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Preface

The area of adaptive control has grown to be one of the richest in terms of
algorithms, design techniques, analytical tools, and modifications. Several
books and research monographs already exist on the topics of parameter
estimation and adaptive control.

Despite this rich literature, the field of adaptive control may easily appear
to an outsider as a collection of unrelated tricks and modifications. Students
are often overwhelmed and sometimes confused by the vast number of what
appear to be unrelated designs and analytical methods achieving similar re-
sults. Researchers concentrating on different approaches in adaptive control
often find it difficult to relate their techniques with others without additional
research efforts.

The purpose of this book is to alleviate some of the confusion and diffi-
culty in understanding the design, analysis, and robustness of a wide class
of adaptive control for continuous-time plants. The book is the outcome of
several years of research, whose main purpose was not to generate new re-
sults, but rather unify, simplify, and present in a tutorial manner most of the
existing techniques for designing and analyzing adaptive control systems.

The book is written in a self-contained fashion to be used as a textbook
on adaptive systems at the senior undergraduate, or first and second gradu-
ate level. It is assumed that the reader is familiar with the materials taught
in undergraduate courses on linear systems, differential equations, and auto-
matic control. The book is also useful for an industrial audience where the
interest is to implement adaptive control rather than analyze its stability
properties. Tables with descriptions of adaptive control schemes presented
in the book are meant to serve this audience. The personal computer floppy
disk, included with the book, provides several examples of simple adaptive

xiii
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control systems that will help the reader understand some of the implemen-
tation aspects of adaptive systems.

A significant part of the book, devoted to parameter estimation and
learning in general, provides techniques and algorithms for on-line fitting
of dynamic or static models to data generated by real systems. The tools
for design and analysis presented in the book are very valuable in under-
standing and analyzing similar parameter estimation problems that appear
in neural networks, fuzzy systems, and other universal approximators. The
book will be of great interest to the neural and fuzzy logic audience who
will benefit from the strong similarity that exists between adaptive systems,
whose stability properties are well established, and neural networks, fuzzy
logic systems where stability and convergence issues are yet to be resolved.

The book is organized as follows: Chapter 1 is used to introduce adap-
tive control as a method for controlling plants with parametric uncertainty.
It also provides some background and a brief history of the development
of adaptive control. Chapter 2 presents a review of various plant model
representations that are useful for parameter identification and control. A
considerable number of stability results that are useful in analyzing and un-
derstanding the properties of adaptive and nonlinear systems in general are
presented in Chapter 3. Chapter 4 deals with the design and analysis of on-
line parameter estimators or adaptive laws that form the backbone of every
adaptive control scheme presented in the chapters to follow. The design of
parameter identifiers and adaptive observers for stable plants is presented
in Chapter 5. Chapter 6 is devoted to the design and analysis of a wide
class of model reference adaptive controllers for minimum phase plants. The
design of adaptive control for plants that are not necessarily minimum phase
is presented in Chapter 7. These schemes are based on pole placement con-
trol strategies and are referred to as adaptive pole placement control. While
Chapters 4 through 7 deal with plant models that are free of disturbances,
unmodeled dynamics and noise, Chapters 8 and 9 deal with the robustness
issues in adaptive control when plant model uncertainties, such as bounded
disturbances and unmodeled dynamics, are present.

The book can be used in various ways. The reader who is familiar with
stability and linear systems may start from Chapter 4. An introductory
course in adaptive control could be covered in Chapters 1, 2, and 4 to 9,
by excluding the more elaborate and difficult proofs of theorems that are
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presented either in the last section of chapters or in the appendices. Chapter
3 could be used for reference and for covering relevant stability results that
arise during the course. A higher-level course intended for graduate students
that are interested in a deeper understanding of adaptive control could cover
all chapters with more emphasis on the design and stability proofs. A course
for an industrial audience could contain Chapters 1, 2, and 4 to 9 with
emphasis on the design of adaptive control algorithms rather than stability
proofs and convergence.
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Krause, Miroslav Krstić, Rogelio Lozano-Leal, Iven Mareels, Rick Middle-
ton, David Mudget, Romeo Ortega, Brad Riedle, Charles Rohrs, Ali Saberi,
Shankar Sastry, Lena Valavani, Jim Winkelman, and Erik Ydstie. We would
also like to extend our thanks to our colleagues at the University of Southern
California, Wayne State University, and Ford Research Laboratory for their
friendship, support, and technical interactions. Special thanks, on behalf of
the second author, go to the members of the Control Systems Department
of Ford Research Laboratory, and Jessy Grizzle and Anna Stefanopoulou of
the University of Michigan.

Finally, we acknowledge the support of several organizations includ-
ing Ford Motor Company, General Motors Project Trilby, National Science
Foundation, Rockwell International, and Lockheed. Special thanks are due
to Bob Borcherts, Roger Fruechte, Neil Schilke, and James Rillings of for-
mer Project Trilby; Bill Powers, Mike Shulman, and Steve Eckert of Ford
Motor Company; and Bob Rooney and Houssein Youseff of Lockheed whose
support of our research made this book possible.

Petros A. Ioannou
Jing Sun



List of Acronyms

ALQC Adaptive linear quadratic control
APPC Adaptive pole placement control
B-G Bellman Gronwall (lemma)
BIBO Bounded-input bounded-output
CEC Certainty equivalence control
I/O Input/output
LKY Lefschetz-Kalman-Yakubovich (lemma)
LQ Linear quadratic
LTI Linear time invariant
LTV Linear time varying
MIMO Multi-input multi-output
MKY Meyer-Kalman-Yakubovich (lemma)
MRAC Model reference adaptive control
MRC Model reference control
PE Persistently exciting
PI Proportional plus integral
PPC Pole placement control
PR Positive real
SISO Single input single output
SPR Strictly positive real
TV Time varying
UCO Uniformly completely observable
a.s. Asymptotically stable
e.s. Exponentially stable
m.s.s. (In the) mean square sense
u.a.s. Uniformly asymptotically stable
u.b. Uniformly bounded
u.s. Uniformly stable
u.u.b. Uniformly ultimately bounded
w.r.t. With respect to

xvii



18 PREFACE



Chapter 1

Introduction

1.1 Control System Design Steps

The design of a controller that can alter or modify the behavior and response
of an unknown plant to meet certain performance requirements can be a
tedious and challenging problem in many control applications. By plant, we
mean any process characterized by a certain number of inputs u and outputs
y, as shown in Figure 1.1.

The plant inputs u are processed to produce several plant outputs y that
represent the measured output response of the plant. The control design task
is to choose the input u so that the output response y(t) satisfies certain given
performance requirements. Because the plant process is usually complex,
i.e., it may consist of various mechanical, electronic, hydraulic parts, etc.,
the appropriate choice of u is in general not straightforward. The control
design steps often followed by most control engineers in choosing the input
u are shown in Figure 1.2 and are explained below.

©©HH
Plant

Process
P

HH©©
Inputs

u
Outputs

y

Figure 1.1 Plant representation.
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Step 1. Modeling
The task of the control engineer in this step is to understand the pro-

cessing mechanism of the plant, which takes a given input signal u(t) and
produces the output response y(t), to the point that he or she can describe
it in the form of some mathematical equations. These equations constitute
the mathematical model of the plant. An exact plant model should produce
the same output response as the plant, provided the input to the model and
initial conditions are exactly the same as those of the plant. The complexity
of most physical plants, however, makes the development of such an exact
model unwarranted or even impossible. But even if the exact plant model
becomes available, its dimension is likely to be infinite, and its description
nonlinear or time varying to the point that its usefulness from the control
design viewpoint is minimal or none. This makes the task of modeling even
more difficult and challenging, because the control engineer has to come up
with a mathematical model that describes accurately the input/output be-
havior of the plant and yet is simple enough to be used for control design
purposes. A simple model usually leads to a simple controller that is easier
to understand and implement, and often more reliable for practical purposes.

A plant model may be developed by using physical laws or by processing
the plant input/output (I/O) data obtained by performing various experi-
ments. Such a model, however, may still be complicated enough from the
control design viewpoint and further simplifications may be necessary. Some
of the approaches often used to obtain a simplified model are

(i) Linearization around operating points
(ii) Model order reduction techniques

In approach (i) the plant is approximated by a linear model that is valid
around a given operating point. Different operating points may lead to
several different linear models that are used as plant models. Linearization
is achieved by using Taylor’s series expansion and approximation, fitting of
experimental data to a linear model, etc.

In approach (ii) small effects and phenomena outside the frequency range
of interest are neglected leading to a lower order and simpler plant model.
The reader is referred to references [67, 106] for more details on model re-
duction techniques and approximations.
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Figure 1.2 Control system design steps.

In general, the task of modeling involves a good understanding of the
plant process and performance requirements, and may require some experi-
ence from the part of the control engineer.

Step 2. Controller Design
Once a model of the plant is available, one can proceed with the controller

design. The controller is designed to meet the performance requirements for
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the plant model. If the model is a good approximation of the plant, then
one would hope that the controller performance for the plant model would
be close to that achieved when the same controller is applied to the plant.

Because the plant model is always an approximation of the plant, the
effect of any discrepancy between the plant and the model on the perfor-
mance of the controller will not be known until the controller is applied to
the plant in Step 3. One, however, can take an intermediate step and ana-
lyze the properties of the designed controller for a plant model that includes
a class of plant model uncertainties denoted by 4 that are likely to appear
in the plant. If 4 represents most of the unmodeled plant phenomena, its
representation in terms of mathematical equations is not possible. Its char-
acterization, however, in terms of some known bounds may be possible in
many applications. By considering the existence of a general class of uncer-
tainties 4 that are likely to be present in the plant, the control engineer may
be able to modify or redesign the controller to be less sensitive to uncertain-
ties, i.e., to be more robust with respect to 4. This robustness analysis and
redesign improves the potential for a successful implementation in Step 3.

Step 3. Implementation
In this step, a controller designed in Step 2, which is shown to meet the

performance requirements for the plant model and is robust with respect to
possible plant model uncertainties 4, is ready to be applied to the unknown
plant. The implementation can be done using a digital computer, even
though in some applications analog computers may be used too. Issues,
such as the type of computer available, the type of interface devices between
the computer and the plant, software tools, etc., need to be considered a
priori. Computer speed and accuracy limitations may put constraints on
the complexity of the controller that may force the control engineer to go
back to Step 2 or even Step 1 to come up with a simpler controller without
violating the performance requirements.

Another important aspect of implementation is the final adjustment,
or as often called the tuning, of the controller to improve performance by
compensating for the plant model uncertainties that are not accounted for
during the design process. Tuning is often done by trial and error, and
depends very much on the experience and intuition of the control engineer.

In this book we will concentrate on Step 2. We will be dealing with
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the design of control algorithms for a class of plant models described by the
linear differential equation

ẋ = Ax + Bu, x(0) = x0

y = C>x + Du
(1.1.1)

In (1.1.1) x ∈ Rn is the state of the model, u ∈ Rr the plant input, and y ∈
Rl the plant model output. The matrices A ∈ Rn×n, B ∈ Rn×r, C ∈ Rn×l,
and D ∈ Rl×r could be constant or time varying. This class of plant models
is quite general because it can serve as an approximation of nonlinear plants
around operating points. A controller based on the linear model (1.1.1) is
expected to be simpler and easier to understand than a controller based on
a possibly more accurate but nonlinear plant model.

The class of plant models given by (1.1.1) can be generalized further if we
allow the elements of A, B, and C to be completely unknown and changing
with time or operating conditions. The control of plant models (1.1.1) with
A, B, C, and D unknown or partially known is covered under the area of
adaptive systems and is the main topic of this book.

1.2 Adaptive Control

According to Webster’s dictionary, to adapt means “to change (oneself) so
that one’s behavior will conform to new or changed circumstances.” The
words “adaptive systems” and “adaptive control” have been used as early
as 1950 [10, 27].

The design of autopilots for high-performance aircraft was one of the pri-
mary motivations for active research on adaptive control in the early 1950s.
Aircraft operate over a wide range of speeds and altitudes, and their dy-
namics are nonlinear and conceptually time varying. For a given operating
point, specified by the aircraft speed (Mach number) and altitude, the com-
plex aircraft dynamics can be approximated by a linear model of the same
form as (1.1.1). For example, for an operating point i, the linear aircraft
model has the following form [140]:

ẋ = Aix + Biu, x(0) = x0

y = C>
i x + Diu

(1.2.1)

where Ai, Bi, Ci, and Di are functions of the operating point i. As the air-
craft goes through different flight conditions, the operating point changes
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leading to different values for Ai, Bi, Ci, and Di. Because the output re-
sponse y(t) carries information about the state x as well as the parameters,
one may argue that in principle, a sophisticated feedback controller should
be able to learn about parameter changes by processing y(t) and use the
appropriate gains to accommodate them. This argument led to a feedback
control structure on which adaptive control is based. The controller struc-
ture consists of a feedback loop and a controller with adjustable gains as
shown in Figure 1.3. The way of changing the controller gains in response
to changes in the plant and disturbance dynamics distinguishes one scheme
from another.

1.2.1 Robust Control

A constant gain feedback controller may be designed to cope with parameter
changes provided that such changes are within certain bounds. A block
diagram of such a controller is shown in Figure 1.4 where G(s) is the transfer
function of the plant and C(s) is the transfer function of the controller. The
transfer function from y∗ to y is

y

y∗
=

C(s)G(s)
1 + C(s)G(s)

(1.2.2)

where C(s) is to be chosen so that the closed-loop plant is stable, despite
parameter changes or uncertainties in G(s), and y ≈ y∗ within the frequency
range of interest. This latter condition can be achieved if we choose C(s)
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so that the loop gain |C(jw)G(jw)| is as large as possible in the frequency
spectrum of y∗ provided, of course, that large loop gain does not violate
closed-loop stability requirements. The tracking and stability objectives can
be achieved through the design of C(s) provided the changes within G(s)
are within certain bounds. More details about robust control will be given
in Chapter 8.

Robust control is not considered to be an adaptive system even though
it can handle certain classes of parametric and dynamic uncertainties.

1.2.2 Gain Scheduling

Let us consider the aircraft model (1.2.1) where for each operating point
i, i = 1, 2, . . . , N , the parameters Ai, Bi, Ci, and Di are known. For a
given operating point i, a feedback controller with constant gains, say θi,
can be designed to meet the performance requirements for the correspond-
ing linear model. This leads to a controller, say C(θ), with a set of gains
{θ1, θ2, ..., θi, ..., θN} covering N operating points. Once the operating point,
say i, is detected the controller gains can be changed to the appropriate value
of θi obtained from the precomputed gain set. Transitions between different
operating points that lead to significant parameter changes may be handled
by interpolation or by increasing the number of operating points. The two
elements that are essential in implementing this approach is a look-up table
to store the values of θi and the plant auxiliary measurements that corre-
late well with changes in the operating points. The approach is called gain
scheduling and is illustrated in Figure 1.5.

The gain scheduler consists of a look-up table and the appropriate logic
for detecting the operating point and choosing the corresponding value of
θi from the table. In the case of aircraft, the auxiliary measurements are
the Mach number and the dynamic pressure. With this approach plant
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parameter variations can be compensated by changing the controller gains
as functions of the auxiliary measurements.

The advantage of gain scheduling is that the controller gains can be
changed as quickly as the auxiliary measurements respond to parameter
changes. Frequent and rapid changes of the controller gains, however, may
lead to instability [226]; therefore, there is a limit as to how often and how
fast the controller gains can be changed.

One of the disadvantages of gain scheduling is that the adjustment mech-
anism of the controller gains is precomputed off-line and, therefore, provides
no feedback to compensate for incorrect schedules. Unpredictable changes
in the plant dynamics may lead to deterioration of performance or even to
complete failure. Another possible drawback of gain scheduling is the high
design and implementation costs that increase with the number of operating
points.

Despite its limitations, gain scheduling is a popular method for handling
parameter variations in flight control [140, 210] and other systems [8].

1.2.3 Direct and Indirect Adaptive Control

An adaptive controller is formed by combining an on-line parameter estima-
tor, which provides estimates of unknown parameters at each instant, with
a control law that is motivated from the known parameter case. The way
the parameter estimator, also referred to as adaptive law in the book, is
combined with the control law gives rise to two different approaches. In the
first approach, referred to as indirect adaptive control, the plant parameters
are estimated on-line and used to calculate the controller parameters. This
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approach has also been referred to as explicit adaptive control, because the
design is based on an explicit plant model.

In the second approach, referred to as direct adaptive control, the plant
model is parameterized in terms of the controller parameters that are esti-
mated directly without intermediate calculations involving plant parameter
estimates. This approach has also been referred to as implicit adaptive con-
trol because the design is based on the estimation of an implicit plant model.

In indirect adaptive control, the plant model P (θ∗) is parameterized with
respect to some unknown parameter vector θ∗. For example, for a linear
time invariant (LTI) single-input single-output (SISO) plant model, θ∗ may
represent the unknown coefficients of the numerator and denominator of the
plant model transfer function. An on-line parameter estimator generates
an estimate θ(t) of θ∗ at each time t by processing the plant input u and
output y. The parameter estimate θ(t) specifies an estimated plant model
characterized by P̂ (θ(t)) that for control design purposes is treated as the
“true” plant model and is used to calculate the controller parameter or gain
vector θc(t) by solving a certain algebraic equation θc(t) = F (θ(t)) at each
time t. The form of the control law C(θc) and algebraic equation θc = F (θ)
is chosen to be the same as that of the control law C(θ∗c ) and equation θ∗c =
F (θ∗) that could be used to meet the performance requirements for the plant
model P (θ∗) if θ∗ was known. It is, therefore, clear that with this approach,
C(θc(t)) is designed at each time t to satisfy the performance requirements
for the estimated plant model P̂ (θ(t)), which may be different from the
unknown plant model P (θ∗). Therefore, the principal problem in indirect
adaptive control is to choose the class of control laws C(θc) and the class
of parameter estimators that generate θ(t) as well as the algebraic equation
θc(t) = F (θ(t)) so that C(θc(t)) meets the performance requirements for
the plant model P (θ∗) with unknown θ∗. We will study this problem in
great detail in Chapters 6 and 7, and consider the robustness properties of
indirect adaptive control in Chapters 8 and 9. The block diagram of an
indirect adaptive control scheme is shown in Figure 1.6.

In direct adaptive control, the plant model P (θ∗) is parameterized in
terms of the unknown controller parameter vector θ∗c , for which C(θ∗c ) meets
the performance requirements, to obtain the plant model Pc(θ∗c ) with exactly
the same input/output characteristics as P (θ∗).

The on-line parameter estimator is designed based on Pc(θ∗c ) instead of
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Figure 1.6 Indirect adaptive control.

P (θ∗) to provide direct estimates θc(t) of θ∗c at each time t by processing the
plant input u and output y. The estimate θc(t) is then used to update the
controller parameter vector θc without intermediate calculations. The choice
of the class of control laws C(θc) and parameter estimators generating θc(t)
for which C(θc(t)) meets the performance requirements for the plant model
P (θ∗) is the fundamental problem in direct adaptive control. The properties
of the plant model P (θ∗) are crucial in obtaining the parameterized plant
model Pc(θ∗c ) that is convenient for on-line estimation. As a result, direct
adaptive control is restricted to a certain class of plant models. As we will
show in Chapter 6, a class of plant models that is suitable for direct adaptive
control consists of all SISO LTI plant models that are minimum-phase, i.e.,
their zeros are located in Re [s] < 0. The block diagram of direct adaptive
control is shown in Figure 1.7.

The principle behind the design of direct and indirect adaptive control
shown in Figures 1.6 and 1.7 is conceptually simple. The design of C(θc)
treats the estimates θc(t) (in the case of direct adaptive control) or the
estimates θ(t) (in the case of indirect adaptive control) as if they were the
true parameters. This design approach is called certainty equivalence and can
be used to generate a wide class of adaptive control schemes by combining
different on-line parameter estimators with different control laws.
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Figure 1.7 Direct adaptive control.

The idea behind the certainty equivalence approach is that as the param-
eter estimates θc(t) and θ(t) converge to the true ones θ∗c and θ∗, respectively,
the performance of the adaptive controller C(θc) tends to that achieved by
C(θ∗c ) in the case of known parameters.

The distinction between direct and indirect adaptive control may be con-
fusing to most readers for the following reasons: The direct adaptive control
structure shown in Figure 1.7 can be made identical to that of the indi-
rect adaptive control by including a block for calculations with an identity
transformation between updated parameters and controller parameters. In
general, for a given plant model the distinction between the direct and in-
direct approach becomes clear if we go into the details of design and anal-
ysis. For example, direct adaptive control can be shown to meet the per-
formance requirements, which involve stability and asymptotic tracking, for
a minimum-phase plant. It is still not clear how to design direct schemes
for nonminimum-phase plants. The difficulty arises from the fact that, in
general, a convenient (for the purpose of estimation) parameterization of the
plant model in terms of the desired controller parameters is not possible for
nonminimum-phase plant models.

Indirect adaptive control, on the other hand, is applicable to both
minimum- and nonminimum-phase plants. In general, however, the mapping
between θ(t) and θc(t), defined by the algebraic equation θc(t)

4
= F (θ(t)),

cannot be guaranteed to exist at each time t giving rise to the so-called
stabilizability problem that is discussed in Chapter 7. As we will show in
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Chapter 7, solutions to the stabilizability problem are possible at the expense
of additional complexity.

Efforts to relax the minimum-phase assumption in direct adaptive control
and resolve the stabilizability problem in indirect adaptive control led to
adaptive control schemes where both the controller and plant parameters
are estimated on-line, leading to combined direct/indirect schemes that are
usually more complex [112].

1.2.4 Model Reference Adaptive Control

Model reference adaptive control (MRAC) is derived from the model follow-
ing problem or model reference control (MRC) problem. In MRC, a good
understanding of the plant and the performance requirements it has to meet
allow the designer to come up with a model, referred to as the reference
model, that describes the desired I/O properties of the closed-loop plant.
The objective of MRC is to find the feedback control law that changes the
structure and dynamics of the plant so that its I/O properties are exactly
the same as those of the reference model. The structure of an MRC scheme
for a LTI, SISO plant is shown in Figure 1.8. The transfer function Wm(s) of
the reference model is designed so that for a given reference input signal r(t)
the output ym(t) of the reference model represents the desired response the
plant output y(t) should follow. The feedback controller denoted by C(θ∗c )
is designed so that all signals are bounded and the closed-loop plant transfer
function from r to y is equal to Wm(s). This transfer function matching
guarantees that for any given reference input r(t), the tracking error
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Figure 1.9 Indirect MRAC.

e1
4
= y − ym, which represents the deviation of the plant output from the

desired trajectory ym, converges to zero with time. The transfer function
matching is achieved by canceling the zeros of the plant transfer function
G(s) and replacing them with those of Wm(s) through the use of the feedback
controller C(θ∗c ). The cancellation of the plant zeros puts a restriction on
the plant to be minimum phase, i.e., have stable zeros. If any plant zero is
unstable, its cancellation may easily lead to unbounded signals.

The design of C(θ∗c ) requires the knowledge of the coefficients of the plant
transfer function G(s). If θ∗ is a vector containing all the coefficients of
G(s) = G(s, θ∗), then the parameter vector θ∗c may be computed by solving
an algebraic equation of the form

θ∗c = F (θ∗) (1.2.3)

It is, therefore, clear that for the MRC objective to be achieved the plant
model has to be minimum phase and its parameter vector θ∗ has to be known
exactly.
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Figure 1.10 Direct MRAC.

When θ∗ is unknown the MRC scheme of Figure 1.8 cannot be imple-
mented because θ∗c cannot be calculated using (1.2.3) and is, therefore, un-
known. One way of dealing with the unknown parameter case is to use the
certainty equivalence approach to replace the unknown θ∗c in the control law
with its estimate θc(t) obtained using the direct or the indirect approach.
The resulting control schemes are known as MRAC and can be classified as
indirect MRAC shown in Figure 1.9 and direct MRAC shown in Figure 1.10.

Different choices of on-line parameter estimators lead to further classifi-
cations of MRAC. These classifications and the stability properties of both
direct and indirect MRAC will be studied in detail in Chapter 6.

Other approaches similar to the certainty equivalence approach may be
used to design direct and indirect MRAC schemes. The structure of these
schemes is a modification of those in Figures 1.9 and 1.10 and will be studied
in Chapter 6.

1.2.5 Adaptive Pole Placement Control

Adaptive pole placement control (APPC) is derived from the pole placement
control (PPC) and regulation problems used in the case of LTI plants with
known parameters.
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In PPC, the performance requirements are translated into desired loca-
tions of the poles of the closed-loop plant. A feedback control law is then
developed that places the poles of the closed-loop plant at the desired loca-
tions. A typical structure of a PPC scheme for a LTI, SISO plant is shown
in Figure 1.11.

The structure of the controller C(θ∗c ) and the parameter vector θ∗c are
chosen so that the poles of the closed-loop plant transfer function from r to
y are equal to the desired ones. The vector θ∗c is usually calculated using an
algebraic equation of the form

θ∗c = F (θ∗) (1.2.4)

where θ∗ is a vector with the coefficients of the plant transfer function G(s).
If θ∗ is known, then θ∗c is calculated from (1.2.4) and used in the control

law. When θ∗ is unknown, θ∗c is also unknown, and the PPC scheme of
Figure 1.11 cannot be implemented. As in the case of MRC, we can deal with
the unknown parameter case by using the certainty equivalence approach to
replace the unknown vector θ∗c with its estimate θc(t). The resulting scheme
is referred to as adaptive pole placement control (APPC). If θc(t) is updated
directly using an on-line parameter estimator, the scheme is referred to as
direct APPC. If θc(t) is calculated using the equation

θc(t) = F (θ(t)) (1.2.5)

where θ(t) is the estimate of θ∗ generated by an on-line estimator, the scheme
is referred to as indirect APPC. The structure of direct and indirect APPC
is the same as that shown in Figures 1.6 and 1.7 respectively for the general
case.

The design of APPC schemes is very flexible with respect to the choice
of the form of the controller C(θc) and of the on-line parameter estimator.
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For example, the control law may be based on the linear quadratic design
technique, frequency domain design techniques, or any other PPC method
used in the known parameter case. Various combinations of on-line estima-
tors and control laws lead to a wide class of APPC schemes that are studied
in detail in Chapter 7.

APPC schemes are often referred to as self-tuning regulators in the liter-
ature of adaptive control and are distinguished from MRAC. The distinction
between APPC and MRAC is more historical than conceptual because as
we will show in Chapter 7, MRAC can be considered as a special class of
APPC. MRAC was first developed for continuous-time plants for model fol-
lowing, whereas APPC was initially developed for discrete-time plants in a
stochastic environment using minimization techniques.

1.2.6 Design of On-Line Parameter Estimators

As we mentioned in the previous sections, an adaptive controller may be con-
sidered as a combination of an on-line parameter estimator with a control
law that is derived from the known parameter case. The way this combina-
tion occurs and the type of estimator and control law used gives rise to a
wide class of different adaptive controllers with different properties. In the
literature of adaptive control the on-line parameter estimator has often been
referred to as the adaptive law, update law, or adjustment mechanism. In this
book we will often refer to it as the adaptive law. The design of the adaptive
law is crucial for the stability properties of the adaptive controller. As we
will see in this book the adaptive law introduces a multiplicative nonlinearity
that makes the closed-loop plant nonlinear and often time varying. Because
of this, the analysis and understanding of the stability and robustness of
adaptive control schemes are more challenging.

Some of the basic methods used to design adaptive laws are

(i) Sensitivity methods
(ii) Positivity and Lyapunov design
(iii) Gradient method and least-squares methods based on estimation error

cost criteria

The last three methods are used in Chapters 4 and 8 to design a wide class
of adaptive laws. The sensitivity method is one of the oldest methods used
in the design of adaptive laws and will be briefly explained in this section
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together with the other three methods for the sake of completeness. It will
not be used elsewhere in this book for the simple reason that in theory the
adaptive laws based on the last three methods can be shown to have better
stability properties than those based on the sensitivity method.

(i) Sensitivity methods
This method became very popular in the 1960s [34, 104], and it is still

used in many industrial applications for controlling plants with uncertainties.
In adaptive control, the sensitivity method is used to design the adaptive
law so that the estimated parameters are adjusted in a direction that min-
imizes a certain performance function. The adaptive law is driven by the
partial derivative of the performance function with respect to the estimated
parameters multiplied by an error signal that characterizes the mismatch
between the actual and desired behavior. This derivative is called sensitivity
function and if it can be generated on-line then the adaptive law is imple-
mentable. In most formulations of adaptive control, the sensitivity function
cannot be generated on-line, and this constitutes one of the main drawbacks
of the method. The use of approximate sensitivity functions that are im-
plementable leads to adaptive control schemes whose stability properties are
either weak or cannot be established.

As an example let us consider the design of an adaptive law for updating
the controller parameter vector θc of the direct MRAC scheme of Figure 1.10.

The tracking error e1 represents the deviation of the plant output y from
that of the reference model, i.e., e1

4
= y − ym. Because θc = θ∗c implies that

e1 = 0 at steady state, a nonzero value of e1 may be taken to imply that
θc 6= θ∗c . Because y depends on θc, i.e., y = y(θc) we have e1 = e1(θc) and,
therefore, one way of reducing e1 to zero is to adjust θc in a direction that
minimizes a certain cost function of e1. A simple cost function for e1 is the
quadratic function

J(θc) =
e2
1(θc)
2

(1.2.6)

A simple method for adjusting θc to minimize J(θc) is the method of
steepest descent or gradient method (see Appendix B) that gives us the
adaptive law

θ̇c = −γ∇J(θc) = −γe1∇e1(θc) (1.2.7)
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where

∇e1(θc)
4
=

[
∂e1

∂θc1
,

∂e1

∂θc2
, ...,

∂e1

∂θcn

]>
(1.2.8)

is the gradient of e1 with respect to

θc = [θc1, θc2, ..., θcn]>

Because
∇e1(θc) = ∇y(θc)

we have
θ̇c = −γe1∇y(θc) (1.2.9)

where γ > 0 is an arbitrary design constant referred to as the adaptive gain
and ∂y

∂θci
, i = 1, 2, ..., n are the sensitivity functions of y with respect to the

elements of the controller parameter vector θc. The sensitivity functions
∂y

∂θci
represent the sensitivity of the plant output to changes in the controller

parameter θc.
In (1.2.7) the parameter vector θc is adjusted in the direction of steepest

descent that decreases J(θc) = e2
1(θc)
2 . If J(θc) is a convex function, then it

has a global minimum that satisfies ∇y(θc) = 0, i.e., at the minimum θ̇c = 0
and adaptation stops.

The implementation of (1.2.9) requires the on-line generation of the sen-
sitivity functions ∇y that usually depend on the unknown plant parameters
and are, therefore, unavailable. In these cases, approximate values of the
sensitivity functions are used instead of the actual ones. One type of ap-
proximation is to use some a priori knowledge about the plant parameters
to compute the sensitivity functions.

A popular method for computing the approximate sensitivity functions
is the so-called MIT rule. With this rule the unknown parameters that are
needed to generate the sensitivity functions are replaced by their on-line esti-
mates. Unfortunately, with the use of approximate sensitivity functions, it is
not possible, in general, to prove global closed-loop stability and convergence
of the tracking error to zero. In simulations, however, it was observed that
the MIT rule and other approximation techniques performed well when the
adaptive gain γ and the magnitude of the reference input signal are small.
Averaging techniques are used in [135] to confirm these observations and es-
tablish local stability for a certain class of reference input signals. Globally,
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however, the schemes based on the MIT rule and other approximations may
go unstable. Examples of instability are presented in [93, 187, 202].

We illustrate the use of the MIT rule for the design of an MRAC scheme
for the plant

ÿ = −a1ẏ − a2y + u (1.2.10)

where a1 and a2 are the unknown plant parameters, and ẏ and y are available
for measurement.

The reference model to be matched by the closed loop plant is given by

ÿm = −2ẏm − ym + r (1.2.11)

The control law
u = θ∗1ẏ + θ∗2y + r (1.2.12)

where
θ∗1 = a1 − 2, θ∗2 = a2 − 1 (1.2.13)

will achieve perfect model following. The equation (1.2.13) is referred to as
the matching equation. Because a1 and a2 are unknown, the desired values
of the controller parameters θ∗1 and θ∗2 cannot be calculated from (1.2.13).
Therefore, instead of (1.2.12) we use the control law

u = θ1ẏ + θ2y + r (1.2.14)

where θ1 and θ2 are adjusted using the MIT rule as

θ̇1 = −γe1
∂y

∂θ1
, θ̇2 = −γe1

∂y

∂θ2
(1.2.15)

where e1 = y−ym. To implement (1.2.15), we need to generate the sensitivity
functions ∂y

∂θ1
, ∂y

∂θ2
on-line.

Using (1.2.10) and (1.2.14) we obtain

∂ÿ

∂θ1
= −a1

∂ẏ

∂θ1
− a2

∂y

∂θ1
+ ẏ + θ1

∂ẏ

∂θ1
+ θ2

∂y

∂θ1
(1.2.16)

∂ÿ

∂θ2
= −a1

∂ẏ

∂θ2
− a2

∂y

∂θ2
+ y + θ1

∂ẏ

∂θ2
+ θ2

∂y

∂θ2
(1.2.17)
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If we now assume that the rate of adaptation is slow, i.e., θ̇1 and θ̇2 are
small, and the changes of ÿ and ẏ with respect to θ1 and θ2 are also small,
we can interchange the order of differentiation to obtain

d2

dt2
∂y

∂θ1
= (θ1 − a1)

d

dt

∂y

∂θ1
+ (θ2 − a2)

∂y

∂θ1
+ ẏ (1.2.18)

d2

dt2
∂y

∂θ2
= (θ1 − a1)

d

dt

∂y

∂θ2
+ (θ2 − a2)

∂y

∂θ2
+ y (1.2.19)

which we may rewrite as

∂y

∂θ1
=

1
p2 − (θ1 − a1)p− (θ2 − a2)

ẏ (1.2.20)

∂y

∂θ2
=

1
p2 − (θ1 − a1)p− (θ2 − a2)

y (1.2.21)

where p(·) 4= d
dt(·) is the differential operator.

Because a1 and a2 are unknown, the above sensitivity functions cannot
be used. Using the MIT rule, we replace a1 and a2 with their estimates â1

and â2 in the matching equation (1.2.13), i.e., we relate the estimates â1 and
â2 with θ1 and θ2 using

â1 = θ1 + 2, â2 = θ2 + 1 (1.2.22)

and obtain the approximate sensitivity functions

∂y

∂θ1
' 1

p2 + 2p + 1
ẏ,

∂y

∂θ2
' 1

p2 + 2p + 1
y (1.2.23)

The equations given by (1.2.23) are known as the sensitivity filters or mod-
els, and can be easily implemented to generate the approximate sensitivity
functions for the adaptive law (1.2.15).

As shown in [93, 135], the MRAC scheme based on the MIT rule is
locally stable provided the adaptive gain γ is small, the reference input
signal has a small amplitude and sufficient number of frequencies, and the
initial conditions θ1(0) and θ2(0) are close to θ∗1 and θ∗2 respectively.

For larger γ and θ1(0) and θ2(0) away from θ∗1 and θ∗2, the MIT rule may
lead to instability and unbounded signal response.
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The lack of stability of MIT rule based adaptive control schemes promp-
ted several researchers to look for different methods of designing adaptive
laws. These methods include the positivity and Lyapunov design approach,
and the gradient and least-squares methods that are based on the minimiza-
tion of certain estimation error criteria. These methods are studied in detail
in Chapters 4 and 8, and are briefly described below.

(ii) Positivity and Lyapunov design
This method of developing adaptive laws is based on the direct method

of Lyapunov and its relationship with positive real functions. In this ap-
proach, the problem of designing an adaptive law is formulated as a sta-
bility problem where the differential equation of the adaptive law is chosen
so that certain stability conditions based on Lyapunov theory are satisfied.
The adaptive law developed is very similar to that based on the sensitivity
method. The only difference is that the sensitivity functions in the approach
(i) are replaced with ones that can be generated on-line. In addition, the
Lyapunov-based adaptive control schemes have none of the drawbacks of the
MIT rule-based schemes.

The design of adaptive laws using Lyapunov’s direct method was sug-
gested by Grayson [76], Parks [187], and Shackcloth and Butchart [202] in
the early 1960s. The method was subsequently advanced and generalized to
a wider class of plants by Phillipson [188], Monopoli [149], Narendra [172],
and others.

A significant part of Chapters 4 and 8 will be devoted to developing
adaptive laws using the Lyapunov design approach.

(iii) Gradient and least-squares methods based on estimation
error cost criteria

The main drawback of the sensitivity methods used in the 1960s is that
the minimization of the performance cost function led to sensitivity functions
that are not implementable. One way to avoid this drawback is to choose a
cost function criterion that leads to sensitivity functions that are available for
measurement. A class of such cost criteria is based on an error referred to as
the estimation error that provides a measure of the discrepancy between the
estimated and actual parameters. The relationship of the estimation error
with the estimated parameters is chosen so that the cost function is convex,
and its gradient with respect to the estimated parameters is implementable.
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Several different cost criteria may be used, and methods, such as the gradient
and least-squares, may be adopted to generate the appropriate sensitivity
functions.

As an example, let us design the adaptive law for the direct MRAC law
(1.2.14) for the plant (1.2.10).

We first rewrite the plant equation in terms of the desired controller
parameters given by (1.2.13), i.e., we substitute for a1 = 2 + θ∗1, a2 = 1 + θ∗2
in (1.2.10) to obtain

ÿ = −2ẏ − y − θ∗1 ẏ − θ∗2y + u (1.2.24)

which may be rewritten as

y = θ∗1 ẏf + θ∗2yf + uf (1.2.25)

where

ẏf = − 1
s2 + 2s + 1

ẏ, yf = − 1
s2 + 2s + 1

y, uf =
1

s2 + 2s + 1
u (1.2.26)

are signals that can be generated by filtering.
If we now replace θ∗1 and θ∗2 with their estimates θ1 and θ2 in equation

(1.2.25), we will obtain,

ŷ = θ1ẏf + θ2yf + uf (1.2.27)

where ŷ is the estimate of y based on the estimate θ1 and θ2 of θ∗1 and θ∗2.
The error

ε1
4
= y − ŷ = y − θ1ẏf − θ2yf − uf (1.2.28)

is, therefore, a measure of the discrepancy between θ1, θ2 and θ∗1, θ∗2, respec-
tively. We refer to it as the estimation error. The estimates θ1 and θ2 can
now be adjusted in a direction that minimizes a certain cost criterion that
involves ε1. A simple such criterion is

J(θ1, θ2) =
ε2
1

2
=

1
2
(y − θ1ẏf − θ2yf − uf )2 (1.2.29)

which is to be minimized with respect to θ1, θ2. It is clear that J(θ1, θ2) is a
convex function of θ1, θ2 and, therefore, the minimum is given by ∇J = 0.
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If we now use the gradient method to minimize J(θ1, θ2), we obtain the
adaptive laws

θ̇1 = −γ1
∂J

∂θ1
= γ1ε1ẏf , θ̇2 = −γ2

∂J

∂θ2
= γ2ε1yf (1.2.30)

where γ1, γ2 > 0 are the adaptive gains and ε1, ẏf , yf are all implementable
signals.

Instead of (1.2.29), one may use a different cost criterion for ε1 and a
different minimization method leading to a wide class of adaptive laws. In
Chapters 4 to 9 we will examine the stability properties of a wide class
of adaptive control schemes that are based on the use of estimation error
criteria, and gradient and least-squares type of optimization techniques.

1.3 A Brief History

Research in adaptive control has a long history of intense activities that
involved debates about the precise definition of adaptive control, examples
of instabilities, stability and robustness proofs, and applications.

Starting in the early 1950s, the design of autopilots for high-performance
aircraft motivated an intense research activity in adaptive control. High-
performance aircraft undergo drastic changes in their dynamics when they fly
from one operating point to another that cannot be handled by constant-gain
feedback control. A sophisticated controller, such as an adaptive controller,
that could learn and accommodate changes in the aircraft dynamics was
needed. Model reference adaptive control was suggested by Whitaker et
al. in [184, 235] to solve the autopilot control problem. The sensitivity
method and the MIT rule was used to design the adaptive laws of the various
proposed adaptive control schemes. An adaptive pole placement scheme
based on the optimal linear quadratic problem was suggested by Kalman in
[96].

The work on adaptive flight control was characterized by “a lot of en-
thusiasm, bad hardware and non-existing theory” [11]. The lack of stability
proofs and the lack of understanding of the properties of the proposed adap-
tive control schemes coupled with a disaster in a flight test [219] caused the
interest in adaptive control to diminish.



24 CHAPTER 1. INTRODUCTION

The 1960s became the most important period for the development of
control theory and adaptive control in particular. State space techniques
and stability theory based on Lyapunov were introduced. Developments
in dynamic programming [19, 20], dual control [53] and stochastic control
in general, and in system identification and parameter estimation [13, 229]
played a crucial role in the reformulation and redesign of adaptive control.
By 1966 Parks and others found a way of redesigning the MIT rule-based
adaptive laws used in the MRAC schemes of the 1950s by applying the
Lyapunov design approach. Their work, even though applicable to a special
class of LTI plants, set the stage for further rigorous stability proofs in
adaptive control for more general classes of plant models.

The advances in stability theory and the progress in control theory in
the 1960s improved the understanding of adaptive control and contributed
to a strong renewed interest in the field in the 1970s. On the other hand,
the simultaneous development and progress in computers and electronics
that made the implementation of complex controllers, such as the adaptive
ones, feasible contributed to an increased interest in applications of adaptive
control. The 1970s witnessed several breakthrough results in the design
of adaptive control. MRAC schemes using the Lyapunov design approach
were designed and analyzed in [48, 153, 174]. The concepts of positivity
and hyperstability were used in [123] to develop a wide class of MRAC
schemes with well-established stability properties. At the same time parallel
efforts for discrete-time plants in a deterministic and stochastic environment
produced several classes of adaptive control schemes with rigorous stability
proofs [72, 73]. The excitement of the 1970s and the development of a wide
class of adaptive control schemes with well established stability properties
was accompanied by several successful applications [80, 176, 230].

The successes of the 1970s, however, were soon followed by controversies
over the practicality of adaptive control. As early as 1979 it was pointed
out that the adaptive schemes of the 1970s could easily go unstable in the
presence of small disturbances [48]. The nonrobust behavior of adaptive
control became very controversial in the early 1980s when more examples of
instabilities were published demonstrating lack of robustness in the presence
of unmodeled dynamics or bounded disturbances [85, 197]. This stimulated
many researchers, whose objective was to understand the mechanisms of
instabilities and find ways to counteract them. By the mid 1980s, several
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new redesigns and modifications were proposed and analyzed, leading to a
body of work known as robust adaptive control. An adaptive controller is
defined to be robust if it guarantees signal boundedness in the presence of
“reasonable” classes of unmodeled dynamics and bounded disturbances as
well as performance error bounds that are of the order of the modeling error.

The work on robust adaptive control continued throughout the 1980s
and involved the understanding of the various robustness modifications and
their unification under a more general framework [48, 87, 84].

The solution of the robustness problem in adaptive control led to the
solution of the long-standing problem of controlling a linear plant whose
parameters are unknown and changing with time. By the end of the 1980s
several breakthrough results were published in the area of adaptive control
for linear time-varying plants [226].

The focus of adaptive control research in the late 1980s to early 1990s
was on performance properties and on extending the results of the 1980s to
certain classes of nonlinear plants with unknown parameters. These efforts
led to new classes of adaptive schemes, motivated from nonlinear system
theory [98, 99] as well as to adaptive control schemes with improved transient
and steady-state performance [39, 211].

Adaptive control has a rich literature full with different techniques for
design, analysis, performance, and applications. Several survey papers [56,
183], and books and monographs [3, 15, 23, 29, 48, 55, 61, 73, 77, 80, 85,
94, 105, 123, 144, 169, 172, 201, 226, 229, 230] have already been published.
Despite the vast literature on the subject, there is still a general feeling that
adaptive control is a collection of unrelated technical tools and tricks. The
purpose of this book is to unify the various approaches and explain them in
a systematic and tutorial manner.



Chapter 2

Models for Dynamic Systems

2.1 Introduction

In this chapter, we give a brief account of various models and parameteriza-
tions of LTI systems. Emphasis is on those ideas that are useful in studying
the parameter identification and adaptive control problems considered in
subsequent chapters.

We begin by giving a summary of some canonical state space models for
LTI systems and of their characteristics. Next we study I/O descriptions
for the same class of systems by using transfer functions and differential
operators. We express transfer functions as ratios of two polynomials and
present some of the basic properties of polynomials that are useful for control
design and system modeling.

systems that we express in a form in which parameters, such as coeffi-
cients of polynomials in the transfer function description, are separated from
signals formed by filtering the system inputs and outputs. These paramet-
ric models and their properties are crucial in parameter identification and
adaptive control problems to be studied in subsequent chapters.

The intention of this chapter is not to give a complete picture of all
aspects of LTI system modeling and representation, but rather to present a
summary of those ideas that are used in subsequent chapters. For further
discussion on the topic of modeling and properties of linear systems, we
refer the reader to several standard books on the subject starting with the
elementary ones [25, 41, 44, 57, 121, 180] and moving to the more advanced

26
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ones [30, 42, 95, 198, 237, 238].

2.2 State-Space Models

2.2.1 General Description

Many systems are described by a set of differential equations of the form

ẋ(t) = f(x(t), u(t), t), x(t0) = x0

y(t) = g(x(t), u(t), t) (2.2.1)

where

t is the time variable
x(t) is an n-dimensional vector with real elements that denotes the state

of the system
u(t) is an r-dimensional vector with real elements that denotes the input

variable or control input of the system
y(t) is an l-dimensional vector with real elements that denotes the output

variables that can be measured
f, g are real vector valued functions
n is the dimension of the state x called the order of the system
x(t0) denotes the value of x(t) at the initial time t = t0 ≥ 0

When f, g are linear functions of x, u, (2.2.1) takes the form

ẋ = A(t)x + B(t)u, x(t0) = x0

y = C>(t)x + D(t)u (2.2.2)

where A(t) ∈ Rn×n, B(t) ∈ Rn×r, C(t) ∈ Rn×l, and D(t) ∈ Rl×r are ma-
trices with time-varying elements. If in addition to being linear, f, g do not
depend on time t, we have

ẋ = Ax + Bu, x(t0) = x0

y = C>x + Du (2.2.3)

where A,B, C, and D are matrices of the same dimension as in (2.2.2) but
with constant elements.
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We refer to (2.2.2) as the finite-dimensional linear time-varying (LTV)
system and to (2.2.3) as the finite dimensional LTI system.

The solution x(t), y(t) of (2.2.2) is given by

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)B(τ)u(τ)dτ

y(t) = C>(t)x(t) + D(t)u(t) (2.2.4)

where Φ(t, t0) is the state transition matrix defined as a matrix that satisfies
the linear homogeneous matrix equation

∂Φ(t, t0)
∂t

= A(t)Φ(t, t0), Φ(t0, t0) = I

For the LTI system (2.2.3), Φ(t, t0) depends only on the difference t− t0, i.e.,

Φ(t, t0) = Φ(t− t0) = eA(t−t0)

and the solution x(t), y(t) of (2.2.3) is given by

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)Bu(τ)dτ

y(t) = C>x(t) + Du(t) (2.2.5)

where eAt can be identified to be

eAt = L−1[(sI −A)−1]

where L−1 denotes the inverse Laplace transform and s is the Laplace vari-
able.

Usually the matrix D in (2.2.2), (2.2.3) is zero, because in most physical
systems there is no direct path of nonzero gain between the inputs and
outputs.

In this book, we are concerned mainly with LTI, SISO systems with
D = 0. In some chapters and sections, we will also briefly discuss systems of
the form (2.2.2) and (2.2.3).
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2.2.2 Canonical State-Space Forms

Let us consider the SISO, LTI system

ẋ = Ax + Bu, x(t0) = x0

y = C>x (2.2.6)

where x ∈ Rn. The controllability matrix Pc of (2.2.6) is defined by

Pc
4
= [B, AB, . . . , An−1B]

A necessary and sufficient condition for the system (2.2.6) to be completely
controllable is that Pc is nonsingular. If (2.2.6) is completely controllable,
the linear transformation

xc = P−1
c x (2.2.7)

transforms (2.2.6) into the controllability canonical form

ẋc =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

. . .
...

0 0 · · · 1 −an−1




xc +




1
0
0
...
0




u (2.2.8)

y = C>
c xc

where the ai’s are the coefficients of the characteristic equation of A, i.e.,
det(sI −A) = sn + an−1s

n−1 + · · ·+ a0 and C>
c = C>Pc.

If instead of (2.2.7), we use the transformation

xc = M−1P−1
c x (2.2.9)

where

M =




1 an−1 · · · a2 a1

0 1 · · · a3 a2
...

...
. . .

...
...

0 0 · · · 1 an−1

0 0 · · · 0 1
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we obtain the following controller canonical form

ẋc =




−an−1 −an−2 · · · −a1 −a0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
0 0 · · · 1 0




xc +




1
0
0
...
0




u (2.2.10)

y = C>
0 xc

where C>
0 = C>PcM . By rearranging the elements of the state vector xc,

(2.2.10) may be written in the following form that often appears in books
on linear system theory

ẋc =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

0 0 · · · 1
−a0 −a1 · · · −an−2 −an−1




xc +




0
0
...
0
1




u (2.2.11)

y = C>
1 xc

where C1 is defined appropriately.

The observability matrix Po of (2.2.6) is defined by

Po
4
=




C>

C>A
...

C>An−1




(2.2.12)

A necessary and sufficient condition for the system (2.2.6) to be completely
observable is that Po is nonsingular. By following the dual of the arguments
presented earlier for the controllability and controller canonical forms, we
arrive at observability and observer forms provided Po is nonsingular [95],
i.e., the observability canonical form of (2.2.6) obtained by using the trans-
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formation xo = Pox is

ẋo =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−a0 −a1 · · · −an−2 −an−1




xo + Bou (2.2.13)

y = [1, 0, . . . , 0]xo

and the observer canonical form is

ẋo =




−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

...
...

. . .
−a1 0 0 · · · 1
−a0 0 0 · · · 0




xo + B1u (2.2.14)

y = [1, 0, . . . , 0]xo

where Bo, B1 may be different.
If the rank of the controllability matrix Pc for the nth-order system

(2.2.6) is less than n, then (2.2.6) is said to be uncontrollable. Similarly,
if the rank of the observability matrix Po is less than n, then (2.2.6) is
unobservable.

The system represented by (2.2.8) or (2.2.10) or (2.2.11) is completely
controllable but not necessarily observable. Similarly, the system repre-
sented by (2.2.13) or (2.2.14) is completely observable but not necessarily
controllable.

If the nth-order system (2.2.6) is either unobservable or uncontrollable
then its I/O properties for zero initial state, i.e., x0 = 0 are completely
characterized by a lower order completely controllable and observable system

ẋco = Acoxco + Bcou, xco(t0) = 0

y = C>
coxco (2.2.15)

where xco ∈ Rnr and nr < n. It turns out that no further reduction in the or-
der of (2.2.15) is possible without affecting the I/O properties for all inputs.
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M

m2
m1

l2
l1

u

θ1 θ2

Figure 2.1 Cart with two inverted pendulums

For this reason (2.2.15) is referred to as the minimal state-space represen-
tation of the system to be distinguished from the nonminimal state-space
representation that corresponds to either an uncontrollable or unobservable
system.

A minimal state space model does not describe the uncontrollable or
unobservable parts of the system. These parts may lead to some unbounded
states in the nonminimal state-space representation of the system if any
initial condition associated with these parts is nonzero. If, however, the
uncontrollable or unobservable parts are asymptotically stable [95], they
will decay to zero exponentially fast, and their effect may be ignored in
most applications. A system whose uncontrollable parts are asymptotically
stable is referred to as stabilizable, and the system whose unobservable parts
are asymptotically stable is referred to as detectable [95].

Example 2.2.1 Let us consider the cart with the two inverted pendulums shown
in Figure 2.1, where M is the mass of the cart, m1 and m2 are the masses of the
bobs, and l1 and l2 are the lengths of the pendulums, respectively. Using Newton’s
law and assuming small angular deviations of |θ1|, |θ2|, the equations of motions are
given by

Mv̇ = −m1gθ1 −m2gθ2 + u

m1(v̇ + l1θ̈1) = m1gθ1

m2(v̇ + l2θ̈2) = m2gθ2

where v is the velocity of the cart, u is an external force, and g is the acceleration
due to gravity. To simplify the algebra, let us assume that m1 = m2 = 1kg and
M = 10m1. If we now let x1 = θ1, x2 = θ̇1, x3 = θ1 − θ2, x4 = θ̇1 − θ̇2 be the state
variables, we obtain the following state-space representation for the system:

ẋ = Ax + Bu
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where x = [x1, x2, x3, x4]>

A =




0 1 0 0
1.2α1 0 −0.1α1 0

0 0 0 1
1.2(α1 − α2) 0 α2 − 0.1(α1 − α2) 0


 , B =




0
β1

0
β1 − β2




and α1 = g
l1

, α2 = g
l2

, β1 = − 0.1
l1

, and β2 = − 0.1
l2

.
The controllability matrix of the system is given by

Pc = [B, AB, A2B, A3B]

We can verify that

detPc =
(0.011)2g2(l1 − l2)2

l41l
4
2

which implies that the system is controllable if and only if l1 6= l2.
Let us now assume that θ1 is the only variable that we measure, i.e., the mea-

sured output of the system is
y = C>x

where C = [1, 0, 0, 0]>. The observability matrix of the system based on this output
is given by

Po =




C>

C>A
C>A2

C>A3




By performing the calculations, we verify that

detPo = 0.01
g2

l21

which implies that the system is always observable from y = θ1.
When l1 = l2, the system is uncontrollable. In this case, α1 = α2, β1 = β2, and

the matrix A and vector B become

A =




0 1 0 0
1.2α1 0 −0.1α1 0

0 0 0 1
0 0 α1 0


 , B =




0
β1

0
0




indicating that the control input u cannot influence the states x3, x4. It can be
verified that for x3(0), x4(0) 6= 0, all the states will grow to infinity for all possible
inputs u. For l1 = l2, the control of the two identical pendulums is possible provided
the initial angles and angular velocities are identical, i.e., θ1(0) = θ2(0) and θ̇1(0) =
θ̇2(0), which imply that x3(0) = x4(0) = 0. 5
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2.3 Input/Output Models

2.3.1 Transfer Functions

Transfer functions play an important role in the characterization of the I/O
properties of LTI systems and are widely used in classical control theory.

We define the transfer function of an LTI system by starting with the
differential equation that describes the dynamic system. Consider a system
described by the nth-order differential equation

y(n)(t)+an−1y
(n−1)(t)+· · ·+a0y(t) = bmu(m)(t)+bm−1u

(m−1)(t)+· · ·+b0u(t)
(2.3.1)

where y(i)(t)
4
= di

dti
y(t), and u(i)(t)

4
= di

dti
u(t); u(t) is the input variable,

and y(t) is the output variable; the coefficients ai, bj , i = 0, 1 . . . , n − 1, j =
0, 1, . . . , m are constants, and n and m are constant integers. To obtain the
transfer function of the system (2.3.1), we take the Laplace transform on
both sides of the equation and assume zero initial conditions, i.e.,

(sn + an−1s
n−1 + · · ·+ a0)Y (s) = (bmsm + bm−1s

m−1 + · · ·+ b0)U(s)

where s is the Laplace variable. The transfer function G(s) of (2.3.1) is
defined as

G(s)
4
=

Y (s)
U(s)

=
bmsm + bm−1s

m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
(2.3.2)

The inverse Laplace g(t) of G(s), i.e.,

g(t)
4
= L−1[G(s)]

is known as the impulse response of the system (2.3.1) and

y(t) = g(t) ∗ u(t)

where ∗ denotes convolution. When u(t) = δ∆(t) where δ∆(t) is the delta
function defined as

δ∆(t) = lim
ε→0

I(t)− I(t− ε)
ε

where I(t) is the unit step function, then

y(t) = g(t) ∗ δ∆(t) = g(t)
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Therefore, when the input to the LTI system is a delta function (often re-
ferred to as a unit impulse) at t = 0, the output of the system is equal to
g(t), the impulse response.

We say that G(s) is proper if G(∞) is finite i.e., n ≥ m; strictly proper if
G(∞) = 0 , i.e., n > m; and biproper if n = m.

The relative degree n∗ of G(s) is defined as n∗ = n −m, i.e., n∗ = degree
of denominator - degree of numerator of G(s).

The characteristic equation of the system (2.3.1) is defined as the equation
sn + an−1s

n−1 + · · ·+ a0 = 0.

In a similar way, the transfer function may be defined for the LTI system
in the state space form (2.2.3), i.e., taking the Laplace transform on each
side of (2.2.3) we obtain

sX(s)− x(0) = AX(s) + BU(s)
Y (s) = C>X(s) + DU(s)

(2.3.3)

or
Y (s) =

(
C>(sI −A)−1B + D

)
U(s) + C>(sI −A)−1x(0)

Setting the initial conditions to zero, i.e., x(0) = 0 we get

Y (s) = G(s)U(s) (2.3.4)

where
G(s) = C>(sI −A)−1B + D

is referred to as the transfer function matrix in the case of multiple inputs
and outputs and simply as the transfer function in the case of SISO systems.
We may also represent G(s) as

G(s) =
C>{adj(sI −A)}B

det(sI −A)
+ D (2.3.5)

where adjQ denotes the adjoint of the square matrix Q ∈ Rn×n. The (i, j)
element qij of adjQ is given by

qij = (−1)i+jdet(Qji); i, j = 1, 2, . . . n
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where Qji ∈ R(n−1)×(n−1) is a submatrix of Q obtained by eliminating the
jth row and the ith column of the matrix Q.

It is obvious from (2.3.5) that the poles of G(s) are included in the
eigenvalues of A. We say that A is stable if all its eigenvalues lie in Re[s] < 0
in which case G(s) is a stable transfer function. It follows that det(sI−A) = 0
is the characteristic equation of the system with transfer function given by
(2.3.5).

In (2.3.3) and (2.3.4) we went from a state-space representation to a
transfer function description in a straightforward manner. The other way,
i.e., from a proper transfer function description to a state-space represen-
tation, is not as straightforward. It is true, however, that for every proper
transfer function G(s) there exists matrices A,B,C, and D such that

G(s) = C>(sI −A)−1B + D

As an example, consider a system with the transfer function

G(s) =
bmsm + bm−1s

m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
=

Y (s)
U(s)

where n > m. Then the system may be represented in the controller form

ẋ =




−an−1 −an−2 · · · −a1 −a0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
0 0 · · · 1 0




x +




1
0
...
0
0




u (2.3.6)

y = [0, 0, . . . , bm, . . . , b1, b0]x

or in the observer form

ẋ =




−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

...
...

. . .
...

−a1 0 0 · · · 1
−a0 0 0 · · · 0




x +




0
...

bm
...
b0




u (2.3.7)

y = [1, 0, . . . , 0]x
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One can go on and generate many different state-space representations
describing the I/O properties of the same system. The canonical forms in
(2.3.6) and (2.3.7), however, have some important properties that we will use
in later chapters. For example, if we denote by (Ac, Bc, Cc) and (Ao, Bo, Co)
the corresponding matrices in the controller form (2.3.6) and observer form
(2.3.7), respectively, we establish the relations

[adj(sI −Ac)]Bc = [sn−1, . . . , s, 1]> 4
= αn−1(s) (2.3.8)

C>
o adj(sI −Ao) = [sn−1, . . . , s, 1] = α>n−1(s) (2.3.9)

whose right-hand sides are independent of the coefficients of G(s). Another
important property is that in the triples (Ac, Bc, Cc) and (Ao, Bo, Co), the
n+m+1 coefficients of G(s) appear explicitly, i.e., (Ac, Bc, Cc) (respectively
(Ao, Bo, Co)) is completely characterized by n+m+1 parameters, which are
equal to the corresponding coefficients of G(s).

If G(s) has no zero-pole cancellations then both (2.3.6) and (2.3.7) are
minimal state-space representations of the same system. If G(s) has zero-
pole cancellations, then (2.3.6) is unobservable, and (2.3.7) is uncontrollable.
If the zero-pole cancellations of G(s) occur in Re[s] < 0, i.e., stable poles are
cancelled by stable zeros, then (2.3.6) is detectable, and (2.3.7) is stabilizable.
Similarly, a system described by a state-space representation is unobservable
or uncontrollable, if and only if the transfer function of the system has zero-
pole cancellations. If the unobservable or uncontrollable parts of the system
are asymptotically stable, then the zero-pole cancellations occur in Re[s] < 0.

An alternative approach for representing the differential equation (2.3.1)
is by using the differential operator

p(·) 4= d(·)
dt

which has the following properties:

(i) p(x) = ẋ; (ii) p(xy) = ẋy + xẏ

where x and y are any differentiable functions of time and ẋ
4
= dx(t)

dt .
The inverse of the operator p denoted by p−1 or simply by 1

p is defined
as

1
p
(x)

4
=

∫ t

0
x(τ)dτ + x(0) ∀t ≥ 0
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where x(t) is an integrable function of time. The operators p, 1
p are related

to the Laplace operator s by the following equations

L{p(x)}|x(0)=0 = sX(s)

L{1
p
(x)} |x(0)=0=

1
s
X(s)

where L is the Laplace transform and x(t) is any differentiable function of
time. Using the definition of the differential operator, (2.3.1) may be written
in the compact form

R(p)(y) = Z(p)(u) (2.3.10)

where
R(p) = pn + an−1p

n−1 + · · ·+ a0

Z(p) = bmpm + bm−1p
m−1 + · · ·+ b0

are referred to as the polynomial differential operators [226].
Equation (2.3.10) has the same form as

R(s)Y (s) = Z(s)U(s) (2.3.11)

obtained by taking the Laplace transform on both sides of (2.3.1) and as-
suming zero initial conditions. Therefore, for zero initial conditions one can
go from representation (2.3.10) to (2.3.11) and vice versa by simply replacing
s with p or p with s appropriately. For example, the system

Y (s) =
s + b0

s2 + a0
U(s)

may be written as
(p2 + a0)(y) = (p + b0)(u)

with y(0) = ẏ(0) = 0, u(0) = 0 or by abusing notation (because we never
defined the operator (p2 + a0)−1) as

y(t) =
p + b0

p2 + a0
u(t)

Because of the similarities of the forms of (2.3.11) and (2.3.10), we will use
s to denote both the differential operator and Laplace variable and express
the system (2.3.1) with zero initial conditions as

y =
Z(s)
R(s)

u (2.3.12)
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where y and u denote Y (s) and U(s), respectively, when s is taken to be the
Laplace operator, and y and u denote y(t) and u(t), respectively, when s is
taken to be the differential operator.

We will often refer to G(s) = Z(s)
R(s) in (2.3.12) as the filter with input u(t)

and output y(t).

Example 2.3.1 Consider the system of equations describing the motion of the cart
with the two pendulums given in Example 2.2.1, where y = θ1 is the only measured
output. Eliminating the variables θ1, θ2, and θ̇2 by substitution, we obtain the
fourth order differential equation

y(4) − 1.1(α1 + α2)y(2) + 1.2α1α2y = β1u
(2) − α1β2u

where αi, βi, i = 1, 2 are as defined in Example 2.2.1, which relates the input u with
the measured output y.

Taking the Laplace transform on each side of the equation and assuming zero
initial conditions, we obtain

[s4 − 1.1(α1 + α2)s2 + 1.2α1α2]Y (s) = (β1s
2 − α1β2)U(s)

Therefore, the transfer function of the system from u to y is given by

Y (s)
U(s)

=
β1s

2 − α1β2

s4 − 1.1(α1 + α2)s2 + 1.2α1α2
= G(s)

For l1 = l2, we have α1 = α2, β1 = β2, and

G(s) =
β1(s2 − α1)

s4 − 2.2α1s2 + 1.2α2
1

=
β1(s2 − α1)

(s2 − α1)(s2 − 1.2α1)

has two zero-pole cancellations. Because α1 > 0, one of the zero-pole cancellations
occurs in Re[s] > 0 which indicates that any fourth-order state representation of
the system with the above transfer function is not stabilizable. 5

2.3.2 Coprime Polynomials

The I/O properties of most of the systems studied in this book are repre-
sented by proper transfer functions expressed as the ratio of two polynomials
in s with real coefficients, i.e.,

G(s) =
Z(s)
R(s)

(2.3.13)
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where Z(s) = bmsm + bm−1s
m−1 + · · ·+ b0, R(s) = sn + an−1s

n−1 + · · ·+ a0

and n ≥ m.
The properties of the system associated with G(s) depend very much

on the properties of Z(s) and R(s). In this section, we review some of
the general properties of polynomials that are used for analysis and control
design in subsequent chapters.

Definition 2.3.1 Consider the polynomial X(s) = αnsn +αn−1s
n−1 + · · ·+

α0. We say that X(s) is monic if αn = 1 and X(s) is Hurwitz if all the
roots of X(s) = 0 are located in Re[s] < 0. We say that the degree of X(s)
is n if the coefficient αn of sn satisfies αn 6= 0.

Definition 2.3.2 A system with a transfer function given by (2.3.13) is
referred to as minimum phase if Z(s) is Hurwitz; it is referred to as stable
if R(s) is Hurwitz.

As we mentioned in Section 2.3.1, a system representation is minimal
if the corresponding transfer function has no zero-pole cancellations, i.e., if
the numerator and denominator polynomials of the transfer function have
no common factors other than a constant. The following definition is widely
used in control theory to characterize polynomials with no common factors.

Definition 2.3.3 Two polynomials a(s) and b(s) are said to be coprime (or
relatively prime) if they have no common factors other than a constant.

An important characterization of coprimeness of two polynomials is given
by the following Lemma.

Lemma 2.3.1 (Bezout Identity) Two polynomials a(s) and b(s) are co-
prime if and only if there exist polynomials c(s) and d(s) such that

c(s)a(s) + d(s)b(s) = 1

For a proof of Lemma 2.3.1, see [73, 237].
The Bezout identity may have infinite number of solutions c(s) and d(s)

for a given pair of coprime polynomials a(s) and b(s) as illustrated by the
following example.
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Example 2.3.2 Consider the coprime polynomials a(s) = s+1, b(s) = s+2. Then
the Bezout identity is satisfied for

c(s) = sn + 2sn−1 − 1, d(s) = −sn − sn−1 + 1

and any n ≥ 1. 5

Coprimeness is an important property that is often exploited in control
theory for the design of control schemes for LTI systems. An important the-
orem that is very often used for control design and analysis is the following.

Theorem 2.3.1 If a(s) and b(s) are coprime and of degree na and nb, re-
spectively, where na > nb, then for any given arbitrary polynomial a∗(s) of
degree na∗ ≥ na, the polynomial equation

a(s)l(s) + b(s)p(s) = a∗(s) (2.3.14)

has a unique solution l(s) and p(s) whose degrees nl and np, respectively,
satisfy the constraints np < na, nl ≤ max(na∗ − na, nb − 1).

Proof From Lemma 2.3.1, there exist polynomials c(s) and d(s) such that

a(s)c(s) + b(s)d(s) = 1 (2.3.15)

Multiplying Equation (2.3.15) on both sides by the polynomial a∗(s), we obtain

a∗(s)a(s)c(s) + a∗(s)b(s)d(s) = a∗(s) (2.3.16)

Let us divide a∗(s)d(s) by a(s), i.e.,

a∗(s)d(s)
a(s)

= r(s) +
p(s)
a(s)

where r(s) is the quotient of degree na∗ + nd − na; na∗ , na, and nd are the degrees
of a∗(s), a(s), and d(s), respectively, and p(s) is the remainder of degree np < na.
We now use

a∗(s)d(s) = r(s)a(s) + p(s)

to express the right-hand side of (2.3.16) as

a∗(s)a(s)c(s) + r(s)a(s)b(s) + p(s)b(s) = [a∗(s)c(s) + r(s)b(s)]a(s) + p(s)b(s)
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and rewrite (2.3.16) as
l(s)a(s) + p(s)b(s) = a∗(s) (2.3.17)

where l(s) = a∗(s)c(s) + r(s)b(s). The above equation implies that the degree of
l(s)a(s) = degree of (a∗(s) − p(s)b(s)) ≤ max{na∗ , np + nb}. Hence, the degree
of l(s), denoted by nl, satisfies nl ≤ max{na∗ − na, np + nb − na}. We, therefore,
established that polynomials l(s) and p(s) of degree nl ≤ max{na∗ − na, np +
nb − na} and np < na respectively exist that satisfy (2.3.17). Because np < na

implies that np ≤ na − 1, the degree nl also satisfies nl ≤ max{n∗a − na, nb − 1}.
We show the uniqueness of l(s) and p(s) by proceeding as follows: We suppose
that (l1(s), p1(s)), (l2(s), p2(s)) are two solutions of (2.3.17) that satisfy the degree
constraints np < na, nl ≤ max{na∗ − na, nb − 1}, i.e.,

a(s)l1(s) + b(s)p1(s) = a∗(s), a(s)l2(s) + b(s)p2(s) = a∗(s)

Subtracting one equation from another, we have

a(s)(l1(s)− l2(s)) + b(s)(p1(s)− p2(s)) = 0 (2.3.18)

which implies that
b(s)
a(s)

=
l2(s)− l1(s)
p1(s)− p2(s)

(2.3.19)

Because np < na, equation (2.3.19) implies that b(s), a(s) have common factors that
contradicts with the assumption that a(s) and b(s) are coprime. Thus, l1(s) = l2(s)
and p1(s) = p2(s), which implies that the solution l(s) and p(s) of (2.3.17) is unique,
and the proof is complete. 2

If no constraints are imposed on the degrees of l(s) and p(s), (2.3.14) has
an infinite number of solutions. Equations of the form (2.3.14) are referred
to as Diophantine equations and are widely used in the algebraic design
of controllers for LTI plants. The following example illustrates the use of
Theorem 2.3.1 for designing a stable control system.

Example 2.3.3 Let us consider the following plant

y =
s− 1
s3

u (2.3.20)

We would like to choose the input u(t) so that the closed-loop characteristic equation
of the plant is given by a∗(s) = (s+1)5, i.e., u is to be chosen so that the closed-loop
plant is described by

(s + 1)5y = 0 (2.3.21)
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Let us consider the control input in the form of

u = −p(s)
l(s)

y (2.3.22)

where l(s) and p(s) are polynomials with real coefficients whose degrees and coef-
ficients are to be determined. Using (2.3.22) in (2.3.20), we have the closed-loop
plant

s3l(s)y = −(s− 1)p(s)y

i.e.,
[l(s)s3 + p(s)(s− 1)]y = 0

If we now choose l(s) and p(s) to satisfy the Diophantine equation

l(s)s3 + p(s)(s− 1) = (s + 1)5 (2.3.23)

then the closed-loop plant becomes the same as the desired one given by (2.3.21).
Because (2.3.23) may have an infinite number of solutions for l(s), p(s), we

use Theorem 2.3.1 to choose l(s) and p(s) with the lowest degree. According to
Theorem 2.3.1, Equation (2.3.23) has a unique solution l(s), p(s) of degree equal to
at most 2. Therefore, we assume that l(s), p(s) have the form

l(s) = l2s
2 + l1s + l0

p(s) = p2s
2 + p1s + p0

which we use in (2.3.23) to obtain the following polynomial equation

l2s
5 + l1s

4 +(l0 +p2)s3 +(p1−p2)s2 +(p0−p1)s−p0 = s5 +5s4 +10s3 +10s2 +5s+1

Equating the coefficients of the same powers of s on each side of the above equation,
we obtain the algebraic equations





l2 = 1
l1 = 5
l0 + p2 = 10
p1 − p2 = 10
p0 − p1 = 5
−p0 = 1

which have the unique solution of l2 = 1, l1 = 5, l0 = 26, p2 = −16, p1 = −6, p0 =
−1. Hence,

l(s) = s2 + 5s + 26, p(s) = −16s2 − 6s− 1

and from (2.3.22) the control input is given by
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u =
16s2 + 6s + 1
s2 + 5s + 26

y 5

Another characterization of coprimeness that we use in subsequent chap-
ters is given by the following theorem:

Theorem 2.3.2 (Sylvester’s Theorem) Two polynomials a(s) = ansn+
an−1s

n−1 + · · · + a0, b(s) = bnsn + bn−1s
n−1 + · · · + b0 are coprime if and

only if their Sylvester matrix Se is nonsingular, where Se is defined to be the
following 2n× 2n matrix:

Se
4
=




an 0 0 · · · 0 0 bn 0 0 · · · 0 0
an−1 an 0 0 0 bn−1 bn 0 0 0

· an−1 an
. . .

... · bn−1 bn
. . .

...

· · · · . . .
... · · · · . . .

...
· · · · · 0 · · · · · 0

a1 · · · · an b1 · · · · bn

a0 a1 · · · an−1 b0 b1 · · · bn−1

0 a0 · · · · 0 b0 · · · ·
0 0 · · · · 0 0 · · · ·
...

. . . · · · ... 0
. . . · · ·

...
. . . a0 a1

...
. . . b0 b1

0 0 · · · 0 0 a0 0 0 · · · 0 0 b0




(2.3.24)

Proof If Consider the following polynomial equation

a(s)c(s) + b(s)d(s) = 1 (2.3.25)

where c(s) = cn−1s
n−1 +cn−2s

n−2 + · · ·+c0, d(s) = dn−1s
n−1 +dn−2s

n−2 + · · ·+d0

are some polynomials. Equating the coefficients of equal powers of s on both sides
of (2.3.25), we obtain the algebraic equation

Sep = e2n (2.3.26)

where e2n = [0, 0, . . . , 0, 1]> and

p = [cn−1, cn−2, . . . , c0, dn−1, dn−2, . . . , d0]>
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Equations (2.3.25) and (2.3.26) are equivalent in the sense that any solution of
(2.3.26) satisfies (2.3.25) and vice versa. Because Se is nonsingular, equation (2.3.26)
has a unique solution for p. It follows that (2.3.25) also has a unique solution for
c(s) and d(s) which according to Lemma 2.3.1 implies that a(s), b(s) are coprime.

Only if We claim that if a(s) and b(s) are coprime, then for all nonzero polynomials
p(s) and q(s) of degree np < n and nq < n, respectively, we have

a(s)p(s) + b(s)q(s) 6≡ 0 (2.3.27)

If the claim is not true, there exists nonzero polynomials p1(s) and q1(s) of degree
np1 < n and nq1 < n, respectively, such that

a(s)p1(s) + b(s)q1(s) ≡ 0 (2.3.28)

Equation (2.3.28) implies that b(s)/a(s) can be expressed as

b(s)
a(s)

= −p1(s)
q1(s)

which, because np1 < n and nq1 < n, implies that a(s) and b(s) have common
factors, thereby contradicting the assumption that a(s), b(s) are coprime. Hence,
our claim is true and (2.3.27) holds.

Now (2.3.27) may be written as

Sex 6= 0 (2.3.29)

where x ∈ R2n contains the coefficients of p(s), q(s). Because (2.3.27) holds for all
nonzero p(s) and q(s) of degree np < n and nq < n, respectively, then (2.3.29) holds
for all vectors x ∈ R2n with x 6= 0, which implies that Se is nonsingular. 2

The determinant of Se is known as the Sylvester resultant and may be
used to examine the coprimeness of a given pair of polynomials. If the
polynomials a(s) and b(s) in Theorem 2.3.2 have different degrees—say nb <

na—then b(s) is expressed as a polynomial of degree na by augmenting it
with the additional powers in s whose coefficients are taken to be equal to
zero.

Example 2.3.4 Consider the polynomials

a(s) = s2 + 2s + 1, b(s) = s− 1 = 0s2 + s− 1
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Their Sylvester matrix is given by

Se =




1 0 0 0
2 1 1 0
1 2 −1 1
0 1 0 −1




Because detSe = 4 6= 0, a(s) and b(s) are coprime polynomials. 5

The properties of the Sylvester matrix are useful in solving a class of
Diophantine equations of the form

l(s)a(s) + p(s)b(s) = a∗(s)

for l(s) and p(s) where a(s), b(s), and a∗(s) are given polynomials.
For example, equation a(s)l(s) + b(s)p(s) = a∗(s) with na = n, na∗ =

2n− 1, and nb = m < n implies the algebraic equation

Sex = f (2.3.30)

where Se ∈ R2n×2n is the Sylvester matrix of a(s), b(s), and x ∈ R2n is a
vector with the coefficients of the polynomials l(s) and p(s) whose degree
according to Theorem 2.3.1 is at most n − 1 and f ∈ R2n contains the
coefficients of a∗(s). Therefore, given a∗(s), a(s), and b(s), one can solve
(2.3.30) for x, the coefficient vector of l(s) and p(s). If a(s), b(s) are coprime,
S−1

e exists and, therefore, the solution of (2.3.30) is unique and is given by

x = S−1
e f

If a(s), b(s) are not coprime, then Se is not invertible, and (2.3.30) has a
solution if and only if the vector f is in the range of Se. One can show through
algebraic manipulations that this condition is equivalent to the condition
that a∗(s) contains the common factors of a(s) and b(s).

