Programming Live Distributed Objectswith Distributed Data Flows

Krzysztof Ostrowski ~ Ken Birman Danny Dolev
Cornell University, Ithaca, NY 14853, USA Hebrew University, Jerusalem 91904, Israel
{krzys, ken}@cs.cornell.edu dolev@cs.huji.ac.il
Abstract 1. Introduction

This paper presents a new object-oriented approach to mod-The premise of this work is thatistributed multi-party pro-
eling the semantics of distributed multi-party protocalsls tocols(DMP) such as virtual synchrony [7], two-phase com-

as leader election, distributed locking, or reliable nualit, mit [43], or Paxos [30] are becoming increasingly important
and a programming language that supports it. The approachand used pervasively, and that further advances will requir
builds on and extends olive distributed objectsnodel [37] that developers be able to design their own DMPs. Our goal

by introducing a new concept ofdistributed flow a stream is to provide a simple, yet expressive protocol definition la
of messages flowing concurrently at multiple locations. Our guage that allows developersto express desired DMP seman-
flows correspond to variables, private fields, and method pa-tics concisely, using high-level constructs. We'd like kbg-
rameters in Java-like languages; they are the means by whichical flow of protocol state and decisions to be readily under-
we store and communicate state. Active protocol instances,stood from the code, not obfuscated by low-level operations
which correspond to Java objects, consume and output flows;such as sending individual network messages frbto B.
their internal states are encapsulated as internal flowsalan Programming DMPs is inherently difficult [40], but it can
of their internal logic is represented as operations on flows be simplified by tools that promote a separation of concerns.
Our language supports a new type of concern separation:Developers should be able to specify the semanticdagid
the semantic structure of protocols is decoupled from imple cal control flow without having to explicitly handlehysical
mentation details such as the construction and maintenancespects, such as failures, timeouts, network topologypand
of overlays, trees, or other hierarchical structures neéate ganizing nodes into trees, rings, or other scalable strestu
scalability. The latter can be addressed by the compilet or a the latter can and should be treated as orthogonal, much as
the deployment time; it can be done differently in different compiler optimizations in C++ are orthogonal to the seman-
parts of the network, to match local network charactesstic tics of code. To enable this, we need a set of programming
The paper introduces the basic language concepts, syntaxabstractions that are powerful enough to express commonly
and semantics, illustrating formal definitions with a dscu used DMPs, but that leave enough flexibility for the compiler
sion of example protocols such as leader election, diggtbu to generate scalable code. This inherent tension between ex
locking, agreement, and loss recovery. It shows examples ofpressiveness and compiler flexibility has been the key facto
rules for a formal reasoning about programs in our language.that shaped our approach and our design decisions, and that
While full implementation details of the supporting com- distinguishes this work from the existing protocol langesg
piler and runtime are beyond the scope of this paper, we do Before going further, let's elaborate on some of the points
briefly describe how our new language primitives can be im- we made earlier. First, we've stated that DMPs are becoming
plemented. Our approach is practical: the core language con increasingly important, and used pervasively. In the pasgt f
structs, including hierarchical monotonic aggregatitiase decades, DMPs have been used mostly in data centers, finan-
beenimplemented and evaluated in a simulator [38]. The full cial institutions, or military settings, for example, tpheate
compiler framework is in preparation and will be publicly services and data, for load-balancing or fault-toleraB& [
released as a part of olive distributed objectplatform [1]. or to coordinate configuration changes and synchronize ac-
cess to services [9]. In this model, DMPs ran mostly among
servers in data centers, whereas the larger Web has remained
predominantly client-server: home user’s machines wagtildn
communicate with each other. In other work [36], we argued
that this is bound to change. Home user’'s computers, equip-
_ . ped with ever-increasing amounts of memory and multi-core
General Terms Design, Languages, Reliability, Theory CPUs, are getting faster, whereas web content providers are
Keywords Distributed Data Flows, Distributed Multi-Party ~ stumbling over scalability as their users bases expandyMan
Protocols, Live Distributed Objects, Monotonic Aggregati classes of dynamic, interactive, short-lived contentlétmi-

Categories and Subject Descriptors D.1.3 [Programming
Techniquels Concurrent Programming—Distributed Prog-
ramming; D.1.5Programming Techniquggbject-Orien-
ted Programming; D.3.3rogramming LanguagésLan-
guage Constructs and Features

1 2009/3/23

rative work, interactions in virtual worlds and online gaspe ple protocol layers: Ensemble has 50; even then, flexibdity
can'’t easily be cached and indexed, and may be hard to scaldimited, for only certain combinations of layers make sense
by adding more servers. It is only natural to off-load sesver Flexibility in these systems generally amounts to inclgdin
by pushing data out of data centers, and towards the clients.(or not) certain functional layers, e.g., ordering, wherta
Technologies based on this idea already exist. Inligar use aifferentordering scheme, one generally has to develop
distributed object4LO) platform [1], every visual element a custom layer in Java, this, in turn, requires familiarifyhw
on an interactive web page — a chat window, a video stream,the architecture of the DMP composition toolkit and its API.
a shared document — can be individually powered by a DMP; Finally, while the toolkits separate different functiofejers
its content doesn’t reside on a remote server; it is re@itat from one-another, their functionality is often tightly qued
among the clients, in a peer-to-peer fashion. The DMP run- to implementation; for example, a layer that handles recov-
ning among the clients ensures that all replicas stay in'sync ery, ordering, or stability may be hard-wired to aggregtste i
The creators of Smalltalk [24] used similar approach as a ba-information in a particular manner, such as by using a leader
sis of their Croquet [44] platform; 3D objects in their viaiu or anall-to-all communication pattern, and may be unable to
space are replicated with a variant of 2PC [43]. Darkstaf [45 easily switch to gossip or structures such as trees and.rings
and several other [13, 46] projects also fall into this catgg The latter weakness applies also to MACE and other systems
Each of these technologies leads to a pervasive use of DMPsthat require the programmer to work at the level of state-tran
The second premise of our work is that programmers will sitions and network packets; code that maintains diseitbut
want to build their own DMPs. Distributed computing forces structures becomes intermingled with and essentiallypinse
them to choose between reliability, scalability, perfonoa arable from the core semantics and logical information flow.
and persistence, and different applications require armdifft In this paper, we advocate a radically different approach:
balance. For example, the version of reliable multicast DMP we propose a few simple generic abstractions that can be eas-
used for database replication in a financial institution ldou ily composed to express semantics as diverse as distributed
require a consensus semantics, but wouldn’t need to scale tagreement and leader election, that can be stacked hierarch
thousands of nodes, whereas the variant of reliable meattica cally to express scalable hierarchical protocols, anddhat
used to synchronize players in an online multi-player game themselves be implemented in a variety of ways, such as by
(MMORPG), or clients watching a streaming movie, would using token rings, trees, gossip, or IP multicast. Prowiol
require excellent scalability at the cost of weaker guaasit our language are compact and easy to reason about, while at
In other work [36], we pointed out that even for a seemingly the same time they leave the runtime a high degree of flexibi-
simple task such as collaborative editing, there existg-a su lity in mapping our language constructs to executable code.
prising variety of different approaches that rely on didfietr Before continuing, it may be helpful to the reader to skim
ways of locking, reconciliation, or flavors of multicasttexf over examples of protocols to get the feel of our language.
fine-tuned to the particular application domain. The amglog In the paper we present the code for distributed locking-(Fig
to Java or .NET collections seems appropriate: even thoughure 6), loss recovery (Figure 10), leader election (Figuhe 1
many applications do not require custom collections, and ca barrier synchronization (Figure 18), distributed agreeme
be built using the small set of standard abstractions, ssich a (Figure 20), and atomic delivery (Figure 19), and hierarchi
lists, arrays, or hash tables, those who build high-peréorm cal variants of leader election (Figure 23) and recovergFi
ce or scalable systems often design their own custom collec-ure 26). Note the use of set operators such) @s intersect
tions optimized for their specific applications. Compar@d t in the code of loss recovery, atomic delivery, and agreement
collections, DMPs and their tradeoffs can be even more com-and the use of recursion in hierarchical examples. The use of
plex and diverse. Hence, this type of flexibility is essdntia aggregation to implement global decisions, set calculus fo
Designing DMPs in languages such as Java is hard; pop-batched processing, and recursion for hierarchical sitiyab
ular toolkits like Ensemble [20], Spread [3], and Appia [34] are the three core concepts that underpin our approach.
have 25,000+ lines of code. Systems such as MACE [26] can In order to fully explain our examples, we need to discuss
remove much of the common programming burden, but pro- the semantics of our programming constructs; in particular
grammers still have to think at the level of states, traosg;j the definitions and properties of flows (Section 2.2) and thei
and network messages sent between pairs of nodes; this magependencies (Section 2.4). For this reason, most examples
be easy for loosely-coupled systems such as distributdd has are presented fairly late in the paper, starting on pageli. T
tables (DHT), but it can be hard for DMPs. One way to sim- reader may find it helpful to only skim over formal notation
plify the process is by composing pre-existing reusable pro on the initial reading. We tried to illustrate all of the essal
tocol layers in DMP composition toolkits such as Ensemble, concepts through figures and concrete examples.
Spread, Appia, or BAST [17]. The latter approach is conve- This paper makes the following contributions:
nient, but it has its limitations. First, to achieve a higlyd=

of flexibility, one needs a very large number of thin and sim- ® It proposes a new programming abstractiodisaributed
data flow and describes the four basic types of operations

1We encourage the reader to watch the videos on our projeetisite [1]. that can be performed on flondisseminationdransfor-

2 2009/3/23

mations aggregationsanddistributions It discusses the
formal properties and semantics of the new concepts, and
explains their role using examples and illustrations.

e It proposes a new object-oriented programming language
that operates on distributed flows. It describes its syntax
and semantics and briefly explains how each of the mech-
anisms we are proposing can be physically implemented. _

¢ |t proposes a new approach to modeling strong semantics node’;""' ;
through monotonic aggregation: a new concept that is in- endpoint
tuitive, very cheap to implement, and extremely versatile.

