
THE LIFETIME OF ICE ON MAIN BELT ASTEROIDS

Norbert Schorghofer

Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822

Received 2008 January 31; accepted 2008 March 27

ABSTRACT

We theoretically estimate the loss rate of buried ice from spherical bodies 2Y3.3 AU from the Sun. The loss rate is
explored as a function of about a dozen parameters.We introduce the concept of a ‘‘buried snow line,’’ where the loss
of ice is sufficiently slow over the age of the solar system. For a dusty surface layer, ice can persist within the top few
meters of the surface over billions of years, if the mean surface temperature is less than about 145 K. Variations in
surface layer properties within a plausible range are unlikely to change this threshold temperature by more than 10 K.
Longevity of ice in the shallow subsurface of asteroid 7968 Elst-Pizarro is plausible. Parameter regions for ice to
survive over the age of the solar system exist for all of the main asteroid belt, but preferentially for large distances
from the Sun and slowly rotating bodies with surfaces consisting of small particles, leading to low thermal conduc-
tivity and short molecular free paths. Rocky surfaces, in contrast to dusty surfaces, are rarely able to retain ice in the
shallow subsurface.

Subject headinggs: astrobiology — comets: general — minor planets, asteroids

1. INTRODUCTION

In the early solar system, the density of water molecules
was high enough to lead to the condensation of ice from the gas
phase, at a temperature that depends on the gas density and
defines the ‘‘snow line.’’ Today, water is lost from icy bodies to
space. Here, we estimate this loss rate for small bodies in the
main asteroid belt. The lack of the hydration signature in the
outer belt found on asteroids in the inner belt (Jones et al.1990)
and the outgassing observed in the form of comet tails (Hsieh
& Jewitt 2006) are among the evidence for the existence of
present-day ice within the asteroid belt.

Sublimation loss of exposed ice is too rapid to be sustainable
over billions of years, while buried ice potentially persists much
longer. Fanale & Salvail (1984) have pointed out that on extinct
comets, ice may be accessible within 10 m of the surface. Later,
Fanale & Salvail (1989) showed that ice could have survived in
the shallow subsurface at the polar regions of Ceres for 4.5 Gyr.

In the early solar system, ice may have been heated or even
melted as a result of radioactive decay (McSween et al. 2002).
Here we only consider the ability of ice to survive under present-
day conditions. We are interested in slow changes of volatile
content, appropriate for bodies that have orbited the Sun many
times. The resulting modeling problem is incomparably simpler
than models of active comets (Prialnik et al. 2004).

Considerations of the transport of water molecules through
the porous surface layer (x 2.1) and of how this layer evolves
with time (x 2.2) lead to the concept of a ‘‘shallowly buried snow
line’’ (x 2.3). By way of example, with end-member thermal
models and realistic models of temperature, it is easy to dem-
onstrate that ground ice can survive on some bodies in the main
asteroid belt (xx 3.2 and 3.3), corroborating the results of Fanale
& Salvail (1984, 1989). By systematically identifying how var-
ious parameters affect temperature, it is possible to obtain ex-
treme but still realistic model scenarios which bracket plausible
ranges of temperature; these calculations establish that ice can
persist, and they reveal preferred orbital and physical parameters
(xx 3.3 and 3.4). After discussion of miscellaneous issues in x 4,
the results are summarized in x 5. Frequently used symbols are
defined in Table 1.

2. ICE LOSS PHYSICS

2.1. H2O Transport through Porous Media

At temperatures below about 180K, themean free path of water
molecules in otherwise empty space is more than 1 m, and there-
fore transport through a porous medium is by Knudsen diffusion.
Kinetic theory suggests that the Knudsen diffusion coefficientDK

is given by (Mason et al. 1967)

DK ¼ 4

3
v̄K0; ð1Þ

in which v̄ is the mean thermal speed of the gas molecules andK0

is a constant characteristic of the medium with units of length.
For example, in a long straight circular capillary of radius r, the
diffusion coefficient at low pressure is DK ¼ (2/3)v̄r (Mason &
Malinauskas1983). The parameter K0 is related to the molecular
mean free path. For a porous medium, Evans et al. (1961) give
the approximate relation

K0 ¼
9
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where r is the rms grain radius, � is porosity, nd is the number
density of grains, and � is tortuosity. Number density, porosity,
and radius of spherical particles are by definition related by
nd ¼ 3(1� �)/(4r3�). Combined with equation (1), the diffusion
coefficient is

DK ¼ �

8þ �

�

1� �

v̄r

�
: ð3Þ

The mean thermal velocity is v̄ ¼ 8kBT /(�m)½ �1/2, where kB is
the Boltzmann constant and m is the molecule mass. The mean
grain size in lunar soil samples is typically 45Y100 �m (Heiken
et al. 1991), which might also be representative for the surface
layer of asteroids and comets. Many asteroids appear to have
significant porosity (Britt et al. 2002). The diffusivity depends
strongly on the free path available to molecules, and the mean
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free path is the most variable and uncertain parameter for the
diffusion coefficient.

