$nl s LEn//>
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we have py(z, — 2n0) (1 — 28d(2, 200)) < 2%d(2, 2,0). For a given k > 1, and
e > 0, since (x,)nen is a Cauchy sequence, we can find N such that, for n’;n” > N,
d(Zp, vpr) < min(e27%71, 27571): we get

1
§pk(xn’ - xn”) S pk(mn/ - :L'n”)<1 - de(-rn’a xn”)) S de(-rn’a xn”) <

Y

DO | ™

which is (1.3.11). Let us assume now that (1.3.11) holds. For all £ > 1, we have

pl T — X //
In/,l’n// E 2- - - - + E 2” l
+pl Typt — xn”

1<I<k >k

so that for € > 0, choosing k. such that 27% < €/2, using M, = maxj<<k, N%l
(where the N¢; are defined in (1.3.11)), for n’,n” > M, we have

N

_ € €
:L'n/,xn// Z QZ £+2k6<§+§:€,
1<i<ke 2

proving that (z,),en is a Cauchy sequence.

1.4 A review of the basic structures for TVS

1.4.1 Hilbert spaces

This is the richest structure: a Hilbert space is a complete normed vector space
whose norm is derived from a dot-product (see the definition 1.3.7). The typical
examples are (?(N) and more generally L?(u1) (see (1.3.8)) and the dot-product is

(r9) = | tadn.

One can prove that a separable'' Hilbert space is isomorphic to ¢*(N).

1.4.2 Banach spaces

A Banach space is a complete normed vector space. The typical examples are
(?(N) and more generally LP(u) (see (1.3.8)) for 1 < p < +o0) with the norm
(fx |fPdp)*/P. Other examples include C°([0, 1];R) and more generally C°(K;RY)
where K is a compact topological space (see the next section) with the norm

|u|| = sup |u(z)|gy, (here |g~ stands for a norm on RY).
zeK

i e. containing a countable dense part.
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1.4.3 Fréchet spaces

Fréchet spaces are complete metric vector spaces whose distance is given by a count-
able separating family of semi-norms (py)r>1 (see (1.3.10) and the definition 1.3.10).
The most typical examples are C™(£2;C) where m € N, open subset of R", the
complex-valued C™ functions defined on 2. Since it is possible (exercise) to write

Q= UZGNKZ; Kl compact,

we consider the countable family of seminorms p;(u) = Sup,c, jaj<m [(O5u)(7)[. An-
other example is C*(2; C), the C*° complex-valued functions on ; the family

Pm(u) = sup  |(07u)(z)|

€K, |al<m

defines the topology. For € open subset of C, one may also consider () the
holomorphic functions on €2, with the family of semi-norms sup,c g, |u(z)|. There are
many other examples that we shall use later on, such as the Schwartz space .7 (R™) of
smooth rapidly decreasing functions on R™: w is in .(R™) means that it is a smooth
function on R™ such that, for all o, 8, pa g(u) = sup,cgn |2 (0Pu)(x)| < +oo. The
Pa.s describe the topology on .%(R™) (an example of such a function is e~ I#II* where
||z|| is the Euclidean norm on R").

1.4.4 More general structures

Some very interesting and natural topological vector spaces are not metrizable, such
as Z(Q), the smooth complex-valued compactly supported functions defined on €2,
open set of R”. They are important in the theory of distributions, but many aspects
of that theory can be acquired without a deep understanding of the topology of Z,
which is defined by an uncountable family of semi-norms.

1.5 Compactness

1.5.1 Compact topological spaces

Definition 1.5.1. A topological space (X, O) is said to be compact when it is a
Hausdorff space (see the definition 1.1.5) and satisfy the Borel-Lebesque property: if
(Q)ier is a family of open sets such that X = U;e Y, there exists a finite subset J
of I such that X = U;c;€;.

N.B. If A is a closed subset of a compact space X, then A is also compact. Using the
definition 1.1.10 of the induced topology on A, the separation property is obvious
and we may assume that A C U;c;§2;, where each €2; is an open subset of X. Then
we have

X = UiEIQi U A°

and since A€ is open, the compactness of X implies that X = U;c;Q; U A¢ with a
finite subset J of I. As a consequence A C U;c;€);, proving its compactness.
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Proposition 1.5.2. Let X be a Hausdorff topological space.

(1) Let A, B be two compact disjoint subsets of X. Then there exist U,V open
disjoint subsets of X such that AC U and B C V.

(2) Let A be a compact subset of X. Then A is a closed subset of X.

Proof. Since X is Hausdorff, for each (z,y) € A x B, there exists some open sets
Us(y) € Y4,V (z) € ¥, such that U,(y) N V,(z) = 0. By the compactness of B, we
have for all x € A,

B C Uigjen, Vy, () = W(z).
As a consequence, with T'(z) = Mi<j<n,Ux(y;), we have T'(x) N W(z) = 0, W(z)
open containing B and the open set T'(x) € ¥#,. By the compactness of A, we have

AC UlngMT(xk)‘

We take then U = Ui<p<yT'(zk), V = Mi<kg<mW (i), which are disjoint open sets
containing respectively A, B, proving (1). Let A be a compact subset of X; ifa ¢ A,
then A and {a} are disjoint compact subsets and from the now proven (1), there
exists an open set V' € ¥, such that VN A = (), i.e. V C A° proving that A€ is
open. ]

Proposition 1.5.3. Let (K;);cr be a family of compact subsets of a Hausdorff space
X such that Nyer K; = 0. Then there exists a finite subset J of I such that N K; =
0.

Proof. Note that from the property (b) of the proposition 1.5.2, the K; are closed
subsets of X. For a fixed ig € I,

Kio C Ui7gi07ie]K7;c — Kio C UiEJKiC7 J finite subset of I.
As a result, Niejugio K = 0. O

Theorem 1.5.4. Let X,Y be topological spaces, with Y a Hausdorff space, and
f: X — Y be a continuous mapping. If X is compact, then f(X) is compact.

Proof. f(X) is a Hausdorff space as a subset of a Hausdorff space. Let us assume
that f(X) C U;e/V; where V; are open subsets of Y. Then

X = UiEI fﬁl(‘/n
N——

open
since f continuous

so that for some finite J, X = U;c;f~1(V;), and thus f(X) = Ui  f(f71 (V7)) C
Uies Vi, proving the result. O

1.5.2 Compact metric spaces

Theorem 1.5.5 (Bolzano-Weierstrass). Let X be a metric space. Then the two
following properties are equivalent.

(i) X is compact.

(13) From any sequence of elements of X, on can extract a convergent subsequence.
This means that for a metric space the compactness is equivalent to the sequential
compactness (as defined by (ii)).
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Remark 1.5.6. If (z),>1 is a sequence, a subsequence (x,);>1 is defined by an
increasing mapping x : N* — N* (VI, k(1) < x(I+1)); in other words, a subsequence
1s

Tryy Trgy ooy Treyy Tpepyys - - With Ky < kg <o < Rp < Kyyp <.

Proof. Let us assume that (¢) holds and let (z)r>1 be a sequence of elements of X.
We have then that

XD F, = {Ik}kZI D Fy = {J}k}kZQ OD---DF, = {.Tk}an DI

and (F,),>1 is a decreasing sequence of non-empty compact sets (since £, is closed
in a compact set). As a result, the set N,>1F), is closed C X and thus compact;
moreover N,>1 F,, # (), otherwise

Ups1F, =X

and by the compactness of X, we would have X = U;<,<nF = FY since the F are
increasing with n, which is not possible since xy € Fy # (). Let y € N,>1 F,: for all
Ve, foralln € N, VN {zg}rsn # 0. This means that,

Ve>0, Yn>1, Fk>n, dlz,y) <e. (1.5.1)

Let us then assume that we have found xy,,...,x, with 1 <k < ks < --- < k,
such that d(zy,,y) < 1/j. Then using (1.5.1), we can find k11 > 1 + k;, such that
d(g,.,,,y) < 1/(m+1). Eventually we have constructed an extracted subsequence
(wg,)j>1 of the sequence (zy)r>1 with lim; zy, =y € X, proving (7).

Lemma 1.5.7 (Lebesgue numbers of a covering). Let X = U;c/$; be an open
covering of a metric space X satisfying (ii). Then

drg>0,Ve e X, i€, B(x,rg) C where B(z,r0) = {y € X,d(y,z) <70}
Proof of the lemma. Otherwise, we would have
Vk> 1,3z, € X,Viel, B(x,1/k)NQs 0. (1.5.2)

From the property (ii), we would be able to extract a convergent subsequence
(7g,)j>1 from the sequence (zj)p>1. Since limjzy, = yo which belongs to some
open set €, we get B(yo,r) C €, with some 7 > 0. As a result, 23, € B(yo,7/2)
for j > jo and we have

B(xy,,1/k;) C B(yo,r)

since if x € B(xkj, 1/k;), we get

<rif j > joand k; > 2/r.

N3

1
d(x’ yO) < d(x’xkj) + d(y07 Il@) < T +
J

As a consequence B(xy;,1/k;) C €, which contradicts (1.5.2). The proof of the
lemma is complete. O
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Lemma 1.5.8 (Precompactness). Let X be a metric space satisfying (ii). Then
Vr>0,3N eN" 3 zy,...,an €X, X =UpenB(zs,7).
Proof of the lemma. Otherwise, we would have
drg > 0,YN > 1,Vaq,...,2y € X, UlngNB(xk,ro) #+ X. (1.5.3)

Let us assume that we have found z1, ..., x, € X such that d(z;,x;) > ro when i # j
(note that given x,, since B(x1,70) # X, we can find x5 such that d(z1,13) > 79).
Using (1.5.3), we can find z,, 41 ¢ Ui<g<nB(zk, 70) and thus for

fork=1,...,n, d(zg, x,11) > 10.

Eventually, we can construct a sequence (z)r>1 such that d(xy, ;) > 1o if k # L.
Naturally, such a sequence cannot have a convergent subsequence, which contradicts
the assumption (iz). The proof of the lemma is complete. O

Let us now conclude with the proof of the theorem. We assume that X is a metric
space satisfying (i) and that X = U,;¢;Q; where the ; are some open subsets of X.
From the lemma 1.5.7, we get that there exists ry > 0 such that for all z € X, there
exists i, € I such that B(z,79) C Q. From the lemma 1.5.8, we obtain that for
that 7o > 0, there exists a finite sequence z1, ..., xy, with

X = Ur<k<n, Bk, o) C Ur<k<n, 2

(2]
which is a finite covering sought after. The proof of the theorem is complete. m

Lemma 1.5.9. The compact subsets of R" (equipped with its standard topology) are
the closed and bounded subsets.

Proof. Let K be a compact subset of R”. By the proposition 1.5.2, K must be closed;
moreover K is bounded, since K C Ug>1B(0, k) and by compactness K C B(0, ko)
for some kg > 1. Conversely, let K be a closed bounded subset of R": then K is a
closed subset of [—M, M|" for some positive M. It suffices to show that [—M, M]"
is a compact subset of R” since we know from the N.B. after the definition 1.5.1 that
a closed subset of a compact set is compact. To prove that [—M, M] is a compact
subset of R is easy: we consider a sequence (zy)r>1 in [—M, M] and we define

lim inf 2, = sup(inf x,,) < limsup x; = inf(sup z,).

We note that k +— b, = sup,,>, @, (resp. k — aj = inf,>j x,) is a non-increasing'”
(resp. non-decreasing) sequence in [—M, M], so that they are both converging and

=i = b = lim by = inf by.
a 1l£nak sgpak, 1l£n k lIé k

12 Tn mathematical english, a sequence (ay)ren is said to be non-decreasing whenever for all
k, a < ar4+1 and a sequence (bg)gen is said to be non-increasing whenever for all k, by > bj1.
Saying that the sequence (aj)ren is increasing means ay, < a4 for all k; saying that the sequence
(br)ren is decreasing means by > bryq for all k.
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Moreover since ar < b, and both sequence are converging we get the above inequality.
Moreover, for all e > 0, N > 1, there exists £ > N such that

a—€e<ap<a, dn>k a—e<ap<x,<ap+e<a+e

so that a (as well as b) is the limit of an extracted subsequence of the sequence
(zx)k>1. One can also prove that a (resp. b) is the smallest (resp. largest) limit
point (i.e. limit of a subsequence) of the sequence (zg)r>1. So the property (i) is
satisfied for the metric space [— M, M| as well as for [— M, M]™ by iterated extraction.
The proof of the lemma is complete. O

N.B. It might be the proper time for stating a couple of caveat. We have seen that,
for a metric space, the sequential compactness is equivalent to the compactness.
However, there exist some topological spaces which are sequentially compact and
not compact: this is the case for instance of the ordered [0, w;) where w; is the first
uncountable ordinal. Conversely, there are topological spaces which are compact and
not sequentially compact: this is the case of [0,1]%!, the mappings from [0, 1] to
[0, 1], equipped with the product topology. There is a general theorem of topology,
called the Tychonoff theorem, asserting that a product X = Il;c;X; of compact
spaces is compact, where the topology on X is the natural product-topology, defined
as the coarsest topology for which the projections m; : X — X, are continuous.
Although that Tychonoff theorem is easy for I countable, it is one of the great success
of the theory of filters '* to provide a very simple proof of that result, whatever is the
cardinality of I. We shall have little use in these lectures of uncountable products of
topological spaces, but the reader should keep in mind that the metrizability theory
and countable products are far from exhausting the variety of examples and notions
of topological spaces.

Theorem 1.5.10 (Heine theorem). Let X,Y be metric spaces and f : X — Y be
a continuous mapping. If X is compact, f is uniformly continuous, i.e.

Ve > 0,30 > 0,V2', 2" € X, dx(2',2") < a = dy (f(2'), f(z")) <.
Proof. Reductio ad absurdum: otherwise
Jeo > 0,Vk > 1,3y, 2) € X, dx(z), 2)) < 1/k,dy (f(2},), f(2})) > €o.

From the sequence (z},)r>1, we may extract a convergent subsequence (%(z)) 1>1, and
from the sequence (zy ;) )i>1, we may extract a convergent subsequence (., (1, () )Jm>1-
With x = k; o ks, the sequences (/. (m)>m217 (x (m))mzl are both convergent (the first

13 A thorough exposition of the theory of filters can be found in the first chapter of the Bourbaki
volume Topologie générale [1] (see also the G. Choquet book, Topology [1]). As a historical note, the
theory of filters and ultrafilters was invented by Henri Cartan in 1937 and developed systematically
by the Bourbaki group later on. It is interesting to notice that, although that theory was criticized
for being too abstract, the essentially equivalent notion of nets is used in the english literature (see
e.g. the chapter 4 of the first volume Functional Analysis of [11]). We cannot resist quoting the
magnificent book [11], in which the authors write on page 118 (notes of chapter IV) “We find the
filter theory of convergence very unintuitive and prefer the use of nets in all cases” before adding
a supplement on page 351 about ...the theory of filters, a discreet hommage to its efficiency.
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one as a subsequence of a convergent sequence) with the same limit z, since with

r 1 ’ " o__1: "
Z' = lim,, Tyimy 2 = lim,, Ty ()

dx(2,2") < fiX(Z/7 ff@(m))jﬂLle (T () xg(m))/_{—le (G Z”)j‘

NV TV TV
o <1/K(m) g

However, we have

0 < €0 < dy (f (@), f(@npmy)) < dy (F(@hpmy), F(2)) + dy (f (@), £(2))

although the continuity of f implies

and thus 0 < ¢y < 0 which is impossible. O

1.5.3 Local compactness

Definition 1.5.11. A topological space is said to be locally compact if it is a Haus-
dorff space (cf. the definition 1.1.5) such that each point has a compact neighborhood.

Proposition 1.5.12. In a locally compact topological space X, every point has a
basis of compact neighborhoods, i.e. Yx € X,YU € ¥, ILcompact, L € V., L C U.
More generally, let K be a compact subset of a locally compact topological space and
U an open set such that K C U. Then there exists an open set V with compact
closure such that

KcVvcVcU.

Proof. Since every point has a compact neighborhood, we can cover K with finitely
many (W;)1<;<n such that W; is open with compact closure; the set W = Uy<j<yW;
is also open with compact closure, since a finite union of open sets is open and the
closure of a finite union is the union of the closures. If U = X, we can take V = W.
Otherwise, for each x € U¢, the proposition 1.5.2 shows that there exists V., V. open
disjoint such that K C Vj, {x} C V/; as a result, (U°NW N V,),epe is a family of
compact sets with empty intersection: we have V, NV = () and thus = ¢ V,, so that

Y€ Muere(USNWNV,) = ye U’y Wandforallz e U,y eV,
=y €V, which is impossible.

From the proposition 1.5.3, we can find zq,...,xxy € U such that
@ = ﬂlSjSN(UC ﬂWﬂfj) — mlgjgN(Wij) cU

We consider now the open set V- =W NNi<j<nV;,. We have by construction K C
Ve, NU and thus K C V' C Vcwn ﬂlSjSNWj which is compact C U. O
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The typical examples of locally compact spaces are the open subsets of R™.
On the other hand, the Hilbert space ¢*(N) is not locally compact since the se-
quence (uy)p>0 With w, = (dkn)k>0 € (*(N) is made with unit vectors such that
(Un, Um)2(v) = Opmi as a consequence, if (u,),>0 had a convergent subsequence
(vj = Un,);j>0, we would have

o = 312 = il + losll® — 20 0) =2 i i £,

so that the Cauchy criterion could not be satisfied. More generally, we shall see
below that any locally compact TVS is finite dimensional.

Theorem 1.5.13. Let E be a locally compact topological vector space. Then E is
finite-dimensional.

Remark 1.5.14. Note that the translation and the multiplication by a non-zero
scalar are homeomorphisms of F, since they are continuous (because E is a TVS),
bijective with a continuous inverse (the inverse mapping of x — x +xg is y — y — xo
and the inverse mapping of = — Az with k 3 \g # 0 is y — \;'y).

Proof. Let K be a compact neighborhood of 0. We have thus
1o 1o
K CUgek (x + §K),and T+ §K is open from the previous remark,

so that by the compactness of K, we can find z1,...,zy € K such that

1 o
K C UlngN(.Tj + §K)

We define then F' = Vect(z1,...,zy) the vector space generated by the (z;)1<j<n-
We have
1

1 ¢ 1 10 19 °
KCF+§K:§KCF+ZK:KCF+F+ZKCF+ZK,

and assuming K C F' + 2‘"[3, we obtain
1 o 1 1 o o
KcF+§KcF+§KcF+§(F+2‘”K) CF+2"'K,

and finally
K C ngl(F + 2—nK> (154)

Lemma 1.5.15. Let E be a topological vector space. Then there exists 9B C ¥
such that for all V' € ¥, there exists B € 9 such that B is open, B C V and for
all scalar X such that |\ < 1, A\B C B( B is said to be balanced). Moreover B is
absorbing, i.e. = UyceAB. In other words %, has a basis of balanced and absorbing
neighborhoods of 0.

Proof of the lemma. Let V € ¥ be given. From the continuity of the multiplication
by a scalar, there exists U open € ¥#;,r > 0 such that |\| <r = AU C V. We
define

B = Upcpj<r AU, (for A # 0, AU is homeomorphic to U, thus is open).
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B is open, contains 0 (since 0 € U thus 0 € A\U), B C V. Moreover B is balanced
since for |u| <1,
uB = U0<\>\|<rﬂ)\U - U0<|)\|<r)\U = B.

On the other hand, the continuity of the multiplication implies that, for xy € FE,
there exists ro > 0 such that A\xy € B for |A\| < rg, so that xy € tB for [t| > 1/ry; as
a consequence, we have £ = U,,>;2" B, completing the proof of the lemma. O

For V € 7, we can find B € ¥, open, B C V, € %, balanced with £/ = U,;>12"B.
By the compactness of K, we get that K C Uj<j<y2’B and since for 1 < j < N,

2ip=2N 2-Np < 2NpB,

CcB
since B balanced

we get K C 2V B, so that 27V K C B C V and using (1.5.4), we get

KCF+2_NI€CF—I—V, for any V € 4.

As a result', we get K C F.

Lemma 1.5.16. Let F' be a finite dimensional subspace in a Hausdorff topological
vector space E. Then F' is closed.

That lemma implies our theorem: since K is a neighborhood of 0, the continuity
of the multiplication implies that, for ¢y € F, there exists rq > 0 such that Axy € K
for |A| < 7o, so that xy € tK for |t| > 1/r¢; as a consequence, we have

MK CAF=)FCF, sothat E=U,52"K CF,

completing the proof of the theorem. O

Let us give the proof of the lemma. We may assume that a basis of F is
(é1,...,en) and consider the injective linear mapping k™ 3 o +— La = Z1§jgm aje; €
E. The continuity of the addition in E implies that, for U € 7, there exists V € ¥
such that

V4---+V CU

m terms

The continuity of the multiplication implies that, for V' € %, 3r > 0, such that if
Al <7, then Ae; € V for 1 < j < m. Taking now max;<j<, |a;| < r implies

E ;€4 S (]7
1<j<m

proving the continuity of the linear mapping L. Since the unit sphere S of k™ is
compact (as closed and bounded, see the lemma 1.5.9), L(S) is compact (cf. the

“4In a TVS E, for A C E, we have A = Nyey,(A+ V). In fact * € A is equivalent to VV €
Yy, ANV #£ (), which is equivalent to YV € %, AN (V + z) # 0, which is equivalent to VYV € %
Jda € A,Jv € V,x+v = a, which is equivalent to € Ny ey, (A—V) = Ny ey, (A+V) since v — —v
is an homeomorphism: with W € ¥ given, we may find V € % such that —V C W and thus
A—V C A+ W so that Nyey, (A —V) C Nwey, (A+ W) and the reverse equality as well.
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theorem 1.5.4) and 0 ¢ L(S). As a consequence, there exists a balanced open
neighborhood V' € ¥ such that V.N L(S) = () and

L (VNF)NS =0 otherwise ® # L(L~"(VNF)NS) cVNFNL(S) =0.

The set A = L™Y(VNF) contains 0 and such that for o € A, the segment [0, a] C A:
in fact, if La € V N F, we have for 6 € [0, 1],

L(fa) =60L(a) € VN F since V is balanced and F' is a vector space.

As a result, A C B, where By is the open unit ball of k”: otherwise, it would
contain a point oy with |||l > 1 and the segment [0, ap], which intersects the unit
sphere S, contradicting the fact that A and S are disjoint. Let us consider now
xo € F: there exists ¢, > 0 such that o € t,V (continuity of multiplication, and
toV is open) and

VWE%, (W+l’0)ﬂ(t0V)ﬂF7’é®:ZE0EtoVﬂF:to(VﬂF),
but since!”

to(V N F) =toL(A) C toL(By) = L(teB:) C L(toBy),
——

compact

we have ¢ € to(V N F) C L(tyB;) C F and x5 € F, completing the proof of the
lemma.

N.B. The consequences of the theorem 1.5.13 are important in functional analysis.
None of the natural spaces of functions that we shall consider, such as the Banach
space CY([0, 1];R), are finite-dimensional'®. As a consequence, these spaces are not
locally compact, which means in particular that, for an infinite-dimensional Banach
space, the closed unit ball is not compact. This is a drastic change from the finite-
dimensional geometry, and the reader has to keep in mind that the ordinary intuition
that we have of the geometry in R” is radically modified with infinite-dimensional
spaces (by the way, infinite-dimensional means not finite-dimensional).

5Note that since A = L™Y(V N F), we have L(A) C VN F; also if z € VN F, we have z = L(«),
thus with o € A: this implies € L(A) and finally L(A) =V N F.

16The space C°([0, 1]; R) is not finite-dimensional, e.g. because it contains the functions (e, )nen
defined by e, (x) = 2™: these functions are independent since a polynomial cannot vanish identically
on [0,1] unless it is the zero polynomial.



Chapter 2

Basic tools of Functional Analysis

2.1 The Baire theorem and its consequences

René Baire (1874 — 1932) is a french mathematician who made a lasting landmark
contribution to functional analysis, known today as the Baire Category Theorem.
We study in this section that theorem and the manifold consequences in the realm
of functional analysis.

2.1.1 The Baire category theorem

Theorem 2.1.1 (Baire theorem). Let (X, d) be a complete metric space and (F,,)n>1
be a sequence of closed sets with empty interiors. Then the interior of U,>1F, is
also empty.

N.B. The statement of that theorem is equivalent to say that, in a complete metric
space, given a sequence (U,),>; of open dense sets the intersection N,>1U, is also
dense. In fact, if (U,) is a sequence of open dense sets, the sets F,, = US are closed
and int F,, = ) <= 0 = int (U) = (U,)" <= U, = X, so that
(EE—
int (UnZan> = Q) <~ @ = int (Un21U£> = int ((ﬂnlen)c) == ((ngIUn))

= (Np>1U,) = X.

Proof of the theorem. Let (Uy,),>1 be a sequence of dense open sets. Let zyg € X, ry >
0 (we may assume that X is not empty, otherwise the theorem is trivial). Using the
lemma 1.1.7 and the density of Uy, we obtain B(xg,19) N Uy # 0 so that

3ry €]0,70/2[, Blxo,70) VUL D B(x1,2r1) D By, ) ={y € X,d(y,z;) <r}.
Let us assume that we have constructed xg, x1,...,x, with n > 1 such that
B(xg, i) N Uy D B(mk+1,rk+1), 0<rmppr <mi/2, 0<k<n-1
Using the density of U, .1, we obtain B(z,,r,) N U,y # 0 and

rpgr €]0,7,/2[, B(xn,rn) N Uny1 D B(@pi1,2rm41) O B(@pt1, rag)-

31
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Since 0 < 7, < 27" (induction), we have lim, 7, = 0 and (z,),>0 is a Cauchy
sequence since for k,l > n,

B(xg, m6) U B(x, 1) C B(xg,mn) = d(2K, 71) < 27.

Since the metric space X is assumed to be complete, the sequence (@n)n>0 converges;
let = lim, z,,. We have for all n > 0, B(Zny1,7n11) C B(2n,7,) so that, for all
k> 1, B(xpik, "nik) C B(xy,,r,) and thus

supd(zpip, Tn) <1 = d(z,2,) <1, = T € ﬂnzlé(xn, ) C Np>1U,,
k>0

and d(z, xg) < ro. As aresult, for all zy € X, all g > 0, the set B(xg,ro)ﬁﬂnlen -+
(). This implies that U = N,>1U, is dense since, for g € X, for any neighborhood
V' of xg, there exists g > 0 such that V' D B(xg, 2r¢) D B(xg,10), and thus

VﬂUDB(:co,ro)ﬂU#@ﬁxOEU. ]

Theorem 2.1.2. Let X be a locally compact topological space (see the definition
1.5.11) and (F,)n>1 be a sequence of closed sets with empty interiors. Then the
interior of U,>1E, is also empty.

Proof. The proof is essentially the same as for the previous theorem. Let (U, )n>1
be a sequence of dense open sets. Let By a non-empty open subset of X. Since U,
is dense, the open set By N U; is non-empty and thus is a neighborhood of a point.
From the proposition 1.5.12, ByNU; contains a compact set with non-empty interior
and thus

ByNU, D By, DB compact, By open # (.

We get that B; NUs, is a non-empty open set which contains a compact Bs, By open
# (). Following the same procedure as in the previous proof, we may consider the
compact set K defined by K = N,>1B,. The set K is non-empty, otherwise the
proposition 1.5.3 would imply that § = Ni<,< ~B, = By for some N, which is not
possible since at each step, the set By is compact with non-empty interior. As a
result, we have

@%KCﬂnlen:U, KCBQ,

and thus, for any open subset By of X, the set U N By # (), which means that
U=X. O

Definition 2.1.3. Let X be a topological space and A C X.

- The subset A is said to be rare or nowhere dense when A = ).

- The subset A is of first category when it is a countable union of rare subsets. Such
a subset is also said to be meager.

- The subset A of X is of second category when it is not of first category.

A topological space X is a Baire space if for any sequence (F},),en of closed sets with
empty interiors, the union U, cyF), is also with empty interior. As shown above, X
is a Baire space if and only if, for any sequence (Up,)nen of dense open sets, the
intersection N, enU, is also dense.
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Remark 2.1.4. We have proven that a metric complete space, as well as a locally
compact space are both Baire spaces.

Note that Q is a meager subset of R, thus of first category in R, i.e. “small” in
the sense of category but Q is dense in R.

The Cantor set is a compact space, and so is of second category in itself, but it
is of first category in the interval [0, 1] with the usual topology: in fact defining for
a compact interval J = [a,b] the intervals Jo = [a,a + 5%] and J, = [b— %5%,0], we
define

Ko=1[0,1 =1,

Ki=[0,1/3]U2/3,1] =L, UL, |K|=237",
Koy = Iopo U Ing U Igp U Iy, | K| = 22372,
K, = Uae{O,Q}"Iaa |Kn| = 2n3—n7

and the Cantor set is C = N,>1 K, so that int C = @ since |C| < inf,, 2”37 = 0. As
a consequence C is rare in [0, 1].
Here is an example of a set of second category in R, i.e. “large” in the sense of

category, but with Lebesgue measure 0 (small in the sense of the Lebesgue measure).
We define for Q = {z,, }n>1,

A=Np21Uny U = Upsi]z, — 27" 2, + 27777
The Lebesgue measure |A| is such that

< i l-n—m _ ; -m+1 _
|A] < rInIg;Q 7}1152 0.

If A were meager,we would have a sequence (A;) of subsets of R with int (A) = 0,
so that

R=AUA = UpA, U A = U AL U A° = U A, UU,UE,.

We note that int(US) = () since U,, D Q = R. We would have written R as a
countable union of closed sets with empty interiors: this is not possible from the
Baire theorem.

To convince the reader that the notions of size given respectively by the Lebesgue
measure and by the category are unrelated, we can also give an example of a set of
first category, “small” in the sense of category, but with full Lebesgue measure in
[0,1]. Let us assume that for any integer k£ > 1, we can construct a compact subset
% of [0, 1] such that

nt(G) =0, |4 > %
We define then A = Uy>1%; and we have |A| > sup,s, |€k| > suppsy (1 — 1) = 1.
Moreover, A is obviously of first category as a countable union of compact sets with
empty interior. The remaining question: how construct such a %7 We can modify
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the construction of the Cantor set % above as follows. Let & > 1 be given and
€0 = 1/k. We define

KOZ[O’l]:[’
Ki=I,Ul, Io=[0-—=-] ILh=[-+—1]. |K==
1 0 2, 40 [72 4]7 2 [2+4, ], | 1| 27
€ €
Ky = Ioo U Tog U Iog U Iy, |KS| = 222_2 + 50’
c n €0 €0 €0
Ky = Uaefogynla, (Kl = 2" g - 2l—22l ot

so that € = N,>1K, is compact, and by the Beppo Levi theorem, we have |6)| =
lim, |K,| = limn(l —eo(1— 2*”)) = 1—¢€y = 1—1/k. Moreover, we have int(%}) = )
since no non-empty open interval can be included in %}: if

Vn>1, Jxg— 10,20+ 10[C K = Uae{o,2)7 Lo
then, since the I, are disjoint intervals,
Vn > 1,3a, € {0,2}",  |xg — ro,x0 + 70[C La,-

However the common length [, of I, is such that 2"/, < 1 so that lim,, [,, = 0.

2.1.2 The Banach-Steinhaus theorem

Let us begin with some elementary facts about linear mappings between Banach
spaces.

Proposition 2.1.5. Let E, F be normed vector spaces and L(E, F) be the vector
space of continuous linear mappings from E into F. A linear mapping L from E to
F belongs to L(E, F) if and only if

AC > 0,Vu € E, ||[Lul|r < C||lu||g. (2.1.1)
On the vector space L(E, F), we define the norm

IL][ = sup [[Lufp (2.1.2)

u€l, ||ullg=1

If F is a Banach space, the vector space L(E, F) equipped with that norm is a Banach
space.

Proof. L(E,F) is obviously a vector space. Moreover, if L € L(E,F), the set
L7Y(Br(0F, 1)) is open, contains Og and thus contains Bg(0g, ) with some ro > 0.
As a consequence, for u € E,u # 0, we have

HL('/’O )HF <1, ie ||Lullr <rg'lullg (also true for u = 0).

u
[ull
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Conversely, if L is a linear mapping between E and F' satisfying (2.1.1), then, for
p >0, we have L™ (Br(0, p)) D Br(0,pC~?), since L(0p) = 0 and

0 < lullp < pC™" = ||Lullr < Cllullz < p.

A a result, L is continuous at 0 and since it is a linear mapping, it is continuous
everywhere: to check the continuity at ug, we note that u — Lu is the composition
u+— u — ug — L(u — ug) — Lu, where the first and last mappings are translations,
which are homeomorphisms. The formula (2.1.2) is well-defined on L(FE, F), is
obviously homogeneous and separated. Let Ly, Ly, € L(E, F): for u € E, we have

1Ly + Lo)ullp < [ Lyulle + | Laulle < ([ o)l + ([ L2])[[ull 2

and the triangle inequality follows. Assuming that F is a Banach space, we consider
a Cauchy sequence (Lg)r>1 in L(E, F). For each u € E, the sequence (Liu)i>1 is a
Cauchy sequence in the Banach space F' since ||Lyu — Lyul||p < ||Lx — Li||||u] g, so
that we can define

Lu= lign Liu.

We note also that the numerical sequence (||Lg||)x>1 is a Cauchy sequence since,
by the triangle inequality'we get ||| Lx|| — || Li|l| < ||Lx — Li||, and thus (|| Lg||)k>1 is
bounded. The mapping L is obviously linear and satisfies, for u € F,

[ Lullp < [ Lu = Lyullp + [ Lgull p < [[Lu = Liul[r + HUHEiUP [
>1

and thus || Lu||r < ||ul| g supys, || Lk, so that L € L(E, F'). We check now, for u € £

I(Ly—=L)ulle = lim [[(Ly—L)ullp < [[ullplimsup | Ly—Li]| = e(k)[|ul| g, lim (k) = 0.
l

As a consequence, ||L — Ly|| = supy, -1 [[(Lx — L)ullz < €(k) and the sequence
(Lg)k>1 converges to L in the normed space L(FE, F). O

Theorem 2.1.6 (Banach-Steinhaus Theorem, Principle of Uniform Boundedness).

Let E be a Banach space, F' be a normed vector space and (L;)je; be a family of
L(E, F) which is “weakly bounded”, i.e. satisfies

Vu e E, sup|Ljul|p < +oo. (2.1.3)
jeJ
Then the family (L;);eg is “strongly bounded”, i.e. satisfies
sup || Ll ze,py < +o0. (2.1.4)
jeJ

Proof. We consider for n € N*, the set F,, = {u € E,sup,c;||Ljullr < n}. From
the assumption of the theorem, we have £ = U,cnF;,. Moreover each F), is closed:
let (ug)r>1 be a sequence of elements of F), converging with limit w. For all j € J,

Ikl < WLk = Loll + (Lol = 1Ll = L)l < 1Lk = Lall = (1Ll = [ Lall] < 12k — L]l
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L; is continuous and thus limy Lju;, = Lju. By the continuity of the norm”, we
get limy ||Ljug||r = || Ljullr, and since ||Ljug|| < n, we get ||Ljul] < n for all
j € J and u € F,. Note also that F;, is symmetric and convex: for ug,u; € F,
ug = (1 — O)ug + Quy, 0 € [0, 1], we have uy € F,, since

|Lyus]l < (1= O)l|Ljuo|l + 6 Lyws ]| < (1 — 6)n + b0 = n.

Applying the Baire theorem to the Banach space E, we see that there must exist
some ny € N* such that int(F),,) # 0. In other words, F,,, should contain an interior
point g, and since F,,, is symmetric, —uq is also an interior point, as well as the
whole segment [—ug, ug] by convexity. As a consequence, 0 is an interior point of
F,,. This implies that there exists py > 0 such that B(0, po) C F,,, i.e.

u

Jull < g = sup Lyl <o, so that ¥j € Y # 0. |[Lyporirl < o
je

implying that Vj € J, || Ljul| < 22|ull and thus Vj € J,|[L;]| < 5¢ which is (2.1.4).
The proof of the theorem is complete. O

We can prove the same theorem in a much more general context than the frame-
work of Banach spaces. We shall limit ourselves to the case of Fréchet spaces, which
are complete metric spaces whose topology is defined by a countable separating fam-
ily of semi-norms (pg)g>1 (see the definition 1.3.10). There is no loss of generality
to assume that the sequence py is non-decreasing , i.e. for all u € E k> 1, pp(u) <
pr+1(u), since we may replace the semi-norm py by the semi-norm >, _;; p;-

Let us recall that for E, F' topological vector space, L(E, F') is the vector space of
continuous linear mappings from E into F'; when E = F'| we shall write £L(E) instead
of L(E, E). When the topology on E and F'is given by a countable separating family
of (non-decreasing) semi-norms (pi)r>1 on E and (¢;);>1 on F, the continuity of a
linear mapping L from F to F'is equivalent to

Vi>1,3k>1,3C > 0,Vu € B q(Lu) < Cpg(u). (2.1.5)

In fact, since L is linear, its continuity is equivalent to the continuity at 0. If L is
continuous at 0, [ > 1, the set L™*({v € F,q(v) < 1}) is open, contains 0z and
thus contains {u € F,pg(u) < ro} with some k& > 1,79 > 0. As a consequence, for
u € F, e >0, we have

qQ (L(ro )) <1, ie Ve>0,YVu€FE, q(Lu) < ro_l(pk(u) + (—:),

pr(u) + €

which gives (2.1.5), /(Lu) < ry'pr(u). Conversely, if L is a linear mapping between
E and F satisfying (2.1.5), then, for [ > 1, p > 0, we have

L' ({v e F,q() < p}) D {ue E, py(u) < pC~'}

since py(u) < pC~' = q(Lu) < Cpi(u) < p. As a result, L is continuous at 0.

2Let E be a normed space. The mapping E 3 z +— ||z|| € Ry is Lipschitz continuous: we have
already seen in the previous footnote that the triangle inequality implies |||z1]| — ||z2]|| < ||z1 —z2]|.
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A subset B of a topological vector space E is said to be bounded if
YU € %,3s > 0,Vt > s, B CtU. (2.1.6)

When the topology of E is given by a countable separating family of semi-norms
(pr)k>1, it follows from the lemma 1.3.9 that a subset B is bounded when

Vk>1, suppi(u) < +oo. (2.1.7)
ueB

A family F C L(E, F) is equicontinuous when
Vi>1,3k>1,3C >0,VL € F,Vu e E, q(Lu) < Cpg(u). (2.1.8)

Theorem 2.1.7 (Principle of Uniform Boundedness). Let E, F' be topological vector
spaces whose topology is given by a countable separating (non-decreasing) family

of semi-norms, and assume that E is a Fréchet space. Let (L;)jes be a family of
L(E, F) which is “weakly bounded”, i.e. satisfies

Vu € E, {Lju};es is bounded in F'. (2.1.9)
Then the family {L;};cs is “strongly bounded”, i.e. satisfies
VB bounded of E, U,c;L;(B) is bounded in F (2.1.10)

and the family (L;)jer is equicontinuous.

Proof. Let By be a bounded subset of E, l; > 1. Since, for all u € E, {L;ju};c; is
bounded in F', we have

Vu € E, sup q,(Lju) < +oo.
jeT
As a consequence, we have E = Uy, F, = {u € E,sup;c;q,(Lju) < n}.
Moreover each F), is closed: let (ux)r>1 be a sequence of elements of F), converging
with limit w. For all j € J, L; is continuous and thus limy L;u, = Lj;u. By the
continuity of the semi-norm’ we get limy ¢, (Ljuy) = q,(L;u), and since g, (Ljug) <
n, we get g, (Lju) < nforall j € J and u € F),. Note also that F), is symmetric and
convex: for ug,uy € F,, ug = (1 — Q)ug + Ouq, 6 € [0, 1], we have uy € F,, since

q,(Ljug) < (1 —0)qi,(Ljuo) + 0qy(Ljug) < (1 —0)n + 6n =n.

Applying the Baire theorem to the complete metric space F, we see that there must
exist some ng € N* such that int(F,,) # (. In other words, F,,, should contain an
interior point ug, and since F},, is symmetric, —uy is also an interior point, as well as
the whole segment [—ug, ug] by convexity. As a consequence, 0 is an interior point
of F,,. This implies that there exists pg > 0, ky > 1 such that

Pro (1) < po = sup o (Lju) < ny,
je

3The triangle inequality for a semi-norm ¢ implies |g(v1) — q(v2)| < q(v1 — v2).
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so that
vj € JVue B Ye>0, qy(Lin

)> < no,

Pk (u> te
implying that

Vje JVYue E Ve>0, gq,(Lju)< %(pko(u) +€)

and thus Vj € JVu € E, q,(Lju) < nopk,(u)/po, which is the equicontinuity
(2.1.8). Since the bounded set By satisfies sup, ¢, pr, (u) = My < 400, we have

By C {u € E,sug) Qo (Lju) < Mono/po}
je

which implies that
UjesLj(Bo) C {v,q,(v) < My}, with My = Mong/po,

so that sup,ey, 1, (5, @ (V) < +00 and Uje;L;(By) is indeed bounded. The proof
of the theorem is complete. O

Corollary 2.1.8. Let E be a Fréchet space, F' be a topological vector space whose
topology is defined by a countable separating family of semi-norms and (Ly)nen be
a sequence in L(E, F) such that, for all u € E, the sequence (Lu)nen converges in
F. Then defining L on E by Lu = lim,, L,u, we obtain that L € L(E, F).

