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Abstract
This paper presents a new object-oriented approach to mod-
eling the semantics of distributed multi-party protocols such
as leader election, distributed locking, or reliable multicast,
and a programming language that supports it. The approach
builds on and extends ourlive distributed objectsmodel [37]
by introducing a new concept of adistributed flow, a stream
of messages flowing concurrently at multiple locations. Our
flows correspond to variables, private fields, and method pa-
rameters in Java-like languages; they are the means by which
we store and communicate state. Active protocol instances,
which correspond to Java objects, consume and output flows;
their internal states are encapsulated as internal flows, and all
of their internal logic is represented as operations on flows.

Our language supports a new type of concern separation:
the semantic structure of protocols is decoupled from imple-
mentation details such as the construction and maintenance
of overlays, trees, or other hierarchical structures needed for
scalability. The latter can be addressed by the compiler or at
the deployment time; it can be done differently in different
parts of the network, to match local network characteristics.

The paper introduces the basic language concepts, syntax,
and semantics, illustrating formal definitions with a discus-
sion of example protocols such as leader election, distributed
locking, agreement, and loss recovery. It shows examples of
rules for a formal reasoning about programs in our language.

While full implementation details of the supporting com-
piler and runtime are beyond the scope of this paper, we do
briefly describe how our new language primitives can be im-
plemented. Our approach is practical: the core language con-
structs, including hierarchical monotonic aggregations,have
been implemented and evaluated in a simulator [38]. The full
compiler framework is in preparation and will be publicly
released as a part of ourlive distributed objectsplatform [1].

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed Prog-
ramming; D.1.5 [Programming Techniques]: Object-Orien-
ted Programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms Design, Languages, Reliability, Theory

Keywords Distributed Data Flows, Distributed Multi-Party
Protocols, Live Distributed Objects, Monotonic Aggregation

1. Introduction
The premise of this work is thatdistributed multi-party pro-
tocols(DMP) such as virtual synchrony [7], two-phase com-
mit [43], or Paxos [30] are becoming increasingly important
and used pervasively, and that further advances will require
that developers be able to design their own DMPs. Our goal
is to provide a simple, yet expressive protocol definition lan-
guage that allows developers to express desired DMP seman-
tics concisely, using high-level constructs. We’d like thelog-
ical flow of protocol state and decisions to be readily under-
stood from the code, not obfuscated by low-level operations
such as sending individual network messages fromA to B.

Programming DMPs is inherently difficult [40], but it can
be simplified by tools that promote a separation of concerns.
Developers should be able to specify the semantics andlogi-
cal control flow without having to explicitly handlephysical
aspects, such as failures, timeouts, network topology, andor-
ganizing nodes into trees, rings, or other scalable structures;
the latter can and should be treated as orthogonal, much as
compiler optimizations in C++ are orthogonal to the seman-
tics of code. To enable this, we need a set of programming
abstractions that are powerful enough to express commonly
used DMPs, but that leave enough flexibility for the compiler
to generate scalable code. This inherent tension between ex-
pressiveness and compiler flexibility has been the key factor
that shaped our approach and our design decisions, and that
distinguishes this work from the existing protocol languages.

Before going further, let’s elaborate on some of the points
we made earlier. First, we’ve stated that DMPs are becoming
increasingly important, and used pervasively. In the past few
decades, DMPs have been used mostly in data centers, finan-
cial institutions, or military settings, for example, to replicate
services and data, for load-balancing or fault-tolerance [33],
or to coordinate configuration changes and synchronize ac-
cess to services [9]. In this model, DMPs ran mostly among
servers in data centers, whereas the larger Web has remained
predominantly client-server: home user’s machines wouldn’t
communicate with each other. In other work [36], we argued
that this is bound to change. Home user’s computers, equip-
ped with ever-increasing amounts of memory and multi-core
CPUs, are getting faster, whereas web content providers are
stumbling over scalability as their users bases expand. Many
classes of dynamic, interactive, short-lived content (collabo-
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rative work, interactions in virtual worlds and online games)
can’t easily be cached and indexed, and may be hard to scale
by adding more servers. It is only natural to off-load servers
by pushing data out of data centers, and towards the clients.

Technologies based on this idea already exist. In ourlive
distributed objects(LO) platform [1], every visual element
on an interactive web page – a chat window, a video stream,
a shared document – can be individually powered by a DMP;
its content doesn’t reside on a remote server; it is replicated
among the clients, in a peer-to-peer fashion. The DMP run-
ning among the clients ensures that all replicas stay in sync1.
The creators of Smalltalk [24] used similar approach as a ba-
sis of their Croquet [44] platform; 3D objects in their virtual
space are replicated with a variant of 2PC [43]. Darkstar [45]
and several other [13, 46] projects also fall into this category.
Each of these technologies leads to a pervasive use of DMPs.

The second premise of our work is that programmers will
want to build their own DMPs. Distributed computing forces
them to choose between reliability, scalability, performance
and persistence, and different applications require a different
balance. For example, the version of reliable multicast DMP
used for database replication in a financial institution would
require a consensus semantics, but wouldn’t need to scale to
thousands of nodes, whereas the variant of reliable multicast
used to synchronize players in an online multi-player game
(MMORPG), or clients watching a streaming movie, would
require excellent scalability at the cost of weaker guarantees.
In other work [36], we pointed out that even for a seemingly
simple task such as collaborative editing, there exists a sur-
prising variety of different approaches that rely on different
ways of locking, reconciliation, or flavors of multicast, often
fine-tuned to the particular application domain. The analogy
to Java or .NET collections seems appropriate: even though
many applications do not require custom collections, and can
be built using the small set of standard abstractions, such as
lists, arrays, or hash tables, those who build high-performan-
ce or scalable systems often design their own custom collec-
tions optimized for their specific applications. Compared to
collections, DMPs and their tradeoffs can be even more com-
plex and diverse. Hence, this type of flexibility is essential.

Designing DMPs in languages such as Java is hard; pop-
ular toolkits like Ensemble [20], Spread [3], and Appia [34]
have 25,000+ lines of code. Systems such as MACE [26] can
remove much of the common programming burden, but pro-
grammers still have to think at the level of states, transitions,
and network messages sent between pairs of nodes; this may
be easy for loosely-coupled systems such as distributed hash
tables (DHT), but it can be hard for DMPs. One way to sim-
plify the process is by composing pre-existing reusable pro-
tocol layers in DMP composition toolkits such as Ensemble,
Spread, Appia, or BAST [17]. The latter approach is conve-
nient, but it has its limitations. First, to achieve a high degree
of flexibility, one needs a very large number of thin and sim-

1 We encourage the reader to watch the videos on our project’s website [1].

ple protocol layers: Ensemble has 50; even then, flexibilityis
limited, for only certain combinations of layers make sense.
Flexibility in these systems generally amounts to including
(or not) certain functional layers, e.g., ordering, whereas to
use adifferentordering scheme, one generally has to develop
a custom layer in Java; this, in turn, requires familiarity with
the architecture of the DMP composition toolkit and its API.
Finally, while the toolkits separate different functionallayers
from one-another, their functionality is often tightly coupled
to implementation; for example, a layer that handles recov-
ery, ordering, or stability may be hard-wired to aggregate its
information in a particular manner, such as by using a leader
or anall-to-all communication pattern, and may be unable to
easily switch to gossip or structures such as trees and rings.
The latter weakness applies also to MACE and other systems
that require the programmer to work at the level of state tran-
sitions and network packets; code that maintains distributed
structures becomes intermingled with and essentially insep-
arable from the core semantics and logical information flow.

In this paper, we advocate a radically different approach:
we propose a few simple generic abstractions that can be eas-
ily composed to express semantics as diverse as distributed
agreement and leader election, that can be stacked hierarchi-
cally to express scalable hierarchical protocols, and thatcan
themselves be implemented in a variety of ways, such as by
using token rings, trees, gossip, or IP multicast. Protocols in
our language are compact and easy to reason about, while at
the same time they leave the runtime a high degree of flexibi-
lity in mapping our language constructs to executable code.

Before continuing, it may be helpful to the reader to skim
over examples of protocols to get the feel of our language.
In the paper we present the code for distributed locking (Fig-
ure 6), loss recovery (Figure 10), leader election (Figure 17),
barrier synchronization (Figure 18), distributed agreement
(Figure 20), and atomic delivery (Figure 19), and hierarchi-
cal variants of leader election (Figure 23) and recovery (Fig-
ure 26). Note the use of set operators such as∪ or intersect

in the code of loss recovery, atomic delivery, and agreement,
and the use of recursion in hierarchical examples. The use of
aggregation to implement global decisions, set calculus for
batched processing, and recursion for hierarchical scalability
are the three core concepts that underpin our approach.

In order to fully explain our examples, we need to discuss
the semantics of our programming constructs; in particular,
the definitions and properties of flows (Section 2.2) and their
dependencies (Section 2.4). For this reason, most examples
are presented fairly late in the paper, starting on page 12. The
reader may find it helpful to only skim over formal notation
on the initial reading. We tried to illustrate all of the essential
concepts through figures and concrete examples.

This paper makes the following contributions:

• It proposes a new programming abstraction, adistributed
data flow, and describes the four basic types of operations
that can be performed on flows:disseminations, transfor-
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mations, aggregations, anddistributions. It discusses the
formal properties and semantics of the new concepts, and
explains their role using examples and illustrations.

• It proposes a new object-oriented programming language
that operates on distributed flows. It describes its syntax
and semantics and briefly explains how each of the mech-
anisms we are proposing can be physically implemented.

• It proposes a new approach to modeling strong semantics
through monotonic aggregation: a new concept that is in-
tuitive, very cheap to implement, and extremely versatile.

• It presents the code of a variety of protocols and explains
how to reason about their semantics; in particular, it illus-
trates the practical role of different flavors of aggregation.

• It proposes a new use of the set arithmetic, as a means of
expressing batched processing in distributed protocols. It
briefly discusses a space-bounded variant of it used in our
platform, and demonstrates its use in example protocols.

• It proposes a new use of recursion, as a means of express-
ing hierarchical architectures in distributed protocols.Us-
ing an example, it briefly explains how a simple recursive
program in our language can be automatically expanded
to form a complex hierarchical distributed structure.

• It describes a new type of concern separation enabled by
our approach: the decoupling of the logical structure and
semantics of distributed protocols from the construction
and maintenance of hierarchical structures and the man-
ner in which information is disseminated and aggregated.