¢ It presents the code of a variety of protocols and explains

Figurel. A live distributed objecexists simultaneously in

. L g o multiple locations: it consists of a group of communicating
how to reason gboutthelr s_emantu:s; in particular, |t+||_us proxies(hereP;, P,, andPs), with their internal local states
trates the practical role of different flavors of aggregatio and all network packets flowing between them. The proxies’

* It proposes a new use of the set arithmetic, as a means ofpca| states and network communication are the live olsject’
expressing batched processing in distributed protodols. I internals, invisible from the outside. An object interastth
briefly discusses a space-bounded variant of it used in ourits software environment by passingessagesia endpoint
platform, and demonstrates its use in example protocols. jnstanceslocal message channels exposed by all its proxies.

e |t proposes a new use of recursion, as a means of express- :
ing hizrarchical architectures in distributed protochlls—.p & \node1 i€l \nOdek ',,/ObJeCt A
ing an example, it briefly explains how a simple recursive E’:‘ 37 N E”sf‘ <O object C
program in our language can be automatically expanded
to form a complex hierarchical distributed structure. ’
¢ |t describes a new type of concern separation enabled by
our approach: the decoupling of the logical structure and :
semantics of distributed protocols from the construction
and maintenance of hierarchical structures and the man-
ner in which information is disseminated and aggregated.
¢ It shows how the global behavior of a distributed protocol
can be modeled in a purely functional style: the four basic
operations on flows could be viewed as purely functional.

composite

" object B

Figure2. Live objects can be composed by connecting end-
pointinstances exposed by their proxies (hérdé3 are com-
posed this way). A composite obje€t) can have embedded
objects (4, B). Proxies of these embedded objects (By)

2. Language are encapsulated inside proxies of the composite olijadt (

2.1 Objects

As noted earlier, the approach proposed here builds upon andall instances carry messages of the same types. A proxy may
extends oulive distributed objectél O) [37] model; hence, expose multiple endpoint instances for a variety of purppse
we start by introducing LO (for more detall, see [36, 37]). in particular, to interact with proxies of application otig,
Each physical machine participating in the execution of a proxies of objects that are recursively embedded (Figure 2)
DMP runs a piece of code (the protocol stack) that maintains and infrastructure services. All interactions betweencxyr
some local state and interacts with local applicationshadt and its environmentare tunneled through endpointinstance
local OS. We refer to such running piece of code psoxy. LO can be recursively nested by embedding their proxies
Each running instance of a DMP involves a group of proxies inside of one-another, and composed by connecting endpoint
on multiple physical computers, sending network packets to instances exposed by pairs of their proxies (Figure 2).
one-another. We refer to this group of proxies collectivady Referring to a running DMP instance as alnjectmight
alive distributed objector alive object(LO) (Figure 1). LO at first seem awkward, but our objects are not much different
is the basic unit of composition and means of encapsulationfrom those in Smalltalk [24]; they interact via messaged, an
in our model; it serves similar purposes as an object in Java.they may encapsulate internal state and threads of exacutio
Method calls and callbacks between the applications and The only difference is thadtateandexecutiorencapsulated
the DMP’s protocol stack are modeledeagentymessages within a live object aralistributedin the sense that they resi-
The API exposed by the DMP is modeled as a set of messagede (occur) in multiple locations at a time: each proxy carrie
channels. We refer to these @sdpoints The term endpoint a portion of each logical unit of a live object’s state, andrea
instancerefers to a particular message channel exposed by acan take independent actions. This distributed perspeativ
single specific proxy. To say that obje@texposes endpoint state and execution is important; it underpins the disteitu
1 means that every proxy @ exposes an instance dfand flow definition in Section 2.2, which is central to this paper.

3 2009/3/23

Referring to instances of a DMP protocol staclpasxies b LA A |As] A b object A
stresses the fact that in our model, it's the distributedhloeh time [TR TR T ? an instance
ior that constitutes a service. Proxies thus aren’t objéuty £, i {O f endpoint |
are gateways through which a local machine can gain access (el | RN .
to (or participate) in a distributed behavior. In this sehs@ b eJ ________________ e 4{ """""""""" :messages
proxies generalize the concept of Java RMI proxy stub [49]. b ¥ T T I = in the flow

YT T .
2.2 Flows !) L lle. J.eJ o] ~.a ff|XWhC0m|EgI
ocbeetepectee1-tocm-q-1--1=-4. out of A throu
We define alistributed data ﬂo_wor simply adata_flovv(D_F), g ’73?1“ ’g;‘]Ts?;‘ ’g:‘ ! g
as a set of messages of the given type appearing on instances X1 Xoi Xsi x4 location (node)

of the given endpoint exposed by the given object (Figure 3). — - - -
As mentioned earlier, the individual messages may reptesen Figure3. The flow leavingA through endpoint consists of
method calls and callbacks between proxies of the object andmMessageges, ez, ..., e¢ }. Notice that the flow is distributed
their local environments. We assume that all messages in the?oth in time (different;), and in space (different nodes).
given DF always flow in the same direction, i.e., either into Each message may representan asynchronous method call
or out of its object’s proxies. To specify the direction, vedic ~ from some proxy of4 to its (locally connected) proxy d8.

a DF aninputor outputflow of the given object, respectively. ~Formally, eact; is represented as a quadruple. For example,
Note that one object’s output flow will normally be an input in this figure,es = (21,3, k,v) for somek € K andv € V.
flow of another object (Figure 3). Finally, if objects B are

embedded in a composite objéc{Figure 2), flows between a(3) xjoins o (7)
XA - . W)~
: y(6);

A andB are said to bencapsulateth C' (orinternalto C). TR LI o8

_ E?(amplel. Suppose a _certam applicationobjekwsesa O‘V_@i./-'--";; az‘('g-)-;';f a
distributed lock objecB (Figure 3). Whenever a proxy of ~ "777777=3mee 4) L e
running on node: wishes to acquire or release the distribu- (5 iy " fa";:' '
ted lock, it makes a call to its local proxy &%; we represent time t, 1 t ; t t? t t
this as a messageants(b) carrying a Boolean value € B -« EE > L

(B = {false, true}), b = true if the lock is to be acquired, Figure4. The set of locations in a distributed flow isn't sta-
andb = falseifitis to be released. The set of all messages tjc; the flow can begin and end at different locations as nodes
wants(b) generated byl's proxies across all the nodes, and join, Jeave, fail, and reboot. After the connection at lamat

at any time, constitutes a distributed data flow frdnto B. 4, s terminated, flowx stops atu, but it continues at other
By convention, we name flows after the messages they carry,qcations. After a new proxy starts and connects its endpoin
and 'Fhe type of a flow is determined by the type of the values. instance, the flow expandsto Eacha, (k) represents a va-

In this case, a Boolean flow namednts is an output of4, lue of some message, t, k,v) € a, forsomet € T,v € V.

and an input tdB; it carries the distributed information about

the willingness to acquire the lock from proxies4fnto B.

Similarly, suppose that each time a proxy®invokes a k is aversionnumber it is tagged with, andis thevalueit
callback to notify its local proxy ofd that it was granted or ~ carries. Given message, the elements of the quadruple are
denied the lock, we model this as a messiagids(b), where denoted ag(m), 7(m), £(m), andv(m), and the sets of all
b = true if the lock was granted, and= false otherwise. locations, times, versions, and values are denotet,ds,

The set of all messagéwids(b), generated by3’s proxies, K, andV, respectively. The set of all flows is denoted’as
again forms a Boolean flow, this time froBback toA. The by definition,7 C X x T x K x V. Not all sets of quadruples
flow holds carries distributed information about the owner- are considered flows; only those that occur in real systems
ship of the lock. The locking objedt can be thoughtofasa Sets7, K, and) are assumed to be lineatlgrdered by<*.
sort of distributed “transformation” afants into holds. B For the sake of simplicity, we’'ll think of locations € X

It might be useful to think of input and output flows as the as physical nodes, although formally, each location idiesti
analogues of formal parameters and return values of methodg single endpoint instance, and a single continuous pefiod o
in Java; indeed, as the above example suggests, most objecténe while this endpointinstance remains connected to some
generate output flows that carry various decisions, caiedla other endpoint instance. To understand this, consider Exam
in response to requests in the input flows. Likewise, interna ple 1. Every time the system is deployed onto a new nipde
flows may be thought of as the analogues of private fields of 5 : ' _

a Java class. This is true in a fairly literal sense: flows in ou ' "€ complete formal model imposes a number of constraiatsith omit
. .. to keep this presentation simple. For example, we assurherhafinitely
|anguage are the means of storing and communicating S‘tatemany messages can flow in a finite time interval and 7hat well-founded.

Each message: € o in aflow is formally modeled as spq the sake of simplicity, we'll assume linear ordering vever possible.

a quadruple of the form = (z, ¢, k, v); « is thelocationat The definitions and theorems we use carry over to the partiarimg case.
which the message flowsis thetimeat which this happens, “We treat< and< as “overloaded”; their meaning is clear from the context.

4 2009/3/23

creates proxiegl; and B;, and connects endpoint instances, Note that neither of the equations discussed so far plages an
this newly established connection represents a new latatio constraints on messages at different locations. A flow @ sai

somer € X. If proxy A; sends a messageints(b) to B; to to beconsistentf the following stronger requirement holds:
request the lock, this is modeled @s ¢, k,b) € wants for
somet € 7,k € K. If nodei later crashes and reboots, or rw(m) = k(m') = v(m) =v(m'). (5)

if for some other reason proxies andB; get disconnected) o

from each other and later reconnected, their new connection0r consistend:, we can further shorten our simplified nota-

will be considered differentlocationa’ # . This approach ~ tion introduced above: instead af.(k), we write justa().

corresponds to the widely-adoptizd-stopmodel [41]. Consistency is a relatively strong property; it does not ap-
I the connection between some pair of endpointinstances Pl to most flows; normally, only output flows in objects that

is established and never broken (the node never crashes, thinPlement some variant of distributed agreement are consis

two proxies keep executing, and neither explicitly terrésa (€Nt In our language, consistent flows are produced using a

the connection), the corresponding locatios X is called mechanism calIedggregatior(discu_ssed in Section 2.4.3).

live or permanentotherwise, it is calletransient Locations A much more common property is for a flow to veakly

at which messages appear in flovare called théocations monotonicin such flows, messages with higher versions, at

of o, denoted ast’(«), and formally defined as follows: the same location, must have larger values, as defined below:
X(a)={z e X |Tneca x(m) =x}. 1) x(m) = x(m') A k(m) < k(m') = v(m) <v(m'). (6)

The set of all permanent locations®fs denoted as’* («). Such flows are also callageakly increasingFlows that are

For future use, we defing(a), K£(«), V(a) analogously,as weakly monotonic with respect to the opposite ordey &re
the sets of all times, versions, and values of messages in calledweakly decreasingdf a flow is weakly increasing and
Since nodes can join, leave, or fail, and endpointinstancesweakly decreasing, it isonstant This is defined as follows:
can be disconnected and reconnected, a flow can have an un-
bounded set of locations, but at any given pointin time, mes- x(m) = x(m') = v(m) = v(m') . 7
sages continue to appear only at a finite number of locations
(Figure 4). One might think of the flow as (locally) ending A flow is strongly monotoni¢or monotoni¢ if monotonicity
at some locations even as it expands onto the new ones. holds across locations, as defined below; terstriigly) in-
We assume thaf is a global, linearly ordered time. The ~ creasingand §trongly) decreasingare defined accordingly:
time values (m) are not physically carried in messages, and
are not observable; we use them only for modeling purposes.
Only the version:(m) and value/(m) are physically carried
in a messagen, and can be used as parts of the computation.
For now, it's best to think of versions simply as sequence
numbers increasing on each message (the general case is di
cussed later). We assume that for the same locatioressa-
ges with higher versions flow later. Formally, for each mes-
sage paim, m’ € a flowing in « € F, the following holds:

k(m) < k(m') = v(m) <v(m'). (8)

It's easy to verify that a monotonic flow is always consistent
As we explain later, monotonicity is the single most essenti
g_roperty in our model, and it is a universal tool for reasgnin
about the behaviors of the constructed protocols.