Proof. The mapping L is obviously linear, and the previous theorem implies that
the sequence (L, )nen is equicontinuous, i.e.

Vi>1,3k>1,3C > 0,Yn e N\Vu € E, q(Lyu) < Cpp(u).
The continuity of ¢, and the convergence of (L, u),en imply that
VI>1,3k>1,3C >0,Vu e E, q(Lu) < Cpi(u),
which is the continuity of L. m

N.B. The previous theorem can be proven for more general spaces than the Fréchet
spaces, and in particular the local convexity does not play any role in the proof;
nevertheless it is important that the topological vector space F is a Baire space and
F'is a Hausdorff TVS. On the other hand, the previous corollary will be very useful
for distribution theory; at this moment one may simply point out that the type
of convergence of the L, is indeed very weak (“simple” convergence), and the fact
that the continuity is not lost in the limiting process is an important consequence of
the Baire theorem, proving that a simple limit of continuous linear mappings (say
between Fréchet spaces) is still continuous.

Remark 2.1.9. Another point is concerned with the notion of boundedness in a
topological vector space, as given by the definition (2.1.6). That notion is pretty
obvious in a Banach space but more subtle, even in a Fréchet space, where it is given
by (2.1.7). In particular, in a locally convex Hausdorff space E (such as a Fréchet
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space), no neighborhood of 0 is bounded unless E' is normable. It is not difficult to
see that, in a general TVS, compact subsets are bounded.

A possible collision — and confusion — of terminology exists around the word
boundedness: that word can be used with a different meaning in a metric space
(not necessarily a vector space). In a metric space (X, d) a subset A is said to be
d-bounded if its diameter is finite, i.e. if sup, 4 d(z,y) < 4+o00. Now if (X,d) is a
metric topological vector space, the notions of boundedness and d-boundedness may
differ. Consider for instance the real line R with the metric (which is translation
invariant) d(z,y) = %: R itself is d-bounded and not bounded.

Anyhow, when we deal with a topological vector space E, we shall stick with the
TVS definition of boundedness, as given by (2.1.6), even if E is a metric TVS.

2.1.3 The open mapping theorem

Theorem 2.1.10. Let E,F be Banach spaces and let A be a bijective mapping
belonging to L(E, F). Then A is an isomorphism, i.e.

6,7 >0, Yue E, [lullg <||Aullr < v||ulE- (2.1.11)

Proof. First of all, we note that since A € L(E, F'), the second inequality in (2.1.11)
is satisfied. Moreover, as A is bijective, the inverse mapping A~! must be shown to
be continuous, i.e. ||[A™!v||z < C||v||r which is equivalent” to the first inequality in
(2.1.11). To prove this, we first define for N € N* the set

Oy = A(Bg(0, N)).

We note that each @y is closed (and also symmetric and convex) and that F =
Unen+ Py since A is onto. Using the Baire theorem, we find Ny > 1 such that @y,
contains an interior point, and since ®y, is symmetric and convex, 0 is indeed an
interior point so that

3Ry >0, Br(0,Ro) C A(Bg(0,Ny)).

Defining Ay = NyoRy'A, which is a bijective mapping of £L(E, F), we have also
Bp(0,1) C Ag(Bg(0,1)). Let vy be in the closed unit ball of F: from the previous
inclusion, we can find ug € Bg(0,1) such that

||’U0 - AOUOHF < 1/2, so that E'Ul S BE(O, 1) with ||2(’U0 - A()UO) - A0U1|| < 1/2

which means that we have found wug,u; € Bg(0,1) with |jvg — Agug — A2 uy || <
272 Inductively, if we assume that we can find ug,u1, ..., u, € Bg(0,1) such that

4A mapping in L£(E, F) may satisfy (2.1.11) without being an isomorphism: the shift operator
S, defined on ¢?(N) by

S((un)n>0) = (Vn)n>0, 0 =0, v, =1up_1, forn>1,

is bounded from ¢2(N) into itself and even isometric since ||Su|| = ||u||, but is not onto since the
sequence (0o, )n>0 1S DOt in its range.
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100 = > 0<hen A02 Fug]] < 27771 it is also possible to find u, 1 € Bp(0, 1) such that

127 (v — D Ag27Fug) — || <270

0<k<n
Eventually, we can construct a sequence (u,),>o in Bg(0,1) so that

v — Z A2 || < 2777 (2.1.12)

0<k<n

The sequence (U, = Y p<p 27" ur)nz0 is a Cauchy sequence since [|27Fuy|| < 27
and thus converge. As a consequence, with U = lim,, U,, v,, = AgU,, the continuity
of Ag and (2.1.12) give

vo = limw,, = lim AyU,, = AU = vy = AU, |U||g < 2
which proves that Br(0,1) C Ag(Bg(0,2)). Let us now consider u # 0 in E; then
Apu # 0 (Ag is bijective and thus one-to-one) and, from the previous inclusion, there
exists u’ € F such that

—_— Agu U
Brp(0,1) 5 = Ag/, v £2= 0 = = [Jul| <2[|Aoul,
[ Aoul| [ Aoull
implying (2.1.11) with g = QRTOO (note that the inequality (2.1.11) is trivially satisfied
for u = 0). The proof of the theorem is complete. n

Remark 2.1.11. Let E be a vector space, N be a subspace and p: E — E/N the
canonical mapping p(u) = u+ N. The space E//N is a vector space with the addition
p(ur) + p(ug) = p(u; + ug) and the multiplication by a scalar Ap(u) = p(Au), which
are well-defined operations. If F is a Banach space and N is a closed subspace, then
the quotient space E//N is a Banach space with norm

lp()l[z/w = mf flu + w]|s.

The homogeneity and triangle inequality are easy to verify and the separation follows
from the fact that if limy(u + wg) = 0, w € N then limy wy = —u, so that —u and
thus u belong to the closure of N, which is IV, ensuring p(u) = Og/xy = N. Moreover,
E/N is a Banach space: if (ug)g>1 is a sequence of E such that

> p(w)ll g < 400,

k>1

we can find a sequence (wy)g>1 in N with ||u, + wi |z < [[p(ug)||z/n + 27F, so that
> k1 (ur+wy) is a converging series in the Banach space E. As a result, there exists
v € I so that

0= lim | > (ug+wy) —vfp = 0= limn | > plur) = p() s/,

1<k<n 1<k<n
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proving the completeness. Moreover, the mapping p is open, i.e. sends open sets onto
open sets: since it is linear, it is enough to verify that p(Bg(0,1)) is a neighborhood
of 0. But we have

Bg/n(0,1) = p(Br(0,1))

since if ||p(u)||g/n < 1, there exists w € N such that |ju + w|r < 1 and p(u) =
p(u+w) € p(Bg(0,1)). Conversely, if ||ul|g < 1, then |[p(u)||g/r < |lullp < 1.

Corollary 2.1.12.

(1) Let E, F be Banach spaces and A € L(E, F). If A is onto, then A is open.

(2) Let E be a vector space and let Ny, Ny be two norms such that (E, N;)(j = 1,2)
are Banach space and such that Ny < No, 1.e. 3C > 0,Yu € E,  Nj(u) < CNy(u).
Then Ny < Ny so that

3C > 0,Yu € E, C'Ny(u) < Nyi(u) < CNy(u),
i.e. the two norms are equivalent.

Proof. For E, F Banach spaces and A onto € L(E, F'), the continuity of A implies
that ker A is a closed subspace of E and, denoting by p : £ — FE/ker A the
canonical mapping, the quotient mapping

A:E/ker A— F, A(p(uw)) = Au

is well-defined and bijective. From the previous theorem, Ais an isomorphism and
thus is an open mapping, as well as the canonical mapping p (from the previous
remark) so that A = Ao p is also open, providing the first point. The second
property is due to the fact that the assumption expresses that the identity map is
bijective linear continuous from (£, Ny) onto (E, N7) and thus is an isomorphism;
as a result it satisfies with a positive § (and for all u € F)

which is the sought result. O

Remark 2.1.13. That corollary can be extended far beyond the Banach space
framework. In particular for complete metric TVS with translation-invariant dis-
tances (e.g. Fréchet spaces), if A € L(FE, F) is onto, then it is open; if A is bijective,
it is an isomorphism. Moreover if E is a vector space and .7}, j = 1,2 are topologies
on E such that (E, .7;) are TVS given by complete metrics with translation-invariant
distances so that .7, C %, then 7 = %.

2.1.4 The closed graph theorem

Theorem 2.1.14. Let E, F' be Banach spaces and A : E — F be a linear map.
The following properties are equivalent.

(i) A is continuous.
(17) The graph of A, T4 = {(u, Au)}yer is closed in E x F.
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Proof. Note that I'4 is a vector subspace of ' X F' which is the range of the linear
mapping L4 given by E 3 u— (u, Au) € E x F. If A is continuous, then [|Aul|r <
C||lu||g and the mapping L4 is also continuous since

ILaullpxr = |lullz + [[Aullr < (C+ 1)[[ul| -

Consequently, the range of L4 is closed, since if both (ux)r>1 and (Aug)r>1 are
converging respectively to u, v, then, by continuity of A, v = limy Aup = Au. Let
us show now the reverse implication, assuming that I'4 is closed. We note that I'4
is a Banach space, as a closed subspace of the Banach space E x F' and that

7T12FA—>E, Wl((u,Au)):u,

is linear bijective and continuous since ||m ((u, Au))||g = ||u||g: applying the open
mapping theorem, we find that 7 is an isomorphism, implying that 7; ' is contin-
uous. As a consequence, considering my : 'y — F,  mo((u, Au)) = Au, which is a
linear continuous mapping (||m((u, Au))||r = ||Aul|r < ||(u, Au)||pxF), we have

A=myom ' = A continuous. O

2.2 The Hahn-Banach theorem

2.2.1 The Hahn-Banach theorem, Zorn’s lemma

Let FE be a topological vector space; we define the topological dual E* of E as
L(E, k), the vector space of linear continuous forms on E. Of course when FE is
finite-dimensional, the topological dual E* is equal to the algebraic dual E’, which
is defined as the vector space of linear forms on F, i.e. linear mappings from F to k.
However, when F is infinite-dimensional (i.e. not finite-dimensional), we shall see
that E* is much smaller than E’. We shall devote most of our attention to describing
the properties of £*, so when we speak about the dual space of a topological vector
space E, it will always mean the topological dual; if we want to deal with E’, we
shall speak explicitely of the algebraic dual of E. As far as notations are concerned,
for a vector space E and £ € F',z € E, we shall write £ - z instead of £(x).

Theorem 2.2.1 (The Hahn-Banach theorem). Let E be a vector space, M be a
subspace of E, p be a semi-norm on E (see the definition 1.5.8), and & be a linear
form on M such that

Vee M, |-z <p(z). (2.2.1)

Then there exists Ee E', such that éM =& and Vr € FE, ]g x| < p(x).

Proof. (1) We start with the real case, i.e. k = R. We may assume that M # FE
(otherwise there is nothing to prove). Considering x; € E\M, we define

My, = M & Rxy, (note that M NRzy = {0}) .

On M;, we want to define a linear form &; extending ¢ and still satisfying (2.2.1).
Let us first remark that, if such a & exists, we would have

Vye M\Vte R, & - (y@te) =& y+t& - o,
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so that we have only to find a proper & - x;. On the other hand, we note that for
r,ye M

Ex—plr—x)=E-(x+y) —&y—pla—x)<platy) —&-y—pl@—x)
< =€y +plrr+y).

As a consequence, we have

az:gg(é-x—p(x—xl)) Syigﬂg(p(:vﬁry)—é'y) =b.

Let us choose 0 = & - 21 € [a,b]; then for y € Mt € R, we define £ € M/ by

& (y+ta) =& y+io,
sothat §-y+&-(—y)—pl-y—z1) <& y+o<{y+plai+y) -y and
—p(=21—y) <& (y+a) = y+o <plar+y) =& (y+21)| < pla+y).

Now if ¢ € R*, we have for y € M

(6 (y + tn)| = [tll&n - (7 hy +20)] < flp(t "y + 21) = ply + ta:)

and since & -y = £ -y, we get that & € M| and Vz € My, | - 2| < p(2).
We shall resort now to a very abstract argument involving the so-called Zorn’s
lemma.

Lemma 2.2.2 (Zorn’s lemma). Let (X, <) be a non-empty inductive ordered set:
the relation < is an order relation® on the set X such that if Y is a totally ordered
subset of X (i.e. Yy, y" € Y,y <" ory"” <), there exists x € X which is an
upper bound for'Y (i.e. Vy € Y,y < z). Then there exists a mazimal element in X,
i.e.

dry e X,\Vee X, 2z, <zr=— 2z, =u.

Remark 2.2.3. We shall not prove that lemma, a hard piece of mathematics which
can be shown to be equivalent to the axiom of choice as well as to the Zermelo’s
theorem: The Aziom of Choice says that if (X;);c; is a family of sets such that for
all i € I, X; # (), then the Cartesian product [],.; X; is not empty as well”. On the
other hand, Zermelo’s Theorem states that, on any set X, one can define an order
relation < which makes (X, <) a well-ordered set, i.e. such that any non-empty
subset of X has a smallest element: VY C XY # 0,3y € Y,Vy €Y, yo <y).

Ve,y,z€ X, z<u, [xgy,ygx:>x:y], [chy,ygz:>a:§z].

6 The Cartesian product [l;c; Xi is defined as the set of mappings x from I to U;crX; such
that, for all i € I, 2(i) € X;. A particular case of interest occurs when Vi € I, X; = X; then
we note [[,.; X; = X' which is the set of mappings from I to X. A more academic remark is
concerned with the case when I = {): in that case, [],.y X; is not empty since it has a single
element which is the mapping whose graph is the empty set. In fact the real point of the axiom of
choice is concerned with the cases where [ is infinite and in particular non-countable.
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N.B. Obviously the set N of the natural integers with the usual order is indeed
well-ordered, and this is the basis for the familiar induction reasoning; considering
a sequence (2, )nen of statements such that & is true and Vn € N, &, — Z,,14
we define

S ={n €N, Z, is not true}.

If S is not empty, then it has a smallest element sy and necessarily sy > 0 since &
is true; as a consequence so — 1 € S¢ so that &, _; is true, implying that &, is
true, contradicting sg € S. As a result, S should be empty and &2, is true for all
n € N. In some sense, Zorn’s lemma, or the principle of transfinite induction could
be used in a similar way to handle a non-countable family of statements satisfying
properties analogous to those of the countable family mentioned above. Of course,
it is not difficult to equip a countable set X with an order relation which makes
it a well-ordered set: it suffices to use the bijection with a subset of N. However,
the set Q of rational numbers (which is countable), with the standard order is not a
well-ordered set; consider for instance T' = {x € Q,,z* > 2}, a set which is bounded
from below without a smallest element (exercise). This means that to construct an
order relation on @Q which makes it a well-ordered set, one has to use a different
order than the classical one and, for instance, one may use an explicit bijection
between Q and N (exercise). The real difficulties begin when you want to construct
an order relation on R which makes it a well-ordered set; naturally, one cannot use
the standard order, e.g. since |0, 1] does not have a smallest element, although it
has the greatest lower bound 0. So the construction of that order relation has no
relationship with the standard order on the real line and is in fact a result of set
theory, dealing with order relations on &?(N), the set of subsets of N.

Let us now go back to the proof of our theorem. We consider the set
X = {(N,n), N vector subspace of E, N D M, n € N'n, =& YeeN,|n-z| < p(x)}

with the order relation (Ni,1) < (Ng,12) meaning Ny C Na, N2y, = M- It is a

matter of routine left to the reader to check that it is an order relation. Let us now
consider a totally ordered subset Y = {(N;,n;) }ier of X'. We define

N - UiGINi‘

We have N D M and N is a vector subspace of E since for z,y € N, there exists
t,J € I such that v € IV;,y € N; and the total order property implies that V; C N;
or N; C N; in such a way that for A\, p € R, Az + py € N; U N; C N. We note now
that, if x € N; N N;, since INV; C Nj’nlei =mn; or N; C Nz-,mmj = n; we have

T =15 T

and we may define 7 on N so that n-x =mn; -z, if x € N;. We verify that n € N/,
since for z,y € N, there exists ¢ € I so that x,y € N, and the linearity of n follows
from the linearity of 7;. Moreover the very definition of n ensures that n,, = § and

Vee N,diel,Lx e N;, n-x=mn-xz=|n-z|=|n- x| <pz),
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so that (N,n) belongs to X and is indeed an upper bound for ), proving that (X, <)
is an inductive set. Since X contains (M, &), it is non-empty and thus, applying
Zorn’s lemma, it has a maximal element (N,n). If N were different from E, the
construction of the beginning of the proof would provide an element (Ny,7;) € X
strictly larger than (N,n), a situation which is not compatible with the status of
maximal element of (N,n). Finally we have proven that N = E, which gives the
result of the theorem in the real case.
(2) We tackle now the complex case k = C. We define for z € M,

u-x—%(f-aﬂ—f-_x)

which is an R-linear mapping from M (which can be seen also as a real vector space)
to R. We have for all z € M, |u-z| < p(x). Applying the now proven result for
the real case, we can find an extension v of u, R-linear from F to R such that
Vo € E,|v-z| < p(zx). Let us now define for x € F,

n-x=v-z—iv-(ir)).
The mapping 7 is C-linear since if z = a+ib,a,b € R, x,y € F,

n-(zx) =v-(22) —i(v- (izz))
= v - (azx + ibx) — i(v - (iax — bz))
=a(v-z)+b(v- (ix)) —ia(v - (ix)) + ib(v - )
= (a+ib)(v-x) —i(a+ib)(v- (ix))
= z(n L z),
and moreover 7 - (x +y) =1 -2 +n -y by R linearity. We also have 7, = ¢ since
for x € M, ix also belongs to M and since v extends v and ¢ is C-linear, we get

n-x=v-z—i(v-(ir)) =u-z—i(u-(ir)) = Re(§ - z) — i Re(¢ - (ix))
=Re(¢-z) —iRe(i(€-z)) =Re({-z) +ilm(€-2) =& - .

Last, we check |- x| for # € E. We have |- x| = €% (n-x) so that, since v is
real-valued, ' ' 4
n-zl=n-(e%x) =v- (%) —i(v- (i x))

- (. J/
~\~ -~

eR €R

and since |n-z| € R we get v- (ie’’*z) = 0 and |- 2| = v (¢¥z) < p(e=z) = p(z),
completing the proof of the theorem. O

2.2.2 Corollary on the topological dual

Theorem 2.2.4. Let E be a Fréchet space (see the definition 1.3.10), M be a closed
subspace of E and xo € E. Then the following properties are equivalent:

(1) wo & M,
(1) I € B, &-x9=1, ker( D M.
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Proof. The property (ii) implies trivially (), since it gives xy € (ker )¢ C M°€. Let
us prove the converse. Let o € E\M and (px)r>1 be a countable family of semi-
norms describing the topology on E. Since M is closed, there exists Uy € ¥#; such
that (xg + Up) N M = () and

dko > 1,3Ry > 0, such that Uy D {x € E, py,(z) < Ry}.

We consider M; = M @ kxy and § € M/ defined by & - (x & txg) = t. We have for
tek*,x e M, pko(—% —370) > Ry, otherwise pko(—f —xo) < Rg and —% — xq € Uy,

implying —% = xo — § — xo & M. As a consequence, for t € k*,z € M,

t x 1
|£ ’ (LIZ' ©® Zf*/EO)‘ = |t| < |_|pko (__ - xU) = 5 Pk (:U + t.ﬁEo) and & - = 0,
Ry t Ry

so that, for y € My, |€ - y| < Ry'pr,(y). Using the Hahn-Banach theorem 2.2.1, we
can find an extension € of ¢ to the whole E such that, for y € E, |€-y| < Ry pr, ()
This implies that £ € E* and since € - 29 = £ - 1y = 1 as well as &Ml =&&m =0,
the linear form ¢ satisfies (). O

2.3 Examples of Topological Vector Spaces

We have already seen a couple of examples of TVS in the section 1.4. Here we
examine in more details some various examples of Fréchet spaces.

2.3.1 C%Q), Q open subset of R".

We consider an open subset 2 of R™ and we start with the proof of the following
lemma.

Lemma 2.3.1. Let 2 be an open subset of R". There exists a sequence (K;);>1 of
compact subsets of ) such that

Q= Uj21Kj, Kj C int (Kj+1). (231)
If K is a compact subset of €1, there exists j € N* such that K C Kj.
Proof. We define first for A C R™ and = € R",

d(xz,A) = in£ |z — al, where || is anorm on R". (2.3.2)
ac

The function x +— d(x, A) is Lipschitz continuous since
|21 — a] < |xy — @3] + |29 —a| = Va € A, d(x1,A) < |x1 — 22| + |22 — al,
so that d(z1, A) < |z1 — 29| + d(z2, A) and finally
|d(z1, A) — d(x2, A)| < |21 — 22| (2.3.3)

We have also that )
dz,A) =0<=z € A, (2.3.4)
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since the former is equivalent to the existence of a sequence (a;);>1 with a; € A and
la — a;| < 1/1. Given an open set 2 of R™, we define for j > 1,

Kj={z e R",d(z,Q°) > 1/j,|z| < j}.

We note from the continuity of d(-, £2°) and of the norm that K is a closed subset of
R™; moreover it is also bounded and thus is a compact subset of R", and in fact of
2 since d(z, Q) > 0 implies x ¢ Q¢ = Q° (2 is open). We have also for j > 1 that

K; C {z e R",d(z,Q°) >

1
< j + 1} which i i
j+17|$| J + 1} which is open C K1,
so that K; C int K;.;. Finally, taking = € Q, we have d(z, Q) > 0 (Q° is closed)
and thus '
i 2 max(g g Bl +1) = w € K

proving 2 = U;>1K; and the lemma, since the very last statement of this lemma
follows from K C €2 = U;>; int K, which implies the result by the Borel-Lebesgue
property and the fact that the sequence (K) is non-decreasing. O

We can define now a countable separating family of semi-norms (p;);>1 on C°(€2),
the vector space of (complex-valued) continuous functions defined on € with

p;(u) = sup |u(z)|, (which makes sense since u(K;) is a compact subset of C).
z€K;

Note that this family is non-decreasing, obviously made with semi-norms, and sep-
arating from the fact that 2 = U;>1 K. Let us prove that it is a complete space; we
consider a Cauchy sequence (u;);>1, i.e. a sequence satisfying

VJ > 1,v€ > 0, ElNQj,Vl’,l” > Nﬁ’j, pj(ul/ — ul”) < €.

As a consequence, for each j > 1, the sequence (uy Kj)lzl converges uniformly to
a continuous function v; on Kj;. Since Kj; C Kji1, we have vy = v; and we
can define v unambiguously on 2 by vx; = v;. That function v is continuous on (2
since for j > 1, vjint i, = Vot int 1654 which is continuous and €2 D Uj;>1 int K11 D
Uj>1K; = Q. We find easily as well that

Vi >1, li}npj(ul —v) =0,

so that the sequence (u;);>; converges in C°(€2). The reader will check in the exercises
that the vector space C°(£2) with that topology is not normable.

2.3.2 (C"™(9), Q2 open subset of R", m € N.

With the family of compact sets K; as above, we consider the family of semi-norms

pi(u) = sup  [(87u)(x)], (2.3.5)

z€Kj |a|<m
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where we have used the multi-index notation with
Op =031 ...0pr, a=(oq,...,0p) €EN") ol =y + -+ ap. (2.3.6)

For a multi-index o we define o! = a3!...a,! and for £ € R™, ¢ = &7 ... &% so
that we have, for £, € R", using Taylor’s formula’,

5+77 Zfﬂﬂ

| ~1°
Poptt 6! A!

Bty=a

(2.3.7)

We get a Fréchet space following essentially the same arguments as for the pre-
vious example. The only point to verify is the following, that we formulate in one
dimension for simplicity, leaving to the reader to filling the details in higher di-
mension. Take a sequence (u;);>; of C! functions on €, open interval of R, which
converges in C°(Q) as well as (u});>1. We define

vo = limwy, vy = limu;.
I I

Then vy € C*(Q) and v, = v; (exercise).

2.3.3 C™(9), Q open subset of R".

With the family of compact sets K; as above, we consider the countable family of
semi-norms
Pim(u) = sup  |(O7u)(z). (2.3.8)
zeK;,|a|l<m
We get a Fréchet space following essentially the same arguments as for the previous
example.

2.3.4 The space of holomorphic functions H((2), 2 open sub-
set of C.

This is a Fréchet space with the family of semi-norms

pj(u) = sup |u(z)],
ZEKj

where the compact sets K; are as in the lemma 2.3.1. It is a remarkable fact, due
to the Cauchy formula, that whenever a sequence (u;);>; of holomorphic functions
in 2 is converging uniformly on the compact subsets of €, the limit (say in C°(2))
is also holomorphic (exercise).

a—y

"In fact, (5_277)01 =2, gy et =0 = > R which is the sought formula (the

e o A<a Al (a=y)!?
inequality v < a means V7, v, < ;).
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2.3.5 The Schwartz space . (R") of rapidly decreasing func-
tions.

a an,

S (R") = {u € C*°(R"),Va, B € N", 2°0°u € L*(R™)}, (2.3.9)
for u € Z(R"), pr(u) =  sup  |2%(0%u)(x)], (2.3.10)

max(|al,|B)) <k
zERM™

We define, using the multi-index notation for « € N*, z € R", 2% = 27" ... x

is a family of semi-norms which makes . (R"™) a Fréchet space®. A good example of
such functions is given by u(z) = e 1#I” where || - || is the Euclidean norm on R”,
and more generally by

vap(@) = pla)e 4,
where A is a n X n complex-valued symmetric matrix so that Re A > 0 and p is a
polynomial. The Schwartz space plays an important role in Fourier analysis and we

shall return to its study in chapter 3.

2.4 Ascoli’s theorem

2.4.1 An example and the statement

Let us start with a simple example: we consider a sequence (uy)g>1 of continuous
functions from [0, 1] to R and we assume that it is simply converging, i.e. for all
x € [0, 1], the sequence (ug(z))g>1 converges. Defining u(z) = limy ux(z), we know
that in general u need not to be continuous (exercise). We are looking for a simple
and tractable condition ensuring that u is continuous: a good way to get this is to
obtain the uniform convergence, i.e. the convergence in the Banach space C°([0, 1]).
We shall assume some equicontinuity property for the sequence (uy). To simplify
matters in this presentation, let us assume that

AL > 0, Yk > 1,Vzy, 29 € [0,1],  |ug(z1) — up(z2)| < Llzg — 22
Then we have for x,t € [0, 1],
Ju () — w ()] < Ju(w) — we(t)] + u(t) — w(t)] + [w(t) — w(z)]
< 2L|w — ] + |u(t) — u(@)] + |u(t) — w(t)],

so that if t € D C [0,1], [[ux — w| < 2L sup,¢oq d(z, D) + sup,ep [ug(t) — u(t)] +
sup;ep |wi(t) —u(t)|. We choose now € > 0 and we take D, as a finite subset of [0, 1],
such that

2L sup d(z,D.) <¢€/3 (it is enough to consider D, = SLLN N[0, 1]).
z€[0,1]

8 Laurent Schwartz (1915-2002) is the french mathematician (http://www-history.mes.st-
and.ac.uk/history/Biographies/Schwartz.html) who introduced the space .#(R™) as the Spherical
Functions, since they can be viewed as C* functions on the unit sphere S™ of R**! which are
flat (vanishing as well as all their derivatives) at the “north pole” (S™ is a compactification of R™
and the stereographic projection maps S™\{NPole} onto R™). L. Schwartz is not related to Her-
man Amandus Schwarz, a german mathematician co-credited with Cauchy for the Cauchy-Schwarz
inequality (1.3.3).
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Since D, is finite, for k > N, sup,cp |ug(t) — u(t)| < €/3 and |luy, — ] < € for
k,1 > N., proving that (uj)x>1 is a Cauchy sequence in the Banach space C°([0, 1])
and the sought result. The following theorem is providing a generalization of the
previous discussion, for which we point out that, for this result, the key property of
[0, 1] is to be a metric compact space, for the target R to be a complete metric space
and of course that the equicontinuity should hold.

Theorem 2.4.1. Let X be a compact metric space and Y be a complete metric
space. Let (ug)aca be a family of continuous mappings from X to Y such that

(1) (ua)aca is pointwise relatively compact,
(2) (ta)aca is equicontinuous.
Then (uqg)aca is strongly relatively compact.

Remark 2.4.2. We need first to clarify the meaning of the assumptions: the fam-
ily (ta)aca is pointwise relatively compact means that, for each x € X, the set
{ta () }aea has a compact closure in Y. The equicontinuity of the family (uq)aca
means

Ve > 0,30 > 0,Va € A,V 2" € X,d(2',2") < § = d(ua(x'),ua(x”)) <e (24.1)

where the first d is the distance on X and the second one the distance on Y. The
strong relative compactness of the family (u,)aca means that, given a sequence
(a,)jen, there exists a subsequence (u%k) ren converging uniformly to a continuous
function u:

Ve > 0,3N, € N,Vk, k > N, = sup d(uq;, (z), u(z)) <.
reX

We may notice that, thanks to the compactness of X, the equicontinuity property
(2.4.1) is a consequence of the weaker

Vg € X,Ve > 0,30 > 0,Va € A, Vo € X, d(z,20) < a = d(ua(®), ua(z0)) <e. (2.4.2)

This can be proven by reductio ad absurdum: assuming that (2.4.2) holds and that
(2.4.1) is violated, we obtain

Jeg > 0,Vk € N*, Jay, € A, Fz), 2y, € X, with d(z), 2}) < 1/k
and (i, (1), o (21)) > co.
Since X is compact, one may extract subsequences of the sequences (z}), (x}) and

assume that they are both convergent in X with the same limit zy. As a consequence,
we get a contradiction since

0 < e <lim sup d(uak(%), Uy, (xg))
k

< lim sup d(ua, (2},), tay, (%0)) + limsup d(ua, (20), ta, (z})) = 0,
k k
where the last equality follows from (2.4.2). Note that we have followed the reasoning

of the proof of the Heine theorem 1.5.10.
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Remark 2.4.3. A more more elegant statement can be proven, involving the intro-
duction of a topology on the set C'(X;Y): for X, Y metric spaces with Y complete
and X compact, we define (see the proposition 2.4.6) a distance D on C(X;Y’) by

D(u,v) = ig}}? dy (u(z),v(z)). (2.4.3)

The metric space C'(X;Y) is then complete’. We consider now a subset F of C'(X;Y)
and we assume that (1) is satisfied, i.e. Vo € X, {u(x)},er has a compact closure in
Y. Assuming as well the equicontinuity (2), the Ascoli theorem says that the closure
of F' is compact in the metric space C'(X;Y’). More general statements hold as well,
and in particular, it is enough to assume that X is compact (and not necessarily
compact metrizable).

Remark 2.4.4. We note also that a compact metric space is separable, i.e. contains
a countable dense subset: we have from the compactness of the metric space X,
k e N*,

X = UmexB(ZL‘, 1/]{3) == UlSjSNkB<xj,k7 1/]'6’)

and the countable set {z;x} 1<x is dense in X.
L<GEN,

We begin with a key lemma on the diagonal process.

2.4.2 The diagonal process

Lemma 2.4.5. Let (a;;)i jen+ be an infinite matriz of elements of a metric space A.
We assume that each line is relatively compact, i.e. for alli € N*, the set {a; j};>1 is
relatively compact. Then, there exists a strictly increasing mapping v from N* into

itself such that, for all i € N*, the sequence (ai7u(,€))keN* converges.

Proof of the lemma. The reader will find the definition of a subsequence in 1.5.6.

- We can extract a converging subsequence (a1, (x))r>1 from the first line (a1 ;) j>1,
- We can extract a converging subsequence (aa,n, (ny(k)))k>1 from (azn, x))j>1-

- We can extract a converging subsequence (as n, (ny(ns (k) k=1 from (as n, (na(k)))j>1-

... For all 7 > 1, we can extract a converging subsequence

(aiﬁ(nwmom)(k))kzl'
Note that the mappings n; are strictly increasing from N* into itself and thus satisfy
Vk > 1,ni(k) > k (true for k = 1 and ny(k+ 1) > ny(k) > k gives y(k+1) > k+1).
We define
bik = vy, with v(k)=(njio---ong)(k).
The mapping v sends N* into itself and is strictly increasing:
since ng41(k+1) > k+1

vk +1) = (nyo-onmget)(k +1) 3 (nyo--om)(k+1)
> (mo-om)(k) = v(k).

njo---ony /strict

9In particular, if Y is a Banach space (and X a compact space), C(X;Y) is a vector space
which is a Banach space with the norm ||ul|c(x;v) = sup,ex [[u(z)|ly.
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Moreover, the sequence (b; )k k> is a subsequence of the converging sequence

(i, (mr00m) (8)) 1
since for k >4 > 1, v(k) = (ny o on;)((nip1 0 ong)(k)) and
pi(k+1) = (nip100 - -ongy1)(k+1) > (nigq0- - -ong) (k+1) > (ng10---ong) (k) = (k).
As a result, the sequence (a;,(k))r>1 is converging, which proves the lemma. O

Proof of the Ascoli theorem. Using the lemma 2.4.4, we consider Xy = {z;};>1 a
countable dense part of X. We consider a sequence (uq,;)jen and we note v; = ;.

Considering the infinite matrix (v;(z;)), j»1» thanks to the assumption (1), we see

that for all ¢ > 1 the line {v;(z;)};>1 is relatively compact and, using the lemma
2.4.5, we find v : N* — N* strictly increasing such that (vl,(k)(xl)) > converges
for all i > 1. Let € > 0 be given and a > 0 such that (2.4.1) holds. We have
X = U;»>1B(z;, ) and by the compactness of X, we can find M such that

X = UlSiSMB(xia Oé).

Since the sequences (vl,(k) (xl)) are convergent,

k>1
AN, Vi e {1,...,M},Vk,l > N, d(vy(k)(x,-), Vy(1) (xz)) <e. (2.4.4)

Let x € X: there exists ¢ € {1,..., M} such that z € B(x;,«), and from the
assumption (2), we have

Vi>1 d(vi(z),v;(z;)) <e. (2.4.5)

As a consequence, we get for k,1 > N, and all x € X,

d(vuy(x), v (l’))
< ( )) +d(vy ( ) 20 (xi)Z_f'fl(Uu(l)(fL‘i);’Uy(l) (:L‘))j < 35,

VvV
<e from (2.44()) <e from (2.4.4) <e from (2.4.5)

so that the uniform Cauchy criterion is satisfied for the sequence (vy(k))r>1. The
result of the theorem will be a consequence of the following

Proposition 2.4.6. Let X,Y be metric spaces with Y complete and X compact and
C(X,Y) be the set of continuous mappings from X to Y. The following formula
defines a distance on C(X,Y),

D(u,v) = sup dy (u(z),v(z)), (2.4.6)

zeX

and makes it a complete metric space.
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Proof. Let u,v € C(X,Y): then D(u,v) < 400, otherwise we would be able to find
a sequence x; € X such that dy (u(zy),v(zy)) > k. From the compactness of X, we
can extract a convergent subsequence (zy,);>1 with limit a. Then we have

kl < dY <u<xk’z)’ U(ajkl))
<dy (u(mkl),u(a)z+dy (u(a),v(a)) —{—Ely (v(zr), v(a))} (2.4.7)

Vv Vv
—0 —0
l—4o0 l—+4o00
which is impossible since lim; k; = +00. Moreover the separation and symmetry

properties of D are obviously satisfied; for u,v,w € C(X,Y’), we have
dy (u(z), w(z)) < dy (u(z),v(z)) + dy (v(z), w(z))

which implies readily that D satisfies the triangle inequality. Let us now consider
a Cauchy sequence (uy)g>1 in the metric space C(X,Y'); since Y is complete, for
all z € X, the sequence (ug(x))r>1 converges and we define u(x) = limy ug(x). We
have, since (uy) is a Cauchy sequence in C(X,Y),

d(up(z), u(z)) = li§n d(up(z), w(z)) < limlsup D(uy,w) = 7(k), liin T(k) =0,

and thus limy (supxexd(uk(x),u(x)» = 0. Let us prove that the function u is

continuous: otherwise, we could find zy € X, a sequence (z;);>; with lim; z; = x
and €y > 0 such that d(u(z;), u(z0)) > €. We would have for j, k > 1,

0<e < d(u(xj),uk(xj)) + d(uk(xj),uk(xo)) + d(Uk(xo),U(xo))
<27(k)+ d(uk(ffj>» uk(xo)),

and thus, since uy, is continuous for all k,

0 < €9 < 27(k) + limsup d(ug(z;), up(z)) = 27(k) = 0 < g < lilgn 27(k) =0,
J

which is impossible. We have proven that v € C(X,Y) and limy D(ug,u) = 0,
completing the proof of the proposition. O

Going back to the proof of the theorem, we see from the previous proposition
and the fact that the sequence (v, ) satisfies the uniform Cauchy criterion that it
converges in C(X,Y’), which proves the theorem 2.4.1. ]

2.5 Duality in Banach spaces

2.5.1 Definitions

For E, F' Banach spaces, we have defined the Banach space L(F, F') in the propo-
sition 2.1.5 with the norm (2.1.2). We recall that the topological dual of F is the
Banach space E* = L(F,k) of continuous linear forms. When £ € E*,x € E, we
shall write £ - = instead of &(z).
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Theorem 2.5.1. Let E be a Banach space and E* its topological dual. Then

Ve E, |zlls= sup [€-z].
€l +=1

Proof. From the proposition 2.1.5, we have [|{||g« = sup,ep ||z =1 1§ - 2[- Let 0 #
xo € E. Applying the Hahn-Banach theorem 2.2.1 with M = kxo, p(z) = ||z||g,
defining on M the linear form n by n - Axg = A||zo|| g, we have |n - Axg| < |[Axo|l =
p(Azo) and we find a linear form &, defined on E such that

[0 - ol = [[zollz, V€ B, |&- 2| < |[z]|s-

As a consequence, & € E* with ||¢|| = 1. Finally we have proven
[zoll 2 = [€0 - o] < sup |€ - wo| < o] - O
€l p==1

2.5.2 Weak convergence on F

Using the very general notion introduced in the remark 1.1.2, we can define the weak
topology on a Banach space as follows.

Definition 2.5.2. Let E be a Banach space. The weak topology o(E, E*) on E is
the weakest topology such that for all £ € E* the mappings E > x — ({,2)p- g € k
are continuous.

Remark 2.5.3. Let E be a Banach space. For each £ € E*, we define the semi-norm
pe on E by pe(z) = [(€, x) g+ p|; the properties of the definition 1.3.8 are obviously
satisfied. Moreover the family (p¢)ecp- is separating from the theorem 2.5.1. The
neighborhoods of 0 for the weak topology on E, say %, have the following basis:
taking = a finite subset of £* and r > 0, we define

Wz, ={x € E,V¢ € E,pe(x) <r}. (2.5.1)

Note that the Wz, are convex and symmetric. Every neighborhood of 0 for the weak
topology contains a Wz, which is also a neighborhood of 0 for that topology. The
neighborhoods 7, of a point = are defined as ¥, = {z + V}vey; E equipped with
that topology is a TVS. Note that the separating property of the family (pe)ecp-
is implying that the weak topology is separated (i.e. Hausdorff, see the definition
1.1.5): in fact {0} is closed for the weak topology, since for o # 0, from the theorem
2.5.1, there exists £, € E* such that (£y, z¢) = 1, so that

0¢ xo+{x € E,pg(x) <1} : otherwise, 1 = (£, xo) = (&, 0 + ) — (o, ) < 1.
=0

Moreover, to check that the addition is continuous, we take z1,29 € E, Wz, ,, as
above a neighborhood of zero (Z finite and 7y > 0), and we try to find Wz, ,.,j = 1,2
such that

xr1 + WELH + Ty + WEQ,rQ Cx+2x2+ WEO,TO-



2.5. DUALITY IN BANACH SPACES 95

It is enough to take Wz, ., = Wz, ;2. Checking the continuity of the multiplication
by a scalar is similar: given \g € k,zy € E, Wz, ,, as above, we want to find Wz, ,,
and t; > 0 such that

Vte R, [t| <ty (Ao +0t)(zo+ Wz, ) C Nozo + Weg -

It is enough to require t,W=, ,, U A\gWz,,, C Wzy /3, tizo € Wz py/3; this is
satisfied for =) = 2o,  |Ao|r < 710/3, tir1 < ro/3.

