
Belief propagation: an asymptotically optimal algorithm
for the random assignment problem

Justin Salez
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The random assignment problem concerns finding the minimum cost assignment or matching in a complete
bipartite graph with edge weights being i.i.d. with some distribution, say exponential(1) distribution. In
a remarkable result by Aldous (2001), it was shown that the average cost of such an assignment converges
to ζ(2) = π2/6 as the size of bipartite graph increases to ∞; thus proving conjecture of Mézard and Parisi
(1987) based on replica method arising from statistical physics insights. This conjecture also suggested a
heuristic for finding such an assignment, which is an instance of the well-known heuristic Belief Propagation
(BP) discussed by Pearl (1987). In a recent work by Bayati, Shah and Sharma (2005), BP was shown
to find correct solution in O(n3) time for the instance of assignment problem over graph of size n with
arbitrary weights. In contrast, in this paper we establish that the BP finds an asymptotically correct
assignment in O(n2) time with high probability for the random assignment problem for a large class of
edge weight distributions. Thus, BP is essentially an optimal algorithm for the assignment problem under
random setup.

Our result utilizes result of Aldous (2001) and the notion of local weak convergence. Key non-trivial steps
in establishing our result involve proving attractiveness (aka decay of correlation) of an operator acting on
space of distributions corresponding to the min-cost matching on Poisson Weighted Infinite Tree (PWIT)
and establishing uniform convergence of dynamics of BP on bipartite graph to an appropriately defined
dynamics on PWIT.
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Poisson weighted infinite tree.
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1. Introduction

1.1 Background. Consider an n × n complete bipartite graph G = (V = V1 ∪ V2, E), with
|V1| = |V2| = n and E = {(i, j) : i ∈ V1, j ∈ V2}. An edge (i, j) ∈ E is assigned non-negative
cost (Xi,j). The assignment problem consists of determining a permutation (or matching) π of
{1, . . . , n} so that its total cost,

∑n
i=1 Xi,π(i) is minimized. This is equivalent to finding a minimum-

weight perfect matching in G. Recall that, a perfect matching on a graph G = (V1 ∪ V2, E) is a
subset M ⊆ E of pairwise disjoint edges that cover all vertices in V1 ∪ V2. In what follows, we
will be interested in the random assignment problem where edge weight Xi,j are i.i.d. with some
distribution, say exponential(1) or uniform on [0, 1]. Such randomly weight n× n bipartite graph
will be denoted as Kn,n and the minimum cost assignment will be denoted by π∗

Kn,n
. The goal

is to find π∗
Kn,n

as quickly as possible. As the main result of this paper, we establish that the
BP algorithm finds asymptotically (in n) correct π∗

Kn,n
with minimal possible computation cost of

O(n2).

The assignment problem, though seems cunningly simple has led to rich development in combi-
natorial probability and algorithm design since early 1960s. To understand mathematical proper-
ties of π∗

Kn,n
, partly motivated to obtain insights for better algorithm design, the question of finding

asymptotic limit of the average cost of π∗
Kn,n

became of great interest (see [19, 9, 12, 13, 17, 11, 8]).
In 1987, Mézard and Parisi [15] through replica method based calculations conjectured that

lim
n→∞

E

[
n∑

i=1

Xi,π∗
Kn,n

(i)

]
= ζ(2).

More than a decade later, in 2001 this was rigorously established by Aldous [2]. This work by
Aldous led to the formalism of “the objective method” (see survey by Aldous and Steele [4]). The
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finite version of the above conjecture (for exponential weight distribution),

E

[
n∑

i=1

Xi,π∗
Kn,n

(i)

]
=

n∑
i=1

1
i2

,

was independently established by Nair, Prabhakar and Sharma [16] and Linusson and Wȧstlund
[14] in 2003.

On the algorithmic aspect, the consideration of assignment problem laid foundations for net-
work flow algorithms. Specifically, the best known (strongly polynomial time) algorithm is by
Edmonds and Karp [10] that takes O(n3) operations to find minimum cost matching for arbitrary
instance. The statistical physics based approach (cavity method) suggested a heuristic for finding
the min. cost matching for the random instance of the problem. This is an instance of the Belief
Propagation(BP) heuristic that is popular in the artificial intelligence (see, book by Pearl [18] and
work by Yedidia, Freeman and Weiss [20]). In a recent work, one of the author of this paper, Shah
along with Bayati and Sharma [6] studied this heuristic for the maximum instead of minimum
version of the above problem (i.e. find matching with the maximum cost). They established the
correctness of the heuristic for arbitrary (not only random) instance as long as the maximum cost
matching is unique. They showed that the algorithm takes O(n3) operations to find the solution
with constant dependent on the maxi,j Xi,j and difference of weight between the maximum and
second maximum weight matching.

The BP algorithm seem to have much better empirical performance than the worst case result
established in [6]. Motivated by this, here we consider the question of analyzing BP for random
assignment problem. Specifically, we will establish that the BP finds almost optimal assignment
within constant iterations for random instance of problem with high probability. Thus, the total
computation cost of the algorithm for random instance scales as O(n2) to find almost optimal
assignment. This is in sharp contrast to the best known (adversarial) bound of O(n3). Clearly, no
algorithm can perform better than Ω(n2). That is, BP is essentially optimal for random instance
of the problem.

Remark 1 There is a lot of work on analyzing performance of various heuristics for finding
(variants of) assignment problem under various restrictions. Since the literature is vast on this
topic and it is not possible to recall all the known results and hence we refrain from listing all of
them.

1.2 BP algorithm. We describe the BP algorithm for finding minimum cost matching in
arbitrary graph G = (V, E). It naturally applies to the bipartite graph. We will use the BP
algorithm for general graph and its specialized form for bipartite graph interchangeably in this
paper; the specific use will be clear from the context. For graph G, we use notation that the cost
or length of an e = (u, v) ∈ E is ‖e‖G > 0 or ‖u, v‖G. By w ∼ v, we denote that w is a neighbor
of v in G.

The BP algorithm is a distributed and iterative: in each iteration, it involves sending a message
(real number) in both direction along each edge of the graph. Specifically, in iteration k ≥ 0 every
vertex v ∈ V sends a message 〈v → w〉kG to each of its neighbor w ∼ v. These messages are
calculated as follows:

〈v → w〉0G := 0;
〈v → w〉kG := min

u∼v,u�=w

{∥∥u, v
∥∥

G
− 〈u → v〉k−1

G

}
, ∀ k ≥ 1. (1)

Every vertex v ∈ V estimates the minimum cost matching, πk
G : V → V as follows:

πk
G(v) := argmin

w∼v

{∥∥v, w
∥∥

G
− 〈w → v〉kG

}
. (2)

Note that when the above algorithm is specialized to a bipartite graph, nodes in each partition
attempts to compute a permutation; if algorithm’s estimate converges to the right answer then the
permutation estimate of both the partitions much converge to the same answer. For that reason,
in the context of bipartite graph Kn,n, by πk

Kn,n
we denote the estimated assignment of nodes in

both the partition and now onwards we shall abuse the notation π∗
Kn,n

for the optimal assignment
of nodes in both partitions as well. We define fraction-difference between the estimated

d
(
πk
Kn,n

, π∗
Kn,n

)
:=

1
2n

card
{
x ∈ Kn,n, πk

Kn,n
(x) �= π∗

Kn,n
(x)

}
.
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It should be noted that each iteration of the algorithm requires O(n2) operations for G = Kn,n.
Therefore, if algorithm finds good estimate (i.e. d

(
πk
Kn,n

, π∗
Kn,n

)
small) after constant number of

iterations, then the overall cost is O(n2).