The mass flux of H2O molecules is given by

J ¼ �DK

@�v
@z

; ð4Þ

where �v is the vapor density and z is depth. When ice is present,
the vapor density �v is determined by the equilibrium vapor den-
sity �s. The equilibrium vapor pressure ps of crystalline ice is
well known for temperatures above �150 K (Sack & Baragiola
1993; Bryson et al.1974). The literature provides various expres-
sions for the equilibrium vapor pressure of crystalline ice that
closely agree with one another (Washburn et al. 2003; Bryson
et al.1974; Hardy1998). Here, a constant sublimation enthalpy is
used of the form

ln
ps

pt
¼ ��H

R

1

T
� 1

Tt

� �
; ð5Þ

where �H ¼ 51:058 MJ kg�1, pt ¼ 611 Pa, Tt ¼ 273:16 K,
and R is the universal gas constant. Less understood is the vapor
pressure of amorphous ice, and its presence at lower temperatures.
Kouchi (1987) measured the vapor pressure of vapor-deposited
amorphous ice to be 1 or 2 orders of magnitude larger than that
of crystalline ice, but subsequent measurements showed a lower
enhancement (Kouchi 1990; Sack & Baragiola 1993). Later, the
sublimation rate was found to depend on the conditions under
which the ice was grown (Sack & Baragiola 1993; Jenniskens
et al. 1998; Baragiola 2003).

It is straightforward to apply equation (4) to an environment
where temperature changeswith time (see, e.g., Schorghofer 2007).
The net flux from the subsurface ice through a porous soil layer
of thickness �z to empty space is

J̄ ¼ �DK

�s
�z

; ð6Þ

where the overbar indicates time averages over one or more
orbits. The depth�z is the uppermost depth at which permanent
ice exists. Equation (6) is not merely a rough estimate, but essen-
tially an exact leading order description of the flux of molecules

migrating through a porous layer that experiences spatially and
temporally varying temperature.
Equations (3) and (6), combined with the ideal gas law

ps ¼ �skBT /m yield

J̄ ¼ 2�
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In the very same context, Fanale & Salvail (1984) using a model
of capillary tubes of radius r, arrived at

J̄ ¼ 4
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Their formula differs from equation (7) only by a prefactor close
to unity (Schorghofer & Taylor 2007).
Laboratory measurements of water vapor diffusion in porous

media at the crossover range between Knudsen and Fickian dif-
fusion (Hudson et al. 2007) demonstrate that simple theoretical
estimates of diffusion coefficients are valid for loose dust and
other soil simulants.

2.2. Time Evolution of Surface Layer

When a layer of pure ice recedes, its retreat rate is

Ri ¼ J̄=�bulk ice; ð9Þ

where �bulk ice � 930 kg m�3. When the ice contains dust, the
overlying layer will grow with time. The instantaneous loss rate
Ri, which has units of speed, is used throughout this paper. For
illustration, if we choose a particle diameter of 100 �m, a pro-
tective layer of 1 m thickness, a porosity of 0.5, and a tortuosity
of 2, then the retreat rate at 150 K according to equations (7) and
(9) is 9 m Gyr�1.
Due to temperature fluctuations caused by a body’s rotation

and the orbit around the Sun, the surface experiences higher peak
temperatures than ice at depth, which is protected from the tem-
perature variations by the thermal skin effect. The time-averaged
�̄s for exposed ice is larger than for buried ice. As a result, ice will
rapidly retreat to below the thermal skin depth. Thereafter, the
loss rate is determined by the mean temperature, and the ice no
longer contributes to the thermal properties of the surface layer
within the influence of the annual skin depth.
When ice retreats, a sharp interface is maintained between an

essentially ice-free sublimation lag and the underlying ice-rich
layer, such that the above expressions for the flux remain appli-
cable even after a long time. Ice is lost to space by recession of
the uppermost ice boundary. If there are pathways for molecules
to migrate within the ice-rich layer, then H2O can be redistributed
when driven by temperature gradients, but without a geothermal
gradient no net migration takes place. For the low temperatures
relevant here, the latent heat of sublimation is negligible.
If ice-rich bodies formed within the main asteroid belt, and if

these bodies were not significantly heated by radioactive decay
in their interior or by major external events, then the presence of
water ice is determined by the rate of ice loss. The ice may be in-
terstitial in a regolith matrix that remains after the ice is depleted
or, if the fraction of nonvolatile material contained in water ice is
small, a lag will form. If material is contained within the ice, the
dry surface layer grows as the ice recedes. If the dust content is
sizable, the rate at which the dry layer grows and the rate Ri at
which ice recedes are of the same order of magnitude. For ice to

TABLE 1

Notation

Symbol Meaning

A .................... Albedo

a..................... Semimajor axis

e..................... Orbital eccentricity

� ..................... Infrared emissivity

I ..................... Thermal inertia

J̄ .................... Net mass flux of H2O

k..................... Thermal conductivity

m.................... Mass of H2O molecule

ps ................... Equilibrium vapor pressure of H2O

r ..................... Grain radius, also radius of capillary

T .................... Temperature

T1 ................... Surface temperature of fast-rotating thermal model

T2 ................... Surface temperature of standard thermal model

T3 ................... Surface temperature of full thermal model

�z ................. Thickness of ice-free layer

�..................... Latitude

�..................... Obliquity

�.................... Solar longitude of perihelion relative to body’s equinox
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survive in the shallow subsurface, the loss rate should be no
more than a few meters per billion years.