Remark 2.5.4. Let £ be a Banach space; the weak topology o(E, E*) on FE is
weaker than the norm-topology on F (also called the strong topology): this is obvious
from the very definition of the weak topology since all the mappings = — (&, z) are

continuous for the norm-topology since pe(x) = |(€, z)| < |||+ ||x| &

Let E be a Banach space and = € E; a sequence (z,,)nen in E is weakly converging
to x means that

VEe B, Im(& ) pp = (&, 2)pp. We write =z, — x, (2.5.2)

or to avoid confusion between the arrows — and —, we may write z,, ——— .
o(E,E*)

Proposition 2.5.5. Let E' be a Banach space and (x,)nen be a weakly converging
sequence with limit x in E. Then ||z,||g is bounded and ||x||g < liminf, ||z,||g. If
(&n)nen @s a strongly converging sequence in E* with limit £, then lim,, (&, ) g+ g =

<§7 $>E*,E-

Proof. We consider the sequence of linear forms on E* given by E* 3 £ — (£, x,,).
Since for all £ € E*, the numerical sequence (£, x,) is converging, we may apply
the corollary 2.1.8 of the Banach-Steinhaus theorem to get that E* 3 £ — (£, x) is
continuous on E* i.e

3C > 0,V€ € B, |(€,z)| < O¢]

Ex*-

Using the theorem 2.5.1, this implies ||z||p < C. The Banach-Steinhaus theorem
2.1.6 implies also that the norms of the linear forms E* > £ — (£, x,) make a
bounded sequence, and since that norm is ||x,| g, we get that sequence (||z,||g) is
bounded. We have for £ € E* with ||£]|g~ = 1, using again the theorem 2.5.1,

(€, )] = lim |(€, 2)] < liminf ][z = o] < limin 2, s

Moreover, we have

[(€ns ) = (€, )| < (& =& wn) [+ (6 wn — )| < |60 — €]
—_——

£ SUp [[2n]| 5+ [{§, 20 — ),
n N———

—0 —0

which implies lim, (&, z,,) = (£, ). O
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Remark 2.5.6. When the Banach space F is infinite-dimensional, the weak topol-
ogy o(FE, E*) is strictly weaker than the strong topology given by the norm of E.
Let us prove that the unit sphere of £, S = {z € E,||z||g = 1} is not closed in the
weak topology o(E, E*) if E is not finite-dimensional. Let us consider zy € E with
lzol|l e < 1; let Wz, ., be a neighborhood of zero for the weak topology as in (2.5.1).
We claim that

(ZEO + WEO,TO) N S 7é @ (253)

This will imply that z belongs to the closure of S for the o(F, E*) topology. To
prove (2.5.3), we consider the finite subset =y = {{;}1<j<n of E*; each ker¢; is a
closed hyperplane, and since £ is infinite-dimensional, N <<y ker §; is not reduced to
{0} (otherwise the mapping F 3 z +— L(z) = ((;,7))1<j<nx € RY would be injective
and L would be an isomorphism from E onto L(F), implying E finite-dimensional).
Taking now a non-zero x; € Ni<;j<n ker §;, we see that with the continuous function
f on R given by f(0) = ||xg + 01|

FRL) D [||l@ol|, +oo[= 30 € R,y + Oz, € S.

This proves (2.5.3) since zg + 0z; € xg + Wz, ,, because (§;,z1) = 0 for all j €

{1,...,N}.

Examples of weak convergence

We consider the space LP(R) for some p € [1, 400 (we shall see in the section 2.5.6
that, for p € [1,4+o0[, the dual space of L? is canonically identified with L? with
%+I% = 1). We want to provide some examples of a sequence (uy)gen of LP(R) weakly
converging to 0, but not strongly converging to 0. Here we assume 1 < p < +o0.

A first phenomenon is strong oscillations: take ug(z) = eikxl[o 1]( x): the Lp norm
of uy, is constant equal to 1 but for v € L¥ | the sequence (uy,v = [u(x
has limit zero (a consequence of the Rlemann—Lebesgue lemma)

The sequence (u)reny may also concentrate at a point: take uy(x) = k'/Puy(kx),
where ©; has norm 1 in L” Here also the LP-norm of uy is constant equal to 1.
However for v € L7 (u,v) = [wp(z)v(x)dr = [u,(t) t/k)dtk_?, with p,p’ €
]1, 400[. With p,1 € C2(R ) we have

[ {un, 0 < [ug, v = @) + [(ur = Prs 9)| + [(Yr, #)
< luallzello = @l o + llus = @llzell@ll o + [{¥r; )1,

which implies lim supy, [(ug, v)| < [Jui|| pol|v =@l o +1|u1 — || e || @] Lo, and this gives
the weak convergence to 0 since p, p’ are both in |1, +o00].

The sequence (uy)reny may also escape to infinity: take uy(x) = ug(k + x), where
up has norm 1 in LP. Reasoning as above, we need only to check [ ¢(z + k)p(x)dz,
for ¢, € CP(R): that quantity is 0 for k large enough.

2.5.3 Weak-*x convergence on E*

Definition 2.5.7. Let E be a Banach space and E* its topological dual. The weak-*
topology on E*, denoted by o(E*, E), is the weakest topology such that the mappings



2.5. DUALITY IN BANACH SPACES 57

E* 3 ¢ &-x € k are continuous for all x € E. A sequence (& )ken of E* is
weally-+ converging means that Vo € E, the sequence (& - T )ren converges.

Proposition 2.5.8. Let E be a Banach space and (&,)nen be a weakly-+ converging
sequence with limit & in E*. Then ||&,|| g+ ts bounded and ||£|| g~ < liminf, ||&,]
Let (x)nen be a strongly converging sequence in E with limit x. Then we have

E*-

lirlln<£naxn>E*,E =(§,2)p B
Proof. We have for x € F with ||z||g =1,
(6.} = lim | (€, )| < lim i [,

m = &

g < limninf 1&nll -

From the Banach-Steinhaus theorem 2.1.6, the sequence (&,)nen is bounded in the
normed space E* and we define sup,, ||&,]| g+ = M < co. We have then

[(€ns ) = (& )| < [y wn — @) [+ [{€n — & )| < M|y — 2|5 + [(€n = & 2)],

and since lim,, ||z, — z||g = 0 = lim,,(§, — £, ), we obtain the result. O

Theorem 2.5.9. Let E be a separable Banach space. The closed unit ball of E*
equipped with the weak-x topology is (compact and) sequentially compact.

Proof. Let (§;)jen be a sequence of E* with sup;cy [|lle- < 1. Let {z;}ien be a
countable dense part of E. For each i € N, we define y; : E* — k by y;(§) = £ - 2.
Let us now consider the matrix with entries (§; - z;); jen. For all i € N, we have

sup & - x| < ||zl e
jeN

so that we can apply the diagonal process given by the lemma 2.4.5 and find v strictly
increasing from N to N such that Vi € N, the sequence (§,(x) - #;)ren is converging.
As a consequence, for x € F,

&y - — &y -
<&y - = Sy - il F1&w) - i — Sy - Tl + Sy - 1 — Sy -
<2[|x — zi||lp + |fu(k) T — &) - 2.
Let € > 0 be given and z € E. Let ¢ € N such that ||z — ;||p < €/4; since the
sequence (&, - i )ken is converging, for k,1 > Ne, |k - i — &) - o3| < €/2 and thus
for k,1 > Ne, | - @ — &) - | < €, proving the weak convergence of the sequence
(&) ren- O

Remark 2.5.10. Let F be a Banach space and E* its topological dual. For z €
E ¢ € E*, we define p,(§) = |£ - z|. For each z € E, p, is (trivially) a semi-norm on
E*. The family (p,).crp is a separating'” (uncountable) family of semi-norms on E*.
We shall say that U is a neighborhood of 0 in the weak-x topology if it contains a
finite intersection of sets

Vior =16 €E*  p,(§) <71}, x€Er>0.

The family of semi-norms (p,).cg describes the weak-* topology on E*, also denoted
by o(E*, E).

107 for some ¢ € E*, we have Vo € E,p,(£) =0, it means Vo € E,£ -2 =0, i.e. £ = 0p~.
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Remark 2.5.11. Let E be a Banach space and E* its topological dual. It is also
possible to define on E the weak topology, denoted by o(E, E*), given by the family
of semi-norms (pg)ecp+ such that pe(x) = |€ - z|. That family is separating since for
x € F &-x =0 for all £ € E* implies x = 0, thanks to the Theorem 2.5.1. We
shall say that U is a neighborhood of 0 in the weak topology if it contains a finite
intersection of sets

Voer ={x € E,pe(x) <r}, £€E*r>0.
The family of semi-norms (pg)ecp+ describes the weak topology on E.

Remark 2.5.12. Given a Banach space F and its topological dual E*, we can define
on E* several weak topologies: the weak-* topology o(E*, E') described above, but
also the weak topology on E*, o(E*, E**), where E** is the bidual of E, i.e. the
topological dual of the Banach space E*. Note that the weak topology on E* is
stronger than the weak-x topology, since £ C E** as shown below.

2.5.4 Reflexivity

Proposition 2.5.13. Let E be a Banach space. The bidual of E is defined as the
(topological) dual of E*. The mapping E > x — j(x) € E** defined by

<j(l’), £>E**,E* = <€7 'T>E*,E

is linear isometric and is an isomorphism on its image j(E) which is a closed sub-
space of E**. A Banach space is said to be reflexive when j is bijective (this implies
in particular that E** and E are isometrically isomorphic).

Proof. For x € E, we have

i@z = sup |G(@). gl = sup |E2hppl = Nz (254)
lEl =1 €]l z==1 thm 2.5.1

and thus j is isometric and obviously linear. The image j(E) is closed: whenever a
sequence (j(zg))k>1 converges, it is also a Cauchy sequence as well as (xy)r>1 since
|z —zi||le < ||j(xr —x) || g = ||j(xx) — j(x))||g++. As a result, the sequence (zg)xk>1
converges to some limit € E, and the continuity of j (consequence of the isometry
property) ensures limy, j(zy) = j(z), proving that j(F) is closed, and thus a Banach
space for the norm of E**. The mapping j : £ — j(FE) is an isometric isomorphism
of Banach spaces. O]

Remark 2.5.14. Let E be a Banach space; then the bidual of E* is equal to the
dual of E**, so that (E*)** = ((E**))*, that we shall note simply E***: we have by

definition i
(B)" = ((B)) . aswellas ((B™)" = ((£)")

Theorem 2.5.15 (Banach-Alaoglu). Let E be a Banach space. The closed unit ball
B of E* is compact for the weak-+ topology.

*



2.5. DUALITY IN BANACH SPACES 29

Proof. For each x € E, the mapping £* 5 £ — £ -2 € C is continuous in the weak-x
topology; since € - x| < ||£]|g+||z|| 2 we see that

E*

Bc [[(lzllzD:), Di={z€C |z <1},

zeFE

and the product topology on [ [, (|[z|[zD:1) induces the weak-* topology on B. We
shall use the following theorem.

Theorem 2.5.16 (Tychonoft). Let (X;);cr be a family of compact spaces. Then the
product [],.; Xi equipped with the product topology is a compact space.

The set B is thus a closed subset of a compact set and is thus compact. O

Proposition 2.5.17. Let E be a Banach space and B its closed unit ball. The
following properties are equivalent.

(i) E is reflezive,

(i) E* is reflexive,

i is weakly compact, i.e. compact for the o(E, opology.
i) B i kl t, 1 t for the o(E, E*) topol

Proof. Let us assume that (i) is satisfied. Then the mapping j defined by the propo-
sition 2.5.13 is an isometric isomorphism from E to E** and the weak-* topology on
E is well-defined as the topology o(E = E**, E*), which is simply the weak topology
on E. The Banach-Alaoglu theorem implies that the unit ball of E** = E, which is
thus B, is weak-* compact, i.e. is weakly compact, proving (ii7).

Lemma 2.5.18. Let E be a Banach space, B its closed unit ball and j be defined
by the proposition 2.5.15. Then j is an homeomorphism of the topological space
(E, o(E, E*)) onto a dense subspace of the topological space (E**, o(E*, E*)) The
set j(B) is dense for the o(E**, E*) topology in the closed unit ball of E**.

Proof of the lemma. The mapping j : E — j(E) C E** is bijective and continuous
whenever E is equipped with the weak topology o(FE, E*) and E** with the weak-x
topology o(E**, E*): we consider a semi-norm ¢: on E**, £ € E*, defined by

qe(X) = [{X, §) e o+ |-

We evaluate for z € E, q¢(j(x)) = [(j(x),&) g 5| = [(§, 2) g~ 5| = pe(x), where pg
is a semi-norm on E (for the weak topology). The previous equality proves that j
is an homeomorphism from E to j(E). A consequence of the isometry property of
j given in the proposition 2.5.13 is that j(B) is included in the closed unit ball B,
of E**. Let B be the closure for o(E*, E*) of j(B). First of all, B,, is o(E**, E¥)
compact from the Banach-Alaoglu theorem and thus is o(E*, E*) closed, so that
B C B... If there is some X, € B**\B the Hahn-Banach theorem implies that
there exists § € EF*,a € R, e > 0 with

Ve e B, Re(é,z) <a<a+e<Re(Xo,&).
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Since 0 € B, this implies @ > 0. We may thus multiply the previous inequality by
1/a and find & € E*, e; > 0 such that

Vx € B, Re<§1,$> <l<l+4+e< Re(X0,§1>.

Using that B is stable by multiplication by z € C with |z| = 1, we get |||z < 1,
implying that 1+ ¢; < Re(Xo, &) < || Xo||g++ < 1 which is impossible. The proof of
the lemma is complete. O]

Going back to the proof of the proposition, we assume that (i7i) holds. Then,
using the previous lemma, we see that j is continuous from

(E,o(E,E"))in (E*,0(E™, E"))

and B is compact for the (E, o(E, E*)) topology, we infer that j(B) is compact. But
the same lemma gives that j(B) is dense for the o(E™, E*) topology in the closed
unit ball of E**, so j(B) is closed and equal to the closed unit ball of E**, implying
that j is onto and (7).

We know now that (i) is equivalent to (iii), so that (ii) is equivalent to the
compactness of the closed unit ball B, of E* in the topology o(E*, E**). The
Banach-Alaoglu theorem shows that B, is compact for o(FE*, E) and if () holds,
that topology is o(E*, E**), so that (i) implies (7).

Finally we assume that (i) holds, i.e. E* is reflexive. Let us first consider
the norm-closed subspace j(F) of E**. The space E** is reflexive since £* = E***
by (i) and thus E** = E***. As a consequence, the unit ball of E** is compact
for the topology o(E**, E***) = o(E**, E*) and thus the unit ball of the norm-
closed subspace j(E) is compact for the o(j(F), E*) = o(j(E), (j(E))*) topology,
which proves that j(E) and thus F is reflexive. The proof of the proposition is
complete. O

2.5.5 Examples
The Banach spaces ¢, /?

These are spaces of sequences of complex numbers (xy)g>1. We have
co = {(z)kz, limay =0}, [ (zx)kz1 | = sup [l (2.5.5)
k>1

forp>1, = {(xi)ez1, Y |elP < oo}, (zeesall = (D "), (2.5.6)

k>1 E>1

0°° = {(zx)k>1, sup |k < oo}, ||(zk)r>1] = sup |zk|. (2.5.7)
E>1 k>1

We leave to the reader as an exercise to check that these spaces are Banach spaces
(see e.g. the Théoréme 3.2.5 in [J]) and ¢? is a Hilbert space. Note also that the
space ¢g is a closed subspace of ¢> (exercise). The spaces cq, /P, for 1 < p < 400
are separable since the finite sequences of complex numbers with rational real and
imaginary part are dense (exercise). The space (> is not separable (see e.g. the
FEzercice 5.2 in “Quatre-vingt exercices corrigés” on the page [9]).
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Duality results

Let us prove that ¢ = ¢'. We consider the mapping

coxﬁl E— C

(0y) = e malE = (0,y) and we have |(z,y)| < [|z]lellylle. (2.5.8)

As a consequence, we have a mapping ¢! > y — j(y) € ¢ with j(y) -z = (z,y).
The mapping j is linear, sends ¢! into ¢} (from (2.5.8)) and that inequality proves
as well that j is continuous: ||j(y)|l: < [[ylle. On the other hand, for a given y in
0, N € N*, choosing x3, = yi/|yx| when yp # 0 and k < N, 2, = 0 otherwise, we
have x = (zg)k>1 € co, ||7]|ey < 1,

LWl = sup [(z,9)]> Y lwl, forall N >1,
”chogl 1<k<N
so that [|j(y)lle: = llylle. As a result j(¢') is a closed subspace of ¢ which is

isomorphic to ¢*. We need to prove that j is onto. Let us take £ € ¢fj; we define for
j>1,¢e; = (0;1)r>1 (€ o). We choose some real numbers 6; so that e e; = [€-¢]

and we consider z = (1, ... € 0,0,0...) € ¢y, ||7||,, = 1, so that
€$22619356]:Z|§6J|
1<j<n 1<j<n

As a result, we have for all n > 1, 37, 1€ ¢;| < [l€llgllzlle, = [I€
that y = (£ - ¢;);51 € ¢*. Now, we have for & = (x;);51 € co, by the continuity of &,

o c;» Proving

Eox=lm Y wi(6ee) = (2, (€ ¢)1) = (2,9),

proving that £ = j(y) for some y € ¢! and the sought surjectivity.

We leave to the reader the proof that (¢!)* = ¢>°, which is somewhat analogous
to the previous one.

Let us now prove that (¢*°)*, which is the bidual of ¢!, is (much) larger than ¢'.
The space ¢q is a closed proper subspace of £>°, and the corollary of the Hahn-Banach
theorem 2.2.4 allows us to construct & € (¢*°)* such that

50‘00 :0, &]‘Z‘o = 1, Ty = (171,1,) eeoo\co' (259)
As a consequence, the mapping j : £1 — (£1)** = (£>°)*, defined in the proposition

2.5.13, is not onto since there is no y € £* such that j(y) = &: otherwise, we would
have for xz € £,

(€0, ) (poye e = (F(1), ) @)oo (1) = (@, Yoy = > Ty,
i>1

and since (&, €;)(¢)+ o = 0, that would imply y; = 0 for all 7 > 1, and & = 0,
contradicting (2.5.9). The next proposition is summarizing the situation.
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Proposition 2.5.19. We consider the spaces co, (P defined above. When 1 < p <
+oo we define p' €]1,4+00] by the identity 117 + i = 1. Then we have

(09 =2, (Y™ £ 04, (" is not reflexive, (2.5.10)

L<p<oo, (PY = (PY* =0, (P isreflexive o <p< o, (2.5.11)
(% is not reflexive, (2.5.12)

( )

ch =10 = (N =17 #cy, ¢ is not reflezive. 2.5.13

Proof. The first and the fourth line are proven above, the second line will be proven
in the next section in a more general setting, the third line is a consequence of the
proposition 2.5.17, since ¢! is not reflexive. O

2.5.6 The dual of LP(X, M, u), 1 <p < +oo.

Let (X, M, u) be a measured space and p a positive measure. We consider the
Banach spaces LP(X, M, 1) and we want to determine their dual spaces whenever
1 < p < 400 and the measure pu is o-finite. The definitions and first properties of
these spaces can be found for instance in the section 3.2 of the third chapter, Espaces
de fonctions intégrables, on the page [9]. When X = R™ and p is the Lebesgue
measure, we shall simply write LP(R") to denote that space. For 1 < p < +o0, we
shall note p’ the conjucate index such that

1 1
_+_/:1

p p
P=p/p—1ifl<p<+ocoandp =40 if p=1).

Theorem 2.5.20. Let (X, M, 1) be a measured space, |1 a o-finite positive measure
and 1 < p < +oo. We shall note LP(X, M, ) = LP(u). Let & € (LP(n))*. Then
there exists a unique g € LP' (1) such that

Ve L(u), & f)= /ngdm 1€l e = 91l Lo >

so that, for 1 <p < +oo, (LP(pn))* = Lp'(,u).
N.B. We may consider the sesquilinear mapping

®:LP(p) x LP(n) —  C
(f,9) —  Jx Jgdp.
which is well-defined, thanks to the Holder inequality, |®(f, g)| < ||fllzellgll . (see

e.g. the Théoréme 3.1.5 in the third chapter of [9]). Let us check that the mapping
LP (1) 3 g+ ®, € (LP(1))* given by ®,(f) = ®(f, g) is isometric, i.e.

@y ll(zry- = sup
I fllp=1

/ fgdu‘ — gl (2.5.14)
X
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In fact the inequality ||®gl|(zr)« < ||g||.» follows from the Hélder inequality and for
agiven 0 # g € L” and 1 < p < 400 we have, with

= et Lol 11 = [l aulal = 1.

_ +p
the equality [y fgdp = [y lol"* % dugll 7" = g7 " = gl The same type

of argument works for p = 1: here p’ = +oo and for 0 # g € L*™ we choose € > 0
such that p({|g| > |lg|l~ — €}) > 0 and we set

_ 9 (gl = llgll~ —€)
91 ({19l > llgllzee —€})

so that || f]|1 =1,

and

1(lg| > llgllL= —€) 1
] dyi = / 9ldp
/ p({lgl > ||9||L<>o —¢}) 1(Ge) gl oo —e<lgl< gl oo
Ge

> gy lglli= = 9u(G) = lgllz= — e

As a result ||®y(f)[|(1)« = ||g|lz~. As a result the mapping
VL () — (L)', W(g) = Py

is injective and isometric and thus has a closed image isomorphic to L*'(11). The main
difficulty of the above theorem is the proof that v is indeed onto when 1 < p < 4o00.
We have already seen some examples (see (2.5.10)) showing that for p = oo, the
dual space of L™, i.e. the bidual of L' is much larger than L! and that the mapping
1) is not onto in general in that case'’

Proof of the theorem. Let then 1 < p < oo and & € (LP(p))*. We assume first that
u(X) < oo. For E € M, we define

ME) = £(1p). (2.5.15)

If A, B are measurable and disjoint, we have 14,5 = 14 + 1p, which implies that
A is finitely additive. Let us consider E = U;enE; with E; N E, = 0 if j # k (all
Ej € ./\/l) With Ak = Ujngk, we have

Iis — 1|2, = / dj = p(B\AL).

By the Lebesgue dominated convergence theorem, we know that limy u(E\A) = 0,
and since £ is continuous on LP, we get that limy A(Ax) = A(F), i.e

= Z )\(EJ)

keN

Tt is true however that 1) is an isometric one-to-one mapping, even for p = oo: for g € L', we
have &, (% 1(,201) = llgllo.
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so that A is a complex measure. Moreover if u(E) = 0, we have 15 = 0 p-a.e. and
1p = 0 in L? implying A(E) = 0. As a result we have A\ < p. We may apply the
Radon-Nikodym theorem: there exists g € L'(u) such that

£(1p) = A(E) = [E sin = [ gledn

Thus, by the linearity of £, for any simple function f (finite linear combination of
characteristic functions of measurable sets) we get

(f) = / fgdu,  which is true as well for f € L™(u), (2.5.16)
X

since a function in L*(u) is a uniform limit of simple functions. If p = 1, for all
E € M, we have

/ lEgdu‘ = [€e)| < [l€llwr- el = pE)ENw-,
X

and thus |g(x)| < [|€]|(z1)+ p-a.e., implying

19112y < 1€l e (2.5.17)

If 1 < p < oo, we consider a measurable function « such that ag = |g|, and we
define

fn = 1En|g|p1_1a7 ETL - {|g| S n}
We have |a| =1 on the set {g # 0} and p(p’ — 1) = p’ so that

=119l fal <07,

and applying (2.5.16) to the L* function f,, we get

E(f) = / L, Jg” " agdu = / e
X En

AN o
Tallee = [[Ell ey~ <fEn lg|? du) and this implies

/ gl dp

The Beppo-Levi theorem then implies that ||g||;,» < ||£]|(zr)+. Since & and f —
| fgdp coincide (and are continuous) on L>(u), which is dense in LP(u), they coin-
cide on LP(p) and ||€|(ry+ = ||g|| - The proof is complete in the case p(X) < oo.
Let us now assume that (X) = 4o0.

and | [y, lg1" dia| < 1€ en

1

_1
p~ p/

< [[€ll zry~-

Lemma 2.5.21. There exists w € L'(u) such that Vr € X,0 < w(z) < 1.
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Proof. Since p is o-finite, we have X = U, E,,, E, € M, u(E,) < co. We define

wn(z) = lE"—(m) = w,(x) (2.5.18)

27(1+ pu(E,)) n>1

Since X = U,>1E,, we have always w(z) > 0 and
p(En)
)< S 2 (14 pu(E,)) ! < 2”—1/wd,u: B . O
D=2 o 2 501+ p(B)

We consider now the finite measure dv = wdp (v(X) = [, wdp < co) and the
linear isometries

K1) S A R TS

noting that we have

1F Wy = [ 1FPwdn = [0 o 1y = [ 17707 =
As a consequence, if £ € (LP(p))* we can define n € (LP(v))* by
VE € LP(v), (1, F) o)y ,ow) = (€0 P F) oy oo, and [0l zee): = 1€l
We can use the proven result on finite measures to find G € L¥ (V) such that
Gl 1oy = 10l ze@yy- With (0, F) (o)) Lew) = [y FGdv so that
1
(& P rr () Lo () =/ fw_l/prdMZ/ fgdp, g=Guw'7,
X X

. ’ 1
and, if ¢ < 00 Wl = NG, = Jy |G wdi =[Gl 5 du =
HgHip,(M). pr = 1,]9/ = o0, we have g = G and ”fH(Ll(M))* = HGHLOO(V) = HgHLoo(l/)
The proof of the theorem is complete. O

2.5.7 Transposition

Definition 2.5.22. Let E, F be Banach spaces and A € L(E,F). The transposed
of A is the mapping 'A of L(F*, E*) defined by

Vne F* Vr € E, <tAT],x>E*,E = (n, Ax) p~ f.

We have
||A||£(E,F) = ||tA||£(F*,E*)- (2.5.20)

We note that ‘A is obviously a linear mapping and that ‘An € E* for n € F*

since supy,—1 [(‘An, 2) g+ 5l = Py ,=1 [0, Az) - 5l < [InllF[|Allczr)- On the
other hand, the theorem 2.5.1 implies that
[Alleem = sup [|Azlp = sup  [(n, Az)p- F|
|zl z=1 Izl z=1InllF==1
= sup  |(An,@)ppl= sup ['Anlls- = ['All e B

Izl z=1,]Inll px=1 Il =1



66 CHAPTER 2. BASIC TOOLS OF FUNCTIONAL ANALYSIS

2.6 Appendix

2.6.1 Filters
Definition 2.6.1. Let X be a set. A set F C P(X) is said to be a filter on X if

(1) FeZ#, XDVDOF=VeZ,
(2) Fl,F2€9:>FlﬂF2€y,
(3) 0 ¢ 7.

Of course (2) is equivalent to the fact that a finite intersection of elements of .7
is still an element of .%. Let us give a couple of examples.

Let (X, ) be a non-empty topological space, z € X, and ¥, the set of neigh-
borhoods of z. Since V' € ¥, is equivalent to 3Q) € O, x € Q) C V, the properties
(1), (3) are obviously satisfied as well as (2) from (2) in the definition 1.1.1.

Let X beasetand ) # A C X. We define .% as the set of subsets of X containing
A: it is obviously a filter on X.

Let X be an infinite set and .% be the set of subsets of X with a finite comple-
ment: (3) is satisfied since X is infinite, (1) is obvious as well as (2) since a finite
union of finite sets is finite.

Definition 2.6.2. Let X be a set and %1, %5 be filters on X. We shall say that %
is finer than % whenever F; C .

Remark 2.6.3. Let (.%));c; be a non-empty family of filters on a set X; then
Njes-#; is (obviously) a filter on X.

Proposition 2.6.4. Let X be a set and & be a family of subsets of X such that for
any finite family {E;}1<j<n C &, Mi<j<nEj # 0 (this property is called the non-
empty-finite-intersection-property). Then there exists a unique filter & on X such

that & D & and if F is a filter on X containing &, one has F O &. The filter & is
called the filter generated by & and is the intersection of the filters containing & .

Proof. We define & = {Y € X,3E,,...,Ex € &, Y D Mi<jenE;}. It is a filter
on X since the non-empty-finite-intersection-property ensures that (3) is satisfied
and (1), (2) are obvious. If .# is a filter as in the proposition, it must contain all
the subsets Ni<;<nE; whenever E; € & and thus &. The last statement and the
uniqueness follow from the remark 2.6.3. O



Chapter 3

Introduction to the Theory of
Distributions

3.1 Test Functions and Distributions

3.1.1 Smooth compactly supported functions

Let © be an open subset of R"; we define C°(2) as the vector space of complex-
valued compactly supported functions defined on €2. Even in the case n = 1 and
) =R, it is not completely obvious that this space is not reduced to {0}. We leave
to the reader as an exercise to check that the function

et ift>0
) = : 3.1.1
po(t) {o <o, (3.1.1)

is a C* function on R. Starting with py, we may define a function p on R" by

p(x) = po(1 — [|=[|*) (3.1.2)

and we see right away that p € C2°(R"™) with supp p = B(0, 1). Here we have defined
the support of p as the closure of the set {x € R™ p(x) # 0}. Although that
definition is fine when we deal with a continuous function, it will produce strange
results if we want to define the support of a function in L'(R): for instance the
characteristic function of @ is 0 a.e. and thus 0 as a function of L'(R), nevertheless
the above set is R. It is better to use the following definition, say for a function in

u € L (), Q open subset of R™:

loc

suppu = {r € ), AUopen € ¥, uy = 0}, (suppu)® = {z € Q,IVopen € ¥, uy = 0}.

(3.1.3)
The above definition makes sense for an L, function with upy = 0 meaning u = 0
a.e. in U. The smooth compactly supported functions are very useful as mollifiers,
as shown by the next proposition.

Proposition 3.1.1. Let ¢ € CX(R") with [, ¢(x)dx = 1. For e > 0, we define
Oc(x) = e "Pp(xe™t). Then, if f € C(R"), limeg, ¢e * f = f (convergence in
CI'(R™)) and if f € LP(R™) with 1 < p < +o0, lime_g, ¢ *x f = f (convergence in
LP(R™)). In both cases the function ¢ * f is C*°.

67
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Proof. We write

(60 @)~ F0) = [ 0.la = )5y~ (@) = [ 6w)(fa — ) = Fla)d.

so that, if supp ¢ C B(0, Ry),

(e * () — f()] < / bWy s |f(m) — flx).

|z1—22|<eRo

The function f is continuous and compactly supported, so is uniformly continuous
on R"™ (an easy consequence of the Heine theorem 1.5.10), thus

fim (sup [(6c f)(@) = f(@)]) =0,

yielding the uniform convergence of ¢, * f towards f. If f is C7", a simple dif-

ferentiation under the integral sign (see e.g. the Théoréme 3.3.2. in [J]) gives as
well the uniform convergence of the derivatives, up to order m. The smoothness
of ¢ * f for € > 0 is due to the same theorem when f € C"(R"), since we have

(¢ * ) (@) = [ dc(x —y)f(y)dy.

Remark 3.1.2. We have not defined a topology on the vector space CI"(R™), but at
the moment it will be enough for us to say that a sequence (uy)ren of functions in
C(R™) is converging if it converges in C™(R™) and if there exists a compact set K
such that, for all k € N, suppu, C K.

We note in particular that these conditions are satisfied by the “sequences”

(¢ * f)eso since for € < 1, supp(¢e * f) C supp f + supp ¢ C supp f + supp ¢.
Let us now take f € LP(R") with 1 < p < co. With ¢ € C?(R"), we have

f*¢e_f:(f_w)*¢e+¢*¢e_¢+w_fa
so that
1 * ¢ = fllor@ny < A+ Sl f = Yller@n) + 119 % b = Dl Lo @ny
< (T4l e)f = Yllr@ny + |supp @ + € YR\l x ¢ — V|| Lo (mr)-
Lebesgue measure

Since ¢ € C(R™), the previous convergence argument implies the inequality

limsup [ f * ¢ = fllo@n) < (L4 ([0l f = lloo@n),  for all ¥ € CF(R).

e—04

The density of C2°(R") in LP(R™) for 1 < p < oo (see e.g. the Théoreme 3.4.1 in
[9]) yields the result. For e > 0, R > 0, all the functions

VYre(y) = sup [(07¢e)(x —y) f(y)]

lz|<R
belong to L*(R?) since
o L
/@DR,e(y)dy < ||f||Lv(Rn>(/ |S‘u<13%|(0$¢e)(x —y)| dy) ot =h

and supp ¢ C Bg, gives that |z — y| < eRy, |z| < R imply |y| < eRy + R, and the
finiteness of the integral above, proving the smoothness of ¢, * f for e > 0. O
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N.B. The result of the proposition does not extend to the case p = oo, since the
uniform convergence of the continuous function f % ¢. would imply the continuity of
the limit.

It will be also useful to use the compactly supported functions to construct some
partitions of unity and, to begin with, to find C'%° functions identically equal to 1
near a compact set.

Lemma 3.1.3. Let Q be an open subset of R™ and K be a compact subset of €.
Then there exists a function ¢ € C(;10,1]) such that ¢ =1 on a neighborhood of
K.

Proof. We claim that there exists €y > 0 such that K + ¢yB; C 2, (B is the open
unit ball). First we note that

d(K,Q% = inf |z —y|>0, (3.1.4)

reK,yee

otherwise, we could find sequences (zx)r>1 in K, (yg)r>1 in Q¢ such that limy |z —
yr| = 0, and since K is compact, we may suppose that (zj) converges with limit
x € K, implying 2¢ 5 limy y, = x, which is impossible since K C (). As a result, we
have with €y = d(K,Q°)

K+ €¢yB; C Q,

otherwise, we could find |t| < 1,z € K such that x + ¢t = y € Q°, implying
|z — y| < g = d(K,Q°), which is impossible. With the function p defined in 3.1.2,
we define with 0 <e < & < ¢,

-1
o) = [ Lisas@rlta -~ e e ay( [ aorde)
The function ¢ is C* and such that

_ _ 3 3
SuppgoCK+elBl+eBl CK—'—§€1Bl CK+ZEOBl CK+€oBl C Q.
———

compact

Moreover ¢ = 1 on K + < By (which is a neighborhood of K), since if v € K + 9B,
we have, for y satisfying |z —y| <, that y € K+ 9B +eB) C K+ €15 Asa
result, with g = p( [ p(t)dt)_l, for € K + < By, we have

- / A(x — y)e e mdy = / (2 = 9N g ren s (W)dy = ().

We note also that, since p > 0 with integral 1, 1. (y) € [0, 1], we have, for all z € R",
0 < ¢(x) < 1. The proof of the lemma is complete. ]
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3.1.2 Distributions

Definition 3.1.4. Let Q2 be an open set of R™ and let T : C(Q2) — C be a linear
form with the following continuity property,

VK compact C Q,3Ck > 0,3Ng € N,Vp € CF(Q), (T,p)| < Ck sup |(05¢)(x)],
|a|<Ng
zER™

(3.1.5)
where C2 () = {p € CX(Q),suppp C K}.

N.B. We shall use also the notation 2(£2) for the space of test functions C°(£2) and
2'(Y) for the space of distributions on 2. We have not introduced a topology on
2(9)) but we have defined a notion of converging sequence with the remark 3.1.2.
It would have been certainly more elegant to start with the display of the natural
topological structure on Z(2), at the (heavy) cost of having to deal with a non-
metrizable locally convex topology defined by an uncountable family of semi-norms.
The study of inductive limits of increasing sequences of Fréchet spaces is outlined
in the appendix ??. Anyhow, one should think of 2'(2) as the topological dual of
2(R2), a view supported by the next lemmas and remarks.

Remark 3.1.5. With Zx(Q) = C®(Q2), we have, using the sequence of compact
sets (Kj);>1 of the lemma 2.3.1

2(Q) = Uj>1%k,(Q2)

and it is not difficult to see that each Zx,(f2) is a Fréchet space with the natural
countable family of semi-norms given by pg; m(u) = supjai<m [(9gu)(x)|. If we want
reK;

to use the countable family px; ., we end-up with the topology on the Fréchet space
C>(Q) as described in the subsection 2.3.3; the actual topology on Z(f2) is finer
and it is important to understand that, with p defined in (3.1.2) (say with n = 1),
the sequence (ug)ken, given by

ur(z) = p(z — k)

does converge to 0 in the Fréchet space C*°(R) but is not convergent in C°(R),
since the second condition of the remark 3.1.2 is not satisfied: there is no compact
subset K of R such that Vk € N, suppu, C K.

Remark 3.1.6. Note that a linear form 7" on C2°(Q2) is a distribution if and only
if, for all compact subsets K of 2, its restriction to the Fréchet space Zk(f2) is
continuous.

ALl

loc

define for ¢ € Z(Q)

function is a distribution: for € open subset of R", for f € L (02), we

loc

T.9) = [ f@elads = (Tl < lelmeey | 1F@ds, (316)

supp

so that (3.1.5) is satisfied with Cx = [, |f(x)|dz, N = 0. Moreover the canonical

mapping from L{ () into 2'(Q2) is injective, as shown by the next lemma.
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Lemma 3.1.7. Let Q be an open subset of R™, f € Ll (Q) such that, for all p €
2(Q), | f(z)p(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Q and x € Z(2) equal to 1 on a neighbor-
hood of K as in the lemma 3.1.3. With ¢ as in the proposition 3.1.1, we get that
lime, ¢c* (xf) =xf in L'(R"). We have

(605 ()(a) = [ F0) @)l ~ y)e e mdy, supp s © Ko € 2(9),

=0z (y)

and from the assumption of the lemma, we obtain (¢, * (xf))(z) = 0 for all z,
implying xf = 0 from the convergence result; the conclusion follows. O

We note that it makes sense to restrict a distribution 7" € 2'(Q2) to an open
subset U C €2: just define

(Tiv, ©) 7 wy,2w) = (T, @) 219),.29) (3.1.7)

and Tjy is obviously a distribution on U. With this in mind, we can define the
support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Q be an open subset of R" and T € 2'(Y). We define the
support of T" as
suppT = {x € Q,YUopen € ¥, Ty # 0}. (3.1.8)

We define the C'*° singular support of T as
singsupp T = {z € Q,YUopen € ¥,, T\y ¢ C*(U)}. (3.1.9)

Note that the support and the singular support are closed subset of 2 since their
complements in ) are open: we have

(suppT)“ = {z € Q,3Vopen € ¥, Ty = 0}, (3.1.10)
(singsupp 1) = {x € Q,FUVopen € ¥, Tiy € C*(U)}. (3.1.11)
A simple consequence of that definition is that, for T € 2'(2), ¢ € 2(Q),

supp ¢ C (suppT)° = (T, ¢) = 0. (3.1.12)

3.1.3 First examples of distributions
The Dirac mass

We define for ¢ € C2(R"), (d, ) = ©(0); the property (3.1.5) is satisfied with
Cx =1, Ng = 0. We have supp dy = {0}. From this, the Dirac mass cannot be an
Li . function, otherwise, since it is 0 a.e., it would be 0. Let ¢, € as in the proposition
3.1.1: then we have from that proposition

Mg/@wWQszwm,

e—04

so that the Dirac mass appears as the weak limit of e "¢ (ze™1).



72 CHAPTER 3. INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

The simple layer

We consider in R the hypersurface ¥ = {(z/,z,) € R"! X R, x, = f(2)}, where
f e CYR"1). We define for ¢ € CO(R"),

Gsh = [ ola' F@) (14 95 )

The property (3.1.5) is satisfied with Cx = area(X N K), N = 0,supp dy, = X, and
since ¥ has Lebesgue measure 0 in R™, the simple layer potential cannot be an Lj.,
function.

The principal value of 1/x
We define for ¢ € C}(R),

(pv %,gp) = lim @daa (3.1.13)

Let us check that this limit exists. We have for parity reasons,

/lzze e - /€+OO(80(33) - w(—x))d_x

= [Inz(p(z) — go(—x))}izjoo - / Oo(gp’(x) + ¢'(—2)) Inzdz

and thus, using that lim._, elne =0, In|z| € L} (R), we get

loc

v == [ (@) + ¢ a) made = - [ a)nol)de

yielding [(pv L, )| < [, |1 [elde]lo/ o

3.1.4 Continuity properties

Definition 3.1.9. Let Q be an open subset of R™ and let (¢;);j>1 be a sequence of
functions in C2°(2). We shall say that lim; p; = 0 in C°(2) when the two following
conditions are satisfied:

(1) there exists a compact set K C 2, such that Vj > 1,supp ¢; C K,

(2) lim; @; = 0 in the Fréchet space C32(Q), i.e. Yoo € N™, lim; (sup,cf |(0%0;)(x)]) = 0.

Proposition 3.1.10. Let € be an open subset of R™ and T be a linear form defined
on C®(Q). The linear form T is a distribution on S if and only if it is sequentially
continuous.