1.3 Result. We analyze the running time of BP for random assignment problem. We consider
stochastic model with edge weights being i.i.d. with cumulative distribution function represented
by H . Observe that the continuity of H will be sufficient for any two distinct perfect matchings
have a.s. distinct weights, allowing us to consider the minimal one π∗

Kn,n
. We establish that for a

large class of distribution H , the algorithm finds asymptotically correct solution in finite number
of iterations with high probability. Formal statement of our result is as follows:

Theorem 1 Let the cumulative distribution function of edge weights, H satisfy the following:

A1. Regularity at 0: H(0) = 0, H is right differentiable at 0, H ′(0) �= 0;

A2. Light-tail property : 1 − H(t) = O
(
e−βt

)
as t → ∞ for some β > 0.

Then,
lim

k→∞
lim sup

n→∞
E

[
d
(
πk
Kn,n

, π∗
Kn,n

)]
= 0. (3)

In establishing this result, we strongly utilize the frame-work of local weak convergence devel-
oped by Aldous [2]. As a reader will find, the above result is far from being an implication of the
result by Aldous. Specifically, to establish the above result we need to take two non-trivial steps:
(1) Establishing that the dynamics of Belief Propagation on Kn,n converges to dynamics of BP
on an appropriately defined limiting object; and (2) characterizing attractiveness of an operator
related to BP. It is worth noting that (2) was left as an open problem by Aldous and Bandopadhay
[3, Open Problem # 62].

1.4 Implication. Theorem 1 implies that for any ε > 0, there exists n(ε), k(ε) such that for
all n ≥ n(ε), the BP algorithm finds correct assignment to 1−ε fraction of nodes in k(ε) iterations
with probability at least 1 − ε. Thus, total computation cost is O(n2), constant depending on ε,
for finding good approximation. This result applies for large class of weight distribution function
including uniform over [0, 1] or exponential distribution.

1.5 Organization. The remaining paper is dedicated to proving Theorem 1. Our result
utilizes the machinery of local weak convergence introduced by Aldous. The Figure 1.5 illustrates
the three main steps of the proof of Theorem 1 – which corresponds to establishing the top
horizontal arrow.

1. First, we show that BP’s behavior on Kn,n “converges” to its behavior on the so-called
Poisson Weighted Infinite Tree (PWIT) T – corresponding to the left vertical arrow in
the Figure 1.5 and formally stated as Theorem 3. This is done in Section 3.

2. Second, we establish strong convergence of the recursive distributional tree process cor-
responding to BP’s execution on T – corresponding to the bottom horizontal arrow in
Figure 1.5 and summarized as Theorem 5. We note that the Theorem 5 resolves an open
problem stated in [2, 3] related to the assignment problem, which was necessary for estab-
lishing convergence of algorithm. However, it was not necessary for evaluating the limiting
expected cost as ζ(2). This is done in Section 4.

3. Third, the connection between the limiting estimate of BP and the optimal solution on
Kn,n, π∗

Kn,n
is provided by the work by Aldous [2] – corresponding to the vertical right

arrow and stated as Theorem 2 and Theorem 6. This is used in Section 5 to complete the
proof of Theorem 1.

2. Preliminaries

In this section, we describe the necessary background on the notion of local weak convergence
introduced by Aldous [2]. Consider a rooted, edge-weighted and connected graph G = (V, ∅, E),
where V is the set of vertices, E the set of edges and ∅ ∈ V represents it’s root. Define distance
between any two vertices of the graph as the infimum over weights of all paths connecting them.
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πk
Kn,n

n→∞

��

?

k→∞
�� π∗

Kn,n

n→∞

��
πk
T k→∞

�� π∗
T

Figure 1: Theorem 1 corresponds to establishing top-horizontal arrow; which is done by establish-
ing the other three arrows in the above diagram.

Define the �−restriction of G as the sub-graph �G�� of G obtained by deleting all vertices that are
at distance more than � from the root of G. Such a rooted, edge-weighted and connected graph
G is called geometric graph if it’s �−restrictions are finite for any finite � > 0. Now, we define
notion of local weak convergence for geometric graphs.

Definition 1 (local convergence of geometric graphs) A sequence (Gn)n≥1 of geometric
graphs is said to converge locally to a geometric graph G if for any � > 0 such that no vertex
in G is at distance exactly � from the root, the following is satisfied:

1. There exists n� ∈ N∗ such that all the �Gn��, n ≥ n� are isomorphic1 to �G�� ;

2. The corresponding isomorphisms γ�
n : �G�� � �Gn��, n ≥ n� can be chosen so that for any

edge e in �G�� : ∥∥γ�
n(e)

∥∥
Gn

−−−−→
n→∞

∥∥e
∥∥

G
.

Consider the following mapping between pair of geometric graphs, G, G′:

G, G′ �→
∫ ∞

0

e−�

(
1 ∧ inf

γ : 
G���
G′��

max
e∈
G��

∣∣∣∣ln ‖γ(e)‖G′

‖e‖G

∣∣∣∣) d� (4)

With little work, it can be shown that the above mapping defines a metric on G∗, the space of
geometric graphs. Further, the above definition of local weak convergence is equivalent to the
convergence with respect to the above defined metric. Thus resulting metric space is complete
and separable. As a consequence, we can import machinery related to the weak convergence of
distribution on Polish space. Specifically, we will often use the Skorohod’s representation theorem
(see, [7, Theorem 6.7]): it essentially allows one to assume (due to existence of appropriate joint
probability space) almost sure convergence when there is a distribution or local weak convergence.

Next, we recall result by Aldous that showed that Kn,n convergences to the Poisson Weighted
Infinite Tree under the topology of local weak convergence. Before we state the result, we will
need some notation that will be useful throughput the paper. Let V denote the set of all finite
words over the alphabet N∗, ∅ the empty word, “·” the usual concatenation operation on V and
for any v ∈ V∗ := V \ {∅}, v̇ the word obtained from v by simply deleting the last letter. Set also
E := {{v, v.i}, v ∈ V , i ≥ 1}. The graph T = (V , E) denotes an infinite tree with ∅ as root, all
words of length 1 as the nodes at depth 1, words of length 2 as the nodes at depth 2, and so on.

Theorem 2 (Convergence to PWIT[1, 2]) Given a collection (ξv = ξv
1 , ξv

2 . . .)v∈V of indepen-
dent, ordered Poisson point processes with intensity 1 on R+, consider the infinite tree T := (V , E)
rooted at ∅ and with edge lengths

∥∥v, v.i
∥∥
T := ξv

i , v ∈ V , i ≥ 1. This defines the law of a random
rooted geometric graph called the Poisson Weighted Infinite Tree (PWIT). Under the assumption
A1 on H, we have:

nH ′(0)Kn,n
D−−−−→

n→∞
T , (5)

with respect to the topology of local weak convergence.