Example 2.3.5 Consider the same control design problem as in Example 2.3.3,
where the control input u = −p(s)

l(s) y is used to force the plant y = s−1
s3 u to satisfy

(s + 1)5y = 0. We have shown that the polynomials l(s) and p(s) satisfy the
Diophantine equation

l(s)a(s) + p(s)b(s) = (s + 1)5 (2.3.31)
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where a(s) = s3 and b(s) = s − 1. The corresponding Sylvester matrix Se of a(s)
and b(s) is

Se =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1




Because det Se = −1, we verify that a(s), b(s) are coprime.
As in Example 2.3.3, we like to solve (2.3.31) for the unknown coefficients

li, pi, i = 0, 1, 2 of the polynomials l(s) = l2s
2 + l1s + l0 and p(s) = p2s

2 + p1s + p0.
By equating the coefficients of equal powers of s on each side of (2.3.31), we obtain
the algebraic equation

Sex = f (2.3.32)

where f = [1, 5, 10, 10, 5, 1]> and x = [l2, l1, l0, p2, p1, p0]>. Because Se is a nonsin-
gular matrix, the solution of (2.3.32) is given by

x = S−1
e f = [1, 5, 26,−16,−6,−1, ]>

which is the same as the solution we obtained in Example 2.3.3 (verify!). 5

2.4 Plant Parametric Models

Let us consider the plant represented by the following minimal state-space
form:

ẋ = Ax + Bu, x(0) = x0

y = C>x
(2.4.1)

where x ∈ Rn, u ∈ R1, and y ∈ R1 and A, B, and C have the appropriate
dimensions. The triple (A,B, C) consists of n2+2n elements that are referred
to as the plant parameters. If (2.4.1) is in one of the canonical forms studied
in Section 2.2.2, then n2 elements of (A,B,C) are fixed to be 0 or 1 and at
most 2n elements are required to specify the properties of the plant. These
2n elements are the coefficients of the numerator and denominator of the
transfer function Y (s)

U(s) . For example, using the Laplace transform in (2.4.1),
we obtain

Y (s) = C>(sI −A)−1BU(s) + C>(sI −A)−1x0
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which implies that

Y (s) =
Z(s)
R(s)

U(s) +
C>{adj(sI −A)}

R(s)
x0 (2.4.2)

where R(s) is a polynomial of degree n and Z(s) of degree at most n − 1.
Setting x0 = 0, we obtain the transfer function description

y =
Z(s)
R(s)

u (2.4.3)

where without loss of generality, we can assume Z(s) and R(s) to be of the
form

Z(s) = bn−1s
n−1 + bn−2s

n−2 + · · ·+ b1s + b0 (2.4.4)

R(s) = sn + an−1s
n−1 + · · ·+ a1s + a0

If Z(s) is of degree m < n−1, then the coefficients bi, i = n−1, n−2, . . . , m+1
are equal to zero. Equations (2.4.3) and (2.4.4) indicate that at most 2n
parameters are required to uniquely specify the I/O properties of (2.4.1).
When more than 2n parameters in (2.4.3) are used to specify the same I/O
properties, we say that the plant is overparameterized. For example, the
plant

y =
Z(s)
R(s)

Λ(s)
Λ(s)

u (2.4.5)

where Λ(s) is Hurwitz of arbitrary degree r > 0, has the same I/O properties
as the plant described by (2.4.3), and it is, therefore, overparameterized. In
addition, any state representation of order n+r > n of (2.4.5) is nonminimal.

For some estimation and control problems, certain plant parameteriza-
tions are more convenient than others. A plant parameterization that is
useful for parameter estimation and some control problems is the one where
parameters are lumped together and separated from signals. In parameter
estimation, the parameters are the unknown constants to be estimated from
the measurements of the I/O signals of the plant.

In the following sections, we present various parameterizations of the
same plant that are useful for parameter estimation to be studied in later
chapters.
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2.4.1 Linear Parametric Models

Parameterization 1

The plant equation (2.4.3) may be expressed as an nth-order differential
equation given by

y(n) + an−1y
(n−1) + · · ·+ a0y = bn−1u

(n−1) + bn−2u
(n−2) + · · ·+ b0u (2.4.6)

If we lump all the parameters in (2.4.6) in the parameter vector

θ∗ = [bn−1, bn−2, . . . , b0, an−1, an−2, . . . , a0]>

and all I/O signals and their derivatives in the signal vector

Y = [u(n−1), u(n−2), . . . , u,−y(n−1),−y(n−2), . . . ,−y]>

= [α>n−1(s)u,−α>n−1(s)y]>

where αi(s)
4
= [si, si−1, . . . , 1]>, we can express (2.4.6) and, therefore, (2.4.3)

in the compact form
y(n) = θ∗>Y (2.4.7)

Equation (2.4.7) is linear in θ∗, which, as we show in Chapters 4 and 5, is
crucial for designing parameter estimators to estimate θ∗ from the measure-
ments of y(n) and Y . Because in most applications the only signals available
for measurement is the input u and output y and the use of differentiation
is not desirable, the use of the signals y(n) and Y should be avoided. One
way to avoid them is to filter each side of (2.4.7) with an nth-order stable
filter 1

Λ(s) to obtain

z = θ∗>φ (2.4.8)

where
z
4
=

1
Λ(s)

y(n) =
sn

Λ(s)
y

φ
4
=

[
α>n−1(s)

Λ(s)
u,−α>n−1(s)

Λ(s)
y

]>

and
Λ(s) = sn + λn−1s

n−1 + · · ·+ λ0
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is an arbitrary Hurwitz polynomial in s. It is clear that the scalar signal z and
vector signal φ can be generated, without the use of differentiators, by simply
filtering the input u and output y with stable proper filters si

Λ(s) , i = 0, 1, . . . n.
If we now express Λ(s) as

Λ(s) = sn + λ>αn−1(s)

where λ = [λn−1, λn−2, . . . , λ0]>, we can write

z =
sn

Λ(s)
y =

Λ(s)− λ>αn−1(s)
Λ(s)

y = y − λ>
αn−1(s)

Λ(s)
y

Therefore,

y = z + λ>
αn−1(s)

Λ(s)
y

Because z = θ∗>φ = θ∗>1 φ1 + θ∗>2 φ2, where

θ∗1
4
= [bn−1, bn−2, . . . , b0]>, θ∗2

4
= [an−1, an−2, . . . , a0]>

φ1
4
=

αn−1(s)
Λ(s)

u, φ2
4
= −αn−1(s)

Λ(s)
y

it follows that
y = θ∗>1 φ1 + θ∗>2 φ2 − λ>φ2

Hence,
y = θ∗>λ φ (2.4.9)

where θ∗λ = [θ∗>1 , θ∗>2 − λ>]>. Equations (2.4.8) and (2.4.9) are represented
by the block diagram shown in Figure 2.2.

A state-space representation for generating the signals in (2.4.8) and
(2.4.9) may be obtained by using the identity

[adj(sI − Λc)]l = αn−1(s)

where Λc, l are given by

Λc =




−λn−1 −λn−2 · · · −λ0

1 0 · · · 0
...

. . .
...

0 · · · 1 0




, l =




1
0
...
0
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-αn−1(s)
Λ(s)

- θ∗>1 - lΣ -

6

λ>

θ∗>2
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Λ(s)
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¾

?

¾

lΣ --

u φ1

φ2

y

z

+
− +

+ +

Figure 2.2 Plant Parameterization 1.

which implies that

det(sI − Λc) = Λ(s), (sI − Λc)−1l =
αn−1(s)

Λ(s)

Therefore, it follows from (2.4.8) and Figure 2.2 that

φ̇1 = Λcφ1 + lu, φ1 ∈ Rn

φ̇2 = Λcφ2 − ly, φ2 ∈ Rn

y = θ∗>λ φ (2.4.10)

z = y + λ>φ2 = θ∗>φ

Because Λ(s) = det(sI −Λc) and Λ(s) is Hurwitz, it follows that Λc is a
stable matrix.

The parametric model (2.4.10) is a nonminimal state-space representa-
tion of the plant (2.4.3). It is nonminimal because 2n integrators are used
to represent an nth-order system. Indeed, the transfer function Y (s)/U(s)
computed using (2.4.10) or Figure 2.2, i.e.,

Y (s)
U(s)

=
Z(s)
R(s)

Λ(s)
Λ(s)

=
Z(s)
R(s)

involves n stable zero-pole cancellations.
The plant (2.4.10) has the same I/O response as (2.4.3) and (2.4.1)

provided that all state initial conditions are equal to zero, i.e., x0 = 0,
φ1(0) = φ2(0) = 0. In an actual plant, the state x in (2.4.1) may represent
physical variables and the initial state x0 may be different from zero. The
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effect of the initial state x0 may be accounted for in the model (2.4.10) by
applying the same procedure to equation (2.4.2) instead of equation (2.4.3).
We can verify (see Problem 2.9) that if we consider the effect of initial con-
dition x0, we will obtain the following representation

φ̇1 = Λcφ1 + lu, φ1(0) = 0

φ̇2 = Λcφ2 − ly, φ2(0) = 0

y = θ∗>λ φ + η0 (2.4.11)

z = y + λ>φ2 = θ∗>φ + η0

where η0 is the output of the system

ω̇ = Λcω, ω(0) = ω0

η0 = C>
0 ω (2.4.12)

where ω ∈ Rn, ω0 = B0x0 and C0 ∈ Rn, B0 ∈ Rn×n are constant matrices
that satisfy C>

0 {adj(sI − Λc)}B0 = C>{adj(sI −A)}.
Because Λc is a stable matrix, it follows from (2.4.12) that ω, η0 converge

to zero exponentially fast. Therefore, the effect of the nonzero initial condi-
tion x0 is the appearance of the exponentially decaying to zero term η0 in
the output y and z.

Parameterization 2

Let us now consider the parametric model (2.4.9)

y = θ∗>λ φ

and the identity Wm(s)W−1
m (s) = 1, where Wm(s) = Zm(s)/Rm(s) is a

transfer function with relative degree one, and Zm(s) and Rm(s) are Hurwitz
polynomials. Because θ∗λ is a constant vector, we can express (2.4.9) as

y = Wm(s)θ∗>λ W−1
m (s)φ

If we let

ψ
4
=

1
Wm(s)

φ =

[
α>n−1(s)

Wm(s)Λ(s)
u,− α>n−1(s)

Wm(s)Λ(s)
y

]>



2.4. PLANT PARAMETRIC MODELS 53

- αn−1(s)
Λ(s)Wm(s)

- θ∗>1 - lΣ - Wm(s) -

¾
6

λ>

θ∗>2
−αn−1(s)
Λ(s)Wm(s)

¾A
AK

¾

u ψ1

ψ2

y+
− +

Figure 2.3 Plant Parameterization 2.

we have
y = Wm(s)θ∗>λ ψ (2.4.13)

Because all the elements of αn−1(s)
Λ(s)Wm(s) are proper transfer functions with

stable poles, the state ψ = [ψ>1 ,ψ>2 ]>, where

ψ1 =
αn−1(s)

Wm(s)Λ(s)
u, ψ2 = − αn−1(s)

Wm(s)Λ(s)
y

can be generated without differentiating y or u. The dimension of ψ depends
on the order n of Λ(s) and the order of Zm(s). Because Zm(s) can be
arbitrary, the dimension of ψ can be also arbitrary.

Figure 2.3 shows the block diagram of the parameterization of the plant
given by (2.4.13). We refer to (2.4.13) as Parameterization 2. In [201],
Parameterization 2 is referred to as the model reference representation and
is used to design parameter estimators for estimating θ∗λ when Wm(s) is a
strictly positive real transfer function (see definition in Chapter 3).

A special case of (2.4.13) is the one shown in Figure 2.4 where

Wm(s) =
1

s + λ0

and (s + λ0) is a factor of Λ(s), i.e.,

Λ(s) = (s + λ0)Λq(s) = sn + λn−1s
n−1 + · · ·+ λ0

where
Λq(s) = sn−1 + qn−2s

n−2 + · · ·+ q1s + 1
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Figure 2.4 Plant Parameterization 2 with Λ(s) = (s + λ0)Λq(s) and
Wm(s) = 1

s+λ0
.

The plant Parameterization 2 of Figure 2.4 was first suggested in [131],
where it was used to develop stable adaptive observers. An alternative para-
metric model of the plant of Figure 2.4 can be obtained by first separating
the biproper elements of αn−1(s)

Λq(s) as follows:

For any vector c
4
= [cn−1, cn−2, . . . , c1, c0]> ∈ Rn, we have

c>αn−1(s)
Λq(s)

=
cn−1s

n−1

Λq(s)
+

c̄>αn−2(s)
Λq(s)

(2.4.14)

where c̄
4
= [cn−2, . . . , c1, c0]>, αn−2

4
= [sn−2, . . . , s, 1]>. Because Λq(s) =

sn−1 + q̄>αn−2(s), where q̄ = [qn−2, . . . , q1, 1]>, we have sn−1 = Λq(s) −
q̄>αn−2, which after substitution we obtain

c>αn−1(s)
Λq(s)

= cn−1 +
(c̄− cn−1q̄)>αn−2(s)

Λq(s)
(2.4.15)

We use (2.4.15) to obtain the following expressions:

θ∗>1
αn−1(s)
Λq(s)

u = bn−1u + θ̄∗>1
αn−2(s)
Λq(s)

u

−(θ∗>2 − λ>)
αn−1(s)
Λq(s)

y = (λn−1 − an−1)y − θ̄∗>2
αn−2(s)
Λq(s)

y (2.4.16)

where θ̄∗>1 = b̄ − bn−1q̄, θ̄∗>2 = ā − λ̄ − (an−1 − λn−1)q̄ and ā = [an−2,
. . ., a1, a0]>, b̄ = [bn−1, . . . , b1, b0]>, λ̄ = [λn−2, . . . , λ1, λ0]>. Using (2.4.16),
Figure 2.4 can be reconfigured as shown in Figure 2.5.
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Figure 2.5 Equivalent plant Parameterization 2.

A nonminimal state space representation of the plant follows from Fig-
ure 2.5, i.e.,

˙̄x1 = −λ0x̄1 + θ̄∗>ψ̄, x̄1 ∈ R1

˙̄ψ1 = Λ̄cψ̄1 + l̄u, ψ̄1 ∈ Rn−1

˙̄ψ2 = Λ̄cψ̄2 − l̄y, ψ̄2 ∈ Rn−1 (2.4.17)

y = x̄1

where θ̄∗ = [bn−1, θ̄
∗>
1 , λn−1 − an−1, θ̄

∗>
2 ]>, ψ̄ = [u, ψ̄>1 , y, ψ̄>2 ]> and

Λ̄c =




−qn−2 −qn−3 · · · −q0

1 0 · · · 0
...

. . .
...

0 · · · 1 0




, l̄ =




1
0
...
0




As with Parameterization 1, if we account for the initial condition x(0) =
x0 6= 0, we obtain

˙̄x1 = −λ0x̄1 + θ̄∗>ψ̄, x̄1(0) = 0
˙̄ψ1 = Λ̄cψ̄1 + l̄u, ψ̄1(0) = 0
˙̄ψ2 = Λ̄cψ̄2 − l̄y, ψ̄2(0) = 0 (2.4.18)

y = x̄1 + η0

where η0 is the output of the system

ω̇ = Λcω, ω(0) = ω0, ω ∈ Rn

η0 = C>
0 ω
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where Λc, C0, and ω0 are as defined in (2.4.12).

Example 2.4.1 (Parameterization 1) Let us consider the differential equation

y(4) + a2y
(2) + a0y = b2u

(2) + b0u (2.4.19)

that describes the motion of the cart with the two pendulums considered in Exam-
ples 2.2.1, 2.3.1, where

a2 = −1.1(α1 + α2), a0 = 1.2α1α2, b2 = β1, b0 = −α1β2

Equation (2.4.19) is of the same form as (2.4.6) with n = 4 and coefficients a3 =
a1 = b3 = b1 = 0. Following (2.4.7), we may rewrite (2.4.19) in the compact form

y(4) = θ∗>0 Y0 (2.4.20)

where θ∗0 = [b2, b0, a2, a0]>, Y0 = [u(2), u,−y(2),−y]>. Because y and u are the only
signals we can measure, y(4), Y0 are not available for measurement.

If we filter each side of (2.4.20) with the filter 1
Λ(s) , where Λ(s) = (s + 2)4 =

s4 + 8s3 + 24s2 + 32s + 16, we have

z = θ∗>0 φ0 (2.4.21)

where z = s4

(s+2)4 y, φ0 =
[

s2

(s+2)4 u, 1
(s+2)4 u,− s2

(s+2)4 y,− 1
(s+2)4 y

]>
are now signals

that can be generated from the measurements of y and u by filtering. Because in
(2.4.19) the elements a3 = a1 = b3 = b1 = 0, the dimension of θ∗0 , φ0 is 4 instead of
8, which is implied by (2.4.8).

Similarly, following (2.4.9) we have

y = θ∗>λ φ (2.4.22)

where
θ∗λ = [0, b2, 0, b0,−8, a2 − 24,−32, a0 − 16]>

φ =
[

α>3 (s)
(s + 2)4

u,− α>3 (s)
(s + 2)4

y

]>
, α3(s) = [s3, s2, s, 1]>

elements of θ∗λ that do not depend on the parameters of (2.4.19) to obtain

y = θ∗>0λ φ0 + h>0 φ

where θ∗0λ = [b2, b0, a2 − 24, a0 − 16]>, h0 = [0, 0, 0, 0,−8, 0,−32, 0]>. We obtain a
state-space representation of (2.4.21) and (2.4.22) by using (2.4.10), i.e.,

φ̇1 = Λcφ1 + lu, φ1 ∈ R4

φ̇2 = Λcφ2 − ly, φ2 ∈ R4

y = θ∗>λ φ = θ∗>0λ φ0 + h>0 φ

z = θ∗>0 φ0
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where

Λc =




−8 −24 −32 −16
1 0 0 0
0 1 0 0
0 0 1 0


 , l =




1
0
0
0




φ0 =




0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


 φ

and φ = [φ>1 , φ>2 ]>. Instead of (2.4.22), we can also write

y = θ∗>0 φ0 − λ>φ2

where λ = [8, 24, 32, 16]>. 5

Example 2.4.2 (Parameterization 2) Consider the same plant as in Exam-
ple 2.4.1, i.e.,

y = θ∗>λ φ

where θ∗>λ = [0, b2, 0, b0,−8, a2 − 24,−32, a0 − 16],

φ =
[

α>3 (s)
(s + 2)4

u,− α>3 (s)
(s + 2)4

y

]>

Now we write

y =
1

s + 2
θ∗>λ ψ

where

ψ
4
=

[
α>3 (s)

(s + 2)3
u,− α>3 (s)

(s + 2)3
y

]>

Using simple algebra, we have

α3(s)
(s + 2)3

=
1

(s + 2)3




s3

s2

s
1


 =




1
0
0
0


 +

1
(s + 2)3




−6 −12 −8
1 0 0
0 1 0
0 0 1


 α2(s)

where α2(s) = [s2, s, 1]>. Therefore, ψ can be expressed as

ψ =
[
u− λ̄>

α2(s)
(s + 2)3

u,
α>2 (s)

(s + 2)3
u,−y + λ̄>

α2(s)
(s + 2)3

y,− α>2 (s)
(s + 2)3

y

]>
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where λ̄ = [6, 12, 8]>, and θ∗>λ ψ can be expressed as

θ∗>λ ψ = θ̄∗>ψ̄ (2.4.23)

where
θ̄∗ = [b2, 0, b0, 8, a2 + 24, 64, a0 + 48]>

ψ̄ =
[

α>2 (s)
(s + 2)3

u, y,− α>2 (s)
(s + 2)3

y

]>

Therefore,

y =
1

s + 2
θ̄∗>ψ̄ (2.4.24)

A state-space realization of (2.4.24) is

˙̄x1 = −2x̄1 + θ̄∗>ψ̄, x̄1 ∈ R1

˙̄ψ1 = Λ̄cψ̄1 + l̄u, ψ̄1 ∈ R3

˙̄ψ2 = Λ̄cψ̄2 − l̄y, ψ̄2 ∈ R3

y = x̄1

where ψ̄ = [ψ̄>1 , y, ψ̄>2 ]>,

Λ̄c =



−6 −12 −8
1 0 0
0 1 0


 , l̄ =




1
0
0




5

2.4.2 Bilinear Parametric Models

Let us now consider the parameterization of a special class of systems ex-
pressed as

y = k0
Z0(s)
R0(s)

u (2.4.25)

where k0 is a scalar, R0(s) is monic of degree n, and Z0(s) is monic and
Hurwitz of degree m < n. In addition, let Z0(s) and R0(s) satisfy the
Diophantine equation

k0Z0(s)P (s) + R0(s)Q(s) = Z0(s)A(s) (2.4.26)

where
Q(s) = sn−1 + q>αn−2(s)
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P (s) = p>αn−1(s)

αi(s)
4
= [si, si−1, . . . , s, 1]>

q ∈ Rn−1, p ∈ Rn are the coefficient vectors of Q(s) − sn−1, P (s), respec-
tively, and A(s) is a monic Hurwitz polynomial of degree 2n −m − 1. The
Diophantine equation (2.4.26) relating Z0(s), R0(s), k0 to P (s), Q(s), and
A(s) arises in control designs, such as model reference control, to be dis-
cussed in later chapters. The polynomials P (s) and Q(s) are usually the
controller polynomials to be calculated by solving (2.4.26) for a given A(s).
Our objective here is to obtain a parameterization of (2.4.25), in terms of
the coefficients of P (s) and Q(s), that is independent of the coefficients of
Z0(s) and R0(s). We achieve this objective by using (2.4.26) to eliminate
the dependence of (2.4.25) on Z0(s) and R0(s) as follows:

From (2.4.25), we obtain

Q(s)R0(s)y = k0Z0(s)Q(s)u (2.4.27)

by rewriting (2.4.25) as R0(s)y = k0Z0(s)u and operating on each side by
Q(s). Using Q(s)R0(s) = Z0(s)(A(s) − k0P (s)) obtained from (2.4.26) in
(2.4.27), we have

Z0(s)(A(s)− k0P (s))y = k0Z0(s)Q(s)u (2.4.28)

Because Z0(s) is Hurwitz, we filter each side of (2.4.28) by 1
Z0(s) to obtain

A(s)y = k0P (s)y + k0Q(s)u (2.4.29)

and write (2.4.29) as

A(s)y = k0[p>αn−1(s)y + q>αn−2(s)u + sn−1u] (2.4.30)

We now have various choices to make. We can filter each side of (2.4.30)
with the stable filter 1

A(s) and obtain

y = k0

[
p>

αn−1

A(s)
y + q>

αn−2(s)
A(s)

u +
sn−1

A(s)
u

]

which may be written in the compact form

y = k0(θ∗>φ + z0) (2.4.31)
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where θ∗ = [q>, p>]>, φ =
[

α>n−2(s)

A(s) u,
α>n−1(s)

A(s) y

]>
, and z0 = sn−1

A(s) u. We can

also filter each side of (2.4.30) using an arbitrary stable filter 1
Λ(s) whose

order nλ satisfies 2n−m− 1 ≥ nλ ≥ n− 1 to obtain

y = W (s)k0(θ∗>φ + z0) (2.4.32)

where now φ =
[

α>n−2(s)

Λ(s) u,
α>n−1(s)

Λ(s) y

]>
, z0 = sn−1

Λ(s) u, and W (s) = Λ(s)
A(s) is a

proper transfer function.
In (2.4.31) and (2.4.32), φ and z0 may be generated by filtering the input

u and output y of the system. Therefore, if u and y are measurable, then
all signals in (2.4.31) and (2.4.32) can be generated, and the only possible
unknowns are k0 and θ∗. If k0 is known, it can be absorbed in the signals φ

and z0, leading to models that are affine in θ∗ of the form

ȳ = W (s)θ∗>φ̄ (2.4.33)

where ȳ = y − W (s)k0z, φ̄ = k0φ. If k0, however, is unknown and is part
of the parameters of interest, then (2.4.31) and (2.4.32) are not affine with
respect to the parameters k0 and θ∗, but instead, k0 and θ∗ appear in a
special bilinear form. For this reason, we refer to (2.4.31) and (2.4.32) as
bilinear parametric models to distinguish them from (2.4.7) to (2.4.9) and
(2.4.33), which we refer to as linear parametric or affine parametric models.
The forms of the linear and bilinear parametric models are general enough
to include parameterizations of some systems with dynamics that are not
necessarily linear, as illustrated by the following example.

Example 2.4.3 Let us consider the nonlinear scalar system

ẋ = a0f(x, t) + b0g(x, t) + c0u (2.4.34)

where a0, b0, and c0 are constant scalars; f(x, t) and g(x, t) are known nonlinear
functions that can be calculated at each time t; and u, x is the input and state of
the system, respectively. We assume that f, g, and u are such that for each initial
condition x(0) = x0, (2.4.34) has only one solution defined for all t ∈ [0,∞). If x and
u are measured, (2.4.34) can be expressed in the form of parametric model (2.4.33)
by filtering each side of (2.4.34) with a stable strictly proper transfer function Wf (s),
i.e.,

z = Wf (s)θ∗>φ (2.4.35)



2.5. PROBLEMS 61

where z = sWf (s)x, θ∗ = [a0, b0, c0]>, and φ = [f(x, t), g(x, t), u]>. Instead of
(2.4.35), we may also write (2.4.34) in the form

ẋ = −amx + amx + θ∗>φ

for some am > 0, or

x =
1

s + am
[amx + θ∗>φ]

Then

z
4
= x− am

s + am
x =

1
s + am

θ∗>φ (2.4.36)

which is in the form of (2.4.35) with Wf (s) = 1
s+am

. We may continue and rewrite
(2.4.35) (respectively (2.4.36)) as

z = θ∗>φf , φf = Wf (s)φ (2.4.37)

which is in the form of (2.4.8). 5

The nonlinear example demonstrates the fact that the parameter θ∗ ap-
pears linearly in (2.4.35) and (2.4.37) does not mean that the dynamics are
linear.

2.5 Problems

2.1 Verify that x(t) and y(t) given by (2.2.4) satisfy the differential equation (2.2.2).

2.2 Check the controllability and observability of the following systems:

(a)

ẋ =
[ −0.2 0

−1 0.8

]
x +

[
1
1

]
u

y = [−1, 1]x

(b)

ẋ =



−1 1 0
0 −1 0
0 0 −2


x +




0
1
1


 u

y = [1, 1, 1]x
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(c)

ẋ =
[ −5 1
−6 0

]
x +

[
1
1

]
u

y = [1, 1]x

2.3 Show that (A,B) is controllable if and only if the augmented matrix [sI−A,B]
is of full rank for all s ∈ C.

2.4 The following state equation describes approximately the motion of a hot air
balloon:




ẋ1

ẋ2

ẋ3


 =



− 1

τ1
0 0

σ − 1
τ2

0
0 1 0







x1

x2

x3


 +




1
0
0


 u +




0
1
τ2

0


 w

y = [0 0 1]x

where x1: the temperature change of air in the balloon away from the equilib-
rium temperature; x2: vertical velocity of the balloon; x3: change in altitude
from equilibrium altitude; u: control input that is proportional to the change
in heat added to air in the balloon; w: vertical wind speed; and σ, τ1, τ2 are
parameters determined by the design of the balloon.

w (wind)

x3

x1

u(hot air)

temperature( )

(a) Let w = 0. Is the system completely controllable? Is it completely
observable?

(b) If it is completely controllable, transform the state-space representation
into the controller canonical form.

(c) If it is completely observable, transform the state-space representation
into the observer canonical form.
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(d) Assume w = constant. Can the augmented state xa
4
= [x>, w]> be

observed from y?

(e) Assume u = 0. Can the states be controlled by w?

2.5 Derive the following transfer functions for the system described in Problem 2.4:

(a) G1(s)
4
= Y (s)

U(s) when w = 0 and y = x3.

(b) G2(s)
4
= Y (s)

W (s) when u = 0 and y = x3.

(c) G3(s)
4
= Y1(s)

U(s) when w = 0 and y1 = x1.

(d) G4(s)
4
= Y1(s)

W (s) when u = 0 and y1 = x1.

2.6 Let a(s) = (s + α)3, b(s) = β, where α, β are constants with β 6= 0.

(a) Write the Sylvester matrix of a(s) and b(s).

(b) Suppose p0(s), l0(s) is a solution of the polynomial equation

a(s)l(s) + b(s)p(s) = 1 (2.5.1)

Show that (p1(s), l1(s)) is a solution of (2.5.1) if and only if p1(s), l1(s)
can be expressed as

p1(s) = p0(s) + r(s)a(s)
l1(s) = l0(s)− r(s)b(s)

for any polynomial r(s).

(c) Find the solution of (2.5.1) for which p(s) has the lowest degree and
p(s)/l(s) is a proper rational function.

2.7 Consider the third order plant

y = G(s)u

where

G(s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0

(a) Write the parametric model of the plant in the form of (2.4.8) or (2.4.13)
when θ∗ = [b2, b1, b0, a2, a1, a0]>.

(b) If a0, a1, and a2 are known, i.e., a0 = 2, a1 = 1, and a2 = 3, write a
parametric model for the plant in terms of θ∗ = [b2, b1, b0]>.

(c) If b0, b1, and b2 are known, i.e., b0 = 1, b1 = b2 = 0, develop a parametric
model in terms of θ∗ = [a2, a1, a0]>.
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2.8 Consider the spring-mass-dashpot system shown below:

M

k

f

u

x

where k is the spring constant, f the viscous-friction or damping coefficient,
m the mass of the system, u the forcing input, and x the displacement of
the mass M . If we assume a “linear” spring, i.e., the force acting on the
spring is proportional to the displacement, and a friction force proportional
to velocity, i.e., ẋ, we obtain, using Newton’s law, the differential equation

Mẍ = u− kx− fẋ

that describes the dynamic system.

(a) Give a state-space representation of the system.

(b) Calculate the transfer function that relates x with u.

(c) Obtain a linear parametric model of the form

z = θ∗>φ

where θ∗ = [M,k, f ]> and z, φ are signals that can be generated from
the measurements of u, x without the use of differentiators.

2.9 Verify that (2.4.11) and (2.4.12) are nonminimal state-space representations
of the system described by (2.4.1). Show that for the same input u(t), the
output response y(t) is exactly the same for both systems. (Hint: Verify that
C>0 [adj(sI − Λc)]B0 = C>[adj(sI − A)] for some C0 ∈ Rn, B0 ∈ Rn×n by
using the identity

[adj(sI −A)] = sn−1I + sn−2(A + an−1I) + sn−3(A2 + an−1A + an−2I)
+ · · ·+ (An−1 + an−1A

n−2 + · · ·+ a1I)

and choosing C0 such that (C0, Λc) is an observable pair.)

2.10 Write a state-space representation for the following systems:
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(a) φ = αn−1(s)
Λ(s) u, Λ(s) is monic of order n.

(b) φ = αn−1(s)
Λ1(s)

u, Λ1(s) is monic of order n− 1.

(c) φ = αm(s)
Λ1(s)

u, m ≤ n− 1, Λ1(s) is monic of order n− 1.

2.11 Show that

(sI − Λc)−1l =
(
C>o (sI − Λo)−1

)>
=

αn−1(s)
Λ(s)

where (Λc, l) is in the controller form and (Co, Λo) is in the observer form.

2.12 Show that there exists constant matrices Qi ∈ R(n−1)×(n−1) such that

(sI − Λ0)−1di = Qi
αn−2(s)

Λ(s)
, i = 1, 2, . . . , n

where d1 =−λ; Λ(s) = sn−1 + λ>αn−2(s) = det(sI − Λ0), Λ0 =


−λ

∣∣∣∣∣∣

In−2

−−
0


;

di = [0, . . . , 0, 1, 0, . . . , 0]> ∈ Rn−1 whose (i− 1)th element is equal to 1, and
i = 2, 3, . . . , n.



Chapter 3

Stability

3.1 Introduction

The concept of stability is concerned with the investigation and characteri-
zation of the behavior of dynamic systems.

Stability plays a crucial role in system theory and control engineer-
ing, and has been investigated extensively in the past century. Some of
the most fundamental concepts of stability were introduced by the Rus-
sian mathematician and engineer Alexandr Lyapunov in [133]. The work of
Lyapunov was extended and brought to the attention of the larger control
engineering and applied mathematics community by LaSalle and Lefschetz
[124, 125, 126], Krasovskii [107], Hahn [78], Massera [139], Malkin [134],
Kalman and Bertram [97], and many others.

In control systems, we are concerned with changing the properties of dy-
namic systems so that they can exhibit acceptable behavior when perturbed
from their operating point by external forces. The purpose of this chapter is
to present some basic definitions and results on stability that are useful for
the design and analysis of control systems. Most of the results presented are
general and can be found in standard textbooks. Others are more specific
and are developed for adaptive systems. The proofs for most of the general
results are omitted, and appropriate references are provided. Those that are
very relevant to the understanding of the material presented in later chapters
are given in detail.

In Section 3.2, we present the definitions and properties of various norms

66



3.2. PRELIMINARIES 67

and functions that are used in the remainder of the book. The concept of I/O
stability and some standard results from functional analysis are presented
in Section 3.3. These include useful results on the I/O properties of linear
systems, the small gain theorem that is widely used in robust control design
and analysis, and the L2δ-norm and Bellman-Gronwall (B-G) Lemma that
are important tools in the analysis of adaptive systems. The definitions of
Lyapunov stability and related theorems for linear and nonlinear systems are
presented in Section 3.4. The concept of passivity, in particular of positive
real and strictly positive real transfer functions, and its relation to Lyapunov
stability play an important role in the design of stable adaptive systems.
Section 3.5 contains some basic results on positive real functions, and their
connections to Lyapunov functions and stability that are relevant to adaptive
systems.

In Section 3.6, the focus is on some elementary results and principles that
are used in the design and analysis of LTI feedback systems. We concentrate
on the notion of internal stability that we use to motivate the correct way of
computing the characteristic equation of a feedback system and determining
its stability properties. The use of sensitivity and complementary sensitiv-
ity functions and some fundamental trade-offs in LTI feedback systems are
briefly mentioned to refresh the memory of the reader. The internal model
principle and its use to reject the effects of external disturbances in feedback
systems is presented.

A reader who is somewhat familiar with Lyapunov stability and the basic
properties of norms may skip this chapter. He or she may use it as reference
and come back to it whenever necessary. For the reader who is unfamiliar
with Lyapunov stability and I/O properties of linear systems, the chapter
offers a complete tutorial coverage of all the notions and results that are
relevant to the understanding of the rest of the book.

3.2 Preliminaries

3.2.1 Norms and Lp Spaces

For many of the arguments for scalar equations to be extended and remain
valid for vector equations, we need an analog for vectors of the absolute value
of a scalar. This is provided by the norm of a vector.



68 CHAPTER 3. STABILITY

Definition 3.2.1 The norm |x| of a vector x is a real valued function with
the following properties:

(i) |x| ≥ 0 with |x| = 0 if and only if x = 0
(ii) |αx| = |α||x| for any scalar α

(iii) |x + y| ≤ |x|+ |y| (triangle inequality)

The norm |x| of a vector x can be thought of as the size or length of the
vector x. Similarly, |x − y| can be thought of as the distance between the
vectors x and y.

An m × n matrix A represents a linear mapping from n-dimensional
space Rn into m-dimensional space Rm. We define the induced norm of A

as follows:

Definition 3.2.2 Let | · | be a given vector norm. Then for each matrix
A ∈ Rm×n, the quantity ‖A‖ defined by

‖A‖ 4= sup
x6=0

x∈Rn

|Ax|
|x| = sup

|x|≤1
|Ax| = sup

|x|=1
|Ax|

is called the induced (matrix) norm of A corresponding to the vector
norm | · |.

The induced matrix norm satisfies the properties (i) to (iii) of Definition
3.2.1.

Some of the properties of the induced norm that we will often use in this
book are summarized as follows:

(i) |Ax| ≤ ‖A‖|x|, ∀x ∈ Rn

(ii) ‖A + B‖ ≤ ‖A‖+ ‖B‖
(iii) ‖AB‖ ≤ ‖A‖‖B‖
where A,B are arbitrary matrices of compatible dimensions. Table 3.1 shows
some of the most commonly used norms on Rn.

It should be noted that the function ‖A‖s
4
= maxij |aij |, where A ∈

Rm×n and aij is the (i, j) element of A satisfies the properties (i) to (iii)
of Definition 3.2.1. It is not, however, an induced matrix norm because no
vector norm exists such that ‖ · ‖s is the corresponding induced norm. Note
that ‖ · ‖s does not satisfy property (c).
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Table 3.1 Commonly used norms

Norm on Rn Induced norm on Rm×n

|x|∞=maxi|xi| (infinity norm) ‖A‖∞ = maxi
∑

j |aij | (row sum)

|x|1 =
∑

i |xi| ‖A‖1 = maxj
∑

i |aij | (column sum)

|x|2 = (
∑

i |xi|2)1/2 ‖A‖2 = [λm(A>A)]1/2, where λm(M)

(Euclidean norm) is the maximum eigenvalue of M

Example 3.2.1 (i) Let x = [1, 2,−10, 0]>. Using Table 3.1, we have

|x|∞ = 10, |x|1 = 13, |x|2 =
√

105

(ii) Let

A =




0 5
1 0
0 −10


 , B =

[ −1 5
0 2

]

Using Table 3.1, we have

‖A‖1 = 15, ‖A‖2 = 11.18, ‖A‖∞ = 10
‖B‖1 = 7, ‖B‖2 = 5.465, ‖B‖∞ = 6
‖AB‖1 = 35, ‖AB‖2 = 22.91, ‖AB‖∞ = 20

which can be used to verify property (iii) of the induced norm. 5

For functions of time, we define the Lp norm

‖x‖p
4
=

(∫ ∞

0
|x(τ)|pdτ

)1/p

for p ∈ [1,∞) and say that x ∈ Lp when ‖x‖p exists (i.e., when ‖x‖p is
finite). The L∞ norm is defined as

‖x‖∞ 4
= sup

t≥0
|x(t)|

and we say that x ∈ L∞ when ‖x‖∞ exists.
In the above Lp,L∞ norm definitions, x(t) can be a scalar or a vector

function. If x is a scalar function, then | · | denotes the absolute value. If x

is a vector function in Rn then | · | denotes any norm in Rn.
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Similarly, for sequences we define the lp norm as

‖x‖p
4
=

( ∞∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞

and the l∞ norm as
‖x‖∞ 4

= sup
i≥1

|xi|

where x = (x1, x2, . . .) and xi ∈ R. We say x ∈ lp (respectively x ∈ l∞) if
‖x‖p (respectively ‖x‖∞) exists.

We are usually concerned with classes of functions of time that do not
belong to Lp. To handle such functions we define the Lpe norm

‖xt‖p
4
=

(∫ t

0
|x(τ)|pdτ

) 1
p

for p ∈ [1,∞) and say that x ∈ Lpe when ‖xt‖p exists for any finite t.
Similarly, the L∞e norm is defined as

‖xt‖∞ 4
= sup

0≤τ≤t
|x(τ)|

The function t2 does not belong to Lp but t2 ∈ Lpe. Similarly, any continuous
function of time belongs to Lpe but it may not belong to Lp.

For each p ∈ [1,∞], the set of functions that belong to Lp (respectively
Lpe) form a linear vector space called Lp space (respectively Lpe space) [42].
If we define the truncated function ft as

ft(τ)
4
=

{
f(τ) 0 ≤ τ ≤ t
0 τ > t

for all t ∈ [0,∞), then it is clear that for any p ∈ [1,∞], f ∈ Lpe implies
that ft ∈ Lp for any finite t. The Lpe space is called the extended Lp space
and is defined as the set of all functions f such that ft ∈ Lp.

It can be easily verified that the Lp and Lpe norms satisfy the properties
of the norm given by Definition 3.2.1. It should be understood, however,
that elements of Lp and Lpe are equivalent classes [42], i.e., if f, g ∈ Lp and
‖f − g‖p = 0, the functions f and g are considered to be the same element
of Lp even though f(t) 6= g(t) for some values of t. The following lemmas
give some of the properties of Lp and Lpe spaces that we use later.
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Lemma 3.2.1 (Hölder’s Inequality) If p, q ∈ [1,∞] and 1
p + 1

q = 1, then
f ∈ Lp, g ∈ Lq imply that fg ∈ L1 and

‖fg‖1 ≤ ‖f‖p‖g‖q

When p = q = 2, the Hölder’s inequality becomes the Schwartz inequal-
ity, i.e.,

‖fg‖1 ≤ ‖f‖2‖g‖2 (3.2.1)

Lemma 3.2.2 (Minkowski Inequality) For p ∈ [1,∞], f, g ∈ Lp imply
that f + g ∈ Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p (3.2.2)

The proofs of Lemma 3.2.1 and 3.2.2 can be found in any standard book on
real analysis such as [199, 200].

We should note that the above lemmas also hold for the truncated func-
tions ft, gt of f, g, respectively, provided f, g ∈ Lpe. For example, if f and
g are continuous functions, then f, g ∈ Lpe, i.e., ft, gt ∈ Lp for any finite
t ∈ [0,∞) and from (3.2.1) we have ‖(fg)t‖1 ≤ ‖ft‖2‖gt‖2, i.e.,

∫ t

0
|f(τ)g(τ)|dτ ≤

(∫ t

0
|f(τ)|2dτ

) 1
2

(∫ t

0
|g(τ)|2dτ

) 1
2

(3.2.3)

which holds for any finite t ≥ 0. We use the above Schwartz inequality
extensively throughout this book.

Example 3.2.2 Consider the function f(t) = 1
1+t . Then,

‖f‖∞ = sup
t≥0

∣∣∣∣
1

1 + t

∣∣∣∣ = 1, ‖f‖2 =
(∫ ∞

0

1
(1 + t)2

dt

) 1
2

= 1

‖f‖1 =
∫ ∞

0

1
1 + t

dt = lim
t→∞

ln(1 + t) →∞

Hence, f ∈ L2

⋂L∞ but f 6∈ L1; f , however, belongs to L1e, i.e., for any finite
t ≥ 0, we have ∫ t

0

1
1 + τ

dτ = ln(1 + t) < ∞ 5
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Example 3.2.3 Consider the functions

f(t) = 1 + t, g(t) =
1

1 + t
, for t ≥ 0

It is clear that f 6∈ Lp for any p ∈ [1,∞] and g 6∈ L1. Both functions, however,
belong to Lpe; and can be used to verify the Schwartz inequality (3.2.3)

‖(fg)t‖1 ≤ ‖ft‖2‖gt‖2
i.e., ∫ t

0

1dτ ≤
(∫ t

0

(1 + τ)2dτ

) 1
2

(∫ t

0

1
(1 + τ)2

dτ

) 1
2

for any t ∈ [0,∞) or equivalently

t ≤
(

t(t2 + 3t + 3)
3

) 1
2

(
t

1 + t

) 1
2

which is true for any t ≥ 0. 5

In the remaining chapters of the book, we adopt the following notation
regarding norms unless stated otherwise. We will drop the subscript 2 from
| · |2, ‖ · ‖2 when dealing with the Euclidean norm, the induced Euclidean
norm, and the L2 norm. If x : R+ 7→ Rn, then

|x(t)| represents the vector norm in Rn at each time t ‖xt‖p repre-
sents the Lpe norm of the function |x(t)| ‖x‖p represents the Lp norm of
the function |x(t)|
If A ∈ Rm×n, then
‖A‖i represents the induced matrix norm corresponding to the vector

norm | · |i.
If A : R+ 7→ Rm×n has elements that are functions of time t, then

‖A(t)‖i represents the induced matrix norm corresponding to the vector
norm | · |i at time t.

3.2.2 Properties of Functions

Let us start with some definitions.

Definition 3.2.3 (Continuity) A function f : [0,∞) 7→ R is continuous
on [0,∞) if for any given ε0 > 0 there exists a δ(ε0, t0) such that ∀t0, t ∈
[0,∞) for which |t− t0| < δ(ε0, t0) we have |f(t)− f(t0)| < ε0.
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Definition 3.2.4 (Uniform Continuity) A function f : [0,∞) 7→ R is
uniformly continuous on [0,∞) if for any given ε0 > 0 there exists a δ(ε0)
such that ∀t0, t ∈ [0,∞) for which |t− t0| < δ(ε0) we have |f(t)−f(t0)| < ε0.

Definition 3.2.5 (Piecewise Continuity) A function f : [0,∞) 7→ R is
piecewise continuous on [0,∞) if f is continuous on any finite interval
[t0, t1] ⊂ [0,∞) except for a finite number of points.

Definition 3.2.6 (Absolute Continuity) A function f : [a, b] 7→ R is
absolutely continuous on [a, b] iff, for any ε0 > 0, there is a δ > 0 such that

n∑

i=1

|f(αi)− f(βi)| < ε0

for any finite collection of subintervals (αi, βi) of [a, b] with
∑n

i=1 |αi−βi| < δ.

Definition 3.2.7 (Lipschitz) A function f : [a, b] → R is Lipschitz on
[a, b] if |f(x1)−f(x2)| ≤ k|x1−x2| ∀x1, x2 ∈ [a, b], where k ≥ 0 is a constant
referred to as the Lipschitz constant.

The function f(t) = sin(1
t ) is continuous on (0,∞), but is not uniformly

continuous (verify!).
A function defined by a square wave of finite frequency is not continuous

on [0,∞), but it is piecewise continuous.
Note that a uniformly continuous function is also continuous. A function

f with ḟ ∈ L∞ is uniformly continuous on [0,∞). Therefore, an easy way
of checking the uniform continuity of f(t) is to check the boundedness of ḟ .
If f is Lipschitz on [a, b], then it is absolutely continuous.

The following facts about functions are important in understanding some
of the stability arguments which are often made in the analysis of adaptive
systems.

Fact 1 limt→∞ ḟ(t) = 0 does not imply that f(t) has a limit as t →∞.

For example, consider the function f(t) = sin(
√

1 + t). We have

ḟ =
cos

√
1 + t

2
√

1 + t
→ 0 as t →∞



74 CHAPTER 3. STABILITY

but f(t) has no limit. Another example is f(t) =
√

1 + t sin(ln(1 + t)), which
is an unbounded function of time. Yet

ḟ(t) =
sin(ln(1 + t))

2
√

1 + t
+

cos(ln(1 + t))√
1 + t

→ 0 as t →∞

Fact 2 limt→∞ f(t) = c for some constant c ∈ R does not imply that ḟ(t) →
0 as t →∞.

For example, the function f(t) = sin(1+t)n

1+t tends to zero as t → ∞ for any
finite integer n but

ḟ = −sin(1 + t)n

(1 + t)2
+ n(1 + t)n−2 cos(1 + t)n

has no limit for n ≥ 2 and becomes unbounded as t →∞ for n > 2.
Some important lemmas that we frequently use in the analysis of adaptive

schemes are the following:

Lemma 3.2.3 The following is true for scalar-valued functions:
(i) A function f(t) that is bounded from below and is nonincreasing has a

limit as t →∞.
(ii) Consider the nonnegative scalar functions f(t), g(t) defined for all t ≥

0. If f(t) ≤ g(t) ∀t ≥ 0 and g ∈ Lp, then f ∈ Lp for all p ∈ [1,∞].

Proof (i) Because f is bounded from below, its infimum fm exists, i.e.,

fm = inf
0≤t≤∞

f(t)

which implies that there exists a sequence {tn} ∈ R+ such that limn→∞ f(tn) = fm.
This, in turn, implies that given any ε0 > 0 there exists an integer N > 0 such that

|f(tn)− fm| < ε0, ∀n ≥ N

Because f is nonincreasing, there exists an n0 ≥ N such that for any t ≥ tn0 and
some n0 ≥ N we have

f(t) ≤ f(tn0)

and
|f(t)− fm| ≤ |f(tn0)− fm| < ε0

for any t ≥ tn0 . Because ε0 > 0 is any given number, it follows that limt→∞ f(t) =
fm.
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(ii) We have

z(t)
4
=

(∫ t

0

fp(τ)dτ

) 1
p

≤
(∫ ∞

0

gp(τ)dτ

) 1
p

< ∞, ∀t ≥ 0

Because 0 ≤ z(t) < ∞ and z(t) is nondecreasing, we can establish, as in (i), that
z(t) has a limit, i.e., limt→∞ z(t) = z̄ < ∞, which implies that f ∈ Lp. For p = ∞,
the proof is straightforward. 2

Lemma 3.2.3 (i) does not imply that f ∈ L∞. For example, the function
f(t) = 1

t with t ∈ (0,∞) is bounded from below, i.e., f(t) ≥ 0 and is
nonincreasing, but it becomes unbounded as t → 0. If, however, f(0) is
finite, then it follows from the nonincreasing property f(t) ≤ f(0) ∀t ≥ 0
that f ∈ L∞. A special case of Lemma 3.2.3 that we often use in this book
is when f ≥ 0 and ḟ ≤ 0.

Lemma 3.2.4 Let f, V : [0,∞) 7→ R. Then

V̇ ≤ −αV + f, ∀t ≥ t0 ≥ 0

implies that

V (t) ≤ e−α(t−t0)V (t0) +
∫ t

t0
e−α(t−τ)f(τ)dτ, ∀t ≥ t0 ≥ 0

for any finite constant α.

Proof Let w(t)
4
= V̇ + αV − f . We have w(t) ≤ 0 and

V̇ = −αV + f + w

implies that

V (t) = e−α(t−t0)V (t0) +
∫ t

t0

e−α(t−τ)f(τ)dτ +
∫ t

t0

e−α(t−τ)w(τ)dτ

Because w(t) ≤ 0 ∀t ≥ t0 ≥ 0, we have

V (t) ≤ e−α(t−t0)V (t0) +
∫ t

t0

e−α(t−τ)f(τ)dτ

2
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Lemma 3.2.5 If f, ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞), then f(t) → 0
as t →∞.

The result of Lemma 3.2.5 is a special case of a more general result given
by Barbălat’s Lemma stated below.

Lemma 3.2.6 (Barbălat’s Lemma [192]) If limt→∞
∫ t
0 f(τ)dτ exists

and is finite, and f(t) is a uniformly continuous function, then limt→∞ f(t) =
0.

Proof Assume that limt→∞ f(t) = 0 does not hold, i.e., either the limit does not
exist or it is not equal to zero. This implies that there exists an ε0 > 0 such that
for every T > 0, one can find a sequence of numbers ti > T such that |f(ti)| > ε0
for all i.

Because f is uniformly continuous, there exists a number δ(ε0) > 0 such that

|f(t)− f(ti)| < ε0
2

for every t ∈ [ti, ti + δ(ε0)]

Hence, for every t ∈ [ti, ti + δ(ε0)], we have

|f(t)| = |f(t)− f(ti) + f(ti)| ≥ |f(ti)| − |f(t)− f(ti)|
≥ ε0 − ε0

2
=

ε0
2

which implies that
∣∣∣∣∣
∫ ti+δ(ε0)

ti

f(τ)dτ

∣∣∣∣∣ =
∫ ti+δ(ε0)

ti

|f(τ)| dτ >
ε0δ(ε0)

2
(3.2.4)

where the first equality holds because f(t) retains the same sign for t ∈ [ti, ti+δ(ε0)].

On the other hand, g(t)
4
=

∫ t

0
f(τ)dτ has a limit as t →∞ implies that there exists

a T (ε0) > 0 such that for any t2 > t1 > T (ε0) we have

|g(t1)− g(t2)| < ε0δ(ε0)
2

i.e., ∣∣∣∣
∫ t2

t1

f(τ)dτ

∣∣∣∣ <
ε0δ(ε0)

2

which for t2 = ti+δ(ε0), t1 = ti contradicts (3.2.4), and, therefore, limt→∞ f(t) = 0.
2
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The proof of Lemma 3.2.5 follows directly from that of Lemma 3.2.6 by
noting that the function fp(t) is uniformly continuous for any p ∈ [1,∞)
because f, ḟ ∈ L∞.

The condition that f(t) is uniformly continuous is crucial for the results
of Lemma 3.2.6 to hold as demonstrated by the following example.

Example 3.2.4 Consider the following function described by a sequence of isosceles
triangles of base length 1

n2 and height equal to 1 centered at n where n = 1, 2, . . .∞
as shown in the figure below:

-

6

@
@

@

¡
¡

¡

C
C
C

¤
¤
¤

C
C
C

¤
¤
¤

-¾ -¾ -¾
2 1

4
1

n2

1 2 n

1

f(t)

· · · · · · · · · · · ·

This function is continuous but not uniformly continuous. It satisfies

lim
t→∞

∫ t

0

f(τ)dτ =
1
2

∞∑
n=1

1
n2

=
π2

12

but limt→∞ f(t) does not exist. 5

The above example also serves as a counter example to the following situ-
ation that arises in the analysis of adaptive systems: We have a function V (t)
with the following properties: V (t) ≥ 0, V̇ ≤ 0. As shown by Lemma 3.2.3
these properties imply that limt→∞ V (t) = V∞ exists. However, there is no
guarantee that V̇ (t) → 0 as t →∞. For example consider the function

V (t) = π −
∫ t

0
f(τ)dτ

where f(t) is as defined in Example 3.2.4. Clearly,

V (t) ≥ 0, V̇ = −f(t) ≤ 0, ∀t ≥ 0

and

lim
t→∞V (t) = V∞ = π − π2

12
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but limt→∞ V̇ (t) = − limt→∞ f(t) does not exist. According to Barbălat’s
lemma, a sufficient condition for V̇ (t) → 0 as t →∞ is that V̇ is uniformly
continuous.

3.2.3 Positive Definite Matrices

A square matrix A ∈ Rn×n is called symmetric if A = A>. A symmet-
ric matrix A is called positive semidefinite if for every x ∈ Rn, x>Ax ≥ 0
and positive definite if x>Ax > 0 ∀x ∈ Rn with |x| 6= 0. It is called neg-
ative semidefinite (negative definite) if −A is positive semidefinite (positive
definite).

The definition of a positive definite matrix can be generalized to non-
symmetric matrices. In this book we will always assume that the matrix
is symmetric when we consider positive or negative definite or semidefinite
properties.

We write A ≥ 0 if A is positive semidefinite, and A > 0 if A is positive
definite. We write A ≥ B and A > B if A − B ≥ 0 and A − B > 0,
respectively.

A symmetric matrix A ∈ Rn×n is positive definite if and only if any one
of the following conditions holds:

(i) λi(A) > 0, i = 1, 2, . . . , n where λi(A) denotes the ith eigenvalue of A,
which is real because A = A>.

(ii) There exists a nonsingular matrix A1 such that A = A1A
>
1 .

(iii) Every principal minor of A is positive.
(iv) x>Ax ≥ α|x|2 for some α > 0 and ∀x ∈ Rn.
The decomposition A = A1A

>
1 in (ii) is unique when A1 is also symmetric.

In this case, A1 is positive definite, it has the same eigenvectors as A, and
its eigenvalues are equal to the square roots of the corresponding eigenvalues
of A. We specify this unique decomposition of A by denoting A1 as A

1
2 , i.e.,

A = A
1
2 A

>
2 where A

1
2 is a positive definite matrix and A>/2 denotes the

transpose of A1/2.
A symmetric matrix A ∈ Rn×n has n orthogonal eigenvectors and can

be decomposed as
A = U>ΛU (3.2.5)

where U is a unitary (orthogonal) matrix (i.e., U>U = I) with the eigen-
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vectors of A, and Λ is a diagonal matrix composed of the eigenvalues of A.
Using (3.2.5), it follows that if A ≥ 0, then for any vector x ∈ Rn

λmin(A)|x|2 ≤ x>Ax ≤ λmax(A)|x|2

Furthermore, if A ≥ 0 then

‖A‖2 = λmax(A)

and if A > 0 we also have

‖A−1‖2 =
1

λmin(A)

where λmax(A), λmin(A) is the maximum and minimum eigenvalue of A,
respectively.

We should note that if A > 0 and B ≥ 0, then A + B > 0, but it is not
true in general that AB ≥ 0.

3.3 Input/Output Stability

The systems encountered in this book can be described by an I/O mapping
that assigns to each input a corresponding output, or by a state variable
representation. In this section we shall present some basic results concerning
I/O stability. These results are based on techniques from functional analysis
[42], and most of them can be applied to both continuous- and discrete-
time systems. Similar results are developed in Section 3.4 by using the state
variable approach and Lyapunov theory.

3.3.1 Lp Stability

We consider an LTI system described by the convolution of two functions
u, h : R+ →R defined as

y(t) = u ∗ h
4
=

∫ t

0
h(t− τ)u(τ)dτ =

∫ t

0
u(t− τ)h(τ)dτ (3.3.1)

where u, y is the input and output of the system, respectively. Let H(s) be
the Laplace transform of the I/O operator h(·). H(s) is called the transfer



80 CHAPTER 3. STABILITY

function and h(t) the impulse response of the system (3.3.1). The system
(3.3.1) may also be represented in the form

Y (s) = H(s)U(s) (3.3.2)

where Y (s), U(s) is the Laplace transform of y, u respectively.
We say that the system represented by (3.3.1) or (3.3.2) is Lp stable if

u ∈ Lp ⇒ y ∈ Lp and ‖y‖p ≤ c‖u‖p for some constant c ≥ 0 and any
u ∈ Lp. When p = ∞, Lp stability, i.e., L∞ stability, is also referred to as
bounded-input bounded-output (BIBO) stability.

The following results hold for the system (3.3.1).

Theorem 3.3.1 If u ∈ Lp and h ∈ L1 then

‖y‖p ≤ ‖h‖1‖u‖p (3.3.3)

where p ∈ [1,∞].

When p = 2 we have a sharper bound for ‖y‖p than that of (3.3.3) given by
the following Lemma.

Lemma 3.3.1 If u ∈ L2 and h ∈ L1, then

‖y‖2 ≤ sup
ω
|H(jω)|‖u‖2 (3.3.4)

For the proofs of Theorem 3.3.1, Lemma 3.3.1 see [42].

Remark 3.3.1 It can be shown that (3.3.4) also holds [232] when h(·) is of
the form

h(t) =

{
0 t < 0∑∞

i=0 fiδ(t− ti) + fa(t) t ≥ 0

where fa ∈ L1,
∑∞

i=0 |fi| < ∞ and ti are nonnegative finite constants.
The Laplace transform of h(t) is now given by

H(s) =
∞∑

i=0

fie
−sti + Ha(s)

which is not a rational function of s. The biproper transfer functions
that are of interest in this book belong to the above class.
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Remark 3.3.2 We should also note that (3.3.3) and (3.3.4) hold for the
truncated functions of u, y, i.e.,

‖yt‖p ≤ ‖h‖1‖ut‖p

for any t ∈ [0,∞) provided u ∈ Lpe. Similarly,

‖yt‖2 ≤ sup
ω
|H(jω)|‖ut‖2

for any t ∈ [0,∞) provided u ∈ L2e. This is clearly seen by noticing
that u ∈ Lpe ⇒ ut ∈ Lp for any finite t ≥ 0.

It can be shown [42] that inequality (3.3.3) is sharp for p = ∞ because

‖h‖1 is the induced norm of the map T : u 7→ Tu
4
= y from L∞ into L∞, i.e.,

‖T‖∞ = ‖h‖1. Similarly for (3.3.4) it can be shown that the induced norm
of the linear map T : L2 7→ L2 is given by

‖T‖2 = sup
ω∈R

|H(jω)| (3.3.5)

i.e., the bound (3.3.4) is also sharp.
The induced L2 norm in (3.3.5) is referred to as the H∞ norm for the

transfer function H(s) and is denoted by

‖H(s)‖∞ 4
= sup

ω∈R
|H(jω)|

Let us consider the simple case where h(t) in (3.3.1) is the impulse response
of an LTI system whose transfer function H(s) is a rational function of s.
The following theorem and corollaries hold.

Theorem 3.3.2 Let H(s) be a strictly proper rational function of s. Then
H(s) is analytic in Re[s] ≥ 0 if and only if h ∈ L1.

Corollary 3.3.1 If h ∈ L1, then
(i) h decays exponentially , i.e., |h(t)| ≤ α1e

−α0t for some α1, α0 > 0
(ii) u ∈ L1 ⇒ y ∈ L1

⋂L∞, ẏ ∈ L1, y is continuous and limt→∞ |y(t)| = 0
(iii) u ∈ L2 ⇒ y ∈ L2

⋂L∞, ẏ ∈ L2, y is continuous and limt→∞ |y(t)| = 0
(iv) For p ∈ [1,∞], u ∈ Lp ⇒ y, ẏ ∈ Lp and y is continuous
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For proofs of Theorem 3.3.2 and Corollary 3.3.1, see [42].

Corollary 3.3.2 Let H(s) be biproper and analytic in Re[s] ≥ 0. Then u ∈
L2

⋂L∞ and limt→∞ |u(t)| = 0 imply that y ∈ L2
⋂L∞ and limt→∞ |y(t)| =

0.

Proof H(s) may be expressed as

H(s) = d + Ha(s)

where d is a constant and Ha(s) is strictly proper and analytic in Re[s] ≥ 0. We
have

y = du + ya, ya = Ha(s)u

where, by Corollary 3.3.1, ya ∈ L2

⋂L∞ and |ya(t)| → 0 as t → ∞. Because
u ∈ L2

⋂L∞ and u(t) → 0 as t → ∞, it follows that y ∈ L2

⋂L∞ and |y(t)| → 0
as t →∞. 2

Example 3.3.1 Consider the system described by

y = H(s)u, H(s) =
e−αs

s + β

for some constant α > 0. For β > 0, H(s) is analytic in Re[s] ≥ 0. The impulse
response of the system is given by

h(t) =
{

e−β(t−α) t ≥ α
0 t < α

and h ∈ L1 if and only if β > 0. We have

‖h‖1 =
∫ ∞

0

|h(t)|dt =
∫ ∞

α

e−β(t−α)dt =
1
β

and

‖H(s)‖∞ = sup
ω

∣∣∣∣
e−αjω

jω + β

∣∣∣∣ =
1
β

5

Example 3.3.2 Consider the system described by

y = H(s)u, H(s) =
2s + 1
s + 5
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The impulse response of the system is given by

h(t) =
{

2δ∆(t)− 9e−5t t ≥ 0
0 t < 0

where ha = −9e−5t ∈ L1. This system belongs to the class described in Re-
mark 3.3.1. We have

‖H(s)‖∞ = sup
ω

∣∣∣∣
1 + 2jω

5 + jω

∣∣∣∣ = sup
ω

(
1 + 4ω2

25 + ω2

) 1
2

= 2

Hence, according to (3.3.4) and Remarks 3.3.1 and 3.3.2, for any u ∈ L2e, we have

‖yt‖2 ≤ 2‖ut‖2

for any t ∈ [0,∞). 5

Definition 3.3.1 (µ−small in the mean square sense (m.s.s.)) Let
x : [0,∞) 7→ Rn, where x ∈ L2e, and consider the set

S(µ) =

{
x : [0,∞) 7→ Rn

∣∣∣∣∣
∫ t+T

t
x>(τ)x(τ)dτ ≤ c0µT + c1, ∀t, T ≥ 0

}

for a given constant µ ≥ 0, where c0, c1 ≥ 0 are some finite constants, and
c0 is independent of µ. We say that x is µ−small in the m.s.s. if x ∈ S(µ).

Using the proceeding definition, we can obtain a result similar to that of
Corollary 3.3.1 (iii) in the case where u /∈ L2 but u ∈ S(µ) for some constant
µ ≥ 0.

Corollary 3.3.3 Consider the system (3.3.1). If h ∈ L1, then u ∈ S(µ)
implies that y ∈ S(µ) and y ∈ L∞ for any finite µ ≥ 0. Furthermore

|y(t)|2 ≤ α2
1

α0

eα0

(1− e−α0)
(c0µ + c1), ∀t ≥ t0 ≥ 0

where α0, α1 are the parameters in the bound for h in Corollary 3.3.1 (i).

Proof Using Corollary 3.3.1 (i), we have

|y(t)| ≤
∫ t

t0

|h(t− τ)u(τ)|dτ ≤
∫ t

t0

α1e
−α0(t−τ)|u(τ)|dτ, ∀t ≥ t0 ≥ 0
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for some constants α1, α0 > 0. Using the Schwartz inequality we obtain

|y(t)|2 ≤ α2
1

∫ t

t0

e−α0(t−τ)dτ

∫ t

t0

e−α0(t−τ)|u(τ)|2dτ

≤ α2
1

α0

∫ t

t0

e−α0(t−τ)|u(τ)|2dτ (3.3.6)

Therefore, for any t ≥ t0 ≥ 0 and T ≥ 0 we have
∫ t+T

t

|y(τ)|2dτ ≤ α2
1

α0

∫ t+T

t

∫ τ

t0

e−α0(τ−s)|u(s)|2dsdτ

=
α2

1

α0

∫ t+T

t

(∫ t

t0

e−α0(τ−s)|u(s)|2ds +
∫ τ

t

e−α0(τ−s)|u(s)|2ds

)
dτ

(3.3.7)

Using the identity involving the change of the sequence of integration, i.e.,
∫ t+T

t

f(τ)
∫ τ

t

g(s)dsdτ =
∫ t+T

t

g(s)
∫ t+T

s

f(τ)dτds (3.3.8)

for the second term on the right-hand side of (3.3.7), we have

∫ t+T

t

|y(τ)|2dτ ≤ α2
1

α0

∫ t+T

t

e−α0τdτ

∫ t

t0

eα0s|u(s)|2ds

+
α2

1

α0

∫ t+T

t

eα0s|u(s)|2
(∫ t+T

s

e−α0τdτ

)
ds

≤ α2
1

α2
0

(∫ t

t0

e−α0(t−s)|u(s)|2ds +
∫ t+T

t

|u(s)|2ds

)

where the last inequality is obtained by using e−α0t − e−α0(t+T ) ≤ e−α0t. Because
u ∈ S(µ) it follows that

∫ t+T

t

|y(τ)|2dτ ≤ α2
1

α2
0

[∆(t, t0) + c0µT + c1] (3.3.9)

where ∆(t, t0))
4
=

∫ t

t0
e−α0(t−s)|u(s)|2ds. If we establish that ∆(t, t0) ≤ c for some

constant c independent of t, t0 then we can conclude from (3.3.9) that y ∈ S(µ).
We start with

∆(t, t0) =
∫ t

t0

e−α0(t−s)|u(s)|2ds
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≤ e−α0t
nt∑

i=0

∫ i+1+t0

i+t0

eα0s|u(s)|2ds (3.3.10)

≤ e−α0t
nt∑

i=0

eα0(i+1+t0)

∫ i+1+t0

i+t0

|u(s)|2ds

where nt is an integer that depends on t and satisfies nt + t0 ≤ t < nt + 1 + t0.
Because u ∈ S(µ), we have

∆(t, t0) ≤ e−α0t(c0µ + c1)
nt∑

i=0

eα0(i+1+t0) ≤ c0µ + c1

1− e−α0
eα0 (3.3.11)

Using (3.3.11) in (3.3.9) we have
∫ t+T

t

|y(τ)|2dτ ≤ α2
1

α2
0

(
c0µT + c1 +

c0µ + c1

1− e−α0
eα0

)

for any t ≥ t0 ≥ 0. Setting ĉ0 = c0α2
1

α2
0

and ĉ1 =
(
c1 + c0µ+c1

1−e−α0 eα0

)
α2

1
α2

0
, it follows that

y ∈ S(µ).
From (3.3.6), (3.3.10), and (3.3.11), we can calculate the upper bound for |y(t)|2.

2

Definition 3.3.1 may be generalized to the case where µ is not necessarily
a constant as follows.

Definition 3.3.2 Let x : [0,∞) 7→ Rn, w : [0,∞) 7→ R+ where x∈L2e,
w ∈ L1e and consider the set

S(w) =

{
x,w

∣∣∣∣∣
∫ t+T

t
x>(τ)x(τ)dτ ≤ c0

∫ t+T

t
w(τ)dτ + c1,∀t, T ≥ 0

}

where c0, c1 ≥ 0 are some finite constants. We say that x is w-small in the
m.s.s. if x ∈ S(w).

We employ Corollary 3.3.3, and Definitions 3.3.1 and 3.3.2 repeatedly in
Chapters 8 and 9 for the analysis of the robustness properties of adaptive
control systems.

3.3.2 The L2δ Norm and I/O Stability

The definitions and results of the previous sections are very helpful in devel-
oping I/O stability results based on a different norm that are particularly
useful in the analysis of adaptive schemes.
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In this section we consider the exponentially weighted L2 norm defined
as

‖xt‖2δ
4
=

(∫ t

0
e−δ(t−τ)x>(τ)x(τ)dτ

) 1
2

where δ ≥ 0 is a constant. We say that x ∈ L2δ if ‖xt‖2δ exists. When δ = 0
we omit it from the subscript and use the notation x ∈ L2e.

We refer to ‖(·)‖2δ as the L2δ norm. For any finite time t, the L2δ norm
satisfies the properties of the norm given by Definition 3.2.1, i.e.,

(i) ‖xt‖2δ ≥ 0
(ii) ‖αxt‖2δ = |α|‖xt‖2δ for any constant scalar α

(iii) ‖(x + y)t‖2δ ≤ ‖xt‖2δ + ‖yt‖2δ

It also follows that

(iv) ‖αxt‖2δ ≤ ‖xt‖2δ supt |α(t)| for any α ∈ L∞
The notion of L2δ norm has been introduced mainly to simplify the sta-
bility and robustness analysis of adaptive systems. To avoid confusion, we
should point out that the L2δ norm defined here is different from the ex-
ponentially weighted norm used in many functional analysis books that is

defined as
{∫ t

0 eδτx>(τ)x(τ)dτ
} 1

2 . The main difference is that this exponen-
tially weighted norm is a nondecreasing function of t, whereas the L2δ norm
may not be.

Let us consider the LTI system given by

y = H(s)u (3.3.12)

where H(s) is a rational function of s and examine L2δ stability, i.e., given
u ∈ L2δ, what can we say about the Lp,L2δ properties of the output y(t)
and its upper bounds.

Lemma 3.3.2 Let H(s) in (3.3.12) be proper. If H(s) is analytic in Re[s] ≥
−δ/2 for some δ ≥ 0 and u ∈ L2e then

(i)
‖yt‖2δ ≤ ‖H(s)‖∞δ‖ut‖2δ

where
‖H(s)‖∞δ

4
= sup

ω

∣∣∣∣H
(

jω − δ

2

)∣∣∣∣
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(ii) Furthermore, when H(s) is strictly proper, we have

|y(t)| ≤ ‖H(s)‖2δ‖ut‖2δ

where

‖H(s)‖2δ
4
=

1√
2π

{∫ ∞

−∞

∣∣∣∣H
(

jω − δ

2

)∣∣∣∣
2

dω

} 1
2

The norms ‖H(s)‖2δ, ‖H(s)‖∞δ are related by the inequality

‖H(s)‖2δ ≤ 1√
2p− δ

‖(s + p)H(s)‖∞δ

for any p > δ/2 ≥ 0.

Proof The transfer function H(s) can be expressed as H(s) = d + Ha(s) with

h(t) =
{

0 t < 0
dδ∆(t) + ha(t) t ≥ 0

Because d is a finite constant, H(s) being analytic in Re[s] ≥ −δ/2 implies that
ha ∈ L1, i.e., the pair {H(s), h(t)} belongs to the class of functions considered in
Remark 3.3.1.

If we define

hδ(t) =
{

0 t < 0
dδ∆(t) + e

δ
2 tha(t) t ≥ 0

yδ(t)
4
= e

δ
2 ty(t) and uδ(t)

4
= e

δ
2 tu(t), it follows from (3.3.1) that

yδ(t) =
∫ t

0

e
δ
2 (t−τ)h(t− τ)e

δ
2 τu(τ)dτ = hδ ∗ uδ

Now u ∈ L2e ⇒ uδ ∈ L2e. Therefore, applying Lemma 3.3.1 and Remark 3.3.1 for
the truncated signals yδt, uδt at time t and noting that H(s − δ/2) is the Laplace
transform of hδ we have

‖yδt‖2 ≤ ‖H(s− δ/2)‖∞‖uδt‖2 (3.3.13)

Because e−
δ
2 t‖yδt‖2 = ‖yt‖2δ, e−

δ
2 t‖uδt‖2 = ‖ut‖2δ, and ‖H(s−δ/2)‖∞ = ‖H(s)‖∞δ,

(i) follows directly from (3.3.13).
For d = 0, i.e., H(s) is strictly proper, we have

|y(t)| ≤
∣∣∣∣
∫ t

0

e
δ
2 (t−τ)h(t− τ)e−

δ
2 (t−τ)u(τ)dτ

∣∣∣∣

≤
(∫ t

0

eδ(t−τ)|h(t− τ)|2dτ

)1
2

‖ut‖2δ



88 CHAPTER 3. STABILITY

where the second inequality is obtained by applying the Schwartz inequality. Then,

|y(t)| ≤
(∫ ∞

0

eδ(t−τ)|h(t− τ)|2dτ

)1
2

‖ut‖2δ

=
1√
2π

(∫ ∞

−∞
|H(jω − δ/2)|2dω

)1
2

‖ut‖2δ (3.3.14)

where the equality is obtained by assuming that H(s) is strictly proper and applying
Parseval’s Theorem [42](p. 236), implies (ii).

because H(s) is strictly proper, we can write

‖H(s)‖2δ =
1√
2π

(∫ ∞

−∞
|(jω + p0)H(jω − δ/2)|2 1

|jω + p0|2 dω

)1
2

≤ 1√
2π

(∫ ∞

−∞

1
|jω + p0|2 dω

) 1
2

sup
ω

(|(jω + p0)H(jω − δ/2)|)

=
1√
2p0

‖(s + p0 + δ/2)H(s)‖∞δ

for any p0 > 0. Setting p0 = p− δ/2, the result follows. 2

Remark 3.3.3 Lemma 3.3.2 can be extended to the case where H(s) is
not rational in s but belongs to the general class of transfer functions
described in Remark 3.3.1.

We refer to ‖H(s)‖2δ, ‖H(s)‖∞δ defined in Lemma 3.3.2 as the δ-shifted
H2 and H∞ norms, respectively.

Lemma 3.3.3 Consider the linear time-varying system given by

ẋ = A(t)x + B(t)u, x(0) = x0

y = C>(t)x + D(t)u
(3.3.15)

where x ∈ Rn, y ∈ Rr, u ∈ Rm, and the elements of the matrices A,B, C,
and D are bounded continuous functions of time. If the state transition
matrix Φ(t, τ) of (3.3.15) satisfies

‖Φ(t, τ)‖ ≤ λ0e
−α0(t−τ) (3.3.16)

for some λ0, α0 > 0 and u ∈ L2e, then for any δ ∈ [0, δ1) where 0 < δ1 < 2α0

is arbitrary, we have
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(i) |x(t)| ≤ cλ0√
2α0−δ

‖ut‖2δ + εt

(ii) ‖xt‖2δ ≤ cλ0√
(δ1−δ)(2α0−δ1)

‖ut‖2δ + εt

(iii) ‖yt‖2δ ≤ c0‖ut‖2δ + εt

where

c0 =
cλ0√

(δ1 − δ)(2α0 − δ1)
sup

t
‖C>(t)‖+ sup

t
‖D(t)‖, c = sup

t
‖B(t)‖

and εt is an exponentially decaying to zero term because x0 6= 0.

