\

iy

et

End-to-End Distributed Application Monitoring
using the “Distributed Monitoring Framework”

Brian L. Tierney
(bltierney@lbl.gov)

Lawrence Berkeley National Laboratory

DMF

\

Background and Outline 1\‘

* My Background:

— >10 years experience working with data intensive distributed
systems
» remote visualization from a Cray-YMP: SC '91
» Gigabit network testbed community (MAGIC)
e Data Grid community

— learned a lot about TCP and networking issues along the way

* This talk will cover:
— Definition of the End-to-End problem
— Components needed to solve this problem
— Previous LBNL work on parts of the problem:
* NetLogger and GMA
— Planned work

DMF

\

iy

et

Overview

The Problem

— When building distributed systems, we often observe
unexpectedly low performance
« the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
« the applications
« the operating systems

« the disks, network adapters, bus, memory, etc. on either the
sending or receiving host

» the network switches and routers, and so on

The Solution:

» Highly instrumented systems with precision timing information
and analysis tools

DMF

\

Performance Analysis

Distributed system users and developers blame
performance problems on network congestion
— This is often not true!
In our experience tuning distributed applications,
performance problems are due to:
— network problems: ~45%
e this include TCP tuning issues
— application design problems/bugs: ~45%
* 50% client , 50% server
— host / disk problems: ~10%

Therefore it is equally important to instrument the
applications

DMF

\

Solution cerrend] ‘

et

* A complete End-to-End monitoring framework that includes
the following components:

— instrumentation tools (application, middleware, and OS
monitoring)

— host and network sensors (host and network
monitoring)

— sensor management tools (sensor control system)
— event publication service

— event archive service

— event analysis and visualization tools

— acommon set of protocols for describing,
exchanging and locating monitoring data

DMF

\

c Protocol
ommon Protocols 1\‘

* We need a monitoring framework that provides a unifying view to a
wide range of sensor data, from network to host to application.

e This requires common protocols and data formats:
— event data descriptions
— event dictionaries
— query format
— publish/subscribe APIs and protocols
— timestamp format
— types
— etc.

* Using XML-based solutions for this problem

— working with Global Grid Forum to define these
(http://www. gridforum.org/)

DMF

Uses for Monitoring Data 1\‘

* Monitoring Data not just for End-to-End Performance
Analysis:
» Lots of “middleware services” need Monitoring data too:
» Grid Schedulers
—find the best match of CPUs and data sets for a given job
» Grid Replica Selection
—find the “best” copy of a data set to use
* Reliable File copy service
—detect failures and recover
* Network-aware applications
—TCP buffer size tuning, number of parallel streams, etc.

DMF

\

Instrumentation Tools 1\‘

* Need to instrument applications, middleware, and operating systems
¢ Requirements:
— non-intrusive
— easy to use
— real time monitoring ability
— standard format(s)
— accurate data
* precision timestamps (see next slide)
« indication of accuracy of the data (e.g.: “confidence level”)
e Issue: Application level vs. OS level monitoring
— need application source code OR
— need to intercept OS calls using shared library tricks OR
— need to modify OS
— Often hard to convince developers to instrument their code

DMF

\

Timestamps: ﬂ|

Clock Synchronization Issues .

» To correlate events from multiple systems requires
synchronized clocks
* But how accurate does this synchronization need to be?
— We have found that to analyze systems from the “user
perspective” requires:
* microsecond resolution between events on a single
host (gettimeofday() system call)
* millisecond resolution between WAN hosts
—fairly easy to achieve this with NTP
* somewhere in between for LAN hosts
* Recommendation: everyone use IETF timestamp standard
— example: 2002-01-18T21:20:07.401662Z
- YYYY-MM-DDTHH:MM:SS.SZ (T=date-time separator, Z = GMT)
— http://www.ietf org/internet-drafts/draft-ietF-impp-datetime-05.txt

DMF

\

Host and Network Sensors ceren] ‘

Fﬁﬂm?\

* Need a variety of host sensors
— CPU, Disk, Memory, etc.

* Need norintrusive network sensors capable of end-to-end
and hop-by-hop network analysis
— latency, capacity, available bandwidth, etc.

