
1
1

GGFDMF

End-to-End Distributed Application Monitoring
using the “Distributed Monitoring Framework”

Lawrence Berkeley National Laboratory

Brian L. Tierney
(bltierney@lbl.gov)

GGFDMF

Background and Outline

• My Background:
– >10 years experience working with data intensive distributed

systems
• remote visualization from a Cray-YMP: SC ’91
• Gigabit network testbed community (MAGIC)
• Data Grid community

– learned a lot about TCP and networking issues along the way

• This talk will cover:
– Definition of the End-to-End problem
– Components needed to solve this problem
– Previous LBNL work on parts of the problem:

• NetLogger and GMA

– Planned work

2
2

GGFDMF

Overview

• The Problem
– When building distributed systems, we often observe

unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks, network adapters, bus, memory, etc. on either the

sending or receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing information

and analysis tools

GGFDMF

Performance Analysis

• Distributed system users and developers blame
performance problems on network congestion
– This is often not true!

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: ~45%

• this include TCP tuning issues

– application design problems/bugs: ~45%
• 50% client , 50% server

– host / disk problems: ~10%
• Therefore it is equally important to instrument the

applications

3
3

GGFDMF

Solution

• A complete End-to-End monitoring framework that includes
the following components:
– instrumentation tools (application, middleware, and OS

monitoring)
– host and network sensors (host and network

monitoring)
– sensor management tools (sensor control system)
– event publication service
– event archive service
– event analysis and visualization tools
– a common set of protocols for describing,

exchanging and locating monitoring data

GGFDMF

Common Protocols

• We need a monitoring framework that provides a unifying view to a
wide range of sensor data, from network to host to application.

• This requires common protocols and data formats:
– event data descriptions

– event dictionaries
– query format
– publish/subscribe APIs and protocols
– timestamp format
– types
– etc.

• Using XML-based solutions for this problem
– working with Global Grid Forum to define these

(http://www.gridforum.org/)

4
4

GGFDMF

Uses for Monitoring Data

• Monitoring Data not just for End-to-End Performance
Analysis:

• Lots of “middleware services” need Monitoring data too:
• Grid Schedulers

—find the best match of CPUs and data sets for a given job

• Grid Replica Selection
—find the “best” copy of a data set to use

• Reliable File copy service
—detect failures and recover

• Network-aware applications
—TCP buffer size tuning, number of parallel streams, etc.

GGFDMF

Instrumentation Tools

• Need to instrument applications, middleware, and operating systems
• Requirements:

– non-intrusive

– easy to use
– real time monitoring ability
– standard format(s)
– accurate data

• precision timestamps (see next slide)
• indication of accuracy of the data (e.g.: “confidence level”)

• Issue: Application level vs. OS level monitoring
– need application source code OR
– need to intercept OS calls using shared library tricks OR
– need to modify OS

– Often hard to convince developers to instrument their code

5
5

GGFDMF

Timestamps:
Clock Synchronization Issues

• To correlate events from multiple systems requires
synchronized clocks

• But how accurate does this synchronization need to be?
– We have found that to analyze systems from the “user

perspective” requires:
• microsecond resolution between events on a single

host (gettimeofday() system call)
• millisecond resolution between WAN hosts

—fairly easy to achieve this with NTP

• somewhere in between for LAN hosts

• Recommendation: everyone use IETF timestamp standard
– example: 2002-01-18T21:20:07.401662Z
– YYYY-MM-DDTHH:MM:SS.SZ (T=date-time separator, Z = GMT)
– http://www.ietf.org/internet-drafts/draft-ietf-impp-datetime-05.txt

GGFDMF

Host and Network Sensors

• Need a variety of host sensors
– CPU, Disk, Memory, etc.

• Need non-intrusive network sensors capable of end-to-end
and hop-by-hop network analysis
– latency, capacity, available bandwidth, etc.