Proof The solution x(t) of (3.3.15) can be expressed as

x(t) = Φ(t, 0)x0 +
∫ t

0

Φ(t, τ)B(τ)u(τ)dτ

Therefore,

|x(t)| ≤ ‖Φ(t, 0)‖|x0|+
∫ t

0

‖Φ(t, τ)‖ ‖B(τ)‖ |u(τ)|dτ

Using (3.3.16) we have

|x(t)| ≤ εt + cλ0

∫ t

0

e−α0(t−τ)|u(τ)|dτ (3.3.17)

where c and λ0 are as defined in the statement of the lemma. Expressing e−α0(t−τ)

as e−(α0− δ
2 )(t−τ)e−

δ
2 (t−τ) and applying the Schwartz inequality, we have

|x(t)| ≤ εt + cλ0

(∫ t

0

e−(2α0−δ)(t−τ)dτ

)1
2

(∫ t

0

e−δ(t−τ)|u(τ)|2dτ

)1
2

≤ εt +
cλ0√

2α0 − δ
‖ut‖2δ

which completes the proof of (i). Using property (iii) of Definition 3.2.1 for the L2δ

norm, it follows from (3.3.17) that

‖xt‖2δ ≤ ‖εt‖2δ + cλ0‖Qt‖2δ (3.3.18)

where

‖Qt‖2δ
4
=

∥∥∥∥
(∫ t

0

e−α0(t−τ)|u(τ)|dτ

)

t

∥∥∥∥
2δ

=

[∫ t

0

e−δ(t−τ)

(∫ τ

0

e−α0(τ−s)|u(s)|ds

)2

dτ

]1
2
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Using the Schwartz inequality we have
(∫ τ

0

e−α0(τ−s)|u(s)|ds

)2

=
(∫ τ

0

e−(α0− δ1
2 )(τ−s)e−

δ1
2 (τ−s)|u(s)|ds

)2

≤
∫ τ

0

e−(2α0−δ1)(τ−s)ds

∫ τ

0

e−δ1(τ−s)|u(s)|2ds

≤ 1
2α0 − δ1

∫ τ

0

e−δ1(τ−s)|u(s)|2ds

i.e.,

‖Qt‖2δ ≤ 1√
2α0 − δ1

(∫ t

0

e−δ(t−τ)

∫ τ

0

e−δ1(τ−s)|u(s)|2dsdτ

)1
2

(3.3.19)

Interchanging the sequence of integration, (3.3.19) becomes

‖Qt‖2δ ≤ 1√
2α0 − δ1

(∫ t

0

e−δt+δ1s|u(s)|2
∫ t

s

e−(δ1−δ)τdτds

)1
2

=
1√

2α0 − δ1

(∫ t

0

e−δt+δ1s|u(s)|2 e−(δ1−δ)s − e−(δ1−δ)t

δ1 − δ
ds

)1
2

=
1√

2α0 − δ1

(∫ t

0

e−δ(t−s) − e−δ1(t−s)

δ1 − δ
|u(s)|2ds

)1
2

≤ 1√
(2α0 − δ1)(δ1 − δ)

(∫ t

0

e−δ(t−s)|u(s)|2ds

)1
2

for any δ < δ1 < 2α0. Because ‖εt‖2δ ≤ εt, the proof of (ii) follows.
The proof of (iii) follows directly by noting that

‖yt‖2δ ≤ ‖(C>x)t‖2δ + ‖(Du)t‖2δ ≤ ‖xt‖2δ sup
t
‖C>(t)‖+ ‖ut‖2δ sup

t
‖D(t)‖

2

A useful extension of Lemma 3.3.3, applicable to the case where A(t) is
not necessarily stable and δ = δ0 > 0 is a given fixed constant, is given by
the following Lemma that makes use of the following definition.

Definition 3.3.3 The pair(C(t),A(t)) in (3.3.15) is uniformly completely
observable (UCO) if there exist constants β1, β2, ν > 0 such that for all
t0 ≥ 0,

β2I ≥ N(t0, t0 + ν) ≥ β1I
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where N(t0, t0 + ν)
4
=

∫ t0+ν
t0

Φ>(τ, t0)C(τ)C>(τ)Φ(τ, t0)dτ is the so-called
observability grammian [1, 201] and Φ(t, τ) is the state transition matrix
associated with A(t).

Lemma 3.3.4 Consider a linear time-varying system of the same form as
(3.3.15) where (C(t), A(t)) is UCO, and the elements of A, B,C, and D are
bounded continuous functions of time. For any given finite constant δ0 > 0,
we have

(i) |x(t)| ≤ λ1√
2α1−δ0

(c1‖ut‖2δ0 + c2‖yt‖2δ0) + εt

(ii) ‖x(t)‖2δ0 ≤ λ1√
(δ1−δ0)(2α1−δ1)

(c1‖ut‖2δ0 + c2‖yt‖2δ0) + ε1

(iii) ‖yt‖2δ0 ≤ ‖xt‖2δ0 supt ‖C>(t)‖+ ‖ut‖2δ0 supt ‖D(t)‖

where c1, c2 ≥ 0 are some finite constants; δ1, α1 satisfy δ0 < δ1 < 2α1, and
εt is an exponentially decaying to zero term because x0 6= 0.

Proof Because (C,A) is uniformly completely observable, there exists a matrix
K(t) with bounded elements such that the state transition matrix Φc(t, τ) of Ac(t)

∆=
A(t)−K(t)C>(t) satisfies

‖Φc(t, τ)‖ ≤ λ1e
−α1(t−τ)

for some constants α1, δ1, λ1 that satisfy α1 > δ1
2 > δ0

2 , λ1 > 0. Let us now rewrite
(3.3.15), by using what is called “output injection,” as

ẋ = (A−KC>)x + Bu + KC>x

Because C>x = y −Du, we have

ẋ = Ac(t)x + B̄u + Ky

where B̄ = B − KD. Following exactly the same procedure as in the proof of
Lemma 3.3.3, we obtain

|x(t)| ≤ λ1√
2α1 − δ0

(c1‖ut‖2δ0 + c2‖yt‖2δ0) + εt

where c1 = supt ‖B̄(t)‖, c2 = supt ‖K(t)‖ and εt is an exponentially decaying to
zero term due to x(0) = x0. Similarly,

‖xt‖2δ0 ≤
λ1√

(δ1 − δ0)(2α1 − δ1)
(c1‖ut‖2δ0 + c2‖yt‖2δ0) + εt
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by following exactly the same steps as in the proof of Lemma 3.3.3. The proof of
(iii) follows directly from the expression of y. 2

Instead of the interval [0, t), the L2δ norm can be defined over any arbi-
trary interval of time as follows:

‖xt,t1‖2δ
∆=

(∫ t

t1
e−δ(t−τ)x>(τ)x(τ)dτ

)1
2

for any t1 ≥ 0 and t ≥ t1. This definition allow us to use the properties of
the L2δ norm over certain intervals of time that are of interest. We develop
some of these properties for the LTI, SISO system

ẋ = Ax + Bu, x(0) = x0

y = C>x + Du (3.3.20)

whose transfer function is given by

y = [C>(sI −A)−1B + D]u = H(s)u (3.3.21)

Lemma 3.3.5 Consider the LTI system (3.3.20), where A is a stable matrix
and u ∈ L2e. Let α0, λ0 be the positive constants that satisfy ‖eA(t−τ)‖ ≤
λ0e

−α0(t−τ). Then for any constant δ ∈ [0, δ1) where 0 < δ1 < 2α0 is
arbitrary, for any finite t1 ≥ 0 and t ≥ t1 we have

(i)
(a) |x(t)| ≤ λ0e

−α0(t−t1)|x(t1)|+ c1‖ut,t1‖2δ

(b) ‖xt,t1‖2δ ≤ c0e
− δ

2
(t−t1)|x(t1)|+ c2‖ut,t1‖2δ

(ii) ‖yt,t1‖2δ ≤ c3e
− δ

2
(t−t1)|x(t1)|+ ‖H(s)‖∞δ‖ut,t1‖2δ

(iii) Furthermore if D = 0, i.e., H(s) is strictly proper, then

|y(t)| ≤ c4e
−α0(t−t1)|x(t1)|+ ‖H(s)‖2δ‖ut,t1‖2δ

where

c1 = ‖B‖c0, c0 =
λ0√

2α0 − δ
, c2 =

‖B‖λ0√
(δ1 − δ)(2α0 − δ1)

c3 = ‖C>‖c0, c4 = ‖C>‖λ0
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Proof Define v(τ) as

v(τ) =
{

0 if τ < t1
u(τ) if τ ≥ t1

From (3.3.20) we have

x(t) = eA(t−t1)x(t1) + x̄(t) ∀t ≥ t1 (3.3.22)

where

x̄(t) =
∫ t

t1

eA(t−τ)Bu(τ)dτ ∀t ≥ t1

We can now rewrite x̄(t) as

x̄(t) =
∫ t

0

eA(t−τ)Bv(τ)dτ ∀t ≥ 0 (3.3.23)

Similarly
y(t) = C>eA(t−t1)x(t1) + ȳ(t) ∀t ≥ t1 (3.3.24)

ȳ(t) =
∫ t

0

C>eA(t−τ)Bv(τ)dτ + Dv(t) ∀t ≥ 0 (3.3.25)

It is clear that x̄ in (3.3.23) and ȳ in (3.3.25) are the solutions of the system

˙̄x = Ax̄ + Bv, x̄(0) = 0
ȳ = C>x̄ + Dv (3.3.26)

whose transfer function is C>(sI −A)−1B + D = H(s).
Because A is a stable matrix, there exists constants λ0 , α0 > 0 such that

‖eA(t−τ)‖ ≤ λ0e
−α0(t−τ)

which also implies that H(s) is analytic in Re[s] ≥ −α0.
Let us now apply the results of Lemma 3.3.3 to (3.3.26). We have

|x̄(t)| ≤ ‖B‖λ0√
2α0 − δ

‖vt‖2δ = c1‖vt‖2δ

‖x̄t‖2δ ≤ ‖B‖λ0√
(δ1 − δ)(2α0 − δ1)

‖vt‖2δ = c2‖vt‖2δ

for some δ1 > 0, δ > 0 such that 0 < δ < δ1 < 2α0. Because ‖vt‖2δ = ‖ut,t1‖2δ and
‖x̄t,t1‖2δ ≤ ‖x̄t‖2δ, it follows that for all t ≥ t1

|x̄(t)| ≤ c1‖ut,t1‖2δ, ‖x̄t,t1‖2δ ≤ c2‖ut,t1‖2δ (3.3.27)

From (3.3.22) we have

|x(t)| ≤ λ0e
−α0(t−t1)|x(t1)|+ |x̄(t)| ∀t ≥ t1
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which together with (3.3.27) imply (i)(a). Using (3.3.22) we have

‖xt,t1‖2δ ≤ ‖(eA(t−t1)x(t1))t,t1‖2δ + ‖x̄t,t1‖2δ

which implies that

‖xt,t1‖2δ ≤
(∫ t

t1

e−δ(t−τ)e−2α0(τ−t1)dτ

)1
2

λ0|x(t1)|+ ‖x̄t,t1‖2δ

≤ λ0e
− δ

2 (t−t1)

√
2α0 − δ

|x(t1)|+ ‖x̄t,t1‖2δ (3.3.28)

From (3.3.27) and (3.3.28), (i)(b) follows.
Let us now apply the results of Lemma 3.3.2 to the system (3.3.26), also de-

scribed by
ȳ = H(s)v

we have
‖ȳt‖2δ ≤ ‖H(s)‖∞δ‖vt‖2δ

and for H(s) strictly proper

|ȳ(t)| ≤ ‖H(s)‖2δ‖vt‖2δ

for any 0 ≤ δ < 2α0. Since ‖vt‖2δ = ‖ut,t1‖2δ and ‖ȳt,t1‖2δ ≤ ‖ȳt‖2δ, we have

‖ȳt,t1‖2δ ≤ ‖H(s)‖∞δ‖ut,t1‖2δ (3.3.29)

and
|ȳ(t)| ≤ ‖H(s)‖2δ‖ut,t1‖2δ, ∀t ≥ t1 (3.3.30)

From (3.3.24) we have

|y(t)| ≤ ‖C>‖λ0e
−α0(t−t1)|x(t1)|+ |ȳ(t)|, ∀t ≥ t1 (3.3.31)

which implies, after performing some calculations, that

‖yt,t1‖2δ ≤ ‖C>‖ λ0√
2α0 − δ

e−
δ
2 (t−t1)|x(t1)|+ ‖ȳt,t1‖2δ, ∀t ≥ t1 (3.3.32)

Using (3.3.29) in (3.3.32) we establish (ii) and from (3.3.30) and (3.3.31) we
establish (iii). 2

By taking t1 = 0, Lemma 3.3.5 also shows the effect of the initial condi-
tion x(0) = x0 of the system (3.3.20) on the bounds for |y(t)| and ‖yt‖2δ.

We can obtain a similar result as in Lemma 3.3.4 over the interval [t1, t]
by extending Lemma 3.3.5 to the case where A is not necessarily a stable
matrix and δ = δ0 > 0 is a given fixed constant, provided (C,A) is an
observable pair.
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Lemma 3.3.6 Consider the LTV system (3.3.15) where the elements of
A(t), B(t), C(t), and D(t) are bounded continuous functions of time and
whose state transition matrix Φ(t, τ) satisfies

‖Φ(t, τ)‖ ≤ λ0e
−α0(t−τ)

∀t ≥ τ and t, τ ∈ [t1, t2) for some t2 > t1 ≥ 0 and α0, λ0 > 0. Then for any
δ ∈ [0, δ1) where 0 < δ1 < 2α0 is arbitrary, we have

(i) |x(t)| ≤ λ0e
−α0(t−t1)|x(t1)|+ cλ0√

2α0−δ
‖ut,t1‖2δ

(ii) ‖xt,t1‖2δ ≤ λ0√
2α0−δ

e−
δ
2
(t−t1)|x(t1)|+ cλ0√

(δ1−δ)(2α0−δ1)
‖ut,t1‖2δ, ∀t ∈ [t1, t2)

where c = supt ‖B(t)‖.
Proof The solution x(t) of (3.3.15) is given by

x(t) = Φ(t, t1)x(t1) +
∫ t

t1

Φ(t, τ)B(τ)u(τ)dτ

Hence,

|x(t)| ≤ λ0e
−α0(t−t1)|x(t1)|+ cλ0

∫ t

t1

e−α0(t−τ)|u(τ)|dτ

Proceeding as in the proof of Lemma 3.3.3 we establish (i). Now

‖xt,t1‖2δ ≤ λ0|x(t1)|
(∫ t

t1

e−δ(t−τ)e−2α0(τ−t1)dτ

)1
2

+ cλ0‖Qt,t1‖2δ

‖Qt,t1‖2δ
4
=

∥∥∥∥∥
(∫ t

t1

e−α0(t−τ)|u(τ)|dτ

)

t,t1

∥∥∥∥∥
2δ

Following exactly the same step as in the proof of Lemma 3.3.3 we establish that

‖Qt,t1‖2δ ≤ 1√
(2α0 − δ1)(δ1 − δ)

‖ut,t1‖2δ

Because

‖xt,t1‖2δ ≤ λ0|x(t1)|√
2α0 − δ

e−
δ
2 (t−t1) + ‖Qt,t1‖2δ

the proof of (ii) follows. 2

Example 3.3.3 (i) Consider the system described by

y = H(s)u
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where H(s) = 2
s+3 . We have

‖H(s)‖∞δ = sup
ω

∣∣∣∣∣
2

jω + 3− δ
2

∣∣∣∣∣ =
4

6− δ
, ∀δ ∈ [0, 6)

and

‖H(s)‖2δ =
1√
2π

(∫ ∞

−∞

4

ω2 + (6−δ)2

4

dω

) 1
2

=
2√

6− δ
, ∀δ ∈ [0, 6)

For u(t) = 1, ∀t ≥ 0, we have y(t) = 2
3 (1 − e−3t), which we can use to verify

inequality (ii) of Lemma 3.3.2, i.e.,

|y(t)| = 2
3
|1− e−3t| ≤ 2√

6− δ

(
1− e−δt

δ

)1
2

holds ∀t ∈ [0,∞) and δ ∈ (0, 6).
(ii) The system in (i) may also be expressed as

ẏ = −3y + 2u, y(0) = 0

Its transition matrix Φ(t, 0) = e−3t and from Lemma 3.3.3, we have

|y(t)| ≤ 2√
6− δ

‖ut‖2δ, ∀δ ∈ [0, 6)

For u(t) = 1,∀t ≥ 0, the above inequality implies

|y(t)| = 2
3
|1− e−3t| ≤ 2√

6− δ

(
1− e−δt

δ

)1
2

which holds for all δ ∈ (0, 6). 5

3.3.3 Small Gain Theorem

Many feedback systems, including adaptive control systems, can be put in
the form shown in Figure 3.1. The operators H1,H2 act on e1, e2 to pro-
duce the outputs y1, y2; u1, u2 are external inputs. Sufficient conditions for
H1,H2 to guarantee existence and uniqueness of solutions e1, y1, e2, y2 for
given inputs u1, u2 in Lpe are discussed in [42]. Here we assume that H1,H2

are such that the existence and uniqueness of solutions are guaranteed. The
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Figure 3.1 Feedback system.

problem is to determine conditions on H1,H2 so that if u1, u2 are bounded
in some sense, then e1, e2, y1, y2 are also bounded in the same sense.

Let L be a normed linear space defined by

L 4
=

{
f : R+ 7→ Rn | ‖f‖ < ∞}

where ‖ · ‖ corresponds to any of the norms introduced earlier. Let Le be
the extended normed space associated with L, i.e.,

Le =
{
f : R+ 7→ Rn

∣∣‖ft‖ < ∞,∀t ∈ R+ }

where

ft(τ) =

{
f(τ) τ ≤ t
0 τ > t

The following theorem known as the small gain theorem [42] gives sufficient
conditions under which bounded inputs produce bounded outputs in the
feedback system of Figure 3.1.

Theorem 3.3.3 Consider the system shown in Figure 3.1. Suppose H1,
H2: Le 7→ Le; e1, e2 ∈ Le. Suppose that for some constants γ1, γ2 ≥ 0 and
β1, β2, the operators H1,H2 satisfy

‖(H1e1)t‖ ≤ γ1‖e1t‖+ β1

‖(H2e2)t‖ ≤ γ2‖e2t‖+ β2

∀t ∈ R+. If
γ1γ2 < 1

then
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(i) ‖e1t‖ ≤ (1− γ1γ2)−1 (‖u1t‖+ γ2‖u2t‖+ β2 + γ2β1)

‖e2t‖ ≤ (1− γ1γ2)−1 (‖u2t‖+ γ1‖u1t‖+ β1 + γ1β2) (3.3.33)

for any t ≥ 0.

(ii) If in addition, ‖u1‖, ‖u2‖ < ∞, then e1, e2, y1, y2 have finite norms, and
the norms of e1, e2 are bounded by the right-hand sides of (3.3.33) with
all subscripts t dropped.

The constants γ1, γ2 are referred to as the gains of H1, H2 respectively. When
u2 ≡ 0, there is no need to separate the gain of H1 and H2. In this case, one
can consider the “loop gain ” H2H1 as illustrated by the following corollary:

Corollary 3.3.4 Consider the system of Figure 3.1 with u2 ≡ 0. Suppose
that

‖(H2H1e1)t‖ ≤ γ21‖e1t‖+ β21

‖(H1e1)t‖ ≤ γ1‖e1t‖+ β1

∀t ∈ R+ for some constants γ21, γ1 ≥ 0 and β21, β1. If γ21 < 1, then

(i)

‖e1t‖ ≤ (1− γ21)−1 (‖u1t‖+ β21)

‖y1t‖ ≤ γ1(1− γ21)−1 (‖u1t‖+ β21) + β1 (3.3.34)

for any t ≥ 0.

(ii) If in addition ‖u1‖ < ∞, then e1, e2, y1, y2 have finite norms and
(3.3.34) holds without the subscript t.

The proofs of Theorem 3.3.3 and Corollary 3.3.4 follow by using the prop-
erties of the norm [42].

The small gain theorem is a very general theorem that applies to both
continuous and discrete-time systems with multiple inputs and outputs.

As we mentioned earlier, Theorem 3.3.3 and Corollary 3.3.4 assume the
existence of solutions e1, e2 ∈ Le. In practice, u1, u2 are given external
inputs and e1, e2 are calculated using the operators H1,H2. Therefore, the
existence of e1, e2 ∈ Le depends on the properties of H1,H2.

Example 3.3.4 Let us consider the feedback system
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where G(s) = e−αs

s+2 , α ≥ 0 is a constant time delay, and K is a constant feedback
gain. The external input r is an input command, and d is a noise disturbance. We
are interested in finding conditions on the gain K such that

(i) r, d ∈ L∞ =⇒ e1, e2, y ∈ L∞
(ii) r, d ∈ L2 =⇒ e1, e2, y ∈ L2

The system is in the form of the general feedback system given in Figure 3.1, i.e.,

u1 = r, u2 = d

H1e1(t) =
∫ t−α

0

e2αe−2(t−τ)e1(τ)dτ

H2e2(t) = Ke2(t)

where e−2(t−α) for t ≥ α comes from the impulse response g(t) of G(s), i.e., g(t) =
e−2(t−α) for t ≥ α and g(t) = 0 for t < α.

(i) Because

|H1e1(t)| ≤ e2α

∫ t−α

0

e−2(t−τ)|e1(τ)|dτ

≤ e2α

∫ t−α

0

e−2(t−τ)dτ‖e1t‖∞

≤ 1
2
‖e1t‖∞

we have γ1 = 1
2 . Similarly, the L∞-gain of H2 is γ2 = |K|. Therefore, for L∞-

stability the small gain theorem requires

|K|
2

< 1, i.e., |K| < 2

(ii) From Lemma 3.3.1, we have

‖(H1e1)t‖2 ≤ sup
ω

∣∣∣∣
e−αjω

2 + jω

∣∣∣∣ ‖e1t‖2 =
1
2
‖e1t‖2

which implies that the L2 gain of H1 is γ1 = 1
2 . Similarly the L2 gain of H2 is

γ2 = |K|, and the condition for L2-stability is |K| < 2.
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For this simple system, however, with α = 0, we can verify that r, d ∈ L∞ =⇒
e1, e2, y ∈ L∞ if and only if K > −2, which indicates that the condition given by
the small gain theorem (for α = 0) is conservative. 5

Example 3.3.5 Consider the system

ẋ = Acx, Ac = A + B

where x ∈ Rn, A is a stable matrix, i.e., all the eigenvalues of A are in Re[s] < 0
and B is a constant matrix. We are interested in obtaining an upper bound for B
such that Ac is a stable matrix. Let us represent the system in the form of Figure
3.1 as the following:

- lΣ - lΣ - 1
s
I -

¾A

6

H1

6

B ¾ lΣ ¾
?

H2

u1 = 0
+ +

e1 +

+

x

+

+
e2 u2 = 0

We can verify that the L∞ gain of H1 is γ1 = α1
α0

where α1, α0 > 0 are the constants
in the bound ‖eA(t−τ)‖ ≤ α1e

−α0(t−τ) that follows from the stability of A. The L∞
gain of H2 is γ2 = ‖B‖. Therefore for L∞ stability, we should have

‖B‖α1

α0
< 1

or
‖B‖ <

α0

α1

Now L∞ stability implies that Ac = A+B is a stable matrix. (Note that the initial
condition for x is taken to be zero, i.e., x(0) = 0.) 5

Despite its conservatism, the small gain theorem is widely used to design
robust controllers for uncertain systems. In many applications, certain loop
transformations are needed to transform a given feedback system to the form
of the feedback system of Figure 3.1 where H1,H2 have finite gains [42].
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3.3.4 Bellman-Gronwall Lemma

A key lemma for analysis of adaptive control schemes is the following.

Lemma 3.3.7 (Bellman-Gronwall Lemma I) [232] Let λ(t), g(t), k(t)
be nonnegative piecewise continuous functions of time t. If the function y(t)
satisfies the inequality

y(t) ≤ λ(t) + g(t)
∫ t

t0
k(s)y(s)ds, ∀t ≥ t0 ≥ 0 (3.3.35)

then

y(t) ≤ λ(t) + g(t)
∫ t

t0
λ(s)k(s)

[
exp

(∫ t

s
k(τ)g(τ)dτ

)]
ds ∀t ≥ t0 ≥ 0

(3.3.36)
In particular, if λ(t) ≡ λ is a constant and g(t) ≡ 1, then

y(t) ≤ λexp

(∫ t

t0
k(s)ds

)
∀t ≥ t0 ≥ 0

Proof Let us define

q(t)
4
= k(t)e

−
∫ t

t0
g(τ)k(τ)dτ

Because k(t) is nonnegative, we have q(t) ≥ 0 ∀t ≥ t0. Multiplying both sides of
(3.3.35) by q(t), and rearranging the inequality we obtain

q(t)y(t)− q(t)g(t)
∫ t

t0

k(s)y(s)ds ≤ λ(t)q(t) (3.3.37)

From the expression of q(t), one can verify that

q(t)y(t)− q(t)g(t)
∫ t

t0

k(s)y(s)ds =
d

dt

(
e
−

∫ t

t0
g(τ)k(τ)dτ

∫ t

t0

k(s)y(s)ds

)
(3.3.38)

Using (3.3.38) in (3.3.37) and integrating both sides of (3.3.37), we obtain

e
−

∫ t

t0
g(τ)k(τ)dτ

∫ t

t0

k(s)y(s)ds ≤
∫ t

t0

λ(s)q(s)ds

Therefore,
∫ t

t0

k(s)y(s)ds ≤ e

∫ t

t0
g(τ)k(τ)dτ

∫ t

t0

λ(s)q(s)ds

= e

∫ t

t0
g(τ)k(τ)dτ

∫ t

t0

λ(s)k(s)e
−

∫ s

t0
g(τ)k(τ)dτ

ds

=
∫ t

t0

λ(s)k(s)e
∫ t

s
g(τ)k(τ)dτ

ds (3.3.39)
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Using (3.3.39) in (3.3.35), the proof for the inequality (3.3.36) is complete.
Consider the special case where λ is a constant and g = 1. Define

q1
4
= λ +

∫ t

t0

k(s)y(s)ds

From (3.3.35), we have
y(t) ≤ q1(t)

Now
q̇1 = ky

Because k ≥ 0, we have
q̇1 ≤ kq1

Let w = q̇1 − kq1. Clearly, w ≤ 0 and

q̇1 = kq1 + w

which implies

q1(t) = e

∫ t

t0
k(τ)dτ

q1(t0) +
∫ t

t0

e

∫ t

τ
k(s)ds

w(τ)dτ (3.3.40)

Because k ≥ 0, w ≤ 0 ∀t ≥ t0 and q1(t0) = λ, it follows from (3.3.40) that

y(t) ≤ q1(t) ≤ λe

∫ t

t0
k(τ)dτ

and the proof is complete. 2

The reader can refer to [32, 232] for alternative proofs of the B-G Lemma.
Other useful forms of the B-G lemma are given by Lemmas 3.3.8 and 3.3.9.

Lemma 3.3.8 (B-G Lemma II) Let λ(t), k(t) be nonnegative piecewise
continuous function of time t and let λ(t) be differentiable. If the function
y(t) satisfies the inequality

y(t) ≤ λ(t) +
∫ t

t0
k(s)y(s)ds, ∀t ≥ t0 ≥ 0

then

y(t) ≤ λ(t0)e
∫ t

t0
k(s)ds

+
∫ t

t0
λ̇(s)e

∫ t

s
k(τ)dτds, ∀t ≥ t0 ≥ 0.
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Proof Let

z(t) = λ(t) +
∫ t

t0

k(s)y(s)ds

it follows that z is differentiable and z ≥ y. We have

ż = λ̇ + ky, z(t0) = λ(t0)

Let v = z − y, then
ż = λ̇ + kz − kv

whose state transition matrix is

Φ(t, τ) = exp
∫ t

τ

k(s)ds

Therefore,

z(t) = Φ(t, t0)z(t0) +
∫ t

t0

Φ(t, τ)[λ̇(τ)− k(τ)v(τ)]dτ

Because ∫ t

t0

Φ(t, τ)k(τ)v(τ)dτ ≥ 0

resulting from Φ(t, τ), k(τ), v(τ) being nonnegative, we have

z(t) ≤ Φ(t, t0)z(t0) +
∫ t

t0

Φ(t, τ)λ̇(τ)dτ

Using the expression for Φ(t, t0) in the above inequality, we have

y(t) ≤ z(t) ≤ λ(t0)e
∫ t

t0
k(s)ds

+
∫ t

t0

λ̇(s)e
∫ t

s
k(τ)dτ

ds

and the proof is complete. 2

Lemma 3.3.9 (B-G Lemma III) Let c0, c1, c2, α be nonnegative constants
and k(t) a nonnegative piecewise continuous function of time. If y(t) satisfies
the inequality

y(t) ≤ c0e
−α(t−t0) + c1 + c2

∫ t

t0
e−α(t−τ)k(τ)y(τ)dτ, ∀t ≥ t0

then

y(t) ≤ (c0 + c1)e−α(t−t0)e
c2

∫ t

t0
k(s)ds

+ c1α

∫ t

t0
e−α(t−τ)ec2

∫ t

τ
k(s)dsdτ, ∀t ≥ t0
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Proof The proof follows directly from Lemma 3.3.8 by rewriting the given inequal-
ity of y as

ȳ(t) ≤ λ(t) +
∫ t

t0

k̄(τ)ȳ(τ)dτ

where ȳ(t) = eαty(t), k̄(t) = c2k(t), λ(t) = c0e
αt0 + c1e

αt. Applying Lemma 3.3.8,
we obtain

eαty(t) ≤ (c0 + c1)eαt0e
c2

∫ t

t0
k(s)ds

+ c1α

∫ t

t0

eατe
c2

∫ t

τ
k(s)ds

dτ

The result follows by multiplying each side of the above inequality by e−αt. 2

The B-G Lemma allows us to obtain an explicit bound for y(t) from the
implicit bound of y(t) given by the integral inequality (3.3.35). Notice that
if y(t) ≥ 0 and λ(t) = 0 ∀t ≥ 0, (3.3.36) implies that y(t) ≡ 0 ∀t ≥ 0.

In many cases, the B-G Lemma may be used in place of the small gain
theorem to analyze a class of feedback systems in the form of Figure 3.1 as
illustrated by the following example.

Example 3.3.6 Consider the same system as in Example 3.3.5. We have

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bx(τ)dτ

Hence,

|x(t)| ≤ α1e
−α0t|x(0)|+

∫ t

0

α1e
−α0(t−τ)‖B‖|x(τ)|dτ

i.e.,

|x(t)| ≤ α1e
−α0t|x(0)|+ α1e

−α0t‖B‖
∫ t

0

eα0τ |x(τ)|dτ

Applying the B-G Lemma I with λ = α1e
−α0t|x(0)|, g(t) = α1‖B‖e−α0t, k(t) = eα0t,

we have
|x(t)| ≤ α1e

−α0t|x(0)|+ α1|x(0)|e−γt

where
γ = α0 − α1‖B‖

Therefore, for |x(t)| to be bounded from above by a decaying exponential (which
implies that Ac = A + B is a stable matrix), B has to satisfy

‖B‖ <
α0

α1
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which is the same condition we obtained in Example 3.3.5 using the small gain
theorem. In this case, we assume that |x(0)| 6= 0, otherwise for x(0) = 0 we would
have λ(t) = 0 and |x(t)| = 0 ∀t ≥ 0 which tells us nothing about the stability of
Ac. The reader may like to verify the same result using B-G Lemmas II and III. 5

3.4 Lyapunov Stability

3.4.1 Definition of Stability

We consider systems described by ordinary differential equations of the form

ẋ = f(t, x), x(t0) = x0 (3.4.1)

where x∈Rn, f : J ×B(r) 7→R, J = [t0,∞) and B(r)={x∈Rn | |x| < r}.
We assume that f is of such nature that for every x0 ∈ B(r) and every
t0 ∈ R+, (3.4.1) possesses one and only one solution x(t; t0, x0).

Definition 3.4.1 A state xe is said to be an equilibrium state of the
system described by (3.4.1) if

f(t, xe) ≡ 0 for all t ≥ t0

Definition 3.4.2 An equilibrium state xe is called an isolated equilib-
rium state if there exists a constant r > 0 such that B(xe, r)

4
= {x |

|x − xe| < r} ⊂ Rn contains no equilibrium state of (3.4.1) other than
xe.

The equilibrium state x1e = 0, x2e = 0 of

ẋ1 = x1x2, ẋ2 = x2
1

is not isolated because any point x1 = 0, x2 = constant is an equilibrium
state. The differential equation

ẋ = (x− 1)2x

has two isolated equilibrium states xe = 1 and xe = 0.
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Definition 3.4.3 The equilibrium state xe is said to be stable (in the
sense of Lyapunov) if for arbitrary t0 and ε > 0 there exists a δ(ε, t0)
such that |x0 − xe| < δ implies |x(t; t0, x0)− xe| < ε for all t ≥ t0.

Definition 3.4.4 The equilibrium state xe is said to be uniformly stable
(u.s.) if it is stable and if δ(ε, t0) in Definition 3.4.3 does not depend on t0.

Definition 3.4.5 The equilibrium state xe is said to be asymptotically
stable (a.s.) if (i) it is stable, and (ii) there exists a δ(t0) such that |x0 −
xe| < δ(t0) implies limt→∞ |x(t; t0, x0)− xe| = 0.

Definition 3.4.6 The set of all x0 ∈ Rn such that x(t; t0, x0) → xe as
t →∞ for some t0 ≥ 0 is called the region of attraction of the equilibrium
state xe. If condition (ii) of Definition 3.4.5 is satisfied, then the equilibrium
state xe is said to be attractive.

Definition 3.4.7 The equilibrium state xe is said to be uniformly asymp-
totically stable (u.a.s.) if (i) it is uniformly stable, (ii) for every ε > 0 and
any t0 ∈ R+, there exist a δ0 > 0 independent of t0 and ε and a T (ε) > 0
independent of t0 such that |x(t; t0, x0) − xe| < ε for all t ≥ t0 + T (ε)
whenever |x0 − xe| < δ0.

Definition 3.4.8 The equilibrium state xe is exponentially stable (e.s.)
if there exists an α > 0 , and for every ε > 0 there exists a δ(ε) > 0 such
that

|x(t; t0, x0)− xe| ≤ εe−α(t−t0) for all t ≥ t0

whenever |x0 − xe| < δ(ε).

Definition 3.4.9 The equilibrium state xe is said to be unstable if it is
not stable.

When (3.4.1) possesses a unique solution for each x0 ∈ Rn and t0 ∈ R+,
we need the following definitions for the global characterization of solutions.

Definition 3.4.10 A solution x(t; t0, x0) of (3.4.1) is bounded if there
exists a β > 0 such that |x(t; t0, x0)| < β for all t ≥ t0, where β may depend
on each solution.
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Definition 3.4.11 The solutions of (3.4.1) are uniformly bounded (u.b.)
if for any α > 0 and t0 ∈ R+, there exists a β = β(α) independent of t0
such that if |x0| < α, then |x(t; t0, x0)| < β for all t ≥ t0.

Definition 3.4.12 The solutions of (3.4.1) are uniformly ultimately bo-
unded (u.u.b.) (with bound B) if there exists a B > 0 and if corresponding
to any α > 0 and t0 ∈ R+, there exists a T = T (α) > 0 (independent of t0)
such that |x0| < α implies |x(t; t0, x0)| < B for all t ≥ t0 + T .

Definition 3.4.13 The equilibrium point xe of (3.4.1) is asymptotically
stable in the large (a.s. in the large) if it is stable and every solution
of (3.4.1) tends to xe as t →∞ (i.e., the region of attraction of xe is all of
Rn).

Definition 3.4.14 The equilibrium point xe of (3.4.1) is uniformly asymp-
totically stable in the large (u.a.s. in the large) if (i) it is uniformly
stable, (ii) the solutions of (3.4.1) are uniformly bounded, and (iii) for any
α > 0, any ε > 0 and t0 ∈ R+, there exists T (ε, α) > 0 independent of t0
such that if |x0−xe| < α then |x(t; t0, x0)−xe| < ε for all t ≥ t0 + T (ε, α).

Definition 3.4.15 The equilibrium point xe of (3.4.1) is exponentially
stable in the large (e.s. in the large) if there exists α > 0 and for any
β > 0, there exists k(β) > 0 such that

|x(t; t0, x0)| ≤ k(β)e−α(t−t0) for all t ≥ t0

whenever |x0| < β.

Definition 3.4.16 If x(t; t0, x0) is a solution of ẋ = f(t, x), then the tra-
jectory x(t; t0, x0) is said to be stable (u.s., a.s., u.a.s., e.s., unstable)
if the equilibrium point ze = 0 of the differential equation

ż = f(t, z + x(t; t0, x0))− f(t, x(t; t0, x0))

is stable (u.s., a.s., u.a.s., e.s., unstable, respectively).

The above stability concepts and definitions are illustrated by the fol-
lowing example:
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Example 3.4.1

(i) ẋ = 0 has the equilibrium state xe = c, where c is any constant, which is not
an isolated equilibrium state. It can be easily verified that xe = c is stable,
u.s. but not a.s.

(ii) ẋ = −x3 has an isolated equilibrium state xe = 0. Its solution is given by

x(t) = x(t; t0, x0) =
(

x2
0

1 + 2x2
0(t− t0)

)1
2

Now given any ε > 0, |x0| < δ = ε implies that

|x(t)| =
√

x2
0

1 + 2x2
0(t− t0)

≤ |x0| < ε ∀t ≥ t0 ≥ 0 (3.4.2)

Hence, according to Definition 3.4.3, xe = 0 is stable. Because δ = ε is
independent of t0, xe = 0 is also u.s. Furthermore, because xe = 0 is stable
and x(t) → xe = 0 as t → ∞ for all x0 ∈ R, we have a.s. in the large. Let
us now check whether xe = 0 is u.a.s. in the large by using Definition 3.4.14.
We have already shown u.s. From (3.4.2) we have that x(t) is u.b. To satisfy
condition (iii) of Definition 3.4.14, we need to find a T > 0 independent of t0
such that for any α > 0 and ε > 0, |x0| < α implies |x(t)| < ε for all t ≥ t0 +T .
From (3.4.2) we have

|x(t)| ≤ |x(t0 + T )| =
√

x2
0

1 + 2x2
0T

<

√
1

2T
, ∀t ≥ t0 + T

Choosing T = 1
2ε2 , it follows that |x(t)| < ε ∀t ≥ t0 +T . Hence, xe = 0 is u.a.s.

in the large. Using Definition 3.4.15, we can conclude that xe = 0 is not e.s.
(iii) ẋ = (x− 2)x has two isolated equilibrium states xe = 0 and xe = 2. It can be

shown that xe = 0 is e.s. with the region of attraction Ra = {x | x < 2} and
xe = 2 is unstable.

(iv) ẋ = − 1
1+tx has an equilibrium state xe = 0 that is stable, u.s., a.s. in the large

but is not u.a.s. (verify).
(v) ẋ = (t sin t−cos t−2)x has an isolated equilibrium state xe = 0 that is stable,

a.s. in the large but not u.s. (verify). ∇

3.4.2 Lyapunov’s Direct Method

The stability properties of the equilibrium state or solution of (3.4.1) can
be studied by using the so-called direct method of Lyapunov (also known
as Lyapunov’s second method) [124, 125]. The objective of this method is
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to answer questions of stability by using the form of f(t, x) in (3.4.1) rather
than the explicit knowledge of the solutions. We start with the following
definitions [143].

Definition 3.4.17 A continuous function ϕ : [0, r] 7→ R+ (or a continuous
function ϕ : [0,∞) 7→ R+) is said to belong to class K, i.e., ϕ ∈ K if

(i) ϕ(0) = 0
(ii) ϕ is strictly increasing on [0, r] (or on [0,∞)).

Definition 3.4.18 A continuous function ϕ : [0,∞) 7→ R+ is said to belong
to class KR, i.e., ϕ ∈ KR if

(i) ϕ(0) = 0
(ii) ϕ is strictly increasing on [0,∞)
(iii) limr→∞ ϕ(r) = ∞.

The function ϕ(|x|) = x2

1+x2 belongs to class K defined on [0,∞) but not to
class KR. The function ϕ(|x|) = |x| belongs to class K and class KR. It is
clear that ϕ ∈ KR implies ϕ ∈ K, but not the other way.

Definition 3.4.19 Two functions ϕ1, ϕ2 ∈ K defined on [0, r] (or on [0,∞))
are said to be of the same order of magnitude if there exist positive
constants k1.k2 such that

k1ϕ1(r1) ≤ ϕ2(r1) ≤ k2ϕ1(r1), ∀r1 ∈ [0, r] ( or ∀r1 ∈ [0,∞))

The function ϕ1(|x|) = x2

1+2x2 and ϕ2 = x2

1+x2 are of the same order of
magnitude (verify!).

Definition 3.4.20 A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) =
0 ∀t ∈ R+ is positive definite if there exists a continuous function ϕ ∈ K
such that V (t, x) ≥ ϕ(|x|) ∀t ∈ R+ , x ∈ B(r) and some r > 0. V (t, x) is
called negative definite if −V (t, x) is positive definite.

The function V (t, x) = x2

1−x2 with x ∈ B(1) is positive definite, whereas

V (t, x) = 1
1+tx

2 is not. The function V (t, x) = x2

1+x2 is positive definite for
all x ∈ R.
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Definition 3.4.21 A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) =
0 ∀t ∈ R+ is said to be positive (negative) semidefinite if V (t, x) ≥ 0
(V (t, x) ≤ 0) for all t ∈ R+ and x ∈ B(r) for some r > 0.

Definition 3.4.22 A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) =
0 ∀t ∈ R+ is said to be decrescent if there exists ϕ ∈ K such that |V (t, x)| ≤
ϕ(|x|) ∀t ≥ 0 and ∀x ∈ B(r) for some r > 0.

The function V (t, x) = 1
1 + tx

2 is decrescent because V (t, x) = 1
1 + tx

2 ≤
x2 ∀t ∈ R+ but V (t, x) = tx2 is not.

Definition 3.4.23 A function V (t, x) : R+×Rn 7→ R with V (t, 0) = 0 ∀t ∈
R+ is said to be radially unbounded if there exists ϕ ∈ KR such that
V (t, x) ≥ ϕ(|x|) for all x ∈ Rn and t ∈ R+.

The function V (x) = x2

1+x2 satisfies conditions (i) and (ii) of Definition 3.4.23

(i.e., choose ϕ(|x|) = |x|2
1+|x|2 ). However, because V (x) ≤ 1, one cannot find a

function ϕ(|x|) ∈ KR to satisfy V (x) ≥ ϕ(|x|) for all x ∈ Rn. Hence, V is
not radially unbounded.

It is clear from Definition 3.4.23 that if V (t, x) is radially unbounded,
it is also positive definite for all x ∈ Rn but the converse is not true. The
reader should be aware that in some textbooks “positive definite” is used for
radially unbounded functions, and “locally positive definite” is used for our
definition of positive definite functions.

Let us assume (without loss of generality) that xe = 0 is an equilibrium
point of (3.4.1) and define V̇ to be the time derivative of the function V (t, x)
along the solution of (3.4.1), i.e.,

V̇ =
∂V

∂t
+ (∇V )>f(t, x) (3.4.3)

where ∇V = [ ∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]> is the gradient of V with respect to x. The
second method of Lyapunov is summarized by the following theorem.

Theorem 3.4.1 Suppose there exists a positive definite function V (t, x) :
R+×B(r) 7→ R for some r > 0 with continuous first-order partial derivatives
with respect to x, t, and V (t, 0) = 0 ∀t ∈ R+. Then the following statements
are true:
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(i) If V̇ ≤ 0, then xe = 0 is stable.
(ii) If V is decrescent and V̇ ≤ 0, then xe = 0 is u.s.
(iii) If V is decrescent and V̇ < 0, then xe is u.a.s.
(iv) If V is decrescent and there exist ϕ1, ϕ2, ϕ3 ∈ K of the same order of

magnitude such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ3(|x|)

for all x ∈ B(r) and t ∈ R+, then xe = 0 is e.s.

In the above theorem, the state x is restricted to be inside the ball B(r)
for some r > 0. Therefore, the results (i) to (iv) of Theorem 3.4.1 are
referred to as local results. Statement (iii) is equivalent to that there exist
ϕ1, ϕ2, ϕ3 ∈ K, where ϕ1, ϕ2, ϕ3 do not have to be of the same order of
magnitude, such that ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ3(|x|).

Theorem 3.4.2 Assume that (3.4.1) possesses unique solutions for all x0 ∈
Rn. Suppose there exists a positive definite, decrescent and radially un-
bounded function V (t, x) : R+×Rn 7→ R+ with continuous first-order partial
derivatives with respect to t, x and V (t, 0) = 0 ∀t ∈ R+. Then the following
statements are true:

(i) If V̇ < 0, then xe = 0 is u.a.s. in the large.
(ii) If there exist ϕ1, ϕ2, ϕ3 ∈ KR of the same order of magnitude such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ3(|x|)

then xe = 0 is e.s. in the large.

Statement (i) of Theorem 3.4.2 is also equivalent to that there exist
ϕ1, ϕ2 ∈ K and ϕ3 ∈ KR such that

ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|), V̇ (t, x) ≤ −ϕ3(|x|), ∀x ∈ Rn

For a proof of Theorem 3.4.1, 3.4.2, the reader is referred to [32, 78, 79,
97, 124].

Theorem 3.4.3 Assume that (3.4.1) possesses unique solutions for all x0 ∈
Rn. If there exists a function V (t, x) defined on |x| ≥ R (where R may
be large) and t ∈ [0,∞) with continuous first-order partial derivatives with
respect to x, t and if there exist ϕ1, ϕ2 ∈ KR such that
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(i) ϕ1(|x|) ≤ V (t, x) ≤ ϕ2(|x|)
(ii) V̇ (t, x) ≤ 0

for all |x| ≥ R and t ∈ [0,∞), then, the solutions of (3.4.1) are u.b. If in
addition there exists ϕ3 ∈ K defined on [0,∞) and

(iii) V̇ (t, x) ≤ −ϕ3(|x|) for all |x| ≥ R and t ∈ [0,∞)

then, the solutions of (3.4.1) are u.u.b.

Let us examine statement (ii) of Theorem 3.4.1 where V decrescent and
V̇ ≤ 0 imply xe = 0 is u.s. If we remove the restriction of V being decrescent
in (ii), we obtain statement (i), i.e., V̇ ≤ 0 implies xe = 0 is stable but not
necessarily u.s. Therefore, one might tempted to expect that by removing
the condition of V being decrescent in statement (iii), we obtain xe = 0 is
a.s., i.e., V̇ < 0 alone implies xe = 0 is a.s. This intuitive conclusion is
not true, as demonstrated by a counter example in [206] where a first-order
differential equation and a positive definite, nondecrescent function V (t, x)
are used to show that V̇ < 0 does not imply a.s.

The system (3.4.1) is referred to as nonautonomous. When the function
f in (3.4.1) does not depend explicitly on time t, the system is referred to
as autonomous. In this case, we write

ẋ = f(x) (3.4.4)

Theorem 3.4.1 to 3.4.3 also hold for (3.4.4) because it is a special case of
(3.4.1). In the case of (3.4.4), however, V (t, x) = V (x), i.e., it does not
depend explicitly on time t, and all references to the word “decrescent” and
“uniform” could be deleted. This is because V (x) is always decrescent and
the stability (respectively a.s.) of the equilibrium xe = 0 of (3.4.4) implies
u.s. (respectively u.a.s.).

For the system (3.4.4), we can obtain a stronger result than Theo-
rem 3.4.2 for a.s. as indicated below.

Definition 3.4.24 A set Ω in Rn is invariant with respect to equation
(3.4.4) if every solution of (3.4.4) starting in Ω remains in Ω for all t.

Theorem 3.4.4 Assume that (3.4.4) possesses unique solutions for all x0 ∈
Rn. Suppose there exists a positive definite and radially unbounded function
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V (x) : Rn 7→ R+ with continuous first-order derivative with respect to x and
V (0) = 0. If

(i) V̇ ≤ 0 ∀x ∈ Rn

(ii) The origin x = 0 is the only invariant subset of the set

Ω =
{
x ∈ Rn

∣∣∣V̇ = 0
}

then the equilibrium xe = 0 of (3.4.4) is a.s. in the large.

Theorems 3.4.1 to 3.4.4 are referred to as Lyapunov-type theorems. The
function V (t, x) or V (x) that satisfies any Lyapunov-type theorem is referred
to as Lyapunov function.

Lyapunov functions can be also used to predict the instability properties
of the equilibrium state xe. Several instability theorems based on the second
method of Lyapunov are given in [232].

The following examples demonstrate the use of Lyapunov’s direct method
to analyze the stability of nonlinear systems.

Example 3.4.2 Consider the system

ẋ1 = x2 + cx1(x2
1 + x2

2)
ẋ2 = −x1 + cx2(x2

1 + x2
2)

(3.4.5)

where c is a constant. Note that xe = 0 is the only equilibrium state. Let us choose

V (x) = x2
1 + x2

2

as a candidate for a Lyapunov function. V (x) is positive definite, decrescent, and
radially unbounded. Its time derivative along the solution of (3.4.5) is

V̇ = 2c(x2
1 + x2

2)
2 (3.4.6)

If c = 0, then V̇ = 0, and, therefore, xe = 0 is u.s.. If c < 0, then V̇ = −2|c|(x2
1+x2

2)
2

is negative definite, and, therefore, xe = 0 is u.a.s. in the large. If c > 0, xe = 0 is
unstable (because in this case V is strictly increasing ∀t ≥ 0), and, therefore, the
solutions of (3.4.5) are unbounded [232]. 5
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Example 3.4.3 Consider the following system describing the motion of a simple
pendulum

ẋ1 = x2

ẋ2 = −k sin x1
(3.4.7)

where k > 0 is a constant, x1 is the angle, and x2 the angular velocity. We consider a
candidate for a Lyapunov function, the function V (x) representing the total energy
of the pendulum given as the sum of the kinetic and potential energy, i.e.,

V (x) =
1
2
x2

2 + k

∫ x1

0

sin η dη =
1
2
x2

2 + k(1− cos x1)

V (x) is positive definite and decrescent ∀x ∈ B(π) but not radially unbounded.
Along the solution of (3.4.7) we have

V̇ = 0

Therefore, the equilibrium state xe = 0 is u.s. 5

Example 3.4.4 Consider the system

ẋ1 = x2

ẋ2 = −x2 − e−tx1
(3.4.8)

Let us choose the positive definite, decrescent, and radially unbounded function

V (x) = x2
1 + x2

2

as a Lyapunov candidate. We have

V̇ = −2x2
2 + 2x1x2(1− e−t)

Because for this choice of V function neither of the preceding Lyapunov theorems
is applicable, we can reach no conclusion. So let us choose another V function

V (t, x) = x2
1 + etx2

2

In this case, we obtain
V̇ (t, x) = −etx2

2

This V function is positive definite, and V̇ is negative semidefinite. Therefore,
Theorem 3.4.1 is applicable, and we conclude that the equilibrium state xe = 0
is stable. However, because V is not decrescent, we cannot conclude that the
equilibrium state xe = 0 is u.s. 5
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Example 3.4.5 Let us consider the following differential equations that arise quite
often in the analysis of adaptive systems

ẋ = −x + φx

φ̇ = −x2 (3.4.9)

The equilibrium state is xe = 0, φe = c, where c is any constant, and, therefore, the
equilibrium state is not isolated.

Let us define φ̄ = φ− c, so that (3.4.9) is transformed into

ẋ = −(1− c)x + φ̄x
˙̄φ = −x2 (3.4.10)

We are interested in the stability of the equilibrium point xe = 0, φe = c of (3.4.9),
which is equivalent to the stability of xe = 0, φ̄e = 0 of (3.4.10). We choose the
positive definite, decrescent, radially unbounded function

V (x, φ̄) =
x2

2
+

φ̄2

2
(3.4.11)

Then,
V̇ (x, φ̄) = −(1− c)x2

If c > 1, then V̇ > 0 for x 6= 0; therefore, xe = 0, φ̄e = 0 is unstable. If, however,
c ≤ 1, then xe = 0, φ̄e = 0 is u.s. For c < 1 we have

V̇ (x, φ̄) = −c0x
2 ≤ 0 (3.4.12)

where c0 = 1− c > 0. From Theorem 3.4.3 we can also conclude that the solutions
x(t), φ̄(t) are u.b. but nothing more. We can exploit the properties of V and V̇ ,
however, and conclude that x(t) → 0 as t →∞ as follows.

From (3.4.11) and (3.4.12) we conclude that because V (t) = V (x(t), φ̄(t)) is
bounded from below and is nonincreasing with time, it has a limit, i.e., limt→∞ V (t) =
V∞. Now from (3.4.12) we have

lim
t→∞

∫ t

0

x2dτ =
∫ ∞

0

x2dτ =
V (0)− V∞

c0
< ∞

i.e., x ∈ L2. Because the solution x(t), φ̄(t) is u.b., it follows from (3.4.10) that
ẋ ∈ L∞, which together with x ∈ L2 imply (see Lemma 3.2.5) that x(t) → 0 as
t →∞. 5

Example 3.4.6 Consider the differential equation

ẋ1 = −2x1 + x1x2 + x2

ẋ2 = −x2
1 − x1
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Consider V (x) = x2
1
2 + x2

2
2 . We have V̇ = −2x2

1 ≤ 0 and the equilibrium x1e =
0, x2e = 0 is u.s. The set defined in Theorem 3.4.4 is given by

Ω = {x1, x2 | x1 = 0}

Because ẋ1 = x2 on Ω, any solution that starts from Ω with x2 6= 0 leaves Ω.
Hence, x1 = 0, x2 = 0 is the only invariant subset of Ω. Therefore the equilibrium
x1e = 0, x2e = 0 is a.s. in the large. 5

In the proceeding examples, we assume implicitly that the differential
equations considered have unique solutions. As indicated in Section 3.4.1,
this property is assumed for the general differential equation (3.4.1) on which
all definitions and theorems are based. The following example illustrates that
if the property of existence of solution is overlooked, an erroneous stability
result may be obtained when some of the Lyapunov theorems of this section
are used.

Example 3.4.7 Consider the second-order differential equation

ẋ1 = −2x1 − x2sgn(x1), x1(0) = 1
ẋ2 = |x1|, x2(0) = 0

where

sgn(x1) =
{

1 if x1 ≥ 0
−1 if x1 < 0

The function
V (x1, x2) = x2

1 + x2
2

has a time derivative V̇ along the solution of the differential equation that satisfies

V̇ (x1, x2) = −4x2
1 ≤ 0

Hence, according to Theorem 3.4.1, x1, x2 ∈ L∞ and the equilibrium x1e = 0, x2e =
0 is u.s. Furthermore, we can show that x1(t) → 0 as t → ∞ as follows: Because
V ≥ 0 and V̇ ≤ 0 we have that limt→∞ V (x1(t), x2(t)) = V∞ for some V∞ ∈ R+.
Hence, ∫ t

0

4x2
1(τ)dτ = V (x1(0), x2(0))− V (x1(t), x2(t))

which implies that

4
∫ ∞

0

x2
1(τ)dτ < ∞
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i.e., x1 ∈ L2. From x1, x2 ∈ L∞ we have that ẋ1 ∈ L∞, which together with
x1 ∈ L2 and Lemma 3.2.5 imply that x1(t) → 0 as t →∞.

The above conclusions are true provided continuous functions x1(t), x2(t) with
x1(0) = 1 and x2(0) = 0 satisfying the differential equation for all t ∈ [0,∞) exist.
However, the solution of the above differential equation exists only in the time
interval t ∈ [0, 1], where it is given by x1(t) = (1−t)e−t, x2(t) = te−t. The difficulty
in continuing the solution beyond t = 1 originates from the fact that in a small
neighborhood of the point (x1(1), x2(1)) = (0, e−1), ẋ1 = −2x1 − x2sgn(x1) < 0 if
x1 > 0 and ẋ1 > 0 if x1 < 0. This causes ẋ1 to change sign infinitely many times
around the point (0, e−1), which implies that no continuous functions x1(t), x2(t)
exist to satisfy the given differential equation past the point t = 1. 5

The main drawback of the Lyapunov’s direct method is that, in general,
there is no procedure for finding the appropriate Lyapunov function that
satisfies the conditions of Theorems 3.4.1 to 3.4.4 except in the case where
(3.4.1) represents a LTI system. If, however, the equilibrium state xe = 0 of
(3.4.1) is u.a.s. the existence of a Lyapunov function is assured as shown in
[139].

3.4.3 Lyapunov-Like Functions

The choice of an appropriate Lyapunov function to establish stability by
using Theorems 3.4.1 to 3.4.4 in the analysis of a large class of adaptive
control schemes may not be obvious or possible in many cases. However, a
function that resembles a Lyapunov function, but does not possess all the
properties that are needed to apply Theorems 3.4.1 to 3.4.4, can be used to
establish some properties of adaptive systems that are related to stability
and boundedness. We refer to such a function as the Lyapunov-like function.
The following example illustrates the use of Lyapunov-like functions.

Example 3.4.8 Consider the third-order differential equation

ẋ1 = −x1 − x2x3, x1(0) = x10

ẋ2 = x1x3, x2(0) = x20

ẋ3 = x2
1, x3(0) = x30

(3.4.13)

which has the nonisolated equilibrium points inR3 defined by x1 = 0, x2 = constant,
x3 = 0 or x1 = 0, x2 = 0, x3 = constant. We would like to analyze the stability
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properties of the solutions of (3.4.13) by using an appropriate Lyapunov function
and applying Theorems 3.4.1 to 3.4.4. If we follow Theorems 3.4.1 to 3.4.4, then we
should start with a function V (x1, x2, x3) that is positive definite in R3. Instead of
doing so let us consider the simple quadratic function

V (x1, x2) =
x2

1

2
+

x2
2

2

which is positive semidefinite in R3 and, therefore, does not satisfy the positive
definite condition in R3 of Theorems 3.4.1 to 3.4.4. The time derivative of V along
the solution of the differential equation (3.4.13) satisfies

V̇ = −x2
1 ≤ 0 (3.4.14)

which implies that V is a nonincreasing function of time. Therefore,

V (x1(t), x2(t)) ≤ V (x1(0), x2(0))
4
= V0

and V, x1, x2 ∈ L∞. Furthermore, V has a limit as t →∞, i.e.,

lim
t→∞

V (x1(t), x2(t)) = V∞

and (3.4.14) implies that
∫ t

0

x2
1(τ)dτ = V0 − V (t), ∀t ≥ 0

and ∫ ∞

0

x2
1(τ)dτ = V0 − V∞ < ∞

i.e., x1 ∈ L2. From x1 ∈ L2 we have from (3.3.13) that x3 ∈ L∞ and from
x1, x2, x3 ∈ L∞ that ẋ1 ∈ L∞. Using ẋ1 ∈ L∞, x1 ∈ L2 and applying Lemma 3.2.5
we have x1(t) → 0 as t → ∞. By using the properties of the positive semidefinite
function V (x1, x2), we have established that the solution of (3.4.13) is uniformly
bounded and x1(t) → 0 as t → ∞ for any finite initial condition x1(0), x2(0),
x3(0). Because the approach we follow resembles the Lyapunov function approach,
we are motivated to refer to V (x1, x2) as the Lyapunov-like function. In the above
analysis we also assumed that (3.4.13) has a unique solution. For discussion
and analysis on existence and uniqueness of solutions of (3.4.13) the reader
is referred to [191]. 5

We use Lyapunov-like functions and similar arguments as in the example
above to analyze the stability of a wide class of adaptive schemes considered
throughout this book.
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3.4.4 Lyapunov’s Indirect Method

Under certain conditions, conclusions can be drawn about the stability of the
equilibrium of a nonlinear system by studying the behavior of a certain linear
system obtained by linearizing (3.4.1) around its equilibrium state. This
method is known as the first method of Lyapunov or as Lyapunov’s indirect
method and is given as follows [32, 232]: Let xe = 0 be an equilibrium state
of (3.4.1) and assume that f(t, x) is continuously differentiable with respect
to x for each t ≥ 0. Then in the neighborhood of xe = 0, f has a Taylor
series expansion that can be written as

ẋ = f(t, x) = A(t)x + f1(t, x) (3.4.15)

where A(t) = ∇f |x=0 is referred to as the Jacobian matrix of f evaluated
at x = 0 and f1(t, x) represents the remaining terms in the series expansion.

Theorem 3.4.5 Assume that A(t) is uniformly bounded and that

lim
|x|→0

sup
t≥0

|f1(t, x)|
|x| = 0

Let ze = 0 be the equilibrium of

ż(t) = A(t)z(t)

The following statements are true for the equilibrium xe = 0 of (3.4.15):

(i) If ze = 0 is u.a.s. then xe = 0 is u.a.s.
(ii) If ze = 0 is unstable then xe = 0 is unstable
(iii) If ze = 0 is u.s. or stable, no conclusions can be drawn about the

stability of xe = 0.

For a proof of Theorem 3.4.5 see [232].

Example 3.4.9 Consider the second-order differential equation

mẍ = −2µ(x2 − 1)ẋ− kx

where m,µ, and k are positive constants, which is known as the Van der Pol os-
cillator. It describes the motion of a mass-spring-damper with damping coefficient
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2µ(x2 − 1) and spring constant k, where x is the position of the mass. If we define
the states x1 = x, x2 = ẋ, we obtain the equation

ẋ1 = x2

ẋ2 = − k

m
x1 − 2µ

m
(x2

1 − 1)x2

which has an equilibrium at x1e = 0, x2e = 0. The linearization of this system
around (0, 0) gives us [

ż1

ż2

]
=

[
0 1
− k

m
2µ
m

] [
z1

z2

]

Because m,µ > 0 at least one of the eigenvalues of the matrix A is positive and
therefore the equilibrium (0, 0) is unstable. 5

3.4.5 Stability of Linear Systems

Equation (3.4.15) indicates that certain classes of nonlinear systems may be
approximated by linear ones in the neighborhood of an equilibrium point or,
as often called in practice, operating point. For this reason we are interested
in studying the stability of linear systems of the form

ẋ(t) = A(t)x(t) (3.4.16)

where the elements of A(t) are piecewise continuous for all t ≥ t0 ≥ 0, as a
special class of the nonlinear system (3.4.1) or as an approximation of the
linearized system (3.4.15). The solution of (3.4.16) is given by [95]

x(t; t0, x0) = Φ(t, t0)x0

for all t ≥ t0, where Φ(t, t0) is the state transition matrix and satisfies the
matrix differential equation

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0), ∀t ≥ t0

Φ(t0, t0) = I

Some additional useful properties of Φ(t, t0) are

(i) Φ(t, t0) = Φ(t, τ)Φ(τ, t0) ∀t ≥ τ ≥ t0 (semigroup property)
(ii) Φ(t, t0)−1 = Φ(t0, t)
(iii) ∂

∂t0
Φ(t, t0) = −Φ(t, t0)A(t0)
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Necessary and sufficient conditions for the stability of the equilibrium state
xe = 0 of (3.4.16) are given by the following theorems.

Theorem 3.4.6 Let ‖Φ(t, τ)‖ denote the induced matrix norm of Φ(t, τ) at
each time t ≥ τ . The equilibrium state xe = 0 of (3.4.16) is

(i) stable if and only if the solutions of (3.4.16) are bounded or equivalently

c(t0)
4
= sup

t≥t0

‖Φ(t, t0)‖ < ∞

(ii) u.s. if and only if

c0
4
= sup

t0≥0
c(t0) = sup

t0≥0

(
sup
t≥t0

‖Φ(t, t0)‖
)

< ∞

(iii) a.s. if and only if
lim
t→∞ ‖Φ(t, t0)‖ = 0

for any t0 ∈ R+

(iv) u.a.s. if and only if there exist positive constants α and β such that

‖Φ(t, t0)‖ ≤ αe−β(t−t0), ∀t ≥ t0 ≥ 0

(v) e.s. if and only if it is u.a.s.
(vi) a.s., u.a.s., e.s. in the large if and only if it is a.s., u.a.s., e.s., respec-

tively.

Theorem 3.4.7 [1] Assume that the elements of A(t) are u.b. for all t ∈
R+. The equilibrium state xe = 0 of the linear system (3.4.16) is u.a.s. if
and only if, given any positive definite matrix Q(t), which is continuous in
t and satisfies

0 < c1I ≤ Q(t) ≤ c2I < ∞
for all t ≥ t0, the scalar function defined by

V (t, x) = x>
∫ ∞

t
Φ>(τ, t)Q(τ)Φ(τ, t) dτ x (3.4.17)

exists (i.e., the integral defined by (3.4.17) is finite for finite values of x and
t) and is a Lyapunov function of (3.4.16) with

V̇ (t, x) = −x>Q(t)x
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It follows using the properties of Φ(t, t0) that P (t)
4
=

∫∞
t Φ>(τ, t)Q(τ)Φ(τ, t)dτ

satisfies the equation

Ṗ (t) = −Q(t)−A>(t)P (t)− P (t)A(t) (3.4.18)

i.e., the Lyapunov function (3.4.17) can be rewritten as V (t, x) = x>P (t)x,
where P (t) = P>(t) satisfies (3.4.18).

Theorem 3.4.8 A necessary and sufficient condition for the u.a.s of the
equilibrium xe = 0 of (3.4.16) is that there exists a symmetric matrix P (t)
such that

γ1I ≤ P (t) ≤ γ2I

Ṗ (t) + A>(t)P (t) + P (t)A(t) + νC(t)C>(t) ≤ O

are satisfied ∀t ≥ 0 and some constant ν > 0, where γ1 > 0, γ2 > 0 are con-
stants and C(t) is such that (C(t), A(t)) is a UCO pair (see Definition 3.3.3).

When A(t) = A is a constant matrix, the conditions for stability of the
equilibrium xe = 0 of

ẋ = Ax (3.4.19)

are given by the following theorem.

Theorem 3.4.9 The equilibrium state xe = 0 of (3.4.19) is stable if and
only if

(i) All the eigenvalues of A have nonpositive real parts.
(ii) For each eigenvalue λi with Re{λi} = 0, λi is a simple zero of the

minimal polynomial of A (i.e., of the monic polynomial ψ(λ) of least
degree such that ψ(A) = O).

Theorem 3.4.10 A necessary and sufficient condition for xe = 0 to be a.s.
in the large is that any one of the following conditions is satisfied 1:

(i) All the eigenvalues of A have negative real parts

1Note that (iii) includes (ii). Because (ii) is used very often in this book, we list it
separately for easy reference.
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(ii) For every positive definite matrix Q, the following Lyapunov matrix
equation

A>P + PA = −Q

has a unique solution P that is also positive definite.
(iii) For any given matrix C with (C, A) observable, the equation

A>P + PA = −C>C

has a unique solution P that is positive definite.

It is easy to verify that for the LTI system given by (3.4.19), if xe = 0 is
stable, it is also u.s. If xe = 0 is a.s., it is also u.a.s. and e.s. in the large.

In the rest of the book we will abuse the notation and call the matrix
A in (3.4.19) stable when the equilibrium xe = 0 is a.s., i.e., when all the
eigenvalues of A have negative real parts and marginally stable when xe = 0
is stable, i.e., A satisfies (i) and (ii) of Theorem 3.4.9.

Let us consider again the linear time-varying system (3.4.16) and suppose
that for each fixed t all the eigenvalues of the matrix A(t) have negative real
parts. In view of Theorem 3.4.10, one may ask whether this condition for
A(t) can ensure some form of stability for the equilibrium xe = 0 of (3.4.16).
The answer is unfortunately no in general, as demonstrated by the following
example given in [232].

Example 3.4.10 Let

A(t) =
[ −1 + 1.5 cos2 t 1− 1.5 sin t cos t
−1− 1.5 sin t cos t −1 + 1.5 sin2 t

]

The eigenvalues of A(t) for each fixed t,

λ(A(t)) = −.25± j.5
√

1.75

have negative real parts and are also independent of t. Despite this the equilibrium
xe = 0 of (3.4.16) is unstable because

Φ(t, 0) =
[

e.5t cos t e−t sin t
−e.5t sin t e−t cos t

]

is unbounded w.r.t. time t. 5
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Despite Example 3.4.10, Theorem 3.4.10 may be used to obtain some
sufficient conditions for a class of A(t), which guarantee that xe = 0 of
(3.4.16) is u.a.s. as indicated by the following theorem.

Theorem 3.4.11 Let the elements of A(t) in (3.4.16) be differentiable2 and
bounded functions of time and assume that

(A1) Re{λi(A(t))} ≤ −σs ∀t ≥ 0 and for i = 1, 2, . . . , n where σs > 0 is
some constant.

(i) If ‖Ȧ‖ ∈ L2, then the equilibrium state xe = 0 of (3.4.16) is u.a.s. in
the large.

(ii) If any one of the following conditions:

(a)
∫ t+T
t ‖Ȧ(τ)‖dτ ≤ µT + α0, i.e., (‖Ȧ‖) 1

2 ∈ S(µ)

(b)
∫ t+T
t ‖Ȧ(τ)‖2dτ ≤ µ2T + α0, i.e., ‖Ȧ‖ ∈ S(µ2)

(c) ‖Ȧ(t)‖ ≤ µ

is satisfied for some α0, µ ∈ R+ and ∀t ≥ 0, T ≥ 0, then there exists a
µ∗ > 0 such that if µ ∈ [0, µ∗), the equilibrium state xe of (3.4.16) is
u.a.s. in the large.

Proof Using (A1), it follows from Theorem 3.4.10 that the Lyapunov equation

A>(t)P (t) + P (t)A(t) = −I (3.4.20)

has a unique bounded solution P (t) for each fixed t. We consider the following
Lyapunov function:

V (t, x) = x>P (t)x

Then along the solution of (3.4.16) we have

V̇ = −|x(t)|2 + x>(t)Ṗ (t)x(t) (3.4.21)

From (3.4.20), Ṗ satisfies

A>(t)Ṗ (t) + Ṗ (t)A(t) = −Q(t), ∀t ≥ 0 (3.4.22)

where Q(t) = Ȧ>(t)P (t) + P (t)Ȧ(t). Because of (A1), it can be verified [95] that

Ṗ (t) =
∫ ∞

0

eA>(t)τQ(t)eA(t)τdτ

2The condition of differentiability can be relaxed to Lipschitz continuity.
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satisfies (3.4.22) for each t ≥ 0, therefore,

‖Ṗ (t)‖ ≤ ‖Q(t)‖
∫ ∞

0

‖eA>(t)τ‖‖eA(t)τ‖dτ

Because (A1) implies that ‖eA(t)τ‖ ≤ α1e
−α0τ for some α1, α0 > 0 it follows that

‖Ṗ (t)‖ ≤ c‖Q(t)‖

for some c ≥ 0. Then,
‖Q(t)‖ ≤ 2‖P (t)‖‖Ȧ(t)‖

together with P ∈ L∞ imply that

‖Ṗ (t)‖ ≤ β‖Ȧ(t)‖, ∀t ≥ 0 (3.4.23)

for some constant β ≥ 0. Using (3.4.23) in (3.4.21) and noting that P satisfies
0 < β1 ≤ λmin(P ) ≤ λmax(P ) ≤ β2 for some β1, β2 > 0, we have that

V̇ (t) ≤ −|x(t)|2 + β‖Ȧ(t)‖|x(t)|2 ≤ −β−1
2 V (t) + ββ−1

1 ‖Ȧ(t)‖V (t)

therefore,

V (t) ≤ e
−

∫ t

t0
(β−1

2 −ββ−1
1 ‖Ȧ(τ)‖)dτ

V (t0) (3.4.24)

Let us prove (ii) first. Using condition (a) in (3.4.24) we have

V (t) ≤ e−(β−1
2 −ββ−1

1 µ)(t−t0)eββ−1
1 α0V (t0)

Therefore, for µ∗ = β1
β2β and ∀µ ∈ [0, µ∗), V (t) → 0 exponentially fast, which implies

that xe = 0 is u.a.s. in the large.
To be able to use (b), we rewrite (3.4.24) as

V (t) ≤ e−β−1
2 (t−t0)e

ββ−1
1

∫ t

t0
‖Ȧ(τ)‖dτ

V (t0)

Using the Schwartz inequality and (b) we have

∫ t

t0

‖Ȧ(τ)‖dτ ≤
(∫ t

t0

‖Ȧ(τ)‖2dτ

) 1
2 √

t− t0

≤ [
µ2(t− t0)2 + α0(t− t0)

] 1
2

≤ µ(t− t0) +
√

α0

√
t− t0

Therefore,
V (t) ≤ e−α(t−t0)y(t)V (t0)
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where α = (1− γ)β−1
2 − ββ−1

1 µ,

y(t) = exp
[−γβ−1

2 (t− t0) + ββ−1
1

√
α0

√
t− t0

]

= exp


−γβ−1

2

(
√

t− t0 −
ββ−1

1

√
α0

2γβ−1
2

)2

+
α0β

2β2

4γβ2
1




and γ is an arbitrary constant that satisfies 0 < γ < 1. It can be shown that

y(t) ≤ exp
[
α0

β2β2

4γβ2
1

]
4
= c ∀t ≥ t0

hence,
V (t) ≤ ce−α(t−t0)V (t0)

Choosing µ∗ = β1(1−γ)
β2β , we have that ∀µ ∈ [0, µ∗), α > 0 and, therefore, V (t) → 0

exponentially fast, which implies that xe = 0 is u.a.s in the large.
Since (c) implies (a), the proof of (c) follows directly from that of (a).
The proof of (i) follows from that of (ii)(b), because ‖Ȧ‖ ∈ L2 implies (b) with

µ = 0. 2

In simple words, Theorem 3.4.11 states that if the eigenvalues of A(t)
for each fixed time t have negative real parts and if A(t) varies sufficiently
slowly most of the time, then the equilibrium state xe = 0 of (3.4.16) is u.a.s.

3.5 Positive Real Functions and Stability

3.5.1 Positive Real and Strictly Positive Real Transfer Func-
tions

The concept of PR and SPR transfer functions plays an important role in the
stability analysis of a large class of nonlinear systems, which also includes
adaptive systems.

The definition of PR and SPR transfer functions is derived from network
theory. That is, a PR (SPR) rational transfer function can be realized as
the driving point impedance of a passive (dissipative) network. Conversely, a
passive (dissipative) network has a driving point impedance that is rational
and PR (SPR). A passive network is one that does not generate energy, i.e., a
network consisting only of resistors, capacitors, and inductors. A dissipative
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network dissipates energy, which implies that it is made up of resistors and
capacitors, inductors that are connected in parallel with resistors.

In [177, 204], the following equivalent definitions have been given for PR
transfer functions by an appeal to network theory.

Definition 3.5.1 A rational function G(s) of the complex variable s = σ +
jω is called PR if

(i) G(s) is real for real s.
(ii) Re[G(s)] ≥ 0 for all Re[s] > 0.

Lemma 3.5.1 A rational proper transfer function G(s) is PR if and only if
(i) G(s) is real for real s.
(ii) G(s) is analytic in Re[s] > 0, and the poles on the jω-axis are simple

and such that the associated residues are real and positive.
(iii) For all real value ω for which s = jω is not a pole of G(s), one has

Re[G(jω)] ≥ 0.

For SPR transfer functions we have the following Definition.

Definition 3.5.2 [177] Assume that G(s) is not identically zero for all s.
Then G(s) is SPR if G(s− ε) is PR for some ε > 0.

The following theorem gives necessary and sufficient conditions in the fre-
quency domain for a transfer function to be SPR:

Theorem 3.5.1 [89] Assume that a rational function G(s) of the complex
variable s = σ + jω is real for real s and is not identically zero for all s. Let
n∗ be the relative degree of G(s) = Z(s)/R(s) with |n∗| ≤ 1. Then, G(s) is
SPR if and only if

(i) G(s) is analytic in Re[s] ≥ 0

(ii) Re[G(jω)] > 0, ∀ω ∈ (−∞,∞)

(iii) (a) When n∗ = 1, lim|ω|→∞ ω2Re[G(jω)] > 0.

(b) When n∗ = −1, lim|ω|→∞
G(jω)

jω > 0.



128 CHAPTER 3. STABILITY

It should be noted that when n∗ = 0, (i) and (ii) in Theorem 3.5.1 are
necessary and sufficient for G(s) to be SPR. This, however, is not true for
n∗ = 1 or −1. For example,

G(s) = (s + α + β)/[(s + α)(s + β)]

α, β > 0 satisfies (i) and (ii) of Theorem 3.5.1, but is not SPR because it
does not satisfy (iiia). It is, however, PR.

Some useful properties of SPR functions are given by the following corol-
lary.

Corollary 3.5.1 (i) G(s) is PR (SPR) if and only if 1/G(s) is PR (SPR)
(ii) If G(s) is SPR, then, |n∗| ≤ 1, and the zeros and poles of G(s) lie in

Re[s] < 0
(iii) If |n∗| > 1, then G(s) is not PR.