• It shows how the global behavior of a distributed protocol
can be modeled in a purely functional style: the four basic
operations on flows could be viewed as purely functional.

2. Language
2.1 Objects

As noted earlier, the approach proposed here builds upon and
extends ourlive distributed objects(LO) [37] model; hence,
we start by introducing LO (for more detail, see [36, 37]).

Each physical machine participating in the execution of a
DMP runs a piece of code (the protocol stack) that maintains
some local state and interacts with local applications and the
local OS. We refer to such running piece of code as aproxy.
Each running instance of a DMP involves a group of proxies
on multiple physical computers, sending network packets to
one-another. We refer to this group of proxies collectivelyas
a live distributed object, or alive object(LO) (Figure 1). LO
is the basic unit of composition and means of encapsulation
in our model; it serves similar purposes as an object in Java.

Method calls and callbacks between the applications and
the DMP’s protocol stack are modeled asevents(messages).
The API exposed by the DMP is modeled as a set of message
channels. We refer to these asendpoints. The term endpoint
instancerefers to a particular message channel exposed by a
single specific proxy. To say that objectO exposes endpoint
I means that every proxy ofO exposes an instance ofI, and

live distributed objectuser

event

network packets

m m

m
m m

m

m

node�
endpoint

P� P�
P� node�

node�
proxy

Figure 1. A live distributed objectexists simultaneously in
multiple locations: it consists of a group of communicating
proxies(hereP1, P2, andP3), with their internal local states
and all network packets flowing between them. The proxies’
local states and network communication are the live object’s
internals, invisible from the outside. An object interactswith
its software environment by passingmessagesvia endpoint
instances: local message channels exposed by all its proxies.

A�
B�C� node�

e� A�
B� C�node	

e� composite 
proxy C	
embedded
proxies A	, B	
object B

object C

object A

Figure 2. Live objects can be composed by connecting end-
point instances exposed by their proxies (hereA, B are com-
posed this way). A composite object (C) can have embedded
objects (A, B). Proxies of these embedded objects (Ak, Bk)
are encapsulated inside proxies of the composite object (Ck).

all instances carry messages of the same types. A proxy may
expose multiple endpoint instances for a variety of purposes;
in particular, to interact with proxies of application objects,
proxies of objects that are recursively embedded (Figure 2),
and infrastructure services. All interactions between a proxy
and its environment are tunneled through endpoint instances.

LO can be recursively nested by embedding their proxies
inside of one-another, and composed by connecting endpoint
instances exposed by pairs of their proxies (Figure 2).

Referring to a running DMP instance as anobjectmight
at first seem awkward, but our objects are not much different
from those in Smalltalk [24]; they interact via messages, and
they may encapsulate internal state and threads of execution.
The only difference is thatstateandexecutionencapsulated
within a live object aredistributedin the sense that they resi-
de (occur) in multiple locations at a time: each proxy carries
a portion of each logical unit of a live object’s state, and each
can take independent actions. This distributed perspective on
state and execution is important; it underpins the distributed
flow definition in Section 2.2, which is central to this paper.
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Referring to instances of a DMP protocol stack asproxies
stresses the fact that in our model, it’s the distributed behav-
ior that constitutes a service. Proxies thus aren’t objects; they
are gateways through which a local machine can gain access
to (or participate) in a distributed behavior. In this sense, LO
proxies generalize the concept of Java RMI proxy stub [49].

2.2 Flows

We define adistributed data flow, or simply adata flow(DF),
as a set of messages of the given type appearing on instances
of the given endpoint exposed by the given object (Figure 3).
As mentioned earlier, the individual messages may represent
method calls and callbacks between proxies of the object and
their local environments. We assume that all messages in the
given DF always flow in the same direction, i.e., either into
or out of its object’s proxies. To specify the direction, we call
a DF aninputoroutputflow of the given object, respectively.
Note that one object’s output flow will normally be an input
flow of another object (Figure 3). Finally, if objectsA, B are
embedded in a composite objectC (Figure 2), flows between
A andB are said to beencapsulatedin C (or internal to C).

Example 1. Suppose a certain application objectA uses a
distributed lock objectB (Figure 3). Whenever a proxy ofA
running on nodex wishes to acquire or release the distribu-
ted lock, it makes a call to its local proxy ofB; we represent
this as a messagewants(b) carrying a Boolean valueb ∈ B

(B = {false, true}), b = true if the lock is to be acquired,
andb = false if it is to be released. The set of all messages
wants(b) generated byA’s proxies across all the nodes, and
at any time, constitutes a distributed data flow fromA to B.
By convention, we name flows after the messages they carry,
and the type of a flow is determined by the type of the values.
In this case, a Boolean flow namedwants is an output ofA,
and an input toB; it carries the distributed information about
the willingness to acquire the lock from proxies ofA into B.

Similarly, suppose that each time a proxy ofB invokes a
callback to notify its local proxy ofA that it was granted or
denied the lock, we model this as a messageholds(b), where
b = true if the lock was granted, andb = false otherwise.
The set of all messagesholds(b), generated byB’s proxies,
again forms a Boolean flow, this time fromB back toA. The
flow holds carries distributed information about the owner-
ship of the lock. The locking objectB can be thought of as a
sort of distributed “transformation” ofwants into holds. �

It might be useful to think of input and output flows as the
analogues of formal parameters and return values of methods
in Java; indeed, as the above example suggests, most objects
generate output flows that carry various decisions, calculated
in response to requests in the input flows. Likewise, internal
flows may be thought of as the analogues of private fields of
a Java class. This is true in a fairly literal sense: flows in our
language are the means of storing and communicating state.

Each messagem ∈ α in a flow α is formally modeled as
a quadruple of the formm = (x, t, k, v); x is thelocationat
which the message flows,t is thetimeat which this happens,

A

B
 e
t�

A�
B�

A

B


A�
B�t�t�t� e�e
 e�e� e�time

x� x� x� x� location (node)

object A
an instance 
of endpoint I

a flow coming 
out of A through I

messages
in the flow

Figure 3. The flow leavingA through endpointI consists of
messages{e1, e2, . . . , e6}. Notice that the flow is distributed
both in time (differentti), and in space (different nodesxj ).
Each messageei may represent an asynchronous method call
from some proxy ofA to its (locally connected) proxy ofB.
Formally, eachei is represented as a quadruple. For example,
in this figure,e3 = (x1, t3, k, v) for somek ∈ K andv ∈ V .

u fails

x joins
α�(3)

α�(8)

time t� t� t� t� t� t� t� t�
α�(7) α�(6)

α�(5) α�(4) α�(3) α�(2)
α�(1)

Figure 4. The set of locations in a distributed flow isn’t sta-
tic; the flow can begin and end at different locations as nodes
join, leave, fail, and reboot. After the connection at location
u is terminated, flowα stops atu, but it continues at other
locations. After a new proxy starts and connects its endpoint
instance, the flow expands tox. Eachαx(k) represents a va-
lue of some message(x, t, k, v) ∈ α, for somet ∈ T , v ∈ V .

k is aversionnumber it is tagged with, andv is thevalueit
carries. Given messagem, the elements of the quadruple are
denoted asχ(m), τ(m), κ(m), andν(m), and the sets of all
locations, times, versions, and values are denoted asX , T ,
K, andV , respectively. The set of all flows is denoted asF ;
by definition,F ⊂ X×T ×K×V . Not all sets of quadruples
are considered flows; only those that occur in real systems2.
SetsT , K, andV are assumed to be linearly3 ordered by≤4.

For the sake of simplicity, we’ll think of locationsx ∈ X
as physical nodes, although formally, each location identifies
a single endpoint instance, and a single continuous period of
time while this endpoint instance remains connected to some
other endpoint instance. To understand this, consider Exam-
ple 1. Every time the system is deployed onto a new nodei,

2 The complete formal model imposes a number of constraints that we omit
to keep this presentation simple. For example, we assume that only finitely
many messages can flow in a finite time interval and thatT is well-founded.
3 For the sake of simplicity, we’ll assume linear ordering wherever possible.
The definitions and theorems we use carry over to the partial ordering case.
4 We treat≤ and< as “overloaded”; their meaning is clear from the context.
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creates proxiesAi andBi, and connects endpoint instances,
this newly established connection represents a new location,
somex ∈ X . If proxy Ai sends a messagewants(b) to Bi to
request the lock, this is modeled as(x, t, k, b) ∈ wants for
somet ∈ T , k ∈ K. If nodei later crashes and reboots, or
if for some other reason proxiesAi andBi get disconnected
from each other and later reconnected, their new connection
will be considered adifferentlocationx′ 6= x. This approach
corresponds to the widely-adoptedfail-stopmodel [41].

If the connection between some pair of endpoint instances
is established and never broken (the node never crashes, the
two proxies keep executing, and neither explicitly terminates
the connection), the corresponding locationx ∈ X is called
live or permanent; otherwise, it is calledtransient. Locations
at which messages appear in flowα are called thelocations
of α, denoted asX (α), and formally defined as follows:

X (α) = {x ∈ X | ∃m∈α χ(m) = x} . (1)

The set of all permanent locations ofα is denoted asX ∗(α).
For future use, we defineT (α), K(α), V(α) analogously, as
the sets of all times, versions, and values of messages inα.

Since nodes can join, leave, or fail, and endpoint instances
can be disconnected and reconnected, a flow can have an un-
bounded set of locations, but at any given point in time, mes-
sages continue to appear only at a finite number of locations
(Figure 4). One might think of the flow as (locally) ending
at some locations even as it expands onto the new ones.

We assume thatT is a global, linearly ordered time. The
time valuesτ(m) are not physically carried in messages, and
are not observable; we use them only for modeling purposes.
Only the versionκ(m) and valueν(m) are physically carried
in a messagem, and can be used as parts of the computation.