Proof. Assuming [(T, ¢)| < Ck maxja<n, [|05¢| 1~ for all ¢ € CFE(2) and all K
compact C €2 implies readily the sequential continuity. Conversely, if T does not
satisfy (3.1.5), we have

dKocompact C Q,Vk > 1,VN € N,Jg v € O (), (T, orn)| > k ‘U|1§>A<[ 105 @k, N || oo -



3.1. TEST FUNCTIONS AND DISTRIBUTIONS 73

From the strict inequality, we infer that the function ¢y x is not identically 0, and
we may define

Pk,k
U = ’ ., so that (T, )| > 1.
k maxiq <i |0 pkl| Lo [T e

But the sequence (v¢)r>1 converges to 0 since suppvy C Ky and for |8 < k,
0P|l < 1/k, implying for each multi-index 3 that limy, [|[0%y|/z~ = 0. The
sequential continuity is violated since (T, 1)| > 1 and the converse is proven. []

Definition 3.1.11. Let Q be an open subset of R", T € 2'(Q2) and N € N. The
distribution T will be said of finite order N if
AN € N,VK compact C Q,3Cx > 0,Vp € CF(Q), (T, )| < Ck sup |(05¢)(z)].

la]<N
zERM

(3.1.14)
The vector space of distributions of order N on Q will be denoted by 2’ (Q). The
vector space 2'°(Q) is called the space of Radon measures on ).

Proposition 3.1.12. Let Q be an open subset of R™ and m € N. The vector
space D' () is equal to the sequentially continuous' linear forms on C™(Q): if
T € 2'"™(Q), it can be extended to a sequentially continuous linear form on C'(§2).
If T is a sequentially continuous linear form on CT(2), then T € 2™ ().

Proof. Let us first consider T' € 2'™(Q2), ¢ € C(Q). Applying the proposition 3.1.1,
we find a sequence (¢g)r>1 in C°(£2), converging in C7*(€2) with limit ¢. Since we
may assume that all the functions ¢ and ¢ are supported in a fixed compact subset
K of Q, we have, according to the estimate (3.1.14),

(T, o — )| <C max 107 (or — 1) || e = Cplor — 1),

where p is the norm in the Banach space C72(€2). Since the sequence (¢g)r>1 con-
verges in CP(Q2), we get that the sequence ((T', vx))r>1 is a Cauchy sequence in C,
thus converges; moreover, if for some compact subset L of €, (¢y)r>1 is another
sequence of C7'(Q2) converging to ¢, we have

(T, p—r)| < C' max 105 (r—1r)| e = C'p(pr—1k) < C'p(r—p)+C'p(p—1k)

and limg (T, ¥ — pr) = 0 so that, we can extend the linear form to C*(§2) by defining
(T, p) = lim (T, pr). We get also immediately that (3.1.14) holds with N = m and
C2(Q) replaced by C(2), so that T" is obviously sequentially continuous.

Let us now consider a sequentially continuous linear form 7" on C"*(£2); reproduc-
ing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with
N = m, proving that T'€ 2™ (). The proof of the proposition is complete. ]

Remark 3.1.13. We have already proven directly that functions in Li..(2)(see
(3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions
of order 0. It is an exercise left to the reader to prove that the distribution pV%

defined in (3.1.13) is of order 1 and not of order 0.

!The convergence of a sequence in C7*(2) is analogous to the convergence given in the definition
3.1.9, except that (2) is required in the Banach space C2(Q), i.e. |a] < m.
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3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let 2 be an open subset of R", K a compact
subset of Q and Qq,...,Q,, open subsets of  such that K C QU ---U,,. Then
for 1 < j <m, there exists 1; € C*(€;;[0,1]) and V open such that

ODVOK VzeV, Y z)=1,

1<j<m

and for all x € Q0,3 ;. ¥;(x) € [0, 1].

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider
now m > 1 and we note that, since x € K implies x € one of the );,

K C UgexB(z,1;), B(x,r;) C one of the Q;, r, > 0.

From the compactness of K, we get that K C Uj<j<yB(x;,74,) and we may assume
that

B(l'l,rxl) CQl, fOI’lSlSNl,

B(wy,74,) C Qa,  for Ny <1< Ny,

B(z,ry,) C Qp,  for Np_y <l < N, = N.

We define then the compact sets

K1 :UlslgNlB(ZEl,T‘xl), ;Km:UNm,1<l§NmB(xl;Txl)a

and we have K C Uj<j<n, K, and for each j, K; C §2;. Using the lemma 3.1.3, we
find ; € C°(£;;[0,1]) such that ¢; = 1 on a neighborhood V;(C ;) of K;. We
define then

wl = @1,

Py = (1 — 1),

so that ¢; € C°(€;; [0, 1]) and we have
=Y w(Ila-e)=1- I 0-w0. (3.1.15)
1<j<m 1<j<m 1<k<j 1<k<m
since the formula (second equality above) is true for m = 1 and inductively,

> ow(ITa-e0)=1- IT C=e0+emn I] -@)

1<j<m+1 1<k<j 1<k<m 1<k<m

=1—(1—-¢m) H(l—%):l— H (1 — n)-

1<k<m 1<k<m-+1

We have thus for x € Uj<;<,,V; (which is a neighborhood of K in ), using (3.1.15)
and ;=1 on Vj, > o, ¥i(x) = 1. On the other hand, (3.1.15) and ¢; valued in
[0,1] show that >, ¥;(z) € [0,1] for all z. The proof is complete. O
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Theorem 3.1.15. Let Q2 be an open set of R™ and (2;)c; be an open covering of
Q: each Q; 1s open and Ujc ;€0 = 2. Let us assume that for each j € J, we are
given T; € 2'(€);) in such a way that

ijjrm,C = Tleijk- (3.1.16)
Then there exists a unique T € Z'(Q2) such that for all j € J, Tiq, = Tj.

Proof. Uniqueness: if T, S are such distributions, we get that (T' — S)q, = 0, so
that for all j € J, Q; C (supp (T'— 5))¢ and thus Q = U,ec;Q; C (supp (T — 5))¢,
ie. T—S5=0.

Existence: let ¢ € 2(£) and let us consider the compact set K = suppg. We
have K' C Ujcpm(); with M a finite subset of J. Using the theorem on partitions
of unity, we find some function +; € C°(§;) for j € M such that > .\, ¢; =
1 on a neighborhood of K. As a consequence, we have ¢ = > e Vi and we define

(T,0) = > Ty, dj¢0).

JEM

The required estimates (3.1.5) are easily checked, but the linearity and the indepen-
dence with respect to the decomposition deserve some attention. Assume that we
have ¢ = ", -y &1, where N is a finite subset of J and ¢, € C7°(€2): we have

S (Tidnp) = Y (Th, ortljo) = > (T o) = > (Th150),

keN JEMEEN from (3.1.16) JEM,kEN JjeM

proving that 7" is defined independently of the decomposition. The linearity follows
at once. The proof is complete. O]

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions Z(2), although we
gave the definition of convergence of a sequence (see the definition 3.1.9); we shall
need also a simple notion of weak-dual convergence of a sequence of distributions,
which is the o(2', Z) convergence.

Definition 3.1.16. Let Q2 be an open set of R™, (1)1 be a sequence of 2'(Q?) and
T e 2'(Q). We shall say that lim; T; = T in the weak-dual topology if

Yo € 2(0Q), li;rn(Tj,@ = (T, p). (3.1.17)

Remark 3.1.17. We have already seen (see the section 3.1.3) that for p € C°(R"),
e >0, p(x) = e "plxet), ime_o, p = do [ p(t)dt. Moreover, on Z'(R), we have
with T)(7) = e, limy_ o T) = 0 since for ¢ € Z(R),

/]R e o(x)dr = (iN) /R %(eim)gp(aﬁ)daﬁ: —(iN)! / e (1) dx.

R
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Theorem 3.1.18. Let Q) be an open set of R", (1});>1 be a sequence of 2'(§) such
that, for all p € 2(Q), the (numerical) sequence ((T}, p));>1 converges. Defining the
linear form T on (), by (T, ) =lim;(T;, p), we obtain that T belongs to Z'(12).

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let
us consider a compact subset K of (). Then defining 7} x as the restriction of Tj
to the Fréchet space Zk(2), we see that the assumptions of the corollary 2.1.8 are
satisfied since T ;¢ belongs to the topological dual of Z(€2), according to the remark
3.1.6. As a consequence the restriction of 7' to Zk(£2) belongs to the topological
dual of Zk () and from the same remark 3.1.6, it gives that T € 2'(12). O

N.B. The reader may note that we have used £ = Z(Q2) = U;en%k, () = U;Ej,
and that our definition of the topological dual of E as linear forms 7" on F such that,
for all j, Tig, € the topological dual of the Fréchet space Ej;. This structure allows
us to use the Banach-Steinhaus theorem, although we have not defined a topology
on F; this observation is a good introduction to the more abstract setting of LF
spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication
by C*° functions

3.2.1 Differentiation

Definition 3.2.1. Let Q be an open set of R" and T € Z'(2). We define the
distributions 0., T and for a multi-inder o € N (see (2.3.6)), 09T by

(00, T, ) = —(T,05,0), (00T, p) = (—1)I°NT, 0%p). (3.2.1)

We note that 027 is indeed a distribution on €2, since the mappings ¢ — 0%
are continuous on each Fréchet space Zk ().

Remark 3.2.2. If lim;7; = T in the weak-dual topology of 2'(2), then, for all
multi-indices «, lim; 09T; = 09T (in the weak-dual topology): we have, for each
p € 2(Q),

(00T, ) = (=1)1*UT;, 0%¢) — (—1)I*NT, 92¢) = (95T, ).

j—+oo

Remark 3.2.3. If u € C'(Q), its derivative 9,,u as a distribution coincides with
the distribution defined by the continuous function du/dz;: for ¢ € 2(2),

(Ot 8) = (1, 0. ) = — / u(x)g—;’;(x)dx _ g—;j(x)go(x)dx _ <§—;, o).

Also, if u,v € CY(Q) are such that d,,u = v in 2'(Q), then the function u admits v
as a partial derivative with respect to x;. To prove this, we may assume that u,v
are both compactly supported in Q: in fact it is enough to prove that for x € C°(2)
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identically equal to 1 near a point xg, the function yu (compactly supported) has
a partial derivative with respect to x; which is yv + ud,, x (compactly supported)
and we know that in 2’(2) we have

(O, (xU), ) = —(u, X0, 0) = —(u, Ou, (X)) + (U, 902, X) = (O, u, Xp) + (UOs, X, )

which implies a particular case of Leibniz’ formula 0,, (xu) = X0 u + u0y, X =
XU + u0y, X. Assuming then that u,v are compactly supported, we have from the
proposition 3.1.1, u = lim.(u * ¢.) in C(2) and the functions u * ¢. € C>(£2). Also
we have, with the ordinary differentiation,

(Or, (ukge)) () = /U(y)(ﬁme)(iv—y)dy = (u(-), =0y, (¢c(z—))) = /v(y)@(ﬂc—y)dy,

and lim (v * ¢.) = v in C%(Q). As a result the sequences (u * ¢.), (O, (u * ¢.)) are
both uniformly converging sequences of (compactly supported) continuous functions
with respective limits u, v, and this implies that the continuous function u has v as
a partial derivative with respect to x;.

3.2.2 Examples

Defining the Heaviside function H as 1g,, we get
H' =6 (3.2.2)

since for ¢ € Z(R), we have (H', o) = —(H,¢') = — fOJrOO ' (t)dt = ¢(0). Still in
one dimension, we have
k
(%", ) = (=1)*9(0), (3:23)

since it is true for £ = 0 and inductively (5(k+1), ) = —<5(()k), ¢ = —(=1)k'®(0) =
(—1)F+1 R+ (0). Looking at the definition (3.1.13), we see that we have proven

1 d e L

pv (=) = —(In]z|), (distribution derivative). (3.2.4)

x dz
Let f be a finitely-piecewise C! function defined on R: it means that there is an
increasing finite sequence of real numbers (a,)i<n<n, so that f is C! on all closed
intervals [a,, ap41] for 1 < n < N and on | — 00, a4] and [ay, +oo[. In particular,
the function f has a left-limit f(a; ) and a right-limit f(a;") which may be different.
Let us compute the distribution derivative of f; for ¢ € Z(R), since f is locally
integrable, we have, setting ay = —o0,an,1 = 400,

o) = —(f ) = / s == 5 / "

— / o vydr+ Y (f — fani)¢(ans))

0<n<N v an 0<n<N

- [e@( Y fjf< @) + Y Fa)pla) = 3 flay)elan)

0<n<N 1<n<N 1<n<N
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so that we have obtained the so-called formula of jumps

d
Fe Y T+ Y (@)~ f0))6 (3.2.5)

0<n<N 1<n<N

where d,, is the Dirac mass at a,,, defined by (d,,, ) = ¢(a,).
We consider now the following determination of the logarithm given for z € C\R_

by
Logz:j{ ﬁ, (3.2.6)
n: §

which makes sense since C\R_ is star-shaped with respect to 1, i.e. the segment

[1,2z] € C\R_ for z € C\R_. Since the function Log coincides with In on R* and is
holomorphic on C\R_, we get by analytic continuation that

Log z

e =z, forzeC\R_. (3.2.7)

Also by analytic continuation, we have for |Imz| < 7, Log(e*) = z. We want now
to study the distributions on R,

uy(z) = Log(z +dy), where y # 0 is a real parameter.
We leave as an exercise for the reader to prove that

lim Log(z + iy) = In|z| +ir (1 — H(z)), (3.2.8)

y—04

where the limits are taken in the sense of the definition 3.1.16; also the reader can
check

1
= — 70, 3.2.9
T - (g Fimdo (3.2.9)
where we have defined
1 : o(r)
=1 T~ d 2.1
iR Bl L il (3.2.10)

(part of the exercise is to prove that these limits exist for ¢ € Z(R)). We conclude
that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of R. The solutions in 2'(I) of v = 0
are the constants. The solutions in P'(I) of u' = f make a one-dimensional affine
subspace of 2'(I).

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution.
Conversely, let us assume that u € 2'(I) satisfies v' = 0. Let yo € C°(I) such
that [ xo(#)dz = 1; then we have for any ¢ € C(I), with J(¢) = [, ¢(z)dz,
Y(x) = [T (p(t) — J(¢)xo(t))dt, noting that ¢ belongs® to C(1),

(u, 0 = J()x0) = (u, ') = —(u',9) = 0,

2The function 1) is obviously smooth and if ¢, xo are both supported in {a < x < b},a,b € I,
so is 1, thanks to the condition [ xo = 1.
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which gives (u, p) = J(p)(u, xo), i.e. u = (u, xo) proving that u is indeed a constant.
We have proven that the solutions u € 2'(I) of v = 0 are simply the constants.
If f e 2'(I), we need only to construct a solution vy of vj = f and then use the
previous result to obtain that the set of solutions of v’ = f is vo+R. Let us construct
such a solution vg. For ¢ € Z(I), we define with the same v as above,

(vo, p) = —(f,¥). (3.2.11)

It is a distribution since for supp ¢ compact C I, we define (the compact set) K; =
supp ¢ U supp xo, and we have

- < DN ;0 < Dy
(o, o) = (/9] < Oy max (197l < €t el

Moreover the formula (3.2.11) implies the sought result

(vg, ) = —(vo, @) = (f, ) = ([, ),

since ¢y (2) = [T (¢'(t) — J(¢')xo(t))dt = ¢(x) because J(¢') = 0. The proof of
the lemma is complete. O]

3.2.3 Product by smooth functions

We define now the product of a C* (resp. C) function by a distribution (resp. of
order N).

Definition 3.2.5. Let 2 be an open subset of R™ and u € 2'(Q). For f € C*(Q),
we define the product f -u as the distribution defined by

(f - u, )92 = (U, fO)9@),20) (3.2.12)

If u is of order N and f € CN(Q), we define the product f - u as the distribution of
order N defined by

(f - w9) v ). on) = (U fO) v ) ov - (3.2.13)

Remark 3.2.6. Since the multiplication by a C*°(Q) (resp. CV(Q)) function is a
continuous linear operator from C®(Q) (resp. CN(2)) into itself, we get that the
above formulas actually define the products as distributions on €2 with the right order
(see the proposition 3.1.12). Also the product defined in the second part coincides
with the first definition whenever f € C°(Q) and if u € Ll (Q), f € C°(), the

usual product fu coincides with the f - u defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz’ formula for
the derivatives of a product.

Theorem 3.2.7. Let Q be an open set of R", uw € 2'(Q), f € C°(Q) and o € N"
be a multi-index (see (2.3.6)). Then we have

09 (fu) _ 3 92(f) 93(u) (3.2.14)
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Proof. We get immediately by induction on |«| the formula

) _ 5, 02000

| = Byy | |
ol vt J61 !
Btvy=a

,  with og, € R,

To find the o4, we choose f(x) = €% u(z) = ", with £, € R". We find then
for all £,n € R”, the identity

(& +n)" _@( SD R A G /G0 N <l

- Y - Y ’

o s Bl o me AN
Bty=a Brry=a

and the formula (2.3.7) shows that for 3, such that 4+ v =«

Opry = 8583((§+n)a

al )\£=n=0 =1

completing the proof of the theorem. O

Examples. Let f be a continuous function on R and 9, be the Dirac mass at 0.
The product f - dg is equal to f(0)dy: since dy is a distribution of order 0, we can
multiply it by a continuous function and if ¢ € C(R), we have

(f - 00, ) = (00, f0) = [(0)p(0) = (f(0)do, p) = [ - 0o = f(0)dp.  (3.2.15)

On the other hand if f € C'(R) we have

f -8 = F(0)5 — f/(0)5, (3.2.16)

since the Leibniz’ formula (3.2.14) gives f(0)0), = (f - do) = f'- 00 + f -0y =
f(0)d + f - 6. In particular xd), = —d.

3.2.4 Division of distribution on R by z™

We want now to address the question of division of a function (or a distribution) by a
polynomial; a typical example is the division of 1 by the linear function x expressed
by the identity

zpv(l/x) =1 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous
examples that, for any constant c, we have m(pv(l /x)+ 050) = 1. The next theorem
shows that T' = pv(1/x) + ¢y are the only distributions solutions of the equation
2T =1.

Theorem 3.2.8. Let m > 1 be an integer. '
(1) If u € Z'(R) is such that 2™u =0, then u =3, ;08
(2) Let v € Z'(R); there exists u € ' (R) such that v = z™u.
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Proof. Let us first prove (1). For ¢, xo € C2°(R) with xo = 1 near 0, we have

(9) ) L1 ¢ym-1
)= 3 0 /0 %W(m)dmm, Yy € CF(R),

e Y (2)

and thus, since 2™u = 0,

=0 =0
"

Ve —_——N—
<U, §0> = <xmu7 x_m(]- - X0)§0> +<U, XOSD> = <U, XOprn,go) + <:L,mu7 X0¢w,m>

(9) ;
= Z Soj!(0><U:XO>: Z <Cj5(()j)790>7

0<j<m 0<j<m

which the sought result. To obtain (2), for ¢ € C°(R), and a given vy € Z'(R), we
define, using the above notations,

(u, ) = Vo, Xo¥me) + (vo, 27" (1 = X0))-

This defines obviously a distribution on R and (x™u, ¢) = (u,z™p); for the func-
tion ¢(x) = 2™p(x), we have py, = 0,27y, »(2) = ™@(z), so that the smooth
functions ¥, 4 = ¢,

(2™ u, ) = (vo, Xop) + (vo, 27" (1 — x0)x™p) = (vo, ). O

3.3 Distributions with compact support

3.3.1 Identification with &’

Let © be an open subset of R". We have already seen that the space C*°(Q2) (also
denoted by &(€2)) is a Fréchet space. Denoting by &”(€2) the topological dual of
(), we can consider T' € &'(Q2) as a distribution 7" on €2 by defining

(T, ) g1 0),20) = (T, ¢)e),e (this makes sense since Z(2) C £()).

The linearity is obvious and the continuity of 7" as a linear form on the Fréchet space
& () implies that there exists C' > 0, N € N, K compact subset of {2 such that

Vo € £(Q), KT, 0)e@eo] <C  sup  [(97¢)(z)]
|a|<N, zeK

This estimates also proves that T belongs to 2’ (€2); moreover, it has compact sup-
port in the sense of the definition (3.1.8): we have (T, ) = 0 for ¢ € C®(Q),
supp ¢ C K¢, so that T| ke = 0 and thus SuppT C K. The next theorem proves that
we can identify the space &”’(€2) with the distributions on Q with compact support,
denoted by Z.....(9).

comp

Theorem 3.3.1. Let Q2 be an open subset of R". The mapping ¢ : &'(Q) —
... (Q), defined as above by o(T) =T is bijective.

comp
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Proof. The mapping ¢ is linear and if +«(T)) = 0, we know that 7' vanishes on all
functions of 2(12).

Lemma 3.3.2. Let 2 be an open subset of R™. The space 2(S2) is dense in &(€2).

Proof of the lemma. We consider a sequence (K;);>1 of compact subsets of {2 such
that the lemma 2.3.1 is satisfied. For each j > 1, we may use the lemma 3.1.3 to
construct a function y; € Z(2) with x; = 1 near K;. For a given ¢ € &(2), the
sequence (pyx;);>1 of functions in Z(Q2) converges in &(€2) to ¢, thanks to the last
property of the lemma 2.3.1, proving the lemma. O

Since T is continuous on & (), (T, ¢)s().c@) = im; (T, X;) e (@)e(@), = 0 since
T vanishes on Z(f2). Let us consider now T' € 2/, () with suppT = L (compact

comp

subset of Q). Using the lemma 3.1.3, we consider xo € Z(2) such that yo =1 on a
neighborhood of L. For ¢ € &(2), we define S € &’(12) by

(S, @) ey .e@ = (T x0p) 77),2(0) (note that [(S, )| < C sup |05 0l),

|a|<N, z€supp xo

We have ((S) =T because

(L(S), @)@/(9),9(9) = (S, @)g/(n),g(m = (T, XOSD>9’(Q),@(Q) = <X0T, 90>.@/(Q),@(Q)a

and since for p € Z(Q), the function (1 — xo)¢ vanishes on an open neighborhood
V of L implying

SUPP((1 - XO)SO) cVec L= (T,(1-xo0)p) =0,
so that ¢(S) = x0T = x0T + (1 — x0)T = T. The proof of the theorem is complete.
—_——

=0

]

Remark 3.3.3. We can then identify &/ . (Q) with &”(£2), and we may note that

comp
for T € Doy (€2) with suppT' = L, T'is of finite order IV, and for all neighborhoods

K of L, there exists C' > 0 such that, for all ¢ € &(Q2),

(Tp)| <C sup  |(FFp)(x)]. (3.3.1)

|a|<N, zeK

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in {0}.

Theorem 3.3.4. Let Q be an open subset of R", g € Q and let u € 2'(Q) such
that suppu = {zo}. Thenu =73,y a0 where the cq are some constants.
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Proof. Let ¢ € C*(Q); we have for = € V C open neighborhood of z (included in
), Ny the order of u,

pla)= ) @giw(m_%)wr/o %9@(%“)(% +0(x — xo))db(z—w0) ",

|| <No ' < -~ <

and thus for x € C2°(V), x = 1 near x,

(0 0) = (wxow) = 3 W

|| <No

(u, Xo(2)(z —20)*) + (u, xo(z)¥ () (x —20) " F1).

(3.3.2)
We have also

|{u, xo(x)(x)(x — xo)N°+1>| < Cp sup |0% (Xo(x)w(x)(x — xO)NOH) |. (3.3.3)

|| <No

We can take xo(z) = p(*=*), where p € C'°(R") is supported in the unit ball By,
p=1in %Bl and € > 0. We have then

No+1

ol (o) = an) ¥ = L ) )

r—x
= ENOHM(—E 0)

with p1(t) = p(t)y(zo + et)tNo L so that p; € C°(R") is supported in the unit ball
By has all its derivatives bounded independently of €. From (3.3.3), we get for all
€ >0,

T — X

[{u, Xo(2)y (@) (2 — 20)™* )] < Co Sup R (G

)| S 0167

which implies that the left-hand-side of (3.3.3) is zero. The result of the theorem
follows from (3.4.15). O

3.4 Tensor products

Let X be an open subset of R™, Y be an open subset of R” and f € C*(X),g €
C(Y). The tensor product f® g is defined by (f®g¢)(x,y) = f(x)g(y) and belongs
to CX(X xY). Now if T' € 2'(X),S € 2'(Y), we want to define a distribution
T®SeP'(X xY)such that

(T®S, fog) =T, f){S9).

This triggers several questions: is such a construction possible? Is the definition
above sufficient to determine unambiguously the distribution 7'® 57 We shall answer
positively to these questions, but we first address a related question of derivation of
an “integral” depending on a parameter.



84 CHAPTER 3. INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

3.4.1 Differentiation of a duality product

Theorem 3.4.1. Let Q2 be an open subset of R, uw € 2'(2), U an open subset of
R™ and ¢ € C(2 x U) such that

vVt € U,3V, € ¥;,3K; compact subset of ), Vs €V, suppo(-,s)C K;. (3.4.1)

Then the function f defined on U by f(t) = (u, ¢(-,t)) makes sense and belongs to
C>®(U). Moreover we have for all o € N™, (05 f)(t) = (u, (05¢) (-, 1)).

Proof. The function f makes sense since for all t € U, the function ¢(-,t) belongs
to C2°(Q2). Let ty € U and By be a closed ball with center ¢, and positive radius rg
included in V;, given by (3.4.1). For |h| < rg, we have

f(to+h) = f(to) = (u, 6(-,to + h) — (-, t0))

/

TV
supported in Ky,

and using Taylor’s formula with integral remainder, we get

support in Ky,

1 e e
Fto+R) — fto) = (u, (3:d) (-, to))h + (u, /0 (1= 0)026(-,to + Oh) dOYh? .

N J/

-

r(to,h)

We have, since K;, x By is a compact subset of 2 x U,

1
Ir(to, )] < |B2Co  sup / (1= 6)|(2°026) (2, to + Boh) |46 < Ci ||,
€K,|a|<No JO —
EKtOXBO
proving the differentiability of f on U along with df(t) = (u, 9;¢(+,t)). Inductively,
we get that f is smooth and the result of the theorem. m

Corollary 3.4.2. Let X,Y be open subsets of R" R™, ¢ € C*°(X xY) and u €
7'(X).

(1) If ¢ is compactly supported in X XY, the function v defined by ¥ (y) = (u, ¢(+,y))
belongs to CX(Y).

(2) If u € &'(X), the function ¢ defined by V¥ (y) = (u, ¢(-,y)) belongs to C(Y).

Proof. To prove (1), we need only to verify (3.4.1): we have indeed for all y € Y’
supp ¢(+,y) C projx(supp ¢) which is a compact subset of X,

which implies that ¢ € C*°(Y"); moreover the function ¢(-,y) = 0 on the open subset
of Y, (projy(supp ¢))C, and thus supp ¢ C projy (supp ¢) which is a compact subset
of Y. To obtain (2), we consider xy € C'°(X) equal to 1 near the compact support
of u. We have then u = yu and consequently,

The function ®(x,y) = ¢(z,y)x(z) is smooth on X x Y and supp ®(-,y) C supp x
so that we can apply the theorem 3.4.1 whose assumptions are satisfied. O
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3.4.2 Pull-back by the affine group

Let us now recall the definition of the affine group of R™: it is the group of mappings
from R™ into itself of the form x +— Ax +t = 64,(z) where A € Gl(n,R)(n x
n invertible matrices) and t € R™. When A is the identity, ©q; is simply the
translation of vector t; we have also 0}, = © 4-1 _4-1,. If u belongs to Lj, (R") and
© 4, is in the affine group of R", we can define the pull-back of u by the map © by
the identity

O, u=uo00Ouy, sothat (0% u)(z)=u(Az+1). (3.4.2)

As a result for p € C(R"), we find

n

(O u, ) = /n u(Az + t)p(x)dr = / u(y)p(A 'y — A7) det A| " dy. (3.4.3)

We want to use that formula to define the pull-back of a distribution on R™ by an
affine transformation.

Definition 3.4.3. Let A € Gl(n,R),t € R", O, the affine transformation defined
above and let u € Z'(R™). We define the distribution ©% ,u by the identity

(O ,u, ¢) = (u, 0 @g}t)| det A% (3.4.4)

Remark 3.4.4. (1) Note that this defines a distribution on R", since the mapping
@ — @0 Oy} is an isomorphism of Z(R"). Moreover, if u € L (R"), the previous
definition ensures that @j‘vtu = u 00O y,, thanks to the lemma 3.1.7.
(2) The mapping u — ©7 ,u is sequentially continuous from Z'(R") into itself,
(3) A distribution v on R is even (resp. odd) if ©* | yu = u (resp. —u). Using the
notation

U= 0" you (for a function u, @(z) = u(—x)), (3.4.5)

u is even means % = u, odd means i = —u.

3.4.3 Homogeneous distributions

Definition 3.4.5. Let u € 2'(R") and A € C. The distribution u is said to be
homogeneous with degree X if for all t > 0, u(t-) = t*u(-) (here u(t-) = 0514 gu).

Proposition 3.4.6. Let u € Z'(R") and X\ € C. The distribution u is homogeneous
of degree X\ if and only if the Fuler equation s satisfied, namely

Z 10, u = Au. (3.4.6)

1<j<n

Proof. A distribution v on R™ is homogeneous of degree A means:

Vo € CP(R™), V>0, (uly),¢(y/Ht ") = tMu(z), p(x)),

which is equivalent to Vi € C®°(R™),Vs > 0, (u(y), p(sy)s") = (u(z), p(z)), also
equivalent to

Vo € C°(R"), %((u(y), p(sy)s"™) =0 on s> 0. (3.4.7)
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Note that the differentiability property is due to the theorem 3.4.1 and that

(u(y), e(sy)s"™) = (u(z), p(x)) ats=1.

As a consequence, applying the theorem 3.4.1, we get that the homogeneity of degree
A of u is equivalent to

Vs >0, (u(y),s" 7 ((n+ Ne(sy) + Y (959)(sy)sy;)) =0,

1<j<n

also equivalent to 0 = (u(y), (n + A+ 32, ;< ¥;0;) (¢(sy))) and by the definition of
the differentiation of a distribution, it is equivalent to (n+A)u—>_, ., 9;(y;u) =0,
which is (3.4.6) by the Leibniz rule (3.2.14). O

Remark 3.4.7. (1) The Dirac mass at 0 in R"™ is homogeneous of degree —n: we
have for ¢t > 0

{0o(tz), p(x)) = (do(y), p(y/)E™") = 17"p(0) = 17"(d0, ¢).

(2) If T' is an homogeneous distribution of degree A, then 027 is also homogeneous
with degree A\ — |a|: taking the derivative of the Euler equation (3.4.6), we get

O, 0+ Z 00, O, 4 — A0y, u = 0,

1<j<k

proving that 0,, u is homogeneous of degree A — 1 and the result by iteration.

(3) It follows immediately from the definition (3.1.13) that the distribution pv(1) is
homogeneous of degree —1. The same is true for the distributions Flio as it is clear
from (3.2.9)and (3.2.10).

(4) For A € C with Re A > —1 we define the L]

loc

A : A
A itz >0, A\ 3
T = = — . 3.4.8

+ {o ifr<0, T T(A+1) (3:4.8)

(R) functions

The distributions Xi and a:i are homogeneous of degree A and by an analytic con-
tinuation argument, we can prove that Xi may be defined for any A € C, is an
homogeneous distribution of degree \ and satisfies

d — — *
X =0, Gt = S ke N

Lemma 3.4.8. Let (u;)1<j<m be non-zero homogeneous distributions on R™ with
distinct degrees (N\j)i<j<m (J 7# k implies \; # \g). Then they are independent in
the complex vector space P'(R™).

Proof. We assume that m > 2 and that there exists some complex numbers (¢;)1<j<m
such that 21<j<m cju; = 0. Then applying the operator £ = 21<j<m 1;0,,, we get

for all £ € N,
0= Z ngk(u]‘) = Z cj)\?uj.

1<j<m 1<j<m
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We consider now the Vandermonde matrix m x m

A
Vm _ )\1 )\2 N )\m : det Vm _ H ()\k - /\]) 7& 0
Y tsgsksm

We note that for ¢ € C2°(R"), and X € C™ given by

C1 <u17 §0>
X = Co <u27 S0>

we have V;, X =0, so that X =0, i.e. Vj,Vp € CX(R"), c;(u;, ) =0, ie. cju; =0
and since u; is not the zero distribution, we get the sought conclusion ¢; = 0 for all
j. m
3.4.4 Tensor products of distributions

We begin with a lemma.

Lemma 3.4.9. Let ¢ € C°(]0,1["); one can find a sequence of functions in
Vect(@nCcoo (]0, 1[) (the vector space generated by the tensor products)

converging to ¢ in C°(]0,1[") in the sense of the definition 3.1.9.

Proof. We define for k € Z*, ¢(k) = [ e #m kg (z)dx, and we note that, with
A=3,02, meN,

) = (1 )™ [(1= A" (™o o)

A 1
=14+ |k|2)_m/e_2’”'k((1 - 4—7T2A)m¢>) (x)dx
so that R
BU6)| < (1 )" Co max 5] (349

As a result the series ®(z) =), ;n d(k)eX™* converges and is a smooth function,
periodic with periods Z": we need only to check that >, ;. (1 + [k])™"1 < +00.”
Moreover,

for x € [0,1]", O(z) = ¢(x). (3.4.10)

3In fact, with Qx = k + (0,1)" we have, replacing the Euclidean norm |k| by the (equivalent)
sup-norm ||k|| = maxi<;< |k;|, we have for z € Qi, k; < z; < k; + 1 and thus

]| = maxfz;| <1+ [[k]| = 1+ |lz[] <2+ [k

and 3oz 24 BT < [ Fhezn 1ou (@) A+ [l2]) 7 e = [(1 4 [|l2[)) 7" da < +oo.
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We verify this first for n = 1. We have in that case

— 2imk(x— y d
Jim [ S iy

|k|<N

: . ) e2i7rNt -1
and since E e — 1 4 2Re g e?™t — 1 4 2Re (62“”5—4 )
6217Tt _ 1
|k|<N 1<k<N

in (N1t SiIl(?TNt)) _ sin(mt(2N + 1))

=142
+ 2Re(e sin(7rt)

)

sin(7t)

we get that, since ¢ € C°(]0,1[), and for = €]0, 1],

_ lim sin(7(z — y)(2N + 1))
(z) = NL+oo sin(m(z — y)) Py)dy

. </01 Sin(w(.x—y)@N—i—l)) (6(y) — 6(x))dy + o(x / Z p2imk(z— y)dy)

N—+o0 sin(m(z —y)) Pt

= o(x),

because with 1) € C*°(R?), §(s) = —*— (which is in C*°(R\7Z*) and in particular
n|—1,+1[), we have

/1 sin(7(z — y)(2N + 1))
0 sin(7(z — y))

(o(y) — ¢(x))dy

smooth of y on [0, 1]
since z €]0, 1]
A

= /0 sin(ﬂ(x —y)(2N + 1)) ;ﬂ(ﬂ%y)e(@" - y}dy — 0,

N—+oco

1
since with w € C*°([0, 1]), we have / sin(m(z — y)(2N + 1))w(y)dy =
0

cos(n(z —y)2N +1))  qu=t [T cos(m(x —y)(2N +1))
[ m(2N + 1) w(y)]yo - /0 2N + 1) w'(y)dy.

We have proven (3.4.10) for n = 1 and = €]0,1[. Since ®, ¢ are both smooth on
[0,1] the equality holds as well for x € {0,1}.

N.B. We could have used the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in [9]),
but we have preferred a simple self-contained argument with an integration by parts since
there was no shortage of regularity for the function w.

To handle the case n > 2, we use an induction and in n + 1 dimensions, we have
for ¢ € CZ°(]0, 1["*),

Vi € [O? 1]n> @({]j’ anrl) = Z / e2iﬂ(xiy).k¢(ya xn+1)dy = ¢($a xn+1)a
(0,1)n

kEZ"
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and thus Vz € [0,1]",Va,41 € [0, 1], ®(z, 2p41) =

Z / 62i7r(ac—y)~k<
(071)n

kezn

1
Z / 6217r(a:n+1—ym—1)kzn+1 qb(y, yn+1)dyn+1> dy = ¢($’ xn+1)’
0

kn4+1€Z

which is (3.4.10) since the series are uniformly converging. Since supp ¢ C|0, 1[",
there exists ¢y > 0 such that’ supp ¢ C [eg, 1 — €]", and with xy € C°(]0,1[) equal
to 1 on [e, 1 — €], we have

X(@1) . x (@) d(x) = ¢(x) = D ™ o(k)x(21) ... x (). (3.4.11)

The series is uniformly converging as well as all its derivatives, thanks to the fast
decay of ¢(k) expressed by (3.4.9), and the functions

Z 62i7r901k1 o €2i”xnk"<£(k)x<$1) . X(.Tn)
IK[<N

belong to Vect(®™C°(]0, 1]) with fixed compact support in 0, 1[". The proof of the
lemma is complete. O

As a consequence, we get the following result.

Proposition 3.4.10. Let X be an open subset of R™, Y be an open subset of R™.
Vect C°(X) @ C2(Y) is dense in CP(X xY).

Proof. Let K be a compact subset of X x Y. For each point (x,y) € K, we can find
some open bounded intervals Iy, ..., I,,, Ji,...,J, of R such that

(r,y) €eQ=L X XL, xJyx--xJ,CXxY.

As aresult, we can cover K with a finite number of open “cubes” (Q;)1<;<y included
in X x Y. Using a partition of unity given by the theorem 3.1.14, we can find
Y € C®(Q) such that Y, .y ¥i(x) = 1Lfor x € V opensuch that K C V C X xY.
For ¢ € C®(X x Y), supp ¢ = K compact subset of X x Y, we have

o= i, o€ CE(Q).
1<IKN

We can then apply the lemma 3.4.9 for each ¢ (rescaling the cube @; to |0, 1[")
to obtain the conclusion of the proposition. O

Theorem 3.4.11. Let X be an open subset of R™, Y be an open subset of R",
and u € 9'(X),v € P'(Y). Then there exists a unique w € P'(X xY') such that,
Vo € 2(X), YV € 2(Y),

(W, 9 @ V) g (xxv).2(xxy) = (U, ®) 21 (x),.2(x) (V, V) 7 (v),.2() (3.4.12)

where (¢ @ V) (z,y) = ¢(x)(y). We shall denote w by u @ v and call it the tensor
product of u and v.

“In fact, each projection K; = proj;(supp ¢) is a compact subset of ]0, 1[, thus 0 < infiep, t <
supgeg, t < 1.
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Proof. The uniqueness follows from the proposition 3.4.10. To find such a w, we
define for ® € C°(X x YY), with obvious notations,

(w, ®) = <v(y), (u(:c),q)(x,y)>>. (3.4.13)

As a matter of fact, thanks to the corollary 3.4.2 (1), the function ¥ > y —
(u(), ®(-,y)) belongs to C°(Y) so that (3.4.13) makes sense. Using the theorem
3.4.1, we obtain 97 (u(-), (-,y)) = (u(-), 9y (-, y)). If K =supp® (compact subset
of X xY), both projections projx K, projy K are compact so that

[(u(-), Oy (-, y))| < Cy sup (070 ®@)(x, y)|

|B|<N1, z€projx K

and thus

(o), (u(e) D)) < o sup 105 (u(), B 3)

<CiCy;  sup ](853;@)(x,y)|,

[BI<N1,|a|<Ny
(z,y)EK

implying that w is indeed a distribution on X x Y. Since the formula (3.4.12) follows
from (3.4.13), this concludes the proof of the theorem. O

Remark 3.4.12. (1) The uniqueness ensures that w = u ® v is also defined by

(1w, @) = (u(x). ((y). ©(z.1))). (3.4.14)

a formula for which (3.4.12) also holds.
(2) Ifu € L, (X),v € L .(Y), then u® v belongs to Li..(X x Y) and is defined by

u(z)v(y), thanks to the lemma 3.1.7 and to the proposition 3.4.10.
(3) Foru e 2'(X),v € Z'(Y), we have

supp(u ® v) = supp u X supp v. (3.4.15)

In fact, if ® € C°(X xY') with supp & C X X (supp v)¢ or with supp ® C (supp u)° x
Y, it follows from (3.4.14) or (3.4.13) that (u ® v, ®) = 0; this holds as well when

supp ® C (suppu X suppv)® = ((supp u)¢ X Y) U (X X (supp v)c),

since supp ® C ; U £y with €); open subset of X x Y and, thanks to the theorem
3.1.14, the compactly supported ® = ®; + ®,, with supp®; C Q; (it is also a
direct consequence of the theorem 3.1.15 since (u ® v)jq;, = 0). We have proven that
supp(u ® v) C suppu X suppv. Conversely, if xo € suppu,yo € suppv, and U,V
are respective open neighborhoods of xg, 3o in X, Y, we can find ¢y € C(U), 1)y €
C(V) such that (u, ¢g) # 0 and (v,10) # 0. As a result ¢y @1y € C°(U x V') and
(u® v, po @ 1ho) = (u, o) (v,o) # 0, so that (u ® v)jyxy is not zero, proving that
(z0,Y0) € supp(u ® v) and the sought result.

(4) With the notations of the previous theorem, we have obviously from the expres-
sion (3.4.13) and the theorem 3.4.1 that 930} (u ® v) = (9%u) ® (I)v).
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Proposition 3.4.13. Let n € N*, U be an open subset of R"™', I an interval of
R. Letuw € 2'(U x I) such that 0,,u = 0. Then, there exists v € 2'(U) such that
u=uv® 1. In other words, the differential equation 0, u = 0 has the only solutions
u(z', x,) = v(2').