• Need standard schemas and publication mechanisms for
this sensor data
– SNMP only partially addresses this problem

• Simple GET/SET model only
—No support for subscription

• Source of information is implicit in the packet addressing
• We can easily write tools to wrap SNMP data with our data format
• SNMP is not well suited to application monitoring

6
6

GGFDMF

Sensor Management

• As distributed systems become bigger and more complex,
there are more pieces to monitor and manage

• Various components require different levels of monitoring:
– constant
– “on demand”
– when triggered by some other event

• The sensors themselves need to be automatically installed,
updated, and removed

• Requirement:
– a Sensor Management System capable of securely

controlling the distribution and execution of monitoring
sensors in a distributed environment

GGFDMF

Event Publication

• To handle potentially huge amounts of event data requires
an event publication and subscription service that is:
– flexible
– highly scalable
– provides near real-time access to monitoring data

• The Global Grid Forum (GGF) (www.gridforum.org) has
defined the “Grid Monitoring Architecture” (GMA), for this
purpose.
– Several GMA implementations have started to appear

• A great deal of work remains to define standard event
schemas and event dictionaries for the GMA.

7
7

GGFDMF

GMA Terminology and Architecture

event
data

Consumer
event publication

information

Producer

Directory
Service

event publication
information

• (Performance) Event:
– Typed collection of data with a

specific structure

• Producer Interface:
– makes performance data

(events) available

• Consumer Interface:
– receives performance data

(events)

• Directory Service:
– supports information

publication and discovery
– must be distributed and/or

replicated

events

producer

analysis, filtering, etc.

Producer Interface

Consumer Interface

consumer

producer

GGFDMF

Event Archives

• Archived event data is required for
– performance analysis and tuning

• compare current performance to previous results

– accounting
• The archive must be extremely high performance and scalable to

ensure that it does not become a bottleneck.
– heavily loaded FTP server could generate about 500 KB/sec

(1.8 GB/hr) of monitoring event data
– e.g.: use pipelining to guarantee that applications and sensors

never block when writing to the archive
• buffer event data on disk

• SQL capability desirable
– ability to do complex queries

8
8

GGFDMF

Event Analysis and
Visualization Tools

• Requirements
– real time and post-mortem analysis capabilities
– ability to correlate application events with host and

network events
• most existing tools do one or the other

– flexible
– configurable
– etc.

• Tradeoff issues between flexibility and ease of use
– special purpose, easy to use tools needed too

GGFDMF

Existing Pieces

• Many of these components already exist or are in progress:
– instrumentation tools

• Pablo (UIUC), NetLogger (LBNL), log4j (apache), web100, etc.
– host and network sensors

• too many to list
– sensor management tools

• JAMM (LBNL)
– event publication service

• MDS (Globus), NWS (UCSB), R-GMA (RAL), CODE (NASA AMES)
– event archive service

• netarchd (LBNL), NWS (UCSB)
– event analysis and visualization tools

• lots, but most only work for specific types of events:
—NetLogger nlv (LBNL), Probe (Stazi), Autopilot (UIUC), etc.

• BUT, all use different event formats and protocols!
– no interoperability

9
9

GGFDMF

New LBNL Project: The Distributed
Monitoring Framework (DMF)

• The “Distributed Monitoring Framework” (DMF) Project will:
– define common protocols and data formats

• we are leading a GGF effort in this area

– work with others to integrate existing components using
this framework

• e.g.: PingER, NWS, MDS

– develop missing pieces
• e.g.: event archives

• Goal:
– provide a unifying view to a wide range of sensor data,

from network to host to application

GGFDMF

Existing Component: NetLogger

10
10

GGFDMF

NetLogger Toolkit

• We have developed the NetLogger Toolkit (short for
Networked Application Logger), which includes:

– tools to make it easy for distributed applications to log
interesting events at every critical point

– tools for host and network monitoring

– event visualization tools that allow one to correlate
application events with host/network events

• NetLogger combines network, host, and application-level
monitoring to provide a complete view of the entire
system.