* Need standard schemas and publication mechanisms for
this sensor data

— SNMP only partially addresses this problem
» Simple GET/SET model only
—No support for subscription
» Source of information is implicit in the packet addressing
* We can easily write tools to wrap SNMP data with our data format
* SNMP is not well suited to application monitoring

DMF

Sensor Management “‘_J ‘
I——

* As distributed systems become bigger and more complex,
there are more pieces to monitor and manage

» Various components require different levels of monitoring:
— constant
— “on demand”
— when triggered by some other event

* The sensors themselves need to be automatically installed,
updated, and removed

* Requirement:

— a Sensor Management System capable of securely
controlling the distribution and execution of monitoring
sensors in a distributed environment

DMF

Event Publication ﬁ ‘

Fﬁﬂm?\

* To handle potentially huge amounts of event data requires
an event publication and subscription service that is:

— flexible
— highly scalable
— provides near real-time access to monitoring data

* The Global Grid Forum (GGF) (www.gridforum.org) has
defined the “Grid Monitoring Architecture” (GMA), for this
purpose.

— Several GMA implementations have started to appear

» A great deal of work remains to define standard event
schemas and event dictionaries for the GMA.

DMF

GMA Terminology and Architecture 1\

event publication

(Performance) Event: : ;
information

— Typed collection of data with a
specific structure

Producer Interface:
event
— makes performance data data

Directory
Service

(events) available
i event publication -
Consumer Interface: Producer information __--"
— receives performance data /,/"
(events) It
Directory Service: -7
— supports information events

publication and discovery
— must be distributed and/or
replicated

Producer Interface
analysis, filtering, etc.

Consumer Interface

DME J producer ’:H producer %

i

\

Event Archi
vent Archives ﬁ\\‘

Archived event data is required for
— performance analysis and tuning
» compare current performance to previous results
— accounting

The archive must be extremely high performance and scalable to
ensure that it does not become a bottleneck.

— heavily loaded FTP server could generate about 500 KB/sec
(1.8 GB/hr) of monitoring event data

— e.g.: use pipelining to guarantee that applications and sensors
never block when writing to the archive
 buffer event data on disk
SQL capability desirable
— ability to do complex queries

DMF

\

Event Analysis and W'
Visualization Tools ‘\\‘

* Requirements
— real time and post-mortem analysis capabilities

— ability to correlate application events with host and
network events

* most existing tools do one or the other
— flexible
configurable
— etc.

» Tradeoff issues between flexibility and ease of use
— special purpose, easy to use tools needed too

DMF

Existing Pi
xisting Pieces 1\‘

e Many of these components already exist or are in progress:
— instrumentation tools
» Pablo (UIUC), NetLogger (LBNL), log4j (apache), web100, etc.
host and network sensors
* too many to list
sensor management tools
« JAMM (LBNL)
event publication service
+ MDS (Globus), NWS (UCSB), R-GMA (RAL), CODE (NASA AMES)
— event archive service
» netarchd (LBNL), NWS (UCSB)
event analysis and visualization tools
* lots, but most only work for specific types of events:
—NetLogger nlv (LBNL), Probe (Stazi), Autopilot (UIUC), etc.
e BUT, all use different event formats and protocols!
— no interoperability

DMF

New LBNL Project: The Distributed ﬂ]

Monitoring Eramework (DMFE _—

* The “Distributed Monitoring Framework” (DMF) Project will:
— define common protocols and data formats
« we are leading a GGF effort in this area
— work with others to integrate existing components using
this framework
e e.g.: PingeER, NWS, MDS
— develop missing pieces
e e.g.: event archives

* Goal:

— provide a unifying view to a wide range of sensor data,
from network to host to application

DMF

\

Existing Component: NetLogger

DMF

NetL Toolkit
etLogger Toolki j]\\‘

* We have developed the NetLogger Toolkit (short for
Networked Application Logger), which includes:

— tools to make it easy for distributed applications to log
interesting events at every critical point

— tools for host and network monitoring

— event visualization tools that allow one to correlate
application events with host/network events

* NetLogger combines network, host, and application-level
monitoring to provide a complete view of the entire
system.

* Open Source, available at http://www-didc.lbl.gov/NetLogger/

DMF

Sample NetLogger Use ﬁ\\.‘

I mport netl ogger

nl = netl ogger . Net Logger (
“x-netlog://host.Ibl.gov”,
net | ogger . NL_ENV)

whi | e not done :
nl.wite("EVENT_BEGQ N', “SI ZE=%", (si ze,));
done = do_sonet hi ng(data, size)
nl.wite ("EVENT_END'," Sl ZE=%l“, (si ze,));

del nl

DMF

10

10

NetLogger Analysis: Key Concepts 1\:

* NetlLogger visualization tools are based on time correlated and object

correlated events.
— precision timestamps (default = microsecond)
« If applications specify an “object ID” for related events,

this allows the

NetLogger visualization tools to generate an object “lifeline”
« In order to associate a group of events into a “lifeline”, you must assign

an “Event ID” to each NetLogger event

— Sample Event ID: file name, block ID, frame ID, etc.