For now, it’s best to think of versions simply as sequence
numbers increasing on each message (the general case is dis-
cussed later). We assume that for the same locationx, messa-
ges with higher versions flow later. Formally, for each mes-
sage pairm, m′ ∈ α flowing in α ∈ F , the following holds:

χ(m) = χ(m′) ∧ τ(m) < τ(m′) ⇒ κ(m) < κ(m′) . (2)

We also assume that at the same locationx, messages tagged
with the same version have the same value, as defined below:

χ(m) = χ(m′) ∧ κ(m) = κ(m′) ⇒ ν(m) = ν(m′) . (3)

The most important part of each messagem is, of course, the
valueν(m) stored in it, and in the remainder of the paper we
often discuss how values in different messages are related to
one-another. To simplify formulas, we use a special notation:
givenα ∈ F , x ∈ X , andk ∈ K, if there existsm ∈ α that
flows atx with versionk, the termαx(k) represents the value
ν(m) stored in it (or if no suchm exists,αx(k) is undefined).
Equation (3) guarantees that ifαx(k) is defined, it is unique.
Formally, the following holds for all messagesm ∈ α:

χ(m) = x ∧ κ(m) = k ⇒ αx(k)
def
= ν(m) . (4)

Note that neither of the equations discussed so far places any
constraints on messages at different locations. A flow is said
to beconsistentif the following stronger requirement holds:

κ(m) = κ(m′) ⇒ ν(m) = ν(m′) . (5)

For consistentα, we can further shorten our simplified nota-
tion introduced above: instead ofαx(k), we write justα(k).

Consistency is a relatively strong property; it does not ap-
ply to most flows; normally, only output flows in objects that
implement some variant of distributed agreement are consis-
tent. In our language, consistent flows are produced using a
mechanism calledaggregation(discussed in Section 2.4.3).

A much more common property is for a flow to beweakly
monotonic; in such flows, messages with higher versions, at
the same location, must have larger values, as defined below:

χ(m) = χ(m′) ∧ κ(m) ≤ κ(m′) ⇒ ν(m) ≤ ν(m′) . (6)

Such flows are also calledweakly increasing. Flows that are
weakly monotonic with respect to the opposite order (≥) are
calledweakly decreasing. If a flow is weakly increasing and
weakly decreasing, it isconstant. This is defined as follows:

χ(m) = χ(m′) ⇒ ν(m) = ν(m′) . (7)

A flow is strongly monotonic(or monotonic) if monotonicity
holds across locations, as defined below; terms (strongly) in-
creasingand (strongly) decreasingare defined accordingly:

κ(m) ≤ κ(m′) ⇒ ν(m) ≤ ν(m′) . (8)

It’s easy to verify that a monotonic flow is always consistent.
As we explain later, monotonicity is the single most essential
property in our model, and it is a universal tool for reasoning
about the behaviors of the constructed protocols.

Neither of the flowswantsor holdsin Example 1 is mo-
notonic (not even weakly) nor consistent, but as we’ll see in
Section 2.3, the implementation oflock in our flow language
involves an internal consistent flow to represent global state.

2.3 Programs

In this section, we introduce the formal language syntax. The
essential rules are listed on Figure 5. For the sake of brevity,
we omit rules for defining new data structures and arithmetic
operators; these are similar as in Java. Our first example, the
code of a distributed locking protocol, is shown on Figure 6.
The language features it uses, and the embedded objectsta-
ble elect, are gradually introduced in the following sections.

The definition of a new LO (syntax rule R10 on Figure 5)
in its default form (object i {e1;...ek; c}) consists of the name
of the object (i), definitions of all endpoints it exposes as its
external interface (ej), and code (c), which could declare in-
ternal flows (vj in rule R02). Endpoints and internal flows
are the analogues of public methods and private fields of ob-
jects in Java. Endpoint definition (rule R04), like a method,
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includes its name (i), signature (s), and code (c), and the def-
inition of an internal flow (rules R17 and R05) includes the
type of messages in the flow (t), optionally preceded with its
properties, followed by name (i) and optionally, initial value
(y). Properties (rule R11) mark flows as weakly or strongly
increasing (up or s-up), weakly or strongly decreasing (down

or s-down), consistent (same), or constant (const). Endpoint
signatures (rule R14) resemble Java method signatures; they
consist of the lists of all input (f i

k) and output flows (fo
k ).

In the second variant, the object definition doesn’t include
the explicit endpoint declarations, but rather has the endpoint
signature (s) following the object’s name. In this variant, the
object is assumed to expose a single unnamed endpoint with
this signature; this is the case for thelock object on Figure 6.
This construction is conceptually similar to a .NETdelegate.

Unlike the body of a Java method, the code (c) embedded
in the endpoint definition (R04) doesn’t execute just once; it
runs continuously, from the momentsomeendpoint instance
is connected, until the moment wheneveryendpoint instance
is disconnected. As new messages appear in the input flows,
the endpoint code may produce messages in either the output
flows, or in the object’s internal flows. The code (c) should
not be viewed as a sequential set of operations, but rather as
a set of flow dependencies that executeconcurrently, contin-
uously, and as explained later, in acoordinatedfashion.

Partitioning code among endpoint declarations allows the
object’s proxies to behave differently depending on the func-
tional roles they play. In the LO model, these roles depend on
which endpoint instances are connected. For example, an ob-
ject with replicated state might expose two endpoints,client
for accessing the state, andreplica for providing the storage.
Code embedded in the body of endpointreplica would then
run only among proxies that are hosted on servers, and have
theirreplica endpoint instances connected (Figure 7). Code
outside of endpoint definitions (c in rule R10) runs on prox-
ies that have at least one instance of any endpoint connected;
this is also the case for code in lines 02-05 on Figure 6.

Code consists mostly ofdependencies(rule R03), which
resemble assignments in Java. Each dependency defines a set
of flows in terms of other flows. In the example on Figure 6,
in line 04 internal flowowner is defined as the output flow of
the embedded objectstable elect, and in line 05, the output
flow holds is defined in terms of flowowner. As mentioned
earlier, our code is not sequential; all dependencies thus run
in parallel, generating new messages in thedependentflows
(those listed on the left side of the assignment operator:= in
rule R03) from those they depend on (on the right side of:=).
In our example, whenever a message appears at the output of
stable elect it is copied to the internal flowowner (line 04).
This, in turn, causes expression in line 05 to recompute, and
a new message flows inholds. Computation is event-driven,
much as in rule-based systems using the Rête algorithm [15].

As suggested above, dependencies can refer to embedded
objects (line 04). The other formi1,...ik := [h] i[.i′](x1,...xk)

R01: aggr. attrib. a ::= unordered | incomplete | uncoordinated

R02: code c ::= v1 ; ... vj ; l1 ; ... lk ;

R03: dependencyd ::= i := x | i1 , ... ik := [h] i[.i′](x1 , ... xk)

R04: endpoint e ::= endpoint i s { c }

R05: flow f ::= p1 ... pk t i

R06: aggr. oper. g ::= or | and | min | max |

add | mul | union | intersect

R07: hier. attrib. h ::= independently

R08: line of code l ::= { c } | d | where ( x ) c1 [ elsewhere c2 ]

R09: modifier m::= other | fresh | some

R10: object o ::= object i { e1 ; ... ek ; c } |

object i s { c }

R11: property p ::= same | const | up | down |

s-up | s-down

R12: constant q ::= b | n | { q1 , ... qk} | ∅ | ( q1 , ... qk) | id

R13: infix oper. r ::= = | 6= | ≤ | < | > | ≥ | ∧ | ∨ | + | − |

∗ | / | ∪ | ∩ | \ | ∈ | /∈ | ⊆ | ⊂ | ⊇ | ⊃

R14: signature s ::= ( f i
1 , ... f i

k ) : fo
1 , ... fo

k

R15: type t ::= bool | int | ( t1 , ... tk ) | { t }

R16: unary oper. u ::= ¬ | −

R17: variable v ::= f [ := q ] | object [ h ] i i′

R18: expression x ::= [ m ] i | q | u x | x r x | ( x1 , ... xk) |

x @ n | { x1 , ... xk} | x ′ | [ x1 , x2 ] |

( x ) | g ( x1 , ... xk) | a1 ... ak g i |

singleton

Figure 5. The syntax rules of our distributed data flow lan-
guage expressed in a notation similar to BNF. Keywords are
bold, sans serif, and in blue, non-alphanumeric terminals are
bold and in red, and non-terminals are italic. Optional occur-
rence ofz is written as “[z]”. Subscripts and superscripts are
not parts of non-terminal names; they’re used to distinguish
between distinct occurrences. Repetition of a non-terminal z
is expressed as “z1...zk” (or if y is a delimiter: “z1y...zk”).
We omit rules for identifiers (i), numbers (n), Booleans (b),
and rules for defining custom (ordinary) data structures and
arithmetic operators (these are similar to rules in Java).

01: object lock(bool wants) : bool holds { // endpoint sign.
02: same int owner; // an internal consistent flow
03: where (wants) // this determines who runs line 04
04: owner := stable elect(id); // an embedded object
05: holds := wants ∧ (owner = id); } // flow dependency

Figure 6. The code of a distributed locking LO expressed
in our language. Via an unnamed endpoint, an object named
lockconsumes a Boolean flowwants, and outputs a Boolean
flow holds (line 01). It uses a consistent internal flowowner
(line 02) to store the identifier of the node that holds the lock.
All nodes that would like to acquire the lock (line 03) submit
identifiers to the embedded objectstable elect (line 04; for
the code consult Figure 17). If the local id matches that of the
leader, the proxy holds the lock (line 05). The result is stable
until the lock owner quits (this is discussed in Section 2.4.3).
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in rule R03 is like a method call:i is the embedded object’s
name,i′ is the optional name of one ofi’s named endpoints
if it has any (otherwise, we assume the unnamed endpoint is
selected), flowsij mirror i’s outputs andi’s inputs are fed
from expressionsxj . Each use of such dependency declares
a separate embedded object, a single proxy of which is em-
bedded in each proxy of the object being defined (Figure 8).
Pairs of proxies communicate using their endpoint instances.
The embedding object can programmatically connect or dis-
connect the endpoint instance it uses to talk to the embedded
object, effectively activating or deactivating code in thelatter
(recall our earlier discussion, and the example on Figure 7).
For example, the conditionalwhere statement in line 03 acti-
vates/deactivates the embedded proxy ofstable elect based
on values in flowwants, so that only proxies that intend to
grab the lock are participating in the leader election protocol.

Sometimes, one may wish to use multiple instances of the
same type of object (e.g., multiple instances ofstable elect)
for different purposes, or one may wish different sections of
the code to interact with the embedded object using different
endpoints. This is achieved by declaring embedded objects
in the variables section (rule R17), via patternobject [ h ] i i′′,
wherei identifies the object type (e.g.,stable elect), andi′′

is an alias that we’ll use to refer to a particular instance ofit.
Wheni′′ is substituted fori in i1,...ik := [h] i[.i′](x1,...xk),
the pattern doesn’t declare a new embedded object instance;
it connects to the one we declared earlier withobject [ h ] i i′′.