Neither of the flowsvantsor holdsin Example 1 is mo-
notonic (not even weakly) nor consistent, but as we’ll see in
Section 2.3, the implementationifk in our flow language
x(m) = x(m') Ar(m) < 7(m) = k(m) < k(m') . (2) involves an internal consistent flow to represent globaésta

We also assume that at the same locatipmessages tagged 2.3 Programs
with the same version have the same value, as defined below|n, this section, we introduce the formal language syntae. Th

essential rules are listed on Figure 5. For the sake of lyrevit
we omit rules for defining new data structures and arithmetic
The most important part of each messagss, of course, the operators; these are similar as in Java. Our first exampe, th
valuer(m) stored in it, and in the remainder of the paper we code of a distributed locking protocol, is shown on Figure 6.
often discuss how values in different messages are related t The language features it uses, and the embedded aiject
one-another. To simplify formulas, we use a special natatio ble_elect, are gradually introduced in the following sections.
givena € F,z € X, andk € K, if there existsn € « that The definition of a new LO (syntax rule R10 on Figure 5)
flows atz with versionk, the term, (k) representsthe value inits default form ébject i {e1;...ex; c}) consists of the name
v(m) stored in it (or if no suchn exists o, (k) is undefined). of the object (), definitions of all endpoints it exposes as its
Equation (3) guarantees thatif, (k) is defined, it is unique. external interfacee(;), and coded), which could declare in-

x(m) = x(m') Ak(m) = k(m') = v(m) =v(m) . 3)

Formally, the following holds for all messagesc «: ternal flows ¢; in rule R02). Endpoints and internal flows
. are the analogues of public methods and private fields of ob-
x(m) =z Ak(m) =k = a,(k) f v(m) . 4) jects in Java. Endpoint definition (rule R04), like a method,

5 2009/3/23

includes its namej, signature §), and coded), and the def-

type of messages in the flow)(optionally preceded with its
properties followed by name) and optionally, initial value

increasing (p or s-up), weakly or strongly decreasingdwn
or s-down), consistent{ame), or constantdonst). Endpoint

signatures (rule R14) resemble Java method signaturgs; the R07:

consist of the lists of all inputf{’) and output flows £7). RO8:
In the second variant, the object definition doesn’tinclude R09:
the explicit endpoint declarations, but rather has the eimdp R10:

signature §) following the object’s name. In this variant, the

object is assumed to expose a single unnamed endpoint withR11:

this signature; this is the case for thiek object on Figure 6.

This construction is conceptually similar to a .NH@&legate
Unlike the body of a Java method, the codegmbedded

in the endpoint definition (R04) doesn’t execute just once; i

runs continuously, from the momestmeendpoint instance

is connected, until the moment whewveryendpointinstance

flows, or in the object’s internal flows. The codg §hould
not be viewed as a sequential set of operations, but rather as
a set of flow dependencies that exeaudacurrently contin-
uously and as explained later, incmordinatedfashion.

RO1:
inition of an internal flow (rules R17 and R05) includes the RO02:
RO3:
R0O4:
(y). Properties (rule R11) mark flows as weakly or strongly RO5:
ROG6:

R12:
R13:

R14:
R15:
is disconnected. As new messages appear in the input flows,R16:
the endpoint code may produce messages in either the outpuR17:
R18:

aggr. attrib. a ::= unordered | incomplete | uncoordinated

code Cl=V15...05 sl g s
dependencyd ::=i:=x | i1 , ... i := [B] i[.3'](z1 , ... TR)
endpoint e ::=endpointis {c}
flow fui=p1..ppti
aggr. oper. g ::=or|and | min | max |
add | mul | union | intersect
hier. attrib. h ::= independently
line of code [::= { ¢} |d|where (x) ¢ [elsewhere ¢z |
modifier ~ m::= other | fresh | some
object 0 ::=objecti{e1;...ex;c}|
objecti s {c}
property p::=same | const|up | down |

s-up | s-down
constant qg:=b|n|{q,..q}| 9| (q,..qx)|id
infixoper. 7= =|#|<[<[>|>[A|V]+]]|
«[/luln\lelglclcl2]D

signature s = (fi, L fi) f0, o fR

type t =bool|int| (t1,...tx)| {t}

unary oper. u = —| —

variable wv:i= f[:=q]|object [h]ii

expression z:=[mli|qluz|xzrz|(x1,...2zx) |
z@n|{x1, ..o}z’ |[z1,22]]
(z)|lg(x1,.czk)|ar...angi]
singleton

Partitioning code among endpoint declarations allows the
object’s proxies to behave differently depending on thefun
tional roles they play. In the LO model, these roles depend o

Figure5. The syntax rules of our distributed data flow lan-
nguage expressed in a notation similar to BNF. Keywords are

which endpoint instances are connected. For example, an ob-bOId’ sans serif, and in blue, non-alphanumeric termirrals a

ject with replicated state might expose two endpoicitent
for accessing the state, aneplica for providing the storage.
Code embedded in the body of endpoaiapiica would then
run only among proxies that are hosted on servers, and hav
their replica endpoint instances connected (Figure 7). Code
outside of endpoint definitiong (n rule R10) runs on prox-
ies that have at least one instance of any endpoint connecte
this is also the case for code in lines 02-05 on Figure 6.
Code consists mostly afependenciegule R03), which
resemble assignments in Java. Each dependency defines a s@t
of flows in terms of other flows. In the example on Figure 6, 2

in line 04 internal flomowner is defined as the output flow of 8if
the embedded objestable_clect, and in line 05, the output 05:

flow holds is defined in terms of flowwner. As mentioned

bold and in red, and non-terminals are italic. Optional eccu
rence ofz is written as “k]”. Subscripts and superscripts are
not parts of non-terminal names; they’re used to distirtguis
é)etween distinct occurrences. Repetition of a non-terlzina
Is expressed as:i...
We omit rules for identifiersi, numbers+), Booleans &),
dand rules for defining custom (ordinary) data structures and
arithmetic operators (these are similar to rules in Java).

zx" (or if y is a delimiter: %yy...21").

: object lock(bool wants) : bool holds { // endpoint sign.

same int owner; // an internal consistent flow

where (wants) // this determines who runs line 04
owner := stable_elect(id); / an embedded object

holds := wants A (owner = id); } // flow dependency

Figure 6. The code of a distributed locking LO expressed
in our language. Via an unnamed endpoint, an object named
(those listed on the left side of the assignment opetatior lockconsumes a Boolean flowants, and outputs a Boolean
rule RO3) from those they depend on (on the right side)of flow holds (line 01). It uses a consistent internal flowner
In our example, whenever a message appears at the output ofline 02) to store the identifier of the node that holds théloc
stable_elect it is copied to the internal flowwner (line 04). All nodes that would like to acquire the lock (line 03) submit
This, in turn, causes expression in line 05 to recompute, andidentifiers to the embedded objectble_clect (line 04; for
a new message flows irvlds. Computation is event-driven, the code consult Figure 17). If the local id matches thatef th
much as in rule-based systems using the Réte algorithm [15] leader, the proxy holds the lock (line 05). The result isletab
As suggested above, dependencies can refer to embeddedntil the lock owner quits (this is discussed in Section3.4.
objects (line 04). The other form,...ix := [h] i[.i'] (z1,...xk)

earlier, our code is not sequential; all dependencies thus r
in parallel, generating new messages independentiows

6 2009/3/23

........................

in rule RO3 is like a method call:is the embedded object’s app__¢ 3 a proxy_with two
name,’ is the optional name of one @6 named endpoints object \ [L o E endpoints (c, r)
if it has any (otherwise, we assume the unnamed endpointis ~ ¢J . c? ______________ Jo
selected), flows; mirror 4’s outputs and’s inputs are fed : _,_J_r.‘.?gg(‘j’:
from expressions;. Each use of such dependency declares VS °

a separate embedded object, a single proxy of which is em- active
bedded in each proxy of the object being defined (Figure 8). __________ code
Pairs of proxies communicate using their endpointinstance e

The embedding object can programmatically connect or dis- ro if

connect the endpointinstance it uses to talk to the embedded ~ objectwith 35 T R storage
object, effectively activating or deactivating code in tager replicated state object

(recall our earlier discussion, and the example on Figure 7) Figyre7. CodeC. in the body of endpoint (rule R04) runs
For example, the conditionahere statementin line 03 acti- on proxies that have their instances:abnnected. Likewise,
vates/deactivates the embedded proxyteble_clect based ¢ in the body of endpoint runs on proxies that have their

on values in flowwants, so that only proxies thatintend 0 instances of connected. Cod€ (R10) runs in either case.
grab the lock are participating in the leader election proto

Sometimes, one may wish to use multiple instances of the
same type of object (e.g., multiple instancestafle_elect)
for different purposes, or one may wish different sectioins o

_proxy of lock

lock

£ proxy of
connect or & | stable_elect |-

stable_elect

the code to interact with the embedded object using difteren _partofa
endpoints. This is achieved by declaring embedded objects data flow
in the variables section (rule R17), via pattebiect [h] i i”, dependency
wherei identifies the object type (e.gitable_elect), andi” “._message
is an alias that we’ll use to refer to a particular instanci. of queue (MQ)

Wheni” is substituted foi in iy,...ix := [h] ¢[.¢'](x1,...28),
the pattern doesn’t declare a new embedded object instance;
it connects to the one we declared earlier witfect [h] i i".