End Processing /
Begin Processing
g |
2 End Read
w
Begin Read
Request data /
time
DMF

NLV Analysis Tool:

ll'm I|I

Fie Scasn Cpcdd Mk

MedLogper Viausieion

Tltle (T ThE sl —
o TLE_FEAD - J
™_TE_FEn - =
T_FECUERT_BENT - w o m M T
AP _PECEE -

Events OREEETANT_MEAD.

CFs_EE Y
D525, WRSTE A_CUT -]

O, UsTE R4 | g L
AFF_HENT - -

k RO AT_LISER T CamEinm

WAISTAT_ T e |]

Max window sige
Windowsize
o

&
B8

—

Menu bar

NP SR WeaTe | i |I_’-TJ:‘W-".- N Scale for load-line/
5 DPRE GHI_ Rl I i :\ﬁ\points
I I
|

Zoom box

— Time axis
/Legend

Playback speed

| Zoom-box actions
Playback controls

Zoom window

controls

11

11

Example: Combined Host and

lication Monitorin

NetLogger Visualization

\

A
rerreee| i

et

PSS _SEHD_DOKE —

DPSS_SEHD_BLOCK_START —|

DPSS_SEHD_START —|

BytesRetrans —|

Fvenis

Application pause
here caused by

A/TCP retransmits
x

? 0.00,10000000. 00 g
o.00, B g

VMSTAT _CPU_TOTAL —|

e 3 colors represent 3 parallel sockets
e X-axis = event; Y-axis = time

» Application Events: send header, send data start, send data end

—0.00,100. 00

DMF

Example: Combined Host and

i i

Cabzndar dal e ol b edpe: Wed Jan 10 3 ED0E25 1002
~ degsland_jbl re

u dpasleil_lbkl g
DMF

e UL]

5.0, L0 00

SR TETE]

Lb.a0, 00 0

12

12

almost a 2:1 speedup

\

NetLogger Tuning Results j]\\.‘

I/O followed by i
processing ot A ' ! ¢ s

B J | |
Next 10 starts s - — —]

when processing,’| | | 1l
ends sc Loan Tad \5 —

overlapped I/O and ook -
processing pesitrcatas] x e
process préevious’ &
block Lo

remote’ 10~

DMF

\

DMF Enhancements to NetLogger 1\.‘

Rewrite of client library
— Multiple log formats allowed with same API
« ASCII (ULM)
* Binary log format
— much better performance than ASCII
— strong type information on the wire
— Other language APIs automatically generated with SWIG

* Much faster than “100% native” implementations, esp. for script
languages such as Perl, Python, and TCL
» Changes and bug fixes in core automatically propagated to all APIs

SOAP/WSDL descriptions

Enhanced reliability

— periodically try to reconnect broken TCP pipe
— stores data on local disk while net is down

DMF

13

13

iy

et

Role of Web Services in the DMF

DMF

\

DMF will be based on Web Services ﬁ\\

XML is the de-facto standard for language-independent
and platform-independent self-describing data

Web Services builds on XML (and HTTP) to provide:

— amessaging protocol (SOAP)

— an interface description language (WSDL)

— a directory service (UDDI)

The commercial sector is driving creation of Web Services
tools and libraries

— tremendous number of new tools emerging

We can use these tools and libraries to speed up

development of interoperable interfaces to Grid services,
such as the GMA.

DMF

14

14

SOAP Example: ﬁ

Reguest for ping data _—

<SOAP-ENV:Envelope ... header stuff removed... <SOAP-ENV:Body>
<gprqg:Query> <gpe:Event>
<Name xsi:type="xsd:string">Ping</Name>
<gpe:ComplexElement SOAP-ENC:arrayType="Eventltem[]">
<gpe:SimpleElement>
<Name xsi:type="xsd:string">SourceHost</Name>
<Value xsi:type="xsd:string">foo.Ibl.gov</Value>
</gpe:SimpleElement>
<gpe:SimpleElement>

<Name xsi:type="xsd:string">DestHost</Name>
<Value xsi:type="xsd:string">www.mit.edu</Value>