A necessary condition for G(s) to be PR is that the Nyquist plot of G(jω)
lies in the right half complex plane, which implies that the phase shift in the
output of a system with transfer function G(s) in response to a sinusoidal
input is less than 90◦.

Example 3.5.1 Consider the following transfer functions:

(i) G1(s) =
s− 1

(s + 2)2
, (ii) G2(s) =

1
(s + 2)2

(iii) G3(s) =
s + 3

(s + 1)(s + 2)
, (iv) G4(s) =

1
s + α

Using Corollary 3.5.1 we conclude that G1(s) is not PR, because 1/G1(s) is not
PR. We also have that G2(s) is not PR because n∗ > 1.

For G3(s) we have that

Re[G3(jω)] =
6

(s− ω2)2 + 9ω2
> 0, ∀ω ∈ (−∞,∞)

which together with the stability of G3(s) implies that G3(s) is PR. Because G3(s)
violates (iii)(a) of Theorem 3.5.1, it is not SPR.

The function G4(s) is SPR for any α > 0 and PR, but not SPR for α = 0. 5

The relationship between PR, SPR transfer functions, and Lyapunov sta-
bility of corresponding dynamic systems leads to the development of several
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stability criteria for feedback systems with LTI and nonlinear parts. These
criteria include the celebrated Popov’s criterion and its variations [192]. The
vital link between PR, SPR transfer functions or matrices and the existence
of a Lyapunov function for establishing stability is given by the following
lemmas.

Lemma 3.5.2 (Kalman-Yakubovich-Popov (KYP) Lemma)[7, 192]
Given a square matrix A with all eigenvalues in the closed left half complex
plane, a vector B such that (A,B) is controllable, a vector C and a scalar
d ≥ 0, the transfer function defined by

G(s) = d + C>(sI −A)−1B

is PR if and only if there exist a symmetric positive definite matrix P and
a vector q such that

A>P + PA = −qq>

PB − C = ±(
√

2d)q

Lemma 3.5.3 (Lefschetz-Kalman-Yakubovich (LKY) Lemma) [89,
126] Given a stable matrix A, a vector B such that (A,B) is controllable, a
vector C and a scalar d ≥ 0, the transfer function defined by

G(s) = d + C>(sI −A)−1B

is SPR if and only if for any positive definite matrix L, there exist a sym-
metric positive definite matrix P , a scalar ν > 0 and a vector q such that

A>P + PA = −qq> − νL

PB − C = ±q
√

2d

The lemmas above are applicable to LTI systems that are controllable. This
controllability assumption is relaxed in [142, 172].

Lemma 3.5.4 (Meyer-Kalman-Yakubovich (MKY) Lemma) Given
a stable matrix A, vectors B, C and a scalar d ≥ 0, we have the following:
If

G(s) = d + C>(sI −A)−1B
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is SPR, then for any given L = L> > 0, there exists a scalar ν > 0, a vector
q and a P = P> > 0 such that

A>P + PA = −qq> − νL

PB − C = ±q
√

2d

In many applications of SPR concepts to adaptive systems, the transfer
function G(s) involves stable zero-pole cancellations, which implies that the
system associated with the triple (A,B, C) is uncontrollable or unobservable.
In these situations the MKY lemma is the appropriate lemma to use.

Example 3.5.2 Consider the system

y = G(s)u

where G(s) = s+3
(s+1)(s+2) . We would like to verify whether G(s) is PR or SPR by

using the above lemmas. The system has the state space representation

ẋ = Ax + Bu

y = C>x

where

A =
[

0 1
−2 −3

]
, B =

[
0
1

]
, C =

[
3
1

]

According to the above lemmas, if G(s) is PR, we have

PB = C

which implies that

P =
[

p1 3
3 1

]

for some p1 > 0 that should satisfy p1 − 9 > 0 for P to be positive definite. We
need to calculate p1, ν > 0 and q such that

A>P + PA = −qq> − νL (3.5.1)

is satisfied for any L = L> > 0. We have

−
[

12 11− p1

11− p1 0

]
= −qq> − νL

Now Q =
[

12 11− p1

11− p1 0

]
is positive semidefinite for p1 = 11 but is indefinite

for p1 6= 11. Because no p1 > 9 exists for which Q is positive definite, no ν > 0 can
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be found to satisfy (3.5.1) for any given L = L> > 0. Therefore, G(s) is not SPR,
something we have already verified in Example 3.5.1. For p1 = 11, we can select
ν = 0 and q = [

√
12, 0]> to satisfy (3.5.1). Therefore, G(s) is PR. 5

The KYP and MKY Lemmas are useful in choosing appropriate Lya-
punov or Lyapunov-like functions to analyze the stability properties of a
wide class of continuous-time adaptive schemes for LTI plants. We illustrate
the use of MKY Lemma in adaptive systems by considering the stability
properties of the system

ė = Ace + Bcθ
>ω

θ̇ = −Γe1ω (3.5.2)

e1 = C>e

that often arises in the analysis of a certain class of adaptive schemes. In
(3.5.2), Γ = Γ> > 0 is constant, e ∈ Rm, θ ∈ Rn, e1 ∈ R1 and ω = C>

0 e +
C>

1 em, where em is continuous and em ∈ L∞. The stability properties of
(3.5.2) are given by the following theorem.

Theorem 3.5.2 If Ac is a stable matrix and G(s) = C>(sI − Ac)−1Bc is
SPR, then e, θ, ω ∈ L∞; e, θ̇ ∈ L∞

⋂L2 and e(t), e1(t), θ̇(t) → 0 as t →∞.

Proof Because we made no assumptions about the controllability or observability
of (Ac, Bc, Cc), we concentrate on the use of the MKY Lemma. We choose the
function

V (e, θ) = e>Pe + θ>Γ−1θ

where P = P> > 0 satisfies

A>c P + PAc = −qq> − νL
PBc = C

for some vector q, scalar ν > 0 and L = L> > 0 guaranteed by the SPR property
of G(s) and the MKY Lemma. Because ω = C>0 e + C>1 em and em ∈ L∞ can be
treated as an arbitrary continuous function of time in L∞, we can establish that
V (e, θ) is positive definite in Rn+m, and V is a Lyapunov function candidate.

The time derivative of V along the solution of (3.5.2) is given by

V̇ = −e>qq>e− νe>Le ≤ 0
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which by Theorem 3.4.1 implies that the equilibrium ee, θe = 0 is u.s. and e1, e, θ ∈
L∞. Because ω = C>0 e + C>1 em and em ∈ L∞, we also have ω ∈ L∞. By exploit-
ing the properties of V̇ , V further, we can obtain additional properties about the
solution of (3.5.2) as follows: From V ≥ 0 and V̇ ≤ 0 we have that

lim
t→∞

V (e(t), θ(t)) = V∞

and, therefore,

ν

∫ ∞

0

e>Ledτ ≤ V0 − V∞

where V0 = V (e(0), θ(0)). Because νλmin(L)|e|2 ≤ νe>Le, it follows that e ∈ L2.
From (3.5.2) we have |θ̇(t)| ≤ ‖Γ‖|e1||ω|. Since ω ∈ L∞ and e1 ∈ L∞

⋂L2 it follows
from Lemma 3.2.3 (ii) that θ̇ ∈ L∞

⋂L2. Using e, θ, ω ∈ L∞ we obtain ė ∈ L∞,
which together with e ∈ L2, implies that e(t) → 0 as t →∞. Hence, e1, θ̇, e → 0 as
t →∞, and the proof is complete. 2

The arguments we use to prove Theorem 3.5.2 are standard in adaptive
systems and will be repeated in subsequent chapters.

3.5.2 PR and SPR Transfer Function Matrices

The concept of PR transfer functions can be extended to PR transfer function
matrices as follows.

Definition 3.5.3 [7, 172] An n×n matrix G(s) whose elements are rational
functions of the complex variable s is called PR if

(i) G(s) has elements that are analytic for Re[s] > 0
(ii) G∗(s) = G(s∗) for Re[s] > 0
(iii) G>(s∗) + G(s) is positive semidefinite for Re[s] > 0

where ∗ denotes complex conjugation.

Definition 3.5.4 [7] An n × n matrix G(s) is SPR if G(s − ε) is PR for
some ε > 0.

Necessary and sufficient conditions in the frequency domain for G(s) to be
SPR are given by the following theorem.
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Theorem 3.5.3 [215] Consider the n× n rational transfer matrix

G(s) = C>(sI −A)−1B + D (3.5.3)

where A,B, C, and D are real matrices with appropriate dimensions. As-
sume that G(s)+G>(−s) has rank n almost everywhere in the complex plane.
Then G(s) is SPR if and only if

(i) all elements of G(s) are analytic in Re[s] ≥ 0.

(ii) G(jω) + G>(−jω) > 0 ∀ω ∈ R.

(iii) (a) lim
ω→∞ω2[G(jω) + G>(−jω)] > 0, D +D> ≥ 0 if det[D +D>] = 0.

(b) lim
ω→∞[G(jω) + G>(−jω)] > 0 if det[D + D>] 6= 0.

Necessary and sufficient conditions on the matrices A,B,C, and D in
(3.5.3) for G(s) to be PR, SPR are given by the following lemmas which are
generalizations of the lemmas in the SISO case to the MIMO case.

Theorem 3.5.4 [215] Assume that G(s) given by (3.5.3) is such that G(s)+
G>(−s) has rank n almost everywhere in the complex plane, det(sI−A) has
all its zeros in the open left half plane and (A, B) is completely controllable.
Then G(s) is SPR if and only if for any real symmetric positive definite
matrix L, there exist a real symmetric positive definite matrix P , a scalar
ν > 0, real matrices Q and K such that

A>P + PA = −QQ> − νL

PB = C ±QK

K>K = D> + D

Lemma 3.5.5 [177] Assume that the transfer matrix G(s) has poles that
lie in Re[s] < −γ where γ > 0 and (A,B,C, D) is a minimal realization of
G(s). Then, G(s) is SPR if and only if a matrix P = P> > 0, and matrices
Q,K exist such that

A>P + PA = −QQ> − 2γP

PB = C ±QK

K>K = D + D>
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- lΣ - C(s) - lΣ
?

- G0(s) - lΣ
?

-

¾
?lΣ¾F (s)

6

y∗ +
−

e u
+

+
du

u0 y0
+

d

+ y

dn
+

+ynye

Figure 3.2 General feedback system.

The SPR properties of transfer function matrices are used in the analysis
of a class of adaptive schemes designed for multi-input multi-output (MIMO)
plants in a manner similar to that of SISO plants.

3.6 Stability of LTI Feedback Systems

3.6.1 A General LTI Feedback System

The block diagram of a typical feedback system is shown in Figure 3.2. Here
G0(s) represents the transfer function of the plant model and C(s), F (s) are
the cascade and feedback compensators, respectively. The control input u

generated from feedback is corrupted by an input disturbance du to form the
plant input u0. Similarly, the output of the plant y0 is corrupted by an output
disturbance d to form the actual plant output y. The measured output yn,
corrupted by the measurement noise dn, is the input to the compensator
F (s) whose output ye is subtracted from the reference (set point) y∗ to form
the error signal e.

The transfer functions G0(s), C(s), F (s) are generally proper and causal,
and are allowed to be rational or irrational, which means they may include
time delays.

The feedback system can be described in a compact I/O matrix form by
treating R = [y∗, du, d, dn]> as the input vector, and E = [e, u0, y, yn]> and
Y = [y0, ye, u]> as the output vectors, i.e.,

E = H(s)R, Y = I1E + I2R (3.6.1)
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where

H(s) =
1

1 + FCG0




1 −FG0 −F −F
C 1 −FC −FC

CG0 G0 1 −FCG0

CG0 G0 1 1




I1 =




0 0 1 0
−1 0 0 0
0 1 0 0


 , I2 =




0 0 −1 0
1 0 0 0
0 −1 0 0




3.6.2 Internal Stability

Equation (3.6.1) relates all the signals in the system with the external inputs
y∗, du, d, dn. From a practical viewpoint it is important to guarantee that
for any bounded input vector R, all the signals at any point in the feedback
system are bounded. This motivates the definition of the so-called internal
stability [152, 231].

Definition 3.6.1 The feedback system is internally stable if for any bounded
external input R, the signal vectors Y, E are bounded and in addition

‖Y ‖∞ ≤ c1‖R‖∞, ‖E‖∞ ≤ c2‖R‖∞ (3.6.2)

for some constants c1, c2 ≥ 0 that are independent of R.

A necessary and sufficient condition for the feedback system (3.6.1) to be
internally stable is that each element of H(s) has stable poles, i.e., poles in
the open left half s-plane [231].

The concept of internal stability may be confusing to some readers be-
cause of the fact that in most undergraduate books the stability of the feed-
back system is checked by examining the roots of the characteristic equation

1 + FCG0 = 0

The following example is used to illustrate such confusions.

Example 3.6.1 Consider

G0(s) =
1

s− 2
, C(s) =

s− 2
s + 5

, F (s) = 1
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for which the characteristic equation

1 + FCG0 = 1 +
(s− 2)

(s + 5)(s− 2)
= 1 +

1
s + 5

= 0 (3.6.3)

has a single root at s = −6, indicating stability. On the other hand, the transfer
matrix H(s) calculated from this example yields




e
u0

y
yn


=

1
s + 6




s + 5 −(s + 5)/(s− 2) −(s + 5) −(s + 5)
s− 2 s + 5 −(s− 2) −(s− 2)

1 (s + 5)/(s− 2) s + 5 1
1 (s + 5)/(s− 2) s + 5 s + 5







y∗

du

d
dn


 (3.6.4)

indicating that a bounded du will produce unbounded e, y, yn, i.e., the feedback
system is not internally stable. We should note that in calculating (3.6.3) and
(3.6.4), we assume that s+α

s+αg(s) and g(s) are the same transfer functions for any
constant α. In (3.6.3) the exact cancellation of the pole at s = 2 of G0(s) by
the zero at s = 2 of C(s) led to the wrong stability result, whereas in (3.6.4)
such cancellations have no effect on internal stability. This example indicates that
internal stability is more complete than the usual stability derived from the roots
of 1 + FCG0 = 0. If, however, G0, C, F are expressed as the ratio of coprime
polynomials, i.e., G0(s) = n0(s)

p0(s)
, C(s) = nc(s)

pc(s)
, F (s) = nf (s)

pf (s) then a necessary and
sufficient condition for internal stability [231] is that the roots of the characteristic
equation

p0pcpf + n0ncnf = 0 (3.6.5)

are in the open left-half s-plane. For the example under consideration, n0 = 1, p0 =
s− 2, nc = s− 2, pc = s + 5, nf = 1, pf = 1 we have

(s− 2)(s + 5) + (s− 2) = (s− 2)(s + 6) = 0

which has one unstable root indicating that the feedback is not internally stable.
5

3.6.3 Sensitivity and Complementary Sensitivity Functions

Although internal stability guarantees that all signals in the feedback system
are bounded for any bounded external inputs, performance requirements put
restrictions on the size of some of the signal bounds. For example, one of the
main objectives of a feedback controller is to keep the error between the plant
output y and the reference signal y∗ small in the presence of external inputs,
such as reference inputs, bounded disturbances, and noise. Let us consider
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the case where in the feedback system of Figure 3.2, F (s) = 1, du = 0. Using
(3.6.1), we can derive the following relationships between the plant output
y and external inputs y∗, d, dn:

y = T0y
∗ + S0d− T0dn (3.6.6)

where

S0
4
=

1
1 + CG0

, T0
4
=

CG0

1 + CG0

are referred to as the sensitivity function and complementary sensitivity
function, respectively. It follows that S0, T0 satisfy

S0 + T0 = 1 (3.6.7)

It is clear from (3.6.6) that for good tracking and output disturbance rejec-

tion, the loop gain L0
4
= CG0 has to be chosen large so that S0 ≈ 0 and

T0 ≈ 1. On the other hand, the suppression of the effect of the measure-
ment noise dn on y requires L0 to be small so that T0 ≈ 0, which from
(3.6.7) implies that S0 ≈ 1. This illustrates one of the basic trade-offs in
feedback design, which is good reference tracking and disturbance rejection
(|L0| À 1, S0 ≈ 0, T0 ≈ 1) has to be traded off against suppression of
measurement noise (|L0| ¿ 1, S0 ≈ 1, T0 ≈ 0). In a wide class of control
problems, y∗, d are usually low frequency signals, and dn is dominant only at
high frequencies. In this case, C(s) can be designed so that at low frequen-
cies the loop gain L0 is large, i.e., S0 ≈ 0, T0 ≈ 1, and at high frequencies L0

is small, i.e., S0 ≈ 1, T0 ≈ 0. Another reason for requiring the loop gain L0

to be small at high frequencies is the presence of dynamic plant uncertainties
whose effect is discussed in later chapters.

3.6.4 Internal Model Principle

In many control problems, the reference input or setpoint y∗ can be modeled
as

Qr(s)y∗ = 0 (3.6.8)

where Qr(s) is a known polynomial, and s
4
= d

dt is the differential operator.
For example, when y∗ =constant, Qr(s) = s. When y∗ = t, Qr(s) = s2 and
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when y∗ = Asinω0t for some constants A and ω0, then Qr(s) = s2 +ω2
0, etc.

Similarly, a deterministic disturbance d can be modeled as

Qd(s)d = 0 (3.6.9)

for some known Qd(s), in cases where sufficient information about d is avail-
able. For example, if d is a sinusoidal signal with unknown amplitude and
phase but with known frequency ωd then it can be modeled by (3.6.9) with
Qd(s) = s2 + ω2

d.
The idea behind the internal model principle is that by including the

factor 1
Qr(s)Qd(s) in the compensator C(s), we can null the effect of y∗, d on

the tracking error e = y∗ − y. To see how this works, consider the feedback
system in Figure 3.2 with F (s) = 1, du = dn = 0 and with the reference
input y∗ and disturbance d satisfying (3.6.8) and (3.6.9) respectively for some
known polynomials Qr(s), Qd(s). Let us now replace C(s) in Figure 3.2 with

C̄(s) =
C(s)
Q(s)

, Q(s) = Qr(s)Qd(s) (3.6.10)

where C(s) in (3.6.10) is now chosen so that the poles of each element of
H(s) in (3.6.1) with C(s) replaced by C̄(s) are stable. From (3.6.6) with
du = dn = 0 and C replaced by C/Q, we have

e = y∗ − y =
1

1 + CG0
Q

y∗ − 1
1 + CG0

Q

d =
1

Q + CG0
Q(y∗ − d)

Because Q = QrQd nulls d, y∗, i.e., Q(s)d = 0, Q(s)y∗ = 0, it follows that

e =
1

Q + CG0
[0]

which together with the stability of 1/(Q + CG0) guaranteed by the choice
of C(s) imply that e(t) = y∗(t)− y(t) tends to zero exponentially fast.

The property of exact tracking guaranteed by the internal model principle
can also be derived from the values of the sensitivity and complementary
sensitivity functions S0, T0 at the frequencies of y∗, d. For example, if y∗ =
sinω0t and d = sinω1t, i.e., Q(s) = (s2 + ω2

0)(s
2 + ω2

1) we have

S0 =
Q

Q + CG0
, T0 =

CG0

Q + CG0
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and S0(jω0) = S0(jω1) = 0, T0(jω0) = T0(jω1) = 1.
A special case of the internal model principle is integral control where

Q(s) = s which is widely used in industrial control to null the effect of
constant set points and disturbances on the tracking error.

3.7 Problems

3.1 (a) Sketch the unit disk defined by the set
{
x

∣∣x ∈ R2, |x|p ≤ 1
}

for (i)
p = 1, (ii) p = 2, (iii) p = 3, and (iv) p = ∞.

(b) Calculate the L2 norm of the vector function

x(t) = [e−2t, e−t]>

by (i) using the | · |2-norm in R2 and (ii) using the | · |∞ norm in R2.

3.2 Let y = G(s)u and g(t) be the impulse response of G(s). Consider the induced
norm of the operator T defined as ‖T‖∞ = sup‖u‖∞=1

‖y‖∞
‖u‖∞ , where T : u ∈

L∞ 7→ y ∈ L∞. Show that ‖T‖∞ = ‖g‖1.

3.3 Take u(t) = f(t) where f(t), shown in the figure, is a sequence of pulses centered
at n with width 1

n3 and amplitude n, where n = 1, 2, . . . ,∞.

1 2 3 k

n

(n)f
k

1

2
1

1/8

1/27

(a) Show that u ∈ L1 but u 6∈ L2 and u 6∈ L∞.

(b) If y = G(s)u where G(s) = 1
s+1 and u = f , show that y ∈ L1

⋂L∞ and
|y(t)| → 0 as t →∞.

3.4 Consider the system depicted in the following figure:
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- -

?
¾¾

6

l

l

-

H2

H1Σ

Σ +

+

+

−
u1 e1 y1

u2e2y2

Let H1,H2: L∞e 7→ L∞e satisfy

‖(H1e1)t‖ ≤ γ1‖e1t‖+ β1

‖(H2e2)t‖ ≤ γ2‖e2t‖+
∫ t

0

e−α(t−τ)γ(τ)‖e2τ‖dτ + β2

for all t ≥ 0, where γ1 ≥ 0, γ2 ≥ 0, α > 0, β1, β2 are constants, γ(t) is a
nonnegative continuous function and ‖(·)t‖, ‖(·)‖ denote the L∞e,L∞ norm
respectively. Let ‖u1‖ ≤ c, ‖u2‖ ≤ c for some constant c ≥ 0, and γ1γ2 < 1
(small gain). Show that

(a) If γ ∈ L2, then e1, e2, y1, y2 ∈ L∞.
(b) If γ ∈ S(µ), then e1, e2, y1, y2 ∈ L∞ for any µ ∈ [0, µ∗), where µ∗ =

α2(1−γ1γ2)
2

2c0γ2
1

.

3.5 Consider the system described by the following equation:

ẋ = A(t)x + f(t, x) + u (3.7.1)

where f(t, x) satisfies

|f(t, x)| ≤ γ(t)|x|+ γ0(t)

for all x ∈ Rn, t ≥ 0 and f(t, 0) = 0, where γ(t) ≥ 0, γ0(t) are continuous
functions. If the equilibrium ye = 0 of ẏ = A(t)y is u.a.s and γ ∈ S(µ), show
that the following statements hold for some µ∗ > 0 and any µ ∈ [0, µ∗):

(a) u ∈ L∞ and γ0 ∈ S(ν) for any ν ≥ 0 implies x ∈ L∞
(b) u ≡ 0, γ0 ≡ 0 implies that the equilibrium xe = 0 of (3.7.1) is u.a.s in

the large
(c) u, γ0 ∈ L2 implies that x ∈ L∞ and limt→∞ x(t) = 0
(d) If u ≡ γ0 ≡ 0 then the solution x(t; t0, x0) of (3.7.1) satisfies

|x(t; t0, x0)| ≤ Ke−β(t−t0)|x(t0)| for t ≥ t0 ≥ 0

where β = α−c0µK > 0 for some constant c0 and K,α > 0 are constants
in the bound for the state transition matrix Φ(t, τ) of ẏ = A(t)y, i.e.,

‖Φ(t, τ)‖ ≤ Ke−α(t−τ), for t ≥ τ ≥ t0
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3.6 Consider the LTI system
ẋ = (A + εB)x

where ε > 0 is a scalar. Calculate ε∗ > 0 such that for all ε ∈ [0, ε∗), the
equilibrium state xe = 0 is e.s. in the large when

(a)

A =
[ −1 10

0 −2

]
, B =

[
1 0
2 5

]

(b)

A =
[

0 10
0 −1

]
, B =

[
5 −8
0 2

]

using (i) the Euclidean norm and (ii) the infinity norm.

3.7 Consider the system given by the following block diagram:

- nΣ - G(s)(1 + ∆(s)) -

¾F (s)

6

r +

−
u y

where F (s) is designed such that the closed-loop system is internally stable
when ∆(s) ≡ 0, i.e., G

1+FG , 1
1+FG are stable transfer functions. Derive condi-

tions on G,F using the small gain theorem such that the mapping T : r 7→ y
is bounded in L2 for any ∆(s) that satisfies ‖∆(s)‖∞ ≤ δ, where δ > 0 is a
given constant.

3.8 Consider the LTI system

ẋ = (A + B)x, x ∈ Rn

where Reλi(A) < 0 and B is an arbitrary constant matrix. Find a bound on
‖B‖ for xe = 0 to be e.s. in the large by

(a) Using an appropriate Lyapunov function

(b) Without the use of a Lyapunov function

3.9 Examine the stability of the equilibrium states of the following differential
equations:

(a) ẋ = sin t x

(b) ẋ = (3t sin t− t)x
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(c) ẋ = a(t)x, where a(t) is a continuous function with a(t) < 0 ∀t ≥ t0 ≥ 0

3.10 Use Lyapunov’s direct method to analyze the stability of the following sys-
tems:

(a)
{

ẋ1 = −x1 + x1x2

ẋ2 = −γx2
1

(b) ẍ + 2ẋ3 + 2x = 0

(c) ẋ =
[

1 −3
2 −5

]
x

(d)
{

ẋ1 = −2x1 + x1x2

ẋ2 = −x2
1 − σx2

3.11 Find the equilibrium state of the scalar differential equation

ẋ = −(x− 1)(x− 2)2

and examine their stability properties using

(a) Linearization

(b) Appropriate Lyapunov functions

3.12 Consider the system described by

ẋ1 = x2

ẋ2 = −x2 − (k0 + sin t)x1

where k0 > 0 is a constant. Use an appropriate Lyapunov function to inves-
tigate stability of the equilibrium states.

3.13 Check the PR and SPR properties of the systems given by the following
transfer functions:

(a) G1(s) = s+5
(s+1)(s+4)

(b) G2(s) = s
(s+2)2

(c) G3(s) = s−2
(s+3)(s+5)

(d) G4(s) = 1
s2+2s+2

3.14 Assume that the transfer function G1(s) and G2(s) are PR. Check whether
the following transfer functions are PR in general:

(a) Ga(s) = G1(s) + G2(s)

(b) Gm(s) = G1(s)G2(s)

(c) Gf (s) = G1(s)[1 + G2(s)]−1
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Repeat (a), (b), and (c) when G1(s) and G2(s) are SPR.

3.15 (a) Let

G1(s) =
1

s + 1
, L(s) =

s− 1
(s + 1)2

Find a bound3 on ε > 0 for the transfer function

Gε(s) = G1(s) + εL(s)

to be PR, SPR.
(b) Repeat (a) when

G1(s) =
s + 5

(s + 2)(s + 3)
, L(s) = − 1

s + 1

Comment on your results.

3.16 Consider the following feedback system:

u - lΣ - b(s)
a(s)

-

¾θ1
s+2

B
B

BBM

¾θ2
s+2

6

¾θ0

£
£
££±

+
+

+
+

y

where a(s) = s2 − 3s + 2 and b(s) = s + α. Choose the constants θ0, θ1, θ2

such that for α = 5, the transfer function

y(s)
u(s)

= Wm(s) =
1

s + 1

What if α = −5? Explain.

3.17 Consider the following system:

ė = Ae + Bφ sin t, e1 = C>e

φ̇ = −e1 sin t

where φ, e1 ∈ R1, e ∈ Rn, (A,B) is controllable and Wm(s) = C>(sI−A)−1B
is SPR. Use Lemma 3.5.3 to find an appropriate Lyapunov function to study
the stability properties of the system (i.e., of the equilibrium state φe =
0, ee = 0).

3Find an ε∗ > 0 such that for all ε ∈ [0, ε∗), Gε(s) is PR, SPR.



Chapter 4

On-Line Parameter
Estimation

4.1 Introduction

In Chapter 2, we discussed various types of model representations and pa-
rameterizations that describe the behavior of a wide class of dynamic sys-
tems. Given the structure of the model, the model response is determined
by the values of certain constants referred to as plant or model parameters.
In some applications these parameters may be measured or calculated using
the laws of physics, properties of materials, etc. In many other applications,
this is not possible, and the parameters have to be deduced by observing
the system’s response to certain inputs. If the parameters are fixed for all
time, their determination is easier, especially when the system is linear and
stable. In such a case, simple frequency or time domain techniques may
be used to deduce the unknown parameters by processing the measured re-
sponse data off-line. For this reason, these techniques are often referred to
as off-line parameter estimation techniques. In many applications, the struc-
ture of the model of the plant may be known, but its parameters may be
unknown and changing with time because of changes in operating conditions,
aging of equipment, etc., rendering off-line parameter estimation techniques
ineffective. The appropriate estimation schemes to use in this case are the
ones that provide frequent estimates of the parameters of the plant model
by properly processing the plant I/O data on-line. We refer to these scheme

144



4.1. INTRODUCTION 145

as on-line estimation schemes.
The purpose of this chapter is to present the design and analysis of a

wide class of schemes that can be used for on-line parameter estimation. The
essential idea behind on-line estimation is the comparison of the observed
system response y(t), with the output of a parameterized model ŷ(θ, t) whose
structure is the same as that of the plant model. The parameter vector θ(t)
is adjusted continuously so that ŷ(θ, t) approaches y(t) as t increases. Under
certain input conditions, ŷ(θ, t) being close to y(t) implies that θ(t) is close to
the unknown parameter vector θ∗ of the plant model. The on-line estimation
procedure, therefore, involves three steps: In the first step, an appropriate
parameterization of the plant model is selected. This is an important step
because some plant models are more convenient than others. The second
step

generating or updating θ(t). The adaptive law is usually a differential
equation whose state is θ(t) and is designed using stability considerations or
simple optimization techniques to minimize the difference between y(t) and
ŷ(θ, t) with respect to θ(t) at each time t. The third and final step is the
design of the plant input so that the properties of the adaptive law imply
that θ(t) approaches the unknown plant parameter vector θ∗ as t → ∞.
This step is more important in problems where the estimation of θ∗ is one of
the objectives and is treated separately in Chapter 5. In adaptive control,
where the convergence of θ(t) to θ∗ is usually not one of the objectives,
the first two steps are the most important ones. In Chapters 6 and 7, a
wide class of adaptive controllers are designed by combining the on-line
estimation schemes of this chapter with appropriate control laws. Unlike
the off-line estimation schemes, the on-line ones are designed to be used
with either stable or unstable plants. This is important in adaptive control
where stabilization of the unknown plant is one of the immediate objectives.

The chapter is organized as follows: We begin with simple examples
presented in Section 4.2, which we use to illustrate the basic ideas behind
the design and analysis of adaptive laws for on-line parameter estimation.
These examples involve plants that are stable and whose states are avail-
able for measurement. In Section 4.3, we extend the results of Section 4.2
to plants that may be unstable, and only part of the plant states is avail-
able for measurement. We develop a wide class of adaptive laws using a
Lyapunov design approach and simple optimization techniques based on the



146 CHAPTER 4. ON-LINE PARAMETER ESTIMATION

gradient method and least squares. The on-line estimation problem where
the unknown parameters are constrained to lie inside known convex sets is
discussed in Section 4.4. The estimation of parameters that appear in a spe-
cial bilinear form is a problem that often appears in model reference adaptive
control. It is treated in Section 4.5. In the adaptive laws of Sections 4.2 to
4.5, the parameter estimates are generated continuously with time. In Sec-
tion 4.6, we discuss a class of adaptive laws, referred to as hybrid adaptive
laws, where the parameter estimates are generated at finite intervals of time.
A summary of the adaptive laws developed is given in Section 4.7 where the
main equations of the adaptive laws and their properties are organized in ta-
bles. Section 4.8 contains most of the involved proofs dealing with parameter
convergence.

4.2 Simple Examples

In this section, we use simple examples to illustrate the derivation and prop-
erties of simple on-line parameter estimation schemes. The simplicity of
these examples allows the reader to understand the design methodologies
and stability issues in parameter estimation without having to deal with the
more complex differential equations that arise in the general case.

4.2.1 Scalar Example: One Unknown Parameter

Let us consider the following plant described by the algebraic equation

y(t) = θ∗u(t) (4.2.1)

where u ∈ L∞ is the scalar input, y(t) is the output, and θ∗ is an unknown
scalar. Assuming that u(t), y(t) are measured, it is desired to obtain an
estimate of θ∗ at each time t. If the measurements of y, u were noise free,
one could simply calculate θ(t), the estimate of θ∗, as

θ(t) =
y(t)
u(t)

(4.2.2)

whenever u(t) 6= 0. The division in (4.2.2), however, may not be desirable
because u(t) may assume values arbitrarily close to zero. Furthermore, the
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effect of noise on the measurement of u, y may lead to an erroneous estimate
of θ∗. The noise and computational error effects in (4.2.2) may be reduced
by using various other nonrecursive or off-line methods especially when θ∗

is a constant for all t.
In our case, we are interested in a recursive or on-line method to generate

θ(t). We are looking for a differential equation, which depends on signals
that are measured, whose solution is θ(t) and its equilibrium state is θe = θ∗.
The procedure for developing such a differential equation is given below.

Using θ(t) as the estimate of θ∗ at time t, we generate the estimated or
predicted value ŷ(t) of the output y(t) as

ŷ(t) = θ(t)u(t) (4.2.3)

The prediction or estimation error ε1, which reflects the parameter uncer-
tainty because θ(t) is different from θ∗, is formed as the difference between
ŷ and y, i.e.,

ε1 = y − ŷ = y − θu (4.2.4)

The dependence of ε1 on the parameter estimation error θ̃
4
= θ− θ∗ becomes

obvious if we use (4.2.1) to substitute for y in (4.2.4), i.e.,

ε1 = θ∗u− θu = −θ̃u (4.2.5)

The differential equation for generating θ(t) is now developed by minimizing
various cost criteria of ε1 with respect to θ using the gradient or Newton’s
method. Such criteria are discussed in great detail in Section 4.3. For this
example, we concentrate on the simple cost criterion

J(θ) =
ε21
2

=
(y − θu)2

2

which we minimize with respect to θ. For each time t, the function J(θ) is
convex over R1; therefore, any local minimum of J is also global and satisfies
∇J(θ) = 0. One can solve ∇J(θ) = −(y − θu)u = 0 for θ and obtain the
nonrecursive scheme (4.2.2) or use the gradient method (see Appendix B)
to form the recursive scheme

θ̇ = −γ∇J(θ) = γ(y − θu)u = γε1u, θ(0) = θ0 (4.2.6)
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Figure 4.1 Implementation of the scalar adaptive law (4.2.6).

where γ > 0 is a scaling constant, which we refer to as the adaptive gain.
In the literature, the differential equation (4.2.6) is referred to as the update
law or the adaptive law or the estimator, to name a few. In this book, we
refer to (4.2.6) as the adaptive law for updating θ(t) or estimating θ∗ on-line.

The implementation of the adaptive law (4.2.6) is shown in Figure 4.1.
The stability properties of (4.2.6) are analyzed by rewriting (4.2.6) in terms
of the parameter error θ̃ = θ − θ∗, i.e.,

˙̃
θ = θ̇ − θ̇∗ = γε1u− θ̇∗

Because ε1 = θ∗u− θu = −θ̃u and θ∗ is constant, i.e., θ̇∗ = 0, we have

˙̃
θ = −γu2θ̃, θ̃(0) = θ(0)− θ∗ (4.2.7)

We should emphasize that (4.2.7) is used only for analysis. It cannot be used
to generate θ(t) because given an initial estimate θ(0) of θ∗, the initial value
θ̃(0) = θ(0)− θ∗, which is required for implementing (4.2.7) is unknown due
to the unknown θ∗.

Let us analyze (4.2.7) by choosing the Lyapunov function

V (θ̃) =
θ̃2

2γ

The time derivative V̇ of V along the solution of (4.2.7) is given by

V̇ =
θ̃> ˙̃

θ

γ
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which after substitution of ˙̃
θ from (4.2.7) becomes

V̇ = −u2θ̃2 = −ε21 ≤ 0 (4.2.8)

which implies that the equilibrium θ̃e = 0 of (4.2.7) is u.s.
Because no further information about u(t) is assumed other than u ∈ L∞,

we cannot guarantee that V̇ < 0 (e.g., take u(t) = 0) and, therefore, cannot
establish that θ̃e = 0 is a.s. or e.s. We can, however, use the properties of
V, V̇ to establish convergence for the estimation error and other signals in
(4.2.6). For example, because V ≥ 0 is a nonincreasing function of time, the
limt→∞ V (θ̃(t)) = V∞ exists. Therefore, from (4.2.8) we have

∫ ∞

0
ε21(τ)dτ = −

∫ ∞

0
V̇ (τ)dτ = V0 − V∞

where V0 = V (θ̃(0)), which implies that ε1 ∈ L2. Now from (4.2.6) and
u ∈ L∞, we also have that θ̇ ∈ L∞

⋂L2. Because, as we have shown in
Chapter 3, a square integrable function may not have a limit, let alone tend
to zero with time, we cannot establish that ε1(t), θ̇(t) → 0 as t →∞ without
additional conditions. If, however, we assume that u̇ ∈ L∞, then it follows
that ε̇1 = − ˙̃

θu − θ̃u̇ ∈ L∞; therefore, from Lemma 3.2.5 we have ε1(t) → 0
as t →∞, which is implied by ε1 ∈ L2, ε̇1 ∈ L∞. This, in turn, leads to

lim
t→∞

˙̃
θ(t) = lim

t→∞ θ̇(t) = 0 (4.2.9)

The conclusion of this analysis is that for any u, u̇ ∈ L∞, the adaptive law
(4.2.6) guarantees that the estimated output ŷ(t) converges to the actual
output y(t) and the speed of adaptation (i.e., the rate of change of the
parameters θ̇) decreases with time and converges to zero asymptotically.

One important question to ask at this stage is whether θ(t) converges as
t →∞ and, if it does, is the limt→∞ θ(t) = θ∗?

A quick look at (4.2.9) may lead some readers to conclude that θ̇(t) → 0
as t → ∞ implies that θ(t) does converge to a constant. This conclusion is
obviously false because the function θ(t) = sin(ln(2+ t)) satisfies (4.2.9) but
has no limit. We have established, however, that V (θ̃(t)) = θ̃2

2γ converges to
V∞ as t →∞, i.e., limt→∞ θ̃2(t) = 2γV∞, which implies that θ̃(t) and, there-

fore, θ(t) does converge to a constant, i.e., limt→∞ θ(t) = ±√2γV∞ + θ∗ 4= θ̄.
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Hence the question which still remains unanswered is whether θ̄ = θ∗. It is
clear from (4.2.1) that for u(t) = 0, a valid member of the class of input sig-
nals considered, y(t) = 0 ∀t ≥ 0, which provides absolutely no information
about the unknown θ∗. It is, therefore, obvious that without additional con-
ditions on the input u(t), y(t) may not contain sufficient information about
θ∗ for the identification of θ∗ to be possible.

For this simple example, we can derive explicit conditions on u(t) that
guarantee parameter convergence by considering the closed-form solution of
(4.2.7), i.e.,

θ̃(t) = e−γ
∫ t

0
u2(τ)dτ θ̃(0) (4.2.10)

For inputs u(t) = 0 or u(t) = e−t, θ̃(t) does not tend to zero, whereas for
u2(t) = 1

1+t , θ̃(t) tends to zero asymptotically but not exponentially. A
necessary and sufficient condition for θ̃(t) to converge to zero exponentially
fast is that u(t) satisfies

∫ t+T0

t
u2(τ)dτ ≥ α0T0 (4.2.11)

∀t ≥ 0 and for some α0, T0 > 0 (see Problem 4.1). It is clear that u(t) = 1
satisfies (4.2.11), whereas u(t) = 0 or e−t or 1

1+t does not. The property of u

given by (4.2.11) is referred to as persistent excitation (PE) and is crucial in
many adaptive schemes where parameter convergence is one of the objectives.
The signal u, which satisfies (4.2.11), is referred to be persistently exciting
(PE). The PE property of signals is discussed in more detail in Section 4.3.

It is clear from (4.2.10), (4.2.11) that the rate of exponential convergence
of θ̃(t) to zero is proportional to the adaptive gain γ and the constant α0

in (4.2.11), referred to as the level of excitation. Increasing the value of γ

will speed up the convergence of θ(t) to θ∗. A large γ, however, may make
the differential equation (4.2.6) “stiff” and, therefore, more difficult to solve
numerically.

The same methodology as above may be used for the identification of an
n-dimensional vector θ∗ that satisfies the algebraic equation

y = θ∗>φ (4.2.12)

where y ∈ R1, φ ∈ Rn are bounded signals available for measurement. We
will deal with this general case in subsequent sections.
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4.2.2 First-Order Example: Two Unknowns

Consider the following first-order plant

ẋ = −ax + bu, x(0) = x0 (4.2.13)

where the parameters a and b are constant but unknown, and the input
u and state x are available for measurement. We assume that a > 0 and
u ∈ L∞ so that x ∈ L∞. The objective is to generate an adaptive law for
estimating a and b on-line by using the observed signals u(t) and x(t).

As in Section 4.2.1, the adaptive law for generating the estimates â and
b̂ of a and b, respectively, is to be driven by the estimation error

ε1 = x− x̂ (4.2.14)

where x̂ is the estimated value of x formed by using the estimates â and b̂.
The state x̂ is usually generated by an equation that has the same form as
the plant but with a and b replaced by â and b̂, respectively. For example,
considering the plant equation (4.2.13), we can generate x̂ from

˙̂x = −âx̂ + b̂u, x̂(0) = x̂0 (P)

Equation (P) is known as the parallel model configuration [123] and the
estimation method based on (P) as the output error method [123, 172]. The
plant equation, however, may be rewritten in various different forms giving
rise to different equations for generating x̂. For example, we can add and
subtract the term amx, where am > 0 is an arbitrary design constant, in
(4.2.13) and rewrite the plant equation as

ẋ = −amx + (am − a)x + bu

i.e.,

x =
1

s + am
[(am − a)x + bu] (4.2.15)

Furthermore, we can proceed and rewrite (4.2.15) as

x = θ∗>φ

where θ∗ = [b, am − a]>, φ =
[

1
s+am

u, 1
s+am

x
]>

, which is in the form of the
algebraic equation considered in Section 4.2.1. Therefore, instead of using
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(P), we may also generate x̂ from

˙̂x = −amx̂ + (am − â)x + b̂u

that is
x̂ = 1

s+am
[(am − â)x + b̂u] (SP)

by considering the parameterization of the plant given by (4.2.15). Equa-
tion (SP) is widely used for parameter estimation and is known as the series-
parallel model [123]. The estimation method based on (SP) is called the equa-
tion error method [123, 172]. Various other models that are a combination of
(P) and (SP) are generated [123] by considering different parameterizations
for the plant (4.2.13).

The estimation error ε1 = x− x̂ satisfies the differential equation

ε̇1 = −aε1 + ãx̂− b̃u (P1)
for model (P) and

ε̇1 = −amε1 + ãx− b̃u (SP1)
for model (SP) where

ã
4
= â− a, b̃

4
= b̂− b

are the parameter errors. Equations (P1) and (SP1) indicate how the param-
eter error affects the estimation error ε1. Because a, am > 0, zero parameter
error, i.e., ã = b̃ = 0, implies that ε1 converges to zero exponentially. Be-
cause ã, b̃ are unknown, ε1 is the only measured signal that we can monitor
in practice to check the success of estimation. We should emphasize, how-
ever, that ε1 → 0 does not imply that ã, b̃ → 0 unless some PE properties
are satisfied by x̂, x, u as we will demonstrate later on in this section. We
should also note that ε1 cannot be generated from (P1) and (SP1) because
ã and b̃ are unknown. Equations (P1) and (SP1) are, therefore, only used
for the purpose of analysis.

Let us now use the error equation (SP1) to derive the adaptive laws for
estimating a and b. We assume that the adaptive laws are of the form

˙̂a = f1(ε1, x̂, x, u), ˙̂
b = f2(ε1, x̂, x, u) (4.2.16)

where f1 and f2 are functions of measured signals, and are to be chosen so
that the equilibrium state

âe = a, b̂e = b, ε1e = 0 (4.2.17)
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of the third-order differential equation described by (SP1) (where x ∈ L∞
is treated as an independent function of time) and (4.2.16) is u.s., or, if
possible, u.a.s., or, even better, e.s.

We choose f1, f2 so that a certain function V (ε1, ã, b̃) and its time deriva-
tive V̇ along the solution of (SP1), (4.2.16) are such that V qualifies as a Lya-
punov function that satisfies some of the conditions given by Theorems 3.4.1
to 3.4.4 in Chapter 3. We start by considering the quadratic function

V (ε1, ã, b̃) =
1
2
(ε21 + ã2 + b̃2) (4.2.18)

which is positive definite, decrescent, and radially unbounded in R3. The
time derivative of V along any trajectory of (SP1), (4.2.16) is given by

V̇ = −amε21 + ãxε1 − b̃uε1 + ãf1 + b̃f2 (4.2.19)

and is evaluated by using the identities ˙̂a = ˙̃a, ˙̂
b = ˙̃

b, which hold because a

and b are assumed to be constant.
If we choose f1 = −ε1x, f2 = ε1u, we have

V̇ = −amε21 ≤ 0 (4.2.20)

and (4.2.16) becomes
˙̂a = −ε1x,

˙̂
b = ε1u (4.2.21)

where ε1 = x− x̂ and x̂ is generated by (SP).
Applying Theorem 3.4.1 to (4.2.18) and (4.2.20), we conclude that V

is a Lyapunov function for the system (SP1), (4.2.16) where x and u are
treated as independent bounded functions of time and the equilibrium given
by (4.2.17) is u.s. Furthermore, the trajectory ε1(t), â(t), b̂(t) is bounded for
all t ≥ 0. Because ε1 = x − x̂ and x ∈ L∞ we also have that x̂ ∈ L∞;
therefore, all signals in (SP1) and (4.2.21) are uniformly bounded. As in the
example given in Section 4.2.1, (4.2.18) and (4.2.20) imply that

lim
t→∞V (ε1(t), ã(t), b̃(t)) = V∞ < ∞

and, therefore,
∫ ∞

0
ε21(τ)dτ = − 1

am

∫ ∞

0
V̇ dτ =

1
am

(V0 − V∞)
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where V0 = V (ε1(0), ã(0), b̃(0)), i.e., ε1 ∈ L2. Because u, ã, b̃, x, ε1 ∈ L∞, it
follows from (SP1) that ε̇1 ∈ L∞, which, together with ε1 ∈ L2, implies that

ε1(t) → 0 as t →∞, which, in turn, implies that ˙̂a(t), ˙̂
b(t) → 0 as t →∞.

It is worth noting that ε1(t), ˙̂a(t), ˙̂
b(t) → 0 as t → ∞ do not imply that

ã and b̃ converge to any constant let alone to zero. As in the example of
Section 4.2.1, we can use (4.2.18) and (4.2.20) and establish that

lim
t→∞(ã2(t) + b̃2(t)) = 2V∞

which again does not imply that ã and b̃ have a limit, e.g., take

ã(t) =
√

2V∞ sin
√

1 + t, b̃(t) =
√

2V∞ cos
√

1 + t

The failure to establish parameter convergence may motivate the reader
to question the choice of the Lyapunov function given by (4.2.18) and of the
functions f1, f2 in (4.2.19). The reader may argue that perhaps for some
other choices of V and f1, f2, u.a.s could be established for the equilibrium
(4.2.17) that will automatically imply that ã, b̃ → 0 as t → ∞. Since given
a differential equation, there is no procedure for finding the appropriate
Lyapunov function to establish stability in general, this argument appears
to be quite valid. We can counteract this argument, however, by applying
simple intuition to the plant equation (4.2.13). In our analysis, we put no
restriction on the input signal u, apart from u ∈ L∞, and no assumption is
made about the initial state x0. For u = 0, an allowable input in our analysis,
and x0 = 0, no information can be extracted about the unknown parameters
a, b from the measurements of x(t) = 0, u(t) = 0, ∀t ≥ 0. Therefore, no
matter how intelligent an adaptive law is, parameter error convergence to
zero cannot be achieved when u = 0 ∀t ≥ 0. This simplistic explanation
demonstrates that additional conditions have to be imposed on the input
signal u to establish parameter error convergence to zero. Therefore, no
matter what V and f1, f2 we choose, we can not establish u.a.s. without
imposing conditions on the input u. These conditions are similar to those
imposed on the input u in Section 4.2.1, and will be discussed and analyzed
in Chapter 5.

In the adaptive law (4.2.21), the adaptive gains are set equal to 1. A
similar adaptive law with arbitrary adaptive gains γ1, γ2 > 0 is derived by
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considering

V (ε1, ã, b̃) =
1
2

(
ε21 +

ã2

γ1
+

b̃2

γ2

)

instead of (4.2.18). Following the same procedure as before we obtain

˙̂a = −γ1ε1x,
˙̂
b = γ2ε1u

where γ1, γ2 > 0 are chosen appropriately to slow down or speed up adapta-
tion.

Using (4.2.18) with model (P1) and following the same analysis as with
model (SP1), we obtain

˙̂a = −ε1x̂,
˙̂
b = ε1u (4.2.22)

and
V̇ = −aε21 ≤ 0

Hence, the same conclusions as with (4.2.21) are drawn for (4.2.22).
We should note that V̇ for (P1) depends on the unknown a, whereas for

(SP1) it depends on the known design scalar am. Another crucial difference
between model (P) and (SP) is their performance in the presence of noise,
which becomes clear after rewriting the adaptive law for â in (4.2.21), (4.2.22)
as

˙̂a = −(x− x̂)x̂ = x̂2 − xx̂ (P)

˙̂a = −(x− x̂)x = −x2 + xx̂ (SP)

If the measured plant state x is corrupted by some noise signal v, i.e., x is
replaced by x + v in the adaptive law, it is clear that for the model (SP),
˙̂a will depend on v2 and v, whereas for model (P) only on v. The effect of
noise (v2) may result in biased estimates in the case of model (SP), whereas
the quality of estimation will be less affected in the case of model (P). The
difference between the two models led some researchers to the development
of more complicated models that combine the good noise properties of the
parallel model (P) with the design flexibility of the series-parallel model (SP)
[47, 123].
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Simulations

We simulate the parallel and series-parallel estimators and examine the ef-
fects of the input signal u, the adaptive gain and noise disturbance on their
performance. For simplicity, we consider a first-order example y = b

s+au

with two unknown parameters a and b. Two adaptive estimators

˙̂a = −ε1x̂,
˙̂
b = ε1u

˙̂x = −âx̂ + b̂u, ε1 = x− x̂

and

˙̂a = −ε1x,
˙̂
b = ε1u

˙̂x = −amx̂ + (am − â)x + b̂u, ε1 = x− x̂

based on the parallel and series-parallel model, respectively, are simulated
with a = 2 and b = 1. The results are given in Figures 4.2 and Figure 4.3,
respectively. Plots (a) and (b) in Figure 4.2 and 4.3 give the time response
of the estimated parameters when the input u = sin 5t, and the adaptive
gain γ = 1 for (a) and γ = 5 for (b). Plots (c) in both figures give the results
of estimation for a step input, where persistent excitation and, therefore,
parameter convergence are not guaranteed. Plots (d) show the performance
of the estimator when the measurement x(t) is corrupted by d(t) = 0.1n(t),
where n(t) is a normally distributed white noise.

It is clear from Figures 4.2 (a,b) and Figure 4.3 (a,b) that the use of a
larger value of the adaptive gain γ led to a faster convergence of â and b̂

to their true values. The lack of parameter convergence to the true values
in Figure 4.2 (c), 4.3 (c) is due to the use of a non-PE input signal. As
expected, the parameter estimates are more biased in the case of the series-
parallel estimator shown in Figure 4.3 (d) than those of the parallel one
shown in Figure 4.2 (d).

4.2.3 Vector Case

Let us extend the example of Section 4.2.2 to the higher-order case where
the plant is described by the vector differential equation

ẋ = Apx + Bpu (4.2.23)
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Figure 4.2 Simulation results of the parallel estimator. (a) u = sin 5t, γ = 1, no
measurement noise; (b) u = sin 5t, γ = 5, no measurement noise; (c) u =unit
step function, γ = 1, no measurement noise; (d) u = sin 5t, γ = 1, output x is
corrupted by d(t) = 0.1n(t), where n(t) is a normally distributed white noise.

where the state x ∈ Rn and input u ∈ Rr are available for measurement,
Ap ∈ Rn×n, Bp ∈ Rn×r are unknown, Ap is stable, and u ∈ L∞. As in the
scalar case, we form the parallel model

˙̂x = Âpx̂ + B̂pu, x̂ ∈ Rn (P)

where Âp(t), B̂p(t) are the estimates of Ap, Bp at time t to be generated by
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Figure 4.3 Simulation results of the series-parallel estimator. (a) u = sin 5t,
γ = 1, no measurement noise; (b) u = sin 5t, γ = 5, no measurement noise;
(c) u =unit step function, γ = 1, no measurement noise; (d) u = sin 5t, γ = 1,
output x is corrupted by d(t) = 0.1n(t), where n(t) is the normally distributed
white noise.

an adaptive law, and x̂(t) is the estimate of the vector x(t). Similarly, by
considering the plant parameterization

ẋ = Amx + (Ap −Am)x + Bpu

where Am is an arbitrary stable matrix, we define the series-parallel model
as

˙̂x = Amx̂ + (Âp −Am)x + B̂pu (SP)
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The estimation error vector ε1 defined as

ε1
4
= x− x̂

satisfies

ε̇1 = Apε1 − Ãpx̂− B̃pu (P1)

for model (P) and

ε̇1 = Amε1 − Ãpx− B̃pu (SP1)

for model (SP), where Ãp
4
= Âp −Ap, B̃p

4
= B̂p −Bp.

Let us consider the parallel model design and use (P1) to derive the
adaptive law for estimating the elements of Ap, Bp. We assume that the
adaptive law has the general structure

˙̂
Ap = F1(ε1, x, x̂, u), ˙̂

Bp = F2(ε1, x, x̂, u) (4.2.24)

where F1 and F2 are functions of known signals that are to be chosen so that
the equilibrium

Âpe = Ap, B̂pe = Bp, ε1e = 0

of (P1), (4.2.24) has some desired stability properties. We start by consid-
ering the function

V (ε1, Ãp, B̃p) = ε>1 Pε1 + tr

(
Ã>p PÃp

γ1

)
+ tr

(
B̃>

p PB̃p

γ2

)
(4.2.25)

where tr(A) denotes the trace of a matrix A, γ1, γ2 > 0 are constant scalars,
and P = P> > 0 is chosen as the solution of the Lyapunov equation

PAp + A>p P = −I (4.2.26)

whose existence is guaranteed by the stability of Ap (see Theorem 3.4.10).
The time derivative V̇ of V along the trajectory of (P1), (4.2.24) is given by

V̇ = ε̇>1 Pε1 + ε>1 P ε̇1

+tr




˙̃A
>
p PÃp

γ1
+

Ã>p P ˙̃Ap

γ1


 + tr




˙̃B
>
p PB̃p

γ2
+

B̃>
p P ˙̃Bp

γ2
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which after substituting for ε̇1,
˙̃Ap,

˙̃Bp becomes

V̇ = ε>1 (PAp +A>p P )ε1−2ε>1 PÃpx̂−2ε>1 PB̃pu+tr

(
2
Ã>p PF1

γ1
+ 2

B̃>
p PF2

γ2

)

(4.2.27)
We use the following properties of trace to manipulate (4.2.27):

(i) tr(AB) = tr(BA)
(ii) tr(A + B) = tr(A) + tr(B) for any A,B ∈ Rn×n

(iii) tr(yx>) = x>y for any x, y ∈ Rn×1

We have
ε>1 PÃpx̂ = x̂>Ã>p Pε1 = tr(Ã>p Pε1x̂

>)

ε>1 PB̃pu = tr(B̃>
p Pε1u

>)

and, therefore,

V̇ = −ε>1 ε1 + 2tr

(
Ã>p PF1

γ1
− Ã>p Pε1x̂

> +
B̃pPF2

γ2
− B̃>

p Pε1u
>

)
(4.2.28)

The obvious choice for F1, F2 to make V̇ negative is

˙̂
Ap = F1 = γ1ε1x̂

>,
˙̂
Bp = F2 = γ2ε1u

> (4.2.29)

In the case of the series-parallel model, we choose

V (ε1, Ãp, B̃p) = ε>1 Pε1 + tr

(
Ã>p PÃp

γ1

)
+ tr

(
B̃>

p PB̃p

γ2

)
(4.2.30)

where P = P> > 0 is the solution of the Lyapunov equation

A>mP + PAm = −I (4.2.31)

By following the same procedure as in the case of the parallel model, we
obtain

˙̂
Ap = γ1ε1x

>,
˙̂
Bp = γ2ε1u

> (4.2.32)
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Remark 4.2.1 If instead of (4.2.30), we choose

V (ε1, Ãp, B̃p) = ε>1 Pε1 + tr
(
Ã>p Ãp

)
+ tr

(
B̃>

p B̃p

)
(4.2.33)

where P = P> > 0 satisfies (4.2.31), we obtain

˙̂
Ap = Pε1x

>,
˙̂
Bp = Pε1u

> (4.2.34)

In this case P is the adaptive gain matrix and is calculated using
(4.2.31). Because Am is a known stable matrix, the calculation of P

is possible. It should be noted that if we use the same procedure for
the parallel model, we will end up with an adaptive law that depends
on P that satisfies the Lyapunov equation (4.2.26) for Ap. Because
Ap is unknown, P cannot be calculated; therefore, the adaptive laws
corresponding to (4.2.34) for the parallel model are not implementable.

The time derivative V̇ of V in both the parallel and series-parallel esti-
mators satisfies

V̇ = −ε>1 ε1 ≤ 0

which implies that the equilibrium Âpe = Ap, B̂pe = Bp, ε1e = 0 of the respec-
tive equations is u.s. Using arguments similar to those used in Section 4.2.2
we establish that ε1 ∈ L2, ε̇1 ∈ L∞ and that

|ε1(t)| → 0, ‖ ˙̂
Ap(t)‖ → 0, ‖ ˙̂

Bp(t)‖ → 0 as t →∞
The convergence properties of Âp, B̂p to their true values Ap, Bp, respectively,
depend on the properties of the input u. As we will discuss in Chapter 5, if u

belongs to the class of sufficiently rich inputs, i.e., u has enough frequencies
to excite all the modes of the plant, then the vector [x>, u>]> is PE and
guarantees that Âp, B̂p converge to Ap, Bp, respectively, exponentially fast.

4.2.4 Remarks

(i) In this section we consider the design of on-line parameter estimators
for simple plants that are stable, whose states are accessible for mea-
surement and whose input u is bounded. Because no feedback is used
and the plant is not disturbed by any signal other than u, the stability
of the plant is not an issue. The main concern, therefore, is the stability
properties of the estimator or adaptive law that generates the on-line
estimates for the unknown plant parameters.
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(ii) For the examples considered, we are able to design on-line parameter es-
timation schemes that guarantee that the estimation error ε1 converges
to zero as t →∞, i.e., the predicted state x̂ approaches that of the plant
as t → ∞ and the estimated parameters change more and more slowly
as time increases. This result, however, is not sufficient to establish
parameter convergence to the true parameter values unless the input
signal u is sufficiently rich. To be sufficiently rich, u has to have enough
frequencies to excite all the modes of the plant.

(iii) The properties of the adaptive schemes developed in this section rely
on the stability of the plant and the boundedness of the plant input u.
Consequently, they may not be appropriate for use in connection with
control problems where u is the result of feedback and is, therefore, no
longer guaranteed to be bounded a priori . In the following sections, we
develop on-line parameter estimation schemes that do not rely on the
stability of the plant and the boundedness of the plant input.

4.3 Adaptive Laws with Normalization

In Section 4.2, we used several simple examples to illustrate the design of
various adaptive laws under the assumption that the full state of the plant
is available for measurement, the plant is stable, and the plant input is
bounded. In this section, we develop adaptive laws that do not require the
plant to be stable or the plant input to be bounded a priori. Such adaptive
laws are essential in adaptive control, to be considered in later chapters,
where the stability of the plant and the boundedness of the plant input are
properties to be proven and, therefore, cannot be assumed to hold a priori.

We begin with simple examples of plants whose inputs and states are not
restricted to be bounded and develop adaptive laws using various approaches.
These results are then generalized to a wider class of higher-order plants
whose output rather than the full state vector is available for measurement.

4.3.1 Scalar Example

Let us consider the simple plant given by the algebraic equation

y(t) = θ∗u(t) (4.3.1)
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where u and, therefore, y are piecewise continuous signals but not necessarily
bounded, and θ∗ is to be estimated by using the measurements of y and u.
As in Section 4.2.1, we can generate the estimate ŷ of y and the estimation
error ε1 as

ŷ = θu

ε1 = y − ŷ = y − θu

where θ(t) is the estimate of θ∗ at time t.
Because u and y are not guaranteed to be bounded, the minimization

problem

min
θ

J(θ) = min
θ

(y − θu)2

2
is ill posed and, therefore, the procedure of Section 4.2.1 where u, y ∈ L∞
does not extend to the case where u, y 6∈ L∞. This obstacle is avoided by
dividing each side of (4.3.1) with some function referred to as the normalizing
signal m > 0 to obtain

ȳ = θ∗ū (4.3.2)

where
ȳ =

y

m
, ū =

u

m

are the normalized values of y and u, respectively, and m2 = 1 + n2
s. The

signal ns is chosen so that u
m ∈ L∞. A straightforward choice for ns is

ns = u, i.e., m2 = 1 + u2.
Because ū, ȳ ∈ L∞, we can follow the procedure of Section 4.2.1 and

develop an adaptive law based on (4.3.2) rather than on (4.3.1) as follows:
The estimated value ˆ̄y of ȳ is generated as

ˆ̄y = θū

and the estimation error as

ε̄1 = ȳ − ˆ̄y = ȳ − θū

It is clear that ε̄1 = ε1
m = y−θu

m and ˆ̄y = ŷ/m. The adaptive law for θ is now
developed by solving the well-posed minimization problem

min
θ

J(θ) = min
θ

(ȳ − θū)2

2
= min

θ

(y − θu)2

2m2
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Using the gradient method we obtain

θ̇ = γε̄1ū, γ > 0 (4.3.3)

or in terms of the unnormalized signals

θ̇ = γ
ε1u

m2
(4.3.4)

where m may be chosen as m2 = 1 + u2.
For clarity of presentation, we rewrite (4.3.3) and (4.3.4) as

θ̇ = γεu (4.3.5)

where
ε =

ε1
m2

We refer to ε as the normalized estimation error. This notation enables us
to unify results based on different approaches and is adopted throughout the
book.

Let us now analyze (4.3.5) by rewriting it in terms of the parameter error
θ̃ = θ − θ∗. Using ˙̃

θ = θ̇ and ε = ε1/m2 = − θ̃u
m2 = − θ̃ū

m , we have

˙̃
θ = −γū2θ̃ (4.3.6)

We propose the Lyapunov function

V (θ̃) =
θ̃2

2γ

whose time derivative along the solution of (4.3.6) is given by

V̇ = −θ̃2ū2 = −ε2m2 ≤ 0

Hence, θ̃, θ ∈ L∞ and εm ∈ L2. Because θ̃, ū ∈ L∞, it follows from ε = −θ̃ ū
m

that ε, εm ∈ L∞. If we now rewrite (4.3.5) as θ̇ = γεmū, it follows from
εm ∈ L∞

⋂L2 and ū ∈ L∞ that θ̇ ∈ L∞
⋂L2. Since d

dtεm = − ˙̃
θū − θ̃ ˙̄u

and ˙̃
θ, θ̃, ū ∈ L∞, it follows that for ˙̄u ∈ L∞ we have d

dt(εm) ∈ L∞, which,
together with εm ∈ L2, implies that εm → 0 as t → ∞. This, in turn,
implies that ˙̃

θ → 0 as t →∞.
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The significance of this example is that even in the case of unbounded y, u

we are able to develop an adaptive law that guarantees bounded parameter
estimates and a speed of adaptation that is bounded in an L2 and L∞ sense
(i.e., θ̇ ∈ L∞

⋂L2).
When ns = 0, i.e., m = 1 the adaptive law (4.3.5) becomes the unnor-

malized one considered in Section 4.2. It is obvious that for m = 1, in
(4.3.5), i.e., ε = ε1, we can still establish parameter boundedness, but we
can not guarantee boundedness for θ̇ in an Lp sense unless u ∈ L∞. As
we will demonstrate in Chapter 6, the property that θ̇ ∈ L2 is crucial for
stability when adaptive laws of the form (4.3.5) are used with control laws
based on the certainty equivalence principle to stabilize unknown plants.

4.3.2 First-Order Example

Let us now consider the same plant (4.2.15) given in Section 4.2.2, i.e.,

x =
1

s + am
[(am − a)x + u] (4.3.7)

where for simplicity we assume that b = 1 is known, u is piecewise continuous
but not necessarily bounded, and a may be positive or negative. Unlike the
example in Section 4.2.2, we make no assumptions about the boundedness of
x and u. Our objective is to develop an adaptive law for estimating a on-line
using the measurements of x, u. If we adopt the approach of the example in
Section 4.2.2, we will have

x̂ =
1

s + am
[(am − â)x + u], ε1 = x− x̂ (4.3.8)

and
˙̂a = −ε1x. (4.3.9)

Let us now analyze (4.3.8) and (4.3.9) without using any assumption about
the boundedness of x, u. We consider the estimation error equation

ε̇1 = −amε1 + ãx (4.3.10)

where ã
4
= â− a and propose the same function

V =
ε21
2

+
ã2

2
(4.3.11)
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as in Section 4.2.2. The time derivative of V along (4.3.9) and (4.3.10) is
given by

V̇ = −amε21 ≤ 0 (4.3.12)

Because x is not necessarily bounded, it cannot be treated as an independent
bounded function of time in (4.3.10) and, therefore, (4.3.10) cannot be de-
coupled from (4.3.8). Consequently, (4.3.8) to (4.3.10) have to be considered
and analyzed together in R3, the space of ε1, ã, x̂. The chosen function V

in (4.3.11) is only positive semidefinite in R3, which implies that V is not a
Lyapunov function; therefore, Theorems 3.4.1 to 3.4.4 cannot be applied. V

is, therefore, a Lyapunov-like function, and the properties of V , V̇ allow us
to draw some conclusions about the behavior of the solution ε1(t), ã(t) with-
out having to apply the Lyapunov Theorems 3.4.1 to 3.4.4. From V ≥ 0 and
V̇ = −amε21 ≤ 0 we conclude that V ∈ L∞, which implies that ε1, ã ∈ L∞,
and ε1 ∈ L2. Without assuming x ∈ L∞, however, we cannot establish any
bound for ˙̃a in an Lp sense.

As in Section 4.3.1, let us attempt to use normalization and modify
(4.3.9) to achieve bounded speed of adaptation in some sense. The use of
normalization is not straightforward in this case because of the dynamics
introduced by the transfer function 1

s+am
, i.e., dividing each side of (4.3.7)

by m may not help because

x

m
6= 1

s + am

[
(am − a)

x

m
+

u

m

]

For this case, we propose the error signal

ε = x− x̂− 1
s + am

εn2
s =

1
s + am

(ãx− εn2
s) (4.3.13)

i.e.,
ε̇ = −amε + ãx− εn2

s

where ns is a normalizing signal to be designed.
Let us now use the error equation (4.3.13) to develop an adaptive law for

â. We consider the Lyapunov-like function

V =
ε2

2
+

ã2

2
(4.3.14)



4.3. ADAPTIVE LAWS WITH NORMALIZATION 167

whose time derivative along the solution of (4.3.13) is given by

V̇ = −amε2 − ε2n2
s + ãεx + ã ˙̃a

Choosing
˙̃a = ˙̂a = −εx (4.3.15)

we have
V̇ = −amε2 − ε2n2

s ≤ 0

which together with (4.3.14) imply V, ε, ã ∈ L∞ and ε, εns ∈ L2. If we now
write (4.3.15) as

˙̃a = −εm
x

m

where m2 = 1 + n2
s and choose ns so that x

m ∈ L∞, then εm ∈ L2 (because
ε, εns ∈ L2) implies that ˙̃a ∈ L2. A straightforward choice for ns is ns = x,
i.e., m2 = 1 + x2.

The effect of ns can be roughly seen by rewriting (4.3.13) as

ε̇ = −amε− εn2
s + ãx (4.3.16)

and solving for the “quasi” steady-state response

εs =
ãx

am + n2
s

(4.3.17)

obtained by setting ε̇ ≈ 0 in (4.3.16) and solving for ε. Obviously, for
n2

s = x2, large εs implies large ã independent of the boundedness of x, which,
in turn, implies that large εs carries information about the parameter error
ã even when x 6∈ L∞. This indicates that ns may be used to normalize the
effect of the possible unbounded signal x and is, therefore, referred to as
the normalizing signal. Because of the similarity of εs with the normalized
estimation error defined in (4.3.5), we refer to ε in (4.3.13), (4.3.16) as the
normalized estimation error too.

Remark 4.3.1 The normalizing term εn2
s in (4.3.16) is similar to the non-

linear “damping” term used in the control of nonlinear systems [99].
It makes V̇ more negative by introducing the negative term −ε2n2

s in
the expression for V̇ and helps establish that εns ∈ L2. Because ˙̂a is
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Figure 4.4 Effect of normalization on the convergence and performance of
the adaptive law (4.3.15).

bounded from above by ε
√

n2
s + 1 = εm and εm ∈ L2, we can con-

clude that ˙̂a ∈ L2, which is a desired property of the adaptive law.
Note, however, that ˙̂a ∈ L2 does not imply that ˙̂a ∈ L∞. In contrast
to the example in Section 4.3.1, we have not been able to establish
that ˙̂a ∈ L∞. As we will show in Chapter 6 and 7, the L2 property
of the derivative of the estimated parameters is sufficient to establish
stability in the adaptive control case.

Simulations

Let us simulate the effect of normalization on the convergence and perfor-
mance of the adaptive law (4.3.15) when a = 0 is unknown, u = sin t, and
am = 2. We use n2

s = αx2 and consider different values of α ≥ 0. The
simulation results are shown in Figure 4.4. It is clear that large values of α

lead to a large normalizing signal that slows down the speed of convergence.
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4.3.3 General Plant

Let us now consider the SISO plant

ẋ = Ax + Bu, x(0) = x0

y = C>x
(4.3.18)

where x ∈ Rn and only y, u are available for measurement. Equation (4.3.18)
may also be written as

y = C>(sI −A)−1Bu + C>(sI −A)−1x0

or as

y =
Z(s)
R(s)

u +
C>adj(sI −A)x0

R(s)
(4.3.19)

where Z(s), R(s) are in the form

Z(s) = bn−1s
n−1 + bn−2s

n−2 + · · ·+ b1s + b0

R(s) = sn + an−1s
n−1 + · · ·+ a1s + a0

The constants ai, bi for i = 0, 1, . . . , n − 1 are the plant parameters. A
convenient parameterization of the plant that allows us to extend the results
of the previous sections to this general case is the one where the unknown
parameters are separated from signals and expressed in the form of a linear
equation. Several such parameterizations have already been explored and
presented in Chapter 2. We summarize them here and refer to Chapter 2
for the details of their derivation.

Let
θ∗ = [bn−1, bn−2, . . . , b1, b0, an−1, an−2, . . . , a1, a0]>

be the vector with the unknown plant parameters. The vector θ∗ is of di-
mension 2n. If some of the coefficients of Z(s) are zero and known, i.e.,
Z(s) is of degree m < n− 1 where m is known, the dimension of θ∗ may be
reduced. Following the results of Chapter 2, the plant (4.3.19) may take any
one of the following parameterizations:

z = θ∗>φ + η0 (4.3.20)

y = θ∗>λ φ + η0 (4.3.21)
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y = W (s)θ∗>λ ψ + η0 (4.3.22)

where

z = W1(s)y, φ = H(s)

[
u
y

]
, ψ = H1(s)

[
u
y

]
, η0 = c>0 eΛctB0x0

θ∗λ = θ∗ − bλ

W1(s),H(s),H1(s) are some known proper transfer function matrices with
stable poles, bλ = [0, λ>]> is a known vector, and Λc is a stable matrix which
makes η0 to be an exponentially decaying to zero term that is due to non-
zero initial conditions. The transfer function W (s) is a known strictly proper
transfer function with relative degree 1, stable poles, and stable zeros.

Instead of dealing with each parametric model separately, we consider
the general model

z = W (s)θ∗>ψ + η0 (4.3.23)

where W (s) is a proper transfer function with stable poles, z ∈ R1, ψ ∈ R2n

are signal vectors available for measurement and η0 = c>0 eΛctB0x0. Initially
we will assume that η0 = 0, i.e.,

z = W (s)θ∗>ψ (4.3.24)

and use (4.3.24) to develop adaptive laws for estimating θ∗ on-line. The effect
of η0 and, therefore, of the initial conditions will be treated in Section 4.3.7.

Because θ∗ is a constant vector, going from form (4.3.23) to form (4.3.20)
is trivial, i.e., rewrite (4.3.23) as z = θ∗>W (s)ψ + η0 and define φ = W (s)ψ.
As illustrated in Chapter 2, the parametric model (4.3.24) may also be a
parameterization of plants other than the LTI one given by (4.3.18). What
is crucial about (4.3.24) is that the unknown vector θ∗ appears linearly in
an equation where all other signals and parameters are known exactly. For
this reason we will refer to (4.3.24) as the linear parametric model. In the
literature, (3.4.24) has also been referred to as the linear regression model.

In the following section we use different techniques to develop adaptive
laws for estimating θ∗ on-line by assuming that W (s) is a known, proper
transfer function with stable poles, and z, ψ are available for measurement.
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4.3.4 SPR-Lyapunov Design Approach

This approach dominated the literature of continuous adaptive schemes [48,
149, 150, 153, 172, 178, 187]. It involves the development of a differential
equation that relates the estimation or normalized estimation error with
the parameter error through an SPR transfer function. Once in this form
the KYP or the MKY Lemma is used to choose an appropriate Lyapunov
function V whose time derivative V̇ is made nonpositive, i.e., V̇ ≤ 0 by
properly choosing the differential equation of the adaptive law.

The development of such an error SPR equation had been a challeng-
ing problem in the early days of adaptive control [48, 150, 153, 178]. The
efforts in those days were concentrated on finding the appropriate transfor-
mation or generating the appropriate signals that allow the expression of the
estimation/parameter error equation in the desired form.

In this section we use the SPR-Lyapunov design approach to design adap-
tive laws for estimating θ∗ in the parametric model (4.3.24). The connection
of the parametric model (4.3.24) with the adaptive control problem is dis-
cussed in later chapters. By treating parameter estimation independently
of the control design, we manage to separate the complexity of the estima-
tion part from that of the control part. We believe this approach simplifies
the design and analysis of adaptive control schemes, to be discussed in later
chapters, and helps clarify some of the earlier approaches that appear tricky
and complicated to the nonspecialist.

Let us start with the linear parametric model

z = W (s)θ∗>ψ (4.3.25)

Because θ∗ is a constant vector, we can rewrite (4.3.25) in the form

z = W (s)L(s)θ∗>φ (4.3.26)

where
φ = L−1(s)ψ

and L(s) is chosen so that L−1(s) is a proper stable transfer function and
W (s)L(s) is a proper SPR transfer function.

Remark 4.3.2 For some W (s) it is possible that no L(s) exists such that
W (s)L(s) is proper and SPR. In such cases, (4.3.25) could be prop-
erly manipulated and put in the form of (4.3.26). For example, when
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W (s) = s−1
s+2 , no L(s) can be found to make W (s)L(s) SPR. In this

case, we write (4.3.25) as z̄ = s+1
(s+2)(s+3)θ

∗>φ where φ = s−1
s+1ψ and

z̄ = 1
s+3z. The new W (s) in this case is W (s) = s+1

(s+2)(s+3) and a wide
class of L(s) can be found so that WL is SPR.

The significance of the SPR property of W (s)L(s) is explained as we
proceed with the design of the adaptive law.

Let θ(t) be the estimate of θ∗ at time t. Then the estimate ẑ of z at time
t is constructed as

ẑ = W (s)L(s)θ>φ (4.3.27)

As with the examples in the previous section, the estimation error ε1 is
generated as

ε1 = z − ẑ

and the normalized estimation error as

ε = z − ẑ −W (s)L(s)εn2
s = ε1 −W (s)L(s)εn2

s (4.3.28)

where ns is the normalizing signal which we design to satisfy

φ

m
∈ L∞, m2 = 1 + n2

s (A1)

Typical choices for ns that satisfy (A1) are n2
s = φ>φ, n2

s = φ>Pφ for
any P = P> > 0, etc. When φ ∈ L∞, (A1) is satisfied with m = 1, i.e.,
ns = 0 in which case ε = ε1.