For each input and output flow defined in endpoint signa- unnamed endpoint instance

ture (rule R14), and for each internal flow defined in the code Figure8. Dependency in line 04 in Figure 6 embeds proxies

(rule RO2), every proxy keeps one message queue (Figure 8¢, 1 jc.; in proxies oflock, binds its input to flowid,

Figure 9). The program on Figure 6 cregtes S,'X such qUEUES-and routes its output intawner. Values inholds are genera-
two for flowswants andholds declared inock’s endpoint

nat line 01). two for fl didate andlead ted from those ind, wants, andowner (line 05). Values in
signature (line)_’ 0 for flowsandidate andicader cre- wants activate or deactivate the connectionstable_elect.
ated by the recursively embedded proxytifble_elect, one

4 y

for the embedded flowwner, and one foid (line 05). De- one MQ
. . . lock, lock, ! per flow

pendencies are generally implemented by pulling messages = ,-zz=zz=c=s--epecezooofoooee A PP
! [st._el.q] [st._el.,| in each

from some queues, transforming them and storing the results
as messages in other queues. Often, this happens locdlly, bu

sometimes it involves coordination with other proxies. : }Ieader
As mentioned earlier, computations are event-driven. One dissemi-
can think of each running object as a Petri net [39], in which ! [nation
flows play the roles of locations, and dependencies the roles i \flow
1./owner

of transitions. Every time a new message appears in some of
the flows that serve as sources of data for a dependency (the
dependencyprese), this triggers calculations and produces Figure 9. For each flown € 7 in an object definition, the
a message in the dependent flow (the dependepogtsel

. .__proxy at each locatiom maintains a local message queue for
One can also use the Petri net analogy at a more mechanica]

level, where the individual message queues play the roles of essage¢m € a | x(m) = x}. Dependencies move mes-
J . geq play " sages between queues and transform them in-flight; this is
locations, and the computations play the roles of tramsitio

) . . usually done concurrently and independently on all proxies
The meaning of conditionalhere (x) ¢ elsewhere ¢’ is y y P y P

that code is locally activated (and’ deactivated) at a proxy . N . .
as soon as a message with vauee flows in the local queue value appears in that queue. Initially, neithator ¢ is ac-
that is a part of the flow represented byand likewise/ is tive. In case of embedded objectsere connects or discon-

deactivated (and activated) when a message with the se nects endpoint instances. In dependenciésye suspends
or resumes message exchange with queues corresponding to

(MQ) o\'Wner :

7 2009/3/23

flows used irc or ¢’. For example, th@here clause inline 03~ 01: object repair(int addr, {int} recv) : {(int,{int})} fwd {
on Figure 6 controls (locally at each proxy) whether messa- 02: fwd := { (other addr, recv \ other recv) };
ges can be putin the local quewener or pulled fromid. 03:}

Flowid (line 05) is an example of a built-in constant flow. Figyre10. A simple form of loss recoveryeco carries sets
Each message queue of a constant flow contains only a singl&y jgentifiers of network packets locally received at thesgiv
message. In case iof, the value of this message s a globally |ocation (line 01) into the object, anfdvd carries forwarding
unique numeric identifier of the proxy’s location. Constant requests out of it. Each node forwards to a certain other node

flows participate in computation just like any other flows; fo packets that are available locally, but not remotely (ligg 0
example, whenevéock internally connects tetable_elect,

it copies the (single) message frairinto candidate. Every i parts of a
occurrence of a numeric or Boolean constant (rule R12) also repairz ___':j?:sé‘::f"
defines a constant flow; in this case, messages in all queues _“nation
carry the same value. The language also supports tuple cons- —
tants of the formq; ,...qx), and set constants:, {q1,...qx}.
The built-in message types (rule R15) include Intege) (t::;‘tsi‘z’l:'
and Booleantool); these can be further combined into tuple
types (denoted ag,...t;)), and set types (denoted &5). s T 2K A e N T AN AN T T of
Supporting custom, user-defined types would be helpful, but a4y |((N\NLAWV | ,?j,:_,‘;cj,
to keep it simple, we limit ourselves to the built-in typebeT A e O S T P T it -dissemi-
integer set typeint} is particularly useful; it enables batched nation
processing (we discuss one example of this in Section 2.4.1) /o """
Standard types come with logical,(A, andv), compari- II| II:\\;\;?;

son &, #, <, <, >, and>), arithmetic ¢, —, , and/), and
setoperators(, n,\,’, & &, C, C, D, D). One can construct R e s =T .
sets{z1, ...x } and tuplegzy, ...x;) from elements, remove
elements from tuplesc(@n is the element at-th position), P T P rerrp—
. . i | application;
and define ranges of numbefs(z2] is only supported for 9
x1, T2 NUMeric; it representsthe et € N|ny <n < ns},
wheren;, no are the values af,, x». Finally, one can apply

aggregation operators prefix notationg(z, ...xx), where ,))))
g can be any ofiin, max, or (alternative)and (conjunction), issues forward requests; another objectiticast that inter-

add (sum),mul (product),union, or intersect (intersection). faces it handles the actual transmissions, caching, ictera

The way these are interpreted is discussed in Section 2.4.3. with the application, and report its local statertair. For

The remaining language constructs are described later. Tothe two non-local disseminationsner addr andother recv

conclude this section, we need to make a comment about thd" therepair object, each proxy pulls messages into its local
peculiar set arithmetic used in our language. The reprasent queue from a remote queue maintained by some other proxy.

tion of sets could, in general, consume a lot of space, but our
language is designed to support high-performance pratocol In particular, values of typént} are represented as tuples of
that might need to run with limited network bandwidth. This the form(a, (a1, b1), (a2,b2), ..., (ak, by), b). Whethem is
means that when transmitted over the network or aggregatedn the set is defined i, < n < b (and undefined otherwise);
across sets of machines, set values may need to be truncatedf.it’s defined,n is in the set iff3; <;<; a; < n < b;. Inour
Accordingly, at runtime each set valukis actually rep- simulations, this representation proved to have a fairlglsm
resented as apai™, A~), whereA is the set of elements CPU and space overhead [38]; we discuss it in Section 2.4.1.
that definitely belong tel, andA~ is the set of elements that
definitely do not belong tal; for all other elements, it is un-
defined. Set operations are then defined to preserve as mucbependencies are the basic building blocks in our language.
information as possible; for example, in the unibn B, we We distinguish four kinds of thesdisseminationgransfor-
can only guarantee that elemerts U B* are in the result. mations aggregationsanddistributions

Formal definitions of the four basic operators are as follows) o
2.4.1 Disseminations

Figure1l. The loss recovery objectpair from Figure 10
only deals with control decisions: it detects packet lossek

2.4 Dependencies

(AT, A"YU(BT,B")=(ATUB",A=-nB7), (9) This is the simplest of dependencies. Flowe F is adisse-
(A*,A")n (BT, B)=(A*NnBT, A~ UB™), (10) minationof o € F if each value appearing ji\has appeared
(AJF’ A\ (BJF’ B)=(A"n B_’ A= U B ’ (11) previously ina, at the same or some other location:

(AT, A7) =(4",A%). (12) imes Imrea v(m') = v(m) AT(m') < 7(m). (13)

8 2009/3/23

Messagen in this equation is said tdependn message:’ _other recv non-local

that provided the value. Disseminatig@ris local if the latter (MQ) .~ dlissemination

flows at the same location (that is, if equation (13) stilldsol _recv (MQ)

after appending to it the extra conditionX (m’) = x(m)"). . _~fwd (MQ)
In ourlock example (Figure 6pwneris a local dissemi- value that | 4 'l value that

nation of the output floleaderof the embedded objesta- :‘ﬂ’f:;zt'“ 1 ‘ 1 ‘ appears in

ble_elect As mentioned earlier, we implement this by locally PIYNTNIIGI | . S N m— S | . theinput

pulling messages from tHeader queue, and copying them Gy L3 ®][{1..3,5,9}} ;;::f;’:

to theowner queue, independently on each proxy (Figure 9). packet jeseaes f ___________________ f ... timet,
To more accurately describe the way dependencies work, withid2 | [mc; |id=1 mc, [id=1 .

we characterize them through theiembershigndselector gotlost {| (i)[id=3 @id=2}... pac'fetz

functions. In case of dissemination, memberships form fam- earlier id=4]| packets } id=3}. --~~.tzg?:;leer

ily of partial functionsu,. : £ — X, and selectors are partial packet :326 with id .- (Ig,:stS))

functionso, : K — K, for eache € X', where donfu,,) = withid 9 @ @ = 4(;?"1'3‘\ (lost) (=)~ packets

dom(o,) = {k € K | mes x(m) = z A k(m) = k}. For gotlost i . |hie=gl® Flost ™ e

each messages € 3, if its location isz = y(m) and ver- L {E=ta g % """ Ty

sion isk = x(m), then the location of the original message C 11 v A=)

m’ € athatm depends onig, (k), and its version is, (k). o o

Using this new notation, one can then expréss follows: Figure12. Batched processing with set arithmetic in proto-

col repair: (1) before timet;, node 1 received packets with
Be(k) = v, (k) (02(k)) - (14) identifiersl and3 and is caching them in its local proxyc;

of the multicast object; packet with identifi@never arrived;

Note how subscript., (k) in v (e) selects location, and the (2) at timet,, a batch of packets withl from 4 through 8 is
argument (k) selects version. The above notation stresses received; (3) proxync; now decides to report the new status
the functional nature of dependencies, and helps dissihgui to the local proxy of-epair; a message carrying a single set
their differentflavors, e.g., in alocal dependepgyk) = . value{1, 3..8} flows inrecv at that node around time; it is

Dissemination isn-order if for every two messages ifi received by the proxy afepair and put into its input queue;
that flow at the same location, if one has larger version than () |ikewise, before time, node 2 received packets2 and
the other, then the versions of messages they dependon s caching them; (5) at time it gets new packets, 5 and9;
are in a similar relation; formally, this requires that sttes packetst and6..8 got lost; (6) at time ., proxymc; reports
are monotonic, i.eNuex;kwex k < k' = o4 (k) < 0. (k). its updated status to its local proxy efpair, sending to it
Intuitively, it means that when pulling messages, each queu g3 single set valug¢1..3,5,9}; (7) the latter value is forwar-
tries to keep only the fresh ones, and ignore the old ones. Inged to node 1, and appears in its local quetier recv; (8)
our language, disseminations are in-order by default. eventually, this triggers local computation in line 02, tve

Now, let's analyze an important example of non-local dis- yalues are substracted, and local proxyair, requests that
semination, which additionally illustrates batch proaegs packets withids in the sef1,3..8}\ {1..3,5,9} = {4,6..8}

Example2. Objectrepair (Figure 10) implementsasim- pe forwarded to node 2; this appears in the output flawd

ple form of multicast loss recovery: pairs of proxies conepar - a5 g value of the fornfiwd; (k) = {(addrs(k'), {4,6..8})}.
sets of identifiers of all network packets received localhd

whenever one of them finds that it has packets that a certain
other node is missing, it generates a forwarding request. Ou 1..25, then the proxynulticast, will send to its locally con-
object doesn’t deal with the physical network transmissjon nected proxy-epair, a message with valug..25, 28..29};
we assume it is connected to another object that performs allformally, Jxcx (2, ¢, k, {1..25,28..29}) € recv (Figure 12).
the low-level tasks. Objecipair implements only core de- Flow fwd carries sets of forwarding requests. Its values
cision logic: it detects when losses occur, and decidestwhic are sets of pair&, S), in whicha is the address of the node
nodes should forward data to which other nodes (Figure 11).that should receive the forwarded packets, anslthe set of
This general pattern of use applies to all protocols present identifiers of all those packets. For example, a requestithat
in this paper (our platform [1] supports such compositions) forward packets 1..5 thon and packets 8..9 th ger would
Flow addr carries into each proxy ofepair the network be modeled agwd, (k) = {(lion, {1..5}), (tiger, {8..9})}.
address at which its local node can receive network packetsProxies ofrepair produce such values in line 02, by com-
forwarded by other nodes. Flomecv of the integer set type paring the values received ircv locally and elsewherdl
{int} carries into it sets of identifiers of all packets received Notice the use obther recv in line 02 on Figure 10. In
locally. For example, if at time, the proxy ofmulticast at general, the construether i, wherei is a flow name, repre-
nodex receives packets with identifiers 28..29 from the net- sents what one might think of as a “shifted” flow: each proxy
work, and it has previously received packets with idensfier fetches a value appearing in flavat its neighboringproxy;