1An isomorphism from G = (V, ∅, E) to G′ = (V ′, ∅
′, E′), denoted γ : G � G′, is simply a bijection from V to

V ′ preserving the root γ
`
∅

´
= ∅

′) and the structure (∀(x, y) ∈ V, {γ(x), γ(y)} ∈ E′ ⇔ {x, y} ∈ E).
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For simplicity of notation, we will get rid of the scaling factor nH ′(0) from the remaining of
the paper by the following transformation: the edge lengths in Kn,n as distributed according

to H
(

·
nH′(0)

)
instead of H . Note that, under this scaling (transformation), both the optimal

matching π∗
Kn,n

and the BP computatoin πk
Kn,n

, k ≥ 0, remain invariant.

3. First step: convergence of dynamics of BP

The goal of this section is to deduce from Theorem 2 that the behavior of BP when running on
Kn,n converges as n → ∞ to its behavior when running on T . In order to make this notion
precise, we first re-label the vertices of Kn,n by words of V . We would like this re-labeling done
in a manner that yields to consistent comparison between the messages of BP on Kn,n and those
on T . Such a re-labeling is explained next. To begin with, the empty word ∅ will represent
a fixed root of Kn,n (alternatively, one may choose one of the vertex uniformly at random; but
symmetry of the problem makes this distributionally equivalent to the choice of fixed root node).
Assign words 1, 2, · · · , n to the n immediate neighbors of the chosen root ordered as per their
edge weights (lengths) in an increasing manner. Now inductively, if word v ∈ V∗ represents some
vertex x ∈ Kn,n and v̇ some y ∈ Kn,n, then let the words v.1, v.2, · · · , v.(n−1) represent the n−1
neighbors of x distinct from y in Kn,n, again ordered by edge weights (lenghts) in an increasing
manner. Note that this definition makes almost surely since the edge lengths are pairwise distinct
by continuity of H . Note also that any {u, v} ∈ E represents an edge of Kn,n for large enough n.
Now, we state and prove the main result of this section. In what follows, consider Kn,n converging
to T almost surely due to Theorem 2 and Skorohod’s representation theorem.

Theorem 3 (Continuity of BP) Consider BP operating on Kn,n, where Kn,n converges to T
almost surely. Then, for all k ≥ 0, the kth step messages of BP on Kn,n converge to those on T
in probability. That is,

∀v ∈ V∗, 〈v → v̇〉kKn,n

proba−−−−→
n→∞

〈v → v̇〉kT . (6)

Further, the estimates at the root nodes converge in probability:

P

(
πk
Kn,n

(∅) �= πk
T (∅)

)
−−−−→
n→∞

0. (7)

Proof. We will prove (6) by induction over k ≥ 0. The base case of k = 0 is trivial. Now
suppose the convergence holds for some k ≥ 0 and fix v �= ∅. We need to show

〈v → v̇〉k+1
Kn,n

proba−−−−→
n→∞

〈v → v̇〉k+1
T . (8)

Equivalently,

min
1≤i<n

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
proba−−−−→
n→∞

min
i≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}
. (9)

Note that for every fixed i ≥ 1,
∥∥v, v.i

∥∥
Kn,n

a.s.−−−−→
n→∞

∥∥v, v.i
∥∥
T since we have Kn,n convering to T

a.s.. Hence, using the induction hypothesis it follows that∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

proba−−−−→
n→∞

∥∥v, v.i
∥∥
T − 〈v.i → v〉kT .

It is temping to complete the proof here by adding “minimum over i” in the above. However, it
needs additional justification as we have infinite number of terms. In order to complete the proof,
we will show that only a large finite number of terms matter for minimization in the following
sense :

lim
i0→∞

lim sup
n→∞

P

(
argmin
1≤i<n

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
≥ i0

)
= 0. (10)

Given (10), the desired conclusion of (8) will be obtained as follows: for any ε > 0,

P

( ∣∣∣〈v → v̇〉k+1
Kn,n

− 〈v → v̇〉k+1
T

∣∣∣ ≥ ε
)
≤ P

(
arg min
1≤i<n

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
≥ i0

)
+ P

(
arg min

i≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}
≥ i0

)
+ P

(∣∣∣∣ min
1≤i<i0

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
− min

1≤i<i0

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}∣∣∣∣ ≥ ε

)
.
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Now, taking lim sup with respect to n → ∞ and then taking limit as i0 → ∞ yields the desired
result. Here, we have used the fact that arg mini≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}
is a well-defined

finite r.v. with probability 1. This will become obvious in the next section. The proof of (10) will
follow from Lemma 3 stated and proved later in this section. Finally, the convergence claimed in
(7) follows using similar arguments as explained in the following sequence of inequalities:

P

(
πk
Kn,n

(∅) �= πk
T (∅)

)
≤ P

(
argmin
1≤i<n

{∥∥∅, i
∥∥
Kn,n

− 〈i → ∅〉kKn,n

}
≥ i0

)
+ P

(
argmin

i≥1

{∥∥∅, i
∥∥
T − 〈i → ∅〉kT

}
≥ i0

)
+ P

(
argmin
1≤i<i0

{∥∥∅, i
∥∥
Kn,n

− 〈i → ∅〉kKn,n

}
�= argmin

1≤i<i0

{∥∥∅, i
∥∥
T − 〈i → ∅〉kT

})
.

This completes the proof of Theorem 3. �
It now remains to prove assertion (10) which is stated as Lemma 3. In order to prove it, we will

need two Lemmas 1 and 2 stated below will provide the desired uniform controls over edge-lengths
and messages under re-labeling. In these two Lemmas, we will use the following notation: for a
word v ∈ V , by |v| we denote number of letters in it (e.g. for v = ∅, |v| = 0); its letters will be
represented as v = (v1, . . . , v|v|) (e.g. v = 1.2.1.3 then |v| = 4 and v1 = 1, v2 = 2, v3 = 1, v4 = 3).
For 0 ≤ h ≤ |v|, we will write v≤h for the prefix v1 · · · vh.

Lemma 1 (Uniform control on edge-lengths) There exist constants (Mh)h≥1, α and β > 0
such that for all v ∈ V , i ≥ 1, t ∈ R+ and n large enough so that for v.i ∈ Kn,n,

P

(∥∥v, v.i
∥∥
Kn,n

≤ t
)
≤ M|v|

(αt)i

i!
eαt and P

(∥∥v, v.1
∥∥
Kn,n

≥ t
)
≤ M|v|e

−βt.