For each input and output flow defined in endpoint signa-
ture (rule R14), and for each internal flow defined in the code
(rule R02), every proxy keeps one message queue (Figure 8,
Figure 9). The program on Figure 6 creates six such queues:
two for flowswants andholds declared inlock’s endpoint
signature (line 01), two for flowscandidate andleader cre-
ated by the recursively embedded proxy ofstable elect, one
for the embedded flowowner, and one forid (line 05). De-
pendencies are generally implemented by pulling messages
from some queues, transforming them and storing the results
as messages in other queues. Often, this happens locally, but
sometimes it involves coordination with other proxies.

As mentioned earlier, computations are event-driven. One
can think of each running object as a Petri net [39], in which
flows play the roles of locations, and dependencies the roles
of transitions. Every time a new message appears in some of
the flows that serve as sources of data for a dependency (the
dependency’spreset), this triggers calculations and produces
a message in the dependent flow (the dependency’spostset).
One can also use the Petri net analogy at a more mechanical
level, where the individual message queues play the roles of
locations, and the computations play the roles of transitions.

The meaning of conditionalwhere (x) c elsewhere c′ is
that codec is locally activated (andc′ deactivated) at a proxy
as soon as a message with valuetrue flows in the local queue
that is a part of the flow represented byx, and likewise,c is
deactivated (andc′ activated) when a message with thefalse

C 
C

C!
c

r

A"
C 
C

C!
c

r

A#
C 
C

C!
c

r

A$
R"

C 
C

C!
c

r
R#

C 
C

C!
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C 
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inactive 
code

app 
object

storage
object

object with
replicated state

active 
code

a proxy with two 
endpoints (c, r)

Figure 7. CodeCc in the body of endpointc (rule R04) runs
on proxies that have their instances ofc connected. Likewise,
Cr in the body of endpointr runs on proxies that have their
instances ofr connected. CodeC (R10) runs in either case.

stable_elect
lock

candidate
leader

id

(MQ)
(MQ)

(MQ)

wants(MQ) (MQ)holds

owner

connect or
disconnect

proxy of lock
proxy of

stable_elect

message
queue (MQ)

part of a 
data flow

dependency

unnamed endpoint instance

transformation
operator

(MQ)
=

Figure 8. Dependency in line 04 in Figure 6 embeds proxies
of stable elect in proxies oflock, binds its input to flowid,
and routes its output intoowner. Values inholds are genera-
ted from those inid, wants, andowner (line 05). Values in
wants activate or deactivate the connection tostable elect.

lock%
leader 

owner

(MQ)
(copy)

(MQ)

lock& lock'
st._el.% st._el.& st._el.'

flowleader

flowowner

dissemi‐nation

one MQ
per flow
in each 
proxy

Figure 9. For each flowα ∈ F in an object definition, the
proxy at each locationx maintains a local message queue for
messages{m ∈ α | χ(m) = x}. Dependencies move mes-
sages between queues and transform them in-flight; this is
usually done concurrently and independently on all proxies.

value appears in that queue. Initially, neitherc nor c′ is ac-
tive. In case of embedded objects,where connects or discon-
nects endpoint instances. In dependencies,where suspends
or resumes message exchange with queues corresponding to
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flows used inc or c′. For example, thewhere clause in line 03
on Figure 6 controls (locally at each proxy) whether messa-
ges can be put in the local queueowner or pulled fromid.

Flow id (line 05) is an example of a built-in constant flow.
Each message queue of a constant flow contains only a single
message. In case ofid, the value of this message is a globally
unique numeric identifier of the proxy’s location. Constant
flows participate in computation just like any other flows; for
example, wheneverlock internally connects tostable elect,
it copies the (single) message fromid into candidate. Every
occurrence of a numeric or Boolean constant (rule R12) also
defines a constant flow; in this case, messages in all queues
carry the same value. The language also supports tuple cons-
tants of the form(q1,...qk), and set constants:∅, {q1,...qk}.

The built-in message types (rule R15) include Integer (int)
and Boolean (bool); these can be further combined into tuple
types (denoted as(t1,...tk)), and set types (denoted as{t}).
Supporting custom, user-defined types would be helpful, but
to keep it simple, we limit ourselves to the built-in types. The
integer set type{int} is particularly useful; it enables batched
processing (we discuss one example of this in Section 2.4.1).

Standard types come with logical (¬, ∧, and∨), compari-
son (=, 6=, ≤, <, ≥, and>), arithmetic (+, −, ∗, and/), and
set operators (∪, ∩, \, ′, ∈, /∈, ⊆, ⊂, ⊇, ⊃). One can construct
sets{x1, ...xk} and tuples(x1, ...xk) from elements, remove
elements from tuples (x@n is the element atn-th position),
and define ranges of numbers ([x1,x2] is only supported for
x1, x2 numeric; it represents the set{n ∈ N | n1 ≤ n ≤ n2},
wheren1, n2 are the values ofx1, x2. Finally, one can apply
aggregation operatorsin prefix notationg(x1, ...xk), where
g can be any of:min, max, or (alternative),and (conjunction),
add (sum),mul (product),union, or intersect (intersection).
The way these are interpreted is discussed in Section 2.4.3.

The remaining language constructs are described later. To
conclude this section, we need to make a comment about the
peculiar set arithmetic used in our language. The representa-
tion of sets could, in general, consume a lot of space, but our
language is designed to support high-performance protocols
that might need to run with limited network bandwidth. This
means that when transmitted over the network or aggregated
across sets of machines, set values may need to be truncated.

Accordingly, at runtime each set valueA is actually rep-
resented as a pair(A+, A−), whereA+ is the set of elements
that definitely belong toA, andA− is the set of elements that
definitely do not belong toA; for all other elements, it is un-
defined. Set operations are then defined to preserve as much
information as possible; for example, in the unionA∪B, we
can only guarantee that elementsA+ ∪ B+ are in the result.
Formal definitions of the four basic operators are as follows:

(A+, A−) ∪ (B+, B−)=(A+ ∪ B+, A− ∩ B−) , (9)

(A+, A−) ∩ (B+, B−)=(A+ ∩ B+, A− ∪ B−) , (10)

(A+, A−) \ (B+, B−)=(A+ ∩ B−, A− ∪ B+) , (11)

(A+, A−)′=(A−, A+) . (12)

01: object repair(int addr, {int} recv) : {(int,{int})} fwd {
02: fwd := { ( other addr, recv \ other recv ) };
03: }

Figure 10. A simple form of loss recovery:recv carries sets
of identifiers of network packets locally received at the given
location (line 01) into the object, andfwd carries forwarding
requests out of it. Each node forwards to a certain other node
packets that are available locally, but not remotely (line 02).

repair(
fwd

recv

{ ( · , · \ · ) }

addr

other
recv

other
addr

{ ( · , · \ · ) }

repair)

multicast( mc.)
unreliable net

application( application)send/receive 
application data

packetpacketpacketpacketpacketpacketpacket packetpacketpacketpacketpacketpacketpacket
p a c k

et

control state
and decisions

transfor‐
mation

parts of a 
non‐local 
dissemi‐
nation

part of a 
non‐local 
dissemi‐
nation

lower
layers

Figure 11. The loss recovery objectrepair from Figure 10
only deals with control decisions: it detects packet lossesand
issues forward requests; another objectmulticast that inter-
faces it handles the actual transmissions, caching, interacts
with the application, and report its local state torepair. For
the two non-local disseminationsother addr andother recv
in therepair object, each proxy pulls messages into its local
queue from a remote queue maintained by some other proxy.

In particular, values of type{int} are represented as tuples of
the form(a, (a1, b1), (a2, b2), . . . , (ak, bk), b). Whethern is
in the set is defined ifa ≤ n ≤ b (and undefined otherwise);
if it’s defined,n is in the set iff∃1≤i≤k ai ≤ n ≤ bi. In our
simulations, this representation proved to have a fairly small
CPU and space overhead [38]; we discuss it in Section 2.4.1.

2.4 Dependencies

Dependencies are the basic building blocks in our language.
We distinguish four kinds of these:disseminations, transfor-
mations, aggregations, anddistributions.

2.4.1 Disseminations

This is the simplest of dependencies. Flowβ ∈ F is adisse-
minationof α ∈ F if each value appearing inβ has appeared
previously inα, at the same or some other location:

∀m∈β ∃m′∈α ν(m′) = ν(m) ∧ τ(m′) < τ(m) . (13)
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Messagem in this equation is said todependon messagem′

that provided the value. Disseminationβ is local if the latter
flows at the same location (that is, if equation (13) still holds
after appending to it the extra condition “∧χ(m′) = χ(m)”).

In our lock example (Figure 6),owneris a local dissemi-
nation of the output flowleaderof the embedded objectsta-
ble elect. As mentioned earlier, we implement this by locally
pulling messages from theleader queue, and copying them
to theowner queue, independently on each proxy (Figure 9).

To more accurately describe the way dependencies work,
we characterize them through theirmembershipandselector
functions. In case of dissemination, memberships form fam-
ily of partial functionsµx : K → X , and selectors are partial
functionsσx : K → K, for eachx ∈ X , where dom(µx) =
dom(σx) = {k ∈ K | ∃m∈β χ(m) = x ∧ κ(m) = k}. For
each messagem ∈ β, if its location isx = χ(m) and ver-
sion isk = κ(m), then the location of the original message
m′ ∈ α thatm depends on isµx(k), and its version isσx(k).
Using this new notation, one can then expressβ as follows:

βx(k) = αµx(k)(σx(k)) . (14)

Note how subscriptµx(k) in α•(•) selects location, and the
argumentσx(k) selects version. The above notation stresses
the functional nature of dependencies, and helps distinguish
their different flavors, e.g., in a local dependencyµx(k) = x.

Dissemination isin-order if for every two messages inβ
that flow at the same location, if one has larger version than
the other, then the versions of messages inα they depend on
are in a similar relation; formally, this requires that selectors
are monotonic, i.e.,∀x∈X ;k,k′∈K k ≤ k′ ⇒ σx(k) ≤ σx(k′).
Intuitively, it means that when pulling messages, each queue
tries to keep only the fresh ones, and ignore the old ones. In
our language, disseminations are in-order by default.

Now, let’s analyze an important example of non-local dis-
semination, which additionally illustrates batch processing.