2.3. The Buried Snow Line

The parameters that influence ice loss are diffusion coefficient
(which in turn largely depends on grain size), burial depth, and
temperature. The vapor density in the vicinity of ice depends very
strongly on temperature, because temperature enters close to ex-
ponentially in ps(T ). At 145 K, the vapor density changes by a
factor of 2 when temperature varies by�2.5 K, and it changes by
a factor of 10 within about �9 K.

Figure 1 shows the loss rate from equations (7) and (9) for
various parameters as a function of temperature. The solid line
shows a reference case, ice beneath a 1 m thick layer of 100 �m
grains. The other graphs differ from the reference case in one pa-
rameter each to demonstrate the variability in loss rate due to
incomplete knowledge of the physical environment. The tortu-
osity is 2 in all cases. The plot purposely shows the loss rate on a
linear axis, and the temperature range is not as wide as the tem-
perature distribution expected for asteroid surfaces. The figure
demonstrates that varying parameters within a reasonable range
corresponds to nomore than 10K change in temperature. Temper-
ature dwarfs all other parameter dependencies.

It is now apparent that prolonged survival of ice requires suf-
ficiently low temperature. For the parameters considered in Fig-
ure 1, it is reasonable to demand that temperature stays below
145 K. Depending on the nature of the surface layer, this tem-
perature may be 135Y155 K. At 160 K it would be difficult for
any protective layer to maintain ice in the topmost meter of the
surface for billions of years. Likewise, retreat rates at 130 K
are so small that ice should have survived for almost any type of
dusty surface layer. (A 10% reduction in solar luminosity corre-
sponds to a �4 K temperature decrease.)

The considerations so far enable us to introduce the concept of
a ‘‘buried snow line.’’Within order-of-magnitude considerations
of loss rates, there is a well-defined temperature, a narrow temper-
ature range, which realistically determines whether ice can sur-
vive in the shallow subsurface for billions of years, even in light

of uncertainty about other parameters. This effectively defines a
fairly sharp longevity boundary expressed as a temperature.

The existence of a buried snow line can be compared with the
phenomenon of ice in permanently shaded areas onMercury and
theMoon (Watson et al.1961). The loss rateE into vacuum, in units
of mass per area and time, is

E ¼ ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2�kBT

r
: ð10Þ

At 120 K the sublimation loss into vacuum is on the order of
10 m Gyr�1. The ratio of equation (10) with the loss rate of
buried ice, equation (7), involves a factor of r/�z. This ratio
brings the relevant threshold temperature from 120 to 145 K.

The buried snow line is only an approximate concept. It is
possible to invalidate it when the free path for molecules to es-
cape is orders of magnitude larger than 100 �m. Likewise, it is
possible that the surface layer is not meters but kilometers thick.
The dependence on layer thickness can be essentially removed
by refining the concept. In the context of main belt comets, we
are interested in the top few meters of the surface, and hence
a ‘‘shallowly buried snow line.’’ On the other hand, for the total
ice content of a large body, even ice buried 1 kmmay be relevant.
In this case, we can speak of a ‘‘deeply buried snow line.’’ The
temperature boundary for a deeply buried snow line is about
170 K, accounting for the 3 orders of magnitude slower diffu-
sion loss caused by a kilometer-thick protective layer compared
to a meter-thick protective layer with similar physical properties.
Since the material may be less porous at greater depth, the tem-
perature boundary for the deeply buried snow line may be even
higher, and it is more difficult to estimate than the shallowly buried
snow line.

3. TEMPERATURE MODELS

As argued above, the mean temperature is the most important
parameter for the loss rate of ice. At sufficient depth, temperature
does not vary with time and is independent of the position of the
body along its orbit. Nevertheless, the amount of radiation from
the body depends strongly on peak surface temperature, and thus
on the thermal properties near the surface.

3.1. Thermal Inertia

The thermal conductivity k of lunar regolith determined from
Apollo experiments is (0:9Y1:3) ; 10�2 W m�1 K�1 (Langseth
et al. 1976). The bulk density of small comets is lower than the
density of the lunar surface layer, suggesting their conductivity
is less. Presley & Christensen (1997a) review thermal conduc-
tivity measurements and theory for particulate materials. In a
vacuum, typical values are on the order of 10�2 W m�1 K�1. In
their own experiments, Presley & Christensen (1997b) find em-
pirically that the thermal conductivity is proportional to the square
root of particle size. In these experiments, for particles 10Y100 �m
in size, k is less than 10�2Wm�1 K�1, and an atmosphere of 1 torr
still contributes to heat conduction, which implies that the con-
ductivity in vacuum is lower. Assumed thermal conductivity val-
ues for cometary dust, as reviewed by Prialnik et al. (2004) are
0.1Y4 W m�1 K�1, substantially larger than those measured in
the laboratory and on the Moon. A reasonable value given the
aforementioned laboratory experiments and lunar measure-
ments is k ¼ 10�3 W m�1 K�1.