Proof. Suppose ‖v, v.i‖Kn,n ≤ t. Then by construction, the sequence of words (v≤0, . . . , v≤|v|)
represents a path in Kn,n starting from the root and ending at a vertex from which at least i incident
edges have length at most t (property of re-labeling). Following down this path while deleting
every cycle, we obtain a cycle-free path x = (x0, . . . , xk) (0 ≤ k ≤ |v| ∧ 2n − 1) starting from the
root satisfying

card
{

y �= xk−1,
∥∥xk, y

∥∥
Kn,n

≤ t
}
≥ i − 1. (11)

For 0 ≤ j < k, (xj , xj+1) corresponds to some (v≤p−1, v≤p), 1 ≤ p ≤ |v|. By construction the
number of edges that are incident on v≤p−1 and shorter than {v≤p−1, v≤p} is precisely vp − 1 or
vp, depending on the parent-edge. Therefore, there exists p ∈ {1, . . . , |v|} such that

vp −
⌈

k

2

⌉
≤ card

{
y /∈ {x1, . . . , xk},

∥∥xj , y
∥∥
Kn,n

<
∥∥xj , xj+1

∥∥
Kn,n

}
≤ vp. (12)

In above, we used the fact that only half of the x1, . . . , xk are neighbors of xj , and hence the
bound of

⌈
k
2

⌉
. Thus, we have shown that

P

(∥∥v, v.i
∥∥
Kn,n

≤ t
)
≤

|v|∑
k=0

∑
x=(x0,...xk)

P

⎛⎝An,x ∩
k−1⋂
j=0

Bj
n,x

⎞⎠,

where event An,x corresponds to (11) and Bj
n,x correspond to (12) for 0 ≤ j < k. The summation

in the above inequality is over all possible cycle-free paths x = (x0, ...xk) starting from the root
in Kn,n. Now since all the edges involved are pairwise distinct, the events An,x, B0

n,x, ..., Bk−1
n,x are

independent. Therefore, their probabilities can be computed as folllows:

P
(
Bj

n,x

)
=

|v|∑
p=1

vp∑
q=vp−�k

2 �

1
n + 1 −

⌈
k
2

⌉ ≤ (|v| + 1)3

n
;

P (An,x) =
n−1∑

q=i−1

(
n − 1

q

)
H

(
t

nH ′(0)

)q(
1 − H

(
t

nH ′(0)

))n−1−q

≤ (αt)i

i!
eαt,

where we have used assumption A1 and the following notation:

α :=
1

H ′(0)
sup

�∈R+

H(�)
�

< +∞.
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This yields the first uniform bound since the number of cycle-free paths x = (x0, ..., xk) starting
from the root in Kn,n is clearly bounded above by nk. For the second one, the event An,x is

simply replaced by card
{

y �= xk−1,
∥∥xk, y

∥∥
Kn,n

≤ t
}
≤ 1, whose probability is straightforwardly

exponentially bounded using assumption A2. This completes the proof of Lemma 1. �

Lemma 2 (Uniform control on messages) There exist constants (Mk,h, βk,h)k,h≥0 > 0 such
that for all v ∈ V∗, and for all t ∈ R+,

P

( ∣∣∣〈v → v̇〉kKn,n

∣∣∣ ≥ t
)
≤ Mk,|v|e

−βk,|v|t, (13)

uniformly in n, as long as n is large enough so that v ∈ Kn,n.

Proof. The proof is by induction over k. The base case of k = 0 follows trivially. Now, as
per induction hypothesis for a given k ∈ N suppose (13) is true. By Lemma 1 we can write for all
v ∈ V∗ and t ∈ R+:

P

(
〈v → v̇〉k+1

Kn,n
≥ t

)
= P

(
min

1≤i<n

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
≥ t

)
≤ P

(∥∥v, v.1
∥∥
Kn,n

≥ t

2

)
+ P

(
〈v.1 → v〉kKn,n

≤ − t

2

)
≤ M|v|e

−β
2 t + Mk,|v|+1e

−
βk,|v|+1

2 t.

The other side is harder to obtain which we do next. For this, again by Lemma 1 :

P

(
〈v → v̇〉k+1

Kn,n
≤ −t

)
= P

(
min

1≤i<n

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
≤ −t

)
≤

n−1∑
i=1

P

(∥∥v, v.i
∥∥
Kn,n

≤ ri(t)
)

+
n−1∑
i=1

P

(
〈v.i → v〉kKn,n

≥ t + ri(t)
)
,

≤ M|v|

∞∑
i=1

(
αri(t)

)i
eαri(t)

i!
+ Mk,|v|+1

∞∑
i=1

e−βk,|v|+1(t+ri(t)),

where the inequalities hold for any choice of the quantities ri(t) ≥ 0. Our proof thus boils down
to the following simple question: can we choose the ri(t) such that

1. ri(t) is large enough to ensure exponential vanishing of
∞∑

i=1

e−βk,|v|+1(t+ri(t));

2. ri(t) is small enough to ensure exponential vanishing of
∞∑

i=1

(
αri(t)

)i
eαri(t)

i!
.

The answer is yes. Indeed, taking ri(t) := δie−γt with γ, δ > 0 yields

1
t

log
∞∑

i=1

e−βk,|v|+1(t+ri(t)) −−−−→
t→+∞

γ − βk,|v|+1.

Therefore, selection of γ < βk,|v|+1 is enough to ensure (1). As far as (2) is concerned, we have

1
t

log
∞∑

i=1

(
αri(t)

)i
eαri(t)

i!
≤ −γ +

1
t

log
∞∑

i=1

(
αδeαδi

)i

i!
.

The term in the infinite summation is equivalent to (αδeαδ−1)i

√
2πi

by Stirling’s formula. Hence the
result follows as soon as δ is small enough for αδeαδ−1 < 1. �
We now know enough to justify the crucial assertion we used in the proof of Theorem 3 :

Lemma 3 (Uniform control on essential messages) For all v ∈ V and k ≥ 0 :

lim
i0→∞

lim sup
n→∞

P

(
argmin
1≤i<n

{∥∥v, v.i
∥∥
Kn,n

− 〈v.i → v〉kKn,n

}
≥ i0

)
= 0.
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Proof. Choose δ > 0 small enough to ensure αδeαδ−1 < 1 and use result of Lemmas 1 and 2
to conclude that for t ∈ R+, we have

P

(
arg min
1≤i<n

{∥∥v, v.i
∥∥
Kn

− 〈v.i → v〉kKn,n

}
≥ i0

)

≤ P

(
〈v → v̇〉k+1

Kn,n
≥ t

)
+

n−1∑
i=i0

P

(∥∥v, v.i
∥∥
Kn,n

≤ δi
)

+
n−1∑
i=i0

P

(
〈v.i → v〉kKn,n

≥ δi − t
)

≤ Mk+1,|v|e
−βk+1,|v|t + M|v|

∞∑
i=i0

(αδeαδi)i

i!
+ Mk,|v|+1

∞∑
i=i0

e−βk,|v|+1(δi−t).

Letting i0 → ∞ and finally t → ∞ yields the desired result. �

4. Second step: convergence of BP on PWIT

In the previous section, we established that the dynamics of BP on Kn,n converges to that on
the limiting PWIT T as n → ∞. This convergence happens with respect to the local weak
convergence. Therefore, in order to understand the behavior of BP on Kn,n for large n, we need
to study the dynamics of BP on the infinite random structure PWIT. That is, we are interested
in understanding the following random message-process on T : ∀v ∈ V∗ and k ≥ 0,

〈v → v̇〉k+1
T := min

i≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}
, (14)

and initial messages
(
〈v → v̇〉0T

)
v∈V∗ are i.i.d. (in our algorithm, messages are initialized to 0).