Example 2. Objectrepair (Figure 10) implements a sim-
ple form of multicast loss recovery: pairs of proxies compare
sets of identifiers of all network packets received locally,and
whenever one of them finds that it has packets that a certain
other node is missing, it generates a forwarding request. Our
object doesn’t deal with the physical network transmissions;
we assume it is connected to another object that performs all
the low-level tasks. Objectrepair implements only core de-
cision logic: it detects when losses occur, and decides which
nodes should forward data to which other nodes (Figure 11).
This general pattern of use applies to all protocols presented
in this paper (our platform [1] supports such compositions).

Flow addr carries into each proxy ofrepair the network
address at which its local node can receive network packets
forwarded by other nodes. Flowrecv of the integer set type
{int} carries into it sets of identifiers of all packets received
locally. For example, if at timet, the proxy ofmulticast at
nodex receives packets with identifiers 28..29 from the net-
work, and it has previously received packets with identifiers

mc*
unreliable net
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id=9

packets
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earlier
packets
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t*(lost)
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with id
4,6,7,8
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id=6
id=7
id=8
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fwd (MQ)
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(MQ)

non‐local
dissemination

other recv 
(MQ)

Figure 12. Batched processing with set arithmetic in proto-
col repair: (1) before timet1, node 1 received packets with
identifiers1 and3 and is caching them in its local proxymc1

of the multicast object; packet with identifier2 never arrived;
(2) at timet1, a batch of packets withid from 4 through 8 is
received; (3) proxymc1 now decides to report the new status
to the local proxy ofrepair; a message carrying a single set
value{1, 3..8} flows inrecv at that node around timet1; it is
received by the proxy ofrepair and put into its input queue;
(4) likewise, before timet2 node 2 received packets1..2 and
is caching them; (5) at timet2 it gets new packets3, 5 and9;
packets4 and6..8 got lost; (6) at timet2, proxymc2 reports
its updated status to its local proxy ofrepair, sending to it
a single set value{1..3, 5, 9}; (7) the latter value is forwar-
ded to node 1, and appears in its local queueother recv; (8)
eventually, this triggers local computation in line 02, thetwo
values are substracted, and local proxyrepair1 requests that
packets withids in the set{1, 3..8}\{1..3, 5, 9} = {4, 6..8}
be forwarded to node 2; this appears in the output flowfwd
as a value of the formfwd1(k) = {(addr2(k

′), {4, 6..8})}.

1..25, then the proxymulticastx will send to its locally con-
nected proxyrepairx a message with value{1..25, 28..29};
formally,∃k∈K (x, t, k, {1..25, 28..29}) ∈ recv (Figure 12).

Flow fwd carries sets of forwarding requests. Its values
are sets of pairs(a, S), in whicha is the address of the node
that should receive the forwarded packets, andS is the set of
identifiers of all those packets. For example, a request thatx
forward packets 1..5 tolion and packets 8..9 totiger would
be modeled asfwdx(k) = {(lion, {1..5}), (tiger, {8..9})}.
Proxies ofrepair produce such values in line 02, by com-
paring the values received inrecv locally and elsewhere.�

Notice the use ofother recv in line 02 on Figure 10. In
general, the constructother i, wherei is a flow name, repre-
sents what one might think of as a “shifted” flow: each proxy
fetches a value appearing in flowi at itsneighboringproxy;
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thus, the values ofother recv at a given proxy will be sets of
identifiers of messages received by its neighbor. The neigh-
boring proxy is the same for each occurrence ofother i. It
can change over time, but it always does so atomically with
respect to computation performed by the proxy. Neighboring
relationships are asymmetric. The runtime ensures that they
are configured so that if we represent them as a graph, at any
point in time one can travel from any point in such graph to
any other point; in other words, information in each proxy
eventually affects information in every other proxy, directly
or indirectly. This can be implemented in a variety of ways,
e.g., by organizing the proxies into token rings, where each
proxy sets the successor on the ring as its neighbor, strongly
connected trees, where each proxy periodically switches be-
tween neighbors in the tree, or randomized gossip protocols.

We’d like to highlight one important aspect of this exam-
ple: thanks to our use of set arithmetic, in a single step in the
computation information about multiple application events
can be processed simultaneously, in batch mode (Figure 12);
for example, if one proxy received messages with identifiers
1..1000, and its neighbor 1..950, expressionrecv\other recv
in line 02 yields a forwarding request for packets951..1000,
all at once. This way, control traffic running at rates as low as
a few protocol rounds/second can potentially support proto-
cols that handle thousands of application events/second [38].

Let’s try to estimate the gain. Suppose packet loss occurs
at random with probabilityp, and that set values are encoded
as numeric ranges, as explained at the end of Section 2.3 (we
used this encoding successfully in our simulations [38], and
in our earlier high-performance multicast implementations).
Let λ(p) be the average number of consecutive packets that
are either all lost or all received by a node; it’s easy to check
thatλ(p) = (p ·(1−p))−1−2, and ifp is small,λ(p) ≈ 1/p.
Let the maximum size that can be occupied by each set value
in memory or in a network packet beS bits, and suppose that
besides a tiny header that encodes the first identifier that is
or isn’t in the set, almost all of the remaining bits are used to
store a list ofB-bit numbers; each of these is the length of a
single series of consecutive identifiers that are (or not) inthe
encoded set value. For example in value{1..25, 28..29}, the
header would specify that the first identifier is1, and it is in
the set, and it would be followed by threeB-bit numbers: 25,
2, 2, indicating that starting with 1, there are 25 consecutive
identifiers in the set (1..25), then 2 not in the set (26..27),and
then again 2 in the set (28..29). WithS bits, one can encode
information about≈ S/B series of consecutive identifiers
(ignoring the header), each series of lengthλ(p) on average.
The total number of identifiers for which the information of
whether they are (or not) in the set can be encoded in a single
set value is≈ S/(Bp). For example, if loss rate isp = 1%,
we allow4 KB space per value, andB = 16 bits, each value
could carry information about≈ 2000 identifiers on average.
If the multicast rate is at the order of 2000 packets/s or less,

membership
info

P,M,
P-M-

P.M.
M./,S,

M./-S-
membership servicemachines on which our object runs

membership object

storage 
object

our object (uses aggregation)
Figure 13. An object that uses aggregation is supported by
an external membership service (MS), which provides all the
object’s proxies with consistent membership views; these are
used to self-organize and form structures such as token rings.

it would suffice for computations in our language to fire (and
for set values to be disseminated) as rarely as once a second.

2.4.2 Transformations

Flow β ∈ F is a transformationover flowsα1, . . . αn ∈ F
if there exists ann-argument functionΨ : Vn → V such
that for each messagem ∈ β in this flow, its valueν(m) can
be represented as a result of applying functionΨ to a list of
values that appeared in flowsαi (a single value from each):

∀m∈β ∃m′

1
∈α1 . . .∃m′

n
∈αn (∀i τ(m′

i) < τ(m)) ∧ . . .

· · · ∧ ν(m) = Ψ(ν(m′
1), . . . ν(m′

n)) . (15)

Messagem is said todependon allm′
i used in the equation.

Transformation islocal if m andm′
i appear at the same loca-

tion (if we can append∧∀i χ(m′
i) = χ(m) in equation (15)).

Every occurrence of a logical, arithmetic, comparison, or ag-
gregation operator in an expression defines a local transfor-
mation (except for the patterna1 ... ak g i in rule R18, which
is an aggregation; this is discussed in the following section).

In examplelock, in line 05, we defineholds as a transfor-
mation onwants, owner, andid, with Ψ(v1, v2, v3) , true
if v1 ∧ (v2 = v3), elsefalse. In examplerepair, in line 02,
we definefwd as a transformation onother addr, recv, and
other recv, with Ψ(v1, v2, v3) , {(v1, v2 \ v3)} (Figure 11).

One can characterize a transformation via its membership
functionsµi

x : K → X , and selector functionsσi
x : K → K,

for 1 ≤ i ≤ n, x ∈ X , as follows (the domains and meaning
of µi

x andσi
x are defined just as we did it for dissemination):

βx(k) = Ψ(. . . , αi
µi

x
(k)(σ

i
x(k)), . . . ) . (16)

Transformation isin-order if all selectors are monotonic. By
default, all transformations in our language are local and in-
order:µi

x = µi
x′ for x 6= x′ andσi

x(k) ≤ σi
x(k′) for k ≤ k′.

2.4.3 Aggregations

Aggregation is the core concept in our language; it allows us
to achieve strong semantics. Unlike dissemination and trans-
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formation, aggregation generally requires proxies to cooper-
ate. This can be facilitated by an external membership servi-
ce (MS): proxies can use it to self-organize into a group, and
perform aggregations together (Figure 13, 14, 15, and 16).

Flowβ is anaggregationon flowα if every value flowing
in β can be represented as a result of applying some associa-
tive commutative binary operator⊗ : V × V → V to some
set of values that have previously appeared inα:

∀m∈β ∃S⊆α |S| < ∞∧ (∀m′∈S τ(m′) < τ(m)) ∧ . . .

· · · ∧ ν(m) =
⊗

m′∈S

ν(m′) . (17)

The standard aggregation operators listed in rule R06 are all
associative and commutative, and can be substituted forg in
the patterni1 := a1 . . . ak g i2 to definei1 as an aggregation
overi2. Attributesai are used to customize the way in which
aggregation is performed; this is discussed below.

As with disseminations and transformations, we can char-
acterize aggregations by their membershipsµx : K → P(X )
and selectorsσy

x : K → K, for x, y ∈ X . Each membership
µx, given a versionk ∈ K(β) of some messages inβ, selects
a set of locations inα, and for each locationy ∈ µx(k), the
selectorσy

x(k) further specifies the version of a message that
this location contributes to the aggregation (Figure 15):

βx(k) =
⊗

y∈µx(k)

αy(σy
x(k)) . (18)

Aggregation isin-order if the selectorsσy
x are monotonic. It

is coordinatedif memberships and selectors are identical at
different locationsx, i.e.,µx = µx′ ∧ σy

x = σy
x′ for x 6= x′;

intuitively, this means that when aggregating values with the
same version, different proxies select the same locations and
the same versions at those locations in order to calculate their
results. Finally, aggregation iscompleteif every permanent
location ofα eventually starts to contribute its value to every
subsequent aggregation inβ. By default, aggregations in our
language have all these properties unless explicitly annotated
asunordered, uncoodinated, or incomplete (rule R01).