9 2009/3/23

thus, the values afther recv at a given proxy will be sets of
identifiers of messages received by its neighbor. The neigh-
boring proxy is the same for each occurrencewkr 7. It

can change over time, but it always does so atomically with
respect to computation performed by the proxy. Neighboring
relationships are asymmetric. The runtime ensures thgt the

are configured so that if we represent them as a graph, at any

point in time one can travel from any point in such graph to
any other point; in other words, information in each proxy
eventually affects information in every other proxy, ditgc
or indirectly. This can be implemented in a variety of ways,
e.g., by organizing the proxies into token rings, where each
proxy sets the successor on the ring as its neighbor, syrongl
connected trees, where each proxy periodically switches be
tween neighbors in the tree, or randomized gossip protocols
We'd like to highlight one important aspect of this exam-
ple: thanks to our use of set arithmetic, in a single stepen th
computation information about multiple application exeent
can be processed simultaneously, in batch mode (Figure 12
for example, if one proxy received messages with identifiers
1..1000, and its neighbor 1..950, expressietv \ other recv
in line 02 yields a forwarding request for packe$d ..1000,
all at once. This way, control traffic running at rates as lsw a
a few protocol rounds/second can potentially support proto
cols that handle thousands of application events/sec@jd [3
Let’s try to estimate the gain. Suppose packet loss occurs
at random with probability, and that set values are encoded

as numeric ranges, as explained at the end of Section 2.3 (we

used this encoding successfully in our simulations [38}, an
in our earlier high-performance multicast implementagjon
Let A(p) be the average number of consecutive packets that
are either all lost or all received by a node; it's easy to khec
that\(p) = (p-(1—p))~* -2, andifpis small,\(p) ~ 1/p.

Let the maximum size that can be occupied by each set valu
in memory or in a network packet Isebits, and suppose that
besides a tiny header that encodes the first identifier that is
orisn'tin the set, almost all of the remaining bits are used t
store a list ofB-bit numbers; each of these is the length of a
single series of consecutive identifiers that are (or nat)én
encoded set value. For example in va{ie 25, 28..29}, the
header would specify that the first identifierlisand it is in

the set, and it would be followed by thréebit numbers: 25,

2, 2, indicating that starting with 1, there are 25 conseeuti
identifiers in the set (1..25), then 2 not in the set (26..279,
then again 2 in the set (28..29). Wishbits, one can encode
information about: S/B series of consecutive identifiers
(ignoring the header), each series of lenyth) on average.
The total number of identifiers for which the information of

);

e

machines on which our object runs membership service

object

our object (uses aggregation) ni'embership object

Figure 13. An object that uses aggregation is supported by
an external membership service (MS), which provides all the
object’s proxies with consistent membership views; these a

used to self-organize and form structures such as tokes.ring

it would suffice for computations in our language to fire (and
for set values to be disseminated) as rarely as once a second.

2.4.2 Transformations

Flow 3 € F is atransformationover flowsa!,...a" € F
if there exists am-argument function : V* — YV such
that for each message € £ in this flow, its value/(m) can
be represented as a result of applying functioto a list of
values that appeared in flows (a single value from each):

-EImLLEoc" (Vl T(m;) < T(m)) AN
v(my,)) . (15)

Messagen is said todependon all m used in the equation.
Transformation isocal if m andm!, appear at the same loca-
tion (if we can appendV; x(m}) = x(m) in equation (15)).
Every occurrence of a logical, arithmetic, comparisongor a
gregation operator in an expression defines a local transfor
mation (except for the pattern ... ai g i in rule R18, which
is an aggregation; this is discussed in the following segtio
In exampldock, in line 05, we definéolds as a transfor-
mation onwants, owner, andid, with U (vq, ve, v3) £ true
if v1 A (v2 = v3), elsefalse. In examplerepair, in line 02,
we definefwd as a transformation asther addr, recv, and
other recv, With W (vy, vg, v3) 2 {(v1,v2 \ v3)} (Figure 11).
One can characterize a transformation via its membership
functionsy, : K — X, and selector functions’, : £ — K,
for1 <i <n, z € X, as follows (the domains and meaning
of i ando? are defined just as we did it for dissemination):

B (k) Al (0L (),

mef Em’leal e
~Av(m) = ¥(v(m)),...

... (16)

whether they are (or not) in the set can be encoded in a singleTransformation isn-orderif all selectors are monotonic. By

set value iss S/(Bp). For example, if loss rate js= 1%,

we allow4 KB space per value, anl = 16 bits, each value
could carry information about 2000 identifiers on average.

If the multicast rate is at the order of 2000 packets/s or, less

10

default, all transformations in our language are local &and i
order:u’ = pt, for z # 2’ ando (k) < oi (k') for k < k'.

2.4.3 Aggregations

Aggregation is the core conceptin our language; it allows us
to achieve strong semantics. Unlike dissemination angitran

2009/3/23

formation, aggregation generally requires proxies to esop to a membership service... =%
ate. This can be facilitated by an external membership-servi
ce (MS): proxies can use it to self-organize into a group, and
perform aggregations together (Figure 13, 14, 15, and 16).
Flow s is anaggregatioron flow « if every value flowing

in 8 can be represented as a result of applying some associa- stable_elect, st._elect,
tive commutative binary operatoy : V x V — V to some
set of values that have previously appeared:in i |elected v N :
H N o H

v7716[3 ElSQa |S| <00 A (Vm’GS T(m/) < T(m)) AR i Vi E
¢ |candi- leader H

< Av(m) = ® v(m') . (17) ! | date™ :

m’'eS E E

The standard aggregation operators listed in rule R06 &are al D Ek """"""""" J; """"") '

associative and commutative, and can be substituteglifor
the patterri; :=a; ... aj g io to definei; as an aggregation
overis. Attributesa; are used to customize the way in whic
aggregation is performed; this is discussed below.

As with disseminations and transformations, we can char-
acterize aggregations by their memberships £ — P(X)
and selectors? : K — I, for z,y € X. Each membership
1z, given aversiot € K(3) of some messages ih selects

Figurel14. A group of proxies computing aggregationin the
h protocol from Figure 17. In each aggregation round, sets of

valuesy; that appear in flowandidate are aggregated into a
single valuev = min; <;<,, v;, Wwhich emerges at the leader
node. The result is disseminated to all proxies. Proxids sel
organize into a token ring or a similar structure with thephel
of membership viewgrovided by thenembership object).

a set of locations irx, and for each locatiop € p.(k), the Ky (k)={a,b}
selectow? (k) further specifies the version of a message that ¢ \ 3 local
this location contributes to the aggregation (Figure 15): T 3(k)=k3 q:f;e

Bz(k) = ® Qy ((7';! (k)) . (18) m\a=(a:tarkapva) mb=(b'tblkblvb) nj!:(x,t,k,v) :
yE g (k) ; : R . -

.

k|v '
result >

Aggregation ign-order if the selectorgr? are monotonic. It
is coordinatedf memberships and selectors are identical at
different locationse, i.e., ji; = par A 0¥ = 0¥, for x # a; N7
intuitively, this means that when aggregating values with t | not ﬁ
same version,_different proxies ;elecF the same locatiods a C _ contributing ,5;'0)(%(
the same versions at those locations in order to calculate th %, i
results. Finally, aggregation sompleteif every permanent é é i I6cal queue of & é
location ofa eventually starts to contribute its value to every — - -)
subsequent aggregation@n By default, aggregations in our Flgur_e 15. Mempershlmm(k) selects Iocatlo_ns that_partlc-
language have all these properties unless explicitly atedt ~ IPate in aggregating values for messages with versiat,
asunordered, uncoodinated, or incomplete (rule RO1). and selectorsg.(k) further spemfy the versions of messages
To root things in physical reality, let's see how to imple- that each locatiop € (k) contributes to the aggregations.
ment such aggregation if nodes self-organize as a token ring

with the help of an external membership service (Figure 16). out to everyone. Completeness follows from the fact that the
Aggregations are performed in rounds; a token is circulated membership view specifies who precisely is in the ring, and
with the partial result that each node contributes to by merg permanent locations remain in the membership view forever.
ing the result with its local value, then passing it furthar o It's not hard to see that coordinated aggregation is consis-
and the final aggregation results are tagged with versions oftent; our aggregations are thus consistent by default.di fa
the formk = (4, j), wherei is the number of the membership many classes of aggregations are easily proven to be syrong|
view, and; is the number of the token round in the view monotonic. To explain this, we need a few extra definitions.
The in-order property is achieved if nodes contribute tite la An aggregation operatoy is monotonidf it satisfies the

est local values they got. Coordination is achieved becausefirst of the following two equations, and it islawer bound
aggregationresults are collected by a single node and blande if it additionally satisfies the second one:

oemeccccccccccccccsaaa,
.

Sececcscsccsccscaccans?

.

5Full details of the runtime infrastructure and distribufdtocols used to v

) . 11 < v =11 QU3 < v QU 19
support aggregation are beyond the scope of this papett| theypresented v1,02,03€V V1 = V2 1@V S V2803, ()
in a journal paper. The key concepts have been implementetésied [38]. Yoy ,0pey V1 ® U2 < 01 . (20)

11 2009/3/23

..

All standard aggregation operators in our language (ruBRO .- s
are monotonic, anshd, min, andintersect are lower bounds. token ring all others o 7]

A coordinated aggregatighon « is guardedif each time leader places | |merge their | - ..qdlY Gy
a new node joins the subsequent aggregation, it ensures tha |its own local | llocal values | ... qlH4LV] ¥

the value it will contribute is not smaller than either pairti | |valuein the Vi®V2® V1
or full result of the ongoing or the immediately preceding i token @ ©
aggregation. In the scenario on Figure 16, it means that each @ 2 4

time a node is about to place its local value into the token or }
merge its local value with the one in the token (steps 1, 4, 7), :
it has to double-check that the local value is no smaller than é _______________ i
the result of the preceding aggregation; if it is, the nodgtca

contribute its local value now and has to wait until it grows. Figure 16. Aggregation using a token ring protocol: (1) the

L

o+
i

Formally, for all pairs of subsequent versigns: ' in 3 ring leader puts its local valug in the token:; (2) it also puts
(i.e., such that:3, k < k" < k'), and for every locationy in it version(i, j), wherei is the number of the membership
joining the aggregation at versian (y € p. (k') \ p.(k)): view in which this aggregation round is happening, arisl