Thermal inertia is defined by I ¼ (k�c)1/2, where � is density and
c is heat capacity. With k ¼ 10�3 W m�1 K�1, � ¼ 500 kg m�3,
and c ¼ 800 J kg�1 K�1, the inertia is I ¼ 20 J m�2 K�1 s�1/2.
The thermal skin depth is I /(�c) P/�ð Þ1/2, where P is the time

Fig. 1.—Theoretical loss rates for ice buried by material of thickness�zwith
grain radius r and porosity �. The solid black line is a reference case with pa-
rameters listed in the first legend entry. For the other line types, the legend indic-
ates the parameter which differs from the reference case. The calculations use the
equilibrium vapor pressure for crystalline ice, but one graph with a modified vapor
pressure, from Bryson et al. (1974), is also shown, where ln ps ¼ ��H /(RT ) þ
21:7 (in torr) and �H ¼ 11:4 kcal mol�1 for 132Y153 K.

LIFETIME OF ICE ON MAIN BELT ASTEROIDS 699No. 1, 2008



period of temperature oscillations.With these parameters, the skin
depth for a 4 yr orbit is 0.3 m.

Spencer et al. (1989) argue that the thermal inertia of most main
belt asteroids is less than1:5 ;104 erg cm�2K�1 s�1/2 (15 Jm�2K�1

s�1/2). The thermal inertia derived from temperature maps of comet
9P/Tempel 1, the most direct measurement available, is less than
50 J m�2 K�1 s�1/2 (Groussin et al. 2007). A thermal conductivity
on the order of 10�3 W m�1 K�1 is consistent with these obser-
vational measurements. These values are typical for dusty and
not for rocky surfaces.

In a vacuum at sufficiently high temperature, heat transfer is dom-
inated by radiation instead of conduction. Thermal conductivity
therefore depends on temperature. Amodel for the top layer of the
lunar surface takes the temperature dependence of the thermal con-
ductivity as k ¼ kc½1þ 	(T /350)3�, with kc ¼ 9:22 ; 10�4 Wm�1

K�1 and 	 ¼ 1:48 (Cremers & Birkebak 1971; Vasavada et al.
1999). An expression for the temperature dependence of heat capac-
ity, based on lunar samples, is given in Ledlow et al. (1992). At tem-
peratures 50, 150, and 250 K the heat capacity is 112, 434, and
672 J kg�1 K�1, respectively. Assuming a density of 500 kgm�3,
the resulting thermal inertias are 7.2, 15, and 22 J m�2 K�1 s�1/2,
respectively. This exemplifies the change in thermal inertia with
temperature.

3.2. End-Member Thermal Models

Before going into full thermophysical calculations, we con-
sider two end-member thermal models (Lebofsky & Spencer1990).

The first of these models assumes a surface element remains at
constant temperature over diurnal and seasonal cycles or has in-
finite thermal inertia. This is also known as the fast-rotating or
isothermal latitude model (Lebofsky & Spencer1990). This equi-
librium temperature T1 is determined by

(1� A)Q̄ ¼ �
T 4
1 ; ð11Þ

where A is albedo, Q̄ is the mean of the incoming solar flux, � is
the infrared emissivity, and 
 is the Stefan-Boltzmann constant.
The temperature T1 is constant with time and can be obtained by
averaging the incoming solar flux over one orbit around the Sun.
The instantaneous flux Q thereby depends on heliocentric dis-

tance and solar incidence angle, and it vanishes on the night side.
Distance and declination of the Sun in planetocentric coordinates
are computed from orbital elements using standard astronomi-
cal formulas. The incidence angle for a given latitude is calculated
from declination and hour angle.
Results for the temperature T1, from numerical averaging of

Q, are shown in Figure 2a for a spherical body 3.2 AU from the
Sun. The semimajor axis of the three known main belt comets
(MBCs) is 3.16Y3.20 AU. Polar areas of bodies with low obliq-
uity have a mean temperature of less than 145 K, but when the
body is not spherical, polar temperatures might not be that low.
The model can in fact be solved analytically. Ward (1974)

gives the mean annual insolation at latitude � as

Q̄ ¼ 1

2�2

S0

a2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

;

Z 2�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ( sin � cos �� cos � sin � sin ’)2

q
d’; ð12Þ

where S0 is the solar constant, a is the semimajor axis in AU, e is
eccentricity, and � is obliquity. The annual mean does not depend
on the longitude of the perihelion, and it depends on eccentricity
only beyond first order. At the poles, Q̄ ¼ S0/a