First observe that at any given time k all 〈v → v̇〉kT , v ∈ V∗ share the same distribution, owing
to the natural spatial invariance of the PWIT. Moreover, if F denotes the corresponding common
anti-c.d.f.2 at a given time, a straightforward computation (see for instance [2]) shows that the
new anti-c.d.f. obtained after a single application of update rule (14) is :

TF : x �→ exp
(
−

∫ +∞

−x

F (t) dt

)
. (15)

This defines an operator T on the space D of anti-c.d.f.’s, (i.e. left-continuous non-increasing
functions F : R → [0, 1]). This operator T is known to have a unique fix-point (see [2]), which is
the so-called logistic distribution:

F ∗ : x �→ 1
1 + ex

. (16)

Our first step will naturally consist in studying the dynamics of T on D.

4.1 Attractiveness of T : weak convergence on T . Finding the domain of attraction of
F ∗ under operator T is not known and has been listed as open problem by Aldous and Bandy-
opadhyay ([3, Open Problem # 62]). In what follows, we will answer this question and more.
We will fully characterize the asymptotical behavior of the successive iterates (T kF )k≥0 for any
initial distribution F ∈ D. Due to matching constraints, the operator T is non-decreasing in the
following sense:

F ≤ F ′ on all R ⇒ TF ′ ≥ TF on all R. (17)
This suggests considering the monotonic (non-decreasing) second iterate T 2. However, unlike T
the second iterate T 2 admits an infinite number of fix-points. For this, let θt (t ∈ R) be the shift
operator defined on D by θtF : x �→ F (x − t). Then,

T ◦ θt = θ−t ◦ T, (18)

Therefore, it follows that T 2(θtF
∗) = θt(T 2F ∗) = θtF

∗ for all t ∈ R. Thus, θtF
∗ is fixed points

of T 2 for all t ∈ R. On first instance, this fact may seem a bit disappointing. But as we shall see,
these fixed-points will play a crucial role in our study of the operator T ’s iterates. First, a useful
transformation.

Definition 2 For F ∈ D, define the transform F̂ as follows :

F̂ : R → [−∞, +∞]

x �→ x + ln
(

F (x)
1−F (x)

)
.

(19)

2The anti-c.d.f. of a real r.v. X is the function F : x → P (X > x).
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The reason behind considering this transform is the following straightforward fact.

Lemma 4 For any given F ∈ D and x ∈ R, F (x) = θ
bF (x)F

∗(x). Further, F ≡ θxF ∗ if and only

if F̂ is constant on R with value x.

The above Lemma suggests that the maximal amplitude of the variations of F̂ on R tells about
the distance between F and the family of fix-points {θtF

∗, t ∈ R}. Therefore, we will consider
behavior of the maximal amplitude of F when T acts on F .

Lemma 5 Let F ∈ D \ {0} be integrable at +∞. Then, T̂ 4F is uniformly bounded on R.

Proof. The non-increasing property of F : R → [0, 1] and F �= 0 implies that there exists
β > 0 and x0 ∈ R such that

∀x ≤ x0, β ≤ F (x) ≤ 1.

An application of T on F implies the following: for all x ≥ −x0,

A0e
−x ≤ TF (x) = exp

(
−

∫ +∞

−x

F (u)du

)
≤ B0e

−βx, (20)

where A0 := exp
(
−x0 −

∫ +∞
x0

F (u)du
)

> 0 and B0 := exp
(
−βx0 −

∫ +∞
x0

F (u)du
)

> 0 since F is
integrable. Now, the (20) implies that the TF is integrable at +∞ as well. Thus, by an inductive
application T kF is integrable at +∞ for all k ≥ 1. Now, consider the following.

1 − T 2F (x) = 1 − exp
(
−

∫ +∞

−x

TF (u)du

)
. (21)

Since TF is integrable at +∞,
∫∞
−x TF (u)du → 0. Therefore, as x → −∞,

1 − T 2F (x) ≈
∫ +∞
−x TF (u)du.

Therefore, using (20), we obtain for all x small enough, say smaller than some x1 ∈ R :
1 − A1e

βx ≤ T 2F (x) ≤ 1 − B1e
x, (22)

for some constants A1, B1 > 0. Applying T again yields for all x ≥ −x1 :

A2e
−x ≤ T 3F (x) = exp

(
−

∫ +∞

−x

T 2F (u)du

)
≤ B2e

−x, (23)

with the new positive constants A2 := exp
(
−x1 −

∫ +∞
x1

T 2F (u)du +
∫ x1

−∞ B1e
udu

)
and B2 :=

exp
(
−x1 −

∫ +∞
x1

T 2F (u)du +
∫ x1

−∞ A1e
βudu

)
. Of course, since TF satisfies the same assumptions

as F this domination will also hold for T 4F . Finally, by the same argument as (22) above, one
easily deduce from (23) that for x small enough :

1 − A3e
x ≤ T 4F (x) ≤ 1 − B3e

x, (24)

where A3, B3 are positive constants.

Using arguments similar to those used for (23) and (24), we obtain that there exists x4 such
that for all x ≥ x4,

A4e
−x ≤ T 4F (x) ≤ B4e

−x. (25)

And, there exists x′
4 such that for x ≤ x′

4,

1 − A′
4e

−x ≤ T 4F (x) ≤ 1 − B′
4e

−x. (26)

Now, recall definition of T̂ 4F defined over R:

T̂ 4F : x �→ x + ln
(

T 4F (x)
1 − T 4F (x)

)
.

Now, as x → ∞ T 4F (x) → 0. Therefore, for large enough x using (25), the following holds:

x + ln
(

T 4F (x)
1 − T 4F (x)

)
= O(1) + x + lnT 4F (x)

= O(1) + x − x = O(1). (27)

Similarly, using (26) we obtain that as x → −∞, the T̂ 4F (x) is uniformly bounded by an O(1)
term. Therefore, invoking continuity of T̂ 4F over R, we obtain that it is uniformly bounded over
the R. �
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Lemma 6 If F ∈ D is such that F̂ is bounded, then T̂ 2F is bounded too and :

sup
R

T̂ 2F ≤ sup
R

F̂ ;
infR T̂ 2F ≥ infR F̂ .

Further, the above inequalities are strict if and only if F̂ is not constant on R.

Proof. The proof of inequalities is imminent from the non-decreasing property of T 2 we
noted earlier. Specifically, consider the following. Let,

inf
R

F̂
�
= m ≤ F̂ ≤ M

�
= sup

R

F̂ .

That is,
θmF ∗ ≤ F ≤ θMF ∗.

Now, non-decreasing property of T 2 and F ∗ being fixed point implies

θmF ∗ ≤ T 2F ≤ θMF ∗ ⇒ m ≤ T̂ 2F ≤ M.

Thus, we obtain the desired inequalities

sup
R

F̂ ≤ inf
R

T̂ 2F ≤ sup
R

T̂ 2F ≤ sup
R

F̂ .

Next, we show that the inequality is strict if and only if F̂ is not a constant. Note that since θtF
∗

is fixed point for T 2 for any constant t, if F̂ is constant then so is T̂ 2F and equal to F̂ . Thus, we
only need to show that if F̂ is not a constant over R then the inequality is strict.

To this end, note that the left-continuity of F implies that of F̂ . Therefore if F̂ is not constant
on R then there exists an open interval (a, b) such that M ′ = sup(a,b) F̂ < sup

R
F̂ = M . Therefore,

for x ≥ −a,

TF (x) = exp
(
−

∫ +∞

−x

F (u)du

)
≥ exp

(
−

∫ a

−x

θMF ∗(u)du

)
exp

(
−

∫ b

a

θM ′F ∗(u)du

)
exp

(
−

∫ ∞

b

θMF ∗(u)du

)

= κ × T (θMF ∗)(x) with κ := exp

(∫ b

a

(θMF ∗ − θM ′F ∗) (u)du

)
> 1.