We examine the properties of ε by expressing (4.3.28) in terms of the

parameter error θ̃
4
= θ − θ∗, i.e., substituting for z, ẑ in (4.3.28) we obtain

ε = WL(−θ̃>φ− εn2
s) (4.3.29)

For simplicity, let us assume that L(s) is chosen so that WL is strictly proper
and consider the following state space representation of (4.3.29):

ė = Ace + Bc(−θ̃>φ− εn2
s)

ε = C>
c e

(4.3.30)

where Ac, Bc, and Cc are the matrices associated with a state space repre-
sentation that has a transfer function W (s)L(s) = C>

c (sI −Ac)−1Bc.
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The error equation (4.3.30) relates ε with the parameter error θ̃ and is
used to construct an appropriate Lyapunov type function for designing the
adaptive law of θ. Before we proceed with such a design, let us examine
(4.3.30) more closely by introducing the following remark.

Remark 4.3.3 The normalized estimation error ε and the parameters Ac,
Bc, and Cc in (4.3.30) can be calculated from (4.3.28) and the knowl-
edge of WL, respectively. However, the state error e cannot be mea-
sured or generated because of the unknown input θ̃>φ.

Let us now consider the following Lyapunov-like function for the differ-
ential equation (4.3.30):

V (θ̃, e) =
e>Pce

2
+

θ̃>Γ−1θ̃

2
(4.3.31)

where Γ = Γ> > 0 is a constant matrix and Pc = P>
c > 0 satisfies the

algebraic equations

PcAc + A>c Pc = −qq> − νLc

PcBc = Cc
(4.3.32)

for some vector q, matrix Lc = L>c > 0 and a small constant ν > 0. Equation
(4.3.32) is guaranteed by the SPR property of W (s)L(s) = C>

c (sI−Ac)−1Bc

and the KYL Lemma if (Ac, Bc, Cc) is minimal or the MKY Lemma if
(Ac, Bc, Cc) is nonminimal.

Remark 4.3.4 Because the signal vector φ in (4.3.30) is arbitrary and could
easily be the state of another differential equation, the function (4.3.31)
is not guaranteed to be positive definite in a space that includes φ.
Hence, V is a Lyapunov-like function.

The time derivative V̇ along the solution of (4.3.30) is given by

V̇ (θ̃, e) = −1
2
e>qq>e− ν

2
e>Lce + e>PcBc[−θ̃>φ− εn2

s] + θ̃>Γ−1 ˙̃
θ (4.3.33)

We now need to choose ˙̃
θ = θ̇ as a function of signals that can be measured

so that the indefinite terms in V̇ are canceled out. Because e is not available
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for measurement, θ̇ cannot depend on e explicitly. Therefore, at first glance,
it seems that the indefinite term −e>PcBcθ̃

>φ = −θ̃>φe>PcBc cannot be
cancelled because the choice θ̇ = ˙̃

θ = Γφe>PcBc is not acceptable due to the
presence of the unknown signal e.

Here, however, is where the SPR property of WL becomes handy. We
know from (4.3.32) that PcBc = Cc which implies that e>PcBc = e>Cc = ε.
Therefore, (4.3.33) can be written as

V̇ (θ̃, e) = −1
2
e>qq>e− ν

2
e>Lce− εθ̃>φ− ε2n2

s + θ̃>Γ−1 ˙̃
θ (4.3.34)

The choice for ˙̃
θ = θ̇ to make V̇ ≤ 0 is now obvious, i.e., for

θ̇ = ˙̃
θ = Γεφ (4.3.35)

we have
V̇ (θ̃, e) = −1

2
e>qq>e− ν

2
e>Lce− ε2n2

s ≤ 0 (4.3.36)

which together with (4.3.31) implies that V, e, ε, θ, θ̃ ∈ L∞ and that

lim
t→∞V (θ̃(t), e(t)) = V∞ < ∞

Furthermore, it follows from (4.3.36) that
∫ ∞

0
ε2n2

sdτ +
ν

2

∫ ∞

0
e>Lcedτ ≤ V (θ̃(0), e(0))− V∞ (4.3.37)

Because λmin(Lc)|e|2 ≤ e>Lce and V (θ̃(0), e(0)) is finite for any finite initial
condition, (4.3.37) implies that εns, e ∈ L2 and therefore ε = C>

c e ∈ L2.
From the adaptive law (4.3.35), we have

|θ̇| ≤ ‖Γ‖|εm| |φ|
m

where m2 = 1 + n2
s. Since ε2m2 = ε2 + ε2n2

s and ε, εns ∈ L2 we have that
εm ∈ L2, which together with |φ|

m ∈ L∞ implies that θ̇ = ˙̃
θ ∈ L2.

We summarize the properties of (4.3.35) by the following theorem.

Theorem 4.3.1 The adaptive law (4.3.35) guarantees that
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Figure 4.5 Block diagram for implementing adaptive algorithm (4.3.35)
with normalized estimation error.

(i) θ, ε ∈ L∞
(ii) ε, εns, θ̇ ∈ L2

independent of the boundedness properties of φ.

Remark 4.3.5 Conditions (i) and (ii) of Theorem 4.3.1 specify the quality
of estimation guaranteed by the adaptive law (4.3.35). In Chapters 6
and 7, we will combine (4.3.35) with appropriate control laws to form
adaptive control schemes. The stability properties of these schemes
depend on the properties (i) and (ii) of the adaptive law.

Remark 4.3.6 The adaptive law (4.3.35) using the normalized estimation
error generated by (4.3.28) can be implemented using the block di-
agram shown in Figure 4.5. When W (s)L(s) = 1, the normalized
estimation error becomes ε = ε1/(1 + n2

s) with ε1 = z− ẑ, which is the
same normalization used in the gradient algorithm. This result can be
obtained using simple block diagram transformation, as illustrated in
Figure 4.6.

Remark 4.3.7 The normalizing effect of the signal ns can be explained
by setting ė = 0 in (4.3.30) and solving for the “quasi” steady-state
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Figure 4.6 Two equivalent block diagrams for generating the normalized
estimation error when W (s)L(s) = 1.

response εss of ε, i.e.,

εss =
α(−θ̃>φ)
1 + αn2

s

=
ε1ss

1 + αn2
s

(4.3.38)

where α = −C>
c A−1

c Bc is positive, i.e., α > 0, because of the SPR
property of WL and ε1ss is the “quasi” steady state response of ε1.
Because of ns, εss cannot become unbounded as a result of a possibly
unbounded signal φ. Large εss implies that θ̃ is large; therefore, large
ε carries information about θ̃, which is less affected by φ.

Remark 4.3.8 The normalizing signal ns may be chosen as n2
s = φ>φ or

as n2
s = φ>P (t)φ where P (t) = P>(t) > 0 has continuous bounded

elements. In general, if we set ns = 0 we cannot establish that θ̇ ∈ L2

which, as we show in later chapters, is a crucial property for estab-
lishing stability in the adaptive control case. In some special cases, we
can afford to set ns = 0 and still establish that θ̇ ∈ L2. For example,
if φ ∈ L∞ or if θ, ε ∈ L∞ implies that φ ∈ L∞, then it follows from
(4.3.35) that ε ∈ L2 ⇒ θ̇ ∈ L2.

When n2
s = 0, i.e., m = 1, we refer to (4.3.35) as the unnormalized

adaptive law. In this case ε = ε1 leading to the type of adaptive
laws considered in Section 4.2. In later chapters, we show how to use
both the normalized and unnormalized adaptive laws in the design of
adaptive control schemes.

Another desired property of the adaptive law (4.3.35) is the convergence
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of θ(t) to the unknown vector θ∗. Such a property is achieved for a special
class of vector signals φ described by the following definition:

Definition 4.3.1 (Persistence of Excitation (PE)) A piecewise contin-
uous signal vector φ : R+ 7→ Rn is PE in Rn with a level of excitation
α0 > 0 if there exist constants α1, T0 > 0 such that

α1I ≥ 1
T0

∫ t+T0

t
φ(τ)φ>(τ)dτ ≥ α0I, ∀t ≥ 0 (4.3.39)

Although the matrix φ(τ)φ>(τ) is singular for each τ , (4.3.39) requires that
φ(t) varies in such a way with time that the integral of the matrix φ(τ)φ>(τ)
is uniformly positive definite over any time interval [t, t + T0].

If we express (4.3.39) in the scalar form, i.e.,

α1 ≥ 1
T0

∫ t+T0

t
(q>φ(τ))2dτ ≥ α0, ∀t ≥ 0 (4.3.40)

where q is any constant vector in Rn with |q| = 1, then the condition can
be interpreted as a condition on the energy of φ in all directions. The
properties of PE signals as well as various other equivalent definitions and
interpretations are given in the literature [1, 12, 22, 24, 52, 75, 127, 141, 171,
172, 201, 242].

Corollary 4.3.1 If ns, φ, φ̇ ∈ L∞ and φ is PE, then (4.3.35) guarantees
that θ(t) → θ∗ exponentially fast.

The proof of Corollary 4.3.1 is long and is given in Section 4.8.

Corollary 4.3.1 is important in the case where parameter convergence is
one of the primary objectives of the adaptive system. We use Corollary 4.3.1
in Chapter 5 to establish parameter convergence in parameter identifiers and
adaptive observers for stable plants.

The condition that φ̇ appears only in the case of the adaptive laws based
on the SPR-Lyapunov approach with W (s)L(s) strictly proper. It is a con-
dition in Lemma 4.8.3 (iii) that is used in the proof of Corollary 4.3.1 in
Section 4.8.

The results of Theorem 4.3.1 are also valid when W (s)L(s) is biproper
(see Problem 4.4). In fact if W (s) is minimum phase, one may choose L(s) =
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W−1(s) leading to W (s)L(s) = 1. For WL = 1, (4.3.28), (4.3.29) become

ε =
z − ẑ

m2
= − θ̃>φ

m2

where m2 = 1+n2
s. In this case we do not need to employ the KYP or MKY

Lemma because the Lyapunov-like function

V (θ̃) =
θ̃>Γ−1θ̃

2

leads to
V̇ = −ε2m2

by choosing
θ̇ = Γεφ (4.3.41)

The same adaptive law as (4.3.41) can be developed by using the gradient
method to minimize a certain cost function of ε with respect to θ. We discuss
this method in the next section.

Example 4.3.1 Let us consider the following signal

y = A sin(ωt + ϕ)

that is broadcasted with a known frequency ω but an unknown phase ϕ and un-
known amplitude A. The signal y is observed through a device with transfer function
W (s) that is designed to attenuate any possible noise present in the measurements
of y, i.e.,

z = W (s)y = W (s)A sin(ωt + ϕ) (4.3.42)

For simplicity let us assume that W (s) is an SPR transfer function. Our objective
is to use the knowledge of the frequency ω and the measurements of z to estimate
A,ϕ. Because A,ϕ may assume different constant values at different times we would
like to use the results of this section and generate an on-line estimation scheme that
provides continuous estimates for A,ϕ. The first step in our approach is to transform
(4.3.42) in the form of the linear parametric model (4.3.24). This is done by using
the identity

A sin(ωt + ϕ) = A1 sin ωt + A2 cos ωt

where
A1 = A cosϕ, A2 = A sin ϕ (4.3.43)

to express (4.3.42) in the form

z = W (s)θ∗>φ
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where θ∗ = [A1, A2]> and φ = [sin ωt, cosωt]>.
From the estimate of θ∗, i.e., A1, A2, we can calculate the estimate of A,ϕ by

using the relationship (4.3.43). Using the results of this section the estimate θ(t) of
θ∗ at each time t is given by

θ̇ = Γεφ

ε = z − ẑ −W (s)εn2
s, ẑ = W (s)θ>φ, n2

s = αφ>φ

where θ = [Â1, Â2]> and Â1, Â2 is the estimate of A1, A2, respectively. Since
φ ∈ L∞, the normalizing signal may be taken to be equal to zero, i.e., α = 0. The
adaptive gain Γ may be chosen as Γ = diag(γ) for some γ > 0, leading to

˙̂
A1 = γε sin ωt,

˙̂
A2 = γε cos ωt (4.3.44)

The above adaptive law guarantees that Â1, Â2, ε ∈ L∞ and ε,
˙̂
A1,

˙̂
A2 ∈ L2. Since

φ ∈ L∞ we also have that ˙̂
A1,

˙̂
A2 ∈ L∞. As we mentioned earlier the convergence

of Â1, Â2 to A1, A2 respectively is guaranteed provided φ is PE. We check the PE
property of φ by using (4.3.39). We have

1
T0

∫ t+T0

t

φ(τ)φ>(τ)dτ =
1
T0

S(t, T0)

where

S(t, T0)
4
=




T0

2
− sin 2ω(t + T0)− sin 2ωt

4ω
−cos 2ω(t + T0)− cos 2ωt

4ω

−cos 2ω(t + T0)− cos 2ωt

4ω

T0

2
+

sin 2ω(t + T0)− sin 2ωt

4ω




For T0 = 2π
ω , we have

1
T0

∫ t+T0

t

φ(τ)φ>(τ)dτ =
[

π
ω 0
0 π

ω

]

Hence, the PE condition (4.3.39) is satisfied with T0 = 2π/ω, 0 < α0 ≤ π/ω, α1 ≥
π
ω ; therefore, φ is PE, which implies that Â1, Â2 converge to A1, A2 exponentially
fast.

Using (4.3.43), the estimate Â, ϕ̂ of A,ϕ, respectively, is calculated as follows:

Â(t) =
√

Â2
1(t) + Â2

2(t), ϕ̂ = cos−1

(
Â1(t)
Â(t)

)
(4.3.45)

The calculation of ϕ̂ at each time t is possible provided Â(t) 6= 0. This implies
that Â1, Â2 should not go through zero at the same time, which is something that
cannot be guaranteed by the adaptive law (4.3.44). We know, however, that Â1, Â2
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converge to A1, A2 exponentially fast, and A1, A2 cannot be both equal to zero
(otherwise y ≡ 0 ∀t ≥ 0). Hence, after some finite time T , Â1, Â2 will be close
enough to A1, A2 for Â(T ) 6= 0 to imply Â(t) 6= 0 ∀t ≥ T .

Because Â1, Â2 → A1, A2 exponentially fast, it follows from (4.3.45) that Â, ϕ̂
converge to A,ϕ exponentially fast.

Let us simulate the above estimation scheme when W (s) = 2
s+2 , ω = 2 rad/sec

and the unknown A,ϕ are taken as A = 10, ϕ = 16◦ = 0.279 rad for 0 ≤ t ≤ 20 sec
and A = 7, ϕ = 25◦ = 0.463 rad for t > 20 sec for simulation purposes. The results
are shown in Figure 4.7, where γ = 1 is used. 5

Example 4.3.2 Consider the following plant:

y =
b1s + b0

s2 + 3s + 2
u

where b1, b0 are the only unknown parameters to be estimated. We rewrite the plant
in the form of the parametric model (4.3.24) by first expressing it as

y =
1

(s + 1)(s + 2)
θ∗>ψ (4.3.46)

where θ∗= [b1, b0]>, ψ=[u̇, u]>. We then choose L(s)=s+2 so that W (s)L(s)= 1
s+1

is SPR and rewrite (4.3.46) as

y =
1

s + 1
θ∗>φ (4.3.47)

where φ =
[

s
s+2u, 1

s+2u
]>

can be generated by filtering u. Because (4.3.47) is in
the form of parametric model (4.3.24), we can apply the results of this section to
obtain the adaptive law

θ̇ = Γεφ

ε = y − 1
s + 1

(θ>φ + εn2
s), ns = αφ>φ

where α > 0 and θ = [b̂1, b̂0]> is the on-line estimate of θ∗. This example illustrates
that the dimensionality of θ, φ may be reduced if some of the plant parameters are
known. 5

4.3.5 Gradient Method

Some of the earlier approaches to adaptive control in the early 1960s [20, 34,
96, 104, 115, 123, 175, 220] involved the use of simple optimization techniques
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Â t( ) 2 t ϕ̂ t( )+( )sin

A 2 t ϕ+( )sin

Figure 4.7 Simulation results for Example 4.3.1.

such as the gradient or steepest descent method to minimize a certain perfor-
mance cost with respect to some adjustable parameters. These approaches
led to the development of a wide class of adaptive algorithms that had found
wide applications in industry. Despite their success in applications, the
schemes of the 1960s lost their popularity because of the lack of stability in
a global sense. As a result, starting from the late 1960s and early 1970s,
the schemes of the 1960s have been replaced by new schemes that are based
on Lyapunov theory. The gradient method, however, as a tool for designing
adaptive laws retained its popularity and has been widely used in discrete-
time [73] and, to a less extent, continuous-time adaptive systems. In contrast
to the schemes of the 1960s, the schemes of the 1970s and 1980s that are
based on gradient methods are shown to have global stability properties.
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What made the difference with the newer schemes were new formulations of
the parameter estimation problem and the selection of different cost func-
tions for minimization.

In this section, we use the gradient method and two different cost func-
tions to develop adaptive laws for estimating θ∗ in the parametric model

z = W (s)θ∗>ψ (4.3.24)
The use of the gradient method involves the development of an algebraic

estimation error equation that motivates the selection of an appropriate cost
function J(θ) that is convex over the space of θ(t), the estimate of θ∗ at time
t, for each time t. The function J(θ) is then minimized with respect to θ

for each time t by using the gradient method described in Appendix B. The
algebraic error equation is developed as follows:

Because θ∗ is constant, the parametric model (4.3.24) can be written in
the form

z = θ∗>φ (4.3.48)

where φ = W (s)ψ.
The parametric model (4.3.48) has been the most popular one in discrete

time adaptive control. At each time t, (4.3.48) is an algebraic equation where
the unknown θ∗ appears linearly. Because of the simplicity of (4.3.48), a wide
class of recursive adaptive laws may be developed.

Using (4.3.48) the estimate ẑ of z at time t is generated as

ẑ = θ>φ

where θ(t) is the estimate of θ∗ at time t. The normalized estimation error
ε is then constructed as

ε =
z − ẑ

m2
=

z − θ>φ

m2
(4.3.49)

where m2 = 1 + n2
s and ns is the normalizing signal designed so that

φ

m
∈ L∞ (A1)

As in Section 4.3.4, typical choices for ns are n2
s = φ>φ, n2

s = φ>Pφ for
P = P> > 0, etc.
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For analysis purposes we express ε as a function of the parameter error
θ̃
4
= θ − θ∗, i.e., substituting for z in (4.3.49) we obtain

ε = − θ̃>φ

m2
(4.3.50)

Clearly the signal εm = −θ̃> φ
m is a reasonable measure of the parameter

error θ̃ because for any piecewise continuous signal vector φ (not necessarily
bounded), large εm implies large θ̃. Several adaptive laws for θ can be
generated by using the gradient method to minimize a wide class of cost
functions of ε with respect to θ. In this section we concentrate on two
different cost functions that attracted considerable interest in the adaptive
control community.

Instantaneous Cost Function

Let us consider the simple quadratic cost function

J(θ) =
ε2m2

2
=

(z − θ>φ)2

2m2
(4.3.51)

motivated from (4.3.49), (4.3.50), that we like to minimize with respect to
θ. Because of the property (A1) of m, J(θ) is convex over the space of θ

at each time t; therefore, the minimization problem is well posed. Applying
the gradient method, the minimizing trajectory θ(t) is generated by the
differential equation

θ̇ = −Γ∇J(θ)

where Γ = Γ> > 0 is a scaling matrix that we refer to as the adaptive gain.
From (4.3.51) we have

∇J(θ) = −(z − θ>φ)φ
m2

= −εφ

and, therefore, the adaptive law for generating θ(t) is given by

θ̇ = Γεφ (4.3.52)

We refer to (4.3.52) as the gradient algorithm.
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Remark 4.3.9 The adaptive law (4.3.52) has the same form as (4.3.35)
developed using the Lyapunov design approach. As shown in Section
4.3.4, (4.3.52) follows directly from the Lyapunov design method by
taking L(s) = W−1(s).

Remark 4.3.10 The convexity of J(θ) (as explained in Appendix B) guar-
antees the existence of a single global minimum defined by ∇J(θ) = 0.
Solving ∇J(θ) = −εφ = − z−θ>φ

m2 φ = 0, i.e., φz = φφ>θ, for θ will give
us the nonrecursive gradient algorithm

θ(t) = (φφ>)−1φz

provided that φφ> is nonsingular. For φ ∈ Rn×1 and n > 1, φφ> is
always singular, the following nonrecursive algorithm based on N data
points could be used:

θ(t) =

(
N∑

i=1

φ(ti)φ>(ti)

)−1 N∑

i=1

φ(ti)z(ti)

where ti ≤ t, i = 1, . . . , N are the points in time where the measure-
ments of φ and z are taken.

Remark 4.3.11 The minimum of J(θ) corresponds to ε = 0, which implies
θ̇ = 0 and the end of adaptation. The proof that θ(t) will converge
to a trajectory that corresponds to ε being small in some sense is
not directly guaranteed by the gradient method. A Lyapunov type
of analysis is used to establish such a result as shown in the proof of
Theorem 4.3.2 that follows.

Theorem 4.3.2 The adaptive law (4.3.52) guarantees that

(i) ε, εns, θ, θ̇ ∈ L∞
(ii) ε, εns, θ̇ ∈ L2

independent of the boundedness of the signal vector φ and

(iii) if ns, φ ∈ L∞ and φ is PE, then θ(t) converges exponentially to θ∗
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Proof Because θ∗ is constant, ˙̃
θ = θ̇ and from (4.3.52) we have

˙̃
θ = Γεφ (4.3.53)

We choose the Lyapunov-like function

V (θ̃) =
θ̃>Γ−1θ̃

2

Then along the solution of (4.3.53), we have

V̇ = θ̃>φε = −ε2m2 ≤ 0 (4.3.54)

where the second equality is obtained by substituting θ̃>φ = −εm2 from (4.3.50).
Hence, V, θ̃ ∈ L∞, which, together with (4.3.50), implies that ε, εm ∈ L∞. In
addition, we establish from the properties of V, V̇ , by applying the same argument
as in the previous sections, that εm ∈ L2, which implies that ε, εns ∈ L2. Now from
(4.3.53) we have

| ˙̃θ| = |θ̇| ≤ ‖Γ‖|εm| |φ|
m

(4.3.55)

which together with |φ|
m ∈ L∞ and εm ∈ L2

⋂L∞ implies that θ̇ ∈ L2

⋂L∞ and
the proof for (i) and (ii) is complete.

The proof for (iii) is long and more complicated and is given in Section 4.8. 2

Remark 4.3.12 The property V (θ̃) ≥ 0 and V̇ ≤ 0 of the Lyapunov-like
function implies that limt→∞ V (θ̃(t)) = V∞. This, however, does not
imply that V̇ (t) goes to zero as t →∞. Consequently, we cannot con-
clude that ε or εm go to zero as t →∞, i.e., that the steepest descent
reaches the global minimum that corresponds to ∇J(θ) = −εφ = 0.
If however, φ̇/m, ṁ/m ∈ L∞, we can establish that d

dt(εm) ∈ L∞,
which, together with εm ∈ L2, implies that ε(t)m(t) → 0 as t → ∞.
Because m2 = 1 + n2

s we have ε(t) → 0 as t → ∞ and from (4.3.55)
that θ̇(t) → 0 as t →∞. Now |∇J(θ)| ≤ |εφ| ≤ |εm| |φ|m , which implies
that |∇J(θ(t))| → 0 as t →∞, i.e., θ(t) converges to a trajectory that
corresponds to a global minimum of J(θ) asymptotically with time
provided φ̇

m , ṁ
m ∈ L∞.

Remark 4.3.13 Even though the form of the gradient algorithm (4.3.52)
is the same as that of the adaptive law (4.3.35) based on the SPR-
Lyapunov design approach, their properties are different. For example,
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(4.3.52) guarantees that θ̇ ∈ L∞, whereas such property has not been
shown for (4.3.35).

The speed of convergence of the estimated parameters to their true values,
when ns, φ ∈ L∞ and φ is PE, is characterized in the proof of Theorem 4.3.2
(iii) in Section 4.8. It is shown that

θ̃>(t)Γ−1θ̃(t) ≤ γnθ̃>(0)Γ−1θ̃(0)

where 0 ≤ t ≤ nT0, n is an integer and

γ = 1− γ1, γ1 =
2α0T0λmin(Γ)

2m0 + β4T 2
0 λ2

max(Γ)

where α0 is the level of excitation of φ, T0 > 0 is the size of the time interval
in the PE definition of φ, m0 = supt≥0 m2(t) and β = supt≥0 |φ(t)|. We
established that 0 < γ < 1. The smaller the γ, i.e., the larger the γ1, the
faster the parameter error converges to zero. The constants α0, T0, β and
possibly m0 are all interdependent because they all depend on φ(t). It is,
therefore, not very clear how to choose φ(t), if we can, to increase the size
of γ1.

Integral Cost Function

A cost function that attracted some interest in the literature of adaptive
systems [108] is the integral cost function

J(θ) =
1
2

∫ t

0
e−β(t−τ)ε2(t, τ)m2(τ)dτ (4.3.56)

where β > 0 is a design constant and

ε(t, τ) =
z(τ)− θ>(t)φ(τ)

m2(τ)
, ε(t, t) = ε (4.3.57)

is the normalized estimation error at time τ based on the estimate θ(t) of θ∗

at time t ≥ τ . The design constant β acts as a forgetting factor, i.e., as time
t increases the effect of the old data at time τ < t is discarded exponentially.
The parameter θ(t) is to be chosen at each time t to minimize the integral
square of the error on all past data that are discounted exponentially.
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Using (4.3.57), we express (4.3.56) in terms of the parameter θ, i.e.,

J(θ) =
1
2

∫ t

0
e−β(t−τ) (z(τ)− θ>(t)φ(τ))2

m2(τ)
dτ (4.3.58)

Clearly, J(θ) is convex over the space of θ for each time t and the application
of the gradient method for minimizing J(θ) w.r.t. θ yields

θ̇ = −Γ∇J = Γ
∫ t

0
e−β(t−τ) (z(τ)− θ>(t)φ(τ))

m2(τ)
φ(τ)dτ (4.3.59)

where Γ = Γ> > 0 is a scaling matrix that we refer to as the adaptive gain.
Equation (4.3.59) is implemented as

θ̇ = −Γ(R(t)θ + Q(t))

Ṙ = −βR +
φφ>

m2
, R(0) = 0

Q̇ = −βQ− zφ

m2
, Q(0) = 0 (4.3.60)

where R ∈ Rn×n, Q ∈ Rn×1. We refer to (4.3.59) or (4.3.60) as the integral
adaptive law. Its form is different from that of the previous adaptive laws
we developed. The properties of (4.3.60) are also different and are given by
the following theorem.

Theorem 4.3.3 The integral adaptive law (4.3.60) guarantees that

(i) ε, εns, θ, θ̇ ∈ L∞
(ii) ε, εns, θ̇ ∈ L2

(iii) limt→∞ |θ̇(t)| = 0
(iv) if ns, φ ∈ L∞ and φ is PE then θ(t) converges exponentially to θ∗.

Furthermore, for Γ = γI the rate of convergence can be made arbitrarily
large by increasing the value of the adaptive gain γ.

Proof Because φ
m ∈ L∞, it follows that R,Q ∈ L∞ and, therefore, the differential

equation for θ behaves as a linear time-varying differential equation with a bounded
input. Substituting for z = φ>θ∗ in the differential equation for Q we verify that

Q(t) = −
∫ t

0

e−β(t−τ) φ(τ)φ>(τ)
m2

dτθ∗ = −R(t)θ∗ (4.3.61)



188 CHAPTER 4. ON-LINE PARAMETER ESTIMATION

and, therefore,
θ̇ = ˙̃

θ = −ΓR(t)θ̃ (4.3.62)

We analyze (4.3.62) by using the Lyapunov-like function

V (θ̃) =
θ̃>Γ−1θ̃

2
(4.3.63)

whose time derivative along the solution of (4.3.62) is given by

V̇ = −θ̃>R(t)θ̃ (4.3.64)

Because R(t) = R>(t) ≥ 0 ∀t ≥ 0 it follows that V̇ ≤ 0; therefore, V, θ̃, θ ∈ L∞,

(θ̃>Rθ̃)
1
2 = |R 1

2 θ̃| ∈ L2. From ε = − θ̃>φ
m2 and θ̃, φ

m ∈ L∞ we conclude that ε, εm
and, therefore, εns ∈ L∞.

From (4.3.62) we have
|θ̇| ≤ ‖ΓR

>
2 ‖|R 1

2 θ̃| (4.3.65)

which together with R ∈ L∞ and |R 1
2 θ̃| ∈ L∞

⋂L2 imply that θ̇ ∈ L∞
⋂L2. Since

˙̃
θ, Ṙ ∈ L∞, it follows from (4.3.62) that ¨̃

θ ∈ L∞, which, together with ˙̃
θ ∈ L2,

implies limt→∞ |θ̇(t)| = limt→∞ |ΓR(t)θ̃(t)| = 0.
To show that εm ∈ L2 we proceed as follows. We have

d

dt
θ̃>Rθ̃ = ε2m2 − 2θ̃>RΓRθ̃ − βθ̃>Rθ̃

Therefore,
∫ t

0

ε2m2dτ = θ̃>Rθ̃ + 2
∫ t

0

θ̃>RΓRθ̃dτ + β

∫ t

0

θ̃>Rθ̃dτ

Because limt→∞[θ̃>(t)R(t)θ̃(t)] = 0 and |R 1
2 θ̃| ∈ L2 it follows that

lim
t→∞

∫ t

0

ε2m2dτ =
∫ ∞

0

ε2m2dτ < ∞

i.e., εm ∈ L2.
Hence, the proof for (i) to (iii) is complete. The proof for (iv) is given in Section

4.8. 2

Remark 4.3.14 In contrast to the adaptive law based on the instantaneous
cost, the integral adaptive law guarantees that θ̇(t) = −Γ∇J(θ(t)) → 0
as t → ∞ without any additional conditions on the signal vector φ
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and m. In this case, θ(t) converges to a trajectory that minimizes
the integral cost asymptotically with time. As we demonstrated in
Chapter 3 using simple examples, the convergence of θ̇(t) to a zero
vector does not imply that θ(t) converges to a constant vector.

In the proof of Theorem 4.3.3 (iv) given in Section 4.8, we have estab-
lished that when ns, φ ∈ L∞ and φ is PE, the parameter error θ̃ satisfies

|θ̃(t)| ≤
√

λmax(Γ)
λmin(Γ)

|θ̃(T0)|e
−α
2

(t−T0), ∀t ≥ T0

where
α = 2β1e

−βT0λmin(Γ), β1 = α0T0α
′
0, α

′
0 = sup

t

1
m2(t)

and α0, T0 are constants in the definition of the PE property of φ, i.e., α0 > 0
is the level of excitation and T0 > 0 is the length of the time interval. The
size of the constant α > 0 indicates the speed with which |θ̃(t)| is guaranteed
to converge to zero. The larger the level of excitation α0, the larger the α is.
A large normalizing signal decreases the value of α and may have a negative
effect on the speed of convergence. If Γ is chosen as Γ = γI, then it becomes
clear that a larger γ guarantees a faster convergence of |θ̃(t)| to zero.

Example 4.3.3 Let us consider the same problem as in Example 4.3.1. We consider
the equation

z = W (s)A sin(ωt + ϕ) = W (s)θ∗>φ (4.3.66)

where θ∗ = [A1, A2]>, φ = [sin ωt, cosωt]>, A1 = A cosϕ,A2 = A sin ϕ. We need to
estimate A, ϕ using the knowledge of φ, ω, W (s) and the measurement of z.

We first express (4.3.66) in the form of the linear parametric model (4.3.48) by
filtering φ with W (s), i.e.,

z = θ∗>φ0, φ0 = W (s)φ (4.3.67)

and then obtain the adaptive law for estimating θ∗ by applying the results of this
section. The gradient algorithm based on the instantaneous cost is given by

θ̇ = Γεφ0, ε =
z − θ>φ0

m2
, m2 = 1 + αφ>0 φ0 (4.3.68)

where θ = [Â1, Â2]> is the estimate of θ∗ and α ≥ 0. Because φ ∈ L∞ and W (s)
has stable poles, φ0 ∈ L∞ and α can be taken to be equal to zero.
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Figure 4.8 Simulation results for Example 4.3.3: Performance of the gradient
adaptive law (4.3.68) based on the instantaneous cost.

The gradient algorithm based on the integral cost is given by

θ̇ = −Γ(R(t)θ + Q), θ(0) = θ0

Ṙ = −βR +
φ0φ

>
0

m2
, R(0) = 0 (4.3.69)

Q̇ = −βQ− zφ0

m2
, Q(0) = 0

where R ∈ R2×2, Q ∈ R2×1. The estimate Â, ϕ̂ of the unknown constants A,ϕ is
calculated from the estimates Â1, Â2 in the same way as in Example 4.3.1. We can
establish, as shown in Example 4.3.1, that φ0 satisfies the PE conditions; therefore,
both adaptive laws (4.3.68) and (4.3.69) guarantee that θ converges to θ∗ exponen-
tially fast.

Let us now simulate (4.3.68) and (4.3.69). We choose Γ = diag(γ) with γ = 10
for both algorithms, and β = 0.1 for (4.3.69). We also use ω = 2 rad/sec and
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Figure 4.9 Simulation results for Example 4.3.3: Performance of the gra-
dient adaptive law (4.3.69) based on the integral cost.

W (s) = 2
s+2 . Figure 4.8 shows the performance of the adaptive law (4.3.68) based

on the instantaneous cost, and Figure 4.9 shows that of (4.3.69) based on the integral
cost. 5

Remark 4.3.15 This example illustrates that for the same estimation prob-
lem the gradient method leads to adaptive laws that require more
integrators than those required by adaptive laws based on the SPR-
Lyapunov design approach. Furthermore, the gradient algorithm based
on the integral cost is far more complicated than that based on the
instantaneous cost. This complexity is traded off by the better conver-
gence properties of the integral algorithm described in Theorem 4.3.3.
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4.3.6 Least-Squares

The least-squares is an old method dating back to Gauss in the eighteenth
century where he used it to determine the orbit of planets. The basic idea
behind the least-squares is fitting a mathematical model to a sequence of
observed data by minimizing the sum of the squares of the difference between
the observed and computed data. In doing so, any noise or inaccuracies in
the observed data are expected to have less effect on the accuracy of the
mathematical model.

The method of least-squares has been widely used in parameter esti-
mation both in a recursive and nonrecursive form mainly for discrete-time
systems [15, 52, 73, 80, 127, 144]. The method is simple to apply and analyze
in the case where the unknown parameters appear in a linear form, such as
in the linear parametric model

z = θ∗>φ (4.3.70)

Before embarking on the use of least-squares to estimate θ∗ in (4.3.70), let
us illustrate its use and properties by considering the simple scalar plant

y = θ∗u + dn (4.3.71)

where dn is a noise disturbance; y, u ∈ R+ and u ∈ L∞. We examine
the following estimation problem: Given the measurements of y(τ), u(τ) for
0 ≤ τ < t, find a “good” estimate θ(t) of θ∗ at time t. One possible solution
is to calculate θ(t) from

θ(t) =
y(τ)
u(τ)

= θ∗ +
dn(τ)
u(τ)

for some τ < t for which u(τ) 6= 0. Because of the noise disturbance,
however, such an estimate may be far off from θ∗. A more natural approach
is to generate θ by minimizing the cost function

J(θ) =
1
2

∫ t

0
(y(τ)− θ(t)u(τ))2dτ (4.3.72)

with respect to θ at any given time t. The cost J(θ) penalizes all the past
errors from τ = 0 to t that are due to θ(t) 6= θ∗. Because J(θ) is a convex
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function over R1 at each time t, its minimum satisfies

∇J(θ) = −
∫ t

0
y(τ)u(τ)dτ + θ(t)

∫ t

0
u2(τ)dτ = 0 (4.3.73)

for any given time t, which gives

θ(t) =
(∫ t

0
u2(τ)dτ

)−1 ∫ t

0
y(τ)u(τ)dτ (4.3.74)

provided of course the inverse exists. This is the celebrated least-squares
estimate. The least-squares method considers all past data in an effort to
provide a good estimate for θ∗ in the presence of noise dn. For example,
when u(t) = 1 ∀t ≥ 0 and dn has a zero average value, we have

lim
t→∞ θ(t) = lim

t→∞
1
t

∫ t

0
y(τ)u(τ)dτ = θ∗ + lim

t→∞
1
t

∫ t

0
dn(τ)dτ = θ∗

i.e., θ(t) converges to the exact parameter value despite the presence of the
noise disturbance dn.

Let us now extend this problem to the linear model (4.3.70). As in
Section 4.3.5, the estimate ẑ of z and the normalized estimation error are
generated as

ẑ = θ>φ, ε =
z − ẑ

m2
=

z − θ>φ

m2
(4.3.49)

where m2 = 1 + n2
s, θ(t) is the estimate of θ∗ at time t, and m satisfies

φ/m ∈ L∞.
We consider the following cost function

J(θ) =
1
2

∫ t

0
e−β(t−τ) [z(τ)− θ>(t)φ(τ)]2

m2(τ)
dτ +

1
2
e−βt(θ − θ0)>Q0(θ − θ0)

(4.3.75)
where Q0 = Q>

0 > 0, β ≥ 0, θ0 = θ(0), which is a generalization of (4.3.72)
to include discounting of past data and a penalty on the initial estimate θ0

of θ∗. The cost (4.3.75), apart from the additional term that penalizes the
initial parameter error, is identical to the integral cost (4.3.58) considered
in Section 4.3.5. The method, however, for developing the estimate θ(t) for
θ∗ is different. Because z/m, φ/m ∈ L∞, J(θ) is a convex function of θ over
Rn at each time t. Hence, any local minimum is also global and satisfies

∇J(θ(t)) = 0, ∀t ≥ 0
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i.e.,

∇J(θ) = e−βtQ0(θ(t)− θ0)−
∫ t

0
e−β(t−τ) z(τ)− θ>(t)φ(τ)

m2(τ)
φ(τ)dτ = 0

which yields the so-called nonrecursive least-squares algorithm

θ(t) = P (t)
[
e−βtQ0θ0 +

∫ t

0
e−β(t−τ) z(τ)φ(τ)

m2(τ)
dτ

]
(4.3.76)

where

P (t) =

[
e−βtQ0 +

∫ t

0
e−β(t−τ) φ(τ)φ>(τ)

m2(τ)
dτ

]−1

(4.3.77)

Because Q0 = Q>
0 > 0 and φφ> is positive semidefinite, P (t) exists at each

time t. Using the identity

d

dt
PP−1 = ṖP−1 + P

d

dt
P−1 = 0

we can show that P satisfies the differential equation

Ṗ = βP − P
φφ>

m2
P, P (0) = P0 = Q−1

0 (4.3.78)

Therefore, the calculation of the inverse in (4.3.77) is avoided by generating P

as the solution of the differential equation (4.3.78). Similarly, differentiating
θ(t) w.r.t. t and using (4.3.78) and εm2 = z − θ>φ, we obtain

θ̇ = Pεφ (4.3.79)

We refer to (4.3.79) and (4.3.78) as the continuous-time recursive least-
squares algorithm with forgetting factor.

The stability properties of the least-squares algorithm depend on the
value of the forgetting factor β as discussed below.

Pure Least-Squares

In the identification literature, (4.3.79) and (4.3.78) with β = 0 is referred
to as the “pure” least-squares algorithm and has a very similar form as the
Kalman filter. For this reason, the matrix P is usually called the covariance
matrix.
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Setting β = 0, (4.3.78), (4.3.79) become

θ̇ = Pεφ

Ṗ = −Pφφ>P

m2
, P (0) = P0 (4.3.80)

In terms of the P−1 we have

d

dt
P−1 =

φφ>

m2

which implies that d(P−1)
dt ≥ 0, and, therefore, P−1 may grow without bound.

In the matrix case, this means that P may become arbitrarily small and slow
down adaptation in some directions. This is the so-called covariance wind-up
problem that constitutes one of the main drawbacks of the pure least-squares
algorithm.

Despite its deficiency, the pure least-squares algorithm has the unique
property of guaranteeing parameter convergence to constant values as de-
scribed by the following theorem:

Theorem 4.3.4 The pure least-squares algorithm (4.3.80) guarantees that

(i) ε, εns, θ, θ̇, P ∈ L∞.
(ii) ε, εns, θ̇ ∈ L2.
(iii) limt→∞ θ(t) = θ̄, where θ̄ is a constant vector.
(iv) If ns, φ ∈ L∞ and φ is PE, then θ(t) converges to θ∗ as t →∞.

Proof From (4.3.80) we have that Ṗ ≤ 0, i.e., P (t) ≤ P0. Because P (t) is nonin-
creasing and bounded from below (i.e., P (t) = P>(t) ≥ 0,∀t ≥ 0) it has a limit,
i.e.,

lim
t→∞

P (t) = P̄

where P̄ = P̄> ≥ 0 is a constant matrix. Let us now consider

d

dt
(P−1θ̃) = −P−1ṖP−1θ̃ + P−1 ˙̃

θ =
φφ>θ̃

m2
+ εφ = 0

where the last two equalities are obtained by using θ̇ = ˙̃
θ, d

dtP
−1 = −P−1ṖP−1

and ε = − θ̃>φ
m2 = −φ>θ̃

m2 . Hence, P−1(t)θ̃(t) = P−1
0 θ̃(0), and, therefore, θ̃(t) =

P (t)P−1
0 θ̃(0) and limt→∞ θ̃(t) = P̄P−1

0 θ̃(0), which implies that limt→∞ θ(t) = θ∗ +

P̄P−1
0 θ̃(0)

4
= θ̄.
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Because P (t) ≤ P0 and θ̃(t) = P (t)P−1
0 θ̃(0) we have θ, θ̃ ∈ L∞, which, together

with φ
m ∈ L∞, implies that εm = − θ̃>φ

m and ε, εns ∈ L∞. Let us now consider the
function

V (θ̃, t) =
θ̃>P−1(t)θ̃

2

The time derivative V̇ of V along the solution of (4.3.80) is given by

V̇ = εθ̃>φ +
θ̃>φφ>θ̃

2m2
= −ε2m2 +

ε2m2

2
= −ε2m2

2
≤ 0

which implies that V ∈ L∞, εm ∈ L2; therefore, ε, εns ∈ L2. From (4.3.80) we have

|θ̇| ≤ ‖P‖ |φ|
m
|εm|

Because P, φ
m , εm ∈ L∞ and εm ∈ L2, we have θ̇ ∈ L∞

⋂L2, which completes the
proof for (i), (ii), and (iii). The proof of (iv) is given in Section 4.8. 2

Remark 4.3.16
(i) We should note that the convergence rate of θ(t) to θ∗ in Theorem 4.3.4

is not guaranteed to be exponential even when φ is PE. As shown in the
proof of Theorem 4.3.4 (iv) in Section 4.8, P (t), θ̃(t) satisfy

P (t) ≤ m̄

(t− T0)α0
I, |θ̃(t)| ≤ P−1

0 m̄

(t− T0)α0
|θ̃(0)|, ∀t > T0

where m̄ = supt m2(t), i.e., |θ̃(t)| is guaranteed to converge to zero with
a speed of 1

t .
(ii) The convergence of θ(t) to θ̄ as t →∞ does not imply that θ̇(t) → 0 as

t →∞ (see examples in Chapter 3).

(iii) We can establish that ε, θ̇ → 0 as t →∞ if we assume that φ̇/m, ṁ/m ∈
L∞ as in the case of the gradient algorithm based on the instantaneous
cost.

Pure Least-Squares with Covariance Resetting

The so called wind-up problem of the pure least-squares algorithm is avoided
by using various modifications that prevent P (t) from becoming singular.
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One such modification is the so-called covariance resetting described by

θ̇ = Pεφ

Ṗ = −Pφφ>P

m2
, P (t+r ) = P0 = ρ0I (4.3.81)

where tr is the time for which λmin(P (t)) ≤ ρ1 and ρ0 > ρ1 > 0 are some
design scalars. Because of (4.3.81), P (t) ≥ ρ1I ∀t ≥ 0; therefore, P is
guaranteed to be positive definite for all t ≥ 0.

Strictly speaking, (4.3.81) is no longer the least-squares algorithm that
we developed by setting ∇J(θ) = 0 and β = 0. It does, however, behave as
a pure least-squares algorithm between resetting points. The properties of
(4.3.81) are similar to those of the gradient algorithm based on the instan-
taneous cost. In fact, (4.3.81) may be viewed as a gradient algorithm with
time-varying adaptive gain P .

Theorem 4.3.5 The pure least-squares with covariance resetting algorithm
(4.3.81) has the following properties:

(i) ε, εns, θ, θ̇ ∈ L∞.
(ii) ε, εns, θ̇ ∈ L2.
(iii) If ns, φ ∈ L∞ and φ is PE then θ(t) converges exponentially to θ∗.

Proof The covariance matrix P (t) has elements that are discontinuous functions
of time whose values between discontinuities are defined by the differential equation
(4.3.81). At the discontinuity or resetting point tr, P (t+r ) = P0 = ρ0I; therefore,
P−1(t+r ) = ρ−1

0 I. Between discontinuities d
dtP

−1(t) ≥ 0 , i.e., P−1(t2)−P−1(t1) ≥ 0
∀t2 ≥ t1 ≥ 0 such that tr 6∈ [t1, t2], which implies that P−1(t) ≥ ρ−1

0 I, ∀t ≥ 0.
Because of the resetting, P (t) ≥ ρ1I,∀t ≥ 0. Therefore, (4.3.81) guarantees that

ρ0I ≥ P (t) ≥ ρ1I, ρ−1
1 I ≥ P−1(t) ≥ ρ−1

0 I, ∀t ≥ 0

Let us now consider the function

V (θ̃) =
θ̃>P−1θ̃

2
(4.3.82)

where P is given by (4.3.81). Because P−1 is a bounded positive definite symmetric
matrix, it follows that V is decrescent and radially unbounded in the space of θ̃.
Along the solution of (4.3.81) we have

V̇ =
1
2
θ̃>

d(P−1)
dt

θ̃ + θ̃>P−1 ˙̃
θ = −ε2m2 +

1
2
θ̃>

d(P−1)
dt

θ̃
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Between resetting points we have from (4.3.81) that d(P−1)
dt = φφ>

m2 ; therefore,

V̇ = −ε2m2 +
1
2

(θ̃>φ)2

m2
= −ε2m2

2
≤ 0 (4.3.83)

∀t ∈ [t1, t2] where [t1, t2] is any interval in [0,∞) for which tr 6∈ [t1, t2].
At the points of discontinuity of P , we have

V (t+r )− V (tr) =
1
2
θ̃>(P−1(t+r )− P−1(tr))θ̃

Because P−1(t+r ) = 1
ρ0

I, P−1(tr) ≥ 1
ρ0

I, it follows that V (t+r ) − V (tr) ≤ 0, which
implies that V ≥ 0 is a nonincreasing function of time for all t ≥ 0. Hence, V ∈ L∞
and limt→∞ V (t) = V∞ < ∞. Because the points of discontinuities tr form a set
of measure zero, it follows from (4.3.83) that εm, ε ∈ L2. From V ∈ L∞ and
ρ−1
1 I ≥ P−1(t) ≥ ρ−1

0 I we have θ̃ ∈ L∞, which implies that ε, εm ∈ L∞. Using
εm ∈ L∞

⋂L2 and ρ0I ≥ P ≥ ρ1I we have θ̇ ∈ L∞
⋂L2 and the proof of (i) and

(ii) is, therefore, complete.
The proof of (iii) is very similar to the proof of Theorem 4.3.2 (iii) and is

omitted. 2

Modified Least-Squares with Forgetting Factor

When β > 0, the problem of P (t) becoming arbitrarily small in some direc-
tions no longer exists. In this case, however, P (t) may grow without bound
since Ṗ may satisfy Ṗ > 0 because βP > 0 and the fact that Pφφ>P

m2 is only
positive semidefinite.

One way to avoid this complication is to modify the least-squares algo-
rithm as follows:

θ̇ = Pεφ

Ṗ =

{
βP − Pφφ>P

m2 if ‖P (t)‖ ≤ R0

0 otherwise
(4.3.84)

where P (0) = P0 = P>
0 > 0, ‖P0‖ ≤ R0 and R0 is a constant that serves

as an upper bound for ‖P‖. This modification guarantees that P ∈ L∞
and is referred to as the modified least-squares with forgetting factor. The
above algorithm guarantees the same properties as the pure least-squares
with covariance resetting given by Theorem 4.3.5. They can be established
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by choosing the same Lyapunov-like function as in (4.3.82) and using the
identity d P−1

dt = −P−1ṖP−1 to establish

dP−1

dt
=

{
−βP−1 + φφ>

m2 if ‖P‖ ≤ R0

0 otherwise

where P−1(0) = P−1
0 , which leads to

V̇ =

{
− ε2m2

2 − β
2 θ̃>P−1θ̃ if ‖P‖ ≤ R0

− ε2m2

2 otherwise

Because V̇ ≤ − ε2m2

2 ≤ 0 and P (t) is bounded and positive definite ∀t ≥ 0,
the rest of the analysis is exactly the same as in the proof of Theorem 4.3.5.

Least-Squares with Forgetting Factor and PE

The covariance modifications described above are not necessary when ns,
φ ∈ L∞ and φ is PE. The PE property of φ guarantees that over an interval of
time, the integral of −P φφ>

m2 P is a negative definite matrix that counteracts
the effect of the positive definite term βP with β > 0 in the covariance
equation and guarantees that P ∈ L∞. This property is made precise by the
following corollary:

Corollary 4.3.2 If ns, φ ∈ L∞ and φ is PE then the recursive least-squares
algorithm with forgetting factor β > 0 given by (4.3.78) and (4.3.79) guar-
antees that P, P−1 ∈ L∞ and that θ(t) converges exponentially to θ∗.

The proof is presented in Section 4.8.

The use of the recursive least-squares algorithm with forgetting factor
with φ ∈ L∞ and φ PE is appropriate in parameter estimation of stable
plants where parameter convergence is the main objective. We will address
such cases in Chapter 5.

Let us illustrate the design of a least-squares algorithm for the same
system considered in Example 4.3.1.

Example 4.3.4 The system

z = W (s)A sin(ωt + ϕ)
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where A,ϕ are to be estimated on-line is rewritten in the form

z = θ∗>φ0

where θ∗ = [A1, A2]>, φ0 = W (s)φ, φ = [sin ωt, cosωt]>. The least-squares algo-
rithm for estimating θ∗ is given by

θ̇ = Pεφ0

Ṗ = βP − P
φ0φ

>
0

m2
P, P (0) = ρ0I

where ε = z−θ>φ0
m2 ,m2 = 1 + φ>0 φ0 and β ≥ 0, ρ0 > 0 are design constants. Because

φ0 is PE, no modifications are required. Let us simulate the above scheme when
A = 10, ϕ = 16◦ = 0.279 rad, ω = 2 rad/sec,W (s) = 2

s+2 . Figure 4.10 gives the
time response of Â and ϕ̂, the estimate of A and ϕ, respectively, for different values
of β. The simulation results indicate that the rate of convergence depends on the
choice of the forgetting factor β. Larger β leads to faster convergence of Â, ϕ̂ to
A = 10, ϕ = 0.279, respectively. 5

4.3.7 Effect of Initial Conditions

In the previous sections, we developed a wide class of on-line parameter
estimators for the linear parametric model

z = W (s)θ∗>ψ + η0 (4.3.85)

where η0, the exponentially decaying to zero term that is due to initial
conditions, is assumed to be equal to zero. As shown in Chapter 2 and in
Section 4.3.3, η0 satisfies the equation

ω̇0 = Λcω0, ω0(0) = B0x0

η0 = C>
0 ω0 (4.3.86)

where Λc is a stable matrix, and x0 is the initial value of the plant state at
t = 0.
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Figure 4.10 Simulation results of Example 4.3.4 for the least-squares algo-
rithm with forgetting factor and PE signals.

Let us analyze the effect of η0 on the gradient algorithm

θ̇ = Γεφ

ε =
z − ẑ

m2
, ẑ = θ>φ (4.3.87)

φ = W (s)ψ

that is developed for the model (4.3.85) with η0 = 0 in Section 4.3.5.
We first express (4.3.87) in terms of the parameter error θ̃ = θ− θ∗, i.e.,

˙̃
θ = Γεφ
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ε =
z − ẑ

m2
=
−θ̃>φ + η0

m2
(4.3.88)

It is clear that η0 acts as a disturbance in the normalized estimation er-
ror and, therefore, in the adaptive law for θ. The question that arises now
is whether η0 will affect the properties of (4.3.87) as described by Theo-
rem 4.3.2. We answer this question as follows.

Instead of the Lyapunov-like function

V (θ̃) =
θ̃>Γ−1θ̃

2
used in the case of η0 = 0, we propose the function

V (θ̃, ω0) =
θ̃>Γ−1θ̃

2
+ ω>0 P0ω0

where P0 = P>
0 > 0 satisfies the Lyapunov equation

P0Λc + Λ>c P0 = −γ0I

for some γ0 > 0 to be chosen. Then along the solution of (4.3.87) we have

V̇ = θ̃>φε− γ0|ω0|2 = −ε2m2 + εη0 − γ0|ω0|2

Because η0 = C>
0 ω0 we have

V̇ ≤ −ε2m2 + |ε||C>
0 ||ω0| − γ0|ω0|2

≤ −ε2m2

2
− 1

2

(
εm− |C>

0 |
|ω0|
m

)2

− |ω0|2
(

γ0 − |C>
0 |2

2m2

)

By choosing γ0 ≥ |C>0 |2
2 we have

V̇ ≤ −ε2m2

2
≤ 0

which implies that θ̃ ∈ L∞, εm ∈ L2. Because η0 ∈ L∞
⋂L2 and φ

m ∈ L∞
we have ε, εm, θ̇ ∈ L∞

⋂L2. Hence, (i) and (ii) of Theorem 4.3.2 also hold
when η0 6= 0. In a similar manner we can show that η0 6= 0 does not affect
(iii) of Theorem 4.3.2. As in every dynamic system, η0 6= 0 will affect the
transient response of θ(t) depending on how fast η0(t) → 0 as t →∞.

The above procedure can be applied to all the results of the previous sec-
tions to establish that initial conditions do not affect the established prop-
erties of the adaptive laws developed under the assumption of zero initial
conditions.
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4.4 Adaptive Laws with Projection

In Section 4.3 we developed a wide class of adaptive laws for estimating the
constant vector θ∗ that satisfies the linear parametric model

z = W (s)θ∗>ψ (4.4.1)

by allowing θ∗ to lie anywhere in Rn. In many practical problems where θ∗

represents the parameters of a physical plant, we may have some a priori
knowledge as to where θ∗ is located in Rn. This knowledge usually comes in
terms of upper or lower bounds for the elements of θ∗ or in terms of a well-
defined subset of Rn, etc. One would like to use such a priori information
and design adaptive laws that are constrained to search for estimates of
θ∗ in the set where θ∗ is located. Intuitively such a procedure may speed
up convergence and reduce large transients that may occur when θ(0) is
chosen to be far away from the unknown θ∗. Another possible reason for
constraining θ(t) to lie in a certain set that contains θ∗ arises in cases where
θ(t) is required to have certain properties satisfied by all members of the set
so that certain desired calculations that involve θ(t) are possible. Such cases
do arise in adaptive control and will be discussed in later chapters.

We examine how to modify the adaptive laws of Section 4.3 to handle
the case of constrained parameter estimation in the following sections.

4.4.1 Gradient Algorithms with Projection

Let us start with the gradient method where the unconstrained minimization
of J(θ) considered in Section 4.3.5 is extended to

minimize J(θ)

subject to θ ∈ S (4.4.2)

where S is a convex set with a smooth boundary almost everywhere. Let S
be given by

S = {θ ∈ Rn | g(θ) ≤ 0} (4.4.3)

where g : Rn 7→ R is a smooth function. The solution of the constrained
minimization problem follows from the gradient projection method discussed
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in Appendix B and is given by

θ̇=Pr(−Γ∇J)
4
=





−Γ∇J if θ ∈ S0

or θ ∈ δ(S) and −(Γ∇J)>∇g≤0
−Γ∇J + Γ ∇g∇g>

∇g>Γ∇g
Γ∇J otherwise

(4.4.4)
where S0 is the interior of S, δ(S) is the boundary of S and θ(0) is chosen
to be in S, i.e., θ(0) ∈ S.

Let us now use (4.4.4) to modify the gradient algorithm θ̇ = −Γ∇J(θ) =
Γεφ given by (4.3.52). Because ∇J = −εφ, (4.4.4) becomes

θ̇ = Pr(Γεφ) =





Γεφ if θ ∈ S0

or if θ ∈ δ(S) and (Γεφ)>∇g ≤ 0
Γεφ− Γ ∇g∇g>

∇g>Γ∇g
Γεφ otherwise

(4.4.5)
where θ(0) ∈ S.

In a similar manner we can modify the integral adaptive law (4.3.60) by
substituting ∇J = R(t)θ + Q(t) in (4.4.4).

The principal question we need to ask ourselves at this stage is whether
projection will destroy the properties of the unconstrained adaptive laws
developed in Section 4.3.5. This question is answered by the following The-
orem.

Theorem 4.4.1 The gradient adaptive laws of Section 4.3.5 with the pro-
jection modification given by (4.4.4) retain all their properties that are estab-
lished in the absence of projection and in addition guarantee that θ ∈ S ∀t ≥
0 provided θ(0) = θ0 ∈ S and θ∗ ∈ S.

Proof It follows from (4.4.4) that whenever θ ∈ δ(S) we have θ̇>∇g ≤ 0, which
implies that the vector θ̇ points either inside S or along the tangent plane of δ(S)
at point θ. Because θ(0) = θ0 ∈ S, it follows that θ(t) will never leave S, i.e.,
θ(t) ∈ S ∀t ≥ 0.

The adaptive law (4.4.4) has the same form as the one without projection except
for the additional term

Q =

{
Γ ∇g∇g>

∇g>Γ∇g
Γ∇J if θ ∈ δ(S) and −(Γ∇J)>∇g > 0

0 otherwise

in the expression for θ̇. If we use the same function V as in the unconstrained case
to analyze the adaptive law with projection, the time derivative V̇ of V will have
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the additional term

θ̃>Γ−1Q =

{
θ̃> ∇g∇g>

∇g>Γ∇g
Γ∇J if θ ∈ δ(S) and −(Γ∇J)>∇g > 0

0 otherwise

Because of the convex property of S and the assumption that θ∗ ∈ S, we have
θ̃>∇g = (θ − θ∗)>∇g ≥ 0 when θ ∈ δ(S). Because ∇g>Γ∇J =(Γ∇J)>∇g<0
for θ ∈ δ(S) and −(Γ∇J)>∇g > 0, it follows that θ̃>Γ−1Q ≤ 0. Therefore, the
term θ̃>Γ−1Q introduced by the projection can only make V̇ more negative and
does not affect the results developed from the properties of V, V̇ . Furthermore,
the L2 properties of θ̇ will not be affected by projection because, with or without
projection, θ̇ can be shown to satisfy

|θ̇|2 ≤ c|Γ∇J |2

for some constant c ∈ R+. 2

The projection modification (4.4.4) holds also for the adaptive laws based
on the SPR-Lyapunov design approach even though these adaptive laws are
not derived from the constrained optimization problem defined in (4.4.2).
The reason is that the adaptive law (4.3.35) based on the SPR-Lyapunov
approach and the gradient algorithm based on the instantaneous cost have
the same form, i.e.,

θ̇ = Γεφ

where ε, φ are, of course, not the same signals in general. Therefore, by
substituting for −Γ∇J = Γεφ in (4.4.4), we can obtain the SPR-Lyapunov
based adaptive law with projection.

We can establish, as done in Theorem 4.4.1, that the adaptive laws based
on the SPR-Lyapunov design approach with the projection modification re-
tain their original properties established in the absence of projection.

Remark 4.4.1 We should emphasize that the set S is required to be convex.
The convexity of S helps in establishing the fact that the projection
does not alter the properties of the adaptive laws established without
projection. Projection, however, may affect the transient behavior of
the adaptive law.

Let us now consider some examples of constrained parameter estimation.
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Example 4.4.1 Consider the linear parametric model

z = θ∗>φ

where θ∗ = [θ∗1 , θ∗2 , . . . , θ∗n]> is an unknown constant vector, θ∗1 is known to satisfy
|θ∗1 | ≥ ρ0 > 0 for some known constant ρ0, sgn(θ∗1) is known, and z, φ can be
measured. We would like to use this a priori information about θ∗1 and constrain
its estimation to always be inside a convex set S which contains θ∗ and is defined
as

S 4
= {θ ∈ Rn | g(θ) = ρ0 − θ1sgn(θ∗1) ≤ 0}

The gradient algorithm with projection becomes

θ̇ =





Γεφ if ρ0 − θ1sgn(θ∗1) < 0
or if ρ0 − θ1sgn(θ∗1) = 0 and (Γεφ)>∇g ≤ 0

Γεφ− Γ ∇g∇g>

∇g>Γ∇g
Γεφ otherwise

(4.4.6)

where ε = z−θ>φ
m2 and θ1(0) satisfies ρ0 − θ1(0)sgn(θ∗1) < 0. For simplicity, let us

choose Γ = diag{γ1, Γ0} where γ1 > 0 is a scalar and Γ0 = Γ>0 > 0, and partition
φ, θ as φ = [φ1, φ

>
0 ]>, θ = [θ1, θ

>
0 ]> where φ1, θ1 ∈ R1. Because

∇g = [−sgn(θ∗1), 0, . . . , 0]>

it follows from (4.4.6) that

θ̇1 =





γ1εφ1 if θ1sgn(θ∗1) > ρ0 or
if θ1sgn(θ∗1) = ρ0 and γ1φ1εsgn(θ∗1) ≥ 0

0 otherwise
θ̇0 = Γ0εφ0

(4.4.7)

where θ0(0) is arbitrary and θ1(0) satisfies θ1(0)sgn(θ∗1) > ρ0. 5

4.4.2 Least-Squares with Projection

The gradient projection method can also be adopted in the case of the least
squares algorithm

θ̇ = Pεφ

Ṗ = βP − P
φφ>

m2
P, P (0) = P0 = Q−1

0 (4.4.8)

developed in Section 4.3.6 by viewing (4.4.8) as a gradient algorithm with
time varying scaling matrix P and εφ as the gradient of some cost function
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J . If S = {θ ∈ Rn | g(θ) ≤ 0} is the convex set for constrained estimation,
then (4.4.8) is modified as

θ̇ = Pr(Pεφ) =





Pεφ if θ ∈ S0

or if θ ∈ δ(S) and (Pεφ)>∇g ≤ 0
Pεφ− P ∇g∇g>

∇g>P∇g
Pεφ otherwise

(4.4.9)
where θ(0) ∈ S and

Ṗ =





βP − P φφ>
m2 P if θ ∈ S0

or if θ ∈ δ(S) and (Pεφ)>∇g ≤ 0
0 otherwise

(4.4.10)

where P (0) = P0 = P>
0 > 0.

It can be shown as in Section 4.4.1 that the least-squares with projection
has the same properties as the corresponding least-squares without projec-
tion.

The equation for the covariance matrix P is modified so that at the point
of projection on the boundary of S, P is a constant matrix, and, therefore,
the adaptive law at that point is a gradient algorithm with constant scal-
ing that justifies the use of the gradient projection method explained in
Appendix B.

Example 4.4.2 Let us now consider a case that often arises in adaptive control
in the context of robustness. We would like to constrain the estimates θ(t) of θ∗ to
remain inside a bounded convex set S. Let us choose S as

S =
{
θ ∈ Rn

∣∣θ>θ −M2
0 ≤ 0

}

for some known constant M0 such that |θ∗| ≤ M0. The set S represents a sphere in
Rn centered at θ = 0 and of radius M0. We have

∇g = 2θ

and the least-squares algorithm with projection becomes

θ̇ =





Pεφ if θ>θ < M2
0

or if θ>θ = M2
0 and (Pεφ)>θ ≤ 0(

I − Pθθ>
θ>Pθ

)
Pεφ otherwise

(4.4.11)
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where θ(0) satisfies θ>(0)θ(0) ≤ M2
0 and P is given by

Ṗ =





βP − P φφ>

m2 P if θ>θ < M2
0

or if θ>θ = M2
0 and (Pεφ)>θ ≤ 0

0 otherwise
(4.4.12)

Because P = P> > 0 and θ>Pθ > 0 when θ>θ = M2
0 , no division by zero occurs in

(4.4.11). 5

4.5 Bilinear Parametric Model

As shown in Chapter 2, a certain class of plants can be parameterized in
terms of their desired controller parameters that are related to the plant
parameters via a Diophantine equation. Such parameterizations and their
related estimation problem arise in direct adaptive control, and in particular,
direct MRAC, which is discussed in Chapter 6.

In these cases, θ∗, as shown in Chapter 2, appears in the form

z = W (s)[ρ∗(θ∗>ψ + z0)] (4.5.1)

where ρ∗ is an unknown constant; z, ψ, z0 are signals that can be measured
and W (s) is a known proper transfer function with stable poles. Because
the unknown parameters ρ∗, θ∗ appear in a special bilinear form, we refer to
(4.5.1) as the bilinear parametric model.

The procedure of Section 4.3 for estimating θ∗ in a linear model extends
to (4.5.1) with minor modifications when the sgn(ρ∗) is known or when
sgn(ρ∗) and a lower bound ρ0 of |ρ∗| are known. When the sgn(ρ∗) is un-
known the design and analysis of the adaptive laws require some additional
modifications and stability arguments. We treat each case of known and
unknown sgn(ρ∗), ρ0 separately.

4.5.1 Known Sign of ρ∗

The SPR-Lyapunov design approach and the gradient method with an in-
stantaneous cost function discussed in the linear parametric case extend to
the bilinear one in a rather straightforward manner.
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Let us start with the SPR-Lyapunov design approach. We rewrite (4.5.1)
in the form

z = W (s)L(s)ρ∗(θ∗>φ + z1) (4.5.2)

where z1 = L−1(s)z0, φ = L−1(s)ψ and L(s) is chosen so that L−1(s) is
proper and stable and WL is proper and SPR. The estimate ẑ of z and the
normalized estimation error are generated as

ẑ = W (s)L(s)ρ(θ>φ + z1) (4.5.3)

ε = z − ẑ −W (s)L(s)ε n2
s (4.5.4)

where ns is designed to satisfy

φ

m
,

z1

m
∈ L∞, m2 = 1 + n2

s (A2)

and ρ(t), θ(t) are the estimates of ρ∗, θ∗ at time t, respectively. Letting

ρ̃
4
= ρ− ρ∗, θ̃

4
= θ − θ∗, it follows from (4.5.2) to (4.5.4) that

ε = W (s)L(s)[ρ∗θ∗>φ− ρ̃z1 − ρθ>φ− εn2
s]

Now ρ∗θ∗>φ− ρθ>φ = ρ∗θ∗>φ− ρ∗θ>φ + ρ∗θ>φ− ρθ>φ = −ρ∗θ̃>φ− ρ̃θ>φ

and, therefore,

ε = W (s)L(s)[−ρ∗θ̃>φ− ρ̃ξ − εn2
s], ξ = θ>φ + z1 (4.5.5)

A minimal state representation of (4.5.5) is given by

ė = Ace + Bc(−ρ∗θ̃>φ− ρ̃ξ − εn2
s)

ε = C>
c e

(4.5.6)

where C>
c (sI − Ac)−1Bc = W (s)L(s) is SPR. The adaptive law is now de-

veloped by considering the Lyapunov-like function

V (θ̃, ρ̃) =
e>Pce

2
+ |ρ∗| θ̃

>Γ−1θ̃

2
+

ρ̃2

2γ

where Pc = P>
c > 0 satisfies the algebraic equations given by (4.3.32) that

are implied by the KYL Lemma, and Γ = Γ> > 0, γ > 0. Along the solution
of (4.5.6), we have

V̇ = −e>qq>e

2
− ν

2
e>Lce− ρ∗εθ̃>φ− ερ̃ξ − ε2n2

s + |ρ∗|θ̃>Γ−1 ˙̃
θ +

ρ̃ ˙̃ρ
γ
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where ν > 0, Lc = L>c > 0. Because ρ∗ = |ρ∗|sgn(ρ∗) it follows that by
choosing

˙̃
θ = θ̇ = Γεφsgn(ρ∗)
˙̃ρ = ρ̇ = γεξ

(4.5.7)

we have

V̇ = −e>qq>e

2
− ν

2
e>Lce− ε2n2

s ≤ 0

The rest of the analysis continues as in the case of the linear model. We sum-
marize the properties of the bilinear adaptive law by the following theorem.

Theorem 4.5.1 The adaptive law (4.5.7) guarantees that

(i) ε, θ, ρ ∈ L∞.
(ii) ε, εns, θ̇, ρ̇ ∈ L2.
(iii) If φ, φ̇ ∈ L∞, φ is PE and ξ ∈ L2, then θ(t) converges to θ∗ as t →∞.
(iv) If ξ ∈ L2, the estimate ρ converges to a constant ρ̄ independent of the

properties of φ.

Proof The proof of (i) and (ii) follows directly from the properties of V, V̇ by
following the same procedure as in the linear parametric model case and is left as
an exercise for the reader. The proof of (iii) is established by using the results of
Corollary 4.3.1 to show that the homogeneous part of (4.5.6) with ρ̃ξ treated as
an external input together with the equation of θ̃ in (4.5.7) form an e.s. system.
Because ρ̃ξ ∈ L2 and Ac is stable, it follows that e, θ̃ → 0 as t →∞. The details of
the proof are given in Section 4.8. The proof of (iv) follows from ε, ξ ∈ L2 and the
inequality

∫ t

0

|ρ̇|dτ ≤ γ

∫ t

0

|εξ|dτ ≤ γ

(∫ ∞

0

ε2dτ

) 1
2

(∫ ∞

0

ξ2dτ

) 1
2

< ∞

which implies that ρ̇ ∈ L1. Therefore, we conclude that ρ(t) has a limit ρ̄, i.e.,
limt→∞ ρ(t) = ρ̄. 2

The lack of convergence of ρ to ρ∗ is due to ξ ∈ L2. If, however, φ, ξ

are such that φα
4
= [φ>, ξ]> is PE, then we can establish by following the

same approach as in the proof of Corollary 4.3.1 that θ̃, ρ̃ converge to zero
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exponentially fast. For ξ ∈ L2, the vector φα cannot be PE even when φ is
PE.

For the gradient method we rewrite (4.5.1) as

z = ρ∗(θ∗>φ + z1) (4.5.8)

where z1 = W (s)z0, φ = W (s)ψ. Then the estimate ẑ of z and the normal-
ized estimation error ε are given by

ẑ = ρ(θ>φ + z1)

ε =
z − ẑ

m2
=

z − ρ(θ>φ + z1)
m2

(4.5.9)

where n2
s is chosen so that

φ

m
,

z1

m
∈ L∞, m2 = 1 + n2

s (A2)

As in the case of the linear model, we consider the cost function

J(ρ, θ) =
ε2m2

2
=

(z − ρ∗θ>φ− ρξ + ρ∗ξ − ρ∗z1)2

2m2

where ξ = θ>φ+z1 and the second equality is obtained by using the identity
−ρ(θ>φ+ z1) = −ρξ− ρ∗θ>φ+ ρ∗ξ− ρ∗z1. Strictly speaking J(ρ, θ) is not a
convex function of ρ, θ over Rn+1 because of the dependence of ξ on θ. Let
us, however, ignore this dependence and treat ξ as an independent function
of time. Using the gradient method and treating ξ as an arbitrary function
of time, we obtain

θ̇ = Γ1ρ
∗εφ, ρ̇ = γεξ (4.5.10)

where Γ1 = Γ>1 > 0, γ > 0 are the adaptive gains. The adaptive law (4.5.10)
cannot be implemented due to the unknown ρ∗. We go around this difficulty
as follows: Because Γ1 is arbitrary, we assume that Γ1 = Γ

|ρ∗| for some other
arbitrary matrix Γ = Γ> > 0 and use it together with ρ∗ = |ρ∗|sgn(ρ∗) to
get rid of the unknown parameter ρ∗, i.e., Γ1ρ

∗ = Γ
|ρ∗|ρ

∗ = Γsgn(ρ∗) leading
to

θ̇ = Γεφsgn(ρ∗), ρ̇ = γεξ (4.5.11)

which is implementable. The properties of (4.5.11) are given by the following
theorem.
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Theorem 4.5.2 The adaptive law (4.5.11) guarantees that

(i) ε, εns, θ, θ̇, ρ, ρ̇ ∈ L∞.
(ii) ε, εns, θ̇, ρ̇ ∈ L2.
(iii) If ns, φ ∈ L∞, φ is PE and ξ ∈ L2, then θ(t) converges to θ∗ as t→∞.
(iv) If ξ ∈ L2, then ρ converges to a constant ρ̄ as t → ∞ independent of

the properties of φ.

The proof follows from that of the linear parametric model and of The-
orem 4.5.1, and is left as an exercise for the reader.

The extension of the integral adaptive law and least-squares algorithm to
the bilinear parametric model is more complicated and difficult to implement
due to the appearance of the unknown ρ∗ in the adaptive laws. This problem
is avoided by assuming the knowledge of a lower bound for |ρ∗| in addition
to sgn(ρ∗) as discussed in the next section.

4.5.2 Sign of ρ∗ and Lower Bound ρ0 Are Known

The complications with the bilinearity in (4.5.1) are avoided if we rewrite
(4.5.1) in the form of the linear parametric model

z = θ̄∗>φ̄ (4.5.12)

where θ̄∗ = [θ̄∗1, θ̄∗>2 ]>, φ̄ = [z1, φ
>]>, and θ̄∗1 = ρ∗, θ̄∗2 = ρ∗θ∗. We can now

use the methods of Section 4.3 to generate the estimate θ̄(t) of θ̄∗ at each
time t. From the estimate θ̄ = [θ̄1, θ̄

>
2 ]> of θ̄∗, we calculate the estimate ρ, θ

of ρ∗, θ∗ as follows:

ρ(t) = θ̄1(t), θ(t) =
θ̄2(t)
θ̄1(t)

(4.5.13)

The possibility of division by zero or a small number in (4.5.13) is avoided
by constraining the estimate of θ̄1 to satisfy |θ̄1(t)| ≥ ρ0 > 0 for some
ρ0 ≤ |ρ∗|. This is achieved by using the gradient projection method and
assuming that ρ0 and sgn(ρ∗) are known. We illustrate the design of such a
gradient algorithm as follows:

By considering (4.5.12) and following the procedure of Section 4.3, we
generate

ẑ = θ̄>φ̄, ε =
z − ẑ

m2
(4.5.14)
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where m2 = 1+n2
s and ns is chosen so that φ̄/m ∈ L∞, e.g. n2

s = φ̄>φ̄. The
adaptive law is developed by using the gradient projection method to solve
the constrained minimization problem

min
θ̄

J(θ̄) = min
θ̄

(z − θ̄>φ̄)2

2m2

subject to ρ0 − θ̄1sgn(ρ∗) ≤ 0

i.e.,

˙̄θ =





Γεφ̄ if ρ0 − θ̄1sgn(ρ∗) < 0
or if ρ0 − θ̄1sgn(ρ∗) = 0 and (Γεφ̄)>∇g ≤ 0

Γεφ̄− Γ ∇g∇g>
∇g>Γ∇g

Γεφ̄ otherwise
(4.5.15)

where g(θ̄) = ρ0 − θ̄1sgn(ρ∗). For simplicity, let us assume that Γ =
diag{γ1, Γ2} where γ1 > 0 is a scalar and Γ2 = Γ>2 > 0 and simplify the
expressions in (4.5.15). Because

∇g = [−sgn(ρ∗), 0, . . . , 0]>

it follows from (4.5.15) that

˙̄θ1 =





γ1εφ̄1 if θ̄1sgn(ρ∗) > ρ0

or if θ̄1sgn(ρ∗) = ρ0 and −γ1φ̄1εsgn(ρ∗) ≤ 0
0 otherwise

(4.5.16)

where θ̄1(0) satisfies θ̄1(0)sgn(ρ∗) ≥ ρ0, and

˙̄θ2 = Γ2εφ̄2 (4.5.17)

where φ̄1
4
= z1, φ̄2

4
= φ.