2ð Þ sin �/ � 1 �ð½
e2Þ1/2�, and the resulting temperature as a function of � is in ex-
cellent agreement with our numerical results.
The other end-member is represented by the nonrotating or

standard thermal model, which assumes an instantaneous equil-
ibration of surface temperature or zero thermal inertia:

(1� A)Q ¼ �
T 4
2 : ð13Þ

The average surface temperature T̄2 can again be obtained directly
from Q with purely geometrical calculations along a single orbit,
but they represent lower than realistic temperatures. Figure 2b
shows that at 3.2 AU the standard thermal model mean surface
temperatures, T̄2, are always below 145 K for all obliquities and
latitudes.
From the large difference in mean temperatures in these two

end-member thermal models (cf. Figs. 2a and 2b), it is apparent
that rotation period and thermal inertia are important parameters

Fig. 2a Fig. 2b

Fig. 2.—(a) Mean surface temperature of a spherical body for a fast rotating body or infinite thermal conductivity and a semimajor axis of 3.2 AU. Contours are spaced
by 5 K. Polar regions on bodies with low obliquity remain below 145 K. The albedo is 0.05, the eccentricity 0.1,� ¼ 250�, and the infrared emissivity 0.9. (b) Same as a,
but for the opposite extreme of a slowly rotating body or zero thermal conductivity (also known as standard thermal model).
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in the problem. Nevertheless, since the ‘‘hot’’ end-member calcu-
lation of Figure 2a still includes parameter regions with a buried
snow line, it is clear that ground ice is able to survive over the age
of the solar system at some locations.

3.3. Realistic Temperature Calculations

A body with finite thermal conductivity and rotation rate re-
quires subsurface conduction be added to the model,

(1� A)Q ¼ �
T 4 þ k
@T

@z
; ð14Þ

�c
@T

@t
¼ @

@z
k
@T

@z

� �
; ð15Þ

where z is depth and t is time. Lateral heat transport is assumed to
be negligible, and briefly discussed in x 4. This model has two
invariants that reduce the number of independent parameters
(Lebofsky & Spencer 1990). The surface temperature only de-
pends on the combination of parameters I ¼ (k�c)1/2. Second, as
long as the rotation period is much shorter than the orbital period,
the result is the same when !1/2I is the same, where ! ¼ 2�/Prot

and Prot is the length of a solar day. Both invariances are violated
when thermal conductivity of the surface layer depends on tem-
perature, as it does for radiative heat transfer.

Equations (14) and (15) are solved numerically with a Cranck-
Nicholson scheme using geometrically spaced depths from the
surface down to five orbital skin depths and a sufficient number
of grid points within the rotational skin depth (typically six). The
heat flux from the interior is assumed to be zero. The thermal
propagation is evolved for 10 orbits to equilibrate, and averages
are taken over the 11th orbit. There are 50 time steps for every
solar day. Despite the discussion in x 3.1, thermal inertia is taken
to be independent of temperature, for reasons that will become
apparent below.

Figure 3a shows mean surface temperatures assuming
I ¼ 10 J m�2 K�1 s�1/2, a rotation period of 10 hr, and a semi-
major axis of 3.2 AU. The mean temperature is below 145 K on
the entire surface. For comparison, Figure 2a shows calcula-
tions for I!1/2 ¼ 1 and Figure 2b represents the limit I!1/2 ¼ 0.
Figure 3a corresponds to a realistic value of I!1/2 ¼ 0:13Wm�2

K�1. The temperatures for the fast-rotating model in Figure 2a are
on average 30 K warmer than the more realistic temperatures of
Figure 3a, and the standardmodel temperature of Figure 2b are an
average of 37 K colder, such that neither of the two end-member
thermal model provides reasonable temperature estimates.

Figure 3b showsmodel results with the orbital elements of aster-
oid 7968 Elst-Pizarro, also known as comet 133P/Elst-Pizarro. Its
rotation rate is known to be 3.5 hr (Hsieh et al. 2004), but thermal
inertia and the longitude of the body’s equinox need to be assumed.
The hemispheric asymmetry in Figure 3 arises from the arbitrary
choice of �. We conclude that it is perfectly plausible that ice has
survived within the shallow subsurface at the distance of known
main belt comets.

Elst-Pizarro appears to be significantly elongated based on its
light curve (Hsieh et al. 2004; Toth 2006). In the special case of
a prolate spheroid rotating around its major axis (or an oblate
spheroid rotating around its minor axis), the temperatures of
Figure 3b remain applicable if the latitude is measured between
the equator and the normal to the surface (planetodetic latitude).
Deviations between the calculated temperatures and that of an
elongated and irregularly shaped body are expected, but a larger
uncertainty lies in the thermal inertia of the surface.