, the number of the aggregation round within the view; (3) the
I pah) (O‘y(og(k) 2 ® O‘Z(Ug(k))) : (21) combo(s, j), vy arrives at the second node in the ring; (4) the
z€8 node pulls its local value; (5) values are merged int® vo,
Aggregation in our language is not guarded by default, but it and passed further on; (6) eventually, the last member of the
can be easily made such. Recall that conditiomate () ¢ ring receives; @ ... v,_1; (7) the last local value is pulled;

locally deactivates dependencies:iat a given proxy when (8) it's merged into the final result (9) the final aggregation
conditionz at this proxy locally evaluates tfulse, thatis,as resulttagged with versiofi, j) is disseminated to everyone.
soon as a message carrying vafiése appears in the local ~ Upon receiving resulti, j), v, a proxy places it in its queue
queue of the flow that is carrying the results of expression only if it's newer than the last result’, j'), v’ the proxy has
In case of aggregations inbeing locally deactivated means ~ ever received, this is true onlyif> i’ v (i = i") A (j > j7).
that the given proxy contributes values from its local queue

only at the times when conditionlocally holds. Earlier, we 01 opject stable_elect(up int candidate) : s-up int leader {

stated that aggregation is complete by defaultwbgte (z) 02: same int elected := 0;
creates an exception: aggregation by default runs among allo3: where (fresh elected A elected < candidate) // guard
proxies in the groupxceptthose explicitly excluded fromit 04: elected := min candidate; / aggregate
by thewhere clause. Now, consider the following pattern: 05: leader := elected;
06: }
where (fresh A B < a) f:=® a5 . (22)

Figure17. A simple version of the leader election protocol.
Expression of the formresh 3 locally evaluates to true ona Candidates with identifiers larger than the one of the etecte
given proxy when the proxy is sure it has the latest possible leader (line 03) select among themselves the one that has the
value of 3. This feature is easy to implement if aggregation smallest identifier (line 04). Election result can changly on
is performed using a token ring protocol under the control when the elected leader leaves the protocol. Candidathks wit
of a membership service (as discussed earlier); as soon as #lentifiers smaller than the leader start to compete onéyr aft
proxy joins the ring, all tokens carrying partial resultspa all current competitors quit, causing aggregation to “xto
through it, so it always knows which version was the I&test

At this point, we need to make one important comment: in o .

leave the protocol, and later the protocol resumes with a newif the membership dropped to zero or changed so fast that the
set of entirely different nodes. In such situations, of seyr ~ Underlying protocols couldn’t propagate information &sro
there’s no way that the new nodes can learn the results of pasfeémbership views. We omit the low-level details for brevity
aggregations, or even determine what was the latest version [N the light of this discussion in pattern (22) is a guar-
Thus, aggregation couldn’t be guarded (or even consistentyded aggregation on. Guarded aggregations are very useful;

if the flow could span such events. Accordingly, when such their usefulness stems from the following formal result.

an event occurs, we assume that the existing flow ends, and

new instance of it begins; we say that the flow fetmooted. aI'HEOREM 2.1.If flow 3 is a guarded, in-order aggregation

over flowa using a lower bound operatay, anda is weakly

6 Technical details are fairly straightforward; the apptohas been outined ~ monotonic, thers is (strongly) monotonic.
in our technical report [38]. More details will be providedd journal paper.

"This appears to be a standard assumption in most distriputéacols that Proof. The full proof can be found in our tech report [3H.
support dynamic membership, although often it is not ekpligerbalized.

12 2009/3/23

COROLLARY 2.1. In pattern(22), if « is weakly monotonic, 01: object synchronize (up int ready) : s-up int phase {

and® is a lower bound, theg is (strongly) monotonic. 02: s-upint done =0;
. 03: where (fresh done A done < ready) // guard
Proof. This comes from Theorem 2.1, the fact that by default 4. done := min ready; // aggregate
aggregations are in-order, and the fact thét guarded. B 05: phase :=done + 1;
06: }

Now, let's analyze a few practical uses of such aggregations

Figure 18. Code that coordinates processing across proxies
into a sequence of synchronous phases. Phaseompleted
(done > k) after all nodes report that they're ready (line 04).
The system then enters the next phase (line 05). Newcomers
don’t get to vote on the next phase till they catch up (lice 03)

Example 3. Objectstable_elect (Figure 17) implements
the leader election protocol embedded in objeck from
Example 1. A weakly increasing input flowendidate car-
ries the identifiers of all candidates, and an increasingwut
flow leader carries the identifier of the leader. The internal
flow elected is used to select the smallest identifier of a can-
didate (line 04); this candidate is chosen to be the leader. .

Sincecandidate is weakly increasing, we can use Corol- 02: s-up {int} recv.by all := ;

. g . 03: where (fresh recv_by_all A recv_by_all C recv)
lary 2._1 to _deduce thatfected is monotonic. Now, since ag- qa: recv_by.all := intersect recv;
gregation is complete, once the leader starts to partﬂmpgt 05: stable := recv_by.all; }
and gets elected, it bounds all further results from abote wi
its own identifier until it quits the protocol. Hence, onceth Figure 19. Code that determines which packets stable
leader is elected, it continues to be elected. Candidatias wi 1-€., received by everyone in the system; this computagion i
identifiers smaller than the leader are held offingre; they ~ an essential component of many reliable multicast progocol
wait until all others quit, causing the protocol to reod

Example4. Objectsynchronize (Figure 18) allows aset ~ 01:object decide (up {int} yes, up {int} no)
of nodes to coordinate execution in phases, with the prppert 92: : S-up {int} accepted, s-up {int} rejected {
that no node is permitted to enter the next phase until every-93: UP {int} positive = &7, // this proxy votes to accept
one reports they've finished working on the current one. The . up {'n.t} negative _ Qj’_ II'this proxy votes to reject

. . . : s-up {int} accept = @; // irreversible accept decisions
last phase entered by the local proxy is re_ported in the input q. s-up {int} reject = & // irreversible reject decisions
flow ready, and the next phase the proxy is allowed to enter g7. accepted ;= accept; // decided
is reported in the output flophase. The strongly increasing 08: rejected := reject; // decided
internal flowdone represents the phase all proxies entered. 09: where (fresh accept) { // must know existing accepts

01: object stabilize (up {int} recv) : s-up {int} stable {

Monotonicity of done again follows from Corollary 2.18 10: positive := yes \ no U accept; // catch up
Example5. Objectstabilize(Figure 19) computes the set 11 where (accept C positive) { // caught up

of identifiers of packets that have been received by all nodes12: accept := intersect positive; // all accepting?

in the systemgtable): it does so by intersecting sets of iden- 13 negative := // catch up and spread rejects

14: no \ accept U reject U union negative;
where (fresh reject A reject C negative)
reject := intersect negative; // all rejecting?

tifiers of packets received by individual nodesdv). Flow
stable is strongly monotonic: packets reported as stable will "~
forever keep being reported as such; in order words, the de-17j !
cision to report a packet as stable, once taken, is irréversi '

this is guaranteed by Corollary 2.1. This irreversibilitpp- Figure 20. Code that makes irreversible accept/reject deci-
erty is very useful: for example, if packets represent retpie sions based on local suggestions; acceptance is givenfonly i
in a replicated database, each replica can safely process a r every proxy that has synchronized with the rest gives it a go.
guest as soon as it knows the request is stable; it can safelyOnce a proxy is synchronized, it affects all future decision
do so, for other replicas will eventually also do the sallke.

Example 6. Objectdecide(Figure 20) implements a sim- The input flowyes carries sets of identifiers of proposals

ple decision protocol. We assume that there exists a gipball that the individual nodes wish to be accepted, andarries

ordered sequence of proposals, and that nodes need to gIObs'ets of identifiers of proposals that individual nodes with t

ally agree on Wh'ch proposals tp agcept; a proposal IS glob— be rejected. This set encoding is similar in spirit to the one
ally ?Ccepte‘?' only if _aII hodes give it a go. Global decisions from Example 2. Output flowsccepted andrejected carry

are final and |rrev?r_5|ble, a_nd respected by everyone. E/resh sets of identifiers of proposals globally accepted or rejct
J(?mEd nodes d10n timmediately have the nghts to veto deci- these are just copied from internal flowscept andreject.
sions, but they re always eventually recognized by the grou Internal flowspositive andnegative carry sets of identifiers
as first-class citizens, and can henceforth veto any prégosa of proposals for which individual proxies will vote yes or,no

Itis a form of consensus with dynamic membership [30]. respectively. They are different froges andno because the

8 Our protocol has a weakness; it can lead to starvation. Tarersumerous |0C"_"I preferences of newly j(_)ihing _prOXieS might be ignored
ways to fix this; the different solutions will be discussedijournal article. until they are fully synchronized with the rest of the group.

13 2009/3/23

Corollary 2.1 again ensures us thatepted andrejected all 2n proxies of A (on all 2n nodes) form a single object
are monotonic (and that decisions are irreversiblg)sftive ~
andnegative are weakly monotonic. The latter, and the fact
thataccepted andrejected are disjoint, is a consequence of
the waywhere clauses are nested, and the fact that process-
ing each event on a proxy is done atomically. Full proof, and
discussion of the forms of distributed agreement expréssib
in our flow language, are beyond the scope of this pdiber.

In general, monotonic aggregations based on pattern (22) g .
and Corollary 2.1 could be used to reliably make and remem- B": instance of B that runs B®: instance of B that runs
ber any type of consistent, irreversible distributed deais; on nodes (1) through (n) on nodes (n+1) through (2n)
and retain state in the presence of churn. Other example usegigure 21. If the patterniy ...iy:=independently B(z1,...x5)

include controlling atomic delivery or cleanup inamulsta s ysed in the code of objeet, the embedded proxies &f
protocol, total ordering, and distributed commit protecol may be partitioned into multiple subsets (hé?ﬁ) o Bff)
Our aggregation has one powerful property we haven'tre- (2) (2) o
vealed yet; it can be composed recursively, yielding sd¢alab andB_l oo Bn”), Where e(?)Ch SUb(Sgt runs its own indepen-
hierarchical implementations. We discuss this in Sectién 2 dent 'T‘Stance Of_ objedt (B andB): The two instances
don't interact with one-another; in particular, each ofrthe

2.4.4 Distributions performs aggregations separately, among its own proxies.

Whereas aggregation works to compute global values from ., j.pie stable stable scalable stable scalable
sets of local values fed by the participants, distributiors elect AV elect BV elect B? elect A% elect B® elect A®)
the converse: it decomposes a global value into pieces, and......... ‘
passes each piece to a single participant. Fdasva distribu- AY AR AR AP
tion of « if it can be represented as a result of the following By By
process: we take a subset of messageS «, and for each b ! "
messagen € o, we split the value = v(m) in this mes-)
sage into a set of values, .. . v, that aggregate back tg ira
i.e., such that = ®1<;<, v;. We then place these values in
o

—

ceeecccccccccccccct it accccccccccccccccccacccccaacasinannaccana, !

R ELLLTT TSN

VSR EE e s I s s,

o o

messages if¥, with timestamps no smaller thatim,).

In our language, distribution is currently only supported
for set values and the union operatgisplitting a set value
means partitioning the set into subsetsuch that = Uv;.