Applying T again implies that for every x ∈ R,⎧⎪⎪⎨⎪⎪⎩
x ≤ a ⇒ T 2F (x) ≤ exp

(
−κ

∫ +∞

−x

T (θMF ∗)(u)du

)
= (θMF ∗(x))κ;

x ≥ a ⇒ T 2F (x) ≤ exp
(
−

∫ −a

−x

T (θMF ∗)(u)du

)
(θMF ∗(a))κ = κ′ × θMF ∗(x),

where κ′ := (θMF ∗(a))κ−1
< 1. Therefore, the right hand side of both the terms can be strictly

upper bounded by θMF ∗(x) implying that T̂ 2F (x) < M for all x ∈ R. In order to make sure that
the supremum also remains strictly lower bounded, we need to worry about case when x → ±∞.
For this, observe that (recall definition of F ∗)⎧⎪⎪⎨⎪⎪⎩

x ≤ a ⇒ T̂ 2F (x) ≤ x + ln
(

(θMF ∗(x))κ

1 − (θMF ∗(x))κ

)
−−−−−→
x→−∞

M − ln κ < M ;

x ≥ a ⇒ T̂ 2F (x) ≤ x + ln
(

κ′ × θMF ∗(x)
1 − κ′ × θMF ∗(x)

)
−−−−−→
x→+∞

M + lnκ′ < M.

The other inequality can be obtained in exactly the same manner; therefore we skip the details.
�

Lemma 7 Consider F ∈ D such that F̂ is bounded. Then,

1. T̂ kF is continuously differentiable for k ≥ 2, and

2. {(T̂ kF )′, k ≥ 3} is uniformly integrable on R.
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Proof. First, we prove the claim (1) about continous differentiability. For this, consider
k ≥ 2. Now, T k−2F is bounded by 1 on R, T k−1F : x �→ exp

(
−

∫∞
x T k−2F (u)du

)
is Lipschitz con-

tinuous with Lipschitz constant 1. Therefore, T kF : x �→ exp
(
−

∫∞
x T k−1F (u)du

)
is continuously

differentiable on R such that for all x ∈ R,

(T kF )′(x) = −T kF (x)T k−1F (−x). (28)

This in turn implies that T̂ kF : x → x + ln
(

T kF (x)
1−T kF (x)

)
is indeed continuously differentiable on R

and for all x ∈ R,

(T̂ kF )′(x) =
1 − T kF (x) − T k−1F (−x)

1 − T kF (x)
. (29)

Now, the claim (2) about uniform integrability of {(T̂ 2F )′, k ≥ 3}. Recall that Lemma 6 ensures
uniform boundedness of the family {T̂ kF , k ≥ 0} on R since F̂ is bounded. Let one such bound
be M ≥ 0. This allows us to bound the above fraction, for given x by e2M−1

1+ex+M independently of
k. This already yields uniform integrability towards +∞. For uniform integrability towards −∞,
note that the numerator in (29) is continuously differentiable on R for k ≥ 3 by (28). Therefore,
for x ∈ R,∣∣1 − T kF (x) − T k−1F (−x)

∣∣ =
∣∣∣∣∫ x

−∞
T k−1F (−u)

(
T kF (u) − T k−2F (u)

)
du

∣∣∣∣
≤

∫ x

−∞
θMF ∗(−u)

(
θMF ∗(u) − θ−MF ∗(u)

)
du.

This is enough to ensure uniform integrability at −∞: because, the above integral is bounded
above by O(e2x) whereas the denominator (in 29) scales as Θ(ex), thus yielding the overall bound
on (T̂ kF )′(x) as O(ex) as x → −∞. This completes the proof of Lemma 7. �
Now, we are ready to state the main result of this sub-section, which is characterizes the asymptotic
behavior of T k.

Theorem 4 (Dynamics of T on D) Consider any F ∈ D \ {0} that is integrable at +∞. Then

sup
R

∣∣∣T̂ kF − (−1)kγ
∣∣∣ ↘

k→∞
0,

for some constant γ ∈ R (dependent on F ). Specifically, the following convergence happens uni-
formly on R:

T 2kF −−−−→
k→∞

θγF ∗ and T 2k+1F −−−−→
k→∞

θ−γF ∗.

Remark 2 The above characterization is optimal in the following sense: F ≡ 0 or
∫∞
0 F = +∞

then the sequence (T kF )k≥1 simply alternates between the 0 function and the 1 function.

Proof. Lemma 5 ensures existence of t ≥ 0 such that for all k ∈ N,

θ−tF
∗ ≤ T kF ≤ θtF

∗. (30)

By Lemma 6, the bounded real sequences (infR T̂ 2kF )k≥2 and (sup
R

T̂ 2kF )k≥2 are respectively non-
decreasing and non-increasing. Hence they converge to say m and M respectively as k → ∞. By
Arzela-Ascoli theorem, the family of pointwise bounded and equi-continuous functions (T 2kF )k≥2

is relatively compact with respect to the topology of uniform convergence on every compact set of
R. Therefore, there exists a convergent subsequence, ϕ(k) such that

T 2ϕ(k)F −−−−→
k→∞

F∞.

This uniform convergence implies that ̂T 2ϕ(k)F converges to F̂∞ since on every fixed compact set
of R the uniform bound (30) keeps all the values of the T 2ϕ(k)F, k ≥ 0 within a compact set of ]0, 1[
over which the mapping y �→ ln y

1−y is uniformly continuous. Therefore, in the limit we obtain

that m ≤ F̂∞ ≤ M . Moreover these inequalities are tight, in the sense that

m = inf
R

F̂∞; and M = sup
R

F̂∞.
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To see this, consider any ε > 0. Then, Lemma 7 implies existence of a compact set Kε such that
for all k large enough

infKε T̂ ϕ(k)F ≤ infR T̂ ϕ(k)F + ε;

supKε
T̂ ϕ(k)F ≥ sup

R
T̂ ϕ(k)F − ε.

Now, using the above as k → ∞ we obtain that infR F̂∞ ≤ m + ε and sup
R

F̂∞ ≥ M − ε. Since
ε > 0 is abribtrary, we conclude that

inf
R

F̂∞ = m and sup
R

F̂∞ = M.

Now, the restriction of T to the subset {F ∈ D,−t ≤ F̂ ≤ t} is clearly continuous with respect to
the topology of uniform convergence on every compact set. Therefore,

T 2(ϕ(k)+1)F −−−−→
k→∞

T 2F∞.

But using exactly the same arguments as above, we again obtain a similar conclusion that

inf
R

T̂ 2F∞ = m and sup
R

T̂ 2F∞ = M.