Because θ̄1(t) is guaranteed by the projection to satisfy |θ̄1(t)| ≥ ρ0 > 0,
the estimate ρ(t), θ(t) can be calculated using (4.5.13) without the possibility
of division by zero. The properties of the adaptive law (4.5.16), (4.5.17) with
(4.5.13) are summarized by the following theorem.

Theorem 4.5.3 The adaptive law described by (4.5.13), (4.5.16), (4.5.17)
guarantees that
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(i) ε, εns, ρ, θ, ρ̇, θ̇ ∈ L∞.
(ii) ε, εns, ρ̇, θ̇ ∈ L2.
(iii) If ns, φ̄ ∈ L∞ and φ̄ is PE, then θ̄, θ, ρ converge to θ̄∗, θ∗, ρ∗, respec-

tively, exponentially fast.

Proof Consider the Lyapunov-like function

V =
˜̄θ
2

1

2γ1
+

˜̄θ
>
2 Γ−1

2
˜̄θ2

2

where ˜̄θ1
4
= θ̄1 − θ̄∗1 , ˜̄θ2

4
= θ̄2 − θ̄∗2 . Then along the solution of (4.5.16), (4.5.17), we

have

V̇ =





−ε2m2 if θ̄1sgn(ρ∗) > ρ0

or if θ̄1sgn(ρ∗) = ρ0 and −γ1φ̄1εsgn(ρ∗) ≤ 0
˜̄θ
>
2 φ̄2ε if θ̄1sgn(ρ∗) = ρ0 and −γ1φ̄1εsgn(ρ∗) > 0

(4.5.18)

Because εm2 = −˜̄θ
>

φ̄ = −˜̄θ1φ̄1 − ˜̄θ
>
2 φ̄2, we have ˜̄θ

>
2 φ̄2ε = −ε2m2 − ˜̄θ1εφ̄1. For

θ̄1sgn(ρ∗) = ρ0 (i.e., θ̄1 = ρ0sgn(ρ∗)) and −γ1φ̄1εsgn(ρ∗) > 0, we have ˜̄θ1φ̄1ε =
(ρ0sgn(ρ∗)− |ρ∗|sgn(ρ∗))φ̄1ε = (ρ0− |ρ∗|)sgn(ρ∗)φ̄1ε > 0 (because ρ0− |ρ∗| < 0 and
sgn(ρ∗)φ̄1ε < 0), which implies that

ε˜̄θ
>
2 φ̄2 = −ε2m2 − εφ̄1(ρ0 − |ρ∗|)sgn(ρ∗) < −ε2m2

Therefore, projection introduces the additional term −εφ̄1(ρ0 − |ρ∗|)sgn(ρ∗) that

can only make V̇ more negative. Substituting for ε˜̄θ
>
2 φ̄2 < −ε2m2 in (4.5.18) we

have
V̇ ≤ −ε2m2

which implies that θ̄1, θ̄2 ∈ L∞; ε, εns ∈ L∞
⋂L2.

Because φ̄/m ∈ L∞ and εm ∈ L∞
⋂L2, it follows from (4.5.16), (4.5.17) that

˙̄θi ∈ L∞
⋂L2, i = 1, 2.

Using (4.5.13), we have ρ̇ = ˙̄θ1, θ̇ =
˙̄θ2
θ̄1
− ˙̄θ1θ̄2

θ̄2
1

, which, together with ˙̄θi ∈
L∞

⋂L2, i = 1, 2, |θ̄1| ≥ ρ0 > 0, imply that ρ̇, θ̇ ∈ L∞
⋂L2.

The convergence of θ̄ to θ̄∗ follows from that of Theorem 4.3.2 (iii) and the fact
that projection can only make V̇ more negative. The convergence of θ, ρ to θ∗, ρ∗

follows from that of θ̄∗, equation (4.5.13), assumption |θ̄∗1 | ≥ ρ0 and |θ̄1(t)| > ρ0

∀t ≥ 0. 2

In a similar manner one may use (4.5.12) and (4.5.13) to derive adaptive
laws using the integral cost function and least-squares with θ̄1 constrained
to satisfy |θ̄1(t)| ≥ ρ0 > 0 ∀t ≥ 0.
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4.5.3 Unknown Sign of ρ∗

The problem of designing adaptive laws for the bilinear model (4.5.1) with
sgn(ρ∗) unknown was motivated by Morse [155] in the context of MRAC
where such an estimation problem arises. Morse conjectured that the sgn(ρ∗)
is necessary for designing appropriate adaptive control laws used to solve
the stabilization problem in MRAC. Nussbaum [179] used a simple example
to show that although Morse’s conjecture was valid for a class of adaptive
control laws, the sgn(ρ∗) is not necessary for stabilization in MRAC if a
different class of adaptive or control laws is employed. This led to a series of
results on MRAC [137, 156, 157, 167, 236] where the sgn(ρ∗) was no longer
required to be known.

In our case, we use the techniques of [179] to develop adaptive laws for
the bilinear model (4.5.1) that do not require the knowledge of sgn(ρ∗). The
design and analysis of these adaptive laws is motivated purely from stability
arguments that differ from those used when sgn(ρ∗) is known.

We start with the parametric model

z = ρ∗(θ∗>φ + z1)

and generate ẑ, ε as

ẑ = N(x)ρ(θ>φ + z1), ε =
z − ẑ

m2

where m2 = 1 + n2
s is designed so that φ

m , z1
m ∈ L∞,

N(x) = x2 cosx (4.5.19)

x is generated from

x = w +
ρ2

2γ
; ẇ = ε2m2, w(0) = 0 (4.5.20)

where γ > 0. The following adaptive laws are proposed for generating ρ, θ:

θ̇ = N(x)Γεφ, ρ̇ = N(x)γεξ (4.5.21)

where ξ = θ>φ + z1. The function N(x) plays the role of an adaptive gain
in (4.5.21) and has often been referred to as the Nussbaum gain. Roughly
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speaking, N(x) accounts for the unknown sign of ρ∗ by changing the sign of
the vector field of θ, ρ periodically with respect to the signal x.

The design of (4.5.19) to (4.5.21) is motivated from the analysis that is
given in the proof of the following theorem, which states the properties of
(4.5.19) to (4.5.21).

Theorem 4.5.4 The adaptive law (4.5.19) to (4.5.21) guarantees that

(i) x,w, θ, ρ ∈ L∞
(ii) ε, εns, θ̇, ρ̇ ∈ L∞

⋂L2

Proof We start by expressing the normalized estimation error ε in terms of the
parameter error θ̃, i.e.,

εm2 = z − ẑ

= ρ∗θ∗>φ + ρ∗z1 − ρ∗θ>φ− ρ∗z1 + ρ∗ξ −N(x)ρξ

= −ρ∗θ̃>φ + ρ∗ξ −N(x)ρξ (4.5.22)

We choose the function

V =
θ̃>Γ−1θ̃

2
whose time derivative along the solution of (4.5.21) is given by

V̇ = θ̃>φεN(x) (4.5.23)

Substituting θ̃>φ = 1
ρ∗ [−εm2 +ρ∗ξ−N(x)ρξ] from (4.5.22) into (4.5.23), we obtain

V̇ = −N(x)
ρ∗

[ε2m2 − ρ∗εξ + N(x)ρεξ]

or

V̇ = −N(x)
ρ∗

[
ε2m2 +

ρρ̇

γ

]
+

ρ̇

γ

From (4.5.20), we have ẋ = ε2m2 + ρρ̇
γ which we use to rewrite V̇ as

V̇ = −N(x)ẋ
ρ∗

+
ρ̇

γ
(4.5.24)

Integrating (4.5.24) on both sides we obtain

V (t)− V (0) =
ρ(t)− ρ(0)

γ
− 1

ρ∗

∫ x(t)

0

N(σ)dσ
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Because N(x) = x2 cos x and
∫ x(t)

0
σ2 cosσdσ = 2x cosx + (x2 − 2) sin x, it follows

that

V (t)− V (0) =
ρ(t)− ρ(0)

γ
− 1

ρ∗
[2x cos x + (x2 − 2) sin x] (4.5.25)

From x = w + ρ2

2γ and w ≥ 0, we conclude that x(t) ≥ 0. Examination of (4.5.25)
shows that for large x, the term x2 sin x dominates the right-hand side of (4.5.25)
and oscillates between −x2 and x2. Because

V (t) = V (0) +
ρ(t)− ρ(0)

γ
− 1

ρ∗
[2x cosx− 2 sin x]− x2 sinx

ρ∗

and V (t) ≥ 0, it follows that x has to be bounded, otherwise the inequality V ≥ 0
will be violated for large x. Bounded x implies that V,w, ρ, θ ∈ L∞. Because w(t) =∫ t

0
ε2m2dt is a nondecreasing function bounded from above, the limt→∞ w(t) =∫∞

0
ε2m2dt exists and is finite which implies that εm ∈ L2, i.e., ε, εns ∈ L2. The

rest of the proof follows directly as in the case of the linear parametric model and
is omitted. 2

4.6 Hybrid Adaptive Laws

The adaptive laws developed in Sections 4.3 to 4.5 update the estimate θ(t)
of the unknown parameter vector θ∗ continuously with time, i.e., at each
time t we have a new estimate. For computational and robustness reasons it
may be desirable to update the estimates only at specific instants of time tk
where {tk} is an unbounded monotonically increasing sequence in R+. Let
tk = kTs where Ts = tk+1 − tk is the “sampling” period and k = 0, 1, 2, . . . ,.
Consider the design of an adaptive law that generates the estimate of the
unknown θ∗ at the discrete instances of time t = 0, Ts, 2Ts, · · · .

We can develop such an adaptive law for the gradient algorithm

θ̇ = Γεφ (4.6.1)

ε =
z − ẑ

m2
(4.6.2)

where z is the output of the linear parametric model

z = θ∗T φ
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and
ẑ = θ>φ (4.6.3)

Integrating (4.6.1) from tk = kTs to tk+1 = (k + 1)Ts we have

θk+1 = θk + Γ
∫ tk+1

tk

ε(τ)φ(τ)dτ, θ0 = θ(0), k = 0, 1, 2, . . . (4.6.4)

where θk
4
= θ(tk). Equation (4.6.4) generates a sequence of estimates, i.e.,

θ0 = θ(0), θ1 = θ(Ts), θ2 = θ(2Ts), . . . , θk = θ(kTs) of θ∗.
If we now use (4.6.4) instead of (4.6.1) to estimate θ∗, the error ε and ẑ

have to be generated using θk instead of θ(t), i.e.,

ẑ(t) = θ>k φ(t), ε(t) =
z(t)− ẑ(t)

m2(t)
, ∀t ∈ [tk, tk+1] (4.6.5)

We refer to (4.6.4), (4.6.5) as the hybrid adaptive law. The following
theorem establishes its stability properties.

Theorem 4.6.1 Let m,Ts,Γ be chosen so that

(a) φ>φ
m2 ≤ 1, m ≥ 1

(b) 2− Tsλm ≥ γ for some γ > 0

where λm = λmax(Γ). Then the hybrid adaptive law (4.6.4), (4.6.5) guaran-
tees that

(i) θk ∈ l∞.
(ii) ∆θk ∈ l2; ε, εm ∈ L∞

⋂L2, where ∆θk = θk+1 − θk.
(iii) If m,φ ∈ L∞ and φ is PE, then θk → θ∗ as k →∞ exponentially fast.

Proof As in the stability proof for the continuous adaptive laws, we evaluate the
rate of change of the Lyapunov-like function

V (k) = θ̃>k Γ−1θ̃k (4.6.6)

along the trajectory generated by (4.6.4) and (4.6.5), where θ̃k
4
= θk − θ∗. Notice

that
∆V (k) = (2θ̃k + ∆θk)>Γ−1∆θk
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where ∆V (k) = V (k + 1)− V (k). Using (4.6.4) we obtain

∆V (k) = 2θ̃>k

∫ tk+1

tk

ε(τ)φ(τ)dτ +
(∫ tk+1

tk

ε(τ)φ(τ)dτ

)>
Γ

∫ tk+1

tk

ε(τ)φ(τ)dτ

Because εm2 = −θ̃>k φ(t) and λm ≥ ‖Γ‖, we have

∆V (k) ≤ −2
∫ tk+1

tk

ε2(τ)m2(τ)dτ + λm

(∫ tk+1

tk

|ε(τ)m(τ)| |φ(τ)|
m(τ)

dτ

)2

(4.6.7)

Using the Schwartz inequality, we can establish that

(∫ tk+1

tk

|ε(τ)m(τ)| |φ(τ)|
m(τ)

dτ

)2

≤
∫ tk+1

tk

ε2(τ)m2(τ)dτ

∫ tk+1

tk

( |φ(τ)|
m(τ)

)2

dτ

≤ Ts

∫ tk+1

tk

ε2(τ)m2(τ)dτ (4.6.8)

where the last inequality follows from assumption (a). Using (4.6.8) in (4.6.7), it
follows that

∆V (k) ≤ −(2− Tsλm)
∫ tk+1

tk

ε2(τ)m2(τ)dτ (4.6.9)

Therefore, if 2 − Tsλm > γ for some γ > 0, we have ∆V (k) ≤ 0, which implies
that V (k) is a nonincreasing function and thus the boundedness of V (k), θ̃k and θk

follows. From (4.6.9), one can easily see that
∫ tk+1

0

ε2(τ)m2(τ)dτ ≤ V (0)− V (k + 1)
(2− Tsλm)

(4.6.10)

We can establish that limk→∞ V (k + 1) exists and, from (4.6.10), that εm ∈
L∞

⋂L2. Because m ≥ 1, it follows immediately that ε ∈ L∞
⋂L2.

Similarly, we can obtain that

∆θ>k ∆θk ≤ Tsλ
2
m

∫ tk+1

tk

ε2(τ)m2(τ)dτ (4.6.11)

by using the Schwartz inequality and condition (a) of the theorem. Therefore,

∞∑

k=1

∆θ>k ∆θk ≤ Tsλ
2
m

∫ ∞

0

ε2(τ)m2(τ)dτ < ∞

which implies ∆θk ∈ l2 and, thus, completes the proof for (i) and (ii).
The proof for (iii) is relatively involved and is given in Section 4.8. 2
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For additional reading on hybrid adaptation the reader is referred to [60]
where the term hybrid was first introduced and to [172, 173] where different
hybrid algorithms are introduced and analyzed.

The hybrid adaptive law (4.6.4) may be modified to guarantee that
θk ∈ Rn belongs to a certain convex subset S of Rn by using the gradi-
ent projection method. That is, if S is defined as

S =
{

θ ∈ Rn| θ>θ ≤ M2
0

}

then the hybrid adaptive law (4.6.4) with projection becomes

θ̄k+1 = θk + Γ
∫ tk+1

tk

ε(τ)φ(τ)dτ

θk+1 =

{
θ̄k+1 if θ̄k+1 ∈ S
θ̄k+1

|θ̄k+1|M0 if θ̄k+1 6∈ S

and θ0 ∈ S. As in the continuous-time case, it can be shown that the hybrid
adaptive law with projection has the same properties as those of (4.6.4). In
addition it guarantees that θk ∈ S, ∀k ≥ 0. The details of this analysis are
left as an exercise for the reader.

4.7 Summary of Adaptive Laws

In this section, we present tables with the adaptive laws developed in the
previous sections together with their properties.

4.8 Parameter Convergence Proofs

In this section, we present the proofs of the theorems and corollaries of the previous
sections that deal with parameter convergence. These proofs are useful for the
reader who is interested in studying the behavior and convergence properties of the
parameter estimates. They can be omitted by the reader whose interest is mainly on
adaptive control where parameter convergence is not part of the control objective.

4.8.1 Useful Lemmas

The following two lemmas are used in the proofs of corollaries and theorems pre-
sented in this sections.
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Table 4.1 Adaptive law based on SPR-Lyapunov design approach

Parametric model z = W (s)θ∗>ψ

Parametric model
rewritten

z = W (s)L(s)θ∗>φ, φ = L−1(s)ψ

Estimation model ẑ = W (s)L(s)θ>φ

Normalized
estimation error

ε = z − ẑ −W (s)L(s)εn2
s

Adaptive law θ̇ = Γεφ

Design variables L−1(s) proper and stable; W (s)L(s) proper and
SPR; m2 = 1 + n2

s and ns chosen so that φ
m∈ L∞

(e. g., n2
s = αφ>φ for some α > 0)

Properties (i) ε, θ ∈ L∞; (ii) ε, εns, θ̇ ∈ L2

Lemma 4.8.1 (Uniform Complete Observability (UCO) with Output In-
jection). Assume that there exists constants ν > 0, kν ≥ 0 such that for all t0 ≥ 0,
K(t) ∈ Rn×l satisfies the inequality

∫ t0+ν

t0

|K(τ)|2dτ ≤ kν (4.8.1)

∀t ≥ 0 and some constants k0, ν > 0. Then (C, A), where C ∈ Rn×l, A ∈ Rn×n, is
a UCO pair if and only if (C, A + KC>) is a UCO pair.

Proof We show that if there exist positive constants β1, β2 > 0 such that the
observability grammian N(t0, t0 + ν) of the system (C,A) satisfies

β1I ≤ N(t0, t0 + ν) ≤ β2I (4.8.2)

then the observability grammian N1(t0, t0 + ν) of (C, A + KC>) satisfies

β
′
1I ≤ N1(t0, t0 + ν) ≤ β

′
2I (4.8.3)

for some constant β
′
1, β

′
2 > 0. From the definition of the observability grammian

matrix, (4.8.3) is equivalent to
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Table 4.2 Gradient algorithms

Parametric model z = θ∗>φ

Estimation model ẑ = θ>φ

Normalized
estimation error ε =

z − ẑ

m2

A. Based on instantaneous cost

Adaptive law θ̇ = Γεφ

Design variables m2 = 1 + n2
s, n

2
s = αφ>φ, α > 0, Γ = Γ> > 0

Properties (i) ε, εns, θ, θ̇ ∈ L∞; (ii) ε, εns, θ̇ ∈ L2

B. Based on the integral cost

Adaptive law θ̇ = −Γ(Rθ + Q)
Ṙ = −βR + φφ>

m2 , R(0) = 0
Q̇ = −βQ− zφ

m2 , Q(0) = 0

Design variables m2 =1+n2
s, ns chosen so that φ/m ∈ L∞ (e.

g., n2
s = αφ>φ, α > 0 ); β > 0, Γ = Γ> > 0

Properties (i) ε, εns, θ, θ̇, R,Q ∈ L∞; (ii) ε, εns, θ̇ ∈ L2 ;
(iii) limt→∞ θ̇ = 0

β
′
1|x1(t0)|2 ≤

∫ t0+ν

t0

|C>(t)x1(t)|2dt ≤ β
′
2|x1(t0)|2 (4.8.4)

where x1 is the state of the system

ẋ1 = (A + KC>)x1

y1 = C>x1
(4.8.5)

which is obtained, using output injection, from the system

Table 4.3 Least-squares algorithms
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Parametric model z = θ∗>φ

Estimation model ẑ = θ>φ

Normalized
estimation error

ε = (z − ẑ)/m2

A. Pure least-squares

Adaptive law θ̇ = Pεφ

Ṗ = −P φφ>
m2 P, P (0) = P0

Design variables P0 = P>
0 > 0; m2 = 1 + n2

s ns chosen so that
φ/m ∈ L∞ (e.g., n2

s = αφ>φ, α > 0 or n2
s =

φ>Pφ)

Properties
(i) ε, εns, θ, θ̇, P ∈ L∞; (ii) ε, εns, θ̇ ∈ L2; (iii)

limt→∞ θ(t) = θ̄

B. Least-squares with covariance resetting

Adaptive law
θ̇ = Pεφ

Ṗ = −P φφ>
m2 P, P (t+r ) = P0 = ρ0I,

where tr is the time for which λmin(P ) ≤ ρ1

Design variables ρ0 > ρ1 > 0; m2 = 1 + n2
s, ns chosen so that

φ/m ∈ L∞ (e.g., n2
s = αφ>φ, α > 0 )

Properties (i) ε, εns, θ, θ̇, P ∈ L∞; (ii) ε, εns, θ̇ ∈ L2

C. Least-squares with forgetting factor

Adaptive law θ̇ = Pεφ

Ṗ =

{
βP − P φφ>

m2 P, if ‖P (t)‖ ≤ R0

0 otherwise

P (0) = P0

Design variables m2 = 1+n2
s, n2

s = αφ>φ or φ>Pφ; β > 0, R0 >
0 scalars; P0 = P>

0 > 0, ‖P0‖ ≤ R0

Properties (i) ε, εns, θ, θ̇, P ∈ L∞; (ii) ε, εns, θ̇ ∈ L2
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Table 4.4 Adaptive laws for the bilinear model

Parametric model : z = W (s)ρ∗(θ∗>ψ + z0)
A. SPR-Lyapunov design: sign of ρ∗ known

Parametric model
rewritten

z = W (s)L(s)ρ∗(θ∗>φ + z1)
φ = L−1(s)ψ, z1 = L−1(s)z0

Estimation model ẑ = W (s)L(s)ρ(θ>φ + z1)
Normalized
estimation error

ε = z − ẑ −W (s)L(s)εn2
s

Adaptive law
θ̇ = Γεφsgn(ρ∗)
ρ̇ = γεξ, ξ = θ>φ + z1

Design variables L−1(s) proper and stable; W (s)L(s) proper and
SPR; m2 = 1+n2

s; ns chosen so that φ
m , z1

m ∈ L∞
(e.g. n2

s = α(φ>φ+z2
1), α > 0); Γ = Γ> > 0, γ > 0

Properties (i) ε, θ, ρ ∈ L∞; (ii) ε, εns, θ̇, ρ̇ ∈ L2

B. Gradient algorithm: sign(ρ∗) known
Parametric model
rewritten

z = ρ∗(θ∗>φ + z1)
φ = W (s)ψ, z1 = W (s)z0

Estimation model ẑ = ρ(θ>φ + z1)
Normalized
estimation error

ε =
z − ẑ

m2

Adaptive law
θ̇ = Γεφsgn(ρ∗)
ρ̇ = γεξ, ξ = θ>φ + z1

Design variables m2 = 1 + n2
s; ns chosen so that φ

m , z1
m ∈ L∞ (e.g.,

n2
s = φ>φ + z2

1); Γ = Γ> > 0, γ > 0

Properties (i) ε, εns, θ, ρ, θ̇, ρ̇ ∈ L∞; (ii) ε, εns, θ̇, ρ̇ ∈ L2

ẋ = Ax
y = C>x

(4.8.6)

Form (4.8.5) and (4.8.6), it follows that e
4
= x1 − x satisfies

ė = Ae + KC>x1
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Table 4.4 (Continued)
C. Gradient algorithm with projection

Sign (ρ∗) and lower bound 0 < ρ0 ≤ |ρ∗| known

Parametric model
rewritten

z = θ̄∗>φ̄

θ̄∗ = [θ̄∗1, θ̄∗>2 ]>, θ̄∗1 = ρ∗, θ̄∗2 = ρ∗θ∗

φ̄ = [z1, φ
>]>

Estimation model ẑ = θ̄>φ̄

Normalized
estimation error

ε =
z − ẑ

m2

Adaptive law

˙̄θ1 =





γ1εz1 if θ̄1sgn(ρ∗) > ρ0 or
if θ̄1sgn(ρ∗)=ρ0 and −γ1z1εsgn(ρ∗)≤0

0 otherwise
˙̄θ2 = Γ2εφ

ρ = θ̄1, θ = θ̄2

θ̄1

Design variables

m2 = 1+n2
s; ns chosen so that φ̄

m ∈ L∞ (e.g., n2
s =

αφ̄>φ̄, α > 0 ); γ1 > 0; θ̄1(0) satisfies |θ̄1(0)| ≥ ρ0;
Γ2 = Γ>2 > 0, γ > 0

Properties (i) ε, εns, θ, ρ, θ̇, ρ̇ ∈ L∞; (ii) ε, εns, θ̇, ρ̇ ∈ L2

D. Gradient algorithm without projection
Unknown sign (ρ∗)

Parametric model z = ρ∗(θ∗>φ + z1)

Estimation model
ẑ = N(x)ρ(θ>φ + z1)
N(x) = x2 cosx

x = w + ρ2

2γ , ẇ = ε2m2, w(0) = 0

Normalized
estimation error

ε =
z − ẑ

m2

Adaptive law
θ̇ = N(x)Γεφ

ρ̇ = N(x)γεξ, ξ = θ>φ + z1

Design variables m2 = 1+n2
s; ns chosen so that φ

m , z1
m ∈ L∞; (e.g.,

n2
s = φ>φ + z2

1); γ > 0,Γ = Γ> > 0

Properties (i) ε, εns, θ, ρ, θ̇, ρ̇, x, w ∈ L∞; (ii) ε, εns, θ̇, ρ̇ ∈ L2
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Table 4.5. Hybrid adaptive law

Parametric model z = θ∗>φ

Estimation model ẑ = θ>k φ, t ∈ [tk, tk+1)

Normalized
estimation error ε =

z − ẑ

m2

Adaptive law θk+1 = θk+Γ
∫ tk+1
tk

ε(τ)φ(τ)dτ, k = 0, 1, 2, . . . ,

Design variables Sampling period Ts = tk+1− tk > 0, tk = kTs;
m2 = 1 + n2

s and ns chosen so that |φ|/m ≤ 1
(e.g., n2

s = αφ>φ, α ≥ 1 )
Γ = Γ> > 0
2− Tsλmax(Γ) > γ for some constant γ > 0

Properties (i) θk ∈ l∞, ε, εns ∈ L∞
(ii) |θk+1 − θk| ∈ l2 ; ε, εns ∈ L2

Consider the trajectories x(t) and x1(t) with the same initial conditions. We
have

e(t) =
∫ t

t0

Φ(t, τ)K(τ)C>(τ)x1(τ)dτ (4.8.7)

where Φ is the state transition matrix of (4.8.6). Defining

x̄1
4
=

{
KC>x1/|KC>x1| if |C>x1| 6= 0
K/|K| if |C>x1| = 0

we obtain, using the Schwartz inequality, that

|C>(t)e(t)|2 ≤
∫ t

t0

∣∣C>(t)Φ(t, τ)K(τ)C>(τ)x1(τ)
∣∣2 dτ

≤
∫ t

t0

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2 |K(τ)|2dτ

∫ t

t0

∣∣C>(τ)x1(τ)
∣∣2 dτ (4.8.8)
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Using the triangular inequality (a + b)2 ≤ 2a2 + 2b2 and (4.8.8), we have
∫ t0+ν

t0

|C>(t)x1(t)|2dt ≤ 2
∫ t0+ν

t0

|C>(t)x(t)|2dt + 2
∫ t0+ν

t0

|C>(t)e(t)|2dt

≤ 2
∫ t0+ν

t0

|C>(t)x(t)|2dt

+2
∫ t0+ν

t0

∫ t

t0

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2 |K(τ)|2dτ

∫ t

t0

∣∣C>(τ)x1(τ)
∣∣2 dτdt

≤ 2β2|x1(t0)|2

+2
∫ t0+ν

t0

∫ t

t0

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2 |K(τ)|2dτ

∫ t

t0

∣∣C>(τ)x1(τ)
∣∣2 dτdt

where the last inequality is obtained using the UCO property of (C,A) and the
condition that x(t0) = x1(t0). Applying the B-G Lemma, we obtain

∫ t0+ν

t0

|C>(t)x1(t)|2dt≤2β2|x1(t0)|2e
{∫ t0+ν

t0

∫ t

t0
2|C>(t)Φ(t,τ)x̄1(τ)|2|K(τ)|2dτdt

}
(4.8.9)

By interchanging the sequence of integration, we have
∫ t0+ν

t0

∫ t

t0

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2|K(τ)|2dτdt=

∫ t0+ν

t0

∫ t0+ν

τ

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2dt|K(τ)|2dτ

Because (C, A) being UCO and |x̄1| = 1 imply that
∫ t0+ν

τ

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2 dt ≤

∫ t0+ν

t0

∣∣C>(t)Φ(t, τ)
∣∣2 dt ≤ β2

for any t0 ≤ τ ≤ t0 + ν, it follows from (4.8.1) and the above two equations that
∫ t0+ν

t0

∫ t

t0

∣∣C>(t)Φ(t, τ)x̄1(τ)
∣∣2 |K(τ)|2dτdt ≤ kνβ2 (4.8.10)

and, therefore, (4.8.9) leads to
∫ t0+ν

t0

|C>(t)x1(t)|2dt ≤ 2β2e
2β2kν |x1(t0)|2 (4.8.11)

On the other hand, using x1 = x+e and the triangular inequality (a+b)2 ≥ 1
2a2−b2,

we have
∫ t0+ν

t0

|C>(t)x1(t)|2dt ≥ 1
2

∫ t0+ν

t0

|C>(t)x(t)|2dt−
∫ t0+ν

t0

|C>(t)e(t)|2dt

≥ β1

2
|x1(t0)|2 −

∫ t0+ν

t0

|C>(t)e(t)|2dt (4.8.12)
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where the last inequality is obtained using the UCO property of (C, A) and the fact
x(t0) = x1(t0). Substituting (4.8.8) for |C>e|2, we obtain

∫ t0+ν

t0

|C>(t)x1(t)|2dt ≥ β1

2
|x1(t0)|2

−
(∫ t0+ν

t0

|C>(t)x1(t)|2dt

) ∫ t0+ν

t0

∫ t

t0

|C>(t)Φ(t, τ)x̄1(τ)|2|K(τ)|2dτdt

by using the fact that

∫ t

t0

|C>(τ)x1(τ)|2dτ ≤
∫ t0+ν

t0

|C>(τ)x1(τ)|2dτ

for any t ≤ t0 + ν. Using (4.8.10), we have

∫ t0+ν

t0

|C>(t)x1(t)|2dt ≥ β1

2
|x1(t0)|2 − β2kν

∫ t0+ν

t0

|C>(t)x1(t)|2dt

or ∫ t0+ν

t0

|C>(t)x1(t)|2dt ≥ β1

2(1 + β2kν)
|x1(t0)|2 (4.8.13)

Setting β
′
1 = β1

2(1+β2kν) , β
′
2 = 2β2e

2β2kν , we have shown that (4.8.4) holds for

β
′
1, β

′
2 > 0 and therefore (C, A + KC>) is UCO, and, hence, the if part of the

lemma is proved.
The proof for the only if part is exactly the same as the if part since (C, A) can

be obtained from (C, A + KC>) using output injection. 2

Lemma 4.8.2 Let H(s) be a proper stable transfer function and y = H(s)u. If
u ∈ L∞, then ∫ t+T

t

y2(τ)dτ ≤ k1

∫ t+T

t

u2(τ)dτ + k2

for some constants k1, k2 ≥ 0 and any t ≥ 0, T > 0. Furthermore, if H(s) is strictly
proper, then k1 ≤ α‖H(s)‖2∞ for some constant α > 0.

Proof Let us define

fS(τ) =
{

f(τ) if τ ∈ S
0 otherwise

where S ⊂ R is a subset of R that can be an open or closed interval. Then we can
write

u(τ) = u[0,t)(τ) + u[t,t+T ](τ), ∀0 ≤ τ ≤ t + T
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Because H(s) can be decomposed as H(s) = h0 +H1(s) where h0 is a constant and
H1(s) is strictly proper, we can express y = H(s)u as

y(τ) = h0u(τ)+H1(s)
{
u[0,t) + u[t,t+T ]

} 4
= h0u(τ)+y1(τ)+y2(τ), ∀0 ≤ τ ≤ t+T

where y1
4
= H1(s)u[0,t), y2

4
= H1(s)u[t,t+T ]. Therefore, using the inequality

(a + b + c)2 ≤ 3a2 + 3b2 + 3c2

we have
∫ t+T

t

y2(τ)dτ ≤ 3h2
0

∫ t+T

t

u2(τ)dτ + 3
∫ t+T

t

y2
1(τ)dτ + 3

∫ t+T

t

y2
2(τ)dτ (4.8.14)

Using Lemma 3.3.1, Remark 3.3.2, and noting that y2(τ) = 0 for all τ < t, we have
∫ t+T

t

y2
2(τ)dτ =

∫ t+T

0

y2
2(τ)dτ

4
= ‖y2(t+T )‖22 ≤ ‖H1(s)‖2∞‖u[t,t+T ]‖22

where

‖u[t,t+T ]‖22 =
∫ ∞

0

u2
[t,t+T ](τ)dτ =

∫ t+T

t

u2(τ)dτ

Hence, ∫ t+T

t

y2
2(τ)dτ ≤ ‖H1(s)‖2∞

∫ t+T

t

u2(τ)dτ (4.8.15)

To evaluate the second term in (4.8.14), we write

y1(τ) = h1(τ) ∗ u[0,t)(τ) =
∫ τ

0

h1(τ − σ)u[0,t)(σ)dσ

=
{ ∫ τ

0
h1(τ − σ)u(σ)dσ if τ < t∫ t

0
h1(τ − σ)u(σ)dσ if τ ≥ t

where h1(t) is the impulse response of H1(s). Because H1(s) is a strictly proper
stable transfer function, |h1(τ − σ)| ≤ α1e

−α2(τ−σ) for some constants α1, α2 > 0,
then using the Schwartz inequality and the boundedness of u(τ), we have

∫ t+T

t

y2
1(τ)dτ =

∫ t+T

t

(∫ t

0

h1(τ − σ)u(σ)dσ

)2

dτ

≤
∫ t+T

t

(∫ t

0

|h1(τ − σ)|dσ

∫ t

0

|h1(τ − σ)|u2(σ)dσ

)
dτ

≤ α2
1

∫ t+T

t

(∫ t

0

e−α2(τ−σ)dσ

∫ t

0

e−α2(τ−σ)u2(σ)dσ

)
dτ

≤ α2
1ᾱ

α2
2

∫ t+T

t

e−2α2(τ−t)dτ

≤ α2
1ᾱ

2α3
2

(4.8.16)



230 CHAPTER 4. ON-LINE PARAMETER ESTIMATION

where ᾱ = supσu2(σ). Using (4.8.15) and (4.8.16) in (4.8.14) and defining k1 =
3(h2

0 + ‖H1(s)‖2∞), k2 = 3α2
1ᾱ

2α3
2

, it follows that

∫ t+T

t

y2(τ)dτ ≤ k1

∫ t+T

t

u2(τ)dτ + k2

and the first part of the Lemma is proved.
If H(s) is strictly proper, then h0 = 0, H1(s) = H(s) and k1 = 3‖H(s)‖2∞,

therefore the proof is complete. 2

Lemma 4.8.3 (Properties of PE Signals) If w : R+ 7→ Rn is PE and w ∈ L∞,
then the following results hold:
(i) w1

4
= Fw, where F ∈ Rm×n with m ≤ n is a constant matrix, is PE if and

only if F is of rank m.
(ii) Let (a) e ∈ L2 or (b) e ∈ L∞ and e → 0 as t →∞, then w2 = w + e is PE.

(iii) Let e ∈ S(µ) and e ∈ L∞. There exists a µ∗ > 0 such that for all µ ∈ [0, µ∗),
ωµ = ω + e is PE.

(iv) If in addition ẇ ∈ L∞ and H(s) is a stable, minimum phase, proper rational
transfer function, then w3 = H(s)w is PE.

Proof The proof of (i) and (iii) is quite trivial, and is left as an exercise for the
reader.

To prove (iv), we need to establish that the inequality

β2T ≥
∫ t+T

t

(q>w3(τ))2dτ ≥ β1T (4.8.17)

holds for some constants β1, β2, T > 0, any t ≥ 0 and any q ∈ Rn with |q| = 1.
The existence of an upper bound in (4.8.17) is implied by the assumptions that

w ∈ L∞, H(s) has stable poles and therefore ω3 ∈ L∞. To establish the lower
bound, we define

z(t)
4
=

ar

(s + a)r
q>w

and write
z(t) =

ar

(s + a)r
q>H−1(s)w3 =

ar

(s + a)r
H−1(s)q>w3

where a > 0 is arbitrary at this moment and r > 0 is an integer that is chosen to be
equal to the relative degree of H(s) so that ar

(s+a)r H−1(s) is a proper stable transfer
function.

According to Lemma 4.8.2, we have
∫ t+T

t

z2(τ)dτ ≤ k1

∫ t+T

t

(
q>w3(τ)

)2
dτ + k2
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for any t, T > 0 and some k1, k2 > 0 which may depend on a, or equivalently

∫ t+T

t

(q>w3(τ))2dτ ≥ 1
k1

(∫ t+T

t

z2(τ)dτ − k2

)
(4.8.18)

On the other hand, we have

z(t) =
ar

(s + a)r
q>w

= q>w +
(

ar − (s + a)r

s(s + a)r

)
q>ẇ

= q>w + z1

where

z1 =
ar − (s + a)r

s(s + a)r
q>ẇ

It is shown in Appendix A (see Lemma A.2) that
∥∥∥∥

ar − (s + a)r

s(s + a)r

∥∥∥∥
∞
≤ k

a

for some constant k > 0 that is independent of a. Therefore, applying Lemma 4.8.2,
we have

∫ t+T

t

z2
1(τ)dτ ≤ k3

a2

∫ t+T

t

(q>ẇ)2dτ + k̄3

≤ k4T

a2
+ k̄3

where k3 = 3k2, k4 = k3 supt |ω̇|2 and k̄3 ≥ 0 is independent of α, and the second
inequality is obtained using the boundedness of ẇ. Using the inequality (x + y)2 ≥
1
2x2 − y2, we have

∫ t+T

t

z2(τ)dτ =
∫ t+T

t

(q>w(τ) + z1(τ))2dτ

≥ 1
2

∫ t+T

t

(q>w)2dτ −
∫ t+T

t

z2
1(τ)dτ

≥ 1
2

∫ t+T

t

(q>w)2dτ − k4T

a2
− k̄3 (4.8.19)

Because w is PE, i.e., ∫ t+T0

t

(q>w)2dτ ≥ α0T0
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for some T0, α0 > 0 and ∀t ≥ 0, we can divide the interval [t, t+T ] into subintervals
of length T0 and write

∫ t+T

t

(q>w)2dτ ≥
n0∑

i=1

∫ t+iT0

t+(i−1)T0

(q>w)2dτ ≥ n0α0T0

where n0 is the largest integer that satisfies n0 ≤ T
T0

. From the definition of n0, we
have n0 ≥ T

T0
− 1; therefore, we can establish the following inequality

∫ t+T

t

(q>w)2dτ ≥ α0

(
T

T0
− 1

)
T0 = α0(T − T0) (4.8.20)

Because the above analysis holds for any T > 0, we assume that T > T0. Using
(4.8.19) and (4.8.20) in (4.8.18), we have

∫ t+T

t

(q>w3)2dτ ≥ 1
k1

(
α0

2
(T − T0)− k4

a2
T − k̄3 − k2

)

=
1
k1

{(
α0

2
− k4

a2

)
T −

(
α0T0

2
+ k̄3 + k2

)}
(4.8.21)

Since (4.8.21) holds for any a, T > 0 and α0, k4 are independent of a, we can first
choose a to satisfy

α0

2
− k4

a2
≥ α0

4
and then fix T so that

α0

4
T −

(
α0T0

2
+ k̄3 + k2

)
> β1k1T

for a fixed β1 > 0. It follows that
∫ t+T

t

(q>w3(τ))2dτ ≥ β1T > 0

and the lower bound in (4.8.17) is established. 2

Lemma 4.8.4 Consider the system

Ẏ1 = AcY1 −Bcφ
>Y2

Ẏ2 = 0
y0 = C>c Y1

(4.8.22)

where Ac is a stable matrix, (Cc, Ac) is observable, and φ ∈ L∞. If φf defined as

φf
4
= C>c (sI −Ac)−1Bcφ
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satisfies

α1I ≤ 1
T0

∫ t+T0

t

φf (τ)φ>f (τ)dτ ≤ α2I, ∀t ≥ 0 (4.8.23)

for some constants α1, α2, T0 > 0, then (4.8.22) is UCO.

Proof The UCO of (4.8.22) follows if we establish that the observability grammian
N (t, t + T ) of (4.8.22) defined as

N (t, t + T )
4
=

∫ t+T

t

Φ>(τ, t)CC>Φ(τ, t)dτ

where C = [C>c 0]> satisfies

βI ≥ N (t, t + T ) ≥ αI

for some constant α, β > 0, where Φ(t, t0) is the state transition matrix of (4.8.22).
The upper bound βI follows from the boundedness of Φ(t, t0) that is implied by
φ ∈ L∞ and the fact that Ac is a stable matrix. The lower bound will follow if we
establish the following inequality:

∫ t+T

t

y2
0(τ)dτ ≥ α

(|Y1(t)|2 + |Y2|2
)

where Y2 is independent of t due to Ẏ2 = 0. From (4.8.22), we can write

y0(τ) = C>c Y1(τ) = C>c eAc(τ−t)Y1(t)−
∫ τ

t

C>c eAc(τ−σ)Bcφ
>(σ)dσY2

4
= y1(τ) + y2(τ)

for all τ ≥ t, where y1(τ)
4
= C>c eAc(τ−t)Y1(t), y2(τ)

4
=− ∫ τ

t
C>c eAc(τ−σ)Bcφ

>(σ)dσY2.

Using the inequalities (x+y)2 ≥ x2

2 −y2 and (x+y)2 ≥ y2

2 −x2 with x = y1, y = y2

over the intervals [t, t + T
′
], [t + T

′
, t + T ], respectively, we have

∫ t+T

t

y2
0(τ)dτ ≥

∫ t+T
′

t

y2
1(τ)
2

dτ −
∫ t+T

′

t

y2
2(τ)dτ

+
∫ t+T

t+T ′

y2
2(τ)
2

dτ −
∫ t+T

t+T ′
y2
1(τ)dτ (4.8.24)

for any 0 < T
′
< T . We now evaluate each term on the right-hand side of (4.8.24).

Because Ac is a stable matrix, it follows that

|y1(τ)| ≤ k1e
−γ1(τ−t)|Y1(t)|



234 CHAPTER 4. ON-LINE PARAMETER ESTIMATION

for some k1, γ1 > 0, and, therefore,
∫ t+T

t+T ′
y2
1(τ)dτ ≤ k2

1

2γ1
e−2γ1T

′
|Y1(t)|2 (4.8.25)

On the other hand, since (Cc, Ac) is observable, we have

∫ t+T
′

t

eA>c (t−τ)CcC
>
c eAc(t−τ)dτ ≥ k2I

for any T
′
> T1 and some constants k2, T1 > 0. Hence,

∫ t+T
′

t

y2
1(τ)dτ ≥ k2|Y1(t)|2 (4.8.26)

Using y2(τ) = −φ>f (τ)Y2 and the fact that

α2n1T0I ≥
∫ t+T

t+T ′
φfφ>f dτ ≥ n0α1T0I

where n0, n1 is the largest and smallest integer respectively that satisfy

n0 ≤ T − T
′

T0
≤ n1

i.e., n0 ≥ T−T
′

T0
− 1, n1 ≤ T−T

′

T0
+ 1, we can establish the following inequalities sat-

isfied by y2:

∫ t+T
′

t

y2
2(τ)dτ ≤ α2T0

(
T
′

T0
+ 1

)
|Y2|2

∫ t+T

t+T ′
y2
2(τ)dτ ≥ α1T0

(
T − T

′

T0
− 1

)
|Y2|2 (4.8.27)

Using (4.8.25), (4.8.26), (4.8.27) in (4.8.24), we have
∫ t+T

t

y2
0(τ)dτ ≥

(
k2

2
− k2

1

2γ1
e−2γ1T

′
)
|Y1(t)|2

+

(
α1T0

2

(
T − T

′

T0
− 1

)
− α2T0

(
T
′

T0
+ 1

))
|Y2|2 (4.8.28)

Because the inequality (4.8.28) is satisfied for all T, T
′

with T
′

> T1, let us first
choose T

′
such that T

′
> T1 and

k2

2
− k2

1

2γ1
e−2γ1T

′
≥ k2

4
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Now choose T to satisfy

α1T0

2

(
T − T

′

T0
− 1

)
− α2T0

(
T
′

T0
+ 1

)
≥ β1

for a fixed β1. We then have
∫ t+T

t

y2
0(τ)dτ ≥ α

(|Y1(t)|2 + |Y2(t)|2
)

where α = min
{
β1,

k2
4

}
. Hence, (4.8.22) is UCO. 2

4.8.2 Proof of Corollary 4.3.1

Consider equations (4.3.30), (4.3.35), i.e.,

ė = Ace + Bc(−θ̃>φ− εn2
s)

˙̃
θ = Γφε
ε = C>c e

(4.8.29)

that describe the stability properties of the adaptive law. In proving Theorem 4.3.1,
we have also shown that the time derivative V̇ of

V =
e>Pce

2
+

θ̃>Γ−1θ̃

2

where Γ = Γ> > 0 and Pc = P>c > 0, satisfies

V̇ ≤ −ν′ε2 (4.8.30)

for some constant ν
′
> 0. Defining

A(t) =
[

Ac −BcC
>
c n2

s −Bcφ
>

ΓφC>c 0

]
, C = [C>c 0]>, P =

1
2

[
Pc 0
0 Γ−1

]

and x = [e>, θ̃>]>, we rewrite (4.8.29) as

ẋ = A(t)x, ε = C>x

and express the above Lyapunov-like function V and its derivative V̇ as

V = x>Px

V̇ = 2x>PAx + x>Ṗ x

= x>(PA + A>P + Ṗ )x ≤ −ν
′
x>CC>x = −ν

′
ε2
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where Ṗ = 0. It therefore follows that P , as defined above, satisfies the inequality

A>(t)P + PA(t) + ν
′
CC> ≤ O

Using Theorem 3.4.8, we can establish that the equilibrium ee = 0, θ̃e = 0 (i.e.,
xe = 0) of (4.8.29) is u.a.s, equivalently e.s., provided (C, A) is a UCO pair.

According to Lemma 4.8.1, (C, A) and (C,A + KC>) have the same UCO
property, where

K
4
=

[
Bcn

2
s

−Γφ

]

is bounded. We can therefore establish that (4.8.29) is UCO by showing that
(C,A+KC>) is a UCO pair. We write the system corresponding to (C,A+KC>)
as

Ẏ1 = AcY1 −Bcφ
>Y2

Ẏ2 = 0
y0 = C>c Y1

(4.8.31)

Because φ is PE and C>c (sI − Ac)−1Bc is stable and minimum phase (which is
implied by C>c (sI−Ac)−1Bc being SPR) and φ̇ ∈ L∞, it follows from Lemma 4.8.3
(iii) that

φf (τ)
4
=

∫ τ

t

C>c eAc(τ−σ)Bcφ(σ)dσ

is also PE; therefore, there exist constants α1, α2, T0 > 0 such that

α2I ≥ 1
T0

∫ t+T0

t

φf (τ)φ>f (τ)dτ ≥ α1I, ∀t ≥ 0

Hence, applying Lemma 4.8.4 to the system (4.8.31), we conclude that (C, A +
KC>) is UCO which implies that (C,A) is UCO. Therefore, we conclude that the
equilibrium θ̃e = 0, ee = 0 of (4.8.29) is e.s. in the large. 2

4.8.3 Proof of Theorem 4.3.2 (iii)

The parameter error equation (4.3.53) may be written as

˙̃
θ = A(t)θ̃
y0 = C>(t)θ̃

(4.8.32)

where A(t) = −Γφφ>

m2 , C>(t) = −φ>

m , y0 = εm. The system (4.8.32) is analyzed
using the Lyapunov-like function

V =
θ̃>Γ−1θ̃

2
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that led to

V̇ = − (θ̃>φ)2

m2
= −ε2m2

along the solution of (4.8.32). We need to establish that the equilibrium θ̃e = 0 of
(4.8.32) is e.s. We achieve that by using Theorem 3.4.8 as follows: Let P = Γ−1,
then V = θ̃>P θ̃

2 and

V̇ =
1
2
θ̃>[PA(t) + A>(t)P + Ṗ ]θ̃ = −θ̃>C(t)C>(t)θ̃

where Ṗ = 0. This implies that

Ṗ + PA(t) + A>P + 2C(t)C>(t) ≤ 0

and according to Theorem 3.4.8, θ̃e = 0 is e.s. provided (C, A) is UCO. Using
Lemma 4.8.1, we have that (C, A) is UCO if (C,A+KC>) is UCO for some K that
satisfies the condition of Lemma 4.8.1. We choose

K = −Γ
φ

m

leading to A+KC> = 0. We consider the following system that corresponds to the
pair (C, A + KC>), i.e.,

Ẏ = 0
y0 = C>Y = −φ>

m Y
(4.8.33)

The observability grammian of (4.8.33) is given by

N (t, t + T ) =
∫ t+T

t

φ(τ)φ>(τ)
m2(τ)

dτ

Because φ is PE and m ≥ 1 is bounded, it follows immediately that the grammian
matrix N (t, t+T ) is positive definite for some T > 0 and for all t ≥ 0, which implies
that (4.8.33) is UCO which in turn implies that (C, A) is UCO; thus, the proof is
complete. 2

In the following, we give an alternative proof of Theorem 4.3.2 (iii), which does
not make use of the UCO property.

From (4.3.54), we have

V (t + T ) = V (t)−
∫ t+T

t

ε2m2dτ = V (t)−
∫ t+T

t

(θ̃>(τ)φ(τ))2

m2
dτ (4.8.34)
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for any t, T > 0. Expressing θ̃>(τ)φ(τ) as θ̃>(τ)φ(τ) = θ̃>(t)φ(τ) + (θ̃(τ) −
θ̃(t))>φ(τ) and using the inequality (x + y)2 ≥ 1

2x2 − y2, it follows that
∫ t+T

t

(θ̃>(τ)φ(τ))2

m2
dτ ≥ 1

m0

∫ t+T

t

(
θ̃>(τ)φ(τ)

)2

dτ

≥ 1
m0

{
1
2

∫ t+T

t

(θ̃>(t)φ(τ))2dτ (4.8.35)

−
∫ t+T

t

(
(θ̃(τ)− θ̃(t))>φ(τ)

)2

dτ

}

where m0 = supt≥0 m2(t) is a constant. Because φ is PE, i.e.,
∫ t+T0

t

φ(τ)φ>(τ)dτ ≥ α0T0I

for some T0 and α0 > 0, we have
∫ t+T0

t

(
θ̃>(t)φ(τ)

)2

dτ ≥ α0T0θ̃
>(t)θ̃(t)

≥ 2α0T0λ
−1
max(Γ−1)V (t) (4.8.36)

= 2α0T0λmin(Γ)V (t)

On the other hand, we can write

θ̃(τ)− θ̃(t) =
∫ τ

t

˙̃
θ(σ)dσ = −

∫ τ

t

Γ
θ̃>(σ)φ(σ)

m2(σ)
φ(σ)dσ

and

(θ̃(τ)− θ̃(t))>φ(τ) = −
∫ τ

t

(
θ̃>(σ)φ(σ)Γφ(σ)

m2

)>

φ(τ)dσ

= −
∫ τ

t

θ̃>(σ)φ(σ)
m(σ)

φ>(τ)Γφ(σ)
m(σ)

dσ (4.8.37)

Noting that m ≥ 1, it follows from (4.8.37) and the Schwartz inequality that
∫ t+T0

t

(
(θ̃(τ)− θ̃(t))>φ(τ)

)2

dτ

≤
∫ t+T0

t




∫ τ

t

(
φ>(τ)Γφ(σ)

m(σ)

)2

dσ

∫ τ

t

(
θ̃>(σ)φ(σ)

m(σ)

)2

dσ


 dτ

≤ β4λ2
max(Γ)

∫ t+T0

t

(τ − t)
∫ τ

t

(
θ̃>(σ)φ(σ)

m(σ)

)2

dσdτ
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where β = supτ≥0 |φ(τ)|. Changing the sequence of integration, we have

∫ t+T0

t

(
(θ̃(τ)− θ̃(t))>φ(τ)

)2

dτ

≤ β4λ2
max(Γ)

∫ t+T0

t

(
θ̃>(σ)φ(σ)

m(σ)

)2 ∫ t+T0

σ

(τ − t)dτdσ

≤ β4λ2
max(Γ)

∫ t+T0

t

(θ̃>(σ)φ(σ))2

m2(σ)

{
T 2

0 − (σ − t)2

2

}
dσ

≤ β4λ2
max(Γ)T 2

0

2

∫ t+T0

t

(θ̃>(σ)φ(σ))2

m2(σ)
dσ (4.8.38)

Using (4.8.36) and (4.8.38) in (4.8.35) with T = T0 we have
∫ t+T0

t

(θ̃>(τ)φ(τ))2

m2(τ)
dτ ≥ α0T0λmin(Γ)

m0
V (t)

− β4T 2
0 λ2

max(Γ)
2m0

∫ t+T0

t

(θ̃>(σ)φ(σ))2

m2(σ)
dσ

which implies
∫ t+T0

t

(θ̃>(τ)φ(τ))2

m2(τ)
dτ ≥ 1

1 + β4T 2
0 λ2

max(Γ)

2m0

α0T0λmin(Γ)
m0

V (t)

4
= γ1V (t) (4.8.39)

where γ1 = 2α0T0λmin(Γ)
2m0+β4T 2

0 λ2
max(Γ)

. Using (4.8.39) in (4.8.34) with T = T0, it follows that

V (t + T0) ≤ V (t)− γ1V (t) = γV (t) (4.8.40)

where γ = 1− γ1. Because γ1 > 0 and V (t + T0) ≥ 0, we have 0 < γ < 1. Because
(4.8.40) holds for all t ≥ 0, we can take t = (n− 1)T0 and use (4.8.40) successively
to obtain

V (t) ≤ V (nT0) ≤ γnV (0), ∀t ≥ nT0, n = 0, 1, . . .

Hence, V (t) → 0 as t →∞ exponentially fast which implies that θ̃(t) → 0 as t →∞
exponentially fast. 2

4.8.4 Proof of Theorem 4.3.3 (iv)

In proving Theorem 4.3.3 (i) to (iii), we have shown that (see equation (4.3.64))

V̇ (t) = −θ̃>(t)R(t)θ̃(t)
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where V = θ̃>Γ−1θ̃
2 . From equation (4.3.60), we have

R(t) =
∫ t

0

e−β(t−τ) φ(τ)φ>(τ)
m2(τ)

dτ

Because φ is PE and m is bounded, we have

R(t) =
∫ t

t−T0

e−β(t−τ) φ(τ)φ>(τ)
m2(τ)

dτ +
∫ t−T0

0

e−β(t−τ) φ(τ)φ>(τ)
m2(τ)

dτ

≥ α
′
0e
−βT0

∫ t

t−T0

φ(τ)φ>(τ)dτ

≥ β1e
−βT0I

for any t ≥ T0, where β1 = α0α
′
0T0, α

′
0 = supt

1
m2(t) and α0, T0 > 0 are constants

given by (4.3.40) in the definition of PE. Therefore,

V̇ ≤ −β1e
−βT0 θ̃>θ̃ ≤ −2β1λmin(Γ)e−βT0V

for t ≥ T0, which implies that V (t) satisfies

V (t) ≤ e−α(t−T0)V (T0), t ≥ T0

where α = 2β1e
−βT0λmin(Γ). Thus, V (t) → 0 as t → ∞ exponentially fast with a

rate equal to α. Using
√

2λmin(Γ)V ≤ |θ̃| ≤
√

2λmax(Γ)V , we have that

|θ̃(t)| ≤
√

2λmax(Γ)V (T0)e−
α
2 (t−T0) ≤

√
λmax(Γ)
λmin(Γ)

|θ̃(T0)|e−α
2 (t−T0), t ≥ T0

Thus, θ(t) → θ∗ exponentially fast with a rate of α
2 as t → ∞. Furthermore, for

Γ = γI, α = 2β1γe−βT0 and the rate of convergence (α/2) can be made large by
increasing the value of the adaptive gain. 2

4.8.5 Proof of Theorem 4.3.4 (iv)

In proving Theorem 4.3.4 (i) to (iii), we have shown that θ̃(t) satisfies the following
equation

θ̃(t) = P (t)P−1
0 θ̃(0)

We now show that P (t) → 0 as t →∞ when φ satisfies the PE assumption.
Because P−1 satisfies

d

dt
P−1 =

φφ>

m2
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using the condition that φ is PE, i.e.,
∫ t+T0

t
φ(τ)φ>(τ)dτ ≥ α0T0I for some constant

α0, T0 > 0, it follows that

P−1(t)− P−1(0) =
∫ t

0

φφ>

m2
dτ ≥ n0

α0T0

m̄
I ≥

(
t

T0
− 1

)
α0T0I

m̄

where m̄ = supt{m2(t)} and n0 is the largest integer that satisfies n0 ≤ t
T0

, i.e.,
n0 ≥ t

T0
− 1. Therefore,

P−1(t) ≥ P−1(0) +
(

t

T0
− 1

)
α0T0

m̄
I

≥
(

t

T0
− 1

)
α0T0

m̄
I, ∀t > T0

which, in turn, implies that

P (t) ≤
((

t

T0
− 1

)
α0T0

)−1

m̄I, ∀t > T0 (4.8.41)

Because P (t) ≥ 0 for all t ≥ 0 and the right-hand side of (4.8.41) goes to zero as
t →∞, we can conclude that P (t) → 0 as t →∞. Hence, θ̃(t) = P (t)P−1

0 θ̃(0) → 0
as t →∞. 2

4.8.6 Proof of Corollary 4.3.2

Let us denote Γ = P−1(t), then from (4.3.78) we have

Γ̇ = −βΓ +
φφ>

m2
, Γ(0) = Γ>(0) = Γ0 = P−1

0

or

Γ(t) = e−βtΓ0 +
∫ t

0

e−β(t−τ) φ(τ)φ>(τ)
m2

dτ

Using the condition that φ(t) is PE and m ∈ L∞, we can show that for all t ≥ T0

Γ(t) ≥
∫ t

0

e−β(t−τ) φφ>

m2
dτ

=
∫ t

t−T0

e−β(t−τ) φ(τ)φ>(τ)
m2

dτ +
∫ t−T0

0

e−β(t−τ) φ(τ)φ>(τ)
m2

dτ

≥ e−βT0
α0T0

m̄
I (4.8.42)

where m̄ = supt m2(t). For t ≤ T0, we have

Γ(t) ≥ e−βtΓ0 ≥ e−βT0Γ0 ≥ λmin(Γ0)e−βT0I (4.8.43)
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Conditions (4.8.42), (4.8.43) imply that

Γ(t) ≥ γ1I (4.8.44)

for all t ≥ 0 where γ1 = min{α0T0
β1

, λmin(Γ0)}e−βT0 .
On the other hand, using the boundedness of φ, we can establish that for some

constant β2 > 0

Γ(t) ≤ Γ0 + β2

∫ t

0

e−β(t−τ)dτI

≤ λmax(Γ0)I +
β2

β
I ≤ γ2I (4.8.45)

where γ2 = λmax(Γ0) + β2
β > 0.

Combining (4.8.44) and (4.8.45), we conclude

γ1I ≤ Γ(t) ≤ γ2I

for some γ1 > 0, γ2 > 0. Therefore,

γ−1
2 I ≤ P (t) ≤ γ−1

1 I

and consequently P (t), P−1(t) ∈ L∞. Because P (t), P−1(t) ∈ L∞, the exponential
convergence of θ to θ∗ can be proved using exactly the same procedure and argu-
ments as in the proof of Theorem 4.3.2. 2

4.8.7 Proof of Theorem 4.5.1(iii)

Consider the following differential equations which describe the behavior of the
adaptive law (see (4.5.6) and (4.5.7)):

ė = Ace + Bc(−ρ∗θ̃>φ− ρ̃ξ − εn2
s)

˙̃
θ = Γεφsgn(ρ∗)
ρ̇ = γεξ
ε = C>c e

(4.8.46)

Because ξ, ρ ∈ L∞ and ξ ∈ L2, we can treat ξ, ρ as external input functions and
write (4.8.46) as

ẋa = Aaxa + Ba(−ρ̃ξ) (4.8.47)

where

xa =
[

e

θ̃

]
, Aa =

[
Ac − n2

sBcC
>
c −ρ∗Bcφ

>

Γsgn(ρ∗)φC>c 0

]
, Ba =

[
Bc

0

]
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In proving Corollary 4.3.1, we have shown that when φ is PE and φ, φ̇ ∈ L∞, the
system ẋ = Aax is e.s. Therefore, the state transition matrix Φa(t, t0) of (4.8.47)
satisfies

‖Φa(t, 0)‖ ≤ α0e
−γ0t (4.8.48)

for some constants α0, γ0 > 0, which together with −Baρ̃ξ ∈ L2 imply that xa(t) →
0 as t →∞.

4.8.8 Proof of Theorem 4.6.1 (iii)

From the proof of Theorem 4.6.1 (i) to (ii), we have the inequality (see (4.6.9))

V (k + 1)− V (k) ≤ −(2− Tsλm)
∫ tk+1

tk

ε2(τ)m2(τ)dτ (4.8.49)

Using inequality (4.8.49) consecutively, we have

V (k + n)− V (k) ≤ −(2− Tsλm)
∫ tk+n

tk

ε2(τ)m2(τ)dτ

= −(2− Tsλm)
n−1∑

i=0

∫ tk+i+1

tk+i

ε2(τ)m2(τ)dτ (4.8.50)

for any integer n. We now write

∫ tk+i+1

tk+i

ε2(τ)m2(τ)dτ =
∫ tk+i+1

tk+i

(
θ̃>k+iφ(τ)

)2

m2(τ)
dτ

=
∫ tk+i+1

tk+i

(
θ̃>k φ(τ) + (θ̃k+i − θ̃k)>φ(τ)

)2

m2(τ)
dτ

Using the inequality (x + y)2 ≥ 1
2x2 − y2, we write

∫ tk+i+1

tk+i

ε2(τ)m2(τ)dτ ≥ 1
2

∫ tk+i+1

tk+i

(
θ̃>k φ(τ)

)2

m2(τ)
dτ −

∫ tk+i+1

tk+i

(
(θ̃k+i − θ̃k)>φ(τ)

)2

m2(τ)
dτ

(4.8.51)
Because φ(τ)/m(τ) is bounded, we denote c = sup |φ(τ)|2

m2(τ) and have

∫ tk+i+1

tk+i

(
(θ̃k+i − θ̃k)>φ(τ)

)2

m2(τ)
dτ ≤ cTs|θ̃k+i − θ̃k|2

From the hybrid adaptive algorithm, we have

θ̃k+i − θ̃k =
∫ tk+i

tk

ε(τ)φ(τ)dτ, i = 1, 2, . . . , n
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therefore, using the Schwartz inequality and the boundedness of |φ(t)|/m(t),

|θ̃k+i − θ̃k|2 ≤
(∫ tk+i

tk

|ε(τ)||φ(τ)|dτ

)2

=
(∫ tk+i

tk

|ε(τ)|m(τ)
|φ(τ)|
m(τ)

dτ

)2

≤
∫ tk+i

tk

ε2(τ)m2(τ)dτ

∫ tk+i

tk

|φ(τ)|2
m2(τ)

dτ

≤ ciTs

∫ tk+i

tk

ε2(τ)m2(τ)dτ

≤ ciTs

∫ tk+n

tk

ε2(τ)m2(τ)dτ (4.8.52)

Using the expression (4.8.52) in (4.8.51), we have

∫ tk+i+1

tk+i

ε2(τ)m2(τ)dτ ≥ 1
2

∫ tk+i+1

tk+i

(
θ̃>k φ(τ)

)2

m2(τ)
dτ − c2iT 2

s

∫ tk+n

tk

ε2(τ)m2(τ)dτ

which leads to
∫ tk+n

tk

ε2(τ)m2(τ)dτ =
n−1∑

i=0

∫ tk+i+1

tk+i

ε2(τ)m2(τ)dτ

≥
n−1∑

i=0


1

2

∫ tk+i+1

tk+i

(
θ̃>k φ(τ)

)2

m2(τ)
dτ − c2iT 2

s

∫ tk+n

tk

ε2(τ)m2(τ)dτ




≥ 1
2
θ̃>k

n−1∑

i=0

∫ tk+i+1

tk+i

φ(τ)φ>(τ)
m2(τ)

dτ θ̃k −
n−1∑

i=0

c2iT 2
s

∫ tk+n

tk

ε2(τ)m2(τ)dτ

= θ̃>k

∫ tk+n

tk

φ(τ)φ>(τ)
2m2(τ)

dτ θ̃k − n(n− 1)
2

c2T 2
s

∫ tk+n

tk

ε2(τ)m2(τ)dτ

or equivalently
∫ tk+n

tk

ε2(τ)m2(τ)dτ ≥ 1
2(1 + n(n− 1)c2T 2

s /2)
θ̃>k

∫ tk+n

tk

φ(τ)φ>(τ)
m2(τ)

dτ θ̃k (4.8.53)

Because φ is PE and 1 ≤ m < ∞, there exist constants α
′
1, α

′
2 and T0 > 0 such that

α
′
2I ≥

∫ t+T0

t

φ(τ)φ>(τ)
m2

dτ ≥ α
′
1I

for any t. Therefore, for any integer k, n where n satisfies nTs ≥ T0, we have

θ̃>k

∫ tk+n

tk

φ(τ)φ>(τ)
m2

dτ θ̃k ≥ α
′
1θ̃
>
k θ̃k ≥ V (k)

λm
α
′
1 (4.8.54)
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Using (4.8.53), (4.8.54) in (4.8.50), we obtain the following inequality:

V (k + n)− V (k) ≤ − (2− Tsλm)α
′
1

λm(2 + n(n− 1)c2T 2
s )

V (k) (4.8.55)

hold for any integer n with n ≥ T0/Ts. Condition (4.8.55) is equivalent to

V (k + n) ≤ γV (k)

with

γ
4
= 1− (2− Tsλm)α

′
1

λm(2 + n(n− 1)c2T 2
s )

< 1

Therefore,

V (kn) = V ((k−)n + n) ≤ γV ((k − 1)n) ≤ γ2V ((k − 2)n) ≤ . . . ≤ γkV (0)

or

|θ̃kn| ≤
√

V (kn)
λm

≤
√

V (0)
λm

(
√

γ)k (4.8.56)

Because 0 < γ < 1 and, therefore,
√

γ < 1, (4.8.56) implies that |θ̃kn| → 0 expo-
nentially fast as t → ∞, which, together with the property of the hybrid adaptive
algorithm (i.e., |θ̃k+1| ≤ |θ̃k|), implies that θk converges to θ∗ exponentially fast and
the proof is complete.

4.9 Problems

4.1 Consider the differential equation

˙̃
θ = −γu2θ̃

given by (4.2.7) where γ > 0. Show that a necessary and sufficient condition
for θ̃(t) to converge to zero exponentially fast is that u(t) satisfies (4.2.11),
i.e., ∫ t+T0

t

u2(τ)dτ ≥ α0T0

for all t ≥ 0 and some constants α0, T0 > 0. (Hint: Show that

e
−γ

∫ t

t1
u2(τ)dτ ≤ αe−γ0(t−t1)

for all t ≥ t1 and some α, γ0 > 0 if and only if (4.2.11) is satisfied.)
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4.2 Consider the second-order stable system

ẋ =
[

a11 a12

a21 0

]
x +

[
b1

b2

]
u

where x, u are available for measurement, u ∈ L∞ and a11, a12, a21, b1, b2 are
unknown parameters. Design an on-line estimator to estimate the unknown
parameters. Simulate your scheme using a11 = −0.25, a12 = 3, a21 = −5, b1 =
1, b2 = 2.2 and u = 10sin2t. Repeat the simulation when u = 10sin2t +
7cos3.6t. Comment on your results.

4.3 Consider the nonlinear system

ẋ = a1f1(x) + a2f2(x) + b1g1(x)u + b2g2(x)u

where u, x ∈ R1, fi, gi are known nonlinear functions of x and ai, bi are
unknown constant parameters. The system is such that u ∈ L∞ implies
x ∈ L∞. If x, u can be measured at each time, design an estimation scheme
for estimating the unknown parameters on-line.

4.4 Design and analyze an on-line estimation scheme for estimating θ∗ in (4.3.26)
when L(s) is chosen so that W (s)L(s) is biproper and SPR.

4.5 Design an on-line estimation scheme to estimate the coefficients of the numer-
ator polynomial

Z(s) = bn−1s
n−1 + bn−2s

n−2 + · · ·+ b1s + b0

of the plant

y =
Z(s)
R(s)

u

when the coefficients of R(s) = sn + an−1s
n−1 + · · · + a1s + a0 are known.

Repeat the same problem when Z(s) is known and R(s) is unknown.

4.6 Consider the cost function given by (4.3.51), i.e.

J(θ) =
(z − θ>φ)2

2m2

which we like to minimize w.r.t. θ. Derive the nonrecursive algorithm

θ(t) =
φz

φ>φ

provided φ>φ 6= 0 by solving the equation ∇J(θ) = 0.

4.7 Show that ω0 = Fω, where F ∈ Rm×n with m ≤ n is a constant matrix and
ω ∈ L∞ is PE, is PE if and only if F is of full rank.
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4.8 Show that if ω, ω̇ ∈ L∞, ω is PE and either

(a) e ∈ L2 or

(b) e ∈ L∞ and e(t) → 0 as t →∞
is satisfied, then ω0 = ω + e is PE.

4.9 Consider the mass-spring-damper system shown in Figure 4.11.

k

m

y(t)

u

β

Figure 4.11 The mass-spring-damper system for Problem 4.9.

where β is the damping coefficient, k is the spring constant, u is the external
force, and y(t) is the displacement of the mass m resulting from the force u.

(a) Verify that the equations of the motion that describe the dynamic be-
havior of the system under small displacements are

mÿ + βẏ + ky = u

(b) Design a gradient algorithm to estimate the constants m,β, k when y, u
can be measured at each time t.

(c) Repeat (b) for a least squares algorithm.

(d) Simulate your algorithms in (b) and (c) on a digital computer by assum-
ing that m = 20 kg, β = 0.1 kg/sec, k = 5 kg/sec2 and inputs u of your
choice.

(e) Repeat (d) when m = 20 kg for 0 ≤ t ≤ 20 sec and m = 20(2 −
e−0.01(t−20)) kg for t ≥ 20sec.

4.10 Consider the mass-spring-damper system shown in Figure 4.12.

y1(t)y2(t)

k
m

β
u

Figure 4.12 The mass-spring-damper system for Problem 4.10.
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(a) Verify that the equations of motion are given by

k(y1 − y2) = u
k(y1 − y2) = mÿ2 + βẏ2

(b) If y1, y2, u can be measured at each time t, design an on-line parameter
estimator to estimate the constants k, m and β.

(c) We have the a priori knowledge that 0 ≤ β ≤ 1, k ≥ 0.1 and m ≥
10. Modify your estimator in (b) to take advantage of this a priori
knowledge.

(d) Simulate your algorithm in (b) and (c) when β = 0.2 kg/sec, m = 15 kg,
k = 2 kg/sec2 and u = 5 sin 2t + 10.5 kg ·m/sec2.

4.11 Consider the block diagram of a steer-by-wire system of an automobile shown
in Figure 4.13.

- lΣ - G0(s) - G1(s) -

6

-

θ̇

θp

r +

−
θp

Figure 4.13 Block diagram of a steer-by-wire system for Problem 4.11.

where r is the steering command in degrees, θp is the pinion angle in degrees
and θ̇ is the yaw rate in degree/sec. The transfer functions G0(s), G1(s) are
of the form

G0(s) =
k0ω

2
0

s2 + 2ξ0ω0s + ω2
0(1− k0)

G1(s) =
k1ω

2
1

s2 + 2ξ1ω1s + ω2
1

where k0, ω0, ξ0, k1, ω1, ξ1 are functions of the speed of the vehicle. Assuming
that r, θp, θ̇ can be measured at each time t, do the following:

(a) Design an on-line parameter estimator to estimate ki, ωi, ξi, i = 0, 1 using
the measurement of θp, θ̇, r.

(b) Consider the values of the parameters shown in Table 4.6 at different
speeds:

Table 4.6 Parameter values for the SBW system
Speed V k0 ω0 ξ0 k1 ω1 ξ1

30 mph 0.81 19.75 0.31 0.064 14.0 0.365
60 mph 0.77 19.0 0.27 0.09 13.5 0.505
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Assume that between speeds the parameters vary linearly. Use these
values to simulate and test your algorithm in (a) when

(i) r = 10 sin 0.2t + 8 degrees and V = 20 mph.
(ii) r = 5 degrees and the vehicle speeds up from V = 30 mph to

V = 60 mph in 40 second with constant acceleration and remains
at 60 mph for 10 second.

4.12 Show that the hybrid adaptive law with projection presented in Section 4.6
guarantees the same properties as the hybrid adaptive law without projection.

4.13 Consider the equation of the motion of the mass-spring-damper system given
in Problem 4.9, i.e.,

mÿ + βẏ + ky = u

This system may be written in the form:

y = ρ∗(u−mÿ − βẏ)

where ρ∗ = 1
k appears in a bilinear form with the other unknown parameters

m,β. Use the adaptive law based on the bilinear parametric model to estimate
ρ∗, m, β when u, y are the only signals available for measurement. Because
k > 0, the sign of ρ∗ may be assumed known. Simulate your adaptive law
using the numerical values given in (d) and (e) of Problem 4.9.



Chapter 5

Parameter Identifiers and
Adaptive Observers

5.1 Introduction

In Chapter 4, we developed a wide class of on-line parameter estimation
schemes for estimating the unknown parameter vector θ∗ that appears in
certain general linear and bilinear parametric models. As shown in Chapter
2, these models are parameterizations of LTI plants, as well as of some special
classes of nonlinear plants.

In this chapter we use the results of Chapter 4 to design parameter iden-
tifiers and adaptive observers for stable LTI plants. We define parameter
identifiers as the on-line estimation schemes that guarantee convergence of
the estimated parameters to the unknown parameter values. The design of
such schemes includes the selection of the plant input so that a certain signal
vector φ, which contains the I/O measurements, is PE. As shown in Chapter
4, the PE property of φ guarantees convergence of the estimated parame-
ters to the unknown parameter values. A significant part of Section 5.2 is
devoted to the characterization of the class of plant inputs that guarantee
the PE property of φ. The rest of Section 5.2 is devoted to the design of
parameter identifiers for plants with full and partial state measurements.

In Section 5.3 we consider the design of schemes that simultaneously
estimate the plant state variables and parameters by processing the plant
I/O measurements on-line. We refer to such schemes as adaptive observers.

250
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The design of an adaptive observer is based on the combination of a state
observer that could be used to estimate the state variables of a particular
plant state-space representation with an on-line estimation scheme. The
choice of the plant state-space representation is crucial for the design and
stability analysis of the adaptive observer. We present several different plant
state-space representations that we then use to design and analyze stable
adaptive observers in Sections 5.3 to 5.5. In Section 5.6, we present all the
lengthy proofs dealing with parameter convergence.

The stability properties of the adaptive observers developed are based on
the assumption that the plant is stable and the plant input is bounded. This
assumption is relaxed in Chapter 7, where adaptive observers are combined
with control laws to form adaptive control schemes for unknown and possibly
unstable plants.

5.2 Parameter Identifiers

Consider the LTI plant represented by the vector differential equation

ẋ = Ax + Bu, x(0) = x0

y = C>x
(5.2.1)

where x ∈ Rn, u ∈ Rq, y ∈ Rm and n ≥ m. The elements of the plant
input u are piecewise continuous, uniformly bounded functions of time. The
plant parameters A ∈ Rn×n, B ∈ Rn×q, C ∈ Rn×m are unknown constant
matrices, and A is a stable matrix. We assume that the plant (5.2.1) is
completely controllable and completely observable i.e., (5.2.1) is a minimal
state-space representation of the plant.

The objective of this section is to design on-line parameter estimation
schemes that guarantee convergence of the estimated plant parameters to the
true ones. We refer to this class of schemes as parameter identifiers. The
plant parameters to be estimated are the constant matrices A,B, C in (5.2.1)
or any other set of parameters in an equivalent plant parameterization. The
design of a parameter identifier consists of two steps.

In the first step we design an adaptive law for estimating the parameters
of a convenient parameterization of the plant (5.2.1) by following any one of
the procedures developed in Chapter 4.
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In the second step, we select the input u so that the adaptive law designed
in the first step guarantees that the estimated parameters converge to the
true ones.