• Open Source, available at http://www-didc.lbl.gov/NetLogger/

GGFDMF

Sample NetLogger Use

import netlogger

nl = netlogger.NetLogger(
“x-netlog://host.lbl.gov”,
netlogger.NL_ENV)

while not done :
nl.write("EVENT_BEGIN",“SIZE=%d“,(size,));
done = do_something(data, size)
nl.write ("EVENT_END","SIZE=%d“,(size,));

del nl

11
11

GGFDMF

NetLogger Analysis: Key Concepts

• NetLogger visualization tools are based on time correlated and object
correlated events.
– precision timestamps (default = microsecond)

• If applications specify an “object ID” for related events, this allows the
NetLogger visualization tools to generate an object “lifeline”

• In order to associate a group of events into a “lifeline”, you must assign
an “Event ID” to each NetLogger event
– Sample Event ID: file name, block ID, frame ID, etc.

GGFDMF

NLV Analysis Tool:
Plots Time vs. Event Name

Menu bar

Scale for load-line/
pointsEvents

Legend

Zoom window
controls

Zoom box

Playback controls

Window size
Max window size

Zoom-box actions

Playback speed

Summary
line

Time axis

You are
here

Title

12
12

GGFDMF

Example: Combined Host and
Application Monitoring

• 3 colors represent 3 parallel sockets
• X-axis = event; Y-axis = time

• Application Events: send header, send data start, send data end

Application pause
here caused by
TCP retransmits

GGFDMF

Example: Combined Host and
Application Monitoring

13
13

GGFDMF

NetLogger Tuning Results

• I/O followed by
processing

• overlapped I/O and
processing

almost a 2:1 speedup

Next IO starts
when processing
ends

remote IO

process previous
block

GGFDMF

DMF Enhancements to NetLogger

• Rewrite of client library
– Multiple log formats allowed with same API

• ASCII (ULM)
• Binary log format

— much better performance than ASCII
— strong type information on the wire

– Other language APIs automatically generated with SWIG
• Much faster than “100% native” implementations, esp. for script

languages such as Perl, Python, and TCL
• Changes and bug fixes in core automatically propagated to all APIs

• SOAP/WSDL descriptions
• Enhanced reliability

– periodically try to reconnect broken TCP pipe
– stores data on local disk while net is down

14
14

GGFDMF

Role of Web Services in the DMF

GGFDMF

DMF will be based on Web Services

• XML is the de-facto standard for language-independent
and platform-independent self-describing data

• Web Services builds on XML (and HTTP) to provide:
– a messaging protocol (SOAP)
– an interface description language (WSDL)
– a directory service (UDDI)

• The commercial sector is driving creation of Web Services
tools and libraries
– tremendous number of new tools emerging

• We can use these tools and libraries to speed up
development of interoperable interfaces to Grid services,
such as the GMA.

15
15

GGFDMF

SOAP Example:
Request for ping data

<SOAP-ENV:Envelope … header stuff removed… <SOAP-ENV:Body>
<gprq:Query> <gpe:Event>

<Name xsi:type="xsd:string">Ping</Name>

<gpe:ComplexElement SOAP-ENC:arrayType="EventItem[]">
<gpe:SimpleElement>

<Name xsi:type="xsd:string">SourceHost</Name>
<Value xsi:type="xsd:string">foo.lbl.gov</Value>

</gpe:SimpleElement>
<gpe:SimpleElement>

<Name xsi:type="xsd:string">DestHost</Name>
<Value xsi:type="xsd:string">www.mit.edu</Value>

</gpe:SimpleElement>
</gpe:ComplexElement>

</gpe:Event> </gprq:Query>

GGFDMF

SOAP Example:
Reply for ping data

<SOAP-ENV:Envelope … header stuff removed… <SOAP-ENV:Body> <gpry :QueryReply >
<gpe:Event>