To root things in physical reality, let’s see how to imple-
ment such aggregation if nodes self-organize as a token ring
with the help of an external membership service (Figure 16).
Aggregations are performed in rounds; a token is circulated
with the partial result that each node contributes to by merg-
ing the result with its local value, then passing it further on,
and the final aggregation results are tagged with versions of
the formk = (i, j), wherei is the number of the membership
view, andj is the number of the token round in the view5.
The in-order property is achieved if nodes contribute the lat-
est local values they got. Coordination is achieved because
aggregation results are collected by a single node and handed

5 Full details of the runtime infrastructure and distributedprotocols used to
support aggregation are beyond the scope of this paper; they’ll be presented
in a journal paper. The key concepts have been implemented and tested [38].

stable_elect0
elected
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date

leader

st._elect1 st._elect2
minv3 v

4
v5vv

v

to a membership service...

membership0 memb.1 memb.2
membership m.m.

vv
v

Figure 14. A group of proxies computing aggregation in the
protocol from Figure 17. In each aggregation round, sets of
valuesvi that appear in flowcandidate are aggregated into a
single valuev = min1≤i≤n vi, which emerges at the leader
node. The result is disseminated to all proxies. Proxies self-
organize into a token ring or a similar structure with the help
of membership views(provided by themembership object).

m6=(a,t6,k6,v6) m7=(b,t7,k7,v7) m=(x,t,k,v)

v 8 v

proxy9 proxy: proxy; proxy<
k

k 8 v =
k =

local 
queue

of β

local queue of α

>(k)={a,b}> (k)=k66 selector ?@> (k)=k77
selector ?Am e m b e rsh i p    B

not
contributing

result

Figure 15. Membershipµx(k) selects locations that partic-
ipate in aggregating values for messages with versionk atx,
and selectorsσy

x(k) further specify the versions of messages
that each locationy ∈ µx(k) contributes to the aggregations.

out to everyone. Completeness follows from the fact that the
membership view specifies who precisely is in the ring, and
permanent locations remain in the membership view forever.

It’s not hard to see that coordinated aggregation is consis-
tent; our aggregations are thus consistent by default. In fact,
many classes of aggregations are easily proven to be strongly
monotonic. To explain this, we need a few extra definitions.

An aggregation operator⊗ is monotonicif it satisfies the
first of the following two equations, and it is alower bound
if it additionally satisfies the second one:

∀v1,v2,v3∈V v1 ≤ v2 ⇒ v1 ⊗ v3 ≤ v2 ⊗ v3 , (19)

∀v1,v2∈V v1 ⊗ v2 ≤ v1 . (20)
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All standard aggregation operators in our language (rule R06)
are monotonic, andand, min, andintersect are lower bounds.

A coordinated aggregationβ onα is guardedif each time
a new node joins the subsequent aggregation, it ensures that
the value it will contribute is not smaller than either partial
or full result of the ongoing or the immediately preceding
aggregation. In the scenario on Figure 16, it means that each
time a node is about to place its local value into the token or
merge its local value with the one in the token (steps 1, 4, 7),
it has to double-check that the local value is no smaller than
the result of the preceding aggregation; if it is, the node can’t
contribute its local value now and has to wait until it grows.

Formally, for all pairs of subsequent versionsk < k′ in β
(i.e., such that¬∃k′′ k < k′′ < k′), and for every locationy
joining the aggregation at versionk′ (y ∈ µx(k′) \ µx(k)):

∃S⊆µx(k)

(

αy(σy
x(k′)) ≥

⊗

z∈S

αz(σ
y
x(k))

)

. (21)

Aggregation in our language is not guarded by default, but it
can be easily made such. Recall that conditionalwhere (x) c
locally deactivates dependencies inc at a given proxy when
conditionx at this proxy locally evaluates tofalse, that is, as
soon as a message carrying valuefalse appears in the local
queue of the flow that is carrying the results of expressionx.
In case of aggregations inc, being locally deactivated means
that the given proxy contributes values from its local queues
only at the times when conditionx locally holds. Earlier, we
stated that aggregation is complete by default, butwhere (x)
creates an exception: aggregation by default runs among all
proxies in the groupexceptthose explicitly excluded from it
by thewhere clause. Now, consider the following pattern:

where (fresh β ∧ β ≤ α) β := ⊗ α; . (22)

Expression of the formfresh β locally evaluates to true on a
given proxy when the proxy is sure it has the latest possible
value ofβ. This feature is easy to implement if aggregation
is performed using a token ring protocol under the control
of a membership service (as discussed earlier); as soon as a
proxy joins the ring, all tokens carrying partial results pass
through it, so it always knows which version was the latest6.

At this point, we need to make one important comment: in
general, it is possible that all nodes crash or simultaneously
leave the protocol, and later the protocol resumes with a new
set of entirely different nodes. In such situations, of course,
there’s no way that the new nodes can learn the results of past
aggregations, or even determine what was the latest version.
Thus, aggregation couldn’t be guarded (or even consistent)
if the flow could span such events. Accordingly, when such
an event occurs, we assume that the existing flow ends, and a
new instance of it begins; we say that the flow hasrebooted7.

6 Technical details are fairly straightforward; the approach has been outlined
in our technical report [38]. More details will be provided in a journal paper.
7 This appears to be a standard assumption in most distributedprotocols that
support dynamic membership, although often it is not explicitly verbalized.

v C vD vE
token ring 
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its own local 
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all others 
merge their 
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vF vD
5

vF vD GGGvHIF v

i, j i,j i,j
i , j

2

3
vi,j
vi,j
vi,j

6

7

8

9

Figure 16. Aggregation using a token ring protocol: (1) the
ring leader puts its local valuev1 in the token; (2) it also puts
in it version(i, j), wherei is the number of the membership
view in which this aggregation round is happening, andj is
the number of the aggregation round within the view; (3) the
combo(i, j), v1 arrives at the second node in the ring; (4) the
node pulls its local value; (5) values are merged intov1⊗v2,
and passed further on; (6) eventually, the last member of the
ring receivesv1 ⊗ . . . vn−1; (7) the last local value is pulled;
(8) it’s merged into the final resultv; (9) the final aggregation
result tagged with version(i, j) is disseminated to everyone.
Upon receiving result(i, j), v, a proxy places it in its queue
only if it’s newer than the last result(i′, j′), v′ the proxy has
ever received; this is true only ifi > i′ ∨ (i = i′)∧ (j > j′).

01: object stable elect(up int candidate) : s-up int leader {
02: same int elected := 0;
03: where (fresh elected ∧ elected ≤ candidate) // guard
04: elected := min candidate; // aggregate
05: leader := elected;
06: }

Figure 17. A simple version of the leader election protocol.
Candidates with identifiers larger than the one of the elected
leader (line 03) select among themselves the one that has the
smallest identifier (line 04). Election result can change only
when the elected leader leaves the protocol. Candidates with
identifiers smaller than the leader start to compete only after
all current competitors quit, causing aggregation to “reboot”.

The runtime infrastructure can detect such events: it can tell
if the membership dropped to zero or changed so fast that the
underlying protocols couldn’t propagate information across
membership views. We omit the low-level details for brevity.

In the light of this discussion,β in pattern (22) is a guar-
ded aggregation onα. Guarded aggregations are very useful;
their usefulness stems from the following formal result.

THEOREM 2.1. If flow β is a guarded, in-order aggregation
over flowα using a lower bound operator⊗, andα is weakly
monotonic, thenβ is (strongly) monotonic.

Proof.The full proof can be found in our tech report [38].�
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COROLLARY 2.1. In pattern(22), if α is weakly monotonic,
and⊗ is a lower bound, thenβ is (strongly) monotonic.

Proof.This comes from Theorem 2.1, the fact that by default
aggregations are in-order, and the fact thatβ is guarded. �

Now, let’s analyze a few practical uses of such aggregations.

Example 3. Objectstable elect (Figure 17) implements
the leader election protocol embedded in objectlock from
Example 1. A weakly increasing input flowcandidate car-
ries the identifiers of all candidates, and an increasing output
flow leader carries the identifier of the leader. The internal
flow elected is used to select the smallest identifier of a can-
didate (line 04); this candidate is chosen to be the leader.

Sincecandidate is weakly increasing, we can use Corol-
lary 2.1 to deduce thatelected is monotonic. Now, since ag-
gregation is complete, once the leader starts to participate
and gets elected, it bounds all further results from above with
its own identifier until it quits the protocol. Hence, once the
leader is elected, it continues to be elected. Candidates with
identifiers smaller than the leader are held off bywhere; they
wait until all others quit, causing the protocol to reboot8. �

Example 4. Objectsynchronize (Figure 18) allows a set
of nodes to coordinate execution in phases, with the property
that no node is permitted to enter the next phase until every-
one reports they’ve finished working on the current one. The
last phase entered by the local proxy is reported in the input
flow ready, and the next phase the proxy is allowed to enter
is reported in the output flowphase. The strongly increasing
internal flowdone represents the phase all proxies entered.
Monotonicity ofdone again follows from Corollary 2.1.�

Example 5. Objectstabilize(Figure 19) computes the set
of identifiers of packets that have been received by all nodes
in the system (stable): it does so by intersecting sets of iden-
tifiers of packets received by individual nodes (recv). Flow
stable is strongly monotonic: packets reported as stable will
forever keep being reported as such; in order words, the de-
cision to report a packet as stable, once taken, is irreversible;
this is guaranteed by Corollary 2.1. This irreversibility prop-
erty is very useful: for example, if packets represent requests
in a replicated database, each replica can safely process a re-
quest as soon as it knows the request is stable; it can safely
do so, for other replicas will eventually also do the same.�

Example 6. Objectdecide(Figure 20) implements a sim-
ple decision protocol. We assume that there exists a globally
ordered sequence of proposals, and that nodes need to glob-
ally agree on which proposals to accept; a proposal is glob-
ally accepted only if all nodes give it a go. Global decisions
are final and irreversible, and respected by everyone. Freshly
joined nodes don’t immediately have the rights to veto deci-
sions, but they’re always eventually recognized by the group
as first-class citizens, and can henceforth veto any proposals.
It is a form of consensus with dynamic membership [30].

8 Our protocol has a weakness; it can lead to starvation. Thereare numerous
ways to fix this; the different solutions will be discussed ina journal article.

01: object synchronize ( up int ready ) : s-up int phase {
02: s-up int done = 0;
03: where (fresh done ∧ done ≤ ready) // guard
04: done := min ready; // aggregate
05: phase := done + 1;
06: }

Figure 18. Code that coordinates processing across proxies
into a sequence of synchronous phases. Phasek is completed
(done ≥ k) after all nodes report that they’re ready (line 04).
The system then enters the next phase (line 05). Newcomers
don’t get to vote on the next phase till they catch up (lice 03).