As shown in Chapter 4, parameter convergence requires additional con-
ditions on a signal vector φ that are independent of the type of the adaptive
law employed. In general the signal vector φ is related to the plant input or
external input command u through the equation

φ = H(s)u (5.2.2)

where H(s) is some proper transfer matrix with stable poles. The objective
of the second step is to choose the input u so that φ is PE, which, as shown
in Chapter 4, guarantees convergence of the estimated parameters to their
true values.

Before we embark on the design of parameter identifiers, let us first
characterize the class of input signals u that guarantee the PE property of
the signal vector φ in (5.2.2). The relationship between φ, H(s) and the
plant equation (5.2.1) will be explained in the sections to follow.

5.2.1 Sufficiently Rich Signals

Let us consider the first order plant

ẏ = −ay + bu, y(0) = y0

or
y =

b

s + a
u (5.2.3)

where a > 0, b are unknown constants and y, u ∈ L∞ are measured at each
time t.

We would like to estimate a, b by properly processing the input/output
data y, u. It is clear that for the estimation of a, b to be possible, the
input/output data should contain sufficient information about a, b.

For example, for u = 0 the output

y(t) = e−aty0

carries no information about the parameter b. If, in addition, y0 = 0 then
y(t) ≡ 0 ∀t ≥ 0 obviously carries no information about any one of the plant
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parameters. If we now choose u = constant c0 6= 0, then

y(t) = e−at
(

y0 − b

a
c0

)
+

b

a
c0

carries sufficient information about a, b provided y0 6= ac0/b. This informa-
tion disappears exponentially fast, and at steady state

y ≈ b

a
c0

carries information about the zero frequency gain b
a of the plant only, which

is not sufficient to determine a, b uniquely.
Let us now choose u(t) = sinω0t for some ω0 > 0. The steady-state

response of the plant (5.2.3) is given by

y ≈ A sin(ω0t + ϕ)

where

A =
|b|

|jω0 + a| =
|b|√

ω2
0 + a2

, ϕ = (sgn(b)− 1)90◦ − tan−1 ω0

a
(5.2.4)

It is clear that measurements of the amplitude A and phase ϕ uniquely
determine a, b by solving (5.2.4) for the unknown a, b.

The above example demonstrates that for the on-line estimation of a, b

to be possible, the input signal has to be chosen so that y(t) carries suffi-
cient information about a, b. This conclusion is obviously independent of the
method or scheme used to estimate a, b.

Let us now consider an on-line estimation scheme for the first-order plant
(5.2.3). For simplicity we assume that ẏ is measured and write (5.2.3) in the
familiar form of the linear parametric model

z = θ∗>φ

where z = ẏ, θ∗ = [b, a]>, φ = [u,−y]>.
Following the results of Chapter 4, we consider the following gradient

algorithm for estimating θ∗ given in Table 4.2.

θ̇ = Γεφ, Γ = Γ> > 0
ε = z − ẑ, ẑ = θ>φ

(5.2.5)
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where θ(t) is the estimate of θ∗ at time t and the normalizing signal m2 = 1
due to φ ∈ L∞.

As we established in Chapter 4, (5.2.5) guarantees that ε, θ̇ ∈ L2
⋂L∞,

θ ∈ L∞, and if u̇ ∈ L∞ then ε(t), θ̇(t) → 0 as t →∞. If in addition φ is PE,
i.e., it satisfies

α1I ≥ 1
T0

∫ t+T0

t
φ(τ)φ>(τ)dτ ≥ α0I, ∀t ≥ 0 (5.2.6)

for some T0, α0, α1 > 0, then θ(t) → θ∗ exponentially fast. Because the
vector φ is given by

φ =

[
1

− b
s+a

]
u

the convergence of θ(t) to θ∗ is guaranteed if we choose u so that φ is PE,
i.e., it satisfies (5.2.6). Let us try the choices of input u considered earlier.
For u = c0 the vector φ at steady state is given by

φ ≈
[

c0

− bc0
a

]

which does not satisfy the right-hand-side inequality in (5.2.6) for any con-
stant c0. Hence, for u = c0, φ cannot be PE and, therefore, θ(t) cannot be
guaranteed to converge to θ∗ exponentially fast. This is not surprising since
as we showed earlier, for u = c0, y(t) does not carry sufficient information
about a, b at steady state.

On the other hand, for u = sin t we have that at steady state

φ ≈
[

sin t
−A sin(t + ϕ)

]

where A = |b|√
1+a2

, ϕ = (sgn(b) − 1)90◦ − tan−1 1
a , which can be shown to

satisfy (5.2.6). Therefore, for u = sin t the signal vector φ carries sufficient
information about a and b, φ is PE and θ(t) → θ∗ exponentially fast.

We say that u = sin t is sufficiently rich for identifying the plant (5.2.3),
i.e., it contains a sufficient number of frequencies to excite all the modes of
the plant. Because u = c0 6= 0 can excite only the zero frequency gain of the
plant, it is not sufficiently rich for the plant (5.2.3).
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Let us consider the second order plant

y =
b1s + b0

s2 + a1s + a0
u = G(s)u (5.2.7)

where a1, a0 > 0 and G(s) has no zero-pole cancellations. We can show
that for u = sinω0t, y(t) at steady state does not carry sufficient infor-
mation to be able to uniquely determine a1, a0, b1, b0. On the other hand,
u(t) = sinω0t + sin ω1t where ω0 6= ω1 leads to the steady-state response

y(t) = A0 sin(ω0t + ϕ0) + A1 sin(ω1t + ϕ1)

where A0 =| G(jω0) |, ϕ0 = 6 G(jω0), A1 =| G(jω1) |, ϕ1 = 6 G(jω1). By
measuring A0, A1, ϕ0, ϕ1 we can determine uniquely a1, a0, b1, b0 by solving
four algebraic equations.

Because each frequency in u contributes two equations, we can argue that
the number of frequencies that u should contain, in general, is proportional
to the number of unknown plant parameters to be estimated.

We are now in a position to give the following definition of sufficiently
rich signals.

Definition 5.2.1 A signal u : R+ →R is called sufficiently rich of order
n if it consists of at least n

2 distinct frequencies.

For example, the input

u =
m∑

i=1

Ai sinωit (5.2.8)

where m ≥ n/2, Ai 6= 0 are constants and ωi 6= ωk for i 6= k is sufficiently
rich of order n.

A more general definition of sufficient richness that includes signals that
are not necessarily equal to a sum of sinusoids is presented in [201] and is
given below.

Definition 5.2.2 A signal u : R+ → Rn is said to be stationary if the
following limit exists uniformly in t0

Ru(t) = lim
T→∞

1
T

∫ t0+T

t0
u(τ)u>(t + τ)dτ
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The matrix Ru(t) ∈ Rn×n is called the autocovariance of u. Ru(t) is a
positive semidefinite matrix and its Fourier transform given by

Su(ω) =
∫ ∞

−∞
e−jωτRu(τ)dτ

is referred to as the spectral measure of u. If u has a sinusoidal component at
frequency ω0 then u is said to have a spectral line at frequency ω0 and Su(ω)
has a point mass (a delta function) at ω0 and −ω0. Given Su(ω), Ru(t) can
be calculated using the inverse Fourier transform, i.e.,

Ru(t) =
1
2π

∫ ∞

−∞
ejωtSu(ω)dω

Furthermore, we have
∫ ∞

−∞
Su(ω)dω = 2πRu(0)

For further details about the properties of Ru(t), Su(ω), the reader is referred
to [186, 201].

Definition 5.2.3 A stationary signal u : R+ → R is called sufficiently
rich of order n, if the support of the spectral measure Su(ω) of u contains
at least n points.

Definition 5.2.3 covers a wider class of signals that includes those specified
by Definition 5.2.1. For example, the input (5.2.8) has a spectral measure
with 2m points of support, i.e., at ωi,−ωi for i = 1, 2, . . . m, where m ≥ n/2,
and is, therefore, sufficiently rich of order n.

Let us now consider the equation

φ = H(s)u (5.2.9)

where H(s) is a proper transfer matrix with stable poles and φ ∈ Rn. The
PE property of φ is related to the sufficient richness of u by the following
theorem given in [201].

Theorem 5.2.1 Let u : R+ 7→ R be stationary and assume that H(jω1),
. . ., H(jωn) are linearly independent on Cn for all ω1, ω2, . . . , ωn ∈ R, where
ωi 6= ωk for i 6= k. Then φ is PE if, and only if, u is sufficiently rich of
order n.
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The proof of Theorem 5.2.1 is given in Section 5.6.
The notion of persistence of excitation of the vector φ and richness of the

input u attracted the interest of several researchers in the 1960s and 1970s
who gave various interpretations to the properties of PE and sufficiently
rich signals. The reader is referred to [1, 171, 201, 209, 242] for further
information on the subject.

Roughly speaking, if u has at least one distinct frequency component for
each two unknown parameters, then it is sufficiently rich. For example, if
the number of unknown parameters is n, then m ≥ n

2 distinct frequencies
in u are sufficient for u to qualify as being sufficiently rich of order n. Of
course, these statements are valid provided H(jω1), . . . ,H(jωn) with ωi 6= ωk

are linearly independent on Cn for all ωi ∈ R, i = 1, 2, . . . , n. The vectors
H(jωi), i = 1, 2, . . . , n may become linearly dependent at some frequencies
in R under certain conditions such as the one illustrated by the following
example where zeros of the plant are part of the internal model of u.

Example 5.2.1 Let us consider the following plant:

y =
b0(s2 + 1)
(s + 2)3

u = G(s)u

where b0 is the only unknown parameter. Following the procedure of Chapter 2, we
rewrite the plant in the form of the linear parametric model

y = θ∗φ

where θ∗ = b0 is the unknown parameter and

φ = H(s)u, H(s) =
s2 + 1

(s + 2)3

According to Theorem 5.2.1, we first need to check the linear independence of
H(jω1), . . . ,H(jωn). For n = 1 this condition becomes H(jω) 6= 0,∀ω ∈ R. It is
clear that for ω = 1, H(j) = 0, and, therefore, φ may not be PE if we simply choose
u to be sufficiently rich of order 1. That is, for u = sin t, the steady-state values of
φ, y are equal to zero and, therefore, carry no information about the unknown b0.
We should note, however, that for u = sin ωt and any ω 6= 1, 0, φ is PE. 5

Remark 5.2.1 The above example demonstrates that the condition for the
linear independence of the vectors H(jωi), i = 1, 2, · · · , n on Cn is suf-
ficient to guarantee that φ is PE when u is sufficiently rich of order n.
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It also demonstrates that when the plant is partially known, the input
u does not have to be sufficiently rich of order n where n is the order of
the plant. In this case, the condition on u can be relaxed, depending
on the number of the unknown parameters. For further details on the
problem of prior information and persistent of excitation, the reader
is referred to [35].

In the following sections we use Theorem 5.2.1 to design the input signal
u for a wide class of parameter estimators developed in Chapter 4.

5.2.2 Parameter Identifiers with Full-State Measurements

Let us consider the plant

ẋ = Ax + Bu, x(0) = x0 (5.2.10)

where C> = I , i.e., the state x ∈ Rn is available for measurement and A, B

are constant matrices with unknown elements that we like to identify. We
assume that A is stable and u ∈ L∞.

As shown in Chapter 4, the following two types of parameter estimators
may be used to estimate A,B from the measurements of x, u.

Series-Parallel

˙̂x = Amx̂ + (Â−Am)x + B̂u (5.2.11)
˙̂
A = γ1ε1x

>,
˙̂
B = γ2ε1u

>

where Am is a stable matrix chosen by the designer, ε1 = x − x̂, γ1, γ2 > 0
are the scalar adaptive gains.

Parallel

˙̂x = Âx̂ + B̂u (5.2.12)
˙̂
A = γ1ε1x̂

>,
˙̂
B = γ2ε1u

>

where ε1 = x− x̂ and γ1, γ2 > 0 are the scalar adaptive gains.
As shown in Chapter 4, if A is a stable matrix and u ∈ L∞ then

x̂, Â, B̂ ∈ L∞; ‖ ˙̂
A(t)‖, ‖ ˙̂

B(t)‖, ε1 ∈ L2 ∩ L∞ and ε1(t) and the elements

of ˙̂
A(t), ˙̂

B(t) converge to zero as t →∞.
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For the estimators (5.2.11) and (5.2.12) to become parameter identifiers,
the input signal u has to be chosen so that Â(t), B̂(t) converge to the un-
known plant parameters A,B, respectively, as t →∞.

For simplicity let us first consider the case where u is a scalar input, i.e.,
B ∈ Rn×1.

Theorem 5.2.2 Let (A,B) be a controllable pair. If the input u ∈ R1 is suf-
ficiently rich of order n + 1, then the estimates Â, B̂ generated by (5.2.11) or
(5.2.12) converge exponentially fast to the unknown plant parameters A,B,
respectively.

The proof of Theorem 5.2.2 is quite long and is presented in Section 5.6.
An example of a sufficiently rich input u for the estimators (5.2.11),

(5.2.12) is the input

u =
m∑

i=1

Ai sinωit

for some constants Ai 6= 0 and ωi 6= ωk for i 6= k and for some integer
m ≥ n+1

2 .

Example 5.2.2 Consider the second-order plant

ẋ = Ax + Bu

where x = [x1, x2]>, and the matrices A, B are unknown, and A is a stable matrix.

Using (5.2.11) with Am =
[ −1 0

0 −1

]
, the series-parallel parameter identifier is

given by

˙̂x =
[ −1 0

0 −1

]
(x̂− x) +

[
â11(t) â12(t)
â21(t) â22(t)

]
x +

[
b̂1(t)
b̂2(t)

]
u

where x̂ = [x̂1, x̂2]> and

˙̂aik = (xi − x̂i)xk, i = 1, 2; k = 1, 2
˙̂
bi = (xi − x̂i)u, i = 1, 2

The input u is selected as

u = 5 sin 2.5t + 6 sin 6.1t



260 CHAPTER 5. IDENTIFIERS AND ADAPTIVE OBSERVERS

which has more frequencies than needed since it is sufficiently rich of order 4. An
input with the least number of frequencies that is sufficiently rich for the plant
considered is

u = c0 + sin ω0t

for some c0 6= 0 and ω0 6= 0. 5

If u is a vector, i.e., u ∈ Rq, q > 1 then the following theorem may be
used to select u.

Theorem 5.2.3 Let (A,B) be a controllable pair. If each element ui, i =
1, 2, . . . q of u is sufficiently rich of order n + 1 and uncorrelated, i.e., each ui

contains different frequencies, then Â(t), B̂(t) converge to A,B, respectively,
exponentially fast.

The proof of Theorem 5.2.3 is similar to that for Theorem 5.2.2, and is
given in Section 5.6.

The controllability of the pair (A,B) is critical for the results of The-
orems 5.2.2 and 5.2.3 to hold. If (A,B) is not a controllable pair, then
the elements of (A,B) that correspond to the uncontrollable part cannot be
learned from the output response because the uncontrollable parts decay to
zero exponentially fast and are not affected by the input u.

The complexity of the parameter identifier may be reduced if some of
the elements of the matrices (A,B) are known. In this case, the order of
the adaptive law can be reduced to be equal to the number of the unknown
parameters. In addition, the input u may not have to be sufficiently rich of
order n + 1. The details of the design and analysis of such schemes are left
as exercises for the reader and are included in the problem section.

In the following section we extend the results of Theorem 5.2.2 to the case
where only the output of the plant, rather than the full state, is available
for measurement.

5.2.3 Parameter Identifiers with Partial-State Measurements

In this section we concentrate on the SISO plant

ẋ = Ax + Bu, x(0) = x0 (5.2.13)

y = C>x
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where A is a stable matrix, and y, u ∈ R1 are the only signals available for
measurement.

Equation (5.2.13) may be also written as

y = C>(sI −A)−1Bu + C>(sI −A)−1x0 (5.2.14)

where, because of the stability of A, εt = L−1{C>(sI −A)−1}x0 is an expo-
nentially decaying to zero term. We would like to design an on-line parameter
identifier to estimate the parameters A,B, C. The triple (A,B, C) contains
n2 +2n unknown parameters to be estimated using only input/output data.
The I/O properties of the plant (5.2.14) at steady state (where εt = 0), how-
ever, are uniquely determined by at most 2n parameters. These parameters
correspond to the coefficients of the transfer function

y(s)
u(s)

= C>(sI −A)−1B =
bmsm + bm−1s

m−1 + . . . + b0

sn + an−1sn−1 + . . . + a0
(5.2.15)

where m ≤ n− 1.
Because there is an infinite number of triples (A,B,C) that give the same

transfer function (5.2.15), the triple (A,B, C) associated with the specific
or physical state space representation in (5.3.13) cannot be determined, in
general, from input-output data. The best we can do in this case is to
estimate the n + m + 1 ≤ 2n coefficients of the plant transfer function
(5.2.15) and try to calculate the corresponding triple (A, B,C) using some
a priori knowledge about the structure of (A,B, C). For example, when
(A,B, C) is in a canonical form, (A,B, C) can be uniquely determined from
the coefficients of the transfer function by using the results of Chapter 2. In
this section, we concentrate on identifying the n + m + 1 coefficients of the
transfer function of the plant (5.2.13) rather than the n2 +2n parameters of
the triple (A,B, C).

The first step in the design of the parameter identifier is to develop
an adaptive law that generates estimates for the unknown plant parameter
vector

θ∗ = [bm, bm−1, . . . , b0, an−1, an−2, . . . , , a0]
>

that contains the coefficients of the plant transfer function. As we have
shown in Section 2.4.1, the vector θ∗ satisfies the plant parametric equation

z = θ∗>φ + εt (5.2.16)
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where

z =
sn

Λ(s)
y, φ =

[
α>m(s)
Λ(s)

u,−α>n−1(s)
Λ(s)

y

]>

εt =
C>adj(sI −A)

Λ(s)
x0, αi(s) = [si, si−1, . . . , 1]>

and Λ(s) is an arbitrary monic Hurwitz polynomial of degree n.
Using (5.2.16), we can select any one of the adaptive laws presented in

Tables 4.2, 4.3, and 4.5 of Chapter 4 to estimate θ∗. As an example, consider
the gradient algorithm

θ̇ = Γεφ (5.2.17)

ε = z − ẑ, ẑ = θ>φ

where Γ = Γ> > 0 is the adaptive gain matrix, and θ is the estimate of θ∗

at time t. The normalizing signal m2 in this case is chosen as m2 = 1 due
to φ ∈ L∞.

The signal vector φ and signal z may be generated by the state equation

φ̇0 = Λcφ0 + lu, φ0(0) = 0

φ1 = P0φ0

φ̇2 = Λcφ2 − ly, φ2(0) = 0 (5.2.18)

φ = [φ>1 , φ>2 ]>

z = y + λ>φ2

where φ0 ∈ Rn, φ1 ∈ Rm+1, φ2 ∈ Rn

Λc =




−λ>

−−−−−
In−1 | 0


 , l =




1
0
...
0




P0 =
[
O(m+1)×(n−m−1) | Im+1

]
∈ R(m+1)×n, λ =




λn−1

λn−2
...

λ0
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Ii is the identity matrix of dimension i×i, Oi×k is a matrix of dimension i by k

with all elements equal to zero, and det(sI − Λc) = Λ(s) = sn + λ>αn−1(s).
When m = n − 1, the matrix P0 becomes the identity matrix of dimension
n× n.

The state equations (5.2.18) are developed by using the identity

(sI − Λc)−1l =
αn−1(s)

Λ(s)

established in Chapter 2.
The adaptive law (5.2.17) or any other one obtained from Tables 4.2

and 4.3 in Chapter 4 guarantees that ε, θ, ẑ ∈ L∞; ε, θ̇ ∈ L2 ∩ L∞ and
ε(t), θ̇(t) → 0 as t → ∞ for any piecewise bounded input u. For these
adaptive laws to become parameter identifiers, the input signal u has to be
chosen to be sufficiently rich so that φ is PE, which in turn guarantees that
the estimated parameters converge to the actual ones.

Theorem 5.2.4 Assume that the plant transfer function in (5.2.15) has no
zero-pole cancellations. If u is sufficiently rich of order n + m + 1, then the
adaptive law (5.2.17) or any other adaptive law from Tables 4.2, 4.3, and
4.5 of Chapter 4, based on the plant parametric model (5.2.16), guarantees
that the estimated parameter vector θ(t) converges to θ∗. With the exception
of the pure least-squares algorithm in Table 4.3 where the convergence is
asymptotic, all the other adaptive laws guarantee exponential convergence of
θ to θ∗.

Proof In Chapter 4, we have established that θ(t) converges to θ∗ if the signal φ
is PE. Therefore we are left to show that φ is PE if u is sufficiently rich of order
n + m + 1 and the transfer function has no zero-pole cancellations.

From the definition of φ, we can write

φ = H(s)u

and

H(s) =
1

Λ(s)
[
α>m(s),−α>n−1G(s)

]>

=
1

Λ(s)R(s)
[
α>m(s)R(s),−α>n−1(s)Z(s)

]>
(5.2.19)



264 CHAPTER 5. IDENTIFIERS AND ADAPTIVE OBSERVERS

where G(s) = Z(s)
R(s) is the transfer function of the plant. We first show by contradic-

tion that {H(jω1),H(jω2), . . . , H(jωn+m+1)} are linearly independent in Cn+m+1

for any ω1, . . . , ωn+m+1 ∈ R and ωi 6= ωk, i, k = 1, . . . , n + m + 1.
Let us assume that there exist ω1,. . . ,ωn+m+1 such that H(jω1), . . . ,H(jωn+m+1)

are linearly dependent, that is, there exists a vector h = [cm, cm−1 , . . ., c0,
dn−1, dn−2, . . . , d0]> ∈ Cn+m+1 such that




H>(jω1)
H>(jω2)

...
H>(jωn+m+1)


 h = 0n+m+1 (5.2.20)

where 0n+m+1 is a zero vector of dimension n+m+1. Using the expression (5.2.19)
for H(s), (5.2.20) can be written as

1
Λ(jωi)R(jωi)

[b(jωi)R(jωi) + a(jωi)Z(jωi)] = 0, i = 1, 2, . . . , n + m + 1

where
b(s) = cmsm + cm−1s

m−1 + · · ·+ c0

a(s) = −dn−1s
n−1 − dn−2s

n−2 − · · · − d0

Now consider the following polynomial:

f(s)
4
= a(s)Z(s) + b(s)R(s)

Because f(s) has degree of at most m + n and it vanishes at s = jωi, i = 1, . . . , n+
m + 1 points, it must be identically equal to zero, that is

a(s)Z(s) + b(s)R(s) = 0

or equivalently

G(s) =
Z(s)
R(s)

= − b(s)
a(s)

(5.2.21)

for all s. However, because a(s) has degree at most n−1, (5.2.21) implies that G(s)
has at least one zero-pole cancellation, which contradicts the assumption of no zero-
pole cancellation in G(s). Thus, we have proved that H(jωi), i = 1, . . . , n + m + 1
are linearly independent for any ωi 6= ωk, i, k = 1, . . . , n+m+1. It then follows from
Theorem 5.2.1 and the assumption of u being sufficiently rich of order n + m + 1
that φ is PE and therefore θ converges to θ∗. As shown in Chapter 4, the convergence
of θ to θ∗ is exponential for all the adaptive laws of Tables 4.2, 4.3, and 4.5 with
the exception of the pure least-squares where the convergence is asymptotic. 2
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An interesting question to ask at this stage is what happens to the pa-
rameter estimates when u is sufficiently rich of order less than n + m + 1,
i.e., when its spectrum Su(ω) is concentrated on k < n + m + 1 points.

Let us try to answer this question by considering the plant parametric
equation (5.2.16) with εt = 0, i.e.,

z = θ∗>φ = θ∗>H(s)u

where H(s) is given by (5.2.19).
The estimated value of z is given by

ẑ = θ>φ = θ>H(s)u

The adaptive laws of Tables 4.2, 4.3, and 4.5 of Chapter 4 based on the
parametric equation (5.2.16) guarantee that ẑ(t) → z(t) as t → ∞ for any
bounded input u. If u contains frequencies at ω1, ω2, . . . , ωk, then as t →
∞, ẑ = θ>H(s)u becomes equal to z = θ∗>H(s)u at these frequencies.
Therefore, as t →∞, θ must satisfy the equation

Q (jω1, . . . , jωk) θ = Q (jω1, . . . , jωk) θ∗

where

Q (jω1, . . . , jωk) =




H>(jω1)
...
H>(jωk)




is a k × n + m + 1 matrix with k linearly independent row vectors. Hence,

Q (jω1, . . . , jωk) (θ − θ∗) = 0

which is satisfied for any θ for which θ − θ∗ is in the null space of Q. If
k < n + m + 1 it follows that the null space of Q contains points for which
θ 6= θ∗. This means that ẑ can match z at k frequencies even when θ 6= θ∗.

The following Theorem presented in [201] gives a similar result followed
by a more rigorous proof.

Theorem 5.2.5 (Partial Convergence) Assume that the plant transfer
function in (5.2.15) has no zero-pole cancellations. If u is stationary, then

lim
t→∞Rφ(0) (θ(t)− θ∗) = 0

where θ(t) is generated by (5.2.17) or any other adaptive law from Tables
4.2, 4.3, and 4.5 of Chapter 4 based on the plant parametric model (5.2.16).
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The proof of Theorem 5.2.5 is given in Section 5.6.
Theorem 5.2.5 does not imply that θ(t) converges to a constant let alone

to θ∗. It does imply, however, that θ̃(t) = θ(t) − θ∗ converges to the null
space of the autocovariance Rφ(0) of φ, which depends on H(s) and the
spectrum of u. In fact it can be shown [201] that Rφ(0) is related to the
spectrum of u via the equation

Rφ(0) =
k∑

i=1

H(−jωi)H>(jωi)Su(ωi)

which indicates the dependence of the null space of Rφ(0) on the spectrum
of the input u.

Example 5.2.3 Consider the second order plant

y =
b0

s2 + a1s + a0
u

where a1, a0 > 0 and b0 6= 0 are the unknown plant parameters. We first express
the plant in the form of

z = θ∗>φ

where θ∗= [b0, a1, a0]>, z = s2

Λ(s)y, φ=
[

1
Λ(s)u,− [s,1]

Λ(s)y
]>

and choose Λ(s)=(s + 2)2.
Let us choose the pure least-squares algorithm from Table 4.3, i.e.,

θ̇ = Pεφ, θ(0) = θ0

Ṗ = −Pφφ>P, P (0) = p0I

ε = z − θ>φ

where θ is the estimate of θ∗ and select p0 = 50. The signal vector φ = [φ>1 , φ>2 ]>

is generated by the state equations

φ̇0 = Λcφ0 + lu

φ1 = [0 1]φ0

φ̇2 = Λcφ2 − ly

z = y + [4 4]φ2

where Λc =
[ −4 −4

1 0

]
, l =

[
1
0

]
. The reader can demonstrate via computer

simulations that: (i) for u = 5 sin t + 12 sin 3t, θ(t) → θ∗ as t → ∞; (ii) for u =
12 sin 3t, θ(t) → θ̄ as t →∞ where θ̄ is a constant vector that depends on the initial
condition θ(0). 5
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Remark 5.2.2 As illustrated with Example 5.2.3, one can choose any one
of the adaptive laws presented in Tables 4.2, 4.3, and 4.5 to form pa-
rameter identifiers. The complete proof of the stability properties of
such parameter identifiers follows directly from the results of Chap-
ter 4 and Theorem 5.2.4. The reader is asked to repeat some of the
stability proofs of parameter identifiers with different adaptive laws in
the problem section.

5.3 Adaptive Observers

Consider the LTI SISO plant

ẋ = Ax + Bu, x(0) = x0 (5.3.1)

y = C>x

where x ∈ Rn. We assume that u is a piecewise continuous and bounded
function of time, and A is a stable matrix. In addition we assume that the
plant is completely controllable and completely observable.

The problem is to construct a scheme that estimates both the parame-
ters of the plant, i.e., A,B, C as well as the state vector x using only I/O
measurements. We refer to such a scheme as the adaptive observer.

A good starting point for choosing the structure of the adaptive observer
is the state observer, known as the Luenberger observer, used to estimate the
state vector x of the plant (5.3.1) when the parameters A,B, C are known.

5.3.1 The Luenberger Observer

If the initial state vector x0 is known, the estimate x̂ of x in (5.3.1) may be
generated by the state observer

˙̂x = Ax̂ + Bu, x̂(0) = x0 (5.3.2)

where x̂ ∈ Rn. Equations (5.3.1) and (5.3.2) imply that x̂(t) = x(t), ∀t ≥ 0.
When x0 is unknown and A is a stable matrix, the following state observer
may be used to generate the estimate x̂ of x:

˙̂x = Ax̂ + Bu, x̂(0) = x̂0 (5.3.3)
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In this case, the state observation error x̃ = x− x̂ satisfies the equation

˙̃x = Ax̃, x̃(0) = x0 − x̂0

which implies that x̃(t) = eAtx̃(0). Because A is a stable matrix x̃(t) → 0,
i.e., x̂(t) → x(t) as t → ∞ exponentially fast with a rate that depends on
the location of the eigenvalues of A. The observers (5.3.2), (5.3.3) contain
no feedback terms and are often referred to as open-loop observers.

When x0 is unknown and A is not a stable matrix, or A is stable but
the state observation error is required to converge to zero faster than the
rate with which ‖ eAt ‖ goes to zero, the following observer, known as the
Luenberger observer, is used:

˙̂x = Ax̂ + Bu + K(y − ŷ), x̂(0) = x̂0 (5.3.4)

ŷ = C>x̂

where K is a matrix to be chosen by the designer. In contrast to (5.3.2) and
(5.3.3), the Luenberger observer (5.3.4) has a feedback term that depends
on the output observation error ỹ = y − ŷ.

The state observation error x̃ = x− x̂ for (5.3.4) satisfies

˙̃x = (A−KC>)x̃, x̃(0) = x0 − x̂0 (5.3.5)

Because (C, A) is an observable pair, we can choose K so that A−KC> is
a stable matrix. In fact, the eigenvalues of A − KC>, and, therefore, the
rate of convergence of x̃(t) to zero can be arbitrarily chosen by designing K

appropriately [95]. Therefore, it follows from (5.3.5) that x̂(t) → x(t) expo-
nentially fast as t →∞, with a rate that depends on the matrix A−KC>.
This result is valid for any matrix A and any initial condition x0 as long as
(C,A) is an observable pair and A,C are known.

Example 5.3.1 Consider the plant described by

ẋ =
[ −4 1
−4 0

]
x +

[
1
3

]
u

y = [1, 0]x

The Luenberger observer for estimating the state x is given by

˙̂x =
[ −4 1
−4 0

]
x̂ +

[
1
3

]
u +

[
k1

k2

]
(y − ŷ)

ŷ = [1, 0]x̂
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where K = [k1, k2]
> is chosen so that

A0 =
[ −4 1
−4 0

]
−

[
k1

k2

]
[1 0] =

[ −4− k1 1
−4− k2 0

]

is a stable matrix. Let us assume that x̂(t) is required to converge to x(t) faster
than e−5t. This requirement is achieved by choosing k1, k2 so that the eigenvalues
of A0 are real and less than −5, i.e., we choose the desired eigenvalues of A0 to be
λ1 = −6, λ2 = −8 and design k1, k2 so that

det(sI −A0) = s2 + (4 + k1)s + 4 + k2 = (s + 6)(s + 8)

which gives
k1 = 10, k2 = 44 5

5.3.2 The Adaptive Luenberger Observer

Let us now consider the problem where both the state x and parameters
A,B, C are to be estimated on-line simultaneously using an adaptive ob-
server.

A straightforward procedure for choosing the structure of the adaptive
observer is to use the same equation as the Luenberger observer in (5.3.4),
but replace the unknown parameters A,B, C with their estimates Â, B̂, Ĉ,
respectively, generated by some adaptive law. The problem we face with
this procedure is the inability to estimate uniquely the n2 + 2n parameters
of A,B, C from input/output data. As explained in Section 5.2.3, the best we
can do in this case is to estimate the n+m+1 ≤ 2n parameters of the plant
transfer function and use them to calculate Â, B̂, Ĉ. These calculations,
however, are not always possible because the mapping of the 2n estimated
parameters of the transfer function to the n2 + 2n parameters of Â, B̂, Ĉ

is not unique unless (A,B, C) satisfies certain structural constraints. One
such constraint is that (A, B,C) is in the observer form, i.e., the plant is
represented as

ẋα =




... In−1

−ap
... . . .
... 0


 xα + bpu (5.3.6)

y = [1 0 . . . 0]xα
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where ap = [an−1, an−2, . . . a0]> and bp = [bn−1, bn−2, . . . b0]> are vectors of
dimension n and In−1 ∈ R(n−1)×(n−1) is the identity matrix. The elements of
ap and bp are the coefficients of the denominator and numerator, respectively,
of the transfer function

y(s)
u(s)

=
bn−1s

n−1 + bn−2s
n−2 + . . . + b0

sn + an−1sn−1 + . . . a0
(5.3.7)

and can be estimated on-line from input/output data by using the techniques
described in Chapter 4.

Because both (5.3.1) and (5.3.6) represent the same plant, we can assume
the plant representation (5.3.6) and estimate xα instead of x. The disadvan-
tage is that in a practical situation x may represent physical variables that
are of interest, whereas xα may be an artificial state variable.

The adaptive observer for estimating the state xα of (5.3.6) is motivated
from the structure of the Luenberger observer (5.3.4) and is given by

˙̂x = Â(t)x̂ + b̂p(t)u + K(t)(y − ŷ) (5.3.8)

ŷ = [1 0 . . . 0]x̂

where x̂ is the estimate of xα,

Â(t) =




... In−1

−âp(t)
... . . .
... 0


 , K(t) = a∗ − âp(t)

a∗ ∈ Rn is chosen so that

A∗ =




... In−1

−a∗
... . . .
... 0


 (5.3.9)

is a stable matrix and âp(t) and b̂p(t) are the estimates of the vectors ap and
bp, respectively, at time t.

A wide class of adaptive laws may be used to generate âp(t) and b̂p(t)
on-line. As an example, we can start with (5.3.7) to obtain as in Section
2.4.1 the parametric model

z = θ∗>φ (5.3.10)
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where

φ =

[
α>n−1(s)

Λ(s)
u,−α>n−1(s)

Λ(s)
y

]>
=

[
φ>1 , φ>2

]>

z =
sn

Λ(s)
y = y + λ>φ2

Λ(s) = sn + λ>αn−1(s)

and
θ∗ = [bn−1, bn−2, . . . , an−1, an−2, . . . , a0]

>

is the parameter vector to be estimated and Λ(s) is a Hurwitz polynomial
of degree n chosen by the designer. A state-space representation for φ and z

may be obtained as in (5.2.18) by using the identity (sI − Λc)−1l
4
= αn−1(s)

Λ(s)

where (Λc, l) is in the controller canonical form and det(sI − Λc) = Λ(s).
In view of (5.3.10), we can choose any adaptive law from Tables 4.2,

4.3 and 4.5 of Chapter 4 to estimate θ∗ and, therefore, ap, bp on-line. We
can form a wide class of adaptive observers by combining (5.3.8) with any
adaptive law from Tables 4.2, 4.3 and 4.5 of Chapter 4 that is based on the
parametric plant model (5.3.10).

We illustrate the design of such adaptive observer by using the gradient
algorithm of Table 4.2 (A) in Chapter 4 as the adaptive law. The main
equations of the observer are summarized in Table 5.1.

The stability properties of the class of adaptive observers formed by
combining the observer equation (5.3.8) with an adaptive law from Tables
4.2 and 4.3 of Chapter 4 are given by the following theorem.

Theorem 5.3.1 An adaptive observer for the plant (5.3.6) formed by com-
bining the observer equation (5.3.8) and any adaptive law based on the plant
parametric model (5.3.10) obtained from Tables 4.2 and 4.3 of Chapter 4
guarantees that

(i) All signals are u.b.

(ii) The output observation error ỹ = y − ŷ converges to zero as t →∞.
(iii) If u is sufficiently rich of order 2n, then the state observation error

x̃ = xα − x̂ and parameter error θ̃
4
= θ − θ∗ converge to zero. The rate

of convergence is exponential for all adaptive laws except for the pure
least-squares where the convergence is asymptotic.
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Table 5.1 Adaptive observer with gradient algorithm

Plant
ẋα =




... In−1

−ap
... . . .
... 0


 xα + bpu, xα ∈ Rn

y = [1, 0 . . . 0]xα

Observer
˙̂x=




...In−1

−âp(t)
... . . .
... 0


̂x+b̂p(t)u+(a∗−âp(t))(y−ŷ)

ŷ = [1 0 . . . 0]x̂

Adaptive law

θ̇ = Γεφ

θ =
[
b̂>p (t), â>p (t)

]>
, ε = z−ẑ

m2 ,

ẑ = θ>φ, Γ = Γ> > 0

φ =
[

α>n−1(s)

Λ(s) u,−α>n−1(s)

Λ(s) y

]>

z = sn

Λ(s)y

Design variables a∗ is chosen so that A∗ in (5.3.9) is stable; m2 =
1 or m2 = 1 + φ>φ; Λ(s) is a monic Hurwitz poly-
nomial of degree n

Proof (i) The adaptive laws of Tables 4.2 and 4.3 of Chapter 4 guarantee that
ε, εm, θ̇ ∈ L2∩L∞ and θ ∈ L∞ independent of the boundedness of u, y. Because u ∈
L∞ and the plant is stable, we have xα, y, φ,m ∈ L∞. Because of the boundedness
of y, φ we can also establish that ε, εm, θ̇ → 0 as t → ∞ by showing that ε̇ ∈ L∞
(which follows from θ̇, φ̇ ∈ L∞), which, together with ε ∈ L2, implies that ε → 0 as
t → ∞ (see Lemma 3.2.5). Because m, φ ∈ L∞, the convergence of εm, θ̇ to zero
follows.

The proof of (i) is complete if we establish that x̂ ∈ L∞. We rewrite the observer
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equation (5.3.8) in the form

˙̂x = A∗x̂ + b̂p(t)u + (Â(t)−A∗)xα (5.3.11)

Because θ =
[
b̂>p (t), â>p (t)

]>
, u, xα ∈ L∞ and A∗ is a stable matrix, it follows that

x̂ ∈ L∞. Hence, the proof of (i) is complete.

(ii) Let x̃
4
= xα − x̂ be the state observation error. It follows from (5.3.11),

(5.3.6) that
˙̃x = A∗x̃− b̃pu + ãpy, x̃(0) = xα(0)− x̂(0) (5.3.12)

where b̃p
4
= b̂p − bp, ãp

4
= âp − ap. From (5.3.12), we obtain

ỹ = C>x̃(s) = C>(sI −A∗)−1(−b̃pu + ãpy) + εt

where εt = L−1
{
C>(sI −A∗)−1

}
x̃(0) is an exponentially decaying to zero term.

Because (C,A) is in the observer canonical form, we have

C>(sI −A∗)−1 =
α>n−1(s)

det(sI −A∗)
=

[sn−1, sn−2, . . . s, 1]
det(sI −A∗)

Letting Λ∗(s)
4
= det(sI −A∗), we have

ỹ(s) =
1

Λ∗(s)

n∑

i=1

sn−i
[
−b̃n−iu + ãn−iy

]
+ εt

where b̃i, ãi is the ith element of b̃p and ãp, respectively, which may be written as

ỹ(s) =
Λ(s)
Λ∗(s)

n∑

i=1

sn−i

Λ(s)

[
−b̃n−iu + ãn−iy

]
+ εt (5.3.13)

where Λ(s) is the Hurwitz polynomial of degree n defined in (5.3.10). We now apply
Lemma A.1 (see Appendix A) for each term under the summation in (5.3.13) to
obtain

ỹ =
Λ(s)
Λ∗(s)

n∑

i=1

[
−b̃n−i

sn−i

Λ(s)
u + ãn−i

sn−i

Λ(s)
y

−Wci(s) (Wbi(s)u) ˙̃
bn−i + Wci(s) (Wbi(s)y) ˙̃an−i

]
+ εt (5.3.14)

where the elements of Wci(s),Wbi(s) are strictly proper transfer functions with the
same poles as Λ(s). Using the definition of φ and parameter error θ̃ = θ − θ∗, we
rewrite (5.3.14) as

ỹ =
Λ(s)
Λ∗(s)

{
−θ̃>φ +

n∑

i=1

Wci(s)
(
− (Wbi(s)u) ˙̃

bn−i + (Wbi(s)y) ˙̃an−i

)}
+ εt
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-

- Parameter
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Plant
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¾ 6

-
Luenberger
Observer

(Equation 5.3.8)

u y x̂

(âp, b̂p)

Figure 5.1 General structure of the adaptive Luenberger observer.

Because ˙̃
bn−i, ˙̃an−i ∈ L2 ∩ L∞ converge to zero as t → ∞, u, y ∈ L∞ and the

elements of Wci(s),Wbi(s) are strictly proper stable transfer functions, it follows
from Corollary 3.3.1 that all the terms under the summation are in L2 ∩ L∞ and
converge to zero as t →∞. Furthermore, from εm2 = z − ẑ = −θ̃>φ,m ∈ L∞, ε ∈
L2 ∩ L∞ and ε(t) → 0 as t → 0, we have that θ̃>φ ∈ L2 ∩ L∞ converges to zero as
t →∞. Hence, ỹ is the sum of an output of a proper stable transfer function whose
input is in L2 and converges to zero as t → ∞ and the exponentially decaying to
zero term εt. Therefore, ỹ(t) → 0 as t →∞.

(iii) If φ is PE, then we can establish, using the results of Chapter 4, that
ãp(t), b̃p(t) converge to zero. Hence, the input −b̃pu+ ãpy converges to zero, which,
together with the stability of A∗, implies that x̃(t) → 0. With the exception of the
pure least-squares, all the other adaptive laws guarantee that the convergence of
b̃p, ãp to zero is exponential, which implies that x̃ also goes to zero exponentially
fast .

The PE property of φ is established by using exactly the same steps as in the
proof of Theorem 5.2.4. 2

The general structure of the adaptive observer is shown in Figure 5.1.
The only a priori knowledge assumed about the plant (5.3.1) is that it is

completely observable and completely controllable and its order n is known.
The knowledge of n is used to choose the order of the observer, whereas
the observability of (C, A) is used to guarantee the existence of the state
space representation of the plant in the observer form that in turn enables
us to design a stable adaptive observer. The controllability of (A,B) is not
needed for stability, but it is used together with the observability of (C,A)
to establish that φ is PE from the properties of the input u.
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Theorem 5.3.1 shows that for the state xα of the plant to be estimated
exactly, the input has to be sufficiently rich of order 2n, which implies that
the adaptive law has to be a parameter identifier. Even with the knowledge of
the parameters ap, bp and of the state xα, however, it is not in general possible
to calculate the original state of the plant x because of the usual nonunique
mapping from the coefficients of the transfer function to the parameters of
the state space representation.

Example 5.3.2 Let us consider the second order plant

ẋ =
[ −a1 1
−a0 0

]
x +

[
b1

b0

]
u

y = [1, 0]x

where a1, a0, b1, b0 are the unknown parameters and u, y are the only signals avail-
able for measurement.

Using Table 5.1, the adaptive observer for estimating x, and the unknown pa-
rameters are described as follows: The observer equation is given by

˙̂x =
[ −â1(t) 1
−â0(t) 0

]
x̂ +

[
b̂1(t)
b̂0(t)

]
u +

[
9− â1(t)
20− â0(t)

]
(y − ŷ)

ŷ = [1, 0] x̂

where the constants a∗1 = 9, a∗0 = 20 are selected so that A∗ =
[ −a∗1 1
−a∗0 0

]
has

eigenvalues at λ1 = −5, λ2 = −4.
The adaptive law is designed by first selecting

Λ(s) = (s + 2)(s + 3) = s2 + 5s + 6

and generating the information vector φ = [φ>1 , φ>2 ]>

φ̇1 =
[ −5 −6

1 0

]
φ1 +

[
1
0

]
u

φ̇2 =
[ −5 −6

1 0

]
φ2 +

[ −1
0

]
y

and the signals

z = y + [5, 6]φ2

ẑ =
[
b̂1, b̂0

]
φ1 + [â1, â0] φ2

ε = z − ẑ
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The adaptive law is then given by
[ ˙̂

b1

˙̂
b2

]
= γ1εφ1,

[ ˙̂a1

˙̂a2

]
= γ2εφ2

The adaptive gains γ1, γ2 > 0 are usually chosen by trial and error using simulations
in order to achieve a good rate of convergence. Small γ1, γ2 may result in slow
convergent rate whereas large γ1, γ2 may make the differential equations “stiff” and
difficult to solve numerically on a digital computer.

In order for the parameters to converge to their true values, the plant input u
is chosen to be sufficiently rich of order 4. One possible choice for u is

u = A1 sin ω1t + A2 sinω2t

for some constants A1, A2 6= 0 and ω1 6= ω2. 5

5.3.3 Hybrid Adaptive Luenberger Observer

The adaptive law for the adaptive observer presented in Table 5.1 can be
replaced with a hybrid one without changing the stability properties of the
observer in any significant way. The hybrid adaptive law updates the param-
eter estimates only at specific instants of time tk, where tk is an unbounded
monotonic sequence, and tk+1 − tk = Ts where Ts may be considered as the
sampling period.

The hybrid adaptive observer is developed by replacing the continuous-
time adaptive law with the hybrid one given in Table 4.5 as shown in Table
5.2. The combination of the discrete-time adaptive law with the continuous-
time observer equation makes the overall system more difficult to analyze.
The stability properties of the hybrid adaptive observer, however, are very
similar to those of the continuous-time adaptive observer and are given by
the following theorem.

Theorem 5.3.2 The hybrid adaptive Luenberger observer presented in Ta-
ble 5.2 guarantees that

(i) All signals are u.b.

(ii) The output observation error ỹ
4
= y − ŷ converges to zero as t →∞.

(iii) If u is sufficiently rich of order 2n, then the state observation error x̃
4
=

xα− x̂ and parameter error θ̃k
4
= θk− θ∗ converge to zero exponentially

fast.
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Table 5.2 Hybrid adaptive Luenberger observer

Plant ẋα =




... In−1

−ap
... . . .
... 0


 xα + bpu, xα ∈ Rn

y = [1, 0 . . . 0]u

Observer
˙̂x =




... In−1

−âk
... . . .
... 0


̂x+ b̂ku + (a∗−âk)(y−ŷ)

ŷ=[1, 0, . . . , 0]x̂
x̂∈Rn, t∈ [tk, tk+1), k = 0, 1, . . .

Hybrid
adaptive law

θk+1 = θk + Γ
∫ tk+1
tk

ε(τ)φ(τ)dτ

ε = z−ẑ
m2 , ẑ(t) = θ>k φ(t), ∀t ∈ [tk, tk+1)

m2 = 1 + αφ>φ, α ≥ 0

φ=
[
α>n−1(s)

Λ(s) u,−α>n−1(s)

Λ(s) y

]>
, z= sn

Λ(s)y, θk =
[
b̂>k , â>k

]>

Design variable

a∗ is chosen so that A∗ in (5.3.9) is stable; Λ(s) is
monic Hurwitz of degree n; Ts = tk+1 − tk is the
sampling period; Γ = Γ> > 0, Ts are chosen so that
2− Tsλmax(Γ) > γ0 for some γ0 > 0

To prove Theorem 5.3.2 we need the following lemma:

Lemma 5.3.1 Consider any piecewise constant function defined as

f(t) = fk ∀t ∈ [kTs, (k + 1)Ts), k = 0, 1, . . . .

If the sequence {∆fk} ∈ `2 where ∆fk
4
= fk+1 − fk, then there exists a

continuous function f̄(t) such that |f − f̄ | ∈ L2 and ˙̄f ∈ L2.
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Proof The proof of Lemma 5.3.1 is constructive and rather simple. Consider the
following linear interpolation:

f̄(t) = fk +
fk+1 − fk

Ts
(t− kTs) ∀t ∈ [kTs, (k + 1)Ts)

It is obvious that f̄ has the following properties: (i) it is continuous; (ii) |f̄(t) −
f(t)| ≤ |fk+1 − fk|; (iii) ˙̄f is piecewise continuous and | ˙̄f(t)| = 1

Ts
|fk+1 − fk|

∀t ∈ [kTs, (k + 1)Ts). Therefore, using the assumption ∆fk ∈ `2 we have

∫ ∞

0

|f̄(t)− f(t)|2dt ≤ Ts

∞∑

k=0

|∆fk|2 < ∞

and ∫ ∞

0

| ˙̄f(t)|2dt ≤
∞∑

k=0

|∆fk|2 < ∞

i.e., ˙̄f ∈ L2. 2

Proof of Theorem 5.3.2
(i) We have shown in Chapter 4 that the hybrid adaptive law given in Table 4.5

guarantees that θk ∈ l∞; ε, εm ∈ L∞
⋂L2. Because u ∈ L∞ and the plant is stable,

we have y, xα, φ,m ∈ L∞. As we show in the proof of Theorem 5.3.1, we can write
the observer equation in the form

˙̂x = A∗x̂ + b̂ku + (Âk −A∗)xα, ∀t ∈ [tk, tk+1) (5.3.15)

where A∗ is a stable matrix and

Âk
4
=


−âk

∣∣∣∣∣∣

In−1

· · ·
0




Because âk, b̂k ∈ l∞; xα, u ∈ L∞, it follows from (5.3.15) that x̂ ∈ L∞, and,
therefore, all signals are u.b.

(ii) Following the same procedure as in the proof of Theorem 5.3.1, we can
express ỹ = y − ŷ as

ỹ = C>(sI −A∗)−1(−b̃ku + ãky) + εt (5.3.16)

where εt is an exponentially decaying to zero term.
From Lemma 5.3.1 and the properties of the hybrid adaptive law, i.e., θ̃k ∈ l∞

and |θ̃k+1 − θ̃k| ∈ `2, we conclude that there exists a continuous piecewise vector
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function θ̃ such that |θ̃(t)−θ̃k(t)|, ˙̃
θ ∈ L∞

⋂L2, where θ̃k(t) is the piecewise constant
function defined by θ̃k(t) = θ̃k, ∀t ∈ [tk, tk+1). Therefore, we can write (5.3.16) as

ỹ = C>(sI −A∗)−1(−b̃u + ãy) + f(t) + εt (5.3.17)

where
f(t) = C>(sI −A∗)−1

(
(b̃− b̃k)u− (ã− ãk)y

)

Using Corollary 3.3.1, it follows from u, y ∈ L∞ and |θ̃ − θ̃k| ∈ L∞
⋂L2 that

f ∈ L∞
⋂L2 and f(t) → 0 as t →∞.

Because now θ̃ has the same properties as those used in the continuous adaptive
Luenberger observer, we can follow exactly the same procedure as in the proof
of Theorem 5.3.1 to shown that the first term in (5.3.17) converges to zero and,
therefore, ỹ(t) → 0 as t →∞.

(iii) We have established in the proof of Theorem 5.2.4 that when u is sufficiently
rich of order 2n, φ is PE. Using the PE property of φ and Theorem 4.6.1 (iii) we
have that θk → θ∗ exponentially fast. 2

5.4 Adaptive Observer with Auxiliary Input

Another class of adaptive observers that attracted considerable interest [28,
123, 172] involves the use of auxiliary signals in the observer equation. An
observer that belongs to this class is described by the equation

˙̂x = Â(t)x̂ + b̂p(t)u + K(t) (y − ŷ) + v, x̂(0) = x̂0

ŷ = [1 0 . . . 0]x̂ (5.4.1)

where x̂, Â(t), b̂p(t),K(t) are as defined in (5.3.8), and v is an auxiliary vector
input to be designed. The motivation for introducing v is to be able to
use the SPR-Lyapunov design approach to generate the adaptive laws for
Â(t), b̂p(t),K(t). This approach is different from the one taken in Section
5.3 where the adaptive law is developed independently without considering
the observer structure.

The first step in the SPR-Lyapunov design approach is to obtain an error
equation that relates the estimation or observation error with the parameter
error as follows: By using the same steps as in the proof of Theorem 5.3.1,
the state error x̃ = xα − x̂ satisfies

˙̃x = A∗x̃ + ãpy − b̃pu− v, x̃(0) = x̃0
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ỹ = C>x̃ (5.4.2)

where ãp, b̃p are the parameter errors. Equation (5.4.2) is not in the fa-
miliar form studied in Chapter 4 that allows us to choose an appropriate
Lyapunov-like function for designing an adaptive law and proving stability.
The purpose of the signal vector v is to convert (5.4.2) into a form that is
suitable for applying the Lyapunov approach studied in Chapter 4. The fol-
lowing Lemma establishes the existence of a vector v that converts the error
equation (5.4.2) into one that is suitable for applying the SPR-Lyapunov
design approach.

Lemma 5.4.1 There exists a signal vector v ∈ Rn, generated from mea-
surements of known signals, for which the system (5.4.2) becomes

ė = A∗e + Bc(−θ̃>φ), e(0) = x̃0

ỹ = C>e (5.4.3)

where C>(sI − A∗)−1Bc is SPR, φ ∈ R2n is a signal vector generated from
input/output data, θ̃ = [b̃>p , ã>p ]>, and e ∈ Rn is a new state vector.

Proof Because (C, A∗) is in the observer form, we have

C>(sI −A∗)−1 =
α>n−1(s)
Λ∗(s)

where αn−1(s) = [sn−1, sn−2, . . . , 1]>, Λ∗(s) = det(sI − A∗). Therefore, (5.4.2) can
be expressed in the form

ỹ = C>(sI −A∗)−1
[
ãpy − b̃pu− v

]
+ εt

=
Λ(s)
Λ∗(s)

{
n∑

i=1

sn−i

Λ(s)

(
ãn−iy − b̃n−iu

)
− α>n−1(s)

Λ(s)
v

}
+ εt (5.4.4)

where εt = L−1
{
C>(sI −A∗)−1

}
x̃0, Λ(s) = sn−1 + λ>αn−2(s) is a Hurwitz poly-

nomial, λ> = [λn−2, λn−3, . . . , λ1, λ0] is to be specified and ãi, b̃i is the ith element
of ãp, b̃p respectively.

Applying the Swapping Lemma A.1 given in Appendix A to each term under
the summation in (5.4.4), we obtain

ỹ =
Λ(s)
Λ∗(s)

{
n∑

i=1

(
ãn−i

sn−i

Λ(s)
y − b̃n−i

sn−i

Λ(s)
u

)
(5.4.5)

+
n∑

i=1

{
Wci(s)(Wbi(s)y) ˙̃an−i −Wci(s)(Wbi(s)u)˙̃bn−i

}
− α>n−1(s)

Λ(s)
v

}
+ εt
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We now use Lemma A.1 to obtain expressions for Wci,Wbi in terms of the param-
eters of Λ(s). Because Wc1, Wb1 are the transfer functions resulting from swapping
with the transfer function

sn−1

Λ(s)
= 1− α>n−2(s)λ

Λ(s)
= 1− C>0 (sI − Λ0)−1λ = 1 + C>0 (sI − Λ0)−1(−λ)

where C0 = [1, 0, . . . , 0]> ∈ Rn−1

Λ0 =




... In−2

−λ
... . . .
... 0


 ∈ R

(n−1)×(n−1)

it follows from Lemma A.1 that

Wc1(s) = −C>0 (sI − Λ0)−1 =
−α>n−2(s)

Λ(s)
, Wb1(s) = (sI − Λ0)−1(−λ)

Similarly Wci,Wbi i = 2, 3, . . . , n result from swapping with

sn−i

Λ(s)
= C>0 (sI − Λ0)−1di

where di = [0, . . . , 0, 1, 0, . . . , 0]> ∈ Rn−1 has all its elements equal to zero except
for the (i−1)−th element that is equal to one. Therefore it follows from Lemma A.1
that

Wci(s) = −C>0 (sI − Λ0)−1 = −α>n−2(s)
Λ(s)

, i = 2, 3, . . . , n

Wbi(s) = (sI − Λ0)−1di, i = 2, 3, . . . , n

If we define

φ
4
=

[
α>n−1(s)

Λ(s)
u, −α>n−1(s)

Λ(s)
y

]>

and use the expressions for Wci(s),Wbi(s), (5.4.5) becomes

ỹ =
Λ(s)
Λ∗(s)

{
−θ̃>φ− sn−1

Λ(s)
v1

− α>n−2(s)
Λ(s)

[
n∑

i=1

{[
(sI − Λ0)−1diy

] ˙̃an−i −
[
(sI − Λ0)−1diu

] ˙̃
bn−i

}
+ v̄

]}
+ εt

where v is partitioned as v = [v1, v̄
>]> with v1 ∈ R1 and v̄ ∈ Rn−2 and d1 = −λ.
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Choosing v1 = 0 and

v̄ = −
n∑

i=1

{[
(sI − Λ0)−1diy

] ˙̃an−i −
[
(sI − Λ0)−1diu

] ˙̃
bn−i

}

we obtain

ỹ =
Λ(s)
Λ∗(s)

(−θ̃>φ) + εt (5.4.6)

Because

Λ(s)
Λ∗(s)

=
sn−1 + λ>αn−2(s)

Λ∗(s)
=

α>n−1(s)bλ

Λ∗(s)
= C>(sI −A∗)−1bλ

where bλ = [1, λ>]> ∈ Rn and C = [1, 0, . . . , 0]> ∈ Rn. For Bc = bλ, (5.4.3)
is a minimal state-space representation of (5.4.6). Because Λ(s) is arbitrary, its
coefficient vector λ can be chosen so that Λ(s)

Λ∗(s) is SPR. The signal v̄ is implementable

because ˙̃ai,
˙̃
bi and u, y are available for measurement. 2

We can now use (5.4.3) instead of (5.4.2) to develop an adaptive law for
generating θ =

[
b̂>p , â>p

]
>. Using the results of Chapter 4, it follows that the

adaptive law is given by

θ̇ = Γεφ, ε = ỹ = y − ŷ (5.4.7)

where Γ = Γ> > 0.
We summarize the main equations of the adaptive observer developed

above in Table 5.3. The structure of the adaptive observer is shown in
Figure 5.2.

Theorem 5.4.1 The adaptive observer presented in Table 5.3 guarantees
that for any bounded input signal u,

(i) all signals are u.b.

(ii) ỹ(t) = y − ŷ → 0 as t →∞.

(iii) ˙̂ap(t),
˙̂
bp(t) ∈ L2 ∩ L∞ and converge to zero as t →∞.

In addition, if u is sufficiently rich of order 2n, then

(iv) x̃(t) = xα(t)− x̂(t), ãp(t) = âp(t)− ap, b̃p(t) = b̂p(t)− bp converge to
zero exponentially fast.
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Table 5.3 Adaptive observer with auxiliary input

Plant ẋα =


−ap

∣∣∣∣∣∣∣

In−1

· · ·
0


 xα + bpu, y = [1 0 . . . 0]xα

ap = [an−1, . . . , a0]>, bp = [bn−1, . . . , b0]>

Observer
˙̂x =


−âp(t)

∣∣∣∣∣∣∣

In−1

· · ·
0


 x̂+b̂p(t)u+(a∗−âp(t))(y−ŷ)+v

ŷ = [1 0 . . . 0]x̂

Adaptive law

[ ˙̂
bp
˙̂ap

]
= Γφ(y − ŷ), Γ = Γ> > 0

φ =
[

α>n−1(s)

Λ(s) u,−α>n−1(s)

Λ(s) y

]>

Auxiliary input

v=

[
0
v

]
, v=

∑n
i=1

[
− [Wi(s)y] ˙̂an−i+[Wi(s)u] ˙̂

bn−i

]

Wi(s) = (sI − Λ0)
−1 di,

d1 = −λ; d>i = [0...0, 1, 0...0],
↑

(i− 1)

i = 2, . . . , n

Λ0 =


−λ

∣∣∣∣∣∣∣

In−2

· · ·
0


 , λ = [λn−2, . . . , λ0]>

det(sI − Λ0) = Λ(s) = sn−1 + λ>αn−2(s)

Design variables

(i) a∗ is chosen such that A∗=


−a∗

∣∣∣∣∣∣∣

In−1

· · ·
0


 is stable

(ii) The vector λ is chosen such that Λ0 is stable

and [1 0 . . . 0] (sI −A∗)−1

[
1
λ

]
is SPR.
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Figure 5.2 Structure of the adaptive observer with auxiliary input signal.

Proof The main equations that describe the stability properties of the adaptive
observer are the error equation (5.4.3) that relates the parameter error with the
state observation error and the adaptive law (5.4.7). Equations (5.4.3) and (5.4.7)
are analyzed in Chapter 4 where it has been shown that e, ỹ ∈ L2∩L∞ and θ̃ ∈ L∞
for any signal vector φ with piecewise continuous elements. Because u, y ∈ L∞, it
follows that φ ∈ L∞ and from (5.4.3) and (5.4.7) that θ̇, ė, ˙̃y ∈ L∞ and θ̇ ∈ L2.
Using e, ỹ ∈ L2

⋂L∞ together with ė, ˙̃y ∈ L∞, we have ỹ(t) → 0, e(t) → 0 as
t → ∞, which implies that θ̇(t) → 0 as t → ∞. From θ̇ ∈ L2 ∩ L∞, it follows that
v ∈ L2∩L∞ and v(t) → 0 as t →∞. Hence, all inputs to the state equation (5.4.2)
are in L∞, which implies that x̃ ∈ L∞, i.e., x̂ ∈ L∞.

In Chapter 4 we established that if φ, φ̇ ∈ L∞ and φ is PE, then the error
equations (5.4.3) and (5.4.7) guarantee that θ̃(t) → 0 as t →∞ exponentially fast.
In our case φ, φ̇ ∈ L∞ and therefore if u is chosen so that φ is PE then θ̃(t) → 0 as
t →∞ exponentially fast, which implies that e(t), ỹ(t), θ̇(t), v(t), ãp(t)y, b̃p(t)u and,
therefore, x̃(t) converge to zero exponentially fast. To explore the PE property of
φ, we note that φ is related to u through the equation

φ =
1

Λ(s)

[
αn−1(s)

−αn−1(s)C>(sI −A)−1bp

]
u

Because u is sufficiently rich of order 2n, the PE property of φ can be established
by following exactly the same steps as in the proof of Theorem 5.2.4. 2

The auxiliary signal vector v̄ can be generated directly from the signals
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φ and ˙̃
θ, i.e., the filters Wi for y, u do not have to be implemented. This

simplification reduces the number of integrators required to generate φ, v̄

considerably and it follows from the relationship

(sI − Λ0)−1di = Qi
αn−1(s)

Λ(s)
, i = 1, 2, . . . , n

where Qi ∈ R(n−1)×(n−1) are constant matrices whose elements depend on
the coefficients of the numerator polynomials of (sI −Λ0)−1di (see Problem
2.12).

As with the adaptive Luenberger observer, the adaptive observer with
auxiliary input shown in Table 5.3 requires the input u to be sufficiently
rich of order 2n in order to guarantee exact plant state observation. The
only difference between the two observers is that the adaptive Luenberger
observer may employ any one of the adaptive laws given in Tables 4.2, 4.3,
and 4.5 whereas the one with the auxiliary input given in Table 5.3 relies
on the SPR-Lyapunov design approach only. It can be shown, however, (see
Problem 5.16) by modifying the proof of Lemma 5.4.1 that the observation
error ỹ may be expressed in the form

ỹ = −θ̃>φ (5.4.8)

by properly selecting the auxiliary input v and φ. Equation (5.4.8) is in the
form of the error equation that appears in the case of the linear parametric
model y = θ∗>φ and allows the use of any one of the adaptive laws of
Table 4.2, 4.3, and 4.5 leading to a wide class of adaptive observers with
auxiliary input.

The following example illustrates the design of an adaptive observer with
auxiliary input v and the generation of v from the signals φ, θ̇.

Example 5.4.1 Let us consider the second order plant

ẋα =
[ −a1 1
−a0 0

]
xα +

[
b1

b0

]
u

y = [1 0]xα

where a1 > 0, a0 > 0, b1, b0 are unknown constants and y, u are the only available
signals for measurement.
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We use Table 5.3 to develop the adaptive observer for estimating xα and the un-
known plant parameters. We start with the design variables. We choose a∗ = [4, 4]>,
λ = λ0,Λ(s) = s + λ0. Setting λ0 = 3 we have

[1 0][sI −A∗]−1

[
1
3

]
=

s + 3
(s + 2)2

which is SPR.
The signal vector φ =

[
s

s+3u, 1
s+3u,− s

s+3y,− 1
s+3y

]>
is realized as follows

φ = [φ1, φ2, φ3, φ4]
>

where

φ1 = u− 3φ̄1,
˙̄φ1 = −3φ̄1 + u

φ2 = φ̄1

φ3 = −y + 3φ̄3,
˙̄φ3 = −3φ̄3 + y

φ4 = −φ̄3

with φ̄1(0) = 0, φ̄3(0) = 0.
For simplicity we choose the adaptive gain Γ = diag{10, 10, 10, 10}. The adap-

tive law is given by

˙̂
b1 = 10φ1(y − ŷ), ˙̂

b0 = 10φ2(y − ŷ)

˙̂a1 = 10φ3(y − ŷ), ˙̂a0 = 10φ4(y − ŷ)

and the signal vector v =
[

0
v̄

]
by

v̄ =
(

3
s + 3

y

)
˙̂a1 −

(
3

s + 3
u

)
˙̂
b1 −

(
1

s + 3
y

)
˙̂a0 +

(
1

s + 3
u

)
˙̂
b0

= 3 ˙̂a1φ̄3 − 3˙̂
b1φ̄1 − ˙̂a0φ̄3 + ˙̂

b0φ̄1

= 10(y − ŷ)(−3φ3φ4 − 3φ1φ2 + φ2
4 + φ2

2)

The observer equation becomes

˙̂x =
[ −â1 1
−â0 0

]
x̂ +

[
b̂1

b̂0

]
u +

[
4− â1

4− â0

]
(y − ŷ)

+
[

0
10

]
(y − ŷ)

[−3φ3φ4 − 3φ1φ2 + φ2
4 + φ2

2

]

The input signal is chosen as u = A1 sin ω1t + A2 sin ω2t for some A1, A2 6= 0 and
ω1 6= ω2. 5
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5.5 Adaptive Observers for Nonminimal Plant
Models

The adaptive observers presented in Sections 5.3 and 5.4 are suitable for
estimating the states of a minimal state space realization of the plant that
is expressed in the observer form. Simpler (in terms of the number of inte-
grators required for implementation) adaptive observers may be constructed
if the objective is to estimate the states of certain nonminimal state-space
representations of the plant. Several such adaptive observers have been pre-
sented in the literature over the years [103, 108, 120, 123, 130, 172], in this
section we present only those that are based on the two nonminimal plant
representations developed in Chapter 2 and shown in Figures 2.2 and 2.3.

5.5.1 Adaptive Observer Based on Realization 1

Following the plant parameterization shown in Figure 2.2, the plant (5.3.1)
is represented in the state space form

φ̇1 = Λcφ1 + lu, φ1(0) = 0

φ̇2 = Λcφ2 − ly, φ2(0) = 0

ω̇ = Λcω, ω(0) = ω0 = B0x0 (5.5.1)

η0 = C>
0 ω

z = y + λ>φ2 = θ∗>φ + η0

y = θ∗>φ− λ>φ2 + η0

where ω ∈ Rn, φ = [φ>1 , φ>2 ]>, φi ∈ Rn, i = 1, 2; Λc ∈ Rn×n is a known stable
matrix in the controller form; l = [1, 0, . . . , 0]> ∈ Rn is a known vector such
that (sI − Λc)−1l = αn−1(s)

Λ(s) and Λ(s) = det(sI − Λc) = sn + λ>αn−1(s),
λ = [λn−1, . . . , λ0]>; θ∗ = [bn−1, bn−2, . . . , b0, an−1, an−2, . . . , a0]> ∈ R2n are
the unknown parameters to be estimated; and B0 ∈ Rn×n is a constant
matrix defined in Section 2.4.

The plant parameterization (5.5.1) is of order 3n and has 2n unknown
parameters. The state ω and signal η0 decay to zero exponentially fast with
a rate that depends on Λc. Because Λc is arbitrary, it can be chosen so that
η0, ω go to zero faster than a certain given rate. Because φ1(0) = φ2(0) = 0,
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the states φ1, φ2 can be reproduced by the observer

˙̂
φ1 = Λcφ̂1 + lu, φ̂1(0) = 0
˙̂
φ2 = Λcφ̂2 − ly, φ̂2(0) = 0 (5.5.2)

which implies that φ̂i(t) = φi(t), i = 1, 2 ∀t ≥ 0. The output of the observer
is given by

z0 = θ∗>φ

y0 = θ∗>φ̂− λ>φ̂2 = θ∗>φ− λ>φ2 (5.5.3)

The state ω in (5.5.1) can not be reproduced exactly unless the initial
condition x0 and therefore ω0 is known.

Equation (5.5.2) and (5.5.3) describe the nonminimal state observer for
the plant (5.3.1) when θ∗ is known. Because φ̂(t) = φ(t), ∀t ≥ 0, it follows

that the output observation errors ez
4
= z − z0, e0

4
= y − y0 satisfy

ez = e0 = η0 = C>
0 eΛctω0

which implies that e0, ez decay to zero exponentially fast. The eigenvalues
of Λc can be regarded as the eigenvalues of the observer and can be assigned
arbitrarily through the design of Λc.

When θ∗ is unknown, the observer equation (5.5.2) remains the same but
(5.5.3) becomes

ẑ = ŷ + λ>φ̂2

ŷ = θ>φ̂− λ>φ̂2 (5.5.4)

where θ(t) is the estimate of θ∗ at time t and φ(t) = φ̂(t) is generated from
(5.5.2). Because θ∗ satisfies the parametric model

z = y + λ>φ2 = θ∗>φ + η0 (5.5.5)

where z, φ are available for measurement and η0 is exponentially decaying
to zero, the estimate θ(t) of θ∗ may be generated using (5.5.5) and the
results of Chapter 4. As shown in Chapter 4, the exponentially decaying to
zero term η0 does not affect the properties of the adaptive laws developed
for η0 = 0 in (5.5.5). Therefore, for design purposes, we can assume that
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η0 ≡ 0 ∀t ≥ 0 and select any one of the adaptive laws from Tables 4.2, 4.3,
and 4.5 to generate θ(t). In the analysis, we include η0 6= 0 and verify that
its presence does not affect the stability properties and steady state behavior
of the adaptive observer. As an example, let us use Table 4.2 and choose
the gradient algorithm

θ̇ = Γεφ, ε = z − ẑ = y − ŷ (5.5.6)

where Γ = Γ> > 0 and φ = φ̂.
Equations (5.5.2), (5.5.4) and (5.5.6) form the adaptive observer and are

summarized in Table 5.4 and shown in Figure 5.3.
The stability properties of the adaptive observer in Table 5.4 are given

by the following theorem.

Theorem 5.5.1 The adaptive observer for the nonminimal plant represen-
tation (5.5.1) with the adaptive law based on the gradient algorithm or any
other adaptive law from Tables 4.2, 4.3, and 4.5 that is based on the para-
metric model (5.5.5) guarantees that
(i) φ̂(t) = φ(t) ∀t ≥ 0.
(ii) All signals are u.b.
(iii) The output observation error ε(t) = y(t) − ŷ(t) converges to zero as

t →∞.
(iv) If u is sufficiently rich of order 2n, then θ(t) converges to θ∗. The

convergence of θ(t) to θ∗ is exponential for all the adaptive laws of Tables
4.2, 4.3, and 4.5 with the exception of the pure least squares where
convergence is asymptotic.

Proof (i) This proof follows directly from (5.5.1) and (5.5.2).
(ii) Because φ̂ = φ, the following properties of the adaptive laws can be es-

tablished using the results of Chapter 4: (a) ε, θ ∈ L∞; (b) ε, θ̇ ∈ L∞
⋂L2 for

the continuous time adaptive laws and |θk+1 − θk| ∈ `2 for the hybrid one. From
ε, θ, θ̇ ∈ L∞, u ∈ L∞, the stability of Λc and the stability of the plant, we have that
all signals are u.b.

(iii) For the continuous-time adaptive laws, we have that

ε = z − ẑ = y + λ>φ2 − (ŷ + λ>φ2) = y − ŷ

We can verify that ε̇ ∈ L∞ which together with ε ∈ L2 imply that ε(t) → 0 as
t →∞.



290 CHAPTER 5. IDENTIFIERS AND ADAPTIVE OBSERVERS

Table 5.4 Adaptive observer (Realization 1)

Plant

φ̇1 = Λcφ1 + lu, φ1(0) = 0
φ̇2 = Λcφ2 − ly, φ2(0) = 0
ω̇ = Λcω, ω(0) = ω0

η0 = C>
0 ω

z = y + λ>φ2 = θ∗>φ + η0

y = θ∗>φ− λ>φ2 + η0

Observer

˙̂
φ1 = Λcφ̂1 + lu, φ̂1(0) = 0
˙̂
φ2 = Λcφ̂2 − ly, φ̂2(0) = 0
ẑ = θ>φ̂

ŷ = ẑ − λ>φ̂2

Adaptive law
θ̇ = Γεφ̂, Γ = Γ> > 0
ε = z − ẑ, ẑ = θ>φ̂

Design
variables

Λc is a stable matrix; (Λc, l) is in the controller form;
Λ(s) = det(sI − Λc) = sn + λ>αn−1(s)

For the hybrid adaptive law, we express ε as

ε = θ∗>φ− θ>k φ = −θ̃>k φ, ∀t ∈ [tk, tk+1)

Because the hybrid adaptive law guarantees that (a) θ̃k ∈ l∞, (b) |θ̃k+1−θ̃k| ∈ l2 and
|θ̃k+1− θ̃k| → 0 as k →∞, we can construct a continuous, piecewise linear function
θ̃(t) from θ̃k using linear interpolation that satisfies: (a) |θ̃ − θ̃k|, ˙̃

θ ∈ L∞
⋂L2 and

(b) |θ̃(t)− θ̃k(t)| → 0 as t →∞. Therefore, we can write

ε = −θ̃>k φ = −θ̃>φ + (θ̃ − θ̃k)>φ (5.5.7)

From ε ∈ L2, |θ̃ − θ̃k| ∈ L2 and φ ∈ L∞, we have θ̃>φ ∈ L2. Because d
dt (θ̃

>φ) =
˙̃
θ
>

φ + θ̃>φ̇ and θ̃,
˙̃
θ, φ, φ̇ ∈ L∞, we conclude that d

dt (θ̃
>φ) ∈ L∞, which, together
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Figure 5.3 Adaptive observer using nonminimal Realization 1.

with θ̃>φ ∈ L2, implies that θ̃>φ → 0 as t → ∞. Therefore, we have established
that (θ̃ − θ̃k)>φ → 0 and θ̃>φ → 0 as t → ∞. Thus, using (5.5.7) for ε, we have
that ε(t) → 0 as t →∞.