A quantity of interest is the fraction of surface area colder than
the threshold temperature of 145 K. After mean temperatures are
calculated for the entire surface, the area fraction is obtained by
counting all latitudes where mean temperature is less than the
threshold temperature, weighing with the cosine of latitude.
Figure 4 shows results using mean surface temperatures for
I ¼ 10 J m�2 K�1 s�1/2 and 5000 rotations per orbit (depending
on distance 5.0Y10.5 hr). It involves calculations at many dis-
tances, obliquities, and latitudes that are carried out on a com-
puter cluster. At a distance of 2 AU only polar areas of bodies
with low obliquity have a mean temperature of less than 145 K.
At distances beyond 3.2 AU, all of the surface is below 145 K
for any obliquity. Bodies with high obliquity have the largest
fraction of their surface below the threshold temperature of 145K,
although according to Figure 3 the lowest temperatures are found
at low obliquity.

The thermal inertia and rotation period of asteroid Ceres are
comparable to what is assumed in the calculations for Figure 4.

Fig. 3a Fig. 3b

Fig. 3.—(a) Mean surface temperatures of a rotating spherical body 3.2 AU from the Sun. The thermal inertia is 10 J m�2 K�1 s�1/2 and the rotational period 10 hr. At
this distance and rotation rate, the entire surface remains below an annual mean of 145 K. (b) Mean surface temperatures of a spherical body with the orbital elements and
rotation period of main belt comet 133P/Elst-Pizarro. The thermal inertia is assumed to be 10 J m�2 K�1 s�1/2.
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Ceres has an obliquity close to zero and a semimajor axis of
2.77 AU, such that its polar regions may have been able to retain
ice in the shallow subsurface.

These estimates show that mean temperatures can be low
enough for subsurface ice to survive over the age of the solar sys-
tem in all of the main belt, but preferentially for large distances,
slowly rotating bodies, and low thermal conductivity. While the
coldest spots exist at low obliquity, it is high obliquity that it is
more likely to bring the entire surface below the buried snow line
temperature.

3.4. Parameter Dependence of Temperature

The sensitivity of mean surface temperature to various param-
eters is explored in Table 2. In both the top and bottom sections
of the table, the first row is a reference calculation that other
temperatures are compared with (�T̄ in col. [7]). According to
the considerations in x 2.3, for the loss rate to be correctly esti-
mated within 1 order of magnitude, mean temperature needs to
be known within 9 K, or less to also allow for variations in other
unknown parameters. According to Table 2, most parameters
cause variations of only a few kelvins. The parameters Prot and I
can vary over such a large range that their influence on equatorial
mean temperature can be substantial (Table 2, top). For an obliq-
uity of 20�, the temperature in polar latitudes depends less on ro-
tation period but notably on eccentricity (Table 2, bottom). The
last row in each section of the table shows a model calculation
where thermal conductivity and heat capacity vary with temper-
ature, as described in x 3.1. The model temperatures barely differ

from the reference case, such that variable thermal properties do
not need to be taken into account, as long as the thermal inertia is
representative for mean temperature.
Temperature clearly depends monotonically on A, �, Prot, and

I. The dependence on the orbital eccentricity e requires additional
thought. In the analytic expression (12) for one of the end-
member thermal models, eccentricity only enters to second or-
der, and the mean temperature increases with eccentricity for all
obliquities and latitudes. This is borne out in Table 2, for the end-
member temperature T1 as well as the more realistic model tem-
perature T̄3. At different obliquity, the dependence of T̄3 on e can
have the opposite sign, as seen in the equatorial temperature of
Table 3, where the more eccentric orbit leads to a small temper-
ature drop compared to the circular orbit. At higher latitudes, T̄3
still increases with e. Hence, T̄3 generally increases with e, al-
though not always, but the observed decrease is very small.
Guided by the results of Tables 2 and 3, we can further study

the uncertainty in temperature due to incomplete knowledge of
the body’s properties by using a ‘‘warm case’’ (I ¼ 25 Jm�2 K�1

s�1/2, Prot ¼ 2 hr, A ¼ 0:04, � ¼ 0:9, and e ¼ 0:25) and a ‘‘cold
case’’ (I ¼ 5 J m�2 K�1 s�1/2, Prot ¼ 40 hr, A ¼ 0:2, � ¼ 1, and
e ¼ 0). The two rotation rates bracket that of most asteroids
(Pravec et al. 2002). Figure 5 shows again the fraction of the area
of a spherical body colder than 145 K. These two extremes bracket
a far more reasonable temperature range than the two end-member
thermalmodels discussed above. The end-membermodels only rep-
resent theoretical extremes in thermal inertia and rotation rate. The
two cases in Figure 5 still represent extremes, as every parameter

Fig. 4.—Contours show the fraction of surface area of a spherical body where the mean temperature is below 145 K. The thermal inertia is 10 J m�2 K�1 s�1/2, and the
rotational period is 1/5000th of the orbital period. This plot is based on thermal calculations for 16,200 different combinations of semimajor axis, obliquity, and latitude.
The albedo is 0.05, the eccentricity 0.1, � ¼ 250�, and the infrared emissivity 0.9. The semimajor axes of the known main belt comets 133P/Elst-Pizarro, P/2005 U1
(Read), and 118401 (1999 RE70) are also shown.
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is changed to decrease or increase the temperature, respectively,
such that it is likely that most dust-mantled main belt asteroids
fall in between these two cases. This in turn implies that longev-
ity of ice should be commonplace on bodies within the range
of properties considered here.

