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End-to-End Distributed Application Monitoring
using the “Distributed Monitoring Framework”
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Background and Outline 1\‘

* My Background:

— >10 years experience working with data intensive distributed
systems
» remote visualization from a Cray-YMP: SC '91
» Gigabit network testbed community (MAGIC)
e Data Grid community

— learned a lot about TCP and networking issues along the way

* This talk will cover:
— Definition of the End-to-End problem
— Components needed to solve this problem
— Previous LBNL work on parts of the problem:
* NetLogger and GMA
— Planned work
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Overview

The Problem

— When building distributed systems, we often observe
unexpectedly low performance
« the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
« the applications
« the operating systems

« the disks, network adapters, bus, memory, etc. on either the
sending or receiving host

» the network switches and routers, and so on

The Solution:

» Highly instrumented systems with precision timing information
and analysis tools
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Performance Analysis

Distributed system users and developers blame
performance problems on network congestion
— This is often not true!
In our experience tuning distributed applications,
performance problems are due to:
— network problems: ~45%
e this include TCP tuning issues
— application design problems/bugs: ~45%
* 50% client , 50% server
— host / disk problems: ~10%

Therefore it is equally important to instrument the
applications
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* A complete End-to-End monitoring framework that includes
the following components:

— instrumentation tools (application, middleware, and OS
monitoring)

— host and network sensors (host and network
monitoring)

— sensor management tools (sensor control system)
— event publication service

— event archive service

— event analysis and visualization tools

— acommon set of protocols for describing,
exchanging and locating monitoring data
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ommon Protocols 1\‘

*  We need a monitoring framework that provides a unifying view to a
wide range of sensor data, from network to host to application.

e This requires common protocols and data formats:
— event data descriptions
— event dictionaries
— query format
— publish/subscribe APIs and protocols
— timestamp format
— types
— etc.

* Using XML-based solutions for this problem

— working with Global Grid Forum to define these
(http://www. gridforum.org/)
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Uses for Monitoring Data 1\‘

* Monitoring Data not just for End-to-End Performance
Analysis:
» Lots of “middleware services” need Monitoring data too:
» Grid Schedulers
—find the best match of CPUs and data sets for a given job
» Grid Replica Selection
—find the “best” copy of a data set to use
* Reliable File copy service
—detect failures and recover
* Network-aware applications
—TCP buffer size tuning, number of parallel streams, etc.
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Instrumentation Tools 1\‘

* Need to instrument applications, middleware, and operating systems
¢ Requirements:
— non-intrusive
— easy to use
— real time monitoring ability
— standard format(s)
— accurate data
* precision timestamps (see next slide)
« indication of accuracy of the data (e.g.: “confidence level”)
e Issue: Application level vs. OS level monitoring
— need application source code OR
— need to intercept OS calls using shared library tricks OR
— need to modify OS
— Often hard to convince developers to instrument their code
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Timestamps: ﬂ|

Clock Synchronization Issues .

» To correlate events from multiple systems requires
synchronized clocks
* But how accurate does this synchronization need to be?
— We have found that to analyze systems from the “user
perspective” requires:
* microsecond resolution between events on a single
host (gettimeofday() system call)
* millisecond resolution between WAN hosts
—fairly easy to achieve this with NTP
* somewhere in between for LAN hosts
* Recommendation: everyone use IETF timestamp standard
— example: 2002-01-18T21:20:07.401662Z
- YYYY-MM-DDTHH:MM:SS.SZ (T=date-time separator, Z = GMT)
— http://www.ietf org/internet-drafts/draft-ietF-impp-datetime-05.txt
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Host and Network Sensors ceren] ‘
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* Need a variety of host sensors
— CPU, Disk, Memory, etc.

* Need norintrusive network sensors capable of end-to-end
and hop-by-hop network analysis
— latency, capacity, available bandwidth, etc.

* Need standard schemas and publication mechanisms for
this sensor data

— SNMP only partially addresses this problem
» Simple GET/SET model only
—No support for subscription
» Source of information is implicit in the packet addressing
* We can easily write tools to wrap SNMP data with our data format
* SNMP is not well suited to application monitoring
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* As distributed systems become bigger and more complex,
there are more pieces to monitor and manage

» Various components require different levels of monitoring:
— constant
— “on demand”
— when triggered by some other event

* The sensors themselves need to be automatically installed,
updated, and removed

* Requirement:

— a Sensor Management System capable of securely
controlling the distribution and execution of monitoring
sensors in a distributed environment
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Event Publication ﬁ ‘
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* To handle potentially huge amounts of event data requires
an event publication and subscription service that is:

— flexible
— highly scalable
— provides near real-time access to monitoring data

* The Global Grid Forum (GGF) (www.gridforum.org) has
defined the “Grid Monitoring Architecture” (GMA), for this
purpose.