Proof. From the remark 3.4.12 (3) above, the tensor products v(z’) ® 1 are indeed
solutions of 0, u = 0. Conversely the proposition is proven for n = 1 by the lemma
3.2.4. Let us assume n > 2; we consider xo € C2°(I) such that [ xo(t)dt = 1 and
we define v € 2'(U) by the identity

(v, ) 1wy, 2) = (U, P @ X0) 2/ (UxD),2UXT)-
For p € 2(U),y € 2(I), we have with J(¢) = [(t)dt
(V@1 eRY) = (u, ¢ ® xo)J (V).
From the proof of the lemma 3.2.4, we see that ¢ — xoJ(¢) = ' with § € C°(I), and
we get (u, p® (X0 (¥) 1)) = (u, 0x, (p®0)) = 050 that (V@ 1, p®Y) = (u, POY),
which is the sought result. O

3.5 Convolution

We want to define the convolution of two distributions on R”, provided one of them
has compact support. Assuming first that v € Ll (R"),v € Li..(R"), ¢ € C*(R™)
the integral

comp

// u(x — x)dxdy = // o(z + y)dzdy, (3.5.1)

makes sense since x and x + y are moving in a compact set in the last integral (and
so is y). This formula allows us to define

(5 v)(z) = / e = y)oto)dy = [ ulw)ote - y)dy

and can naturally be extended to u,v € L'(R™) so that ||uxv|| 1 @ny < [Ju|| g @ ||0]] L1 @ny,
making L'(R") a Banach algebra (without unit). The inequality of Young (see e.g.
the Théoreme 6.2.1 in [9]) is a non-trivial extension of that inequality. Anyhow, at
the moment, we want to use the formula (3.5.1) for our general definition.

3.5.1 Convolution &' (R™) x 2'(R")

Definition 3.5.1. Let u € &'(R"),v € Z'(R"™). We define the convolution u v by
the following bracket of duality

(u v, @) grmmy,a@mn = (u(@), (V(Yy), oz +y))) = (v(y), (w(z), d(z +y))). (3.5.2)
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We note that the theorem 3.4.1 shows that the function R” 3 z — (v(y), ¢(z+y))
is C* and thus that the first definition makes sense from the corollary 3.4.2 (2). To
check the second equality above, we note that with xy € C2°(R") equal to 1 near the
support of u, we have yu = u and thus from the remark 3.4.12(1) and the formula
(3.4.13),

(u(x), (v(y), oz +y))) = (u(x), (v(y), x(x)p(x+y))) = (u(z)@v(y), x(z)d(z +y)),

which is also equal to (v(y), (u(z), x(z)d(z + y))) = (v(y), (u(z),d(z + y))). This
proves as well that u * v is a distribution on R" since the mapping C*(R") 5 ¢ —

® € C(R?™™), with ®(z,y) = ¢(x + y)x(x) is continuous.

Remark 3.5.2. We note that whatever is xy € C2°(R") equal to 1 near the support
of u, we have for u € &'(R"),v € Z'(R"),

(uxw,¢) = (u(x) ®v(y), x(x)o(z +y)). (3.5.3)

Proposition 3.5.3. Let u € &'(R"),v € Z'(R"). We have
supp(u * v) C supp u + supp v. (3.5.4)

Proof. Note first that supp u+supp v is a closed subset of R™ as the sum of a compact
set and a closed set (exercise). Now if ¢ € C°(R"™) with supp ¢ C (supp u+supp v)¢,
then

supp((:v,y) — o(x + y))C (supp u x supp v)°. (3.5.5)

In fact, if (g, yo) € suppu X supp v, then z¢+ yo € suppu+ suppwv C (supp ¢)¢, the
latter being open so that there exists U open in %, with ¢(xg+ U + 3o+ U) = 0. As
a consequence, the open set (zg +U) X (yo + U) C (supp((z,y) — ¢(z +y)))" and
this implies (2o, yo) € (supp((z,y) — ¢(z+y))) and proves (3.5.5), so that (3.5.3),
(3.4.15) give the conclusion of the proposition. O

Remark 3.5.4. For u,v both in &'(R™), the formula (3.5.2) ensures that uxv = vxu.

3.5.2 Regularization
Proposition 3.5.5. Let u € Z'(R"), p € CX(R™). Then p*u belongs to C*°(R").

Proof. We have from the definitions, with y € C°(R") equal to 1 near supp p,
¢ € CZ(R),

(pxu,d) = (p(r) @u(y), x(@)o(z +y)) = (u(y), (p(z), x(z)p(x +y))), (3.5.6)

and we note that (p(z), x()¢(x +v)) = [ p(x)p(x + y)dz = [ p(x — y)d(z)dr. As
a result, we have

(o u.6) = (), [ plo = y)ota)de) = [ ola)e —y))da

GCOO RQn
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where the last equality is due to the theorem 3.4.1° which gives also that ¢(x) =
(u(y), p(x —y)) is C°°; we have proven p x u = ¢ and the result. We note also the
formula following from (3.5.6)

(p*u,¢) = (u,p* o). (3.5.7)
0

Lemma 3.5.6. Let Q be an open subset of R™ and T € Z'(2). There exists a
sequence (1;)j>1 in Z2(Q) such that lim;; = T in the weak-dual topology sense of
the definition 3.1.10.

Proof. We consider first a sequence (K);>1 of compact subsets of {2 as in the lemma
2.3.1 and a sequence (x;);>1 such that x; € C°(int K;41), x; = 1 near K, (see the
lemma 3.1.3). In the weak-dual topology sense, we have lim; ;7" =T let ¢ € Z(1),
K = suppy. From the lemma 2.3.1, there exists j such that suppy C K; and
thus ¢x; = ¢, implying (T'x;,¢) = (T, x;¢) = (I, ). We can also consider the
compactly supported distribution x;7" and see it as a distribution on R". We take
now a function p € C2°(R") such that [ p(z)dz = 1. According to the first example
in the section 3.1.3, we define p. (it tends to the Dirac mass at 0 in the weak-dual
topology when ¢ — 0,). For ¢ € Z(Q), using (3.5.7), we have

(pe * (O T), ) = (XGT, pe * ). (3.5.8)
Considering now a decreasing sequence of positive numbers (e;) with limit 0 such
that
supp x; + €; supp p C int(K41) C €,
and we define T; = p,, * x;T. We have from the proposition 3.5.3 that supp7Tj is
compact included in €2 and also that 7; € C™ (proposition 3.5.5). Going back to
(3.5.8), for a fixed ¢, we can find j such that suppy C K;_; for j > jo, implying
that
supp(pe; * ¢) C K;j_1 + ¢€jsupp p C supp x;j—1 + €j_1supp p C Kj,
implying that x;(pe; * ¢) = pe, * @ and (pc, * (x;T),¢) = (T, pc, * ). The result
follows from the proposition 3.1.1 (implying lim;(pe; * ¢) = ¢ in CF(€2)) and the
(sequential) continuity of the distribution 7. O
Proposition 3.5.7. Let u € &'(R"),v € Z'(R"). We have
singsupp(u * v) C singsupp u + singsupp v. (3.5.9)

Proof. We can choose x € C2°(R™) equal to 1 near the singsupp u, v € C* equal to
1 near the singular support of v. We have from the proposition 3.5.5

€C®(RM) €&'(R")  €C™(R™)
—— e N
wxv = (xu)xv+((1-x)u)*v=(xu)* (o) + (xu) #((L—¢)v) mod C*(R")
—— ~ ~~ o
€C>(R") €C>(R")

and thus we get for all € > 0
singsupp(u * v) C supp ) + supp ) C singsupp u + eB; + singsupp v + €5y,
which gives the result. O]

For ® € Ccoo(Rn xR"), u € 7'(R"), <1 ®u, (I)> = <u(y),f‘1)(x,y)dx> = f(u(y),@(x,y))da:.
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3.5.3 Convolution with a proper support condition

Looking at the formula (3.5.1), we see that we can extend it easily for L _(R")
functions u, v so that the mapping

suppu X suppv 3 (z,y) — x4+ y = o(z,y) € R" (3.5.10)

is proper, i.e. such that o~!'(K) is compact for K compact subset of R™. In fact
if u,v € L} (R"™) are such that the map o of (3.5.10) is proper, the function u x v
defined by

W*w@wa/wx—www@

is also Li (R"), since for K compact subset of R", we have

loc

//mm—ymwqu@MWx://m@mwquu+yMMy

// z)|[v(y)|dzdy < oo, since o '(K) is compact in R*".
o 1(K)

We can extend as well the convolution product of distributions u, v, provided ¢ in
(3.5.10) is proper. Before doing so, we prove a simple lemma.

Lemma 3.5.8. Let Fi,..., F, be closed subsets of R™ such that the mapping o :
Fy x - x F, — R", defined by o(x1,...,2y) =21 + - + Xy is proper. Defining
for e >0, F;. = {x € R", |x — F}| < €}, the mapping o : F1 x -+ x F,, . — R,
defined by o.(x1,...,Ty) =21+ -+ + Ty 1S also proper.

Proof. We note first that F;. = F; + eB; (B, is the closed unit ball of R") is
closed as the sum of a compact and a closed set. Let K be compact subset of
R™; if (21,...,2,) € o ' (K), then there exists y; € Fj,t; € R |t;| < € such
that 25 = y; + 5, D1 jem(yy +1;) € K and thus Y7, . y; € K + meB), so
that (y;)1<j<m € 0~ '(K 4 meBy), a compact subset of []Fj. As a consequence,
(2i)1<j<m € 0 Y (K + meBy) + €B1 nm (Bium is the closed unit ball of R”m) which
is compact. As a result, o, '(K) is compact as a closed subset of [ Fj. (o is
continuous) included in a compact set. O

Definition 3.5.9. Let uy,...,u, € Z'(R™) such that the mapping o

H supp u; 3 (z5)1<j<m — Z xj € R"™ s proper. (3.5.11)

1<j<m 1<j<m

For e > 0, we take xj. € C®(R"™) such that supp x;. C suppu; + €B; and supp x;..
is 1 on a neighborhood of suppu;. We define then

(Ut =+ % U, B @), 2(zm) = (U1 @ -+ @ U, D) g1 (o) (o) (3.5.12)

with (1, ..., Tp) = [licjcm Xoe(@) B3 < jcm @)+ we note that ¢ is in 2(R™™)
since

supp ¢ C {(zj)1<jem € [[ supp xje with o((x;)) € supp ¢}

1<j<m

which is compact from the previous lemma and (3.5.11).
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It is also easy to prove that this definition does not depend on the choices of the
functions x;. having the properties listed above and that this definition coincides
with the definition of convolution in the previous section. In particular, we can prove
the associativity of the convolution using the identity (3.5.12), provided the condition
(3.5.11) is satisfied. As a counterexample we can take u; = 1,us = 0p, u3 = H and
we have since 1% ) = 0,6, * H = &y,

(ug *ug) xug =0, wuy* (ug*ug)=1%d = 1.
Naturally the hypothesis (3.5.11) is violated here since the mapping o defined on
R x {0} x Ry is not proper: 0~ *({0}) D {(=N,0, N)} yen. The assumption (3.5.11)

is satisfied for m = 2 if suppu; is compact and also for distributions on R with
support in R,. We get also that

Vu € P'(R™), wu*xd=u, since (u(z1)® §(z2),p(r1+ 22)) = (u, ). (3.5.13)
and for u,v € 2’'(R™) such that (3.5.11) holds
0% (u*v) = (09u) x v =u=x* (0ov), (3.5.14)

since (95 (u +v),¢) = (—1)*(u*v,0¢¢) = (=1)"Nu(z) ® v(y), (0°¢)(x +y)) =
((0%u)(x) @ v(y), d(x + y)) and putting inside the brackets the cut-off functions .
does not change the outcome of the computation.

3.6 Some fundamental solutions

3.6.1 Definitions

Definition 3.6.1. We consider a constant coefficients differential operator

« (0% 1 (63
P=P(D)= Z ao Dy, where a, € C, Dy = W&E. (3.6.1)

laj<m

A distribution E € 2'(R") is called a fundamental solution of P when PE = &.

We note that if f € &'(R™) and E is a fundamental solution of P, we have from
(3.5.14), (3.5.13),
P(Exf)=PExf=2box[f=/
which allows to find a solution of the Partial Differential Equation (PDE for short)
P(D)u = f, at least when f is a compactly supported distribution.

Examples. We have on the real line already proven (see (3.2.2)) that 41 = 4y, so
that the Heaviside function is a fundamental solution of d/dt (note that from the
lemma 3.2.4, the other fundamental solutions are C'+ H(t)). This also implies that

Oy (H(21) ® o(22) @ -+ ® 8o(x5)) = do(x), (the Dirac mass at 0 in R™).

Let N € N. With #7} defined in (3.4.8), we get, since 2" (a1 1") = H(21)(N + 1),

that
N+1

(@207 ( T] (ﬁ):%(m).

1<j<n
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The last example has the following interesting consequence.

Proposition 3.6.2. Let v € Z'(R") and Q0 a bounded open set. Then uiq is a
derivative of finite order of a continuous function.

Proof. We consider for x € C2°(R") equal to 1 on € the distribution yu € &'(R")
whose restriction to €2 coincides with ujg. The distribution yu has finite order N

o
(see the remark 3.3.3). We have with E(z) = [[,,, )
XU = XUk = (g ...00) T (xux E). (3.6.2)

Since the function E is OV with Nth derivatives (Lipschitz) continuous, we may
consider the function 1 defined by

U(z) = (X(y)uly), E(z —y)).
Since xu is compactly supported with order N, we have with K compact subset of
R™,
[z +h) =) <C sup 0] (E(x+h—y) - E@—y))l

|a|<NyeK

Since the function £ is CV with Nth derivatives Lipschitz continuous, we find that
1 is Lipschitz continuous. We have from the definitions, with ¢ € C?°(R"),

(B xu, ¢) = (E(x) ® (xu)(y), oz +y)) = ((xu)(y), (E(x), oz +y))),
and we note that (F(z),¢(x+y)) = [ E(x — y)é(x)dz. As a result, we have

(B % xu, &) = (u(y), / WE( — y)ola) o) = / o) (xu) (), Bz — y))da

eClN (R2n)
where the last equality is due to the theorem 3.4.1° and gives also that 1 = yu * E.
The result follows from the continuity of ¢ and (3.6.2). O

3.6.2 The Laplace and Cauchy-Riemann equations
We define the Laplace operator A in R™ as

A=Y o2 (3.6.3)

1<j<n

In one dimension, we have from (3.2.2) that %(u) = 0o and for n > 2 the following

result describes the fundamental solutions of the Laplace operator. In Ri,y, we define
the operator 0 (a.k.a. the Cauchy-Riemann operator) by

_ 1 ]

0= 5(896 +10y). (3.6.4)

fFor @ € CNR" x R"), v € Z'(R"), order(v) < N (1 ®v,®) = (v(y), [ ®(z,y)dx) =
[(o(y), ®(z,y))dz.
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Theorem 3.6.3. We have AE = 0y with || - || standing for the Fuclidean norm,

1
E(z) = %ln x|, forn =2, (3.6.5)
1 27/
E pum— 2_n— > ‘th n_l = . .
() = ol G forn = 3, with (57 = 2 (366
=1 : : L 2
G(E) =00, with z =z +iy (equality in Z'(R,)). (3.6.7)

Proof. We start with n > 3, noting that the function ||z||*" is L{., and homogeneous
with degree 2 —n, so that Al|z|* ™ is homogeneous with degree —n (see the remark
3.4.7 (2)). Moreover, the function ||z|*™ = f(r?),r* = ||z|?, f(t) = ti_i is smooth

outside 0 and we can compute there

TZ)):Zaj( 2)2z,) Zf” )da? + 2nf'(r?) = 4r? f"(r?) + 2n.f'(r?),

so that with ¢ = r2,

A(f(?) = 41 = ) (=55 +2n(1 = S)E

0|3

—t72(1— 5)(—2n+ 2n) = 0.

As a result, A||z||*™" is homogeneous with degree —n and supported in {0}. From
the theorem 3.3.4, we obtain that

A||x||2 "= cly+ Z ZCJO‘

1<]<’ITL |a| =j

homogeneous
degree —n

homogeneous

degree —m — j

The lemma 3.4.8 implies that for 1 <j <m,0=3",,_; Cj.a00® and Al|z[|2 = cb.
It remains to determine the constant c. We calculate, using the previous formulas
for the computation of A(f(r?)), here with f(t) = e™™,

c= (Allz]*m, e = / lz|*~re I (4|2 Pn® — 2n) da

o0 5
= |S”_1|/ p2 At lem ™ (4n?r? — 2n)dr
0

1 1 Foo
5 [6_7r7“2 (471'27“2 — QHW)]S_OO + 2— / €—7rr2871'27"d7“)
s T Jo

- |Sn_1|(_n + 2)7

|Sn 1|(

giving (3.6.6). For the convenience of the reader, we calculate explicitely |S™"™1|. We
have indeed

2 too 2
1 :/ e ™ol g = \S"l\/ " leT ™ dr
n
0

+o0 1
— ‘Snllﬂ'(ln)m/ t— —t 4 1/2dtﬂ_71/2 |Sn llﬂ_fn/22 1F(n/2)
r=tl/27-1/2 0 2
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Turning now our attention to the Cauchy-Riemann equation, we see that 1 /z is also
Li .(R?), homogeneous of degree —1, and satisfies 9(2~!) = 0 on the complement of

{0}, so that the same reasoning as above shows that
o(r 271 = cdy.

To check the value of ¢, we write ¢ = (O(r'271), e ™) = [, e ™ n 12 rzdady =
1, which gives (3.6.7). We are left with the Laplace equation in two dimensions and

we note that with 2 = (9, — i9,), & = (9, +i9,), we have in two dimensions

A= 22 400

52 95 5555 (3.6.8)

Solving the equation 4%—5 = i leads us to try E = % In |z| and we check directly”
that 2 (In(z2)) = 2~

1 Clea_g, 0 0O _ 10, _
A(%lnw) =712 2455(111(22)) =7 15(2 ) = do. O

3.6.3 Hypoellipticity

Definition 3.6.4. Let P be a linear operator of type (3.6.1). We shall say that P
is hypoelliptic when for all open subsets Q of R™ and all u € 2'(Q), we have

singsupp v = singsupp Pu. (3.6.9)

It is obvious that singsupp Pu C singsupp u, so the hypoellipticity means that
singsupp v C singsupp Pu, which is a very interesting piece of information since we
can then determine the singularities of our (unknown) solution u, which are located
at the same place as the singularities of the source f, which is known when we try
to solve the equation Pu = f.

Theorem 3.6.5. Let P be a linear operator of type (3.6.1) such that P has a fun-
damental solution E satisfying

singsupp £ = {0}. (3.6.10)

Then P is hypoelliptic. In particular the Laplace and the Cauchy-Riemann operators
are hypoelliptic.

N.B. The condition (3.6.10) appears as an iff condition for the hypoellipticity of the
operator P since it is also a consequence of the hypoellipticity property.

"Noting that In(2? + y?) and its first derivatives are L]

Le(R?), we have for p € C*(R?),
(5 (In]2?),9) =

% / /]R (F0zp+i0y9) In(z?+y?)dady = / / oz, y)(ar 2 —iyr—?)dady = / / (z—iy) " Yo(z, y)drdy.
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Proof. Assume that (3.6.10) holds, let €2 be an open subset of R” and u € 2'(12).
We consider [ = Pu € 2'(Q2), o ¢ singsupp f, xo € CX(Q), xo = 1 near xy. We
have from the proposition 3.5.5 that
e (R™)
~
xu=xux PE=(Pxu)*x E=([P,x]u)« E+ (xf) *E

N——
€C>=(R")

and thus, using the the proposition 3.5.7 for singular supports, we get

singsupp(xu) C singsupp([P, x]Ju) + singsupp E = singsupp([P, x]u) C supp(uVx),

and since y is identically 1 near zy, we get that xy ¢ supp(uVy), implying xo ¢
singsupp(xu), proving that xy ¢ singsupp u and the result. ]

3.7 Appendix

3.7.1 The Gamma function

The gamma function I' is a meromorphic function on C given for Rez > 0 by the
formula

+oo
[(z) = / e 't*tdt. (3.7.1)
0

For n € N, we have I'(n 4+ 1) = n!; another interesting value is I'(1/2) = /. The

functional equation
['(z+1) =2I'(2) (3.7.2)

is easy to prove for Re z > 0 and can be used to extend the I' function into a mero-

morphic function with simple poles at —N and Res(I', —k) = (_kl!)k. For instance, for

—1 < Rez <0 with z # 0 we define

r 1
['(z) = M, where we can use (3.7.1) to define I'(z + 1).
z

More generally for k € N, —1 — k < Rez < —k, z # —k, we can define

IF(z+k+1)

F<Z):z(z+1)...(z+k)'

There are manifold references on the Gamma function. One of the most compre-
hensive is certainly the chapter VII of the Bourbaki volume Fonctions de variable
réelle [2].
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Chapter 4

Introduction to Fourier Analysis

4.1 Fourier Transform of tempered distributions

4.1.1 The Fourier transformation on . (R")

Let n > 1 be an integer. The Schwartz space .#(R"™) is defined in the section 2.3.5,
is a Fréchet space, as the space of C'° functions u from R" to C such that, for all
multi-indices' a, 3 € N?,

sup |290%u(z)| < +oo.
TER™

A simple example of such a function is e *°, (|z| is the Euclidean norm of z) and

more generally if A is a symmetric positive definite n x n matrix the function
UA(.%) _ 6—7r<Aa:,x)

belongs to the Schwartz class.

Definition 4.1.1. For u € ./ (R"™), we define its Fourier transform u as
(&) = / e 2y (x)d. (4.1.1)

Lemma 4.1.2. The Fourier transform sends continuously . (R™) into itself.
Proof. Just notice that faﬁgﬂ(f) = f6*2"”583?(175@(x)dx(%ﬂ)\ﬁlfla\(_1)\ﬂ|' []

Lemma 4.1.3. For a symmetric positive definite n X n matriz A, we have

TA(€) = (det A)~1/2e™ATIEL. (4.1.2)
"Here we use the multi-index notation: for a = (ay,...,a,) € N" we define
e =aft.agr, 00 =08 .08, lal= > ay
1<j<n

101



102 CHAPTER 4. INTRODUCTION TO FOURIER ANALYSIS

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (4.1.2), i.e. to check

/€2i7rac£€7rx2dx _ /eﬂ(eri&)deewgz — 6771'52’

where the second equality is obtained by taking the &-derivative of [ e~ ™@ 4 dy
we have indeed

d —7(x+1i —m(x4ig)? : . . d —m(x4ig)?
d_§(/e +ié) d:z:):/e (a+4) (—2z7r)(x+z§)dx:—z/%(e @+ dz = 0.

For a > 0, we obtain [ em2imelo=maz® o — =1/2=ma 7 which is the sought result
in one dimension. If n > 2, and A is a positive definite symmetric matrix, there
exists an orthogonal n x n matrix P (i.e. ‘PP = Id) such that

D ='PAP, D =diag(Ay,...,\,), all A; > 0.

As a consequence, we have, since | det P| = 1,
/ 6—2i7ra:-§6—7r(Aa: x)dx _ / e—2i7r(Py)~ —7m(APy, Py)dy _ / 6—2i7ry~(73§) —W(Dy,y)dy

1<J<” 1<j<n

_ (detA)—l/Qe—rr(D— nn) _ (detA) 1/2 —7r<’PA 1p peitpe)y (detA) 1/26_7F<A_15’5>‘ ]

Proposition 4.1.4. The Fourier transformation is an isomorphism of the Schwartz
class and for v € S (R™), we have

u(x) = /egimgﬂ(f)df. (4.1.3)

Proof. Using (4.1.2) we calculate for u € ./(R") and € > 0, dealing with absolutely
converging integrals,

uc(xr) = /eZi”rgﬁ(f)e_”EQKQd{
= // e2i”$56_”62|5‘2u(y)6_2myfdyd§
- / u(y)e ™ vl gy
- / \(u(x +ey) — u(x))/ e~ ™ dy 4 u(x).

-~

with absolute value<ely|||w’|| oo

Taking the limit when e goes to zero, we get the Fourier inversion formula

u(z) = / X TEG (&) dE. (4.1.4)
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We have also proven for u € . (R") and @(z) = u(—=x)

¢

u =

(4.1.5)

Since u — @ and u — @ are continuous homomorphisms of .%(R™), this completes
the proof of the proposition. m

Proposition 4.1.5. Using the notation

1 0 =
" = S o D;:Jl"[lpg; with o = (ay, ..., o) € N?, (4.1.6)
we have, for u € . (R")
Deu(€) = €2a(€),  (Dga)(©) = (—D)lzou(z)() (4.1.7)

Proof. We have for v € . (R"), 4(¢) = [ e 2™ %y(z)dzr and thus

(Dgi)(©) = (-1 [Pt u(a)da,
() = /(—Ziﬂ)a'@?(e2i”m'5)u(af,‘)dw = /eZi”x'g(Ziﬂ)|°‘|(8;‘u)(x)dx,

proving both formulas. O

N.B. The normalization factor ﬁ leads to a simplification in the formulas (4.1.7),
but the most important aspect of these formulas is certainly that the Fourier trans-
formation exchanges the operation of derivation against the operation of multiplica-
tion. For instance if P(D) is given by a formula (3.6.1), we have

Pu() = Y aai(€) = P)a(9).

la|<m
Remark 4.1.6. We have the following continuous inclusions?
2(R") — L(R") — &R"), (4.1.8)
triggering the (continuous) inclusions of topological duals,
E'R") — S'(R") — Z'(R"). (4.1.9)

The space ./ (R") is the topological dual of the Fréchet space ./(R™) and is called
the space of tempered distributions on R™. We shall sometimes omit the “R™” in
L (R™), ' (R"™), at least when it is clear that the dimension is fixed equal to n.

The Fourier transformation can be extended to .7 (R").

2The first inclusion is certainly sequentially continuous according to the definition 3.1.9 and the
second is an inclusion of Fréchet spaces: for each semi-norm p on &(R™), there exists a semi-norm
g on .Z(R™) such that for all u € 7 (R"™), p(u) < q(u).
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4.1.2 The Fourier transformation on .7’'(R")

Definition 4.1.7. Let T be a tempered distribution ; the Fourier transform T of T
is the tempered distibution defined by the formula

(T, 0) .90 = (T, Q) 1.5. (4.1.10)

The linear form T is obviously a tempered distribution since the Fourier transfor-
mation is continuous on .. Thanks to the lemma 3.1.7, if T € &, the present
definition of T and (4.1.1) coincide.

Note that for T, € ., we have (T',¢) = [[T(x)e > 4o (¢)dvde = (T, $).
This definition gives that R
5o =1, (4.1.11)
since (8o, ) = (8o, @) = = [p(x)dz = (1, ).

Theorem 4.1.8. The Fourier transformation is an isomorphism of %' (R™). Let T
be a tempered distribution. Then we have®

'ﬂ»(

T = (4.1.12)
With obvious notations, we have the following extensions of (4.1.7),
DeT(¢) = €7(8),  (DeT)(E) = (~)*aT(@)(¢). (4.1.13)

Proof. Using the notation (p)(z) = ¢(—z) for ¢ € .7, we define S for S € ./ by
(see the remark 3.4.4), (S, ) » = (S, @) ».» and we obtain for T' € .7

X ~ ~

(T, 0)9 =T, @) 1,9 =T, &) 0.0 = (T, @) .9 = (T, 0) 1.7,
where the last equality is due to the fact that ¢ — ¢ commutes® with the Fourier

transform and (4.1.4) means gé = ¢, a formula also proven true on .%’ by the previous
line of equality. The formula (4.1.7) is true as well for T" € .#” since, with ¢ € .

and ¢, (&) = £7p(€), we have
(DT, @) 71,9 = (T, (~1)ID*@) 1 o = (T, Ga) 1.0 = (T, pa) .7,
and the other part is proven the same way. O
The following lemma will be useful.

Lemma 4.1.9. Let T € /'(R") be a homogeneous distribution of degree m. Then
its Fourier transform is a homogeneous distribution of degree —m —n

Proof. We check

— n . 1 — (n+m) -
DT =—¢ 2T = (D, -aT) = ——T — ——(z-9,T) = — T,
(€ DT = ~€- 2T = ~(Dy-aT) =~ T = g (- 0.T) 2ir
so that the Euler equation (3.4.6) £9;T = —(n + m)T is satisfied. O

} 3 According to the remark 3.4.4, T is the distribution defined by (T, @) = (T, @) and if T € .7,
T is also a tempered distribution since ¢ +— ¢ is an involutive isomorphism of ..
It p € .7, we have ¢(€) = [e > Cp(—a)dr = [ ¥ S p(x)dr = p(—€) = P(£)-
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4.1.3 The Fourier transformation on L'(R")

Theorem 4.1.10. The Fourier transformation is linear continuous from L'(R™)
into L= (R") and for u € L'(R"), we have

a(8) :/e%m“(m)dw, el ooy < Mlullpr ) (41.14)

Proof. The formula (4.1.1) can be used to define directly the Fourier transform of
a function in L'(R") and this gives an L>(R") function which coincides with the
Fourier transform: for a test function ¢ € (R"), and u € L'(R"), we have by the
definition (4.1.10) above and the Fubini theorem

(ivhrnr = [ule)pt)in = [ [ utwrpl©)c 2w dnds = [a©)0c)at

with u(§) = [ e ™ Su(x)dx which is thus the Fourier transform of w. O

4.1.4 The Fourier transformation on L*(R")

We refer the reader to the section 5.3 in Chapter 5.

4.1.5 Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(xz) = 1forz > 0, H(z) =0
for x < 0 it is obviously a tempered distribution, so that we can compute its Fourier

transform. With the notation of this section, we have, with d¢ the Dirac mass at 0,
H(l‘) = H(_:U)7

A~ = ~ e 1 1 o~ —_— —_—
H+H=1=46y, H— H =sign, — = —20¢(§) = Dsign(§) = &signé
i 2T

so that f(sTg\ni — Lpu(1/€)) = 0 and from the theorem 3.2.8, we get

1
signé — Epv(l/ﬁ) = ¢,

with ¢ = 0 since the lhs is odd. We obtain

— 1

: _ o1 41.15
sign(§) = g (4.1.15)
/(T)  sign & (4.1.16)
v(—) = —isign 1.
p . gne,
8 11 11
g% b L - 41.1
T 2 (4-1.17)
Let us consider now for 0 < a < n the L _(R") function u,(x) = |z|*™ (|z| is

the Euclidean norm of z); since u, is also bounded for |z| > 1, it is a tempered
distribution. Let us calculate its Fourier transform v,. Since u, is homogeneous of
degree o — n, we get from the lemma 4.1.9 that v, is a homogeneous distribution
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of degree —a.. On the other hand, if S € O(R™) (the orthogonal group), we have in
the distribution sense (see the definition 3.4.3), since u,, is a radial function,

0a(S€) = va(§). (4.1.18)

The distribution [£|*v4(§) is homogeneous of degree 0 on R™\{0} and is also “radial”,
i.e. satisfies (4.1.18). Moreover on R™\{0}, the distribution v, is a C'! function which
coincides with

[ @lal o 4167 [ DY (el ) do,

where xo € C°(R") is 1 near 0 and x; =1 —xo, N € NJa+1 < 2N. As a result
|€]%v0 (&) = ¢ on R™\{0} and the distribution on R™ (note that o < n)

T =va(§) — calb|™

is supported in {0} and homogeneous (on R") with degree —«. From the theorem
3.3.4 and the lemma 3.4.8, the condition 0 < o < n gives v, = ¢,|£|*. To find c,,
we compute

[l e s = () = o [ €70 g

which yields

—+o00 +oo _ "o
2_1F(%)7r_% :/ re e dp = ca/ e e gy = ca2_1f(n 5 a)ﬂ'_ 7.
0 0

We have proven the following lemma.

Lemma 4.1.11. Let n € N* and « €]0,n[. The function u,(z) = |x|*™™ is L] (R")
and also a temperate distribution on R"™. Its Fourier transform v, is also L;, (R™)
and given by

L)
P(s5)

2

v () = ’§|_a7rg_a

4.2 The Poisson summation formula

4.2.1 Wave packets
We define for x € R”, (y,n) € R" x R”

Py (.T) — 2n/4677r(937y)262i7r(zfy)-17 — 271,/46771'(:nfyfi77)2677r7727 (421>
where for ¢ = ((1,...,¢,) €C", (P= Y (. (4.2.2)
1<j<n

We note that the function ¢, , is in S(R") and with L? norm 1. In fact, ¢, , appears
as a phase translation of a normalized Gaussian. The following lemma introduces
the wave packets transform as a Gabor wavelet.
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Lemma 4.2.1. Let u be a function in the Schwartz class S(R™). We define
(Wu)(y,n) = (u, pym) 2@y = 2”/4/U(x)e_”(x_y)Ze_Qi”(m_y)'”dx (4.2.3)
= 2”/4/u(x)e_”(y_m_x)zdxe_mg. (4.2.4)
For u € L*(R"), the function Tu defined by
(Tu)(y + in) = ™ Wuly, —n) = 2"/* / u(z)e W=D’ gy (4.2.5)

is an entire function. The mapping u — Wu is continuous from S(R™) to S(R*")
and isometric from L?*(R™) to L*(R®*"). Moreover, we have the reconstruction for-
maula

ue) = [ Wty ey (e)dyn. (120
Proof. For u in S(R™), we have
Wu(y,n) = ™" (n, y)

where Q' is the Fourier transform with respect to the first variable of the S(R*")
function Q(z,y) = u(z)e @ ¥*2%/4 Thus the function Wu belongs to S(R?"). It
makes sense to compute

2_n/2(WU, Wu)Lz(Rzn) =

Elir& w(ay )u(mg)e ™M@=y w2 20—t S0P gy g o day. (4.2.7)

Now the last integral on R*" converges absolutely and we can use the Fubini theorem.
Integrating with respect to n involves the Fourier transform of a Gaussian function
and we get e e~ “@1-22)°  Gince
21 —y)* 4 2(x2 — y)? = (21 + 22 — 29)* + (21 — 22)?,
integrating with respect to y yields a factor 2=™/2. We are left with
(Wu, Wu) 2meny = liI(I)l w(zy) Way)e ™@1 2 2o me P m=n2)® g g, (4.2.8)
e—U
Changing the variables, the integral is
. _ —ne22/9 2
6li)I(I)l+ u(s +et/2) u(s — et/2)e ™ 2em ™ dtds = HuHiz(Rn)
by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-
timate |u(z)] < C(1 + |z|)~""! imply, with v = u/C,
lv(s 4 et/2) (s —et/2)| < (1 + |s+et/2]) ™ (1 + |s 4+ et/2]) "
< (1+|s+et/2|+|s—et/2[) !
< (1+2]s])
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Eventually, this proves that
W ul|72geny = l[ull72 (4.2.9)

1.e.

W L*(R") — L*(R*™)  with  W*'W = id2gn). (4.2.10)

Noticing first that [[ Wu(y,n)e,.,dydn belongs to L*(R™) (with a norm smaller
than ||[Wwul[1geny) and applying Fubini’s theorem, we get from the polarization of
(4.2.9) for u,v € S(R"),

(u, U)LQ(]R") = (WU, WU)LQ(]RQ")

= / Wuly, n)(@yn, v) 2@y dydn

= ( / Wu(y,n)eyndydn, v)r2@ny,

yielding the result of the lemma u = [[ Wu(y,n)p,.dydn. O

4.2.2 Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions
in one dimension.

Lemma 4.2.2. For all complex numbers z, the following series are absolutely con-

verging and
Z e*ﬂ(z+m)2 _ Z effrm2€2i7rmz' (4211)

MEZ meZ

Proof. We set w(z) =3, -, e~™(=+m)” The function w is entire and 1-periodic since
for all m € Z, z — e ™+™* is entire and for R > 0

sup ’efﬂ(z+m)2| < sup ’efﬂzz‘efﬁm2€27r|m|R e ll(Z)
|2|<R <R

Consequently, for z € R, we obtain, expanding w in Fourier series’,

E 627,7rl~<:z / )6_2mkxdilf.

keZ

5 Note that we use this expansion only for a C*° 1-periodic function. The proof is simple and

requires only to compute 1 +2Re ", .,y 2™ = W Then one has to show that for a
smooth 1-periodic function w such that w(0) = 0,
. ! sin Az
lim - w(z)dr =0,
A—+too Jo sinma
which is obvious since for a smooth v (here we take v(x) = w(z)/sinmz) ‘fo x)sin A\xdzx| =

O(X71) by integration by parts.
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We also check, using Fubini’s theorem on L'(0,1) x I'(Z)

1 1
/ w(z)e ke dy = Z / p—ml@tm)? ~2imke g,
0 0

mEZ

m+1 )
— 2 / e*ﬂ't efZWktdt

mez Y™

42 _9; 1.2
:/6 Tt e 227rkt:€ 7k .
R

So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation. O

It is now straightforward to get the n-th dimensional version of the previous
lemma: for all z € C", using the notation (4.2.2), we have

Z efrr(z+m)2 — Z eﬂrm2€2i7rm-z. (4.2.12>

mezn mezZmn

Theorem 4.2.3 (The Poisson summation formula). Let n be a positive integer and
u be a function in S(R™). Then we have

> ulk) =Y alk), (4.2.13)

kez" kez"™

where @ stands for the Fourier transform of w. In other words the tempered distri-
bution Dy =)} cyn Ok is such that Dy = Dy.

Proof. We write, according to (4.2.6) and to Fubini’s theorem

S uh) = Y / Waly, )y (K)dydn

kez™

- // Wuly,n) Y @y(k)dyds.

kez™

Now, (4.2.12), (4.2.1) give Y, cyn @yn(k) = Y 4czm Pyn(k), so that (4.2.6) and Fu-
bini’s theorem imply the result. O

4.3 Fourier transformation and convolution

4.3.1 Fourier transformation on &’(R")
Theorem 4.3.1. Let u € &' (R™). Then @ is an entire function on C".
Proof. We have for ¢ € Z(R"), according to the definition (3.4.14),

(U, @) = (u, @) = (u(x), / e p(g)dE) = (u(x) ® (€), € E) g (rany g many

= <90(€)7 (u(:c), 672”%5»7
a(§)
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an identity which implies & = @ and moreover the function % is indeed entire, since
with ¢ € C*, and @(¢) = (u(z), e 2™¢) the function @ is C*°(C") from the corollary
3.4.2, and we can check that 0 = 0 (a direct computation of @%({ +h) —u(¢) provides
elementarily the holomorphy of ). O

Definition 4.3.2. The space Oy (R™) of multipliers of #(R") is the subspace of the
functions f € &R"™) such that,

VYa € N* 3C, > 0,IN, €N, Vzr € R", [(0%f)(z)] < Cu(1 + |z|)V>.  (4.3.1)

It is easy to check that, for f € &)/(R"™), the operator u +— fu is continuous
from . (R™) into itself, and by transposition from .#’(R") into itself: we have for
Te 'R, feOuR),

(T, 0) 91,9 =T, fp)s 7,

and if p is a semi-norm of ., the continuity on . of the multiplication by f implies
that there exists a semi-norm ¢ on .¥ such that for all ¢ € .77, p(fy) < q(p). A
typical example of a function in & (R") is €’”®) where P is a real-valued polynomial:
in fact the derivatives of e’”(®) are of type Q(x)e’"™® where @ is a polynomial so
that (4.3.1) holds.

Lemma 4.3.3. Let u € &'(R™). Then @ belongs to Op(R™).

Proof. We have already seen that () = (u(x), e %™¢) is a smooth function so that
(Dgu)(€) = (ux), e > z) (=1)k

which implies |(Dgu)(§)] < Cosup sy, [0 (e 2™ ¢x*)| < C1(1+]€])™°, proving the
zEK
sought result. ’ O

4.3.2 Convolution and Fourier transformation

Theorem 4.3.4. Let u € ' (R"),v € &' (R"™). Then the convolution u x v belongs
to ' (R™) and

—

wx v = Uo. (4.3.2)

N.B. We note that both sides of the equality (4.3.2) make sense since the lhs is the
Fourier transform of u* v which belongs to .%”(this has to be proven) and v belongs
to Oy (R™) so that the product of @ € .’ with 0 makes sense.

Proof. Let us prove first that u % v belongs to .. We have for ¢ € Z(R") and
X € Z(R") equal to 1 near the support of v,

(u*wv, 90>@'(Rn),9(Rn) = (u(z) @ v(y), p(z + y)X(y»@’(RQ"),_@(R?")-

Now if ¢ € .#(R™) the function (z,y) — ¢(z+y)x(y) = ®(z,y) belongs to .~ (R*"):
it is a smooth function and z*y%97 O8® is a linear combination of terms of type

(x4 9)°(0"¢)(x + vy (0" x)(v)
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which are bounded as product of bounded terms. Moreover, if ® € .(R?"), the
function ¥ (x) = (v(y), ®(z,y)) is smooth (see the corollary 3.4.2(2)) and belongs to
S (R") since 2%(0%¢)(z) = (v(y), 220°®(z,y)) and for some compact subset K, of
Rn

?