Itis expressed by pattesome i (rule R09), wheré is a flow o ° °
name; the flow must be consistent. Each time a new set value| & &
appears in, it is passed around, every proxy removes some == I o T —
elements from the set, and places them into its local queue Sca,|a,|°|e scalable scalable scalable
(the process is essentially the opposite of the one Figure 16 elect A® elect A® elect A® elect A”

The space limit precludes us from discussing distribution

: . . . Figure22. Objectscalable_elect (Figure 23) with its recur-
in much detail; one example use of it is shown in Example 8. g jectscalable-clect (Fig)

sive self-embeddings fully expanded, running on four nodes
25 Recursion ObjectA(™) (scalable_elect) runs on all four proxies. Object
BW is the instance oftable_elect embedded i) (see
line 08); it also runs on four proxies. Objects?) and A(3)

are two instances cfcalable_elect embedded im(M) using
independently (line 07); each runs on just half of the proxies.
Proxies ofA(?) do not interact with proxies of(®). Objects

In Section 2.3, we explained that referring to other objacts
code using patteriy,...ig:=[h]i[.t'] (z1,...x) €mbeds prox-
ies of object within the proxies of the object being defined
(Example 1, Figure 8). What should happen if an object re-
cursively refers to itself? Naive recursion, of cours@sd B®) and B® are the instances oftable_elect embedded
be (and is) forbidden, for it would result in infinite chaifs o . o . : (4
) . . ; : : in A® andA®), respectively. Finallyd®) andA(®) are the

recursively nested proxies, which are infeasible. In this s instances ofcalable.clect embedded int), whereasd(®)
tion, we demonstrate that recursion can be made useful, as a catapie-eiee
way of modeling scalable, hierarchical architectures andA'") are instances ofcalable-clect used byA™. Nei-

y 9 ’ ' ther of A, AG) A©) or AT embeds anythingjngleton

By default, an occurrence of,...i;:=i[.i'] (x1,...2) With .) .))
object name in a dependency, amject [1 | i ' in the vari- holds on their proxies, and only the code in line 03 is active.

ables section, declares an embedded object that runs across
the set of all recursively embedded proxies. If the dedlamat ever, the full set of embedded proxies on different machines
of an embedded object is preceded viitiependently, how- may be partitioned by the runtime environment into multiple

14 2009/3/23

subgroups, each collectively running its own, independent 01: object scalable elect(int candidate) : same int leader {
instance of objeat(Figure 21). Recursion in our languageis 02: where (singleton)
permitted only if used witndependently. Mutual recursion 03 leader := candidate;
is also allowed in this case, and it's handled in the same way,04: ~ €lsewhere {
Each occurrence af,...i5:=i(21,...2) that would normally 82: :géi?fgé‘éi?qir’
create a Cyde must b_e annotated \{wtdibper?dentl}/. . 07: independently scalable_elect(candidate);
Ifan obje_ct recursively embeds |tfs_eIfW|th_th|s patters, |t_ 08: leader := stable_elect(local_leader);
embedded instances can also partition their sets of proxiesyg. 1
into subgroups, and recursively embed more instances of the
same object. This embedding and partitioning would conti- Figure23. A hierarchical variant of leader election that uses
nue recursively till we end up witkingletoninstances of the ~ recursion (line 07) to partition its work, and then empldyes t
object, i.e., instances that run on only one proxy (Figue 22 nonscalabletable_elect to combine partial results (line 08).
To terminate recursion at this point, we introduoeyleton, This program can be automatically translated into hieliarch
an expression that locally evaluategtae on a proxy if it's cal, scalable architectures similar to the one on Figure 22.
the only one running the object instance to which it belongs. .
Before we explain how we can achieve scalability through |AY A AY
recursion, let’s analyze one example use of this new feature B
Example 7. Objectscalableelect (Figure 23) is a hier- ;
archical variant of thestable_elect object (Example 3). In
the spirit ofdivide and conquerobjectscalable_elect first
partitions proxies on which it runs into subsets, and lets em g"A(z)
bedded instances of itself running on those subsets fintl loca ; |}
leaders (line 07; consult also Figure 22 and Figure 24). Each
embedded instance otalable_elect produces a consistent
output flowleader. The internal flontocal_leaderis a union
of these. Althouglieader is strongly increasing and consis- candidate’ leader local_leader
tent,_local_leader_, asa u_nion of such flows, is not consistent, Figure 24. Dependencies in thecalableelectobject A,
and just weakly increasing. To get a global leattgral lea- in the scenario shown on Figure 22. Candidateare passed
deris fed |_nt0 the orlglnaStabIeeIect(fro_m Figure 17)l_ to embeddedcalableelectobjectsA® andA®) (line 07).
Atfirst, it may not be clear that we gained much, forinthe The gutput is copied téocal leader, and fed to the embed-
end, we still |nyokestable_elect, l_)ut.not|ce thalocal__leader dedstable_elect objectB(V: its output is the result (line 08).
passed as an inputtoable_clect is, in a sense, partially pro-

1
BY

I3

cessed; subsets of proxies have already elected locattgade output of A? is redundant the output of stable_elect

and just a few candidates are left to competestable_elect with respect to that of A? is replicated to nodes on

has less work to do. Indeed, for every subset of proxies cre- so we don’t need to use it which its proxies don’t run

ated byindependently, the output of the embedded instance {[x@ T [AD AT —|[AD

of scalableelectrunning on them is consistent: they already @@ 17 |\noneedto || /gD | Al no need to
: | P run Bj

agreed on a leader. If so, there’s no need for more than one| % run BY
of these proxies to feed its outputttableelect(Figure 25). '

If the independently clause never splits work among more
than N instances o&calable_elect (in the example on Fig-
ure 22 we useV = 2), then no instance oftable_elect, at
any level in the hierarchy, has to run on more th\aproxies
(we don't need output from more than one proxy from each
embedded instance stalableelec). Thus, by using recur- =
sion, we've effectively transformed a very large problemtth
requires a scalable protocol into a hierarchy of subproblem Figure25. The flow appearing at the output of proxid§’
that can be handled by our non-scalable objéchie_elect. andA'? of the embedded object(® is consistent. There is

The observation we just made can be generalized: it's notno need for more than one of the proxies to feed its output to
hard to see that if every input flow of an object is consistent, the embeddestable_clect objectB(). Instead, only one of

and the object doesn’tinternally use inconsistent flow$isuc the outputs is used. Pro@él) is never created. The output

asid, then the output flows are also consistent, and the valuesyy 5t g(V) \was supposed to produce is taken from prﬁ&).
in these output flows will not change if a single proxy leaves. 2

In other words, if the object consumes only consistent flows,

s]

15 2009/3/23

then no particular proxy has anything to offer over any of the 01: object scalable_repair(int addr, {int} recv)
other proxies; they're all processing the same information 02: : {(int, {int})} fwd {
In fact, it suffices if one proxy does the job and delivers the 03: same int leader;
result to all the others. This is exactly what happened in our 94 same {int} seen, stable; ,
example on Figure 25: the o(u;[put fldwader of the embed- 05: fwd, leader, seen, stable :=local_repair(addr, recv, 0);
. o .) :

el SaCe! 15 OSSO, SO SIS0 7. pjct ocatep(t .) e

' i X g k : same {(int, {int})} todo)
compiler and runtime can determine this fully automaticall 09: : {(int, {int})} fwd, same int leader,
simply by looking at the types of flows in the protocol code. 10: same {int} seen, same {int} stable {
Indeed, proxy elimination we just discussed is essentally 11: where (singleton) {

compiler optimization: we transform an executable strrectu 12: fwd := todo;
(a graph of proxies, message queues, and the links betweed3: seen := recy;
them) generated from the source code (Figure 23) so that wel4: stable := recv;

can improve performance without modifying the semantics. 15) elsewhere {
Due to limited space and to keep our presentation simple, 18 {(int, {int})} local todo;
. . - AT int local_leader;
we omit the detailed step-by-step description of how a hier- . .
: ! {int} local_seen, local_stable;
archical structure of the sort shown here is deployed; tge ke 19

: - : fwd, local_leader, local_seen, local_stable :=
ideas and the correctness argument can be found in our othep,. independently local_repair(

work [36, 38]. Indeed, the reader will undoubtedly have no- »1. addr, recv, local_todo);

ticed that there are many possible ways to build and maintain 22: leader := min local_leader:

such hierarchies. In the introduction, we postulated thase 23: seen := union local_seen;

ration of concerns between the semantics of the protocol and24: stable := intersect local_stable;
implementation details such as the method of aggregation or25: local_todo := some todo U {(other local_leader,
the way nodes are organized into scalable structures. Fhis i 26: local_stable \ other local_seen) });

precisely what we have achieved by building semantics upon27: } }

the abstract concept of aggregation and abstracting away hi Figyre26. A hierarchical version of the loss recovery object
erarchy via recursion. The semantics of code on Figure 23,0, from Figure 10. Objectcalable_repair acts merely

won't change if aggregations are performed using trees in- g5 a wrapper ttocal repair; the latter does the actual work.
stead of token rings, ihdependently partitions a particular

set of proxies into more or fewer subsets, or if the hierarchy
has more or fewer layers, or if it is imbalanced. Moreover,
as demonstrated through examples, the same tiny set of sim
ple language constructs is used across a variety of pratocol
and every compiler optimization or runtime mechanism we
develop is going to automatically benefit all these protsecol
To conclude, we’'ll present one example of a hierarchical
protocol that can benefit from certain types of optimizagion
Example 8. Objectscalablerepair (Figure 26) is a hier-
archical variant of the loss recovery object from Example 2.
Each instance dbcal_repair computes the set of identifiers

lable_repair spans the entire system (it runs on all nodes in-
volved in loss recovery), the instances recursively embed-
ded span parts of it, and those within whighgleton holds
span individual nodes. The&able, seen, andleader values
flowing at the outputs of all the different instancesoalab-
| le_electthus represent aggregate states, calculated hierarchi-
cally, bottom-up, for larger and larger portions of the spst
In every instance ofocal_repair, proxies compare their
status (line 26). If one finds packets that are stable on its ow
portion of the network, but not seen in another portion of the
of packets that arstable(received everywhere) asger(re- petwork, it generates a forwarding reques.t. The destinatio
is set to be the contact address for the portion of the network

ceived somewhere) in the subset of proxies it spans; this iSth Lis missi kets (line 25) Th tis th hed
done by first determining which packets are stable and seent a c'js m|SS||ng pac_t:z s (line ftr?. c reqtuefs IS then plus Ie
on subsets of proxies (this is done by recursively embedded oP-dOWN, along With SOme oT{he requests rom Upperievels

instancedocal_repair, line 20), and then aggregating partial n tlhe h|erarch3t/h(_note tthe ulstg offlstrlbunon n :Lnte). I
results usingn for stable (a packet is stable on all proxies if h essence, this protocol tries to recover packets as joca

it's stable on each of the subsets of proxies) @rfidr scen (a as possible.: only if an entire group of .nodes has missed the
packet s seen among all proxies if it's seen in any of the sub- PaCket, the instance éécal_repair running on them reports
sets) (lines 23 and 24). Each instancd @ful_repair also the packet as ngkenthus prompting some proxy elsewhere

elects one contact addregsdder) at which one of its prox- " the system to forward it. Now, Suppose thakependently

ies can receive packets forwarded from elsewhere (line 22). partitions proxies in such away that proxies closer in leen
Similarly to instances ofcalable_clect (Figure 22), here or some other network metric are more likely to be clustered

different instances ofocal_repair also span different por- together. Consequently, packet forwarding requested by ou

tions of the system: the instance embedded directisci protocol will more likely occur between pairs of nodes close
' to one-another; the protocol will thus become locality-sava