— Several GMA implementations have started to appear

» A great deal of work remains to define standard event
schemas and event dictionaries for the GMA.
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GMA Terminology and Architecture 1\

event publication

(Performance) Event: : ;
information

— Typed collection of data with a
specific structure

Producer Interface:
event
— makes performance data data

Directory
Service

(events) available
i event publication -
Consumer Interface: Producer information __--"
— receives performance data /,/"
(events) It
Directory Service: -7
— supports information events

publication and discovery
— must be distributed and/or
replicated

Producer Interface
analysis, filtering, etc.

Consumer Interface

DME J producer ’:H producer %
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Event Archi
vent Archives ﬁ\\‘

Archived event data is required for
— performance analysis and tuning
» compare current performance to previous results
— accounting

The archive must be extremely high performance and scalable to
ensure that it does not become a bottleneck.

— heavily loaded FTP server could generate about 500 KB/sec
(1.8 GB/hr) of monitoring event data

— e.g.: use pipelining to guarantee that applications and sensors
never block when writing to the archive
 buffer event data on disk
SQL capability desirable
— ability to do complex queries
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Event Analysis and W'
Visualization Tools ‘\\‘

* Requirements
— real time and post-mortem analysis capabilities

— ability to correlate application events with host and
network events

* most existing tools do one or the other
— flexible
configurable
— etc.

» Tradeoff issues between flexibility and ease of use
— special purpose, easy to use tools needed too
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Existing Pi
xisting Pieces 1\‘

e Many of these components already exist or are in progress:
— instrumentation tools
» Pablo (UIUC), NetLogger (LBNL), log4j (apache), web100, etc.
host and network sensors
* too many to list
sensor management tools
« JAMM (LBNL)
event publication service
+ MDS (Globus), NWS (UCSB), R-GMA (RAL), CODE (NASA AMES)
— event archive service
» netarchd (LBNL), NWS (UCSB)
event analysis and visualization tools
* lots, but most only work for specific types of events:
—NetLogger nlv (LBNL), Probe (Stazi), Autopilot (UIUC), etc.
e BUT, all use different event formats and protocols!
— no interoperability
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New LBNL Project: The Distributed ﬂ]

Monitoring Eramework (DMFE _—

* The “Distributed Monitoring Framework” (DMF) Project will:
— define common protocols and data formats
« we are leading a GGF effort in this area
— work with others to integrate existing components using
this framework
e e.g.: PingeER, NWS, MDS
— develop missing pieces
e e.g.: event archives

* Goal:

— provide a unifying view to a wide range of sensor data,
from network to host to application

DMF

\

Existing Component: NetLogger
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NetL Toolkit
etLogger Toolki j]\\‘

* We have developed the NetLogger Toolkit (short for
Networked Application Logger), which includes:

— tools to make it easy for distributed applications to log
interesting events at every critical point

— tools for host and network monitoring

— event visualization tools that allow one to correlate
application events with host/network events

* NetLogger combines network, host, and application-level
monitoring to provide a complete view of the entire
system.

* Open Source, available at http://www-didc.lbl.gov/NetLogger/

DMF

Sample NetLogger Use ﬁ\\.‘

I mport netl ogger

nl = netl ogger . Net Logger (
“x-netlog://host.Ibl.gov”,
net | ogger . NL_ENV )

whi | e not done :
nl.wite("EVENT_BEGQ N', “SI ZE=%", (si ze,));
done = do_sonet hi ng(data, size)
nl.wite ("EVENT_END'," Sl ZE=%l“, (si ze,));

del nl
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NetLogger Analysis: Key Concepts 1\:

* NetlLogger visualization tools are based on time correlated and object

correlated events.
— precision timestamps (default = microsecond)
« If applications specify an “object ID” for related events,

this allows the

NetLogger visualization tools to generate an object “lifeline”
« In order to associate a group of events into a “lifeline”, you must assign

an “Event ID” to each NetLogger event

— Sample Event ID: file name, block ID, frame ID, etc.

End Processing /
Begin Processing
g |
2 End Read
w
Begin Read
Request data /
time
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DPSS_SEHD_BLOCK_START —|

DPSS_SEHD_START —|
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A/TCP retransmits
x
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e 3 colors represent 3 parallel sockets
e X-axis = event; Y-axis = time

» Application Events: send header, send data start, send data end

—0.00,100. 00
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almost a 2:1 speedup
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NetLogger Tuning Results j]\\.‘
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DMF Enhancements to NetLogger 1\.‘

Rewrite of client library
— Multiple log formats allowed with same API
« ASCII (ULM)
* Binary log format
— much better performance than ASCII
— strong type information on the wire
— Other language APIs automatically generated with SWIG

* Much faster than “100% native” implementations, esp. for script
languages such as Perl, Python, and TCL
» Changes and bug fixes in core automatically propagated to all APIs

SOAP/WSDL descriptions

Enhanced reliability

— periodically try to reconnect broken TCP pipe
— stores data on local disk while net is down

DMF
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Role of Web Services in the DMF
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DMF will be based on Web Services ﬁ\\

XML is the de-facto standard for language-independent
and platform-independent self-describing data

Web Services builds on XML (and HTTP) to provide:

— amessaging protocol (SOAP)

— an interface description language (WSDL)

— a directory service (UDDI)

The commercial sector is driving creation of Web Services
tools and libraries

— tremendous number of new tools emerging

We can use these tools and libraries to speed up

development of interoperable interfaces to Grid services,
such as the GMA.