[27(97%)(2)| = |(v(y), 207 @ (w, y))| < C Sup 22000 @ (2, y)| = p(P),

where p is a semi-norm on . (R?"). As a result, we can extend u*v to a continuous
linear form on .(R™) so that uxv € .%/(R™). Let w € .’ such® that @ = 4v. For
p € L (R"), we have

<w7 90>§”,§” = <1AL1A}, é)f/,ﬂ = <a7@é>Y’,Y-
On the other hand, we have
§OHE) = (wla).e ) [ o)™y = (o(a) @ 4(0), 70 )

—

= (v(@), (p(y), ™V ) = (v(x), (B(y), e TV = (v )(E),
so that

(w, ) = (@, (v @) = (4,0 P) = (u(-2)
which gives w = u * v and (4.3.2). O

4.3.3 The Riemann-Lebesgue lemma

Lemma 4.3.5. Let u € L'(R"). Then from (4.1.14) a(§) = [ e *™Cu(x)dx; more-
over U belongs to C?o) (R™), where C'(OO) (R™) stands for the space of continuous func-
tions on R™ tending to 0 at infinity. In particular 4 is uniformly continuous.

Proof. This follows from the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in
[9]); moreover,

(e + h) — a(€)| = / fu()le " — 1]dz = o,(h),

and the Lebesgue dominated convergence theorem implies that lim, o 0,(h) = 0,
implying as well the uniform continuity. [

4.4 Some fundamental solutions

4.4.1 The heat equation

The heat operator is the following constant coefficient differential operator on R, x R”
O — Ag, (4.4.1)

where the Laplace operator A, on R” is defined by (3.6.3).

6Take w = 00 .
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Theorem 4.4.1. We define on R, X R? the Lj,. function

||

E(t,x) = (4mt) "2 H(t)e . (4.4.2)
The function E is C* on the complement of {(0,0)} in R x R™. The function E is
a fundamental solution of the heat equation, i.e. 4E — AL E = 6o(t) @ do(x).

Proof. To prove that E € L (R"*!), we calculate for T' > 0,

loc

T +o0 2 T +o00 )
/ / A PO 177/ S / / t’”/QQ”’lt("’l)/Qp”’le’p 2t1/2dtdp
o Jo v o Jo

r=2t1/2p
+00 9
= 2"T/ P e dp < Ho0.
0

Moreover, the function E is obviously analytic on the open subset of R {(¢,z) €
R x R™, ¢t # 0}. Let us prove that F is C* on R x (R™\{0}). With p, defined in
(3.1.1), the function p; defined by p;(t) = H(t)t™/2py(t) is also C* on R and

At
=,

]2
which is indeed smooth on R; x (R?\{0}). We want to solve the equation dyu—A,u =
6o(t)do(x). If u belongs to .#/(R™™!), we can consider its Fourier transform v with
respect to x (well-defined by transposition as the Fourier transform in (4.1.10)), and
we end-up with the simple ODE with parameters on v,

|l’|2 |ZE|2 n/2 7£ —-n,._—n -n,_—n
E(tﬂ?):H(Z)(g) e [a| T = Ja| T 2y (

O + 472 |€ v = o (t). (4.4.3)
It remains to determine a fundamental solution of that ODE: we have
d ad gy d —ix @ o, i _
E—i-)\—e pridl (E—I—)\)(e H(t) = (e T J(e T H(t)) = 6o(t), (4.4.4)

so that we can take v = H(t)e "™ "¢, which belongs to .#/(R; x Rf). Taking
the inverse Fourier transform with respect to & of both sides of (4.4.3) gives” with
u e S (Ry x RY)

Ou — Ayu = §o(t) @ do(x). (4.4.5)

To compute u, we check with ¢ € Z(R), 1 € Z(R"),

- ~ oo - 241¢12
(e D) = @i = weed) = [ [ pbniee e

We can use the Fubini theorem in that absolutely converging integral and use (4.1.2)
to get

wped) = [ olo) ([ amy e ) i = (o d)

where the last equality is due to the Fubini theorem and the local integrability of
E. We have thus £ = u and FE satisfies (4.4.5). The proof is complete. O

"The Fourier transformation obviously respects the tensor products.
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Corollary 4.4.2. The heat equation is C*° hypoelliptic (see the definition 5.6./) ,
in particular for w € 9'(R™"),

singsupp w C singsupp(w — A, w),
where singsupp stands for the C* singular support as defined by (3.1.9).

Proof. 1t is an immediate consequence of the theorem 3.6.5, since F is C'*° outside
zero from the previous theorem. O

Remark 4.4.3. It is also possible to define the analytic singular support of a dis-
tribution 7" in an open subset (2 of R™: we define

singsupp 4 7' = {z € Q,VUopen € ¥, Tiy ¢ A(U)}, (4.4.6)

where A(U) stands for the analytic® functions on the open set U. It is a consequence”
of the proof of theorem 4.4.1 that

singsupp 4 £ = {0} x RZ. (4.4.7)
In particular this implies that the heat equation is not analytic-hypoelliptic since

{0} x R? = singsupp 4 F ¢ singsupp 4(0:E — A, E) = singsupp 4 dp = {Ogi+n }.

4.4.2 The Schrodinger equation

We move forward now with the Schrodinger equation,

10

A 4.4,
i Ot * (4.4.8)

which looks similar to the heat equation, but which is in fact drastically different.

Lemma 4.4.4.
+o0o ) - 2|2
PR / e D5 (drt) 2 ( / <I>(t,x)e’4tda:) dt = (E, @)  (44.9)
0 n

is a distribution in R™! of order < n + 2.

A function f is said to be analytic on an open subset U of R™ if it is C*°(U), and for each
xo € U there exists ro > 0 such that B(xg,r9) C U and

Vo € B(zo,r0), flx)= Y i&g‘f(xo)(x — x0)%.

aeNn

9In fact, in the theorem, we have noted the obvious inclusion singsupp 4 £ C {0} x R%, but
since E is C*° in t # 0, vanishes identically on ¢ < 0, is positive (it means > 0) on ¢t > 0, it cannot
be analytic near any point of {0} x R”.
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Proof. Let ® € 2(R x R™); for t > 0 we have, using (4.6.7),

e—i(n—Z)% (47Tt)_n/2 /

so that with N 3 7 even > n, using (4.1.7) and (4.1.14),

|| A 24112
@(t,x)e’%dx = z/ o (t, &)e i UE g

n n

<sup [ |"(t,&)|d¢

t>0 JRn

sup
>0

. - |z)?
e_z("_2)4(47rt)_"/2/ @(t,x)e’%dx

n

< Sup/(l FIEPD) TR (14 EP)M2 (¢, £)|dE < Cy, max |00 D] oo 1y
t>0 N——— lal<n

polynomial

As a result the mapping

+00 ?
Q(R"“) . / e—i(n—z)g(47rt)—n/2 (/ @(t,x)eil%div) dt = (E, D)
0 n

is a distribution of order < n + 2. O

Theorem 4.4.5. The distribution E given by (4.4.9) is a fundamental solution of
the Schrodinger equation, i.e. 210,FE — Ay E = &(t) ® 8o(x). Moreover, E is smooth
on the open set {t # 0} and equal there to

e~ =% [ (1) (4rt) 26t (4.4.10)

The distribution E is the partial Fourier transform with respect to the variable x of
the L= (R™) function
E(t,€) = iH(t)e 4 teP, (4.4.11)

Proof. We want to solve the equation —idyu — Ayu = 8o(t)do(z). If u belongs to
S'(R™1), we can consider its Fourier transform v with respect to = (well-defined by
transposition as the Fourier transform in (4.1.10)), and we end-up with the simple
ODE with parameters on v,

O + i4m?|€Pv = ido(t). (4.4.12)
Using the identity (4.4.4), we see that we can take v = iH (t)e~ " which belongs

to (R X Rg) Taking the inverse Fourier transform with respect to & of both sides
of (4.4.12) gives with u € &(R; x R})

1
Oru — iAzu = 16p(t) ® do(x) .. gﬁtu — Ayu = 0p(t) ® dp(x). (4.4.13)

To compute u, we check with ¢ € Z(R), ¢ € Z(R"),

X +o0 o ) 2
(w0 @ Y) = (T 9 @Y) = (1,0 @) = /0 o (1) ( | 9T dé) d.
(4.4.14)
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We note now that, using (4.6.7) and (4.1.10), for ¢ > 0,

i p(E)em Il e = ?/)(:E)(47rt)_"/2@i%dxe_"%
R

R

. T .|z 2
= e DT (Ygrt) /2 / el%w(:v)dx.

As a result, u is a distribution on R"*! defined by

. T +oo .|z 2
(u, ) = e~1=DF (47) /2 / /2 ( / cp(t,x)ewdx) dt

0

and coincides with E, so that F satisfies (4.4.13). The identity (4.4.14) is proving
(4.4.11). The proof of the theorem is complete. O

Remark 4.4.6. The fundamental solution of the Schrodinger equation is unbounded
near t = 0 and, since E is smooth on ¢t # 0, its C'™ singular support is equal to
{0} x RZ. In particular, the Schrodinger equation is not hypoelliptic. We shall see
that it looks like a propagation equation with an infinite speed, or more precisely
with a speed depending on the frequency of the wave.

4.4.3 The wave equation
Presentation

The wave equation in d dimensions with speed of propagation ¢ > 0, is given by the

operator on R; x RZ
0. = ¢ 207 — A,. (4.4.15)

We want to solve the equation ¢=202u— A,u = 6o(t)do(z). If u belongs to ./ (R**1),
we can consider its Fourier transform v with respect to x, and we end-up with the
ODE with parameters on v,

2070 + AT |EPv = So(t),  OFv + 4P |EPy = Py (t). (4.4.16)

Lemma 4.4.7. Let A\, pu € C. A fundamental solution of Py, = (& — X)(% —p) (on
the real line) is

(M)H(t) for X #
N u H (4.4.17)
teH (t) for A= p.

Proof. If X # p, to solve (4 — A)(4 — ) = 0o(t), the method of variation of
parameters gives a solution a(t)e + b(t)e* with

tA tu a 0 CL 1 (5 -
(& 2)-0) = ()-8 =i

which gives also the result for A = p by differentiation with respect to A of the
identity Py, (e —e™) = (A — p)é. O
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Going back to the wave equation, we can take v as the temperate distribution'’
given by
62i7rct\§| o €—2i7rct|§\ ) SIH(QWCtyf‘)

o) = H () —— g =¢ 2]

(4.4.18)

Taking the inverse Fourier transform with respect to £ of both sides of (4.4.16) gives
with u € .7/(Ry x R{)

202 — Ayu = 6o(t) ® 6o(1). (4.4.19)
To compute u, we check with ® € Z(R'*4),
too N sin (2mct|€]
(0, BY = (5°(£, €), / / B ( T’)dgdt. (4.4.20)

We have found an expression for a fundamental solution of the wave equation in d
space dimensions and proven the following proposition.

Proposition 4.4.8. Let E, be the temperate distribution on R such that

E.(t,¢) = cH(t)%. (4.4.21)

Then E. is a fundamental solution of the wave equation (4.4.15), i.e. satisfies
DCE+ = (50(t) X 60(55)
Remark 4.4.9. Defining the forward-light-cone I'; . as

o= {(t,x) e R xR ct > ||}, (4.4.22)

one can prove more precisely that F, is the only fundamental solution with support
in {t > 0} and that

supp Ey =T, when d =1 and d > 2 is even, (4.4.23)
supp £, = 0I'y, when d > 3 is odd, (4.4.24)
singsupp £, = 0I',, in any dimension. (4.4.25)

Lemma 4.4.10. Let Eq, E5 be fundamental solutions of the wave equation such that
supp By C 'y .,supp By C {t > 0}. Then E; = E».

Proof. Defining u = F; — Es, we have suppu C {t > 0} and the mapping
{20} x Tpe 3 (), (5,9) = (1 + 5,2+ ) € R
is proper since
t,s >0,cs > |yl |t+s| <T,|[x+yl < R=1t,s€[0,T],|z]| < R+cT, |yl <T,
so that the section 3.5.3 allows to perform the following calculations

u=ux*od=ux*d.E, =0ux*xE =0. O

10The function R > s + 525 — Zkzo(*l)k% = S(s?) is a smooth bounded function of
52, so that v(t,&) = c2H(t)tS(4n%c*t?|€]?) is continuous and such that |v(t,€)| < CtH(t), thus a

tempered distribution.
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The wave equation in one space dimension

Theorem 4.4.11. On R, x R,, the only fundamental solution of the wave equation
supported in I'y . is

B, (t,z) = gH(ct —|z]). (4.4.26)

where E, is defined in (4.4.21). That fundamental solution is bounded and the
properties (4.4.23), (4.4.25) are satisfied.

Proof. We have ¢20? — 92 = (¢7*0, — 0,)(¢*0; + 0,) and changing (linearly) the
variables with z; = ¢t + 2,29 = ¢t — x, we have t = %C(xl + x9),x = %(xl — Ta),
using the notation

(x1,22) — (t, ) — u(t, ) = v(xy, T2),

Ju  Ov v ou  Ov ov 1

— =—cCc+— — = - 10, — 0, = 20,,,¢ 10, + 0, = 20,,,
ot 8xlc+3x267 Oor Oxy Oxy c o 2 € Ot !
and thus O, = 4%;”, so that a fundamental solution is v = {H (z1)H(z5). We
have now to pull-back this distribution by the linear mapping (t,z) — (x1,x2): we
have the formula

0%
(91'181'2

©(0,0) = (4 (21, 22), (21, 22)) = (Ocu)(t,x), p(ct + x, ct — x))2¢

which gives the fundamental solution 2 H (ct+x) H (ct — ) = $H(ct—|z|). Moreover
that fundamental solution is supported in I'| . and since E is supported in {¢t > 0},
we can apply the lemma 4.4.10 to get their equality. O]

The wave equation in two space dimensions
We consider (4.4.15) with d = 2, i.e. O, = ¢ 207 — 02, — 92,.

Theorem 4.4.12. On R; x R, the only fundamental solution of the wave equation
supported in I'y . is

c _
E. (t,z) = %H(ct — |z)(At? — |z )7 V2, (4.4.27)

where Ey is defined in (4.4.21). That fundamental solution is L} . and the properties
(4.4.23), (4.4.25) are satisfied.

Proof. From the lemma 4.4.10, it is enough to prove that the rhs of (4.4.27) is
indeed a fundamental solution. The function E(t,z) = 5= H (ct — |z])(c*t* — |z|*) /2
is locally integrable in R x R? since

T ct T
/ / (P> — ) Prdrdt = / (2 — )V =0t = ¢T?/2 < +o0.
o Jo 0

Moreover E is homogeneous of degree —1, so that [J.E is homogeneous with degree
—3 and supported in I'y .. We use now the independently proven three-dimensional
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case (theorem 4.4.13). We define with E, 5 given by (4.4.29), ¢ € 2(R}, ..),x €
2(R) with x(0) =1,

<u, (p)@/(R:’)) 2(R3) = lim<E+ 3, ¥ (t, xIy, Ig) X X(EZL’3)>@/(R4),@(R4)

= lim — /// xl aaki Bk Mt xZ)X(GZIZ’g)dxldI'Qd"Eg
R3

1:1—|—x2+1:3

o(c /2?2 + 23 + 22,21, 2
/// L2 ooh 2)dx1d:c2dx3 (t=c /a2 + 23 +22)
R2, . x{z3>0} V4 a3+ ad

T1,22

p(t 1
- M_(c%g _ :13% _ $g)_1/2262tdx1dx2dt
RZ o, x{ct>y/xi+a3} ct 2
t 22 _ 02 _ 2200 g
///R? ><{ct>\/M} Pt z1, w2)(c T — T3) T10T2

= <E,g0 2'(R3),2(R3) so that £ = u.

With 0., standing for the wave operator in d dimensions with speed ¢, we have,
since

O3 ((p(t, T1,T9) ® X(exg)) =Ueo (gp(t,xl,xg)) ® x(exs) — @(t, z1, 2)e* X" (ex3)
(Hegu, ) = (B3, (Le29) (¢, 21, 22) © x(exs))
= hm((E+ 3, 0es(p(t, 21, 22) @ x(€x3)))) + (B4 3, 0(t, 71, x2)62X”(6$3)>>

= 90(07 0, 0)7
which gives .o F = [ ou = dp gs and the result. O

The wave equation in three space dimensions
We consider (4.4.15) with d = 3, i.e. O, = ¢ 297 — 02, — 02, — 02,.

Theorem 4.4.13. On R; x R, the only fundamental solution of the wave equation
supported in I'y . is

1
E,(t,x) = g |50R( —c Hazl), (4.4.28)
i.e. for ® € (R, xR2), (B, ®) :/ ! O(c x|, x)dz. (4.4.29)
rs 47|z

where E is defined in (4.4.21). The properties (4.4.24), (4.4.25) are satisfied.

Proof. The formula (4.4.29) is defining a Radon measure £ with support oI'; .,
so that the last statements of the lemmas are clear. From the lemma 4.4.10, it is
enough to prove that (4.4.29) defines indeed a fundamental solution. We check for
v € 2(R),v € 2(R3)

(OB, o(t) @ ¢(x)) = (E,Oc(p @ 1))
=i [ el (e et - el el (B0 a) ) ds
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If we assume that supp p C R7, we get

[ el et e @w)e)ds = [ Alel ol o)) bla)da

-
==A;(&wxclm)”+2r](rlww]wnﬁd%wdx (r = Iz
— [ (@) (r (e 4 2= )R e )+ 2 (e )
2 (e 4 2 (=)l ) d,
which gives (O.E, ¢(t) @ ¥(x)) = 0. As a result,

supp(0.E) C OI'y . N{t <0} = {(Og, Ors)},

and since E' is homogeneous with degree —2, the distribution [.E is homogeneous
with degree —4 with support at the origin of R*: the lemma 3.4.8 and the theorem
3.3.4 imply that O.E = kdygrs. To check that k = 1, we calculate for ¢ € Z(R)
(noting that |¢t| < C and |z| < ¢|t| + 1 implies |z| < cC + 1)

I oo
CEeel =4 [ et i = [
T Jo 0
400
— o= [ = 0,
0
so that k = 1 and the theorem is proven. O]

4.5 Periodic distributions

4.5.1 The Dirichlet kernel
For N € N, the Dirichlet kernel Dy is defined on R by

) ) ) 2itNx __ 1
DN(ZL') _ Z eZmrkx =1+ 2Re Z €2z7rkx — 1+2Re (szxe : )

~ €2i7r:p _
—N<k<N 1<k<N z¢Z
o in(7N in(mtN
-1 + 2 Re<62wra:—z7ra:+z7rNx) Sll"l(T( .ﬁE) -1 + 2 COS(?T(N + 1)1‘)M
sin(mz) sin(7z)
1 sin(rz(2N + 1))
_ (sin(mz(2N + 1)) = sin(r) ) = ,
+ () sin(mz(2N + 1)) — sin(7z) Sn ()

and extending by continuity at x € Z that 1-periodic function, we find that
B sin(rz(2N + 1))

sin(mx)

Now, for a 1-periodic v € C*(R), with

(Dy *u)(z) = /0 Dy (xz — t)u(t)dt, (4.5.2)
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we have

NEIEOO 1 Dy(z — t)v(t)dt = v(z) + NEIEOO ' sin(mt(2N + 1)) (v(x ;zgﬂ—t)v(x))

dt,

v(z—t)—v(x)

and the function 6, given by 6,(t) = % e
Riemann-Lebesgue lemma 4.3.5, we obtain

is continuous on [0, 1], and from the

1

1
: 2imkx —2imkt o : o o
NEIEOO E e / e v(t)dt = NETOO Dy(z — t)v(t)dt = v(x).
—~N<k<N 0 0

On the other hand if v is 1-periodic and C**!, the Fourier coefficient

for k #0

1 A 1 A B 1
) = [ e = e
0 w 0

1 —2imkt 1
—_— w t)dt, (4.5.
2i7rk6 vi{t)dt, (45.3)

and iterating the integration by parts, we find cx(v) = O(k=!7!) so that for a 1-
periodic C? function v, we have

Z 2™ e (v) = v(). (4.5.4)
keZ
4.5.2 Pointwise convergence of Fourier series

Lemma 4.5.1. Let u: R — R be a I-periodic L} (R) function and let zy € [0, 1].

loc
Let us assume that there exists wy € R such that the Dini condition is satisfied, i.e.

dt < +oc0. (4.5.5)

/1/2 |u(zo +t) + u(zg — t) — 2wy
t
0

Then, My — 00 D j41< v cr(u)e?m™ e = o with cp(u) = fol e 2mthy (t)dt.

Proof. Using the calculations of the previous section 4.5.1, we find

> clu)e®™ 0 = (Dy + u)(zo) = wo +/ sin(mt(2N +1))

- u(zg —t) — wp)dt,
i 0 sin(rt) ( )

so that, using the periodicity of u and the fact that Dy is an even function , we get

(w(zo — t) + u(zo + t) — 2wp)dt.

12 gin (7
v - [

u(xg —t) + u(zg +t) — 2wy
sin(7t)
belongs to L'(R) and the Riemann-Lebesgue lemma 4.3.5 gives the conclusion. [

Thanks to the hypothesis (4.5.5), the function ¢ — 1 (%)
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Theorem 4.5.2. Let u: R — R be a I-periodic Lj,, function.

(1) Let zp € [0,1],wy € R. We define wyyw,(t) = |u(zo +t) + u(zo — t) — 2wo| and
we assume that

Wao wo (t)7 < +00. (4.5.6)
0

Then the Fourier series (D * u)(xg) converges with limit wy. In particular, if
(4.5.6) s satisfied with wy = u(xg), the Fourier series (Dy * u)(xg) converges with
limit u(xg). If u has a left and right limit at o and is such that (4.5.6) is satisfied
with wy = % (u(zo + 0) + u(ze — 0)), the Fourier series (Dy * u)(zo) converges with
limit 5 (u(zo — 0) 4+ u(zo +0)).

(2) If the function u is Holder-continuous'', the Fourier series (Dyxu)(x) converges
for all x € R with limit u(x).

(3) If u has a left and right limit at each point and a left and right derivative at each
point, the Fourier series (Dy *u)(z) converges for all x € R with limit 1 (u(z—0)+
u(z +0)).

Proof. (1) follows from the lemma 4.5.1; to obtain (2), we note that for a Holder
continuous function of index # €]0, 1], we have for ¢ €]0,1/2]

t W (t) < O e LY([0,1/2)).
If u has a right-derivative at x, it means that

u(xo +t) = u(xo + 0) + ul.(zo)t + teo(t), tlilgl eo(t) = 0.
—U+
As a consequence, for t €]0,1/2], t u(zg +t) — u(zo + 0)]
limy o, €o(t) = 0, there exists Tj €]0,1/2] such that |ey(t)]
result, we have

< |ul(zg) + €o(t)]. Since
<1

ort € [0,Tp]. As a

1/2
/ (o + £) — u(wo + 0)|dt
0

T 1/2
< / (|Jul.(xo)| + 1)dt + / [u(xg +t) — u(zo + 0)|dt Ty < +oo,
0 To

e The integral f01/2 tHu(zg — t) — u(xg — 0)|dt is also finite and
the condition (4.5.6) holds with wy = 1 (u(zo — 0) + u(zo + 0)). The proof of the
lemma is complete. [

since w is also Ll

4.5.3 Periodic distributions

We consider now a distribution « on R™ which is periodic with periods Z". Let
X € C®(R™) such that y =1 on [0,1]™. Then the function y; defined by

xi(x) =Y x(@—k)

keZm

11 Hélder-continuity of index 6 €]0,1] means that 3C > 0, V¢, s, |u(t) —u(s)| < C|t — s|°.
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is C* periodic'? with periods Z". Moreover since R" > z € [[,;,[E(z;), E(x;)+1],
the bounded function x; is also bounded from below and such that 1 < y;(x). With
Xo = X/X1, we have

D o xolx—k) =1, xo€CZ(R"),

keZn

For ¢ € C2°(R™), we have from the periodicity of u

(u,0) = Y (ulx), p(x)xole = k) = Y _ (u(x), oz + k)xo(x)),

kezm kez™

where the sums are finite. Now if ¢ € (R"), we have, since yo is compactly
supported in |z| < Ry,

[(u(@), p(x + k)xo(@)| < Co sup [z + k)

|| <No,|z|<Ro

<Co sup |(1+Ro+ |z + k)" o (@ +k)|(1+ k)"
|| <No,|z|<Ro

< pol)(1+ k)™

where py is a semi-norm of ¢ (independent of k). As a result u is a tempered
distribution and we have for p € ./ (R"™),

<u7 p) = (u(m), E oz + k)xo(x E 77035
\—V—/
kezn k) kezn
Now we see that 7,/190 = [en(z + t)xo(z)e 2™ dt = xo(x)e*™*p(k), so that

(u, 0) = 3 pezn (u(®), Xo( ) zimkey 5 (k) thh means
U({L’) = Z <u(1§)7 Xo(t)€2i7rkt>e—2i7rkz _ Z <u(t), Xo(t)e_%”kt>62mk$.
kezn keZm™

Theorem 4.5.3. Let u be a periodic distribution on R™ with periods Z". Then u is a
tempered distribution and if xo is a C°(R") function such that ), .,» Xo(z—k) =1,
we have

u = Z cp(u)e ™. (4.5.7)
U= Z (),  with  cp(u) = (u(t), xo(t)e 2™, (4.5.8)

kezn

and convergence in ' (R"). If u is in C™(R™) with m > n, the previous formulas
hold with uniform convergence for (4.5.7) and

ck(u) = / u(t)e 2t (4.5.9)
(0,1]"

12Note that the sum is locally finite since for K compact subset of R", (K — k) N supp xo = 0
except for a finite subset of k € Z™.
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Proof. The first statements are already proven and the calculation of 4 is immediate.
If u belongs to Lj,. we can redo the calculations above choosing xo = 1j1» and get
(4.5.7) with ¢ given by (4.5.9). Moreover, if u is in C™ with m > n, we get by
integration by parts that cg(u) is O(|k|™™) so that the series (4.5.7) is uniformly

converging. [

Theorem 4.5.4. Let u be a periodic distribution on R™ with periods Z". If u € L,
(i.e. w € L*(T™) with T = (R/Z)"), then

u(x) = Z cr(u)e® ™ with e (w) :/ u(t)e 2t (4.5.10)
kezn [0,1]»

and convergence in L*(T™). Moreover ||u||%2(Tn) = > wezn ler(w)|?. Conversely, if the

coefficients ci(u) defined by (4.5.8) are in (*(Z"), the distribution u is L*(T")

Proof. As said above the formula for the c¢x(u) follows from changing the choice of
Xo to L~ in the discussion preceding the theorem 4.5.3. The formula (4.5.7) gives
the convergence in ./(R") to u. Now, since f[o,m 2=t dt = &, we see from the
theorem 4.5.3 that for u € C"*1(T™), (u, w) r2(rn) = Y pezn |ck(w)]?. As a consequence
the mapping L*(T") 3 u — (cx(u))gezn € (*(Z") is isometric with a range containing
the dense subset ¢*(Z") (if (cx(u))pezn € €1(Z™), u is a continuous function); since
the range is closed, the mapping is onto and is an isometric isomorphism from the
open mapping theorem. O
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4.6 Appendix

4.6.1 The logarithm of a nonsingular symmetric matrix

The set C\R_ is star-shaped with respect to 1, so that we can define the principal
determination of the logarithm for z € C\R_ by the formula

Log z :7[{1 }%. (4.6.1)

The function Log is holomorphic on C\R_ and we have Logz = Inz for z € R%
and by analytic continuation e*8* = z for 2 € C\R_. We get also by analytic
continuation, that Loge® = z for |Im z| < 7.

Let T, be the set of symmetric nonsingular n x n matrices with complex entries
and nonnegative real part. The set T, is star-shaped with respect to the Id: for
A€ Ty, thesegment [1, 4] = ((1-¢)Id +tA)t co1 8 obviously made with symmetric

matrices with nonnegative real part which are invertible'?, since for 0 < t < 1,
Re ((1 —t)Id+tA) > (1 —¢)Id > 0 and for t = 1, A is assumed to be invertible.
We can now define for A € T

1
Log A = / (A= D) (I +t(A—1)""dt. (4.6.2)

0
We note that A commutes with (I 4+ sA) (and thus with Log A), so that, for § > 0,

1
d% Log(A + 01) = / (I+t(A+0I—1))""dt
0

-2

_/1(A+01—[)t(1+t(A+91—[)) dt,

and since —{(I—I—t(A—i—QI n)" 1} = —(]—I—t(A—I—QI—I))_Q(A—i—QI—I), we obtain

by integration by parts -2 L Log(A+6I) = (A4 6I)~". As a result, we find that for
6 >0,A €T, since all the matrices involved are commuting,

;de ((A+9]) 1 Log(A+0I)) O,

so that, using the limit § — +o00, we get that VA € T, ,V0 > 0, elos(A+0D) — (A4.0T),
and by continuity

VAe Y., €4 =A  which implies detA = eraccloes (4.6.3)
Using (4.6.3), we can define for A € T, using (4.6.2)

(detA)fl/Z e étraceLogA ]detA| 1/26 2Im(traceLogA) (464)

13Note that a symmetric matrix B with a positive-definite real part is indeed invertible since for
u € C", Bu = 0 implies 0 = Re(Bu, @) = {(Re B)u, @) > co||u? with ¢y > 0 and thus u = 0.
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e When A is a positive definite matrix, Log A is real-valued and (det A)~1/2 =
| det A|71/2,
e When A = —iB where B is a real nonsingular symmetric matrix, we note that

B = PD'P with P € O(n) and D diagonal. We see directly on the formulas
(4.6.2),(4.6.1) that

Log A = Log(—iB) = P(Log(—iD))'P, traceLog A = trace Log(—iD)

and thus, with (p;) the (real) eigenvalues of B, we have Im (trace Log A) =
Im )7, ;. Log(—iu;), where the last Log is given by (4.6.1). Finally we get,

Im (trace Log A) = —— Z sign p1; = ——s1gnB
1<]<n
where sign B is the signature of B. As a result, we have when A = —iB, B
real symmetric nonsingular matrix
(det A)™Y2 = | det A| 712! 18004 — | det B|/2e T sien B, (4.6.5)

4.6.2 Fourier transform of Gaussian functions

Proposition 4.6.1. Let A be a symmetric nonsingular n X n matriz with complex
entries such that Re A > 0. We define the Gaussian function vy on R™ by va(z) =

e~™A%2) - The Fourier transform of va is
UA(€) = (det A)~H/2emATIES (4.6.6)
where (det A)~Y/2 is defined according to the formula (4.6.4). In particular, when
A = —iB with a symmetric real nonsingular matriz B, we get
Fourier(e"™ %)) (¢) = 0 ,3(€) = | det B| V2! 58 Be=im(BT168) (4.6.7)

Proof. Let us define T7 as the set of symmetric n X n complex matrices with a
positive definite real part (naturally these matrices are nonsingular since Az = 0 for
x € C" implies 0 = Re(Az,z) = ((Re A)z, z), so that T C T).

Let us assume first that A € T7; then the function v, is in the Schwartz class
(and so is its Fourier transform). The set T* is an open convex subset of Cr("+1)/2
and the function Y% > A +— u;(€) is holomorphic and given on Y* N R*"+D/2 by
(4.6.6). On the other hand the function T3 > A — e*%traceLOgAe_ﬂA*lE’f) is also
holomorphic and coincides with previous one on R*"+1/2 By analytic continuation
this proves (4.6.6) for A € T*.

If A e Ty and ¢ € S(R"), we have (U4, )9 v = [va(z)p(x)dz so that
T, > A (U4, ) is continuous and thus (note that the mapping A — A~! is an
homeomorphism of T ), using the previous result on 1%,

(@’ (p> — eliI& <@’ (10> = lim e 2 L trace Log(A4-€l) *ﬂ((Aer)’lE,@(P(g)déf

e—04

(by continuity of Log on T and domin. c¢v.) = / 6_% trace LOgAe_ﬂA_lg’é)gO(f)df,

which is the sought result. O
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Chapter 5

Analysis on Hilbert spaces

5.1 Hilbert spaces

5.1.1 Definitions and characterization

The definition and basic examples of Hilbert spaces were given in the section 1.4.1
and in the definition 1.3.7. Some important properties, such as the Cauchy-Schwarz
inequality (1.3.3) were derived above. We shall always deal with complex Hilbert
spaces and derive in this section a few more general properties for these spaces.

Theorem 5.1.1 (Jordan — von Neumann theorem). Let E be a Banach space, such
that the parallelogram identity holds, i.e. for all u,v € F,

lu+ol? + flu = v]|* = 2[Jull* + 2]]v]* (5.1.1)
Then E is a Hilbert space with the scalar product
(,0) = 3+ ol = o= ol?) + St ol ~ u—iol?). (5,12
Conversely both properties hold for a Hilbert space.
Proof. Let us first check the last statement: in a Hilbert space
|u+v||* = (u+v,u+v) = |[ul]* + 2Reu,v) + ||v|?, (5.1.3)

which implies readily (5.1.1), (5.1.2). Conversely, if F' is a Banach space satisfying
(5.1.1), the formula (5.1.2) defines a sesquilinear Hermitian form: it satisfies

(u, u) = [lul* + i(QIIUII2 = 2llul®) = [[ull* and {u,v) = (v,u) (5.1.4)

since

ol
4

(e +0l” = flu = wl*) = 5 (llu = @l* = [fu + @v[]*).

(,u) = 2 (lo+ul® = llv —ull?) = 2 (lv + iul* — [lv — iul*)

P

o |
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It is linear with respect to u since, using (5.1.1),
4Re(uy,v) + 4 Reluy, v) = |lug +v||* = |Jur — v||* + |Jug + v||* — [Juz — v||?
1 1 1 1
= §Hu1 + Uy + 20|12 + §||u1 — ug|* — §||u1 +uy — 20| - §||u1 — uy||?
1 1 1
= §||U1 + ug + 2U||2 — §||U1 + Ug — 22]”2 = §4Re<u1 + Uo, 21)>
and thus, using the obvious identity (u,0) = 0,
1
Re(uy,v) + Re(ug,v) = ) Re(uy + uq, 2v), (5.1.5)
which implies for us =0, 2Re(uy,v) = Re(uy, 2v), (5.1.6)
so that using (5.1.6) in (5.1.5), we obtain
Re(uy, v) + Re(uz, v) = Re(uy + ua, v). (5.1.7)
We have similarly 4 Im(uy,v) + 4 Im(ug, v) = ||uy +iv||* — [Ju; — iv||* + |Jug + iv]|* —
lug — 0| = Sflur + us + 2002 — 3w + us — 2iv||? = 34 Im(u; + us, 20) and thus,
Im(uy, v) + Im(ug,v) = § Im(uy + us, 20), which implies for up = 0, 2Im(uy,v) =
Im(uy,2v) and we obtain
Im(uy, v) + Im(ug, v) = Im(u; + ug, v), (5.1.8)
finally getting from (5.1.7), (5.1.8), (5.1.4)
(ug 4 ug, vy = (ug,v) + (ug, v), (u,vy +v9) = (u,v1) + (u, vy). (5.1.9)

The identity (5.1.9) implies
(A, v) = Nu,v) (5.1.10)

for A € Q and we have also

Aiu,0) = 5 (= 0l =+ i0]?) + % (e + 0] = lu = ]) = i4(u,v),

] =

so that (5.1.10) holds as well for A € Q 4+ iQ. Now the function C 3 A — (Au,v) is
continuous since

(huse) = 5 (1P ol = = o) + (I + o = [[xe — o),

N

and for \,h € C, the triangle inequality and the homogeneity of the norm imply
(A + h)u+ o] — [|Au —I—UHl < ||hu|| = |A|||u||. The continuous function C 5 X
(A, v) — A u,v) vanishes on the dense subset Q + iQ and thus everywhere. The
proof of the theorem is complete. n
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5.1.2 Projection on a closed convex set. Orthogonality

We shall now prove a theorem of projection on closed convex subsets of a Hilbert
space H. We recall that a subset M of a vector space is said to be convex whenever

Vu,v e M, V8el0,1], (1—0)u+6ve M. (5.1.11)

Theorem 5.1.2. Let H be a Hilbert space and M a (non-empty) convex closed subset
of H. Then for all u € H, there exists a unique v, € M such that

inf ||ju—wl|| = [Ju—v,].
weM

We shall note v, = py(u) and call it the projection of u on M. The mapping
puy : H — M s the identity on M and p3; = pas.

Proof. Let u € H and (wg)g>1 a sequence in M such that limy, ||u—wy|| = d(u, M) =
infen ||u — w||. We have from (5.1.1)

eM
—

2w — wil|* + 2w — wil|* = Aflu — 5 (we +wi) [|* + [Jwy, — w|*

2
> dd(u, M)? + ||wp — wy|)?, (5.1.12)

so that |Jwy —wy||? < 2||u —wy]|* + 2||u — w;||* — 4d(u, M)? and (wy,)x>1 is a Cauchy
sequence, thus converging to a point v, which is in M since M is closed. We have
thus by the continuity of the norm (see e.g. the footnote 2 in the section 2.1.2)

d(u, M) =lim Ju — wg| = [lu— o]

Now if w € M also satisfies d(u, M) = ||u — w||, the inequality (5.1.12) with wy,w,
replaced by v, w gives 4d(u, M)? > 4d(u, M)? + ||v — w||* and v = w, proving the
uniqueness, which implies also that py; is the identity on M and p3, = py. The
proof is complete. []

Definition 5.1.3. Let H be a Hilbert space and uw,v € H. The vectors u,v are
said to be orthogonal when (u,v) = 0. Let F be a subset of H: we define F*, the
orthogonal of F', as

F* ={uecH,Vv e F,(u,v) =0} (5.1.13)

Theorem 5.1.4. Let uq, ..., u,, be patrwise orthogonal vectors in H, then the Pytha-

gorean identity holds:
Y wlP= )l (5.1.14)

1<j<m 1<j<m

Let F be a subset of H. Then F* is a closed subspace of H and if F is a closed
subspace of H, we have
FoFt=H. (5.1.15)
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Proof. When m = 2, the first part is (5.1.1) ; an induction on m gives the result. F'+
is closed as an intersection of closed sets (each linear form u +— (u,v) is continuous
from (1.3.3)) and F* is obviously stable by linear combination. We postpone the
proof of (5.1.15) to the end of the proof of the next theorem. O

Theorem 5.1.5. Let H be a Hilbert space and F be a closed subspace of H (thus
F is closed, conver and...not empty). The mapping pr : H — F defined in the

theorem 5.1.2 is a bounded linear operator, such that ||pr|| =1 (if F' is not reduced
to {0}) and

p% =pp, kerpp=F* ran(pp)=F, (5.1.16)

pr is selfadjoint, i.e. Yu,v € H, (ppu,v) = (u, ppv). (5.1.17)

Proof. Let u € H. We have for w € F

d(u, F)* < [Ju = pp(u) + wl* = lu— pp(u)|* + |w]* + 2Re(u — pp(u), w)
so that

Vw e F, 0<2Re(u — pr(u),w) + ||w|?

If (u—pp(u),w) = pe?, p > 0,0 € R, we shall get for all t € R, (u—pr(u), twe?) = tp
and twe” € F so that

Vvt € R, 0<2Re(u— pr(u), twe) + |twe||* = tp + t*|w||* = p =0,
ie. (u—pr(u),w) =0 for all w € F, giving

u—pp(u) € FX  and, with (5.1.14), |jul® = |[u — prull® + ||prul®.  (5.1.18)

Claim: If u € H,v € F are such that u — v € F*, then v = pp(u): (5.1.19)

we have indeed from (5.1.18) and (5.1.14),

2llv = pr(u)|* + 2[ul® = v — v — pr()|I* + v+ u — pr(u)|*
= llv —ull®* + llprull® + [0]* + llu — ppull* = o — ull* + [0]* + [|ull?,

so that 2||v — pr(u)||* + 2||u/|* = ||ul|* + ||u||* and v = pp(u), proving the claim.
With this characterization of pg(u), we get immediately that pp is linear since, for
Ui, Us € H, )\17 )\2 S (C,

)xlpp(ul) + )\gpF(UQ) e F, Aui+ Aus — )\1]?}?(161) — )\2pF(u2) e Ft (a vector space),

so that (5.2.5) implies A\ypp(u1) + Aopr(uz) = pr(A1ug + Aaug). The identity (5.1.18)
implies ||pr|| < 1 and if F is not reduced to zero, we have with 0 # v € F|||v]| =
|lprv]|, giving also ||pr|| = 1. The first equality of (5.1.16) is already proven, while
the second follows from (5.2.5), (5.1.18): if w € FX,u — 0 € F* and 0=pp(u),
whereas if ppu = 0, we have v = u — ppu € F+. The third equality follows from
ranpr C F and from the fact that for v € F, ppv = v. To get (5.1.17), we note
that for u,v € H, from (5.1.18), (ppu,v) = (pru, prv) = (u, prv). The proof of the
theorem 5.1.5 is complete. Let us now check (5.1.15). Let F' be a closed subspace
of H; from (5.1.18), we have F' + F+ = H since u = u — pru + ppu and moreover
FnFt = {0} since u € F N F* implies u = ppu = 0. This completes as well the
proof of the theorem 5.1.4. O
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Proposition 5.1.6. Let H be a Hilbert space and F' be a subset of H. Then (Fl)L
is the closed linear span of F'. If F is a closed subspace of H, then (FL)L =F

Proof. We have always F' C (FL)L since for u € F,v € F*, (u,v) = 0. If F is a

closed subspace of H, then F, F- are both closed subspace of H and (FL)L = kerpp..
Now we have prpr = Id —pp since for u € Hi,

w—ppu € Ft, u— (u—pru) € F C (FL)L =—>(5.25) PPLU = U — PpU.