</gpe:SimpleElement>
</gpe:ComplexElement>
</gpe:Event> </gprq:Query>

DMF

SOAP Example: N

<SOAP-ENV:Envelope ... header stuff removed... <SOAP-ENV:Body> <gpry :QueryReply >
<gpe:Event>
<Name xsi:type="xsd:string">Ping</Name>
<TimeStamp>2002-01-18T21:20:07.401662Z</TimeStamp>
<gpe:ComplexElement SOAP-ENC:arrayType="Eventltem[|">
<gpe:SimpleElement>
<Name xsi:type="xsd:string">SourceHost</Name>
<Value xsi:type="xsd:string">foo.lbl.gov</Value> </gpe: SimpleElement>
<gpe:SimpleElement>
<Name xsi:type="xsd:string">DestHost</Name>
<Value xsi:type="xsd:string">www mit .edu </Value> </gpe:SimpleElement>
<gpe:SimpleElement>
<Name xsi:type="xsd:string">RTT</Name>
<Value xsi:type="xsd:decimal">68.300000</Value>
<Units xsi:itype="xsd:string">ms</Units> </gpe:SimpleElement>
<gpe:SimpleElement>
<Name xsi:type="xsd:string">Avg_10</Name>
<Value xsi:type="xsd:decimal">60.100000</Value>
<Units xsi:type="xsd:string">ms</Units> </gpe:SimpleElement>
</gpe:ComplexElement> </gpe:Event>
</gpry:QueryReply >

DMF

15

15

Web Services: WSDL

ingRequest xmins=". xminsxsd ..>
dltypes> < “..Pi ">
(Type name=" ">

<xsdsequence>
<xsd:element name="
<xsd:element name=

SourceHost " type="xsdstring"/>
DestHost " type="xsdstring"/>

<lvsd sequence>
<lxsd complexType >
Type name=" e O
<xsd:sequence>

<xsd:element name="RTT" type="xsd:float"/>

<xsd:element name="Avg_10" type="xsctfloat"/>
<Ixsd sequence>
<Ixsd complexType >
<Ixsd :schema> <fwsdltypes>
<wsdl:message name=GetPingValueSoapin”>
<wsdl:part name="Parameters" type=" GetPingValue InParameters'/>
<Hwsdl:message>
out">
<wsdl:part name="Parameters" type=" GetPingValue OutParameters'/>
<hwsdl:message>
<wsdl:portType name="PingRequestServiceSOAPPoItType ">
<wsdl:operation name=" GetPingValue">
<wsdl input name=" put message="GetPi I
s) Output Out/
Swad operation>
<wsdlportType >
<wsdl: name="PingReq ing’ type= APPOrtType ">
=" IpC " transport=", >
. pA L gov wdl gValue'/>

)
<wsdlinput name="GetPingValuelnput>
<soap:body use="encoded" encodingStyle="..soaplencoding"/>
<msdlinput>
<wsdloutput name= “GelPlngValueOulpul>
oap:body use="encoded" encodingStyle="..soaplencoding/"/>

<wsdl:output>
<hwsdl:operation>
<fwsdlbinding>
<wsdl:service name="PingRequestService'>
<wsdl:port name="PingRequestServiceSOAPPort " binding=" PingRequestServiceSOAPBinding™>
<soapaddress location="http:/Avww.Ibl gov/DIDCPingRequest */>
<fwsdl:port>
<Hwsdl:service>
<wsdldefinitions>

DMF

WSDL Tools

*Generating all this is much easier than it looks.

*There are tools to simplify the process:

. GUI for authoring and editing web service contracts

_ =I0i]

| Eie Edt Tooks peip | [F-E D -7-] %] 4 bowgoim

(oo | cortiary| ERUEER U'Elll'lllli:ﬂi

= O PingRegesstEoamples msdl
=]
WILL gefmratad by Kamiak Orfniopara § |P-’1|I'le-c|u¢sl:
LEEME 3 ER0D PM Tarpst Hamespacs
H-) Types |u|"! 11bd o v owsdl P irgegue sEEc ample
= Mg GetPrg’dslusSnapin
B M Gatiegtalue oaptud weh Servos Summery:

il W, Pirsgfegue stSecsice SORMRriTy pe

e el Port Typs | Operstan Parametes | Carection | Trpe

B PingRequastSereios ¥l Cidend ;hH |= - ::ﬂ
[B s
RTT =T el Bl
dwg 10 =1 i ot
DMF

16

16

For More Information jl\'\‘

DMF: http://www-didc.Ibl.gov/DMF/

GMA: http://www-didc.lbl.gov/IGGF-PERF/GMA-WG/

email: bltierney@ Ibl.gov

DMF

17

17