3.5. Rocky Surfaces

Ice loss from rocky surfaces proceeds much faster than from
dusty surfaces for several reasons. The thermal conductivity of
large rocks is higher than that of small grains, which increases
mean surface temperature. Model calculations for I ¼ 200 J m�2

K�1 s�1/2, still less than a purely rocky surface, are carried out
with all other parameters as given in the caption of Figure 4.Mean
surface temperatures differ on average by 20K from I ¼ 10 Jm�2

K�1 s�1/2. This demonstrates that the thermal component alone is
substantial. Moreover, the thermal skin depth for I ¼ 200 J m�2

K�1 s�1/2 increases to meters, such that retreat rates in the shal-
low subsurface are higher than for mean temperature.

The molecular free path is much larger than for small grains.
Should the particle size be 1 cm instead of 0.1 mm and the voids
correspondingly larger, then according to equation (7) the buried
snow line temperature drops from 145 to 130K. Themodel calcu-
lations for I ¼ 200 J m�2 K�1 s�1/2 and a temperature threshold
of 130 K reveal that ice is rarely long lived, as seen in Figure 6.

4. DISCUSSION

For illustration, we can consider retreat rates not as a function
of temperature, as in Figure 1, but as a function of latitude using
the orbital elements of main belt comet 133P/Elst-Pizarro. Fig-
ure 7 shows surface temperature, averaged over one orbit, and
resulting retreat rates. The retreat rates are again shown for var-
ious physical properties of the surface layer. The buried snow
line is not as well defined in latitude as it is in temperature. The
high latitudes are undoubtedly areas of ice longevity, while at
equatorial regions ice may retreat to greater depth or remain
near the surface, depending on the properties of the surface
layer. The variability of layer properties on a single body is likely
less than considered in the lower panel of Figure 7, such that the
latitudinal boundary is likely still fairly well defined.

The spin axis orientation of asteroids, to the extent known, is
not isotropically distributed (Pravec et al. 2002; Kryszczynska
et al. 2007). Moreover, obliquity and spin rotation period can
change through collisions, Yarkovsky effect, and YORP effect.
When the rotation axis of the body tumbles or wobbles, then the
warmest temperature limits the lifetime of ice, as ice is lost quickly
when no longer close to the buried snow line temperature. De-
pending on rotation rate and thermal inertia, ice will survive tum-
bling at sufficiently large distances from the Sun (as in Fig. 5a
beyond 2.25 AU) or not (as in Fig. 5b). The chance of survival
increases with distance from the Sun.

TABLE 3

Surface Temperature Dependence on Eccentricity

�

(deg) e

T̄3
(K)

T1
(K)

T̄2
(K)

0 0 137 159 90

0.3 136 161 89

30 0 130 162 91

0.3 141 164 107

80 0 119 170 97

0.3 141 172 126

Note.—The obliquity is 70�, and all other parameters
are as in the reference cases of Table 2.

TABLE 2

Parameter Dependence of Surface Temperature

A

(1)

�

(2)

e

(3)

Prot

(hr)

(4)

I

(J m�2 K�1 s�1/2)

(5)

T̄3
(K)

(6)

�T̄

(K)

(7)

T1
(K)

(8)

T̄2
(K)

(9)

Comment

(10)

Latitude � ¼ 0�

0.05 0.9 0.1 9.11 10 148 . . . 172 99

0.20 0.9 0.1 9.11 10 143 �5 165 94

0.05 1.0 0.1 9.11 10 144 �4 168 96

0.05 0.9 0 9.11 10 148 0 172 99

0.05 0.9 0.2 9.11 10 148 0 173 98

0.05 0.9 0.1 2.28 10 154 +6 172 99

0.05 0.9 0.1 36.4 10 142 �6 172 99

0.05 0.9 0.1 9.11 50 162 +14 172 99

0.05 0.9 0.1 9.11 10a 148 0 172 99 T -dependent

Latitude � ¼ 80� N

0.05 0.9 0.1 9.11 10 105 . . . 134 83

0.20 0.9 0.1 9.11 10 102 �4 129 79

0.05 1.0 0.1 9.11 10 103 �3 131 81

0.05 0.9 0 9.11 10 100 �5 134 76

0.05 0.9 0.2 9.11 10 111 +5 135 90

0.05 0.9 0.1 2.28 10 107 +1 134 83

0.05 0.9 0.1 36.4 10 104 �1 134 83

0.05 0.9 0.1 9.11 50 113 +7 134 83

0.05 0.9 0.1 9.11 10a 104 �1 134 83 T-dependent

Note.—The semimajor axis is 3 AU, the obliquity 20�, and � ¼ 250� in all cases. Italics highlight the parameter that is changed
relative to the reference case in the first row.

a Thermal inertia at 150 K.
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Impacts can lead to stirring of the surface layer, as observed
on the Moon where overturning is estimated at 1 m Gyr�1

(Heiken et al. 1991). Similar values might also apply to aster-
oids. Our calculations assume an already dry surface layer and
impact gardening is not considered; they will be unaffected by
gardening as long as the impacts do not cause significant heat-
ing at the depth of the ice interface.