Therefore, Lemma 6 implies that it must be that m = M . That is, we have proved uniform
convergence of (T̂ 2kF )k≥0 to a constant function on R. Finally property (18) ensures convergence
of ( ̂T 2k+1F )k≥0 to the opposite constant. �

4.2 Attractiveness of messages: strong convergence on T . So far, we have established
the distributional convergence of messages by establishing the convergence of operator T . To
complete the algorithm analysis, we need to prove sample-path wise convergence of the message
process – which is stronger than that established in the last section. To this end, we will construct
a stochastic coupling on T guaranteeing the desired strong convergence of the recursive tree pro-
cess defined by (14). We note that Aldous and Bandyhopadhyay [3, 5] have studied the special
case where the initial messages (〈v → v̇〉0T )v∈V∗ i.i.d. with distribution being the fix-point F ∗.
They established L2-convergence of the message process to the (almost surely) unique stationary
configuration independent of the initial message realization (〈v → v̇〉0T )v∈V∗ . They call this prop-
erty as endogenity. We want to establish such an endogenity property when initial messages are
generated in an i.i.d. manner with distribution F as long as F is reasonable (precise conditions
below). Now, we state the main result of this sub-section.

Theorem 5 (Strong convergence on T ) Let initial messages
(
〈v → v̇〉0T

)
v∈V∗ be i.i.d. satis-

fying
P
(
〈v → v̇〉0T > −∞

)
> 0 and E

[(
〈v → v̇〉0T

)+
]

< ∞.

Then, there exists a constant γ ∈ R (depending upon the initial distribution), such that the recur-
sive tree process

(
(〈v → v̇〉kT )v∈V∗

)
k≥0

defined on T by (14) converges to the almost sure unique
stationary configuration ((〈v → v̇〉∗T )v∈V∗)k≥0 in the following sense:

∀v ∈ V∗, 〈v → v̇〉kT − (−1)kγ
L1

−−−−→
k→∞

〈v → v̇〉∗T .

Further, the estimate of assignment at the root of T corresponding to these messages converge in
probability to the estimate at the root based on the stationary configuration:

πk
T (∅) def= argmin

i≥1

{∥∥∅, i
∥∥
T − 〈i → ∅〉kT

}
proba−−−−→
k→∞

π∗
T (∅) def= arg min

i≥1

{∥∥∅, i
∥∥
T − 〈i → ∅〉∗T

}
.

Remark 3 Our assumptions on the initial message distribution is necessary as otherwise the
message process can become infinite everywhere on T after the first iteration, almost surely.

Proof. Let F denote the anti-cdf of the initial message distribution and γ be the correspond-
ing constant appearing in Theorem 4. First, observe that if we add a constant to all the initial
values then under the dynamics (14), the same constant is added to every even message 〈v → v̇〉2k

T
and the negative of the constant is added to every odd message 〈v → v̇〉2k+1

T . Therefore, without
loss of generality we assume γ = 0. That is, for any ε > 0 there exists kε ∈ N so that

θ−εF
∗ ≤ T kεF ≤ θεF

∗.
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By the Skorohod’s representation theorem, there exists joint probability space E′ = (Ω′,F ′, P ′),
possibly different from the original space E = (Ω,F , P ) on which PWIT T is defined, and a random
variable Xε defined in it with distribution T kεF along with two other random variables X− and
X+ with distribution F ∗ such that

X− − ε ≤ Xε ≤ X+ + ε, with probability 1.

Now consider the product space (
⊗

v∈V E′) ⊗ E over which the PWIT T and independent copies
of (X−

v , Xε
v , X+

v )v∈V of the triple (X−, X, X+) are defined for each vertex v ∈ V . On T , let
us compare the message configurations

(
〈v → v̇〉k,−

T
)
v∈V∗,k≥0

,
(
〈v → v̇〉k,ε

T
)
v∈V∗,k≥0

and
(
〈v →

v̇〉k,+
T

)
v∈V∗,k≥0

obtained by three versions of our recursive tree process differing only in their initial
configurations as follows: for each v ∈ V∗,

〈v → v̇〉0,−
T := X−

v ;

〈v → v̇〉0,ε
T := Xε

v ;

〈v → v̇〉0,+
T := X+

v .

Due to the anti-monotony and ‘homogeneity’ of the update rule (14), it can be easily checked that
the inequalities X−

v − ε ≤ X∗
v ≤ X+

v + ε propagate in the sense that for any k ≥ 0 and v ∈ V∗,

〈v → v̇〉2k,−
T − ε ≤ 〈v → v̇〉2k,ε

T ≤ 〈v → v̇〉2k,+
T + ε ;

〈v → v̇〉2k+1,+
T − ε ≤ 〈v → v̇〉2k+1,ε

T ≤ 〈v → v̇〉2k+1,−
T + ε.

By construction, for every v ∈ V∗, the sequences
(
〈v → v̇〉k+kε

T

)
k≥0

and
(
〈v → v̇〉k,ε

T

)
k≥0

are

distributionally equivalent. Therefore, for every k ≥ kε and v ∈ V∗, we have

sup
s,t≥k

∥∥〈v → v̇〉sT − 〈v → v̇〉tT
∥∥

L2 = sup
s,t≥k−kε

∥∥〈v → v̇〉s,ε
T − 〈v → v̇〉t,εT

∥∥
L2

≤ sup
t≥k−kε

∥∥〈v → v̇〉t,+T − 〈v → v̇〉∗T
∥∥

L2 + sup
t≥k−kε

∥∥〈v → v̇〉t,−T − 〈v → v̇〉∗T
∥∥

L2 + 2ε.

The endogeneity property of the logistic recursive tree process established by Aldous and Bandy-
hopadhyay [3, 5] implies that the first two terms vanish as k → ∞. Thus, the sequence(
〈v → v̇〉kT

)
k≥0

is cauchy in the L2 space and therefore it is convergent. Clearly, Theorem 4
implies that the marginal distribution of limiting message is F ∗. However, it is not sufficient for
our purpose: we need to show that the limiting (joint) message configuration over T is stationary,
i.e. a fixed point of the dynamics as it corresponds to the minimum cost matching (assignment)
as established by Aldous [2]. This is the precise stronger notion of convergence we are establish-
ing here. Note that the stationary configuratin is almost surely unique as established by Aldous
and therefore establishing stationarity of the limiting configuration relates to the minimum cost
matching assignment.

To this end, recall that for all k ≥ 0 and v ∈ V∗, almost surely

〈v → v̇〉k+1
T = min

i≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}
.

Since the left side tends to 〈v → v̇〉∞T , it is enough to show that the right side tends in probability to

mini≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉∞T

}
despite the infinite number of terms involved in the min. Indeed,

for every ε > 0, i0 ≥ 1 and k ≥ 0,

P

(∣∣∣∣min
i≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉kT

}
− min

i≥1

{∥∥v, v.i
∥∥
T − 〈v.i → v〉∞T

}∣∣∣∣ ≥ ε

)
≤

i0∑
i=1

P
(∣∣〈v.i → v〉kT − 〈v.i → v〉∞T

∣∣ ≥ ε
)

+
∞∑

i=i0+1

P
(∥∥v, v.i

∥∥
T − 〈v.i → v〉∞T ≤

∥∥v, v.1
∥∥
T − 〈v.1 → v〉∞T

)
+

∞∑
i=i0+1

P
(∥∥v, v.i

∥∥
T − 〈v.i → v〉kT ≤

∥∥v, v.1
∥∥
T − 〈v.1 → v〉kT

)
.
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Now, the first term vanishes as k → ∞ because L2 convergence implies the convergence in prob-
ability. The second term can be made arbitrarily small by choosing i0 large enough since the
infinite sum is convergent as we shall show next. The ith term in the summation of the second
term is precisely P(ξi−1 ≤ X∗