As a result, if u € (FL)L, prpiu = 0 and thus u = ppu € F. We assume now that F
is a subset of H; the closed linear span F' of F' is defined as

F= (] E (5.1.20)

FE closed subspace
EDF

It is easy to verify that F is a closed subspace of H and that

F = closure{ Z e, A, € Cuy, € F'}. (5.1.21)

1<k<m

Since F' C (FL)l, we get that ' C (FL)L. On the other hand, we have F C F and
thus (F)* C F* so that, using the already proven part of the theorem, we get

(FH " c (P =Fc(Fh)" = (FY)" =F. O

Remark 5.1.7. Let H be a Hilbert space and F' be a subspace of H. The subspace
F is dense in H if and only if FX = {0}: F is dense means that F = F = H|
which is equivalent (from (5.1.15)) to (F)* = {0}. Now if FL = {0}, we have
(F)* c F*+ = {0} and conversely if (F)* = {0}, F is dense and for v € H if
Vv € F, {u,v) = 0= u € H* = {0} so that F'+ = {0}.

5.1.3 The Riesz representation theorem

Theorem 5.1.8. [Riesz representation theorem'] Let H be a Hilbert space and & €
H*. Then there exists a unique v € H such that Vv € H, (v,u) = &(v). Moreover

€]

Proof. The uniqueness is obvious since for u € H, (v,u) = 0 for all v € H implies
u = 0. Since ¢ is a continuous linear form, ker ¢ is a closed linear subspace and
ker £ (ker )+ = H. If £ # 0, (ker £)* is not reduced to {0}: let us take uy € (ker &)+
such that &(ug) # 0. We have for v € H,

E(v—E(0)E(uo) M ug) = 0 = v—E(v)&(ug) Mg € ker & = (v—E(v)& (o) ug, ug) = 0,

so that £(v) = (v, ug)|lug|| 72£(ug) and the result with u = ug||ug||2£(ug). The norm
of ¢ is defined as [[{[|m+ = supy, =1 [§(v)| = ||lul[m (from (1.3.3)). This implies that

B = ||ullm.

!Biographical details on Frigyes Riesz (1880-1956) can be found on the website http://www-
history.mes.st-and.ac.uk /history /Biographies /Riesz.html
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there is an isometric (anti)linear* mapping x from H > u — k(u) € H*, given
by k(u)(v) = (v,u) which is also bijective; we have also proven k is an isometric
isomorphism identifying H with H*. Moreover, looking at the mapping j : H — H**
defined in the proposition 2.5.13, we consider Uy € H**, we have that Uy o x € H*,
so that Uy o k = k(ug); but for £ € H*, Jw € H, & = r(w),

J(u0)(€) = &(uo) = (K(w))(uo) = (uo,w), (Voo k) (w) = k(uo)(w) = (uo, w)u,
so that j(up) = Up and j is onto. O
We have also proven the following result.

Theorem 5.1.9. Let H be a Hilbert space. Then the mapping x : H — H* defined
by k(u)(v) = (v, u)y is an isometric antilinear isomorphism and H is reflexive.

5.1.4 Hilbert basis

Definition 5.1.10. Let H be a Hilbert space.
(1) Let S be a subset of H . The subset S is said to be an orthonormal subset of H
ifVe € S, |lellu = 1 and for e; # e € S, (e1,e2)m = 0.

(2) A Hilbert basis of H is a mazximal orthornormal subset.

Theorem 5.1.11. Let H be a Hilbert space. If S is an orthonormal subset of H,
there exists a Hilbert basis containing S. In particular, in every Hilbert space there
exists a Hilbert basis.

Proof. The proof follows from a simple Zornification (see the lemma 2.2.2). Given an
orthonormal subset Sy of H, we consider theset ¥ = {S C H, S D Sy, S orthonormal},
ordered by the inclusion. X' is not empty (it contains Sp) and is inductive: if (5;);es
is a totally ordered family in X, we consider S = U,c;S;, an obvious upper bound
in X (note that for ej, e, € S, e, € 55, but Sj, C Sj, or S, CSj,). O

Theorem 5.1.12 (Gram-Schmidt orthonormalization process). Let H be a Hilbert
space and {ug}1<k<n be a linearly independent subset of H. Then there exists an
orthonormal subset {ex}1<p<nof H such that Vect{exh<r<n = Vect{ugi<p<n (it
means that the vector spaces generated by the two families are the same).

Proof. Obvious for N = 1: take e; = u;/||uy||. Induction: if N > 1 and {uy }1<k<ni1
is a linearly independent subset of H, we consider the orthonormal subset {ej}1<r<n
obtained inductively such that E = Vect{ey}1<x<n = Vect{uy}1<r<n, and we define

UN41 — pTE(UNH)
lunt1 — prg(uns1)|

€N+1 - ‘ 3

which makes sense since un 1 ¢ Vect{uy}1<x<ny = E; moreover ey is a unit vector
orthogonal to E. O

2The mapping r satisfies k(Au) = Ar(u) for A € C,u € H and also x(u + v) = x(u) + k(v) for
u,v € H.
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Remark 5.1.13. Note that this is a constructive process since with E' = Vect{ey }1<x<n
when {ey}1<k<n is an orthonormal family, we have

pry(u) = Z (u, eg)ex. (5.1.22)

1<j<N

In fact according to the theorem 5.1.5, since F is a closed subspace, writing H =
E @ E*, pry is the (unique) linear map given by the identity on £ and 0 on E*,
which is exactly the case for the mapping defined by (5.1.22): since E+ = {u €
H,Vk € {1,...,N}, (u,e) = 0}, we have indeed prypE+ = 0 and also prg(ex) = ex.

Theorem 5.1.14. Let H be a Hilbert space and {ey}ren+ be an orthonormal subset
of H. Then Bessel’s inequality holds:

Vu e H, ) [(u,en)” < Jlul® (5.1.23)

k>1

Moreover if H is separable and infinite-dimensional *, there exists a countable Hilbert
basis {ey }rens such that Yu € H,

u = lim S (wener, > [ er)? = Jlull”. (5.1.24)

1<k<n k>1

Proof. To prove (5.1.23), we may assume that {ej}1<x<ny is finite; from the remark
5.1.23, with E = Vect {ey }1<k<n, the formulas (5.1.22) and (5.1.14) give

lal® = 1 prp(@)I® + llu = pra()|® = [|prp()* = D [{u, el
1<k<N

Let H be a separable infinite-dimensional Hilbert space and {uy}ren+ be a dense
countable subset of H. We define E,, = Vect {uy}1<x<n and we note that U,>1 F,
is a dense vector subspace of H. The finite dimensional E,, has dimension d,, (the
sequence (dy,),>1 is non-decreasing with limit +oo since H is not finite-dimensional).
We may assume that d; = 1. We claim that we can find a sequence (v;);>; such
that for each n > 1, Vect{v; }1<j<q4, = E,. Since we have assumed d; = 1, we define
vy = uq; inductively, assuming that Vect{v; }1<j<q, = E,, we look at d,, = dyp1p,—1 <
d, +1=d,p,, and

E, = - =FE,p,—1 = Vect {v; }1<j<dns  Engp, = Vect{v;hi<i<dnip, s Vant+1 = Untp,-

Using the theorem 5.1.12, we can find an orthonormal subset {e;};>1, such that
F = Vect{e;};>1 is dense in H so that from the remark 5.1.7, F+ = {0} and
prp =1d. Let u € H: we consider the sequence w, = >_,;,(u, €;)e;. We have for

n<m
Wy — Wy = Z <U,€j>€j, me_wNHZ = Z |<U, ej>|2

n<j<m n<j<m

3If H is finite dimensional, it is isomorphic to C with the standard scalar product.
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and since the series 3 |(u, ¢;)|* is converging from the already proven (5.1.23), we
get that (w,) is a Cauchy sequence, thus a converging one with limit w. Now for
each k > 1,

(u—w,eg) = lim{u — wy, ex) = (u, ex) — (u, e,y =0,

so that u — w € F* and thus v = w, i.e. u = lim, > i<j<nlUs €5)€;, and taking the
norms of both sides, we get (5.1.24). O

Corollary 5.1.15. All separable infinite dimensional Hilbert spaces are isomorphic.

Proof. Let H be a separable Hilbert space. According to the previous theorem, we
can find on H a countable Hilbert basis (e;);>1. Let us now consider now the linear
mapping ¢

H > u— ((u,er))pen- € (N).

This mapping is obviously one-to-one and also onto: if (z3)zen+ € £2(N), the sequence
(D 1<pen Tr€k)nen+ is a Cauchy sequence in H with limit u (same proof as above)
and (u, ex) = xx. Moreover, ® is isometric as well as its inverse so that

4Re(Pu, Pv)epvy = | @(utv) g — |2 (u—0) g = lutvlli—llu—vlf = 4 Re(u, v)u
and using also (5.1.2), we get (Pu, Pv)pe -y = (U, v)q. O

Remark 5.1.16. Except for the finite dimensional case, a Hilbert basis of a Hilbert
space is never an algebraic basis (also called Hamel basis). A Hamel basis of a vector
space is a linearly independent and generating family (e;);ecs. It is also a maximal
linearly independent family; using Zorn’s lemma, it can be proven that every vector
space has a Hamel basis. If (¢;),cs is a Hamel basis of a vector space E, every vector
u € E can be written is a unique way as a finite linear combination of the e;. For
instance, looking at ¢?(N) with the Hilbert basis (e;);en defined by e; = (8;1)ken,
it is clear that (e;)jen is not a Hamel basis: for instance, u = (133 )k=0 belongs to
(*(N) and is not a finite linear combination of the e;.

Remark 5.1.17. Let J be an uncountable set. We define ¢*(J) as the set of map-
pings z from J to C, z = (x;),e,, such that

N(z)= sup Z |z;|* < +o0.

L finite CJ jel

It is possible to prove that ¢*(J) equipped with the norm N is actually a Hilbert
space which is nonseparable since J is uncountable.

5.2 Bounded operators on a Hilbert space

Let H;, Hy be Hilbert spaces; the first properties of the Banach space £(H;, H,) are
given in the proposition 2.1.5. If H; = Hs, we shall use the notation £(H);) for that
space.
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Definition 5.2.1. Let H be a Hilbert space and L(H) the Banach algebra’ of the
bounded linear maps from H to H. For A € L(H), we define the adjoint of A,
denoted by A* as the unique operator in L(H) such that

Vu,v e H, (A*u,v)g = (u, Av)y. (5.2.1)

Remark 5.2.2. For A € L(H),uy € H, the mapping H > v — (Av,u) € C is
linear continuous (|(Av,uo)| < [[Av]|||uol < ||A|ll|v]|||zo]|) and thus an element of
H*. From the Riesz representation theorem 5.1.8,

Vug € H, Fw(ug) € H,Vo e H, (Av,up) = (v, w(up)).

The uniqueness of w implies that it depends linearly on ug: take ug, uy € H, A\g, A1 €
C, then

Yo € H, (Av, \ow(ug) + Mw(uy)) = Xo{Av, up) + A1 (Av, uy)
= (Av, Aoup + Mur) = (v, w(Aoug + Mur)), (5.2.2)
so that Agw(ug) + Mw(uy) — w(Ague + Ajuy) € HE = {0}. Moreover we have from

(1.3.4),

[w(uo) |l = sup [{v, w(uo))| = Sup [ {(Aw, uo)| < [[Al[|uoll-

We define then A* by A*u = w(u) and we have proven A* € L(H) as well as (5.2.1).
Moreover if (5.2.1) is satisfied, this implies A*u = w(u). As a result, the previous
definition is consistent.

N.B. There is of course a close relationship between ‘A, the transposed operator of
A, as given by the definition 2.5.22, and its adjoint. For a Hilbert space H, we have
the following characterization of the transposed operator

VTI € H*,\V/ZL’ € H7 «tA?%»T»H*,H - <<77: A.T»H*JHI,

where the brackets here are brackets of duality that we have denoted by ((, )m+ m.
Using the isometric antilinear map x of the theorem 5.1.11, we get that this is
equivalent to require

Vy e H,Vex e H, ("As(y), 2w = (k(y), Az) - u
and since’ (k(y), Ax)um = (Az, y)u = (z, A*y)y = (k(A*y), z)g- g we find that
"Ak = kA*, ie. A*=r"1A)k, 'A=rA*r (5.2.3)

I are isometric, we get from (2.5.20), (5.2.3) that

Al ey = |A™]] 2y (5.2.4)

although we have in the sequel more informations on this topic and also a simpler
proof in the Hilbertian case.

Since k, k™

4We have seen in the proposition 2.1.5 that L£(H) is a Banach space; a Banach algebra is
a Banach space which is also an associative algebra and such that the multiplication (here the
composition of maps) satisfy |AB|| < || 4[| B]|-

®Here (, )y is the scalar product on H.
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Proposition 5.2.3. Let H be a Hilbert space and A, B € L(H),\,u € C. Then we
have

(M + uB)* = MNA* + uB*, (AB)* = B*A*, (A*)*=A. (5.2.5)
If A € L(H) is invertible® with inverse A~', then A* is invertible and (A*)™' =
(A~Y)*. For A € L(H), we have

* * 1/2
IAllzey = 1A ey = || A AHZ(H) (5.2.6)

Proof. The properties (5.2.5) are trivial consequences of (5.2.1). For the next prop-
erty, we see from (5.2.5) that (A7')*A* = (AA™Y)* = 1d* = Id = (A'A)* =
A*(A71)*. The first equality in (5.2.6) follows from (5.2.4), but can be proven di-
rectly with

[Allca = sup [[Aullm = sup  [(Au,v)ul = sup  [(u, A0)u| = [|A"]| ),

l[ullm=1 lulla=1=llv]la lullz=1=[lv]lu

and we have also

IAIZ@) = sup [(Au, Au)s| = sup [(A"Au, u)y]

llullr=1 llullz=1

< A" Allzany < 1A canllAllen = I AllZz),  proving (5.2.6). O
Definition 5.2.4. Let H be a Hilbert space and A € L(H). The operator A is said
to be selfadjoint (resp. normal) if A = A* (resp. A*A = AA*).

Proposition 5.2.5. Let H be a complex” Hilbert space and A € L(H). The operator
A is selfadjoint if and only if Vu € H, (Au,u) € R.

Proof. 1f A is selfadjoint we have (Au, u) = (u, Au) = (Au,u) and thus (Au,u) € R.
Conversely, if (Au,u) € R for all u € H, since

(A(u+v),u+iv) = (Au,u) + (Av,v) — i(Au,v) + i(Av, u),
we have Im (—i(Au, v) + i(Av,u)) = 0 so that
Re((Av,u)) = Re((Au,v)).

Changing v in iu, we get Re(—i(Av,u)) = Re(i(Au,v)), which is Im({Av,u)) =
— Im((Au,v)), so that

Vu,v € Hy, (u, Av) = (Av,u) = (Au,v) = A" = A. O

Proposition 5.2.6. Let H be a Hilbert space and A be a selfadjoint bounded opera-
tor. Then ||All = supj, =1 [(Au, u)].

Tt means that there exists A’ € £(H) such that AA” = A’A = Id; in that case A’ is uniquely
determined, since AA” = Id implies A” = A’AA” = A’. We denote the inverse by A~!. The open
mapping theorem (theorem 2.1.10) shows that if A € £(H) is only bijective, it is invertible.

"It was already said on page 127 that we dealt with complex Hilbert spaces, but we emphasize
this here since the result is not true for a real Hilbert space (exercise).
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Proof. We have T' = sup|,—; [(Au, u)| < [|A]| and also
(A(u+v),u+v) — (Alu —v),u —v) = 2({Au,v) + 2(Av, u)
= 2(Au,v) + 2(v, Au) = 4Re(Au,v),
so that for ||ul| = [jv]| =1,
A(Au, ) < T(Ju+ o] + Ju— o)) = Tl + 2Yo]?) = 4,

which gives [|A|| = supj, = v=1 [(Au, v)| < T and the result. O
Theorem 5.2.7. Let H be a Hilbert space and A € L(H). Then

ker A = (ran A*)™. (5.2.7)

Proof. u € ker A means Au = 0, which is equivalent to Vv € H, (Au,v) = 0, i.e.
Vo € H, (u, A*v) =0, i.e. u € (ran A*)*. O

Remark 5.2.8. The property above implies ker A* = (ran A)*, and from the propo-

sition 5.1.6,

(ker A)* = ran A*, (5.2.8)

5.3 The Fourier transform on L?*(R")

5.3.1 Plancherel formula

Theorem 5.3.1. The Fourier transformation can be extended into a unitary oper-
ator of L*(R"), i.e. there exists a unique linear operator F : L*(R") — L*(R"),
such that for u € S (R"), Fu =4 and we have F*F = FF* = Idp2gn). Moreover

F*=CF=FC, F’C=Idpg:. (5.3.1)

where C' is the involutive isomorphism of L*(R™) defined by (Cu)(z) = u(—=x). This
gives the Plancherel formula: for u,v € L*(R"),

/]R ] w(&)o(€)de = / u(x)v(z)dz. (5.3.2)

Proof. For the test functions ¢, v € .#(R"™), using the Fubini theorem and (4.1.4),
we get®

(B, @) ogan) = / D) P(E)de = / / D(E)F o () dude = (b, 0) 2.

Next, the density of . in L? shows that there is a unique continuous extension
F of the Fourier transform to L? and that extension is an isometric operator (i.e.

8We have to pay attention to the fact that the scalar product (u,v): in the complex Hilbert
space L?(IR™) is linear with respect to u and antilinear with respect to v: for A\, u € C, (\u, puv) 2 =

Aa(u,v)gz.
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satisfying for all u € L*(R"), ||Ful|z2 = ||ulz2, i.e. F*F =1d;2). We note that the
operator C' defined by Cu = @ is an involutive isomorphism of L?(R") and that for
u € . (R"),

CF*u=u= FCFu = F*Cu.
By the density of .#(R") in L*(R™), the bounded operators CF?, 1d 2 (gn), FCF, F*C
are all equal. On the other hand for u, ¢ € ./ (R")

(Fup)is = (. Fo)e = [ u@@lade = [ ula)o(©)e™ dads = (CFu. )i,

so that F*u = C'Fu for all v € . and by continuity £ = C'F' as bounded operators
on L*(R"), thus FF* = FCF = Id. The proof is complete. O

5.3.2 Convolution of L? functions

Let u,v € L*(R™). We consider [ u(y)v(z — y)dy = w(u,v)(x), which makes sense
since [ |u(y)v(z —y)|dy < ||ul|z2]|v]|z2 < +o0, so that w(u,v) € L>(R™). Moreover
w(u,v) € CY(R™) since, with (r,w)(z) = w(x — h), we have

w(, 0) (& + h) — w(u, v)(z) = / w(y) () (@ — ) — vz — ))dy,
and thus
w(, 0) (& + h) — 0, 0)(@)] < Jull 2@ 7t — ]2y,

and since” limy, g || 7,0 — v|| 2(rny = 0, we get the uniform continuity of w(u,v). The
reader may check the chapter 6 in [9] to see that w(u,v) is the convolution of u with
v and that w(u,v) = w(v,u) by a change of variables. However, we have to pay
attention to the fact that we have given earlier in the section 3.5 another definition
of the convolution when v € £&'(R"),v € D'(R"), and we have to verify that these
definitions coincide when u € L2 (R"),v € L*(R™). In fact, for u,v € L*(R"), ¢ €

comp
CY(R™) we have from the Fubini theorem

/ w(u,0)@pa)ds = [ [ uw)ete +y)dody, (5.3.3)

since with w(z) = [ [v(y)lle(@ + y)ldy = w(lgl, [5]) (), we have”

lwllel, 0Dz < llvlle=llellzr,
9For v € L2(R"),p € COR™), v — v = (v — @) + Th(p) — ¢ + ¢ — v, and thus

[ = vllze < 2|lv = @llL2 + [Ta(0) — @llLe = lim sup [T — vllL2 < 2|lv = ||z,
—0

and since CO(R") is dense in L?(R™) this implies limy,_q |[|[7hv — v|| g2 = 0.
10This follows from Young’s inequality (see e.g. the Théoréme 6.2.1 in [J]) but there is a simpler
argument: for wy € LY, wy € L2, then wy * wy € L? with ||Jwy * wa||2 < w111 ]|we| r2: we have

2
S| wrtoeate = | az < [ 21 [ fonlhoato - )Py = ol e
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/ u(a)llo@)lle(x + y)|dedy < |lull llwllz2 < [lull2[[v]l2llll 2 < +oo,

and (5.3.3) gives w(u,v) = u * v, where the convolution is taken in the distribution
sense. We have proven the first part of the following lemma.

Lemma 5.3.2.
(1) The mapping L*(R™) x L*(R™) > (u,v) — u*xv € CO(R™) N L>®(R") as defined
above is symmetric and

s ey < el zoga ol g (5.3.4)

and coincides with the convolution in the distribution sense when u (or v) is com-
pactly supported.
(2) For u,v € L*(R"), we have U * v = Ud.

N.B. The formula (2) was proven for v € &'(R"),v € Z'(R") in (4.3.2); here, we
know that both sides of the equality makes sense, since uxv € L>°(R™) and thus is a
tempered distribution whose Fourier transform has a meaning. On the other hand,
@0 is a product of L? functions and thus is a L' function.

Proof. We shall see that an approximation argument, the continuity property ex-
pressed by the inequality (5.3.4) and (4.3.2) will imply the result. For ¢ € .7 (R"),
we have with x € C2°(R"), equal to 1 near 0 and xx(z) = x(z/k),

(W0, 0) 99 = (Uxv,Q) 51,5 = /(U xv)(z)p(z)de = lim [ (xpu*v)(z)p(x)d,

k——+o0

since xxu tends to u in L?(R™) and thus

/ (Ot — w) % 0) (2)p() | dz < / (@)l deve — ulg2llv]] .

On the other hand, using (4.3.2), we get, since yu,v € L*(R"),
[ o 0)@pta)ds = (G 0)0 = (T, )0

— [ (Frn@(Fo)apta)ds = (FOou), 5o — (Fu 7P

a limit which is equal to [(Fu)(x)(Fv)(z)p(x)dz. This completes the proof of (2)
in the lemma. O

5.4 Sobolev spaces

5.4.1 Definitions, Injections

For £ € R", we define
(&) = VITIEP. (5.41)
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It is easy to see that this function as well as all functions & +— (£)® when s € R
are elements of the space of multipliers &), as given by the definition 4.3.2. In
particular, it means that for u € /(R"™), the product (£)*u(§) makes sense and
belongs to .#’(R™).

Definition 5.4.1. Let s € R. We define the Sobolev space H*(R"™) as
H*(R") = {u € Z'(R"), (¢)"i(¢) € L*(R")}. (5:4.2)

Proposition 5.4.2. Let s € R. The space H*(R™) equipped with the scalar product

mwmmz/@%mﬁﬁm:wa@m@mwmm, (5.4.3)

is a Hilbert space. The space .7 (R™) is dense in H*(R").

Proof. 1t is obvious that (u, v)gsn) is a sesquilinear Hermitian and positive-definite
form: note in particular that 0 = (u, u) ey = [|4(§)(€)"[|72 gy implies @(£)(£)* =0
in L?(R") and thus in ./ (R"), so that we can muliply that identity by the multiplier
(€)~*, get & = 0 and thus u = 0. On the other hand, if (ug)x>1 is a Cauchy sequence
in H*(R"), the sequence (vy)p>1, V() = U(£)(€)* converges in L*(R"). Let v € L?
be its limit; the tempered distribution w defined by the product w(§) = () ~*v(§) is
such that u = o € H*(R") since (¢)*w(¢) € L*: we have

luk = ullgs = 1[(€) () — (€)°w(&)l[r2 = [lvw — vl[r2 — O,

and the result that H® is complete. Next we see that, since & — (£)*u() is in
S (R") C L*(R"), when u € .(R"), each H*(R") contains .#(R™). To prove the
density of .7 (R"), we note that if u € ((R"))*:, i.e.

ue HYR"),Vp € SR, /@%Mmmﬁza

this'' implies V¢ € . (R™), (&, ¥) 9 &n),#®n) = 0, L.e. @ = 0 as a tempered distri-
bution, thus u = 0. O

Theorem 5.4.3. . Let s; < sy be real numbers. Then H%(R"™) C H*(R™) with a
continuous injection: for uw € H*(R™) we have

Hs2 (Rn) (544)
For a multi-index o € N™ with |a| = m, the operator 0% is continuous from H®*(R™)
into H~™(R™).

Proof. The inequality (5.4.4) holds true for u € .(R"). Now if u € H*?, u = limy, uy,
in H%2 with u, € Z(R"); from (5.4.4) on Z(R™), we see that (u;) is a Cauchy
sequence in H®', thus converges to v € H*'. Now the convergence in H® implies the
weak-dual convergence in ./(R"), since for ¢ € .(R"), J € L (R") with

[[ll sz @y < ]

(U, 0) 71y, 7 @) = (Gk, @)/ (mm), @) = ((E)° T (), (€)°P(€)) 12 = (un, ¥) .
—
»(E)(€)®

HThe mapping x — X given by ¥(£) = (£)*x(£) is an isomorphism of .7 (R™).
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As a result, the sequence (uy) converges in the weak-dual topology on .#/(R™) with
limit u (convergence in H*2) and limit v (convergence in H*'), thus u = v and the
injection property. The inequality (5.4.4) follows from its version with u € .#(R™)
and the density, and it implies the continuity. The last property follows from (4.1.7),
the density of #(R™) in H*(R") and the inequality for m > 0, |£]™(£)*™™ < (€)*. O

5.4.2 Identification of (H®)* with H*

Let s € R. We consider now the following pairing

H*(R") x H5(R") — C
(u,0) — (€, O 0 ) pan = T(ww) D)
so that
|T (u,v)| < |Ju||gs||v||z-s- (5.4.6)
We see that it gives a mapping
o: H*R") — (H*(R"))" (5.4.7)
defined by

(@(v), w)(sy=,ms = T(u,v), with ||[®(v)| sy = ” ﬁup 1 T (u,v)| = ||v|| g-s,
ul|lgs=
since the inequality supy,, .1 [T(u,v)| < |[v]|g- follows from (5.4.6) and, for v # 0,
taking u such that @(£) = (£)~%8(¢)||v||; ., we see that u € H® with ||u]
so that T'(u,v) = ||v||g-s, providing the equality. The mapping & is isometric (thus
injective) and to prove that it is an isometric isomorphism, using the open mapping
theorem 2.1.10, it is enough to prove that ® is onto. Let us take Ly, € (H®)*:
according to the Riesz representation theorem 5.1.8, there exists uy € H® such that

(Lo, u)(aryars = (u, wo) s = ((6)*(€), (€)W (&)) 12 = ((€) u(E), (€)™~ {£)™W(&)) 12,
()

s =1

with vy € H™* since (€)*05(§) = (€)*up(€) € L?, and this gives
(Lo, u) oy ze = Tt v) = B(vo),
and the surjectivity of ®;. We have proven the following theorem

Theorem 5.4.4. The pairing (5.4.5) gives a canonical isometric isomorphism ®
(5.4.7) from H=*(R"™) onto the dual of H*(R").

5.4.3 Continuous functions and Sobolev spaces
Theorem 5.4.5. Let m € N. Then

H™R") = {u € 2'(R"),Va € N" such that |a| <m, 0%uc L*(R")}. (5.4.8)
Moreover, H™(R™) is the completion of C°(R™) for the norm

(> H@‘Z‘U\Iiz(m)m- (5.4.9)

laj<m
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Proof. Taking v € H™(R"™) in the sense of the definition 541, we get that u €
S'(R™), (€)™u(¢) € L*(R™) and as a consequence 4 € L? Dgu = £*u(€) belongs
to L2(R") if |a| < m since

loc»

/\éo‘ﬁ(f)IQdﬁ < /<§>2m\a(g)y2d§ < +00.

Conversely, if u satisfies (5.4.8), u belongs to L?(R") C ./(R"), and £“0(£) is in
L*(R™) for |a| < m. We have also from Holder’s inequality

O =1+ > &<+ > &M+ (5.4.10)

1<j<n 1<j<n

so that [(€)*"[a()1*d€ < ([ullfa@n) + Yor<jan IDFUll72@n) (0 + 1)1 < 400
We have thus proven the first statement of the theorem and also that the Hilbertian
norms of H™(R") and (5.4.9) are equivalent. We have already seen in the proposition
5.4.2 that #(R") is dense in H™(R"), with a continuous injection since for ¢ €
< (R"),

ol = [ o©R e ™ < Clulple), (541)

where p; is a semi-norm on . (R").

Lemma 5.4.6. C°(R™) is dense in .7 (R").

Proof of the lemma. Let ¢ € .Z(R") and x € C?°(R™;[0,1]) equal to 1 on the unit
ball of R", the sequence of functions ¢, € C°(R") defined by ¢y (z) = x(z/k)p(z)
has limit ¢ in .(R™): we calculate with the standard Leibniz formula

R = 30 ZHk O/ @)

By=a

so that

|22(07 (pr—9)) ()] < |2 ﬂ;a 3 k 00 (@ /k) (D7) (@) |+ |2 (x(a/k) = 1)(070) ()]

>
8121 |z|>k

on its support

and

sup |22 (05 (e — @) (@) < kp(@)C06 @) + 7 ;}E;'(l + [a])a (05 0) ()],

proving that the sequence (py) converges to ¢ in .’(R") and the lemma. O

The inequality (5.4.11) and the lemma give the density of C°(R™) in H*(R"): for
e > 0and u € H?, there exists ¢ € .7 (R™) such that ||u ©llgs < €/2 and for that ¢
there exists ¢ € C"’O(R") such that ps(p — ) < 50T n)+1, implying || — ¥||gs < €/2
and then ||u — ¢| g < €. O
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If f € Oy (R™) (see the definition 4.3.2), we define the operator, called a Fourier

multiplier, f(D) on . (R") by f(D)u = f(€)a(¢) and we note that £(D) is an endo-
morphism of . (R™). The notation is consistent with the fact that for a polynomial
P on R", the differential operator P(D) is indeed the Fourier multiplier P(D).

Lemma 5.4.7. Let s,t € R. Then the Fourier multiplier (D)* is an isomorphism
from HSTHR™) onto H'(R™) whose inverse is (D)~*. If f € Oy is bounded, then
f(D) is an endomorphism of H*(R™). If m € N, H™™(R") is the set of linear
combinations of derivatives of order < m of functions of L*(R™).

Proof. We assume first t = 0; we have indeed for u € H®, ||u||gs = ||{D)u||r2, and
for u € L?, ||ul|r2 = (D) *u|| gs, with (D)*(D)~* = (D)~*(D)* = Idg(gn. If t # 0,
we use the identity (D)* = (D) *(D)s**, (valid on .%’/(R")), so that

D)+t g (D)

~ ~
~ ~

Hs+t Ht )

Now if f € O is bounded, f(D) is bounded on H? and the identity f(D) =
(D)=*f(D)(D)* (valid on .#'/(R™)) proves the boundedness on H*. For the second
part, we consider for a multi-index « with |a| < m, the Fourier multiplier D is
bounded from L? into H~™ from the theorem 5.4.3. With x;(§) = &(£)™', the
Fourier multiplier

1+ ) x;(D)D)"

1<j<n

is an isomorphism from H® onto H~™. This implies that for u € H~™ Jv € L? such

that
u=(1+ > x(D)D)"v =Y D*u(D)v
1<j<n la|<m
with each 1, (D) bounded on L? as a product of y;(D). O

Theorem 5.4.8. Let s > n/2. Then H*(R") C C?o) (R™) with continuous injection
(see the lemma 4.3.5 for the definition of that space).

Proof. For uw € H*(R™), we have 4 € L*(R") and a(§) = (£)~*(&)*a(&) with (£)~* €
LA(R™), (£)*u(§) € L*(R™) so that @ € L'(R") and we can apply the lemma 4.3.5.
The injection is continuous since (4.1.14) applied to the L! function @ gives

ol < ol < ( [ 1-#a¢) " ([eraera) P el

e (5.4.12)
0
5.5 The Littlewood-Paley decomposition

Let ¢o € C°(R™), 1 > ¢o(§) > 0 such that

wo(€) =1 if |¢] <1 and ¢o(&) =0 if |£| > 2, ¢y radial decreasing of [¢].
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We set
©(&) = po(§) — wo(26).

The function ¢ is supported in the ring 1/2 < |£] < 2 : if [{] > 2, ¢(§) = 0 and if
1€] < 1/2, po(§) = 1 = pp(2€) so that p(§) = 0. We have also 0 < ¢(&) < 1. We
define, for a positive integer v, ¢, to be

26 = 9(2)

which is supported in the ring {2"7! < |¢| < 2¥T'}. We have then

0o (&)pu(§) =0 if [v—pl > 2.
We set, for v € N,

S/(€) = wul8).

0<u<v
and we have ¢ ¢
Su(€) =wo(&) + > pol5) = volgm),
1<p<v

so that

S€) = po() =1 i |e <2 and 0 if ¢] > 2

Consequently, we obtain
“+oo
1= Z Pu(E)-
pn=0

Moreover, we get (with ¢_; = 0)

1= Z ou(&)pu(§) = Z Ppppu—1+ 903 T Pubu
[7%7

u>0

and thus

<Y a1,

o

/’L:
the last inequality follows from 0 < ¢,(&) < 1. We'll use that ¢,(D,) is the
convolution with ¢(2"x)2"".

Theorem 5.5.1. Let s € R. Then there exists Cy > cg > 0 such that

+oo
Vue H'R"),  ellullfs <D Nou(De)ullfeen 2 < Cslullf..
n=0
Let p € (0,1). We define the space
n oo (PN |U<£IZ’I) — U’(:CN)|
C*(R") = {u € L*(R )’:/’EB/ T < +oo}, (5.5.1)
Ju(z') — u(z")]

||u||CP(R") = ”UHLOO(RTL) + sup (5.5.2)

o |l‘/ _ x//|p
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For p € (0,1), C?(R™) equipped with the above norm is a Banach space; moreover,
there exists C' > ¢ > 0 such that

Vu e CP(R"),  cllullcomny < sup ||@u(De) e @mn)2t? < Cllullce@ny.

n>0
Proof. Defining the Besov space B; (R") for s € R,p,¢ > 1 by
B;q(Rn) — {u c yI(Rn), (QVSHQOV(D)UHLP(R"))VZO € KQ(N)}, (553)

the theorem is stating that
Vs € R, B3,(RY) = H'(R), Vpe (0,1), B, (R) = C*(R").

The first statement is quite obvious since for £ € supp g, we have 1 < (£) < 512,
and for

fesuppyp, v>1, 271 <27V(14227)7 < f—> <27V(14 222 < 512
so that
1 _ v
S % 27D (60 < D20 (€)? <21 (6)¥pu(6)* < 2™
v>0 v>0 v>0
Let us now assume that u € C?(R"), i.e. u is a continuous bounded function on R™
such that ||ul[rr < +00. Then, with ||ulcs = ||u|lL= + ||u]|ar, We have
1w (D)ull Loe @my = [|9(27)2"" * ul| oo @my < 27 [Jufl o C(sp0),

since it is obvious for v = 0 and for v > 1, since ¢(0) = 0 (thus [ ¢ = 0), we have

(B2 s u)(z) = / 322" (ul — ) — ulx))dy,

which implies ||, (D)ull ey < [ 1629127 ullaolyl?dy = Clpo) 1l a2, Con-
versely if u € BY, ., then u =3} -, (D)u and

00007
lulle <D llen(D)uflre <> 27 |ullpg, .,
v>0 v>0
so that u € L. Moreover for x, h € R", we have

lu(z + h) —u(x)| < Z (e (D)u)(x 4 h) — (@ (D)u)(x)]| +2 Z 27 ||“||B§O,oo

v v
|h|<2—v h|>2=v
NS 7 NS

—A(h) <Clhle
On the other hand, with ¢ € C°(R™),% = 1 on the support of ¢, 1 = 0 near 0, so
that with v > 1, ¢,(&) = ¢, (§)¥, (&) with ¥, () = ¥(£277), 1o € C(R™), ¢g = 1

on the support of ¢y, we have

A(h) < Y 2x|hl[[Dpu(D)h(D)ull g < 2x[h] D 27|27 Db (D)pu (D)ul| 1o

Ih|<2—v Ih|<2—v
< 27|h| Z 2"|lou (D)ul| L < 27|h| Z 2700 | g,
1<v 1<v
|l <2— Ihj<2=¥

Ly 1-
< Cllullps, Rl ([R17) "
so that |u(z + h) — u(x)| < C'|h[P||ul| g, . and the sought result u € C*. O
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Theorem 5.5.2. The space Bl (R") given by (5.5.3) has the following character-
ization: u € BY, (R™) if and only if u € L>(R") and

lullh =  sup  |u(x +h) +u(x — h) — 2u(z)||h| " < +oc. (5.5.4)
z€R™ 0£heR”

There exists C > ¢ > 0 such that, Yu € B (R"),
llullm, gy < lullzegury + Jull < Cllull oy (5.5.5)
Moreover, if u € By, ,,(R"), 3C > 0 such that
Vo e R",Vh € R", |u(z+ h) —u(z)| < C|h|(1+In(]h|™")). (5.5.6)

We define Lip(R") = {u € L>®(R"), Vu € L>*(R")}; this is a Banach space for the
norm ||ul|pee®ny + ||Vl peomny. The inclusion Lip(R™) C Bl . is continuous and

00,00

strict.

Proof. Let us consider u € L>®(R™) such that ||ull; < +00. Then we have
v (D)ull oo @my = [[2(27)27" * ul| oo (rmy < 277 (fJull o + [lull)C(0),

since it is obvious for v = 0 and for v > 1, since (0) = 0 (thus [ = 0), we have,
using that ¢ is even,

2(p(27)2"" xu)(x) = /93(2”31)2”" (u(z —y) +u(z +y) — 2u(x))dy,

which implies 2[|@, (D)ul| oo ®n) < f|¢(2”y)|2”"|||1U|H1|y|dy = 2C(go)[ufl,27, and

the first inequality in (5.5.5). Conversely if u € By, ., then u =} -, ¢, (D)u and
lullze <) lleu(D)ullze < Y2 |ullps, ., = 2lulls .,
v>0 v>0

so that u € L. Moreover for x, h € R", we have

lu(z + h) +u(z —h) — 2u(x)| <
> lpu(D)u)(@ +h) + (pu(D)u)(x — h) = 2@, (D)u) (@) +4 Y 27" [|ulpy, .-

v
[h|<2—v [h|>27Y
N

J/ J/

=A(h) <Clh|

We set v, (z) = (¢, (D))u(z) and we note that v, is a C*° function; we have
1
v, (x4 h) =v,(z) + v, (2)h + / (1 — 0)vl(x + 0h)dOn?
0

and thus v,(x + h) + v, (x — h) — 2v,(z) = f_ll(l — |0))v!(x + Oh)dOh?. As a result,
we have
A(h) < |hfPam® Y |ID%*0, (D)ul -

v
|h|<27V
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We consider ¢ € C°(R"),1¢» = 1 on the support of ¢, ¥y = 0 near 0, and ¥ even,

so that with v > 1, ,(€) = (€)1, (€) with 1,(€) = $(€27) and v € C=(R"),
1o = 1 on the support of py. We have

A(h) < |hPPar® Y |ID?0, (D)ull= = |h*47® ) | D, (D)t (D)ull =

Ihl<2—v Ihj<2—v
= [hff4m® Y 27|27 D¢, (D), (D)ull -
hj<2—v
< ClhPan® Y 2% pu(D)ullr
h <2
< ClhPan®ullpy, . Y 27 < CilhPlullsy, BT
Ih|<2—v
so that |u(z + h) +u(x — h) — 2u(x)| < C'[h|||ul|py,  and the second inequality in
(5.5.5). Let us consider now u € Bl . Moreover for z,h € R", with h # 0, we
have
e+ ) ()| < 3 (D)l + B~ (D)) +2 3 27 fullsy
Ihj<2-v Ihj>2-¥
———
<Ch|

With the same 1) as above, we have

(e +h) — u(@)] < |WCilulsy _ + S hl27]| D, (D)e,(D)ull
Ihj<2—v

< G [lullsy .+ Y [hI2027]127 Dy (D) (D)ul 1

Ihl<2—v
< [h|Cilulls, ., + |R[Co Z 2"\l (D)ul| oo
In|<a-v
< |h|C’1||u||Béwo + |h|C’2||u||Béw gard{u eN, 2" < |h|_1}j

~~

<logy(|h|~1)

which gives (5.5.6). We consider now u € Lip(R"™). We have ||@o(D)u|| e~ < C|lu||p=
and for v > 1,

(o (D)u)(z) = (§(2)2"" * u)(x) = /95(2”?;)2”" (u(x —y) — u(z))dy.
We have also in the distribution sense
a =) = (o) = [l = 09y — fule = 9) = )| < o=l

so that [[¢,(D)ulre < [1p(27y)|12" y|dy||w|| 1 < C|jt|| 127", proving the con-
tinuous inclusion Lip(R") C B, . (R"). Let us prove finally that this inclusion is
strict: we consider

+oo
T(Z’) :/1 €2i7rx§§—2d€‘
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The Fourier transform of T belongs to L'(R) and thus 7' is a continuous bounded
function. We have also

(D)) = | " gt (e)e

and for v > 1,

+00 +0o0
(D)D) = [ e prde =2 [ ey g
1 4
Since the function ¢ is (non-negative and) supported in 1/2 < [¢] < 2, we get for
v > 1 that

2

2(,(D)T)(x) = /

1/2

2
X220 dE = (|20, (D)T | 1 (r) < /1/2 £ (§)dE < +oo.

On the other hand (¢o(D)T)(x) = f;roo e =20p4(€)dE is a bounded function ; we

have proven that T' € Bl . (R). Let us prove that T is not in Lip(R"). We calculate
for € > 0,

“+oo
<T/, 6_16_71—6_212>5///(R)7y(]R) _ 2Z7T<€T7 6_7r€2£2>y/(]R)75ﬂ(R) _ 2271_/ 5_16_W€2£2d§ L 50,
1 e—04

say from the Fatou theorem, and if 7" were a bounded function, we would have

—2,..2 —2..2

(T, e ) < T ol ™y = 17 ey < +oo.