01: object stabilize ( up {int} recv ) : s-up {int} stable {
02: s-up {int} recv by all := ∅;
03: where (fresh recv by all ∧ recv by all ⊆ recv)
04: recv by all := intersect recv;
05: stable := recv by all; }

Figure 19. Code that determines which packets arestable,
i.e., received by everyone in the system; this computation is
an essential component of many reliable multicast protocols.

01: object decide ( up {int} yes, up {int} no )
02: : s-up {int} accepted, s-up {int} rejected {
03: up {int} positive = ∅; // this proxy votes to accept
04: up {int} negative = ∅; // this proxy votes to reject
05: s-up {int} accept = ∅; // irreversible accept decisions
06: s-up {int} reject = ∅; // irreversible reject decisions
07: accepted := accept; // decided
08: rejected := reject; // decided
09: where (fresh accept) { // must know existing accepts
10: positive := yes \ no ∪ accept; // catch up
11: where (accept ⊆ positive) { // caught up
12: accept := intersect positive; // all accepting?
13: negative := // catch up and spread rejects
14: no \ accept ∪ reject ∪ union negative;
15: where (fresh reject ∧ reject ⊆ negative)
16: reject := intersect negative; // all rejecting?
17: } } }

Figure 20. Code that makes irreversible accept/reject deci-
sions based on local suggestions; acceptance is given only if
every proxy that has synchronized with the rest gives it a go.
Once a proxy is synchronized, it affects all future decisions.

The input flowyes carries sets of identifiers of proposals
that the individual nodes wish to be accepted, andno carries
sets of identifiers of proposals that individual nodes with to
be rejected. This set encoding is similar in spirit to the one
from Example 2. Output flowsaccepted andrejected carry
sets of identifiers of proposals globally accepted or rejected;
these are just copied from internal flowsaccept andreject.
Internal flowspositive andnegative carry sets of identifiers
of proposals for which individual proxies will vote yes or no,
respectively. They are different fromyes andno because the
local preferences of newly joining proxies might be ignored
until they are fully synchronized with the rest of the group.
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Corollary 2.1 again ensures us thataccepted andrejected
are monotonic (and that decisions are irreversible) ifpositive
andnegative are weakly monotonic. The latter, and the fact
thataccepted andrejected are disjoint, is a consequence of
the waywhere clauses are nested, and the fact that process-
ing each event on a proxy is done atomically. Full proof, and
discussion of the forms of distributed agreement expressible
in our flow language, are beyond the scope of this paper.�

In general, monotonic aggregations based on pattern (22)
and Corollary 2.1 could be used to reliably make and remem-
ber any type of consistent, irreversible distributed decisions,
and retain state in the presence of churn. Other example uses
include controlling atomic delivery or cleanup in a multicast
protocol, total ordering, and distributed commit protocols.

Our aggregation has one powerful property we haven’t re-
vealed yet; it can be composed recursively, yielding scalable
hierarchical implementations. We discuss this in Section 2.5.

2.4.4 Distributions

Whereas aggregation works to compute global values from
sets of local values fed by the participants, distribution does
the converse: it decomposes a global value into pieces, and
passes each piece to a single participant. Flowβ is a distribu-
tion of α if it can be represented as a result of the following
process: we take a subset of messagesα′ ⊆ α, and for each
messagem ∈ α′, we split the valuev = ν(m) in this mes-
sage into a set of valuesv1, . . . vn that aggregate back tov,
i.e., such thatv = ⊗1≤i≤n vi. We then place these values in
messages inβ, with timestamps no smaller thanτ(m).

In our language, distribution is currently only supported
for set values and the union operator∪; splitting a set valuev
means partitioning the set into subsetsvi such thatv = ∪vi.
It is expressed by patternsome i (rule R09), wherei is a flow
name; the flow must be consistent. Each time a new set value
appears ini, it is passed around, every proxy removes some
elements from the set, and places them into its local queue
(the process is essentially the opposite of the one Figure 16).

The space limit precludes us from discussing distribution
in much detail; one example use of it is shown in Example 8.

2.5 Recursion

In Section 2.3, we explained that referring to other objectsin
code using patterni1,...ik:=[h]i[.i′](x1,...xk) embeds prox-
ies of objecti within the proxies of the object being defined
(Example 1, Figure 8). What should happen if an object re-
cursively refers to itself? Naı̈ve recursion, of course, should
be (and is) forbidden, for it would result in infinite chains of
recursively nested proxies, which are infeasible. In this sec-
tion, we demonstrate that recursion can be made useful, as a
way of modeling scalable, hierarchical architectures.

By default, an occurrence ofi1,...ik:=i[.i′](x1,...xk) with
object namei in a dependency, orobject [ h ] i i′ in the vari-
ables section, declares an embedded object that runs across
the set of all recursively embedded proxies. If the declaration
of an embedded object is preceded withindependently, how-

BJ BK BL BJ BK BLAJ AK AL ALMJ ALMK AKL
B
NJO: instance of B that runs
on nodes (1) through (n)

all 2n proxies of A (on all 2n nodes) form a single object

B
NKO: instance of B that runs

on nodes (n+1) through (2n)

PQR PQR PQR PSR PSR PSR
Figure 21. If the patterni1,...ik:=independently B(x1,...xk)

is used in the code of objectA, the embedded proxies ofB

may be partitioned into multiple subsets (hereB
(1)
1 , . . . B

(1)
n

andB
(2)
1 , . . . B

(2)
n ), where each subset runs its own indepen-

dent instance of objectB (B(1) andB(2)). The two instances
don’t interact with one-another; in particular, each of them
performs aggregations separately, among its own proxies.
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Figure 22. Objectscalable elect (Figure 23) with its recur-
sive self-embeddings fully expanded, running on four nodes.
ObjectA(1) (scalable elect) runs on all four proxies. Object
B(1) is the instance ofstable elect embedded inA(1) (see
line 08); it also runs on four proxies. ObjectsA(2) andA(3)

are two instances ofscalable elect embedded inA(1) using
independently (line 07); each runs on just half of the proxies.
Proxies ofA(2) do not interact with proxies ofA(3). Objects
B(2) andB(3) are the instances ofstable elect embedded
in A(2) andA(3), respectively. Finally,A(4) andA(5) are the
instances ofscalable elect embedded inA(2), whereasA(6)

andA(7) are instances ofscalable elect used byA(3). Nei-
ther ofA(4), A(5), A(6), or A(7) embeds anything;singleton

holds on their proxies, and only the code in line 03 is active.

ever, the full set of embedded proxies on different machines
may be partitioned by the runtime environment into multiple
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subgroups, each collectively running its own, independent
instance of objecti (Figure 21). Recursion in our language is
permitted only if used withindependently. Mutual recursion
is also allowed in this case, and it’s handled in the same way.
Each occurrence ofi1,...ik:=i(x1,...xk) that would normally
create a cycle must be annotated withindependently.

If an object recursively embeds itself with this pattern, its
embedded instances can also partition their sets of proxies
into subgroups, and recursively embed more instances of the
same object. This embedding and partitioning would conti-
nue recursively till we end up withsingletoninstances of the
object, i.e., instances that run on only one proxy (Figure 22).
To terminate recursion at this point, we introducesingleton,
an expression that locally evaluates totrue on a proxy if it’s
the only one running the object instance to which it belongs.

Before we explain how we can achieve scalability through
recursion, let’s analyze one example use of this new feature.

Example 7. Objectscalableelect (Figure 23) is a hier-
archical variant of thestable elect object (Example 3). In
the spirit ofdivide and conquer, objectscalable elect first
partitions proxies on which it runs into subsets, and lets em-
bedded instances of itself running on those subsets find local
leaders (line 07; consult also Figure 22 and Figure 24). Each
embedded instance ofscalable elect produces a consistent
output flowleader. The internal flowlocal leaderis a union
of these. Althoughleader is strongly increasing and consis-
tent,local leader, as a union of such flows, is not consistent,
and just weakly increasing. To get a global leader,local lea-
der is fed into the originalstableelect(from Figure 17).�

At first, it may not be clear that we gained much, for in the
end, we still invokestable elect, but notice thatlocal leader
passed as an input tostable elect is, in a sense, partially pro-
cessed; subsets of proxies have already elected local leaders,
and just a few candidates are left to compete, sostable elect
has less work to do. Indeed, for every subset of proxies cre-
ated byindependently, the output of the embedded instance
of scalableelectrunning on them is consistent: they already
agreed on a leader. If so, there’s no need for more than one
of these proxies to feed its output tostableelect(Figure 25).

If the independently clause never splits work among more
thanN instances ofscalable elect (in the example on Fig-
ure 22 we useN = 2), then no instance ofstable elect, at
any level in the hierarchy, has to run on more thanN proxies
(we don’t need output from more than one proxy from each
embedded instance ofscalableelect). Thus, by using recur-
sion, we’ve effectively transformed a very large problem that
requires a scalable protocol into a hierarchy of subproblems
that can be handled by our non-scalable objectstable elect.

The observation we just made can be generalized: it’s not
hard to see that if every input flow of an object is consistent,
and the object doesn’t internally use inconsistent flows such
asid, then the output flows are also consistent, and the values
in these output flows will not change if a single proxy leaves.
In other words, if the object consumes only consistent flows,

01: object scalable elect(int candidate) : same int leader {
02: where (singleton)
03: leader := candidate;
04: elsewhere {
05: int local leader;
06: local leader :=
07: independently scalable elect(candidate);
08: leader := stable elect(local leader);
09: } }

Figure 23. A hierarchical variant of leader election that uses
recursion (line 07) to partition its work, and then employs the
nonscalablestable elect to combine partial results (line 08).
This program can be automatically translated into hierarchi-
cal, scalable architectures similar to the one on Figure 22.
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(1) (1) (1) (1)

(2) (2) (3) (3)

(1) (1)B2
(1) B4

(1)

candidate leader
Figure 24. Dependencies in thescalableelectobjectA(1),
in the scenario shown on Figure 22. Candidateids are passed
to embeddedscalableelectobjectsA(2) andA(3) (line 07).
The output is copied tolocal leader, and fed to the embed-
dedstable elect objectB(1); its output is the result (line 08).
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with respect to that of A1,
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Figure 25. The flow appearing at the output of proxiesA
(2)
1

andA
(2)
2 of the embedded objectA(2) is consistent. There is

no need for more than one of the proxies to feed its output to
the embeddedstable elect objectB(1). Instead, only one of
the outputs is used. ProxyB(1)

2 is never created. The output

thatB(1)
2 was supposed to produce is taken from proxyB

(1)
1 .
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then no particular proxy has anything to offer over any of the
other proxies; they’re all processing the same information.
In fact, it suffices if one proxy does the job and delivers the
result to all the others. This is exactly what happened in our
example on Figure 25: the output flowleader of the embed-
dedscalable elect instanceA(2) is consistent, so there is no
need for bothA(2)

1 andA
(2)
2 to feed their outputs toB(1). The

compiler and runtime can determine this fully automatically,
simply by looking at the types of flows in the protocol code.
Indeed, proxy elimination we just discussed is essentiallya
compiler optimization: we transform an executable structure
(a graph of proxies, message queues, and the links between
them) generated from the source code (Figure 23) so that we
can improve performance without modifying the semantics.