1 −X∗
2 ) where X∗

1 and X∗
2 are i.i.d. with distribution F ∗ and (ξi)i≥1

is a Poisson point process with rate 1 independent of X∗
1 , X∗

2 . Therefore,

∞∑
i=1

P(ξi ≤ X∗
1 − X∗

2 ) =
∞∑

i=1

E

[∫ (X∗
1−X∗

2 )+

0

e−x xi−1

(i − 1)!
dx

]
= E

[(
X∗

1 − X∗
2 )+

]
< +∞. (31)

Now, for the third term, Theorem 5 provides the uniform bound of

θ−MF ∗ ≤ TF k ≤ θMF ∗,

for some M ≥ 0. Therefore, the infinite sum is bounded above uniformly in k by the infinite sum
of the P(ξi−1 ≤ X∗

1 − X∗
2 + 2M). Similar calculation as that done for second term imply that

this is convergent. By uniqueness of the stationary configuration (c.f. [5]), we obtain that almost
surely, for all v ∈ V∗,

〈v → v̇〉∞T = 〈v → v̇〉∗T .

To conclude the proof, we need to show that the estimation at the root of T converges as well.
For this, observe that by the Borel-Cantelli’s Lemma convergence (31) ensures that the minimum
of the

∥∥∅, i
∥∥
T −〈i → ∅〉∗T , i ≥ 1 is achieved. Now, since all of these quantities are pairwise distinct

with probability 1, their argmin π∗
T (∅) is singleton and well-defined. The same holds for πk

T (∅)
due to the uniform domination θ−MF ∗ ≤ TF k ≤ θMF ∗. Putting all together, we obtain that for
every i0 ≥ 1 and k ≥ 0,

P
(
πk
T (∅) �= π∗

T (∅)
)

≤ P

(
arg min
1≤i<i0

{∥∥∅, i
∥∥
T − 〈i → ∅〉kT

}
�= argmin

1≤i<i0

{∥∥∅, i
∥∥
T − 〈i → ∅〉∗T

})
+

∞∑
i=i0+1

P
(∥∥v, v.i

∥∥
T − 〈v.i → v〉∗T ≤

∥∥v, v.1
∥∥
T − 〈v.1 → v〉∗T

)
+

∞∑
i=i0+1

P
(∥∥v, v.i

∥∥
T − 〈v.i → v〉kT ≤

∥∥v, v.1
∥∥
T − 〈v.1 → v〉kT

)
,

As before, the two infinite summations can be arbitrarily small (uniformly in k) by choosing i0
large enough; the first term vanishes as k → ∞ due to the continuity of argmin under convergence
of messages. This completes the proof of Theorem 5. �

5. Third step: completing proof of Theorem 1

Here, we complete the proof of Theorem 1. As stated earlier, we have followed the three-step
proof plan. The first two steps are proved in the previous two sections. The third step utilizes the
following remarkable result of Aldous [2].

Theorem 6 Let π∗
T be the assignment associated to the almost sure unique stationary configura-

tion (〈v → v̇〉∗T )v∈V∗ . Then, π∗
T is almost surely a perfect matching on T such that,(

Kn,n, π∗
Kn,n

)
D→ (T , π∗

T ) ,

with respect to the topology of local weak convergence.

Proof. (Theorem 1) Now, we are ready for completing the proof of our main result. For
this, we will need some additional useful formalism which is developed next. Suppose, we are
given a complete separable metric space (Λ, dΛ). There is a natural way to extend the notion of
local weak convergence while in-corporating such a metric-space as follows. Suppose, the rooted
geometric graph G = (V, E, ∅, ‖ · ‖G) is labeled by points of metric space Λ, i.e. every vertex
v ∈ V is assigned a label λ(v) ∈ Λ; and/or every oriented edge (v, w) ∈ −→

E is also assigned a label
λG(v, w) ∈ Λ. Under such setup, a sequence (Gn)n≥1 of such labeled rooted geometric graphs are
said to converge locally to a labeled rooted geometric graph G if the following two conditions hold:
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1. Gn converge to G as per the local weak convergence, and
2. As in definition of local weak convergence, for each ρ > 0 such that no node in G is at

distance ρ from its root, for n ≥ nρ there exists isomorphisms

γ�
n : �G�� � �Gn��, n ≥ n�

such that for all vertex v in �G��,

λGn (γ�
n(v)) −−−−→

n→∞
λG (v) ,

and/or similarly, for any oriented edge (v, w) in �G��,

λGn (γ�
n(v), γ�

n(w)) −−−−→
n→∞

λG (v, w) .

In order to metrize the topology induced by the above definition of convergence for ‘labelled’
geometric graphs, we can incorporate dΛ into the metric defined by (4). This will make the above
space complete and separable metric space. Within thus developed framework, Theorem 3 can be
restated as follows: for all k ≥ 0,(

Kn,n, 〈· → ·〉kKn,n
, πk

Kn,n

)
D−−−−→

n→∞

(
T , 〈· → ·〉kT , πk

T
)
, (32)

where the mapping πk
Kn,n

is a {0, 1}-valued edge-labeling function (v, w) �→ 1{w=πk
Kn,n

(v)}. Simi-
larly, Theorem 6 implies the following: for k ≥ 0,(

Kn,n, 〈· → ·〉kKn,n
, πk

Kn,n
, π∗

Kn,n

)
D−−−−→

n→∞

(
T , 〈· → ·〉kT , πk

T , π∗
Kn,n

)
. (33)

Therefore, the error in the BP algorithm’s estimation on Kn,n converges to BP algorithm’s esti-
mation on T : for all k ≥ 0,

E

[
d(πk

Kn,n
, π∗

Kn,n
)
]

= P

(
πk
Kn,n

(∅) �= π∗
Kn,n

(∅)
)
−−−−→
n→∞

P
(
πk
T (∅) �= π∗

T (∅)
)
. (34)

Now, the Theorem (5) imples that

lim
k→∞

P
(
πk
T (∅) �= π∗

T (∅)
)

= 0.

This completes the proof of Theorem 1. �

6. Conclusion

In this paper, we established that the BP algorithm finds almost optimal solution to a random
assignment problem in O(n2) time for a problem of size n with high probability. The natural
lower bound of Ω(n2) due to it being the input-size of the problem, makes BP an (order) optimal
algorithm for finding minimum cost matching in a bipartite graph. This result significantly im-
proves over the O(n3) bound proved by Bayati, Shah and Sharma [6] for BP for bipartite graph
with arbitrary weights; or for that matter the best known worst case bound on performance of
algorithm by Edmonds and Karp [10].

Beyond the obvious practical interest of such an extremely efficient distributed algorithm for
locally solving huge instances of the optimal assignment problem, we hope that the method used
here – essentially replacing the asymptotical analysis of the iteration as the size of the underlying
graph tends to infinity by its exact study on the infinite limiting structure revealed via local weak
convergence – will become a powerful tool in the fascinating quest for a general mathematical
understanding of loopy belief propagation. To the best of our knowledge, this is the first non-
trivial use of local weak convergence frame-work for analyzing performance of algorithm.
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