The one-dimensional thermal model neglects lateral heat flux,
whose size we now estimate. The lateral heat flux on a small ob-
ject is QL ¼ �k@T /@y, where y is horizontal distance. Judging
by Figure 3, we may take a temperature gradient of 50 K per
radian of latitude as typical. The thermal conductivity of pure ice
is orders of magnitudes larger than that of dry dust, and we con-
servatively take it to be 4Wm�1 K�1. On a kilometer-sized object,
this amounts to a net flux of 4 W m�1 K�1 ; 50 K/(�500 m) �
0:1 W m�2, which is small compared to the incoming solar flux.

We consider ice-rich bodies where the weight of a fully cover-
ing dust mantle is greater than the gas pressure difference through

themantle. For example, for a nonrotating body of radiusR ¼ 1 km
and uniform density � ¼ 1000 kg m�3, the bottom pressure of a
surface layer of thickness�z ¼ 1 m isG�2(4�/3)R�z ¼ 0:2 Pa,
which is orders of magnitude more than the extremely low equi-
librium vapor pressure at 145K.Hence, at the relevant temperatures,
the vapor pressure of H2O is unable to destroy or disturb the surface
layer through the force it exerts. (Although it must bementioned that
Elst-Pizarro is close to being torn apart by centrifugal force.)

5. CONCLUSIONS

The gradual loss of ice from bodies in the main asteroid belt
andwith orbits typical for themain belt can be calculated in simple
ways. Among the parameter dependencies, temperature is the most
important. This ultimately leads to the concept of a ‘‘shallowly
buried snow line,’’ which can be approximately defined by the
mean surface temperature below which ice will remain within
the top fewmeters of the surface over the age of the solar system.
When the surface layer has a mean molecular free path or grain

Fig. 5a Fig. 5b

Fig. 5.—Contours show the fraction of surface area of a spherical body where the mean temperature is below 145K. (a) ‘‘Cold case’’: I ¼ 5 J m�2 K�1 s�1/2, Prot ¼ 40 hr,
A ¼ 0:2, e ¼ 0, and � ¼ 1. (b) ‘‘Warm case’’: I ¼ 25 J m�2 K�1 s�1/2, Prot ¼ 2 hr, A ¼ 0:04, e ¼ 0:25, � ¼ 0:9, and � ¼ 250�. An intermediate case is shown in Fig. 4.

Fig. 6.—Fraction of surface area colder than 145K (solid contours) and 130K
(dashed contours) for the same parameters as in Fig. 4, but a thermal inertia of
200 J m�2 K�1 s�1/2. Parameter regions for ice longevity are much smaller.

Fig. 7.—Mean temperature and loss rate for a spherical body with the orbital
elements and rotation period of 7968 Elst-Pizarro. The thermal inertia is assumed
to be 10 J m�2 K�1 s�1/2 and the obliquity 20�. In the top panel, the temperature
range 135Y155 K is indicated by horizontal dotted lines. Parameters for the lines
in the bottom panel are as in Figure 1.
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size on the order of 0.1 mm, this temperature is estimated to be
about 145K.Avariation of 10K up or down captures an enormous
range of realistic parameters for the physical properties of the
surface layer. A threshold of about 145 K applies to dusty surfaces,
while that for rocky surfaces with a longer molecular free path can
be significantly lower.

Realistic temperature estimates reveal a large parameter space
where subsurface ice is long-lasting, as indicated in Figure 4, as
long as the surface layer is dusty. Temperatures can be low enough
for ground ice to survive over the age of the solar system in all of
the main belt, but preferentially for large distances, slowly rotat-
ing bodies, low thermal conductivity, and for spin axes roughly
aligned with the orbital plane.

Approximately speaking, we have considered the loss rate of
ice as a function of about a dozen parameters: surface layer thick-

ness, grain size, equilibrium vapor pressuremeasurements and ice
phase, porosity, tortuosity, semimajor axis, orbital eccentricity,
obliquity of the rotation axis, latitude, albedo, emissivity, ro-
tation rate, and thermal inertia. Exploratory and systematic cal-
culations show that ice should be able to persist on many main
belt bodies. In conclusion, if the snow line was so close to the
Sun that icy bodies formed in the main asteroid belt or if icy
bodies were delivered to the main belt, then this snow line is
still to be found buried beneath the surfaces of many of these
objects.

It is a pleasure to thank Nader Haghighipour, Troy Hudson,
Dave Jewitt, Karen Meech, and Dina Prialnik for insightful
discussions.
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