<Name xsi:type="xsd:string">Ping</Name>
<TimeStamp>2002-01-18T21:20:07.401662Z</TimeStamp>
<gpe:ComplexElement SOAP-ENC:arrayType="EventItem[]">

<gpe:SimpleElement>
<Name xsi:type="xsd:string">SourceHost</Name>
<Value xsi:type="xsd:string">foo.lbl.gov</Value> </gpe:SimpleElement>

<gpe:SimpleElement>
<Name xsi:type="xsd:string">DestHost</Name>
<Value xsi:type="xsd:string">www.mit.edu</Value> </gpe:SimpleElement>

<gpe:SimpleElement>
<Name xsi:type="xsd:string">RTT</Name>
<Value xsi:type="xsd:decimal">68.300000</Value>
<Units xsi:type="xsd:string">ms</Units> </gpe:SimpleElement>

<gpe:SimpleElement>
<Name xsi:type="xsd:string">Avg_10</Name>
<Value xsi:type="xsd:decimal">60.100000</Value>
<Units xsi:type="xsd:string">ms</Units> </gpe:SimpleElement>

</gpe:ComplexElement> </gpe:Event>
</gpry :QueryReply >

16
16

GGFDMF

Web Services: WSDL

<wsdl:definitions name="PingRequest" xmlns=“...PingRequestExample " xmlns:xsd ...>
<wsdl:types> <xsd:schema targetNamespace =“...PingRequestExample ">

<xsd:complexType name="GetPingValue_InParameters">
<xsd:sequence>

<xsd:element name=" SourceHost" type="xsd:string"/>
<xsd:element name="DestHost " type="xsd:string"/>

</xsd :sequence>
</xsd :complexType >
<xsd:complexType name="GetPingValue_OutParameters">

<xsd:sequence>
<xsd:element name="RTT" type="xsd:float"/>
<xsd:element name="Avg_10" type="xsd:float"/>

</xsd :sequence>
</xsd :complexType >

</xsd :schema> </wsdl:types>
<wsdl:message name="GetPingValueSoapIn">

<wsdl:part name="Parameters" type=" GetPingValue_InParameters"/>
</wsdl:message>
<wsdl:message name="GetPingValueSoapOut ">

<wsdl:part name="Parameters" type=" GetPingValue_OutParameters"/>
</wsdl:message>
<wsdl:portType name="PingRequestServiceSOAPPortType ">

<wsdl:operation name=" GetPingValue">
<wsdl:input name="GetPingValueInput“ message="GetPingValueSoapIn "/>
<wsdl:output name="GetPingValueOutput " message="GetPingValueSoapOut"/>
</wsdl:operation>

</wsdl:portType >
<wsdl:binding name="PingRequestServiceSOAPBinding" type=" PingRequestServiceSOAPPortType ">

<soap:binding style=" rpc " transport=“.../soap/http"/>
<wsdl:operation name=" GetPingValue"> <soap:operation style="rpc “ soapAction="urn:lbl.gov :wsdl:PingRequestExample /GetPingValue"/>

<wsdl:input name="GetPingValueInput">
<soap:body use="encoded" encodingStyle=“...soap/encoding/"/>

</wsdl:input>
<wsdl:output name="GetPingValueOutput">

<soap:body use="encoded" encodingStyle=“..soap/encoding/"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="PingRequestService">

<wsdl:port name="PingRequestServiceSOAPPort " binding=" PingRequestServiceSOAPBinding">
<soap:address location="http://www.lbl.gov/DIDC/PingRequest "/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

GGFDMF

WSDL Tools

•Generating all this is much easier than it looks.

•There are tools to simplify the process:

• GUI for authoring and editing web service contracts

17
17

GGFDMF

For More Information

DMF: http://www-didc.lbl.gov/DMF/

GMA: http://www-didc.lbl.gov/GGF-PERF/GMA-WG/

email: bltierney@lbl.gov