16 2009/3/23

3. Related Work supports typed compositions, but protocol code in BAST is

gwritten in Java, much like in other composition frameworks:
Spread [3], Ensemble [20], and Appia [34]. The reasons why
we prefer a dedicated language have been articulatedrearlie

automaton, with transitions triggered by timeouts, theifgtc Our flow dependen_cies are functional in spirit; in this sen-
of network messages, or application requests. A programmers?' our work was inspired by _I/O aut_oma_ta (_IOA) [32], which
defines states and transitions, and the compiler transtates pioneered the idea of madeling entire distributed systems a

high-level FSM specification to executable code, autorgatin COMPOnents that operate on event streams. However, I0A is
aspects such as socket operations, serialization, logging & SPecification language, and doesn't automatically yieid e

verification. MACE [26] and nesC [18] are prominent exam- ecutable co_de._ Also, in comparison to IQA, our work is less
ples of use of this approach in the context of loosely-cadiple focused on |nd|V|du_aI endpoints a_nq_thew state, and more fo
distributed systems. Earlier systems, such as Morpheus [2] cused_on flows. This creates fI§X|b|I|ty that can be exploited
RTAG [4], Esterel [6], Prolac [27], Estelle [47], SDL [47] or to achieve the concern se_paratlon we pos_tulate_d: we can run
LOTOS [47], targeted point-to-point protocols such as TCp, e same program over different aggregation, disseminatio
Besides translation to code, the FSM model has also beerPatching mechanisms, or differently constructed hieriasch
used for program analysis: high-level protocol speciforai Data flows in the sense of asynchronous, massively paral-

in Promela [21] and TLA [29] can be translated to FSMs for 1€ Pipelined processing, have a long tradition in areaisu
model checking. TLA is sufficiently expressive to accuratel S VLSI or DBMS. They have also been applied to network-
capture strong semantics such as distributed consengus [30N9; €-8., in Click [35], and distributed computing, €.9.H2
Recent SOA/WS-* standards for describing peer-to-peer in- [31]- Data flows in those systems, however, aredistribu-
teractions, particularly WSCL [5], are also founded on FSM. tedin the same sense as how we've defined it in Section 2.2:

Researchers argued [26] that the FSM approach is naturafhey are point-to-point event s_treams, and transformatixm_ﬂ
to work with, for the ESM code resembles well-written code them are local. Although distributed data flow query engines

in Java/C++ while being far more concise. However, systems SUCh as Gamma [12], Volcano [19], or PIER [22] support the
like MACE have been used mostly for loosely-coupled sys- concept of hierarchical aggregation, they have been dedign

tems, such as DHTSs or overlays. Expressing complex DMPs for datamining, not distributed coordination, and lacksg
such as reliable multicast or agreement via states, transit consistency properties of the sort discussed in SectiaB.2.4

and point-to-point messages could be quite hard [11, 20, 23] The same is true of aggregationsin the context of sensor net-
Also, as noted earlier, code that implements core semanticsVOrks [10]; the properties targeted by those systems revolv
(making decisions, reconfiguration, state recovery) iseix around security, whereas our model is focused on religbilit

with code that builds distributed structures for disserima. ~_Many specific solutions employed in our work have been
or aggregation. To achieve the sort of concern separation welnspired by prior research: the use of set arithmetics inlSET

advocated earlier, we need a higher-level language. [421' e\(ent:driven computingin SEDA [4_8]’ _rule-based com-
P2 [31] is a higher-level model: it replaces explicit point- puting in Réte [15] and concern separation in aspect-tekn

to-point communication with rules in Datalog that create de Programming (AOP) [25], to name a few.

pendencies between local variables at different nodes (sim .

ilar in spirit to our non-local dissemination and transfarm 4. Conclusions

tion); point-to-point communication is then generatecbaut We proposed a new type of a programming language for dist-

matically. This results in compact code, but operating iat th ributed computing that abstracts away low-level detaithsu

level, without tools such as consistent aggregations or-mem as point-to-point communication, while retaining suffitie

bership that are built into our language, it may be hard or im- expressiveness to model complex DMPs such as distributed

possible to achieve stronger semantics; indeed, P2 has beelocking, agreement, election, or reliable multicast. Ficg

used primarily in the context of overlays, DHTs, and routing on data flows, their functional dependencies, and diseibut

The same issue occurs with languages based on process catonstructs such as consistent aggregation, and moving away

culi; they cannot express strong semantics [16]. In cohtras from endpoint-centric aspects such as states and trarsitio

to all these approaches, our language supports consigtent a allows us to separate semantics from details such as methods

gregation, recursion, batched processing (via set arifbjne of aggregation, construction or maintenance of the hiésarc

and essential object-oriented features such as encapsulat Our distributed data flow concept promotes concise code and
There’s been much work on embedding group-like distri- can facilitate formal reasoning about global system bedravi

buted abstractions in higher-level languages such as ML [28

or Java [14]; surveys can be found elsewhere [8, 36]. Unlike Acknowledgments

our work, these weren't designed to construct protocols, bu 1hg york has been supported by grants from AFRL, AFOSR,
rather to embed entire existing protocols in strongly typed NSE and by the Intel corporation. We'd like to thank Lonnie
object-oriented languages. BAST [17] goes further, inthat princehouse and Robbert van Renesse for their comments.

Most of the existing protocol-modeling languages are base
on thefinite state machin@FSM) model: every protocol par-
ticipant (aproxyin our terminology) is represented as a finite

17 2009/3/23

References
[1] Live Distributed Objectshttp://liveobjects.cs.cornell.edu/

[2] M. Abbott and L. Peterson. A language-based approach to
protocol implementationTONS 1993.

[3] Y. Amir and J. Stanton. The Spread wide area group commu-

nication systemJohns Hopkins Univ. Tech Repoi998.

[4] D. Anderson. Automated protocol implementation with
RTAG. TSE 1988.

[5] A. Banerji et al. Web Services Conversation Language.
http://www.w3.org/TR/wscl10/

[6] G. Berry. The foundations of EsterdMIT Press 1998.

[7] K. Birman. The process group approach to reliable disted
computing.CACM, 36(12):37-53, 1993.

[8] J. Briot, R. Guerraoui, and K. Lohr. Concurrency and rilist
bution in object-oriented programmin@.SUR 1998.

[9] M. Burrows. The Chubby lock service for loosely-coupled
distributed systemsOSDI, 2006.

[10] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-
network aggregation in sensor network¥CS 2006.

[11] G. Chockler, 1. Keidar, and W. Vitenberg. Group communi
cation specifications: A comprehensive stu@sUR 2001.

[12] D. DeWitt et al. Gamma - a high performance dataflow
database machin&/LDB, 1986.

[13] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera.
Enabling massively multiplayer online gaming applicasion
on a P2P architecturéCIA, 2005.

[14] P. Eugster, R. Guerraoui, and J. Sventek. Distributsha
chronous collections: abstractions for publish/subscrib
interaction.ECOOR, 2000.

[15] C. Forgy. On the efficient implementation of production
systemsPh.D. thesis, CMUJ1979.

[16] R. Fuzzati and U. Nestmann. Much ado about nothing?
http://www.brics.dk/NS/05/31995.

[17] B. Garbinato and R. Guerraoui. Using the strategy patie
compose reliable distributed protocofSOOTS 1997.

[18] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach to
networked embedded systen®.DI, 2003.

[19] G. Graefe. Encapsulation of parallelism in the volcanery
processing systen8IGMOD, 1990.

[20] J. Hickey, N. Lynch, and R. van Renesse. Specificatios a
proofs for Ensemble layerSFACAS 1999.

[21] G. Holzmann. The model checker spiiSE 1997.

[22] R. Huebsch et al. The architecture of pier: an intestatie
query processolCIDR, 2005.

[23] D. Karr. Specification, composition, and automatedfiger-
tion of layered communication protocolBh.D. dissertation

[24] A. Kay. The early history of smalltalkdOPL, 1993.

[25] G. Kiczales and M. Mezini. Aspect-oriented programgin
and modular reasoningCSE 2005.

18

[26] C. Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahda
Mace: language support for building distributed systems.
PLDI, 2007.

[27] E. Kohler, F. Kaashoek, and D. Montgomery. A readable
TCP in the prolac protocol languag8lGCOMM 1999.

[28] C. Krumvieda. Distributed ml: Abstractions for effigie
and fault-tolerant prgrammingCornell University Technical
Report 1993.

[29] L. Lamport. The temporal logic of action§OPLAS 1994.
[30] L. Lamport. The Part-Time ParliametOCS 1998.

[31] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscand
I. Stoica. Implementing declarative overlay@OSP 2005.

[32] N. Lynch and M. Tuttle. Hierarchical correctness pofiir
distributed algorithmsPODC, 1987.

[33] S. Maffeis and D. Schmidt. Constructing reliable distr
buted communication systems with CORBAEEE Com-
munications Magazinel 997.

[34] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels
ICDCS 2001.

[35] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.eTh
click modular routerSOSR 1999.

[36] K. Ostrowski. Live Distributed ObjectsPh.D. Dissertation,
Cornell University, 2008. http://hdl.handle.net/181B81.

[37] K. Ostrowski, K. Birman, D. Dolev, and J. Ahnn. Program-
ming with live distributed objectsECOOR, 2008.

[38] K. Ostrowski, K. Birman, D. Dolev, and C. Sakoda. Achiev
ing reliability through distributed data flows and recuesiv
delegation.Cornell University Technical Repgr2009.

[39] C. Petri. Kommunikation mit automaterPh. D. Thesis.
University of Bonn.1962.

[40] A. Rotem-Gal-Oz. Fallacies of distributed computinglei-
ned. http://www.rgoarchitects.com/Files/fallacies.pg006.

[41] F. Schneider. Byzantine generals in action: implerimegnt
fail-stop processorsTOCS 1984.

[42] J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg.
Programming with sets: An introduction to setl. 1986.

[43] D. Skeen and M. Stonebraker. A formal model of crash
recovery in a distributed syster'SE 9(3):219-228, 1983.

[44] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet: a collabo
ration system architectur€5, 2003.

[45] J. Strohm. Managing player awareness in Darkstar.
http://www.projectdarkstar.con2007.

[46] E. Tanin, A. Harwood, H. Samet, S. Nutanong, and
M. Truong. A serverless 3D worldsIS 2004.

[47] K. Turner. Using formal description techniques: An
introduction to Estelle, LOTOS and SDL.

[48] M. Welsh, D. Culler, and E. Brewer. Seda: an architezfor
well-conditioned, scalable internet servic&OSR 2001.

[49] A. Wollrath, R. Riggs, and J. Waldo. A distributed okjec
model for the java systenCOOTS 1996.

2009/3/23