The proof of the theorem is complete. O



Chapter 6

Fourier Analysis, continued

6.1 Paley — Wiener’s theorem

Lemma 6.1.1. For u € ./'(R") the following properties are equivalent.
(1) ue CX(R"™), suppuC {z € R" |z| < R}.
(17) @ can be extended to C™ as an entire function such that

VN € N,3Cy >0, |a(¢)] < Cn(1 + [¢])~Ne2rBltmdl, (6.1.1)

Proof. Let us assume (7). Using the notation C" 5 ¢ = £ +1in, &, n € R, the Fourier
transform of u can be extended to C" as an entire function, simply with the formula

w(§ +in) = /e_Qi”x'(ngi”)u(x)d:E (note z-(E+in) =z - +iz-n).

As a result, for a polynomial P on R™, we have (P/(D\)u)(C) = P(¢)u(¢) and thus
[P(Q)a(¢)] < IP(D)ullp nye®™ ¢l
implying for all multi-indices o € N", [¢0(¢)| < || D%u|| g gnye* FIm ¢l e
GGl ()] < D | pr gy eI,
As a consequence, for m € 2N, we have with [[ullwm1 =37, <., [D%ul[1®n),
(L+ 1S 2a(C)] < Cullullyma e = (id).

Conversely, if (i7) holds, the function @ is C* on R™ and for all N € N, |a(¢)

T

Cn{€)™ . Thus 4 € L*(R") and one can apply the theorem 4.1.10, so that u(
Jen ¥ 0(€)dE. Now we have also for all n € R™ and z € R",

| <
) =
/n 2imx-€ (f)df s 217rx (&+in) o (5+Z7])df,

149
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where both sides make sense thanks to the estimate (6.1.1), which also allow to shift
integration of the entire function ¢ — 4(¢)e*™ ¢ from R™ to R"+in. Now if |z| > R,
we obtain for all n € R",

()] < Cye> R+ / (1+|¢)Vde

n

and in particular choosing n = Az/|z|, N = n+ 1, we get for all A > 0, |u(z)| <
C! ?m(FA=Alzl) "5 that for |x| > R we obtain u(x) = 0 and (i). O

Lemma 6.1.2. Let © be an open set of R, xy € Q and v € 2'(Q). The following
properties are equivalent.

(i) xo ¢ singsuppu,
(i1) 3V € Y4, such that for all x € CX(Vy), for all N € N, 3C such that
u(é)l < C+1eh=".
(z3i) AVh € Yoy, Ixo € CX(Vhy), such that xo(xo) # 0, for all N € N, 3C' such that
Xou(§)] < C(1+[gh) .

Proof. 1f (i) holds, 3V € ¥, such that for all y € C*(Vh), xu € CX(R™) C L (R"™)
and thus yu € . (R™), implying (7). If (i7) holds, then it is the case of the weaker
(7i1); we take xo € C(V}), different from 0 on a compact neighborhood V; of x,
and we get You € L'(R"), so that

(o) (z) = / () de

and the estimate of (ii7) gives xou € C°(R™) and up; = ——(xou)y, € C=(V1),

X0|vy

implying (7). O
Lemma 6.1.3. For u € ' (R") the following properties are equivalent.

(1) uwe &'R™), suppu C {x € R" |z| < Ry}, orderu = Ny.

(77) @ can be extended to C™ as an entire function such that

[a(¢)] < Co(1 +[¢])Noerrtioltmel, (6.1.2)

Proof. If (i) holds, the theorem 4.3.1 gives that @ is the entire function a(¢) =
(u(z), e 2™ ¢) o o. Moreover, since u is compactly supported in B(0, Ry), we have
for all € > 0 and xo € C°(R™) equal to 1 on B(0, 1),

~ — Z —2imx-C ,
a(¢) = (u(z), XO(RO T 6)6 )&t 6
This implies |4(C)| < Cyy.no SUD Jzl<Rrg+e e_2i”x'cca(8ﬂxg)(Rf+6)(Rg—i-e)_'ﬂw and thus

la]+[B|<Ng

Ve >0, |u(Q)| < C’XO,NOGQW(ROJ“)‘ImC' sup  |C*(Ro +e)_|ﬁ|| sup ||8BX0||LOO.
|| +[B8|<No |BI<No
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We choose now, assuming Ry > 0 (otherwise the implication follows from the theo-
rem 3.3.4) € = 1f04

[a(¢)| < C>/<o, e2mRo|Tm (] 2m Ll 1+\<\ (R + ‘CDNO — (ii).

Conversely, if (i7) holds, we consider a standard mollifier p. given with ¢ > 0 by
pe(x) =€ (x/e) p € C*(R"), [p =1, p supported in the unit ball. We have
from (4.3.2) w* p. = @p(e-) and the function @p(e-) is entire with

1G(C)p(eC)] < Cne(1 4 |¢|)~Ne2r(Rotalmd]

From the first lemma 6.1.1, we have supp(u * p.) C B(0, Ry + ¢€). For ¢ € C®(R")
we have from the proposition 3.1.1

(u* pe, ) = (U, pe * @) — (u, ),

e—04

and thus if suppy C (B(0, Ry + €))", we get (u*p., ) = 0 = (u, ), so that
suppu C B(0, Ry + €) for all € > 0 and eventually

suppu C NesoB(0, Ry + €) = B(0, Ry),
yielding the conclusion. O]

Remark 6.1.4. Let us recall the expression of F,, fundamental solution of the wave
equation, given by (4.4.21):

sin (2mct[¢|

BV = el ) _ enp /O cos(2res|E|)ds. (6.1.3)

Since cos(2mes|E]) = Zk>0 Qi;r,cs (>1<j<a &))" the function E(t,-) is entire on

C? and we have for ¢ € C¢, using the notation (2 = 21<J<d CJQ,

(—1)*(2mes)?

(2k)! (CQ)de = CQH(t)/O COS(27TCS(C2)1/2)d5.

B0 =enw [ 3

k>0
We have also for z € C
2| cos z|? = 2(cos z)(cos Z) = cos(2Re z) + cos(2iIm z) < 1 4 2/l < 9p2/1m=l
and as a consequence
for 0 < s <t, |cos(2mes(¢?)Y?)| < exp2met| Im((¢ )1/2)\. (6.1.4)
We note that with ¢ = & 4+, &,n € R,

¢t = |67 = Inl* + 2i(&,m) = [¢]* = n|* + 2iol¢|Inl, with o € R, |o| < 1.
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So if z =a+ib € C,a,b € R is such that 22 = (2, we have
a® = b =[* = [n*, lab| < |€]n].

If we had |b] > |n|, that would imply from the first equation that |a| > |{| and
|ab| > [£||n|, which contradicts the second equation; as a result we have |b| < |n| and

| Im ((¢*)"/?)] < |Im ], implying
B2 (.0)| < etH(t) exp 2met| I,
which gives from the Paley-Wiener theorem 6.1.3 that

supp B4 (t,-) C {z € R", |z| < ct}. (6.1.5)

6.2 Stationary phase method

6.2.1 Preliminary remarks

It is well-known that

/ ST gr =7, although /
R L R

To get this, we integrate the function ¢*/z on the following path: the segment [e, R],
the half-circle (R,iR, —R), the segment [—R, —¢|, the half-circle (—¢, i€, €). We get

R m _iRe 7 ieet?

, sin e o e o

0=2 dx + = iRe®dl — > iee?dd.
e o Re 0 €€’

sinx

dr = 400. (6.2.1)
T

The third integral has limit 7 for ¢ — 0. The absolute value of the second integral is
bounded above by [ e~ #5"¢df which goes to zero when R goes' to infinity, yielding
the value 7 in (6.2.1). On the other hand, for n € N*, we have

(2n+1)m 1 2n+1)m 2
/ de > ——— / sin xdxr =
2nm 2

~ (2n+ D7 (2n+1)7’
the general term of a diverging series, so that (6.2.1) is proven. In the integral
fR Ldx, the amplitude 1/x is too large at infinity to guarantee the absolute conver-
gence of the integral, although the oscillations of the term sin z = Im e** compensate
the size of the amplitude and lead to some cancellation phenomena. We want to

study this phenomenon more closely and in more geometrical terms. Although the

sin x

T nm

1 One may apply Lebesgue’s dominated convergence theorem, but it is way too much: it is
enough to note that 0 < 2% < sin@ for 6 € [0, 7/2] and

T ] /2 . /2
/ e~ fisind gg 2/ e~ Rsind g9 < 2/ e—ZRG/ﬂ'dQ < 7.(_/]_z
0 0 0
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function sin z/x does not belong to L!(R™), we still* have in the sense of weak-dual
convergence (see the definition 3.1.16)

lim 1sin(Az)

A——+oo TT x

In fact for ¢ € C}(R),supp ¢ C [—My, My], the function ) defined by

— 5. (6.2.2)

b(z) = 2 (p(x) — p(0)) = / o/ (0r)d0

is continuous and equal to —p(0)z~! for |z| > My(> 0). As a consequence, we have

/sin(x)\x)@(x)dx _ /Zﬁ(l’)l[—Mo,Mo} (xlsin()\x)dx + @(0)/ o~ sin(A\r)da.

|z|<Mo

€L (R)

The Riemann-Lebesgue lemma 4.3.5 implies that the first term in the rhs tends to
0 with 1/\, whereas

/ ' sin(A\x)dr = / v sinwdr — T,
lz[<Mo ly|<AMo

A——+o00

proving 6.2.2.

6.2.2 Non-stationary phase

Theorem 6.2.1. Let a € CP(R™) and ¢ be a real-valued C* function defined on
R"™ such that d¢ # 0 on the support of a. We define for A € R,

_HA)::/;euﬂﬂacwdx. (6.2.3)

Then for all N > 0, sup,cg [AVI(N)| < +o0.

Proof. Since the support of a is compact, we know that inf,csuppa |dP(x)] = ¢o > 0.
We define then the differential operator L on the open set ) = {z € R" d¢(x) #
0} D suppa by

a2 (62.4)
12;1 893] B:Bj
On Q, we have L(e"?) = X\e? 37, . |do|~ 255 gai = X\e™? as well as for all N € N,

e = (AN LN)(e?), implying that, for A # 0,

KM:ANALWW%WWM:AN/ £ (11N ) () .

upp a

u € LY(R"), ¢ € COR™) N L>=(R"), then with A > 0, we have [u(Ax)\"¢(z)dz =
(A\~lz)dz, and using the Lebesgue dominated convergence theorem, this gives

2 If
Julx)e
lim u(Azx)A\"p(z)dz = p(0) /u(cc)dz

A——+o00
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As a result we get for A € R, [ANI(N)| < ['LNal| 12 gn) < +00, since
t 2 a¢ tr N lo" 00
L=i)_ —\ do|~ LN = )" cal@)0), ca € C™(Q).
15529 lal<N
[

This theorem means that the integral (6.2.3) is rapidly decreasing with respect
to the large parameter \, provided the real phase ¢ does not have stationary points
on the support of the amplitude a. We shall now concentrate our attention on the
case where the phase does have stationary points ; a first simple model is concerned
with (real) quadratic phases.

6.2.3 Quadratic phase

We recall part of the proposition 4.6.1 as a lemma.

Lemma 6.2.2. Let A be a real symmetric nonsingular n X n matriz. Then x +—
e™ A1) s g bounded measurable function, thus a tempered distribution and we have

Fourier(e™A%%)(€) = | det A| /2! T signAg—im(ATI6E) (6.2.5)

Theorem 6.2.3. Let a € ./ (R") and A be a real symmetric nonsingular n x n
matriz. Defining I(\) = [¢, €MD a(z)dx, we have for X > 0,

n/2 T sign A LT ) i
1) = )\2|detA\1/2< Z A e (A7, D)) (0) tra), (626)
N7T2N -1 N
[rn (A < A7 NT (A7 D, D) al pr1, (6.2.7)
where ||ul|prr = ||@]|Lr@ny, so that |[(A™' D, D)Na|lprr = |[{A7YE, )N al| prgny (see

also the notation (4.1.6)).
Proof. We write with A = 7 that
I(\) = (e™HA2®) (1)) 5 5 = (Fourier(e™#A%2)) g 5 o

_ M—n/2|det A|_1/2eiZSignA/e_”“_l<A_15’§>&(§)d§,

and since

VK
[ usoagas= Yo CTOL [ e graoue

0<k<N

o[ [eemrione gragal O ()

2N

we get (6.2.6) with [ry(\)] < (A7 ENa(€) || = DN - O
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Remark 6.2.4. In particular, under the assumptions of the theorem, we have, if

a(0) # 0,

7 x,T 7'('%6%
/ e MAz, >a(a:)da: = [()\) ~ W@
— 400

sign A

(0), (6.2.8)

a sharp contrast with the results of the previous subsection 6.2.2. Naturally, in this
case, the phase has a (unique) stationary point at the origin. Note also that in one
dimension, we can recover’ the so-called Fresnel integrals

/e””Qda: = gl/2em/1 e /cos(:c2)dx :/sin(:c2)dx = \/E (6.2.9)
R R R 2

6.2.4 The Morse lemma
The most important step in the proof is the following lemma.

Lemma 6.2.5. Let U be a nzeighborhood of 0 in R", and f : U — R be a C®
function such that df (0) = 0,24(0) # 0. Then there ezists a local diffeomorphism v

’ Bx%

of neighborhoods of 0 such that

10?
(Fomln.tf) = 90 + 5 55Ot

Proof. We may assume that f(0) = 0. Thanks to the implicit function theorem,

we note that the equation g—i(xl,x’ ) = 0 has a unique solution z; = «a(2’) near

the origin: there exists rp > 0, a neighborhood W of 0 in R*~! and a C'*° function
a: W — R such that «(0) = 0 and for |z;| < ro,a’ € W,

0
a—xfl(xl,m’) =0<= 121 = a(2)).
As a result, we have for |z1]| < ro,2’ € W,
/ A ' 62f ’ ’ / N 2
f(z1,2") = f(a(z’),2) —l—/ (1-— Q)w(a(x )+ 0(z1 — af2)), ") db (z1 — a(2))",
0 1

i.e. with a C* function e defined in | — rg, ro[x W, a C*° function g defined in W,

Flara') = gla') + 5 5 4 0)c(a) (o1 = ale)s e(0) =1

Shrinking if necessary the neighborhoods, we define near 0 the local diffeomorphism
Kk by
r(r1,2') = (e(2)2 (21 — a(a'),2') = (1. y)

3We have with x € C2°(R) even, equal to 1 on [—1, 1], supported in [—2,2],

T
2/ i dy = /eizzx(f)dm—Q/ e”2x(£)dx = /eiT%zx(w)me—Z/ 2ixe”2x(£)(2ia:)71dm.
0 T z>T T z>T T

From (6.2.8), limy_, 4o feiT2"2x(x)da?T = m/2¢"™/* and an integration by parts yields that the
last term is O(T~1).



156 CHAPTER 6. FOURIER ANALYSIS, CONTINUED

and we have with v = k!

2
(F o)1) = far.e') = o))+ 5 55 O

yielding the conclusion. O

Theorem 6.2.6. Let xg e R", U € ¥, and f : U — R be a C* function such that
df (xo) = 0,det f"(xo) # 0. Then there exists an open neighborhood Uy of xo, an
open neighborhood Vi of 0 and a C*° diffeomorphism v : Vo — Uy such that Uy C U,
det ' (0) = 1, and for y € Vg,

1
(for)(y) = (for)(0) =3 > wyl, (6.2.10)
1<j<n
where (py, ..., n) are the eigenvalues of the symmetric matriz f"(xq).

Proof. We may assume for notational simplicity that zop = 0 and f(0) = 0. After
composing f with a rotation, we may assume that e; is an eigenvector of f”(0), so
that in particular, the assumptions of the previous lemma are satisfied. Then we are
reduced to tackle a function g(z') 4+ $/naf. We have dg(0) = 0, the eigenvalues of
17(0) are {u1} Uspectrum(g”(0)). We get the conclusion by an induction on n. [

6.2.5 Stationary phase formula

We consider now, for A > 0 and
I\ = /eiw(w)a(:ﬁ)dz, (6.2.11)

where the amplitude a € C2°(R"™) and the phase function ¢ is a Morse function, i.e.
a real-valued smooth function such that

Vo € suppa, do(x) =0= det¢”(z) # 0. (6.2.12)
Using the Borel-Lebesgue property, we get that

suppa C {z € R",d¢(z) # 0} U1<j<n;

~~
=Qo

where 2, for 1 < j < N is an open set such that there exists a C*° diffeomorphism
vj . V; — §;, where V; is a neighborhood of 0 in R" with

(6013)(5) = (60 13)(0) + 36" (5(0))y*

Using the theorem 3.1.14, we are able to find (¢;)o<;<n With ¥; € C°(€;), such
that ZogjgN 1; is 1 near supp a. We obtain then that

10 = [ uade + Y [0y @)atds

X 1<j<N

-~

=0(A~%°) from Theorem 6.2.1
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Le. I(A) =32 e fvj M)W (y;a) (v;(y))] det v (y)|dy + O(A>°). We note that,
according to the theorem 6.2.3

|| 0 wa) 0y ) et 1)
= 00 [ O )00 et )
(2%);/26i§Sign¢"(Vj(0)) et (0 O
| det ¢ (v;(0))["/2 (t5a)(;(0))] det v;(0)] + O )-

We note also that the stationary points of a Morse function are isolated, since for
an invertible symmetric matrix ), the only singular point of y — (Qy,y) is 0. In
particular, there are only finitely many singular points of a Morse function in a
compact set.

B0 (0)

Theorem 6.2.7. Let a be a C°(R") function and ¢ be a Morse function (see
(6.2.12)). We define I(\) by (6.2.11). We have for A — +o0

T " (e eigsign(gb”(a:)) o
I =A73(2m)"? Y e )Wa(x)+0()\ L. (6.2.13)

@,de(2)=0

zEsupp a
Proof. We note that the determinant of /(0) is 1 in the theorem 6.2.6 and the
formula of Theorem 6.2.3 gives the result if we replace v;a by a; it is indeed harmless
to do this since we can assume that xy,...,zy are the distinct singular points of ¢
in supp a and write, with C°(R™) 3 ¢; = 1 near z;, Y90, =0if 1 < j#k <N

Z TZJ'CL‘FG— Z Jja. ]

1<j<N 1<j<N

supported in Qg

6.3 The Wave-Front set of a distribution, the H?
wave-front set

Let €2 be an open subset of R” and u € 2'(2). Let us recall that the support and
the singular support of u are defined by

suppu = {z € €2, there is no open V' 3 z with w = 0}, (6.3.1)
singsupp u = {x € Q, there is no open V' 3 z with uy, € C*(V)}. (6.3.2)

Both sets are closed and we have obviously singsuppu C suppu. The Fourier
transform allows a more refined analysis of singularities: first we notice that zo ¢
singsupp u iff there exists a neighborhood U of zy such that for all y € C2°(U),

VN €N, Sup () (©)1E]™ < oo. (t)
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This is obvious when we assume xy ¢ singsupp u since there exists a neighborhood
U of zg such that yu € C°(R™) and thus yu € #(R"). Conversely, since xu is the
Fourier transform of a compactly supported distribution, it is an entire function on
C", and assuming (1), we see that (yu)(z) = [ €*™¢xu(£)d€, and the rhs is a C*
function, qed.

We use the notation Q x R™\{0} = 7*(), the cotangent bundle minus the zero
section.

Definition 6.3.1. Let Q2 be an open set of R™ and let u € 2'(S2). The wave-front-set
of u, denoted by W Fu, is defined as the complement in T*(QQ) of the set of points

(z0,&0) such that there exist some neighborhoods U,V respectively of xo,& (with
UxV CT*Q)) such that for all x € CZ(U),

YN eN, sup|(xa) @)Y < oo, with V =U,so7V. (6.3.3)
&ev

Remark 6.3.2. Note that the wave-front-set is a closed (its complement is open)
conic subset of T*(Q): conic means here that for all 7 > 0, (z,¢) € WFu —
(z,7€) € WFu. On the other hand, with pr : 7*(Q) — Q defined by pr((z,£)) = z,
we get that

pr W F'u, = singsupp u. (6.3.4)

Let xg ¢ singsupp u. Then from (1), we see that for all £ € S, (z,&) ¢ W Fu, so
that zo ¢ pr W Fu. Conversely, if g ¢ pr W Fu, for all n € S"~!, there exists some
neighborhoods U,, V,, of o, n such that for all x € C2°(U,),

YN €N, sup |(xa) (@ < oo.
£evy

By compactness, we get S*~! C Uy<;<,V;, and defining U = Ny<;<, U, we get that
for all x € C*(U),

Vie{l,....,v} YN e N, sup [(xu)(©)[¢]" < oo,
£eV;

which gives the result (}) since Ui<j<,V;, = R"\{0} and Xu is a smooth function.

Examples. It is easy to see that

(1) WF(6) = {0} x R"\{0}, &p is the Dirac mass at zero in R",

(2) WF(5) = {0} x (0,+0), —% = L (In |x|) — imdy, distribution on R,
(3) and with H = 1g,, considering the distribution on R?

WF(H(z1)H(z2)) = {(0,22,&,0) }oy50620 U {(21,0,0,8) } oy 50,620
U{(0,0)} x R*\{(0,0)}.

(4) If u is a distribution, one can easily define the complex conjugate by duality’
and we have

WFu=WFu={(z,£) such that(z, —¢) € WFu}

4We define =< ﬂ, "2} }@/(Q),@(Q): < u, ()5 >_@/(Q),@(Q)
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and in particular, a real-valued distribution (i.e. such that & = w) has a projective
wave-front-set, i.e. (z,§) € WFu <= (z,—§) € WFu, so that, instead of being
included in the sphere fiber S*(2) image of the fiber bundle 7*() by the mapping
(x,&) — (z,€/|€]), the wave-front-set of a real-valued distribution can be seen as a
part of the projective bundle for which the fibers are the quotient of the sphere S**
by {—1,1}, that is P""*(R). In particular for a real-valued distribution u on an open
set ) of the real line, then the wave-front-set does not carry more information than
the singular support since W F'u = singsupp u x R*.

The following lemma provides a characterization of the wave-front-set which is
closer of the pseudodifferential approach.

Lemma 6.3.3. Let ) € CZ(R™;[0,1]),supp by C B(0,1), 6h =1 on B(0,1/2). Let
Q2 be an open set of R and u € Z'(2). The complement of W Fu in T*(2) is the
set of (x,&) such that there exists v > 0 such that

T.(D)t,u  belongs to ./ (R"),

where T,(€) = 0 (5 — 757) (1= 60) (), te(w) = 0 (=52).

Proof. Let us assume first that 7*(€) 3 (z0, &) ¢ WFu. Using the definition 6.3.1,
we get that for some positive 7, for all N, T,.(&)t,u(€) = O((£)™") and since the
functions Dg (@) = (—1)|a|m are also rapidly decreasing on the support of T,
(from the definition 6.3.1), we get that £ — Tr(f)@(f) is in the Schwartz class as
well as its inverse Fourier transform 7,.(D)t,u.

Conversely, if for (zo,&) € T*(Q) (we may assume |£| = 1) and some positive
r, T.(D)t,u € .(R"), we get indeed as in (6.3.3)

VYN e N, supl|iu()|€]N < oo, with V neighborhood of &.
cev

Now if xy € C®(B(xg,r/2), we have y = xt, and

Toa(E)XU(E) = Toya(©)xtrul€) = Tr/4(£)/ (€ =n) To(n)tu(n) dn
O((e=n)=N)  O((m)=2N)

T a(©) / (€ — 1) (1= T(n)) i) diy.

(. J
-~

O((n)™o)

Using the Peetre inequality”, we get that the first term is O((£)™"). To handle the
next term we note that, on the support of T, /4, we have
&
ol
SWe use (€ + 1) < 21/2(¢)(n) so that, for all s € R,
(& +mp < 22 (), (6:3.5)

a convenient inequality (to get it for s > 0, raise the first inequality to the power s, and for s < 0,
replace £ by —¢ — ) a.k.a. Peetre’s inequality.

6l > 4/, ]% N P
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and on the integrand we have either || < 1/r (harmless term since x € .%) or

n & n g
n| >1/r and |——-—=—=|>71/2 = |———=|>r/4 (%)
nl - 1l Il €l
Using the inequality®
|Inlg = [€ln] (1€] + Inl) < 4l€lInll€ =l (6.3.6)
we obtain here (for the nonzero vectors &, n satisfying () ), 4|6 —n| > = (]5| + |77])
so that the rapid decay of x(§ —n) gives the result of the lemma. O]

The wave-front-set of a distribution depends only on the manifold structure of
the open set ).

Theorem 6.3.4. let k : Qy — Oy a C* diffeomorphism of open subsets of R™ and
let uy € 2'(). Then we have

WE (s ()= x* (WFu) = { (v o) (s e))
Proof. Let us define uy = rk*(uq), so that for xyo € C°(Qy), we have, for ¢, €
C(y), with brackets of duality and v = k™!, x1(z1) = x2(v(z1))| det v/ (x1)] (note

that x; belongs to C2°(€) and x1|dz| is the k-push-forward of the density ya|dz2|),
Yy € C°(§21) equal to 1 on the support of x1,

X/Z-u\2(£2> = /Xl(.Tl)ul(]71)@_2”1’(901)'52611,1
m(fl) (/ 62"77(51961§2V(ac1))w1(x1)dxl) de,

where the integral with respect to & is in fact a bracket of duality. We may thus
consider the identity

(1 + (51 —tV/<l’1>£2) . Dm) (621'#(5111*521/(901))) — eZim(&zr—Eov(z1)) (1 + Hfl —tV/<$1)fg”2)

which gives with L = (1+ ||& —tl//(itl)fg||2)71 <1 + (& =1 (21)&) - Dm),

VN € N LN( 2im (& 1z1—§2u(x1))) — GQiW(flxl—sz(xl))

so that Yotz (&) = [ Xoui (&) ([ eXm@m—&v @) ()N (¢)) (2, )dz, ) dE; and

a6 < Cn / GEEDE =1 (20)6) M Lappo (e1)dnder. (%)

SThe proof of (6.3.6) is the following: we have [[n|¢ — [&]n| < |nll& —n|+[nl[I] = [nl| < 2lnl|§ —n|
and thus [[n]¢ — [€[n] < 2|¢ — n|min(|¢], [n]) which gives

[Inlg — [&ln] (1€l + Inl) < 21€ — nlmin(|g], [n])2 max(|¢], [n]) = 4l¢][nll§ — .
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Let us assume that 7%(€4) 3 (z1,&1) ¢ WFuy; the point (zgg, &) is defined as
(v(zo1),'V (z01) 1 &o1). We assume that & belongs to a conic neighborhood T'y of &ps.
We consider first for 7 > 0 the conic subset of R™ defined by

Di(r) ={& eR"V& ey, inf & ="V (21)&] < r(|&] + (&)}

1 ESupp Y1

The set I'y(r) is also open and contains £y;. If 7 is small enough and the support

of xs is included in a small enough ball around zgy, we have from our assumption
1ui(€1)] = O({&1)72Y) on T'y(r). When the integration in (x) takes place in 'y (r),
we estimate that part of the integral, using the footnote on page 159 by

C%K//k&>2N+NK%%xﬁfﬁlemw(wﬁd$ﬂﬁi=:O(KﬁN)

When the integration in (%) takes place outside I';(r), we know that for some r > 0
and all xy € supp v, |& ="' (21)&] > r(|&1] +]&]). We have thus the estimate, with
a fixed My,

Cx //<€1>MO(<€1> + <€2>)_2N15uppw($1)d$1d§1 = O(<§2>_N), for N > My + n.

The proof of the theorem is complete. O

Definition 6.3.5. Let 2 be an open set of R", let u € 9'(Q?) and s € R. The
H?-wave-front-set of u, denoted by W Fyu, is defined as the complement in T*(Q2) of

the set of points (xq,&o) such that there exist some neighborhoods U, V' respectively
of g, & (with U x V. C T*(Q)) such that for all x € C2(U),

[ () (€)PIe[*de < o0, with T = UnogrV.
vn{l¢|>1}

6.4 Oscillatory Integrals

Definition 6.4.1. Let Q0 be an open subset of R", m € R,N € N*. The space
S™(Q x RN) is defined as the set of functions a € C°°(2 x RY; C) such that, for all
K compact subset of Q, for all « € N*, 3 € NV there exists Ck.op such that

Vo e K,V0 e RY, [(0%85a)(x,0)| < Ckaps(0)™ V. (6.4.1)

It is a easy exercise left to the reader, consequence of the Leibniz formula, to
prove that the space S™(Q x RY) is a Fréchet space and that the mappings

S (Q X RN) X sz(Q X ]RN) > (al,ag) = aijag € Sm1+m2(Q X RN)
are continuous. Moreover for any multi-indices o, 8 € N® x NV the mapping
S™(Q X RY) 3 ar 92050 € S"™IA(Q x RY)

1S continuous.
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Definition 6.4.2. Let Q be an open subset of R", N € N*, ¢ € S1(Q x RY). The
function ¢ is called a standard phase function on Q x RY whenever ¢ € S*(Q x RY)
1s real-valued and such that, for all K compact subset of €1, there exists cx > 0 such
that

2

0¢ > ekl (6.4.2)

o0
o %0 2.0

2
Vo € K,V0 € RN with |0 > 1, + 162 56

(,0)

For a € S™(Q2 x RY) with m < —N and ¢ a standard phase function, we define

Too(x) = /eid’(x’e)a(x,ﬁ)de (6.4.3)

which is a continuous function on 2 ; note also that if m < —N — k with k € N,
T... belongs to C*(Q).

Theorem 6.4.3. Let ) be an open subset of R®, m € R, N € N*,a € S"(Q x RY)
and ¢ be a standard phase function on Q x RN. Then T, , is a distribution on Q
with order > m + N in the following sense. The mapping

C2(Q) x S™(Q x RY) —s C

(u,a) [ €4@Da(z, O)u(z)drdd (6.4.4)

extends the formula (6.4.3) defined for m < —N in a unique way and continuously.

6.5 Singular integrals, examples

6.5.1 The Hilbert transform

A basic object in the classical theory of harmonic analysis is the Hilbert transform,
given by the one-dimensional convolution with pv(1/7z) = -4 (In|z|), where we
consider here the distribution derivative of the L{ _(R) function In |z|. We can also
compute the Fourier transform of pv(1/7z), which is given by —isign¢. As a result
the Hilbert transform # is a unitary operator on L*(R) defined by

Ju(€) = —isign £a(€). (6.5.1)

It is also given by the formula

(Hu)(x) = lim ! uly) dy.

e—04 T lz—y|>e r—vy

The Hilbert transform is certainly the first known example of a Fourier multiplier
(Au = F~'(au) with a bounded a).
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6.5.2 The Riesz operators, the Leray-Hopf projection

The Riesz operators are the natural multidimensional generalization of the Hilbert
transform. We define for u € L?(R"),

Ej\u(g) = g—“l({f), so that R; = D;/|D| = (_A)_I/zi(“)ix' (6.5.2)
J
The R; are selfadjoint bounded operators on L*(R"™) with norm 1.
We can also consider the n X n matrix of operators given by ) = R® R =
(RjRy)1<jr<n sending the vector space of L*(R™) vector fields into itself. The
operator @ is selfadjoint and is a projection since Y, R} = Id so that Q* =
(>, RjRiRRy);x = Q. As a result the operator

P=Id-R® R=I1d—|D|*(D® D) =1d-A" (V& V) (6.5.3)

is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-
Weyl projector); the operator IP is in fact the orthogonal projection onto the closed
subspace of L? vector fields with null divergence. We have for a vector field u =
> u;0;, the identities graddivu = V(V - u), graddiv=V @V = (-A)(iR®iR),
so that

Q=R®R=A"'graddiv, divR® R = div,

which implies divPu = divu — div(R ® R)u = 0, and if divu = 0, Pu = u. The
Leray-Hopf projector is in fact the (n x n)-matrix-valued Fourier multiplier given by
Id —[€]72(€ ® ). This operator plays an important role in fluid mechanics since the
Navier-Stokes system for incompressible fluids can be written for a given divergence-
free vy,

O —vhAv = -PV(v @),

Pv = v,

Vjt=0 = Vo.

As already said for the Riesz operators, IP is not a classical pseudodifferential opera-
tor, because of the singularity at the origin: however it is indeed a Fourier multiplier
with the same functional properties as those of R.

In three dimensions the curl operator is given by the matrix

0 —03 0
curl = | 05 0 —-0,| =curl® (6.5.4)
—0y O 0

so that curl* = —AId + grad div and (the Biot-Savard law)
Id = (—A) curl®> +A~ ' grad div, also equal to (—A)~'curl® +1d —P,
which gives curl®> = —AP, so that

[P, curl] = A~ (AP curl —A curl P) = A~ (— cwrl® + curl(—AP)) = 0,
Pcurl = cwrl P = curl(—A) ' curl® = curl(Id —A™" grad div) = curl

since curlgrad = 0 (note also that divcurl = 0).
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Theorem 6.5.1. Let Q be a function in L'(S*™') such that [, , Q(w)do(w) = 0.
Then the following formula defines a tempered distribution T':

(T, p) = lim Q(£)|x|_”<p(a:)da: = — /(13 : 3x90(x))Q(i|)|x|_" In|z|dz.

€04 |z|>€ |ZL’| ’I

The distribution T is homogeneous of degree —n on R™ and, if ) is odd, the Fourier
transform of T is a bounded function.

N.B. We shall use the principal-value notation

x
T = pv(m_"ﬁ — )
(27
When n = 1 and € = sign, we recover the principal value pv(1/z) = - (In|z|) which
is odd, homogeneous of degree -1, and whose Fourier transform is —im sign &.

Proof. Let ¢ be in Z(R") and € > 0. Using polar coordinates, we check

Qw) / h go(m)%da(w)

Sn—1
= /Sn_1 Qw) [(p(ew) In(e™t) — /€+00 w - dp(rw) In rdr] do(w).

Since the mean value of €2 is 0, we get the first statement of the theorem, noticing
that the function x +— Q(z/|z|)|z|™" ™ In(|z])(1 + |z|)~% is in L}(R"). We have

<$ ’ axT7 90> = _<T7 €z - ax@) - n<T7 90> (®)

and we see that

(T, x - Opp) = lim Qw) /+°0 rw - (d@)(rw)%da(w)

e—04 §n—1

= [0 [T ot
= [0 [T ew)irdote) = —ol0) [ Qi) =0

r
so that (®) implies that x-0,T = —nT which is the homogeneity of degree —n of T'.

As a result the Fourier transform of 7" is an homogeneous distribution with degree
0.

N.B. Note that the formula

T

—/(x-az¢(x))9(|x|)yx\nln\xydx

makes sense for Q € L'(S" 1), o € #(R") and defines a tempered distribution. For
instance, if n = 1 and €2 = 1, we get the distribution derivative d%(signa:ln |x|)

However, the condition of mean value 0 for €2 on the sphere is necessary to obtain T’
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as a principal value, since in the discussion above, the term factored out by In(1/e)
15 [ouo1 Q(w)p(ew)do(w) which has the limit ¢(0) [y, Q(w)do(w). On the other
hand, from the defining formula of T, we get with Q;(w) = %(Q(w) + (=1)Q(—w))
(€1 (resp.£22) is the odd (resp. even) part of 2)

(T ) = /Sn1 Ql(w)@U(%)»@(tw)ﬁ'(Rt),f(Rt)dU(w)
+/SMQ2(°‘J)<%(H( )Int), (tw)) o1 (r,),7@)do(w). (6.5.5)

Let us show that, when € is odd, the Fourier transform of 7" is bounded. We get
N 1 ~
<T7 ¢> = - Q(w)(pv(2—t), @/}(tw»da(w)

/n /S  Uw)sign(w - E)p(€)dedo(w)

proving that

T(€) = 2 Q(w) sign(w - )do(w) (6.5.6)

which is indeed a bounded function. OJ

6.6 Appendix

6.6.1 On the Faa di Bruno formula

That formula’ is dealing with the iterated derivative of a composition of functions.
First of all, let us consider (smooth) functions of one real variable

U-Lv -2 W,  UV,W open sets of R.
With ¢ always evaluated at f(z), we have

(go f) =4dFf
(gof) =g"f*+4f"
(g o ][‘)/Il — g///f/3 _|_ g//3f//f/ + g/f///
(90 N = gD () + 690 2"+ g" (45" '+ 31"%) + g/ f9
1 (4) 7 4 (3) 1" 1 2 (2) 1\ 2 m 1) £(4)
ie. —(gof)(4) -9 (i) +3g_ (f_) (L) _|_g_[(f_) +2 f f] +g_f_
4! 4! 1! 3! 2! 1! 2! 2! 3! 11 4!
"Francesco Faa di Bruno (1825-1888) was an italian mathematician and priest, born at Alessan-
dria. He was beatified in 1988, probably the only mathqmatician to reach sainthood so far. The
“Chevalier Frangois Faa di Bruno, Capitaine honoraire d’Etat-Major dans I’armée Sarde”, defended

his thesis in 1856, in the Faculté des Sciences de Paris in front of the following jury: Cauchy (chair),
Lamé and Delaunay.
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More generally we have the remarkably simple

(go /)W gMof )
=2 I o (6.6.1)
’ 1<r<k o kketkesk O

- There is only one multi-index (1,1,1,1) € N** such that Dicjca by =4
- There are 3 multi-indices (1,1,2), (1,2,1),(2,1,1) € N** with 21353 k;j = 4.
- There is 1 multi-index (2,2) € N*? with >i<j<o ki = 4 and 2 multiindices
(1,3),(3,1) such that » ., k; = 4.
- There is 1 index 4 € N* with >, ., k; = 4.
Usually the formula is written in a different way with the more complicated

(go f)® (") o f FOIN\Y
o) —= ) LA i 11 (T) . (6.6.2)

L2l tkl=k LT R ey
T:l1+"'+lk

Let us show that the two formulas coincide. We start from (6.6.1)

(go )W _ > g o f I fk)
k! '

If we consider a multi-index

Btyee k) = (Lo 1,202y G Ky )
—_—— —— —— ——

l1times lotimes ljtimes lktimes
AN L
we get in factor of g(T)/r! the term ngjgk (%) " with i + 2l + - + kly, =
k, ly+---+ 1 =r and since we can permute the (ki,...,k,.) above, we get indeed

The proof above can easily be generalized to a multidimensional setting with
v-Lv 4, W, U,V,W open sets of R™, R" RP, f, g of class C*.

Since the derivatives are multilinear symmetric mappings, they are completely de-
termined by their values on the “diagonal” T'® --- ® T": the symmetrized products
of T ® - -+ ® T}, noted as T7...T}, can be written as a linear combination of k-th
powers. In fact, in a commutative algebra on a field with characteristic 0, using the
polarization formula, the products T} ...T}, are linear combination of k-th powers

1
T,... T, = BTyl E €1... (e + -+ eka)k. (6.6.3)
: Ej::tl

For T' € T,(U), we have

(go )™ o gMof F
k! ™= Z rl H k.l T 75
1<r<k k14--+kr=k J
- kj>1

which is consistent with the fact that f®s)(z)T* belongs to the tangent space
T (V) of V at f(z) and ®i<j<, f*)(2)T% is a tensor product in 7"°(T;,(V)) on
which g™ (f(z)) acts to send it on Ty () (W).
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