DMF
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SOAP Example: ﬁ

Reguest for ping data _—

<SOAP-ENV:Envelope ... header stuff removed... <SOAP-ENV:Body>
<gprqg:Query> <gpe:Event>
<Name xsi:type="xsd:string">Ping</Name>
<gpe:ComplexElement SOAP-ENC:arrayType="Eventltem[]">
<gpe:SimpleElement>
<Name xsi:type="xsd:string">SourceHost</Name>
<Value xsi:type="xsd:string">foo.Ibl.gov</Value>
</gpe:SimpleElement>
<gpe:SimpleElement>

<Name xsi:type="xsd:string">DestHost</Name>
<Value xsi:type="xsd:string">www.mit.edu</Value>

</gpe:SimpleElement>
</gpe:ComplexElement>
</gpe:Event> </gprq:Query>
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SOAP Example: N

<SOAP-ENV:Envelope ... header stuff removed... <SOAP-ENV:Body> <gpry :QueryReply >
<gpe:Event>
<Name xsi:type="xsd:string">Ping</Name>
<TimeStamp>2002-01-18T21:20:07.401662Z</TimeStamp>
<gpe:ComplexElement SOAP-ENC:arrayType="Eventltem[|">
<gpe:SimpleElement>
<Name xsi:type="xsd:string">SourceHost</Name>
<Value xsi:type="xsd:string">foo.lbl.gov</Value> </gpe: SimpleElement>
<gpe:SimpleElement>
<Name xsi:type="xsd:string">DestHost</Name>
<Value xsi:type="xsd:string">www mit .edu </Value> </gpe:SimpleElement>
<gpe:SimpleElement>
<Name xsi:type="xsd:string">RTT</Name>
<Value xsi:type="xsd:decimal">68.300000</Value>
<Units xsi:itype="xsd:string">ms</Units> </gpe:SimpleElement>
<gpe:SimpleElement>
<Name xsi:type="xsd:string">Avg_10</Name>
<Value xsi:type="xsd:decimal">60.100000</Value>
<Units xsi:type="xsd:string">ms</Units> </gpe:SimpleElement>
</gpe:ComplexElement> </gpe:Event>
</gpry:QueryReply >

DMF
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Web Services: WSDL

ingRequest xmins=". xminsxsd ..>
dltypes> < “..Pi ">
(Type name=" ">

<xsdsequence>
<xsd:element name="
<xsd:element name=

SourceHost " type="xsdstring"/>
DestHost " type="xsdstring"/>

<lvsd sequence>
<lxsd complexType >
Type name=" e O
<xsd:sequence>

<xsd:element name="RTT" type="xsd:float"/>

<xsd:element name="Avg_10" type="xsctfloat"/>
<Ixsd sequence>
<Ixsd complexType >
<Ixsd :schema> <fwsdltypes>
<wsdl:message name=GetPingValueSoapin”>
<wsdl:part name="Parameters" type=" GetPingValue InParameters'/>
<Hwsdl:message>
out">
<wsdl:part name="Parameters" type=" GetPingValue OutParameters'/>
<hwsdl:message>
<wsdl:portType name="PingRequestServiceSOAPPoItType ">
<wsdl:operation name=" GetPingValue">
<wsdl input name=" put message="GetPi I
s) Output Out/
Swad operation>
<wsdlportType >
<wsdl: name="PingReq ing’ type= APPOrtType ">
=" IpC " transport=", >
. pA L gov wdl gValue'/>

)
<wsdlinput name="GetPingValuelnput>
<soap:body use="encoded" encodingStyle="..soaplencoding"/>
<msdlinput>
<wsdloutput name= “GelPlngValueOulpul>
oap:body use="encoded" encodingStyle="..soaplencoding/"/>

<wsdl:output>
<hwsdl:operation>
<fwsdlbinding>
<wsdl:service name="PingRequestService'>
<wsdl:port name="PingRequestServiceSOAPPort " binding=" PingRequestServiceSOAPBinding™>
<soapaddress location="http:/Avww.Ibl gov/DIDCPingRequest */>
<fwsdl:port>
<Hwsdl:service>
<wsdldefinitions>
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WSDL Tools

*Generating all this is much easier than it looks.

*There are tools to simplify the process:

. GUI for authoring and editing web service contracts
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For More Information jl\'\‘

DMF: http://www-didc.Ibl.gov/DMF/

GMA: http://www-didc.lbl.gov/IGGF-PERF/GMA-WG/

email: bltierney@ Ibl.gov
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