Due to limited space and to keep our presentation simple,
we omit the detailed step-by-step description of how a hier-
archical structure of the sort shown here is deployed; the key
ideas and the correctness argument can be found in our other
work [36, 38]. Indeed, the reader will undoubtedly have no-
ticed that there are many possible ways to build and maintain
such hierarchies. In the introduction, we postulated the sepa-
ration of concerns between the semantics of the protocol and
implementation details such as the method of aggregation or
the way nodes are organized into scalable structures. This is
precisely what we have achieved by building semantics upon
the abstract concept of aggregation and abstracting away hi-
erarchy via recursion. The semantics of code on Figure 23
won’t change if aggregations are performed using trees in-
stead of token rings, ifindependently partitions a particular
set of proxies into more or fewer subsets, or if the hierarchy
has more or fewer layers, or if it is imbalanced. Moreover,
as demonstrated through examples, the same tiny set of sim-
ple language constructs is used across a variety of protocols,
and every compiler optimization or runtime mechanism we
develop is going to automatically benefit all these protocols.

To conclude, we’ll present one example of a hierarchical
protocol that can benefit from certain types of optimizations.

Example 8. Objectscalablerepair (Figure 26) is a hier-
archical variant of the loss recovery object from Example 2.
Each instance oflocal repair computes the set of identifiers
of packets that arestable(received everywhere) andseen(re-
ceived somewhere) in the subset of proxies it spans; this is
done by first determining which packets are stable and seen
on subsets of proxies (this is done by recursively embedded
instanceslocal repair, line 20), and then aggregating partial
results using∩ for stable (a packet is stable on all proxies if
it’s stable on each of the subsets of proxies) and∪ for seen (a
packet is seen among all proxies if it’s seen in any of the sub-
sets) (lines 23 and 24). Each instance oflocal repair also
elects one contact address (leader) at which one of its prox-
ies can receive packets forwarded from elsewhere (line 22).

Similarly to instances ofscalable elect (Figure 22), here
different instances oflocal repair also span different por-
tions of the system: the instance embedded directly insca-

01: object scalable repair(int addr, {int} recv)
02: : {(int, {int})} fwd {
03: same int leader;
04: same {int} seen, stable;
05: fwd, leader, seen, stable := local repair(addr, recv, ∅);
06: }
07: object local repair(int addr, {int} recv,
08: same {(int, {int})} todo)
09: : {(int, {int})} fwd, same int leader,
10: same {int} seen, same {int} stable {
11: where (singleton) {
12: fwd := todo;
13: seen := recv;
14: stable := recv;
15: } elsewhere {
16: {(int, {int})} local todo;
17: int local leader;
18: {int} local seen, local stable;
19: fwd, local leader, local seen, local stable :=
20: independently local repair(
21: addr, recv, local todo);
22: leader := min local leader;
23: seen := union local seen;
24: stable := intersect local stable;
25: local todo := some todo ∪ {(other local leader,
26: local stable \ other local seen) });
27: } }

Figure 26. A hierarchical version of the loss recovery object
repair from Figure 10. Objectscalable repair acts merely
as a wrapper tolocal repair; the latter does the actual work.

lable repair spans the entire system (it runs on all nodes in-
volved in loss recovery), the instances recursively embed-
ded span parts of it, and those within whichsingleton holds
span individual nodes. Thestable, seen, andleader values
flowing at the outputs of all the different instances ofscalab-
le electthus represent aggregate states, calculated hierarchi-
cally, bottom-up, for larger and larger portions of the system.

In every instance oflocal repair, proxies compare their
status (line 26). If one finds packets that are stable on its own
portion of the network, but not seen in another portion of the
network, it generates a forwarding request. The destination
is set to be the contact address for the portion of the network
that is missing packets (line 25). The request is then pushed
top-down, along with some of the requests from upper levels
in the hierarchy (note the use of distribution in line 25).�

In essence, this protocol tries to recover packets as locally
as possible: only if an entire group of nodes has missed the
packet, the instance oflocal repair running on them reports
the packet as notseen, thus prompting some proxy elsewhere
in the system to forward it. Now, suppose thatindependently

partitions proxies in such a way that proxies closer in latency
or some other network metric are more likely to be clustered
together. Consequently, packet forwarding requested by our
protocol will more likely occur between pairs of nodes close
to one-another; the protocol will thus become locality-aware.
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3. Related Work
Most of the existing protocol-modeling languages are based
on thefinite state machine(FSM) model: every protocol par-
ticipant (aproxyin our terminology) is represented as a finite
automaton, with transitions triggered by timeouts, the receipt
of network messages, or application requests. A programmer
defines states and transitions, and the compiler translatesthe
high-level FSM specification to executable code, automating
aspects such as socket operations, serialization, logging, or
verification. MACE [26] and nesC [18] are prominent exam-
ples of use of this approach in the context of loosely-coupled
distributed systems. Earlier systems, such as Morpheus [2],
RTAG [4], Esterel [6], Prolac [27], Estelle [47], SDL [47] or
LOTOS [47], targeted point-to-point protocols such as TCP.

Besides translation to code, the FSM model has also been
used for program analysis: high-level protocol specifications
in Promela [21] and TLA [29] can be translated to FSMs for
model checking. TLA is sufficiently expressive to accurately
capture strong semantics such as distributed consensus [30].
Recent SOA/WS-* standards for describing peer-to-peer in-
teractions, particularly WSCL [5], are also founded on FSM.

Researchers argued [26] that the FSM approach is natural
to work with, for the FSM code resembles well-written code
in Java/C++ while being far more concise. However, systems
like MACE have been used mostly for loosely-coupled sys-
tems, such as DHTs or overlays. Expressing complex DMPs
such as reliable multicast or agreement via states, transitions
and point-to-point messages could be quite hard [11, 20, 23].
Also, as noted earlier, code that implements core semantics
(making decisions, reconfiguration, state recovery) is mixed
with code that builds distributed structures for dissemination
or aggregation. To achieve the sort of concern separation we
advocated earlier, we need a higher-level language.

P2 [31] is a higher-level model: it replaces explicit point-
to-point communication with rules in Datalog that create de-
pendencies between local variables at different nodes (sim-
ilar in spirit to our non-local dissemination and transforma-
tion); point-to-point communication is then generated auto-
matically. This results in compact code, but operating at this
level, without tools such as consistent aggregations or mem-
bership that are built into our language, it may be hard or im-
possible to achieve stronger semantics; indeed, P2 has been
used primarily in the context of overlays, DHTs, and routing.
The same issue occurs with languages based on process cal-
culi; they cannot express strong semantics [16]. In contrast
to all these approaches, our language supports consistent ag-
gregation, recursion, batched processing (via set arithmetic),
and essential object-oriented features such as encapsulation.

There’s been much work on embedding group-like distri-
buted abstractions in higher-level languages such as ML [28]
or Java [14]; surveys can be found elsewhere [8, 36]. Unlike
our work, these weren’t designed to construct protocols, but
rather to embed entire existing protocols in strongly typedor
object-oriented languages. BAST [17] goes further, in thatit

supports typed compositions, but protocol code in BAST is
written in Java, much like in other composition frameworks:
Spread [3], Ensemble [20], and Appia [34]. The reasons why
we prefer a dedicated language have been articulated earlier.

Our flow dependencies are functional in spirit; in this sen-
se, our work was inspired by I/O automata (IOA) [32], which
pioneered the idea of modeling entire distributed systems as
components that operate on event streams. However, IOA is
a specification language, and doesn’t automatically yield ex-
ecutable code. Also, in comparison to IOA, our work is less
focused on individual endpoints and their state, and more fo-
cused on flows. This creates flexibility that can be exploited
to achieve the concern separation we postulated: we can run
the same program over different aggregation, dissemination,
batching mechanisms, or differently constructed hierarchies.

Data flows in the sense of asynchronous, massively paral-
lel, pipelined processing, have a long tradition in areas such
as VLSI or DBMS. They have also been applied to network-
ing, e.g., in Click [35], and distributed computing, e.g., in P2
[31]. Data flows in those systems, however, are notdistribu-
ted in the same sense as how we’ve defined it in Section 2.2:
they are point-to-point event streams, and transformations on
them are local. Although distributed data flow query engines
such as Gamma [12], Volcano [19], or PIER [22] support the
concept of hierarchical aggregation, they have been designed
for data mining, not distributed coordination, and lack strong
consistency properties of the sort discussed in Section 2.4.3.
The same is true of aggregations in the context of sensor net-
works [10]; the properties targeted by those systems revolve
around security, whereas our model is focused on reliability.

Many specific solutions employed in our work have been
inspired by prior research: the use of set arithmetics in SETL
[42], event-driven computing in SEDA [48], rule-based com-
puting in Rête [15] and concern separation in aspect-oriented
programming (AOP) [25], to name a few.

4. Conclusions
We proposed a new type of a programming language for dist-
ributed computing that abstracts away low-level details such
as point-to-point communication, while retaining sufficient
expressiveness to model complex DMPs such as distributed
locking, agreement, election, or reliable multicast. Focusing
on data flows, their functional dependencies, and distributed
constructs such as consistent aggregation, and moving away
from endpoint-centric aspects such as states and transitions,
allows us to separate semantics from details such as methods
of aggregation, construction or maintenance of the hierarchy.
Our distributed data flow concept promotes concise code and
can facilitate formal reasoning about global system behavior.
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