(iv) The proof of this part follows directly from the properties of the adaptive
laws developed in Chapter 4 and Theorem 5.2.4 by noticing that φ = H(s)u where
H(s) is the same as in the proof of Theorem 5.2.4. 2

The reader can verify that the adaptive observer of Table 5.4 is the state-
space representation of the parameter identifier given by (5.2.17), (5.2.18)
in Section 5.2.3. This same identifier is shared by the adaptive Luenberger
observer indicating that the state φ of the nonminimal state space repre-
sentation of the plant is also part of the state of the adaptive Luenberger
observer. In addition to φ, the adaptive Luenberger observer estimates the
state of a minimal state space representation of the plant expressed in the
observer canonical form at the expense of implementing an additional nth
order state equation referred to as the observer equation in Table 5.1. The
parameter identifiers of Section 5.2 can, therefore, be viewed as adaptive
observers based on a nonminimal state representation of the plant.
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5.5.2 Adaptive Observer Based on Realization 2

An alternative nonminimal state-space realization for the plant (5.3.1), de-
veloped in Chapter 2 and shown in Figure 2.5, is described by the state
equations

˙̄x1 = −λ0x̄1 + θ̄∗>φ, x̄1(0) = 0

φ̇1 = Λcφ1 + lu, φ1(0) = 0

φ̇2 = Λcφ2 − ly, φ2(0) = 0 (5.5.8)

φ = [u, φ>1 , y, φ>2 ]>

ω̇ = Λcω, ω(0) = ω0

η0 = C>
0 ω

y = x̄1 + η0

where x̄1 ∈ R; φi ∈ Rn−1, i = 1, 2; θ̄∗ ∈ R2n is a vector of linear
combinations of the unknown plant parameters a = [an−1, an−2, . . . , a0]>,

b = [bn−1, bn−2, . . . , b0]> in the plant transfer function (5.3.7) as shown in
Section 2.4; λ0 > 0 is a known scalar; Λc ∈ R(n−1)×(n−1) is a known stable
matrix; and (sI−Λc)−1l = αn−2(s)

Λ∗(s) , where Λ∗(s) = sn−1 +qn−2s
n−2 + . . .+q0

is a known Hurwitz polynomial. When θ∗ is known, the states x̄1, φ1, φ2 can
be generated exactly by the observer

ẋo1 = −λ0xo1 + θ̄∗>φ̂, xo1(0) = 0
˙̂
φ1 = Λcφ̂1 + lu, φ̂1(0) = 0
˙̂
φ2 = Λcφ̂2 − ly, φ̂2(0) = 0 (5.5.9)

y0 = xo1

where xo1, φ̂i are the estimates of x̄1, φ respectively. As in Section 5.5.1, no
attempt is made to generate an estimate of the state ω, because ω(t) → 0
as t → ∞ exponentially fast. The state observer (5.5.9) guarantees that
xo1(t) = x̄1(t), φ̂1(t) = φ1(t), φ̂2(t) = φ2(t) ∀t ≥ 0. The observation error

e0
4
= y − y0 satisfies

e0 = η0 = C>
0 eΛctω0

i.e., e0(t) → 0 as t →∞ with an exponential rate that depends on the matrix
Λc that is chosen by the designer.
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When θ̄∗ is unknown, (5.5.9) motivates the adaptive observer

˙̂x1 = −λ0x̂1 + θ̄>φ̂, x̂0(0) = 0
˙̂
φ1 = Λcφ̂1 + lu, φ̂1(0) = 0
˙̂
φ2 = Λcφ̂2 − ly, φ̂2(0) = 0 (5.5.10)

ŷ = x̂1

where θ̄(t) is the estimate of θ̄∗ to be generated by an adaptive law and
x̂1 is the estimate of x̄1. The adaptive law for θ̄ is developed using the
SPR-Lyapunov design approach as follows:

We define the observation error ỹ = y− ŷ = x̃1 + η0, where x̃1 = x̄1− x̂1,
and use it to develop the error equation

˙̃y = −λ0ỹ − θ̃>φ + C>
1 ω (5.5.11)

where C>
1 = λ0C

>
0 + C>

0 Λc and θ̃ = θ̄ − θ̄∗ by using (5.5.8) and (5.5.9), and
the fact that φ = φ̂. Except for the exponentially decaying to zero term C>

1 ω,
equation (5.5.11) is in the appropriate form for applying the SPR-Lyapunov
design approach.

In the analysis below, we take care of the exponentially decaying term
C>

1 ω by choosing the Lyapunov function candidate

V =
ỹ2

2
+

θ̃>Γ−1θ̃

2
+ βω>Pcω

where Γ = Γ> > 0; Pc = P>
c > 0 satisfies the Lyapunov equation

PcΛc + Λ>c Pc = −I

and β > 0 is a scalar to be selected. The time derivative V̇ of V along the
solution of (5.5.11) is given by

V̇ = −λ0ỹ
2 − ỹθ̃>φ + ỹC>

1 ω + θ̃>Γ−1 ˙̃
θ − βω>ω (5.5.12)

As described earlier, if the adaptive law is chosen as

˙̃
θ = ˙̄θ = Γỹφ (5.5.13)

(5.5.12) becomes
V̇ = −λ0ỹ

2 − βω>ω + ỹC>
1 ω
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If β is chosen as β > |C1|2
2λ0

, then it can be shown by completing the squares
that

V̇ ≤ −λ0

2
ỹ2 − β

2
ω>ω

which implies that V, θ, ỹ ∈ L∞ and ỹ ∈ L2. Because from (5.5.11) ˙̃y ∈ L∞
it follows that ỹ → 0 as t →∞, i.e., ŷ(t) → y(t) and x̂1(t) → x̄1(t) as t →∞.

Hence, the overall state of the observer X̂ =
[
x̂1, φ̂

>
1 , φ̂>2

]>
converges to the

overall plant state X =
[
x̄1, φ

>
1 , φ>2

]>
as t → ∞. In addition ˙̄θ ∈ L2 ∩ L∞

and limt→∞ ˙̄θ(t) = 0.
The convergence of θ̄(t) to θ̄∗ depends on the properties of the input u.

We can show by following exactly the same steps as in the previous sections
that if u is sufficiently rich of order 2n, then φ̂ = φ is PE, which, together
with φ, φ̇ ∈ L∞, implies that θ̄(t) converges to θ̄∗ exponentially fast. For
φ̇ ∈ L∞, we require, however, that u̇ ∈ L∞.

The main equations of the adaptive observer are summarized in Table
5.5 and the block diagram of the observer is shown in Figure 5.4 where
θ̄ = [θ̄>1 , θ̄>2 ]> is partitioned into θ̄1 ∈ Rn, θ̄2 ∈ Rn.

Example 5.5.1 Consider the LTI plant

y =
b1s + b0

s2 + a1s + a0
u (5.5.14)

where a1, a0 > 0 and b1, b0 are the unknown parameters. We first obtain the plant
representation 2 by following the results and approach presented in Chapter 2.

We choose Λ(s) = (s + λ0)(s + λ) for some λ0, λ > 0. It follows from (5.5.14)
that

s2

Λ(s)
y = [b1, b0]

[
s
1

]
1

Λ(s)
u− [a1, a0]

[
s
1

]
1

Λ(s)
y

Because s2

Λ(s) = 1− (λ0+λ)s+λ0λ
Λ(s) we have

y = θ∗>1
α1(s)
Λ(s)

u− θ∗>2
α1(s)
Λ(s)

y + λ̄>
α1(s)
Λ(s)

y (5.5.15)

where θ∗1 = [b1, b0]>, θ∗2 = [a1, a0]>, λ̄ = [λ0 + λ, λ0λ]> and α1(s) = [s, 1]>. Because
Λ(s) = (s + λ0)(s + λ), equation (5.5.15) implies that

y =
1

s + λ0

[
θ∗>1

α1(s)
s + λ

u− θ∗>2
α1(s)
s + λ

y + λ̄>
α1(s)
s + λ

y

]
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Table 5.5 Adaptive observer (Realization 2)

Plant

˙̄x1 = −λ0x̄1 + θ̄∗>φ, x̄1(0) = 0
φ̇1 = Λcφ1 + lu, φ1(0) = 0
φ̇2 = Λcφ2 − ly, φ2(0) = 0
ω̇ = Λcω, ω(0) = ω0

η0 = C>
0 ω

y = x̄1 + η0

where φ = [u, φ>1 , y, φ>2 ]>

φi ∈ Rn−1, i = 1, 2; x̄1 ∈ R1

Observer

˙̂x1 = −λ0x̂1 + θ̄>φ̂, x̂1(0) = 0
˙̂
φ1 = Λcφ̂1 + lu, φ̂1(0) = 0
˙̂
φ2 = Λcφ̂2 − ly, φ̂2(0) = 0
ŷ = x̂1

where φ̂ = [u, φ̂>1 , y, φ̂>2 ]>

φ̂i ∈ Rn−1, i = 1, 2, x̂1 ∈ R1

Adaptive law ˙̄θ = Γỹφ̂ , ỹ = y − ŷ

Design
variables

Γ = Γ> > 0; Λc ∈ R(n−1)×(n−1) is any stable matrix,
and λ0 > 0 is any scalar

Substituting for

α1(s)
s + λ

=
1

s + λ

[
s
1

]
=

[
1
0

]
+

1
s + λ

[ −λ
1

]

we obtain

y =
1

s + λ0

[
b1u + (b0 − λb1)

1
s + λ

u− a1y − (a0 − λa1)
1

s + λ
y

+(λ0 + λ)y − λ2 1
s + λ

y

]
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Plant

αn−2(s)
Λ(s) θ̄>1

1
s + λ0

θ̄>2
−αn−2(s)

Λ(s)

Adaptive Law
(5.5.13)

lΣ
lΣ

-

-
-

- -

¾

¾

¾

¾

¾¢
¢¢

¢¢̧

¢
¢

¢¢̧

- 6

6

?

¡¢

y

ỹ

ŷ

φ

θ̄2

θ̄1

φ̂2

y

φ̂1u
+

−+

+

Figure 5.4 Adaptive observer using nonminimal Realization 2.

which implies that

˙̄x1 = −λ0x̄1 + θ̄∗>φ, x̄1(0) = 0
φ̇1 = −λφ1 + u, φ1(0) = 0
φ̇2 = −λφ2 − y, φ2(0) = 0
y = x̄1

where φ = [u, φ1, y, φ2]>, θ̄∗ = [b1, b0 − λb1, λ0 + λ − a1, a0 − λa1 + λ2]>. Using
Table 5.5, the adaptive observer for estimating x̄1, φ1, φ2 and θ∗ is given by

˙̂x1 = −λ0x̂1 + θ̄>φ̂, x̂1(0) = 0
˙̂
φ1 = −λφ̂1 + u, φ̂1(0) = 0
˙̂
φ2 = −λφ̂2 − y, φ̂2(0) = 0
ŷ = x̂1

˙̄θ = Γφ̂(y − ŷ)

where φ̂ = [u, φ̂1, y, φ̂2]> and Γ = Γ> > 0. If in addition to θ̄∗, we like to estimate
θ∗ = [b1, b0, a1, a0]>, we use the relationships

b̂1 = θ̄1

b̂0 = θ̄2 + λθ̄1

â1 = −θ̄3 + λ0 + λ

â0 = θ̄4 − λθ̄3 + λλ0
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where θ̄i, i = 1, 2, 3, 4 are the elements of θ̄ and b̂i, âi, i = 1, 2 are the estimates of
bi, ai, i = 0, 1, respectively.

For parameter convergence we choose

u = 6 sin 2.6t + 8 sin 4.2t

which is sufficiently rich of order 4. 2

5.6 Parameter Convergence Proofs

In this section we present all the lengthy proofs of theorems dealing with convergence
of the estimated parameters.

5.6.1 Useful Lemmas

The following lemmas are used in the proofs of several theorems to follow:

Lemma 5.6.1 If the autocovariance of a function x : R+ 7→ Rn defined as

Rx(t)
4
= lim

T→∞
1
T

∫ t0+T

t0

x(τ)x>(t + τ)dτ (5.6.1)

exists and is uniform with respect to t0, then x is PE if and only if Rx(0) is positive
definite.

Proof
If: The definition of the autocovariance Rx(0) implies that there exists a T0 > 0

such that
1
2
Rx(0) ≤ 1

T0

∫ t0+T0

t0

x(τ)x>(τ)dτ ≤ 3
2
Rx(0), ∀t ≥ 0

If Rx(0) is positive definite, there exist α1, α2 > 0 such that α1I ≤ Rx(0) ≤ α2I.
Therefore,

1
2
α1I ≤ 1

T0

∫ t0+T0

t0

x(τ)x>(τ)dτ ≤ 3
2
α2I

for all t0 ≥ 0 and thus x is PE.
Only if: If x is PE, then there exist constants α0, T1 > 0 such that

∫ t+T1

t

x(τ)x>(τ)dτ ≥ α0T1I
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for all t ≥ 0. For any T > T1, we can write

∫ t0+T

t0

x(τ)x>(τ)dτ =
k−1∑

i=0

∫ t0+(i+1)T1

t0+iT1

x(τ)x>(τ)dτ +
∫ t0+T

t0+kT1

x(τ)x>(τ)dτ

≥ kα0T1I

where k is the largest integer that satisfies k ≤ T/T1, i.e., kT1 ≤ T < (k + 1)T1.
Therefore, we have

1
T

∫ t+T

t

x(τ)x>(τ)dτ ≥ kT1

T
α0I

For k ≥ 2, we have kT1
T = (k+1)T1

T − T1
T ≥ 1− T1

T ≥ 1
2 , thus,

1
T

∫ t0+T

t0

x(τ)x>(τ)dτ ≥ α0

2
I

and

Rx(0) = lim
T→∞

1
T

∫ t0+T

t0

x(τ)x>(τ)dτ ≥ α0

2
I

which implies that Rx(0) is positive definite. 2

Lemma 5.6.2 Consider the system

y = H(s)u

where H(s) is a strictly proper transfer function matrix of dimension m × n with
stable poles and real impulse response h(t). If u is stationary, with autocovariance
Ru(t), then y is stationary, with autocovariance

Ry(t) =
∫ ∞

−∞

∫ ∞

−∞
h(τ1)Ru(t + τ1 − τ2)h>(τ2)dτ1dτ2

and spectral distribution

Sy(ω) = H(−jω)Su(ω)H>(jω)

Proof See [201].

Lemma 5.6.3 Consider the system described by
[

ẋ1

ẋ2

]
=

[
A −F>(t)

P1F (t)P2 0

] [
x1

x2

]
(5.6.2)
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where x1 ∈ Rn1 , x2 ∈ Rrn1 for some integer r, n1 ≥ 1, A,P1, P2 are constant
matrices and F (t) is of the form

F (t) =




z1In1

z2In1

...
zrIn1


 ∈ R

rn1×n1

where zi, i = 1, 2, . . . , r are the elements of the vector z ∈ Rr. Suppose that z is PE
and there exists a matrix P0 > 0 such that

Ṗ0 + A>0 P0 + P0A0 + C0C
>
0 ≤ 0 (5.6.3)

where

A0 =
[

A −F>(t)
P1F (t)P2 0

]
, C>0 = [In1 , 0]

Then the equilibrium x1e = 0, x2e = 0 of (5.6.2) is e.s. in the large.

Proof Consider the system (5.6.2) that we express as

ẋ = A0(t)x
y = C>0 x = x1

(5.6.4)

where x = [x>1 , x>2 ]>. We first show that (C0, A0) is UCO by establishing that
(C0, A0 +KC>0 ) is UCO for some K ∈ L∞ which according to Lemma 4.8.1 implies
that (C0, A0) is UCO. We choose

K =
[ −γIn1 −A
−P1F (t)P2

]

for some γ > 0 and consider the following system associated with (C0, A0 + KC>0 ):
[

Ẏ1

Ẏ2

]
=

[ −γIn1 −F>(t)
0 0

] [
Y1

Y2

]

y1 = [In1 0]
[

Y1

Y2

] (5.6.5)

According to Lemma 4.8.4, the system (5.6.5) is UCO if

Ff (t) =
1

s + γ
F (t)

satisfies

αIrn1 ≤
1
T

∫ t+T

t

Ff (τ)F>f (τ)dτ ≤ βIrn1 , ∀t ≥ 0 (5.6.6)
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for some constants α, β, T > 0. We prove (5.6.6) by first showing that F (t) satisfies

α
′
Irn1 ≤

1
T

∫ t+T

t

F (τ)F>(τ)dτ ≤ β
′
Irn1 , ∀t ≥ 0

for some constants α
′
, β

′
as follows: Using a linear transformation, we can express

F (t) as
F (t) = F0Z(t)

where F0 ∈ Rrn1×rn1 is a constant matrix of full rank, Z ∈ Rrn1×n1 is a block
diagonal matrix defined as Z

4
= diag{z, z, . . . , z︸ ︷︷ ︸

n1

}, i.e.,

Z =




z1 0 · · · 0
z2 0 · · · 0
...

...
...

zn1 0 · · · 0
0 z1 0
...

...
...

0 zn1 0
...

...
...

0 0 · · · z1

...
...

...
0 0 · · · zn1




Therefore, FF> = F0ZZ>F>0 and

ZZ> = diag{zz>, zz>, . . . , zz>︸ ︷︷ ︸
n1

}

Because z is PE, we have

α1Ir ≤ 1
T

∫ t+T

t

zz>dτ ≤ α2Ir, ∀t ≥ 0

for some α1, α2, T > 0. Therefore,

α1Irn1 ≤
1
T

∫ t+T

t

Z(τ)Z>(τ)dτ ≤ α2Irn1 , ∀t ≥ 0

which implies that

α1F0F
>
0 ≤ 1

T

∫ t+T

t

F (τ)F>(τ)dτ ≤ α2F0F
>
0 , ∀t ≥ 0
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Because F0 is of full rank, we have

β1Irn1 ≤ F0F
>
0 ≤ β2Irn1

for some constants β1, β2 > 0. Hence,

α
′
Irn1 ≤

1
T

∫ t+T

t

F (τ)F>(τ)dτ ≤ β
′
Irn1 , ∀t ≥ 0 (5.6.7)

where β
′
= α2β2, α

′
= α1β1.

Following the same arguments used in proving Lemma 4.8.3 (iv), one can show
(see Problem 5.18) that (5.6.7) implies (5.6.6).

Because all the conditions in Lemma 4.8.4 are satisfied, we conclude, by apply-
ing Lemma 4.8.4 that (5.6.5) is UCO, which in turn implies that (5.6.2) is UCO.
Therefore, it follows directly from Theorem 3.4.8 and (5.6.3) that the equilibrium
x1e = 0, x2e = 0 of (5.6.2) is e.s. in the large. 2

5.6.2 Proof of Theorem 5.2.1

According to Lemma 5.6.1, Theorem 5.2.1 can be proved if we establish that Rφ(0)
is positive definite if and only if u is sufficiently rich of order n.

If: We will show the result by contradiction. Because u is stationary and Rφ(0)
is uniform with respect to t, we take t = 0 and obtain [186]

Rφ(0) = lim
T→∞

1
T

∫ T

0

φ(τ)φ>(τ)dτ =
1
2π

∫ ∞

−∞
Sφ(ω)dω (5.6.8)

where Sφ(ω) is the spectral distribution of φ. From Lemma 5.6.2, we have

Sφ(ω) = H(−jω)Su(ω)H>(jω) (5.6.9)

Using the condition that u is sufficiently rich of order n, i.e., u has spectral lines at
n points, we can express Su(ω) as

Su(ω) =
n∑

i=1

fu(ωi)δ(ω − ωi) (5.6.10)

where fu(ωi) > 0. Using (5.6.9) and (5.6.10) in (5.6.8), we obtain

Rφ(0) =
1
2π

n∑

i=1

fu(ωi)H(−jωi)H>(jωi)

Suppose that Rφ(0) is not positive definite, then there exists x ∈ Rn with x 6= 0
such that

x>Rφ(0)x =
n∑

i=1

fu(ωi)x>H(−jωi)H>(jωi)x = 0 (5.6.11)
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Because fu(ωi) > 0 and each term under the summation is nonnegative, (5.6.11)
can be true only if:

x>H(−jωi)H>(jωi)x = 0, i = 1, 2, . . . , n

or equivalently
x>H(−jωi) = 0, i = 1, 2, . . . , n (5.6.12)

However, (5.6.12) implies that {H(jω1),H(jω2), . . . , H(jωn)} are linearly depen-
dent, which contradicts with the condition that H(jω1), . . .H(jωn) are linearly
independent for all ω1, . . . , ωn. Hence, Rφ(0) is positive definite.

Only if: We also prove this by contradiction. Assume that Rφ(0) is positive
definite but u is sufficiently rich of order r < n, then we can express Rφ(0) as

Rφ(0) =
1
2π

r∑

i=1

fu(ωi)H(−jωi)H>(−jωi)

where fu(ωi) > 0. Note that the right hand side is the sum of r − dyads, and the
rank of Rφ(0) can be at most r < n, which contradicts with the assumption that
Rφ(0) is positive definite. 2

5.6.3 Proof of Theorem 5.2.2

We first consider the series-parallel scheme (5.2.11). From (5.2.10), (5.2.11) we
obtain the error equations

ε̇1 = Amε1 − B̃u− Ãx
˙̃A = γε1x

>, ˙̃B = γε1u
(5.6.13)

where Ã
4
= Â−A, B̃

4
= B̂−B and B̃ ∈ Rn×1, Ã ∈ An×n. For simplicity, let us take

γ1 = γ2 = γ. The parameter error Ã is in the matrix form, which we rewrite in the
familiar vector form to apply the stability theorems of Chapter 3 directly. Defining
the vector

θ̃
4
= [ã>1 , ã>2 , . . . , ã>n , B̃>]> ∈ Rn(n+1)

where ãi is the ith column of Ã, we can write

Ãx + B̃u = [ã1, ã2, . . . , ãn]




x1

x2

...
xn


 + B̃u = F>(t)θ̃
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where F>(t)
4
=[x1In, x2In, . . . , xnIn, uIn]∈Rn×n(n+1). Because ˙̃ai =γε1xi,

˙̃B=γε1u,
the matrix differential equations for ˙̃A, ˙̃B can be rewritten as

˙̃
θ = γF (t)ε1

Therefore, (5.6.13) is equivalent to
{

ε̇1 = Amε1 − F>(t)θ̃
˙̃
θ = γF (t)ε1

(5.6.14)

which is in the form of (5.6.2). To apply Lemma 5.6.3, we need to verify that all
the conditions stated in the lemma are satisfied by (5.6.14).

We first prove that there exists a constant matrix P0 > 0 such that

A>0 P0 + P0A0 = −C0C
>
0

where

A0 =
[

A −F>(t)
γF (t) 0

]
∈ R(n+n(n+1))×(n+n(n+1)), C>0 = [In, 0] ∈ Rn+n(n+1)

In Section 4.2.3, we have shown that the time derivative of the Lyapunov function

V = ε>1 Pε1 + tr

{
Ã>PÃ

γ1

}
+ tr

{
B̃>PB̃

γ2

}

(with γ1 = γ2 = γ) satisfies
V̇ = −ε>1 ε1 (5.6.15)

where P satisfies A>mP + PAm = −In. Note that

tr
{

Ã>PÃ
}

=
n∑

i=1

ã>i P ãi

tr
{

B̃>PB̃
}

= B̃>PB̃

where the second equality is true because B̃ ∈ Rn×1. We can write

V = ε>1 Pε1 +
1
γ1

n∑

i=1

ã>i P ãi +
1
γ2

B̃>PB̃ = x>P0x

where x
4
= [ε>1 , θ̃>]> and P0 is a block diagonal matrix defined as

P0
4
= diag{P, γ−1

1 P, . . . , γ−1
1 P︸ ︷︷ ︸

n−times

, γ−1
2 P} ∈ R(n+n(n+1))×(n+n(n+1))



304 CHAPTER 5. IDENTIFIERS AND ADAPTIVE OBSERVERS

Hence, (5.6.15) implies that

V̇ = x>(P0A0 + A>0 P0)x = −x>C0C
>
0 x

or equivalently
Ṗ0 + P0A0 + A>0 P0 = −C0C

>
0 , Ṗ0 = 0 (5.6.16)

Next, we show that z
4
= [x1, x2, . . . , xn, u]> is PE. We write

z = H(s)u, H(s) =
[

(sI −A)−1B
1

]

If we can show that H(jω1), H(jω2), . . . ,H(jωn+1) are linearly independent for
any ω1, ω2, . . . , ωn+1, then it follows immediately from Theorem 5.2.1 that z is PE
if and only if u is sufficiently rich of order n + 1.

Let a(s) = det(sI − A) = sn + an−1s
n−1 + . . . + a1s + a0. We can verify using

matrix manipulations that the matrix (sI −A)−1 can be expressed as

(sI −A)−1 =
1

a(s)
{
Isn−1 + (A + an−1I)sn−2 + (A2 + an−1A + an−2I)sn−3

+ . . . + (An−1 + an−1A
n−2 + . . . + a1I)

}
(5.6.17)

Defining

b1 =B, b2 =(A+an−1I)B, b3 =(A2+an−1A+an−2I)B, . . . , bn =(An−1+ . . .+a1I)B

L = [b1, b2, . . . , bn] ∈ Rn×n

and then using (5.6.17), H(s) can be conveniently expressed as

H(s) =




L




sn−1

sn−2

...
s
1




a(s)




1
a(s)

(5.6.18)

To explore the linear dependency of H(jωi), we define H̄
4
= [H(jω1) , H(jω2), . . .,

H(jωn+1)]. Using the expression (5.6.18) for H(s), we have

H̄ =
[

L 0n×1

01×n 1

]




(jω1)n−1 (jω2)n−1 · · · (jωn+1)n−1

(jω1)n−2 (jω2)n−2 · · · (jωn+1)n−2

...
...

...
jω1 jω2 · · · jωn+1

1 1 · · · 1
a(jω1) a(jω2) · · · a(jωn+1)
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×




1
a(jω1)

0 · · · 0
0 1

a(jω2)
· · · 0

...
. . . 0

0 · · · 0 1
a(jωn+1)




From the assumption that (A,B) is controllable, we conclude that the matrix L
is of full rank. Thus the matrix H̄ has rank of n + 1 if and only if the matrix V1

defined as

V1
4
=




(jω1)n−1 (jω2)n−1 · · · (jωn+1)n−1

(jω1)n−2 (jω2)n−2 · · · (jωn+1)n−2

...
...

...
jω1 jω2 · · · jωn+1

1 1 · · · 1
a(jω1) a(jω2) · · · a(jωn+1)




has rank of n + 1. Using linear transformations (row operations), we can show that
V1 is equivalent to the following Vandermonde matrix [62]:

V =




(jω1)n (jω2)n · · · (jωn+1)n

(jω1)n−1 (jω2)n−1 · · · (jωn+1)n−1

(jω1)n−2 (jω2)n−2 · · · (jωn+1)n−2

...
...

...
jω1 jω2 · · · jωn+1

1 1 · · · 1




Because
det(V ) =

∏

1≤i<k≤n+1

(jωi − jωk)

V is of full rank for any ωi with ωi 6= ωk i, k = 1, . . . n + 1. This leads to
the conclusion that V1 and, therefore, H̄ have rank of n + 1, which implies that
H(jω1), H(jω2), . . . ,H(jωn+1) are linearly independent for any ω1, ω2, . . . ωn+1. It
then follows immediately from Theorem 5.2.1 that z is PE.

Because we have shown that all the conditions of Lemma 5.6.3 are satisfied by
(5.6.14), we can conclude that xe = 0 of (5.6.14) is e.s. in the large, i.e., ε1, θ̃ → 0
exponentially fast as t → ∞. Thus, Â → A, B̂ → B exponentially fast as t → ∞,
and the proof of Theorem 5.2.2 for the series-parallel scheme is complete.

For the parallel scheme, we only need to establish that ẑ
4
= [x̂>, u]> is PE. The

rest of the proof follows by using exactly the same arguments and procedure as in
the case of the series-parallel scheme.

Because x is the state of the plant and it is independent of the identification
scheme, it follows from the previous analysis that z is PE under the conditions given



306 CHAPTER 5. IDENTIFIERS AND ADAPTIVE OBSERVERS

in Theorem 5.2.2, i.e., (A,B) controllable and u sufficiently rich of order n+1. From
the definition of ε1, we have

x̂ = x− ε1, ẑ = z −
[

0n×1

1

]
ε1

thus the PE property of ẑ follows immediately from Lemma 4.8.3 by using ε1 ∈ L2

and z being PE. 2

5.6.4 Proof of Theorem 5.2.3

We consider the proof for the series-parallel scheme. The proof for the parallel
scheme follows by using the same arguments used in Section 5.6.3 in the proof of
Theorem 5.2.2 for the parallel scheme.

Following the same procedure used in proving Theorem 5.2.2, we can write the
differential equations

ε̇1 = Amε1 + (A− Â)x + (B − B̂)u
˙̂
A = γε1x

>

˙̂
B = γε1u

>

in the vector form as

ε̇1 = Amε1 − F>(t)θ̃
˙̃
θ = F (t)ε1 (5.6.19)

where θ̃
4
= [ã>1 , ã>2 , . . . , ã>, b̃>1 , b̃>2 , . . . , b̃>q ]> and ãi, b̃i denotes the ith column of

Ã, B̃, respectively, F>(t)
4
= [x1In, x2In, . . . , xnIn, u1In, u2In, . . . , uqIn]. Following

exactly the same arguments used in the proof for Theorem 5.2.2, we complete the
proof by showing (i) there exists a matrix P0 > 0 such that A>0 P0+P0A0 = −C0C

>
0 ,

where A0, C0 are defined the same way as in Section 5.6.3 and (ii) z
4
= [x1, x2, . . .,

xn, u1, u2, . . ., uq]> is PE.
The proof for (i) is the same as that in Section 5.6.3. We prove (ii) by showing

that the autocovariance of z, Rz(0) is positive definite as follows: We express z as

z =
[

(sI −A)−1B
Iq

]
u =

q∑

i=1

[
(sI −A)−1bi

ei

]
ui

where Iq ∈ Rq×q is the identity matrix and bi, ei denote the ith column of B, Iq,
respectively. Assuming that ui, i = 1, . . . , q are stationary and uncorrelated, the
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autocovariance of z can be calculated as

Rz(0) =
1
2π

q∑

i=1

∫ ∞

−∞
Hi(−jω)Sui(ω)H>

i (jω)

where

Hi(s) =
[

(sI −A)−1bi

ei

]

and Sui
(ω) is the spectral distribution of ui. Using the assumption that ui is

sufficiently rich of order n + 1, we have

Sui(ω) =
n+1∑

k=1

fui(ωik)δ(ω − ωik)

and

1
2π

∫ ∞

−∞
Hi(−jω)Sui

(ω)H>
i (jω) =

1
2π

n+1∑

k=1

fui
(ωik)Hi(−jωik)H>

i (jωik)

where fui(ωik) > 0. Therefore,

Rz(0) =
1
2π

q∑

i=1

n+1∑

k=1

fui(ωik)Hi(−jωik)H>
i (jωik) (5.6.20)

Let us now consider the solution of the quadratic equation

x>Rz(0)x = 0, x ∈ Rn+q

Because each term under the summation of the right-hand side of (5.6.20) is semi-
positive definite, x>Rz(0)x=0 is true if and only if

fui(ωik)x>Hi(−jωik)H>
i (jωik)x = 0,

i = 1, 2, . . . q
k = 1, 2, . . . n + 1

or equivalently

H>
i (jωik)x = 0,

i = 1, 2, . . . q
k = 1, 2, . . . n + 1 (5.6.21)

Because Hi(s) = 1
a(s)

[
adj(aI −A)bi

a(s)ei

]
where a(s) = det(sI−A), (5.6.21) is equiv-

alent to:

H̄>
i (jωik)x = 0, H̄i(s)

4
= a(s)Hi(s),

i = 1, 2, . . . q
k = 1, 2, . . . n + 1 (5.6.22)
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Noting that each element in H̄i is a polynomial of order at most equal to n, we
find that gi(s)

4
= H̄>

i (s)x is a polynomial of order at most equal to n. Therefore,
(5.6.22) implies that the polynomial gi(s) vanishes at n + 1 points, which, in turn,
implies that gi(s) ≡ 0 for all s ∈ C. Thus, we have

H̄>
i (s)x ≡ 0, i = 1, 2, . . . q (5.6.23)

for all s. Equation (5.6.23) can be written in the matrix form
[

adj(sI −A)B
a(s)Iq

]>
x ≡ 0q (5.6.24)

where 0q ∈ Rq is a column vector with all elements equal to zero. Let X =
[x1, . . . , xn] ∈ Rn, Y = [xn+1, . . . , xn+q] ∈ Rq, i.e., x = [X>, Y >]>. Then (5.6.24)
can be expressed as

(adj(sI −A)B)>X + a(s)Y = 0q (5.6.25)

Consider the following expressions for adj(sI −A)B and a(s):

adj(sI −A)B = Bsn−1+ (AB + an−1B)sn−2+ (A2B + an−1AB + an−2B)sn−3

+ . . . + (An−1B + an−1A
n−2B + . . . + a1B)

a(s) = sn + an−1s
n−1 + . . . + a1s + a0

and equating the coefficients of si on both sides of equation (5.6.25), we find that
X, Y must satisfy the following algebraic equations:





Y = 0q

B>X + an−1Y = 0q

(AB + an−1B)>X + an−2Y = 0q
...

(An−1 + an−1A
n−2B + . . . + a1B)>X + a0Y = 0q

or equivalently:

Y = 0q and (B, AB, . . . , An−1B)>X = 0nq (5.6.26)

where 0nq is a zero column-vector of dimension nq. Because (A,B) is controllable,
the matrix (B,AB, . . . An−1B) is of full rank; therefore, (5.6.26) is true if and only
if X = 0, Y = 0, i.e. x = 0.

Thus, we have proved that x>Rz(0)x = 0 if and only if x = 0, which implies
that Rz(0) is positive definite. Then it follows from Lemma 5.6.1 that z is PE.

Using exactly the same arguments as used in proving Theorem 5.2.2, we con-
clude from z being PE that ε1(t), θ̃(t) converge to zero exponentially fast as t →∞.
From the definition of θ̃ we have that Â(t) → A, B̂(t) → B exponentially fast as
t →∞ and the proof is complete. 2
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5.6.5 Proof of Theorem 5.2.5

Let us define
ε̄(t) = θ̃>(t)Rφ(0)θ̃(t)

where θ̃(t) = θ(t) − θ∗. We will show that ε̄(t) → 0 as t → ∞, i.e., for any given
ε
′
> 0, there exists a t1 ≥ 0 such that for all t ≥ t1, ε̄(t) < ε

′
.

We express ε̄ as

ε̄(t) = θ̃>(t)
1
T

∫ t1+T

t1

φ(τ)φ>(τ)dτ θ̃(t)

+θ̃>(t)

(
Rφ(0)− 1

T

∫ t1+T

t1

φ(τ)φ>(τ)dτ

)
θ̃(t)

=
1
T

∫ t1+T

t1

(θ̃>(τ)φ(τ))2dτ +
1
T

∫ t1+T

t1

{
(θ̃>(t)φ(τ))2 − (θ̃>(τ)φ(τ))2

}
dτ

+θ̃>(t)

(
Rφ(0)− 1

T

∫ t1+T

t1

φ(τ)φ>(τ)dτ

)
θ̃(t)

4
= ε̄1(t) + ε̄2(t) + ε̄3(t)

where t1, T are arbitrary at this point and will be specified later. We evaluate each
term on the right-hand side of the above equation separately.

Because ε(t) = θ̃>(t)φ(t) → 0 as t → ∞, there exists a t
′
1 ≥ 0 such that

|ε(t)| <
√

ε′

3 for t ≥ t
′
1. Choosing t1 ≥ t

′
1, we have

|ε̄1(t)| = 1
T

∫ t1+T

t1

ε2(τ)dτ <
ε
′

3
(5.6.27)

For ε̄2(t), we have

ε̄2(t) =
1
T

∫ t1+T

t1

(θ̃(t)− θ̃(τ))>φ(τ)φ>(τ)(θ̃(t) + θ̃(τ))dτ

=
1
T

∫ t1+T

t1

(
−

∫ τ

t

˙̃
θ(σ)dσ

)>
φ(τ)φ>(τ)(θ̃(t) + θ̃(τ))dτ

Using the property of the adaptive law that ˙̃
θ → 0 as t → ∞, for any given

T, ε
′

we can find a t
′
2 ≥ 0 such that for all t ≥ t

′
2, | ˙̃θ(t)| ≤ 2ε

′

3KT , where K =
supt,τ |φ(τ)φ>(τ)(θ̃(t) + θ̃(τ))| is a finite constant because of the fact that both θ̃

and φ are uniformly bounded signals. Choosing t1 ≥ t
′
2, we have

|ε̄2(t)| ≤ 1
T

∫ t1+T

t1

2ε
′
(τ − t)
3KT

|φ(τ)φ>(τ)(θ̃(t) + θ̃(τ))|dτ <
ε
′

3
(5.6.28)
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for all t ≥ t
′
2.

Because the autocovariance Rφ(0) exists, there exists T0 ≥ 0 such that for all
T ≥ T0, ∥∥∥∥∥Rφ(0)− 1

T

∫ t1+T

t1

φ(τ)φ>(τ)dτ

∥∥∥∥∥ <
ε
′

3K ′

where K
′
= supt |θ̃(t)|2 is a finite constant. Therefore,

|ε̄3| < ε
′

3
(5.6.29)

Combining (5.6.27) to (5.6.29), we have that for t ≥ max{t′1, t
′
2}

4
= t1, T ≥ T0,

ε̄(t) = θ̃>(t)Rφ(0)θ̃(t) < ε
′

which, in turn, implies that ε̄; therefore, Rφ(0)θ̃ converges to zero as t →∞. 2

5.7 Problems

5.1 Show that

φ =
[

A sin(t + ϕ)
sin(t)

]

where A,ϕ are nonzero constants is PE in R2.

5.2 Consider the following plant

y =
b1s

(s + 1)2
u

where b1 is the only unknown parameter. Is u = c0 (constant ) 6= 0 sufficiently
rich for identifying b1? Explain. Design a parameter identifier to identify b1

from the measurements of u, y. Simulate your scheme on a digital computer
for b1 = 5.

5.3 Consider the plant

y =
b2s

2 + b0

(s + 2)3
u

where b2, b0 are the only unknown parameters. Is u = sin t sufficiently rich
for identifying b2, b0 where b2, b0 can be any number in R. Explain. Design
a parameter identifier to identify b2, b0. Simulate your scheme for a) b2 =
1, b0 = 1 and b) b2 = 3, b0 = 5.
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5.4 Consider the second order stable plant

ẋ =
[

a1 1
a0 0

]
x +

[
b1

1

]
u

where a1, a0, b1 are the only unknown parameters and u ∈ L∞.

(a) Design a parameter identifier to estimate the unknown parameters.
(b) Choose u with the least number of frequencies that guarantees param-

eter convergence.
(c) Simulate your scheme for a1 = −2, a0 = −5, b1 = 8.

5.5 Simulate the series-parallel identifier in Example 5.2.2. Repeat Example 5.2.2
by designing and simulating a parallel identifier. In simulations use numerical
values for A,B of your choice.

5.6 Perform the simulations requested in (i) and (ii) of Example 5.2.3 when b0 =
−2, a1 = 2.8, a0 = 5.6. Comment on your results.

5.7 Repeat Problem 5.6 when the pure least-squares algorithm in Example 5.2.3 is
replaced with the least-squares with covariance resetting algorithm.

5.8 Repeat Problem 5.6 when the pure least-squares algorithm in Example 5.2.2 is
replaced with the
(a) Integral algorithm
(b) Hybrid adaptive law.

5.9 Design an adaptive Luenberger observer for the plant

ẋ =
[ −a1 1
−a0 0

]
x +

[
b1

1

]
u

y = [1, 0]x

where a1, a0 > 0 and b1 6= 0 are the only unknown parameters using the
following adaptive laws for on-line estimation:
(a) Integral algorithm
(b) Pure least-squares
(c) Hybrid adaptive law

In each case present the complete stability proof. Simulate the adaptive
observers with inputs u of your choice. For simulation purposes assume that
the unknown parameters have the following values: a1 = 2.5, a0 = 3.6, b1 = 4.

5.10 Repeat Problem 5.9 by designing an adaptive observer with auxiliary input.

5.11 Consider the LTI plant

y =
b0

s2 + a1s + a2
u
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where b0 6= 0, and a1, a2 > 0. Represent the plant in the following forms:
(a) Observable form
(b) Nonminimal Realization 1
(c) Nonminimal Realization 2

5.12 Design an adaptive observer using an integral adaptive law for the plant of
Problem 5.11 represented in the observer form.

5.13 Repeat Problem 5.12 for the same plant in the nonminimal Realization 1.

5.14 Design an adaptive observer for the plant of Problem 5.11 expressed in the
nonminimal Realization 2.

5.15 Consider the following plant:

y = W0(s)G(s)u

where W0(s) is a known proper transfer function with stable poles and G(s)
is a strictly proper transfer function of order n with stable poles but unknown
coefficients.

(a) Design a parameter identifier to identify the coefficients of G(s).
(b) Design an adaptive observer to estimate the states of a minimal realiza-

tion of the plant.

5.16 Prove that there exists a signal vector v ∈ Rn available for measurement for
which the system given by (5.4.2) becomes

ỹ = −θ̃>φ

where φ = H(s)
[

u
y

]
∈ R2n and H(s) is a known transfer matrix.

5.17 Use the result of Problem 5.16 to develop an adaptive observer with auxiliary
input that employs a least-squares algorithm as a parameter estimator.

5.18 Let F (t) : R 7→ Rn×m and F, Ḟ ∈ L∞. If there exist positive constants
k1, k2, T0 such that

k1In ≤ 1
T0

∫ t+T0

t

F (τ)F>(τ)dτ ≤ k2In

for any t ≥ 0, where In is the identity matrix of dimension n, show that if

Ff =
b

s + a
F

with a > 0, b 6= 0, then there exist positive constants k
′
1, k

′
2, T

′
0 such that

k
′
1In ≤ 1

T
′
0

∫ t+T
′
0

t

Ff (τ)F>f (τ)dτ ≤ k
′
2In

for any t ≥ 0.



Chapter 6

Model Reference Adaptive
Control

6.1 Introduction

Model reference adaptive control (MRAC) is one of the main approaches
to adaptive control. The basic structure of a MRAC scheme is shown in
Figure 6.1. The reference model is chosen to generate the desired trajectory,
ym, that the plant output yp has to follow. The tracking error e1

4
= yp − ym

represents the deviation of the plant output from the desired trajectory.
The closed-loop plant is made up of an ordinary feedback control law that
contains the plant and a controller C(θ) and an adjustment mechanism that
generates the controller parameter estimates θ(t) on-line.

The purpose of this chapter is to design the controller and parameter ad-
justment mechanism so that all signals in the closed-loop plant are bounded
and the plant output yp tracks ym as close as possible.

MRAC schemes can be characterized as direct or indirect and with nor-
malized or unnormalized adaptive laws. In direct MRAC, the parameter vec-
tor θ of the controller C(θ) is updated directly by an adaptive law, whereas
in indirect MRAC θ is calculated at each time t by solving a certain algebraic
equation that relates θ with the on-line estimates of the plant parameters.
In both direct and indirect MRAC with normalized adaptive laws, the form
of C(θ), motivated from the known parameter case, is kept unchanged. The
controller C(θ) is combined with an adaptive law (or an adaptive law and

313
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Figure 6.1 General structure of MRAC scheme.

an algebraic equation in the indirect case) that is developed independently
by following the techniques of Chapter 4. This design procedure allows the
use of a wide class of adaptive laws that includes gradient, least-squares and
those based on the SPR-Lyapunov design approach. On the other hand,
in the case of MRAC schemes with unnormalized adaptive laws, C(θ) is
modified to lead to an error equation whose form allows the use of the SPR-
Lyapunov design approach for generating the adaptive law. In this case,
the design of C(θ) and adaptive law is more complicated in both the di-
rect and indirect case, but the analysis is much simpler and follows from a
consideration of a single Lyapunov-like function.

The chapter is organized as follows: In Section 6.2, we use several exam-
ples to illustrate the design and analysis of a class of simple direct MRAC
schemes with unnormalized adaptive laws. These examples are used to mo-
tivate the more general and complicated designs treated in the rest of the
chapter. In Section 6.3 we define the model reference control (MRC) prob-
lem for SISO plants and solve it for the case of known plant parameters.
The control law developed in this section is used in the rest of the chapter
to form MRAC schemes in the unknown parameter case.

The design of direct MRAC schemes with unnormalized adaptive laws is
treated in Section 6.4 for plants with relative degree n∗ = 1, 2, 3. The case of
n∗ > 3 follows by using the same techniques as in the case of n∗ = 3 and is
omitted because of the complexity of the control law that increases with n∗.
In Section 6.5 we consider the design and analysis of a wide class of direct
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MRAC schemes with normalized adaptive laws for plants with arbitrary but
known relative degree.

The design of indirect MRAC with unnormalized and normalized adap-
tive laws is considered in Section 6.6. In Section 6.7, we briefly summarize
some efforts and alternative approaches to relax some of the basic assump-
tions used in MRAC that include the minimum phase, known relative degree
and upper bound on the order of the plant. In Section 6.8, we present all
the long and more complicated proofs of theorems and lemmas.

6.2 Simple Direct MRAC Schemes

In this section, we use several examples to illustrate the design and analysis
of some simple direct MRAC schemes with unnormalized adaptive laws. We
concentrate on the SPR-Lyapunov approach for designing the adaptive laws.
This approach dominated the literature of adaptive control for continuous-
time plants with relative degree n∗ = 1 because of the simplicity of design
and stability analysis [48, 85, 172, 201].

6.2.1 Scalar Example: Adaptive Regulation

Consider the following scalar plant:

ẋ = ax + u, x(0) = x0 (6.2.1)

where a is a constant but unknown. The control objective is to determine
a bounded function u = f(t, x) such that the state x(t) is bounded and
converges to zero as t → ∞ for any given initial condition x0. Let −am be
the desired closed-loop pole where am > 0 is chosen by the designer.

Control Law If the plant parameter a is known, the control law

u = −k∗x (6.2.2)

with k∗ = a + am could be used to meet the control objective, i.e., with
(6.2.2), the closed-loop plant is

ẋ = −amx
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whose equilibrium xe = 0 is e.s. in the large.
Because a is unknown, k∗ cannot be calculated and, therefore, (6.2.2)

cannot be implemented. A possible procedure to follow in the unknown
parameter case is to use the same control law as given in (6.2.2) but with k∗

replaced by its estimate k(t), i.e., we use

u = −k(t)x (6.2.3)

and search for an adaptive law to update k(t) continuously with time.

Adaptive Law The adaptive law for generating k(t) is developed by view-
ing the problem as an on-line identification problem for k∗. This is ac-
complished by first obtaining an appropriate parameterization for the plant
(6.2.1) in terms of the unknown k∗ and then using a similar approach as in
Chapter 4 to estimate k∗ on-line. We illustrate this procedure below.

We add and subtract the desired control input−k∗x in the plant equation
to obtain

ẋ = ax− k∗x + k∗x + u.

Because a− k∗ = −am we have

ẋ = −amx + k∗x + u

or
x =

1
s + am

(u + k∗x) (6.2.4)

Equation (6.2.4) is a parameterization of the plant equation (6.2.1) in terms
of the unknown controller parameter k∗. Because x, u are measured and
am > 0 is known, a wide class of adaptive laws may be generated by simply
using Tables 4.1 to 4.3 of Chapter 4. It turns out that the adaptive laws
developed for (6.2.4) using the SPR-Lyapunov design approach without nor-
malization simplify the stability analysis of the resulting closed-loop adaptive
control scheme considerably. Therefore, as a starting point, we concentrate
on the simple case and deal with the more general case that involves a wide
class of adaptive laws in later sections.

Because 1
s+am

is SPR we can proceed with the SPR-Lyapunov design
approach of Chapter 4 and generate the estimate x̂ of x as

x̂ =
1

s + am
[kx + u] =

1
s + am

(0) (6.2.5)



6.2. SIMPLE DIRECT MRAC SCHEMES 317

where the last equality is obtained by substituting the control law u=−kx.
If we now choose x̂(0) = 0, we have x̂(t) ≡ 0, ∀t ≥ 0, which implies that the
estimation error ε1 defined as ε1 = x − x̂ is equal to the regulation error,
i.e., ε1 = x, so that (6.2.5) does not have to be implemented to generate
x̂. Substituting for the control u = −k(t)x in (6.2.4), we obtain the error
equation that relates the parameter error k̃ = k − k∗ with the estimation
error ε1 = x, i.e.,

ε̇1 = −amε1 − k̃x, ε1 = x (6.2.6)

or
ε1 =

1
s + am

(
−k̃x

)

As demonstrated in Chapter 4, the error equation (6.2.6) is in a convenient
form for choosing an appropriate Lyapunov function to design the adaptive
law for k(t). We assume that the adaptive law is of the form

˙̃
k = k̇ = f1 (ε1, x, u) (6.2.7)

where f1 is some function to be selected, and propose

V
(
ε1, k̃

)
=

ε21
2

+
k̃2

2γ
(6.2.8)

for some γ > 0 as a potential Lyapunov function for the system (6.2.6),
(6.2.7). The time derivative of V along the trajectory of (6.2.6), (6.2.7) is
given by

V̇ = −amε21 − k̃ε1x +
k̃f1

γ
(6.2.9)

Choosing f1 = γε1x, i.e.,

k̇ = γε1x = γx2, k(0) = k0 (6.2.10)

we have
V̇ = −amε21 ≤ 0 (6.2.11)

Analysis Because V is a positive definite function and V̇ ≤ 0, we have
V ∈ L∞, which implies that ε1, k̃ ∈ L∞. Because ε1 = x, we also have
that x ∈ L∞ and therefore all signals in the closed-loop plant are bounded.
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Furthermore, ε1 = x ∈ L2 and ε̇1 = ẋ ∈ L∞ (which follows from (6.2.6) )
imply, according to Lemma 3.2.5, that ε1(t) = x(t) → 0 as t → ∞. From
x(t) → 0 and the boundedness of k, we establish that k̇(t) → 0, u(t) →
0 as t →∞.

We have shown that the combination of the control law (6.2.3) with the
adaptive law (6.2.10) meets the control objective in the sense that it forces
the plant state to converge to zero while guaranteeing signal boundedness.

It is worth mentioning that as in the simple parameter identification
examples considered in Chapter 4, we cannot establish that k(t) converges
to k∗, i.e., that the pole of the closed-loop plant converges to the desired one
given by −am. The lack of parameter convergence is less crucial in adaptive
control than in parameter identification because in most cases, the control
objective can be achieved without requiring the parameters to converge to
their true values.

The simplicity of this scalar example allows us to solve for ε1 = x explic-
itly, and study the properties of k(t), x(t) as they evolve with time. We can
verify that

ε1(t) =
2ce−ct

c + k0 − a + (c− k0 + a) e−2ct
ε1(0), ε1 = x

k(t) = a +
c
[
(c + k0 − a) e2ct − (c− k0 + a)

]

(c + k0 − a) e2ct + (c− k0 + a)
(6.2.12)

where c2 = γx2
0 + (k0 − a)2, satisfy the differential equations (6.2.6) and

(6.2.10) of the closed-loop plant. Equation (6.2.12) can be used to investigate
the effects of initial conditions and adaptive gain γ on the transient and
asymptotic behavior of x(t), k(t). We have limt→∞ k(t) = a + c if c > 0 and
limt→∞ k(t) = a− c if c < 0, i.e.,

lim
t→∞ k(t) = k∞ = a +

√
γx2

0 + (k0 − a)2 (6.2.13)

Therefore, for x0 6= 0, k(t) converges to a stabilizing gain whose value de-
pends on γ and the initial condition x0, k0. It is clear from (6.2.13) that
the value of k∞ is independent of whether k0 is a destabilizing gain, i.e.,
0 < k0 < a, or a stabilizing one, i.e., k0 > a, as long as (k0 − a)2 is the same.
The use of different k0, however, will affect the transient behavior as it is
obvious from (6.2.12). In the limit as t →∞, the closed-loop pole converges



6.2. SIMPLE DIRECT MRAC SCHEMES 319

- -

?
¾

6

¾¾

¡¡µ

-

¡
¡¡

1
s− a

k(t) (•)2

1
s
6

k(0)

γ

r = 0 u x

k

+ −
lΣ

Figure 6.2 Block diagram for implementing the adaptive controller
(6.2.14).

to − (k∞ − a), which may be different from −am. Because the control ob-
jective is to achieve signal boundedness and regulation of the state x(t) to
zero, the convergence of k(t) to k∗ is not crucial.

Implementation The adaptive control scheme developed and analyzed
above is given by the following equations:

u = −k(t)x, k̇ = γε1x = γx2, k(0) = k0 (6.2.14)

where x is the measured state of the plant. A block diagram for implementing
(6.2.14) is shown in Figure 6.2.

The design parameters in (6.2.14) are the initial parameter k0 and the
adaptive gain γ > 0. For signal boundedness and asymptotic regulation of
x to zero, our analysis allows k0, γ to be arbitrary. It is clear, however, from
(6.2.12) that their values affect the transient performance of the closed-loop
plant as well as the steady-state value of the closed-loop pole. For a given
k0, x0 6= 0, large γ leads to a larger value of c in (6.2.12) and, therefore,
to a faster convergence of x(t) to zero. Large γ, however, may make the
differential equation for k “stiff” (i.e., k̇ large) that will require a very small
step size or sampling period to implement it on a digital computer. Small
sampling periods make the adaptive scheme more sensitive to measurement
noise and modeling errors.
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Remark 6.2.1 In the proceeding example, we have not used any reference
model to describe the desired properties of the closed-loop system. A
reasonable choice for the reference model would be

ẋm = −amxm, xm(0) = xm0 (6.2.15)

which, by following exactly the same procedure, would lead to the
adaptive control scheme

u = −k(t)x, k̇ = γe1x

where e1 = x − xm. If xm0 6= x0, the use of (6.2.15) will affect the
transient behavior of the tracking error but will have no effect on the
asymptotic properties of the closed-loop scheme because xm converges
to zero exponentially fast.

6.2.2 Scalar Example: Adaptive Tracking

Consider the following first order plant:

ẋ = ax + bu (6.2.16)

where a, b are unknown parameters but the sign of b is known. The control
objective is to choose an appropriate control law u such that all signals in
the closed-loop plant are bounded and x tracks the state xm of the reference
model given by

ẋm = −amxm + bmr

i.e.,

xm =
bm

s + am
r (6.2.17)

for any bounded piecewise continuous signal r(t), where am > 0, bm are
known and xm(t), r(t) are measured at each time t. It is assumed that
am, bm and r are chosen so that xm represents the desired state response of
the plant.

Control Law For x to track xm for any reference input signal r(t), the
control law should be chosen so that the closed-loop plant transfer function
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from the input r to output x is equal to that of the reference model. We
propose the control law

u = −k∗x + l∗r (6.2.18)

where k∗, l∗ are calculated so that

x(s)
r(s)

=
bl∗

s− a + bk∗
=

bm

s + am
=

xm(s)
r(s)

(6.2.19)

Equation (6.2.19) is satisfied if we choose

l∗ =
bm

b
, k∗ =

am + a

b
(6.2.20)

provided of course that b 6= 0, i.e., the plant (6.2.16) is controllable. The
control law (6.2.18), (6.2.20) guarantees that the transfer function of the
closed-loop plant, i.e., x(s)

r(s) is equal to that of the reference model. Such
a transfer function matching guarantees that x(t) = xm(t), ∀t ≥ 0 when
x(0) = xm(0) or |x(t) − xm(t)| → 0 exponentially fast when x(0) 6= xm(0),
for any bounded reference signal r(t).

When the plant parameters a, b are unknown, (6.2.18) cannot be imple-
mented. Therefore, instead of (6.2.18), we propose the control law

u = −k(t)x + l(t)r (6.2.21)

where k(t), l(t) is the estimate of k∗, l∗, respectively, at time t, and search
for an adaptive law to generate k(t), l(t) on-line.

Adaptive Law As in Example 6.2.1, we can view the problem as an on-
line identification problem of the unknown constants k∗, l∗. We start with
the plant equation (6.2.16) which we express in terms of k∗, l∗ by adding and
subtracting the desired input term −bk∗x + bl∗r to obtain

ẋ = −amx + bmr + b (k∗x− l∗r + u)

i.e.,

x =
bm

s + am
r +

b

s + am
(k∗x− l∗r + u) (6.2.22)

Because xm = bm
s+am

r is a known bounded signal, we express (6.2.22) in terms

of the tracking error defined as e
4
= x− xm, i.e.,

e =
b

s + am
(k∗x− l∗r + u) (6.2.23)
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Because b is unknown, equation (6.2.23) is in the form of the bilinear
parametric model considered in Chapter 4, and may be used to choose an
adaptive law directly from Table 4.4 of Chapter 4.

Following the procedure of Chapter 4, the estimate ê of e is generated as

ê =
1

s + am
b̂ (kx− lr + u) =

1
s + am

(0) (6.2.24)

where the last identity is obtained by substituting for the control law

u = −k(t)x + l(t)r

Equation (6.2.24) implies that the estimation error, defined as ε1
4
= e − ê,

can be simply taken to be the tracking error, i.e., ε1 = e, and, therefore,
there is no need to generate ê. Furthermore, since ê is not generated, the
estimate b̂ of b is not required.

Substituting u = −k(t)x + l(t)r in (6.2.23) and defining the parameter

errors k̃
4
= k − k∗, l̃ 4= l − l∗, we have

ε1 = e =
b

s + am

(
−k̃x + l̃r

)

or
ε̇1 = −amε1 + b

(
−k̃x + l̃r

)
, ε1 = e = x− xm (6.2.25)

As shown in Chapter 4, the development of the differential equation (6.2.25)
relating the estimation error with the parameter error is a significant step
in deriving the adaptive laws for updating k(t), l(t). We assume that the
structure of the adaptive law is given by

k̇ = f1 (ε1, x, r, u) , l̇ = f2 (ε1, x, r, u) (6.2.26)

where the functions f1, f2 are to be designed.
As shown in Example 6.2.1, however, the use of the SPR-Lyapunov ap-

proach without normalization allows us to design an adaptive law for k, l

and analyze the stability properties of the closed-loop system using a single
Lyapunov function. For this reason, we proceed with the SPR-Lyapunov ap-
proach without normalization and postpone the use of other approaches that
are based on the use of the normalized estimation error for later sections.
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Consider the function

V
(
ε1, k̃, l̃

)
=

ε21
2

+
k̃2

2γ1
|b|+ l̃2

2γ2
|b| (6.2.27)

where γ1, γ2 > 0 as a Lyapunov candidate for the system (6.2.25), (6.2.26).
The time derivative V̇ along any trajectory of (6.2.25), (6.2.26) is given by

V̇ = −amε21 − bk̃ε1x + bl̃ε1r +
|b|k̃
γ1

f1 +
|b|l̃
γ2

f2 (6.2.28)

Because |b| = bsgn(b), the indefinite terms in (6.2.28) disappear if we choose
f1 = γ1ε1xsgn(b), f2 = −γ2ε1r sgn(b). Therefore, for the adaptive law

k̇ = γ1ε1x sgn(b), l̇ = −γ2ε1r sgn(b) (6.2.29)

we have
V̇ = −amε21 (6.2.30)

Analysis Treating xm(t), r(t) in (6.2.25) as bounded functions of time, it
follows from (6.2.27), (6.2.30) that V is a Lyapunov function for the third-
order differential equation (6.2.25) and (6.2.29) where xm is treated as a
bounded function of time, and the equilibrium ε1e = ee = 0, k̃e = 0, l̃e = 0
is u.s. Furthermore, ε1, k̃, l̃ ∈ L∞ and ε1 ∈ L2. Because ε1 = e = x − xm

and xm ∈ L∞, we also have x ∈ L∞ and u ∈ L∞; therefore, all signals in
the closed-loop are bounded. Now from (6.2.25) we have ε̇1 ∈ L∞, which,
together with ε1 ∈ L2, implies that ε1(t) = e(t) → 0 as t →∞.

We have established that the control law (6.2.21) together with the adap-
tive law (6.2.29) guarantee boundedness for all signals in the closed-loop
system. In addition, the plant state x(t) tracks the state of the refer-
ence model xm asymptotically with time for any reference input signal r,
which is bounded and piecewise continuous. These results do not imply
that k(t) → k∗ and l(t) → l∗ as t → ∞, i.e., the transfer function of the
closed-loop plant may not approach that of the reference model as t → ∞.
To achieve such a result, the reference input r has to be sufficiently rich of
order 2. For example, r(t) = sinωt for some ω 6= 0 guarantees the expo-
nential convergence of x(t) to xm(t) and of k(t), l(t) to k∗, l∗, respectively.
In general, a sufficiently rich reference input r(t) is not desirable especially
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Figure 6.3 Block diagram for implementing the adaptive law (6.2.21) and
(6.2.29).

in cases where the control objective involves tracking of signals that are not
rich in frequencies. Parameter convergence and the conditions the reference
input r has to satisfy are discussed later on in this chapter.
Implementation The MRAC control law (6.2.21), (6.2.29) can be im-
plemented as shown in Figure 6.3. The adaptive gains γ1, γ2 are designed
by following similar considerations as in the previous examples. The ini-
tial conditions l(0), k(0) are chosen to be any a priori guess of the unknown
parameters l∗, k∗, respectively. Small initial parameter error usually leads
to better transient behavior. As we mentioned before, the reference model
and input r are designed so that xm describes the desired trajectory to be
followed by the plant state.

Remark 6.2.2 The assumption that the sign of b is known may be relaxed
by using the techniques of Chapter 4 summarized in Table 4.4 and is
left as an exercise for the reader (see Problem 6.3).
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6.2.3 Vector Case: Full-State Measurement

Let us now consider the nth order plant

ẋ = Ax + Bu, x ∈ Rn (6.2.31)

where A ∈ Rn×n, B ∈ Rn×q are unknown constant matrices and (A,B) is
controllable. The control objective is to choose the input vector u ∈ Rq such
that all signals in the closed-loop plant are bounded and the plant state x

follows the state xm ∈ Rn of a reference model specified by the LTI system

ẋm = Amxm + Bmr (6.2.32)

where Am ∈ Rn×n is a stable matrix, Bm ∈ Rn×q, and r ∈ Rq is a bounded
reference input vector. The reference model and input r are chosen so that
xm(t) represents a desired trajectory that x has to follow.

Control Law If the matrices A,B were known, we could apply the control
law

u = −K∗x + L∗r (6.2.33)

and obtain the closed-loop plant

ẋ = (A−BK∗)x + BL∗r (6.2.34)

Hence, if K∗ ∈ Rq×n and L∗ ∈ Rq×q are chosen to satisfy the algebraic
equations

A−BK∗ = Am, BL∗ = Bm (6.2.35)

then the transfer matrix of the closed-loop plant is the same as that of the ref-
erence model and x(t) → xm(t) exponentially fast for any bounded reference
input signal r(t). We should note that given the matrices A,B, Am, Bm,
no K∗, L∗ may exist to satisfy the matching condition (6.2.35) indicating
that the control law (6.2.33) may not have enough structural flexibility to
meet the control objective. In some cases, if the structure of A,B is known,
Am, Bm may be designed so that (6.2.35) has a solution for K∗, L∗.

Let us assume that K∗, L∗ in (6.2.35) exist, i.e., that there is sufficient
structural flexibility to meet the control objective, and propose the control
law

u = −K(t)x + L(t)r (6.2.36)
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where K(t), L(t) are the estimates of K∗, L∗, respectively, to be generated
by an appropriate adaptive law.

Adaptive Law By adding and subtracting the desired input term, namely,
−B(K∗x−L∗r) in the plant equation and using (6.2.35), we obtain

ẋ = Amx + Bmr + B(K∗x− L∗r + u) (6.2.37)

which is the extension of the scalar equation (6.2.22) in Example 6.2.2 to
the vector case. Following the same procedure as in Section 6.2.2, we can
show that the tracking error e = x− xm and parameter error K̃

4
= K −K∗,

L̃
4
= L− L∗ satisfy the equation

ė = Ame + B(−K̃x + L̃r) (6.2.38)

which also depends on the unknown matrix B. In the scalar case we manage
to get away with the unknown B by assuming that its sign is known. An
extension of the scalar assumption of Section 6.2.2 to the vector case is as
follows: Let us assume that L∗ is either positive definite or negative definite
and Γ−1 = L∗sgn(l), where l = 1 if L∗ is positive definite and l = −1 if L∗

is negative definite. Then B = BmL∗−1 and (6.2.38) becomes

ė = Ame + BmL∗−1(−K̃x + L̃r)

We propose the following Lyapunov function candidate

V (e, K̃, L̃) = e>Pe + tr[K̃>ΓK̃ + L̃>ΓL̃]

where P = P> > 0 satisfies the Lyapunov equation

PAm + A>mP = −Q

for some Q = Q> > 0. Then,

V̇ = −e>Qe + 2e>PBmL∗−1(−K̃x + L̃r) + 2tr[K̃>Γ ˙̃K + L̃>Γ ˙̃L]

Now

e>PBmL∗−1K̃x = tr[x>K̃>ΓB>
mPe]sgn(l) = tr[K̃>ΓB>

mPex>]sgn(l)
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and
e>PBmL∗−1L̃r = tr[L̃>ΓB>

mPer>]sgn(l)

Therefore, for

˙̃K = K̇ = B>
mPex>sgn(l), ˙̃L = L̇ = −B>

mPer>sgn(l) (6.2.39)

we have
V̇ = −e>Qe

Analysis From the properties of V, V̇ , we establish as in the scalar case
that K(t), L(t), e(t) are bounded and that e(t) → 0 as t →∞.

Implementation The adaptive control scheme developed is given by
(6.2.36) and (6.2.39). The matrix BmP acts as an adaptive gain matrix,
where P is obtained by solving the Lyapunov equation PAm + A>mP = −Q

for some arbitrary Q = Q> > 0. Different choices of Q will not affect bound-
edness and the asymptotic behavior of the scheme, but they will affect the
transient response. The assumption that the unknown L∗ in the matching
equation BL∗ = Bm is either positive or negative definite imposes an ad-
ditional restriction on the structure and elements of B,Bm. Because B is
unknown this assumption may not be realistic in some applications.

The case where B is completely unknown is treated in [172] using the
adaptive control law

u = −L(t)K(t)x + L(t)r

K̇ = B>
mPex>, L̇ = −LB>

meu>L (6.2.40)

The result established, however, is only local which indicates that for stabil-
ity K(0), L(0) have to be chosen close to the equilibrium Ke = K∗, Le = L∗

of (6.2.40). Furthermore, K∗, L∗ are required to satisfy the matching equa-
tions A−BL∗K∗ = Am, BL∗ = Bm.

6.2.4 Nonlinear Plant

The procedure of Sections 6.2.1 to 6.2.3 can be extended to some special
classes of nonlinear plants as demonstrated briefly by using the following
nonlinear example

ẋ = af(x) + bg(x)u (6.2.41)
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where a, b are unknown scalars, f(x), g(x) are known functions with g(x) >

c > 0 ∀x ∈ R1 and some constant c > 0. The sgn(b) is known and f(x)
is bounded for bounded x. It is desired that x tracks the state xm of the
reference model given by

ẋm = −amxm + bmr

for any bounded reference input signal r.

Control Law If a, b were known, the control law

u =
1

g(x)
[k∗1f(x) + k∗2x + l∗r] (6.2.42)

with

k∗1 = −a

b
, k∗2 = −am

b
, l∗ =

bm

b

could meet the control objective exactly. For the case of a, b unknown, we
propose a control law of the same form as (6.2.42) but with adjustable gains,
i.e., we use

u =
1

g(x)
[k1(t)f(x) + k2(t)x + l(t)r] (6.2.43)

where k1, k2, l, are the estimates of the unknown controller gains k∗1, k∗2, l∗

respectively to be generated by an adaptive law.

Adaptive Law As in the previous examples, we first rewrite the plant
equation in terms of the unknown controller gains k∗1, k∗2, l∗, i.e., substituting
for a = −bk∗1 and adding and subtracting the term b (k∗1f(x) + k∗2x + l∗r) in
(6.2.41) and using the equation bl∗ = bm, bk∗2 = −am, we obtain

ẋ = −amx + bmr + b [−k∗1f(x)− k∗2x− l∗r + g(x)u]

If we let e
4
= x− xm, k̃1

4
= k1 − k∗1, k̃2

4
= k2 − k∗2, l̃

4
= l− l∗ to be the tracking

and parameter errors, we can show as before that the tracking error satisfies
the differential equation

ė = −ame + b
(
k̃1f(x) + k̃2x + l̃r

)
, ε1 = e
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which we can use as in Section 6.2.2 to develop the adaptive laws

k̇1 = −γ1ef(x) sgn(b)

k̇2 = −γ2ex sgn(b) (6.2.44)

l̇ = −γ3er sgn(b)

where γi > 0, i = 1, 2, 3 are the adaptive gains.

Analysis We can establish that all signals in the closed-loop plant (6.2.41),
(6.2.43), and (6.2.44) are bounded and that |e(t)| = |x(t) − xm(t)| → 0 as
t →∞ by using the Lyapunov function

V (e, k̃1, k̃2, l̃) =
e2

2
+

k̃2
1

2γ1
|b|+ k̃2

2

2γ2
|b|+ l̃2

2γ3
|b|

in a similar way as in Section 6.2.2. The choice of the control law to cancel
the nonlinearities and force the plant to behave as an LTI system is quite
obvious for the case of the plant (6.2.41). Similar techniques may be used
to deal with some more complicated nonlinear problems where the choice of
the control law in the known and unknown parameter case is less obvious
[105].

Remark 6.2.3 The simple adaptive control schemes presented in this sec-
tion have the following characteristics:

(i) The adaptive laws are developed using the SPR-Lyapunov design ap-
proach and are driven by the estimation error rather than the normal-
ized estimation error. The estimation error is equal to the regulation
or tracking error that is to be driven to zero as a part of the control
objective.

(ii) The design of the adaptive law and the stability analysis of the closed-
loop adaptive scheme is accomplished by using a single Lyapunov func-
tion.

(iii) The full state vector is available for measurement.

Another approach is to use the procedure of Chapter 4 and develop adap-
tive laws based on the SPR-Lyapunov method that are driven by normalized
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estimation errors. Such schemes, however, are not as easy to analyze as the
schemes with unnormalized adaptive laws developed in this section. The
reason is that the normalized estimation error is not simply related to the
regulation or tracking error and additional stability arguments are needed
to complete the analysis of the respective adaptive control scheme.

The distinction between adaptive schemes with normalized and unnor-
malized adaptive laws is made clear in this chapter by analyzing them in
separate sections. Some of the advantages and disadvantages of normalized
and unnormalized adaptive laws are discussed in the sections to follow.

The assumption of full state measurement in the above examples is re-
laxed in the following sections where we formulate and solve the general
MRAC problem.

6.3 MRC for SISO Plants

In Section 6.2 we used several examples to illustrate the design and analysis
of MRAC schemes for plants whose state vector is available for measurement.
The design of MRAC schemes for plants whose output rather than the full
state is available for measurement follows a similar procedure as that used
in Section 6.2. This design procedure is based on combining a control law
whose form is the same as the one we would use in the known parameter
case with an adaptive law that provides on-line estimates for the controller
parameters.

In the general case, the design of the control law is not as straightforward
as it appears to be in the case of the examples of Section 6.2. Because of
this reason, we use this section to formulate the MRC problem for a general
class of LTI SISO plants and solve it for the case where the plant parameters
are known exactly. The significance of the existence of a control law that
solves the MRC problem is twofold: First it demonstrates that given a set of
assumptions about the plant and reference model, there is enough structural
flexibility to meet the control objective; second, it provides the form of the
control law that is to be combined with an adaptive law to form MRAC
schemes in the case of unknown plant parameters to be treated in the sections
to follow.
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6.3.1 Problem Statement

Consider the SISO, LTI plant described by the vector differential equation

ẋp = Apxp + Bpup, xp(0) = x0

yp = C>
p xp (6.3.1)

where xp ∈ Rn; yp, up ∈ R1 and Ap, Bp, Cp have the appropriate dimensions.
The transfer function of the plant is given by

yp = Gp(s)up (6.3.2)

with Gp(s) expressed in the form

Gp(s) = kp
Zp(s)
Rp(s)

(6.3.3)

where Zp, Rp are monic polynomials and kp is a constant referred to as the
high frequency gain.

The reference model, selected by the designer to describe the desired
characteristics of the plant, is described by the differential equation

ẋm = Amxm + Bmr, xm(0) = xm0

ym = C>
mxm (6.3.4)

where xm ∈ Rpm for some integer pm; ym, r ∈ R1 and r is the reference
input which is assumed to be a uniformly bounded and piecewise continuous
function of time. The transfer function of the reference model given by

ym = Wm(s)r

is expressed in the same form as (6.3.3), i.e.,

Wm(s) = km
Zm(s)
Rm(s)

(6.3.5)

where Zm(s), Rm(s) are monic polynomials and km is a constant.
The MRC objective is to determine the plant input up so that all signals

are bounded and the plant output yp tracks the reference model output ym

as close as possible for any given reference input r(t) of the class defined
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above. We refer to the problem of finding the desired up to meet the control
objective as the MRC problem.

In order to meet the MRC objective with a control law that is imple-
mentable, i.e., a control law that is free of differentiators and uses only
measurable signals, we assume that the plant and reference model satisfy
the following assumptions:

Plant Assumptions

P1. Zp(s) is a monic Hurwitz polynomial of degree mp

P2. An upper bound n of the degree np of Rp(s)

P3. the relative degree n∗ = np −mp of Gp(s), and

P4. the sign of the high frequency gain kp are known

Reference Model Assumptions:

M1. Zm(s), Rm(s) are monic Hurwitz polynomials of degree qm, pm,
respectively, where pm ≤ n.

M2. The relative degree n∗m = pm − qm of Wm(s) is the same as that
of Gp(s), i.e., n∗m = n∗.

Remark 6.3.1 Assumption P1 requires the plant transfer function Gp(s)
to be minimum phase. We make no assumptions, however, about the
location of the poles of Gp(s), i.e., the plant is allowed to have unstable
poles. We allow the plant to be uncontrollable or unobservable, i.e.,
we allow common zeros and poles in the plant transfer function. Be-
cause, by assumption P1, all the plant zeros are in C−, any zero-pole
cancellation can only occur in C−, which implies that the plant (6.3.1)
is both stabilizable and detectable.

The minimum phase assumption (P1) is a consequence of the control
objective which is met by designing an MRC control law that cancels
the zeros of the plant and replaces them with those of the reference
model in an effort to force the closed-loop plant transfer function from
r to yp to be equal to Wm(s). For stability, such cancellations should
occur in C− which implies that Zp(s) should satisfy assumption P1.
As we will show in Section 6.7, assumptions P3, P4 can be relaxed at
the expense of more complex control laws.
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6.3.2 MRC Schemes: Known Plant Parameters

In addition to assumptions P1 to P4 and M1, M2, let us also assume
that the plant parameters, i.e., the coefficients of Gp(s) are known exactly.
Because the plant is LTI and known, the design of the MRC scheme is
achieved using linear system theory.

The MRC objective is met if up is chosen so that the closed-loop transfer
function from r to yp has stable poles and is equal to Wm(s), the transfer
function of the reference model. Such a transfer function matching guaran-
tees that for any reference input signal r(t), the plant output yp converges
to ym exponentially fast.

A trivial choice for up is the cascade open-loop control law

up = C(s)r, C(s) =
km

kp

Zm(s)
Rm(s)

Rp(s)
Zp(s)

(6.3.6)

which leads to the closed-loop transfer function

yp

r
=

km

kp

Zm

Rm

Rp

Zp

kpZp

Rp
= Wm(s) (6.3.7)

This control law, however, is feasible only when Rp(s) is Hurwitz. Other-
wise, (6.3.7) may involve zero-pole cancellations outside C−, which will lead
to unbounded internal states associated with non-zero initial conditions [95].
In addition, (6.3.6) suffers from the usual drawbacks of open loop control
such as deterioration of performance due to small parameter changes and
inexact zero-pole cancellations.

Instead of (6.3.6), let us consider the feedback control law

up = θ∗>1
α(s)
Λ(s)

up + θ∗>2
α(s)
Λ(s)

yp + θ∗3yp + c∗0r (6.3.8)

shown in Figure 6.4 where

α(s)
4
= αn−2(s) =

[
sn−2, sn−3, . . . , s, 1

]> for n ≥ 2

α(s)
4
= 0 for n = 1

c∗0, θ∗3 ∈ R1; θ∗1, θ∗2 ∈ Rn−1 are constant parameters to be designed and Λ(s)
is an arbitrary monic Hurwitz polynomial of degree n−1 that contains Zm(s)
as a factor, i.e.,

Λ(s) = Λ0(s)Zm(s)
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Figure 6.4 Structure of the MRC scheme (6.3.8).

which implies that Λ0(s) is monic, Hurwitz and of degree n0 = n− 1− qm.
The controller parameter vector

θ∗ =
[
θ∗>1 , θ∗>2 , θ∗3, c

∗
0

]> ∈ R2n

is to be chosen so that the transfer function from r to yp is equal to Wm(s).
The I/O properties of the closed-loop plant shown in Figure 6.4 are

described by the transfer function equation

yp = Gc(s)r (6.3.9)

where

Gc(s) =
c∗0kpZpΛ2

Λ
[(

Λ− θ∗>1 α(s)
)
Rp − kpZp

(
θ∗>2 α(s) + θ∗3Λ

)] (6.3.10)

We can now meet the control objective if we select the controller param-
eters θ∗1, θ∗2, θ∗3, c∗0 so that the closed-loop poles are stable and the closed-loop
transfer function Gc(s) = Wm(s), i.e.,

c∗0kpZpΛ2

Λ
[(

Λ− θ∗>1 α
)
Rp − kpZp

(
θ∗>2 α + θ∗3Λ

)] = km
Zm

Rm
(6.3.11)

is satisfied for all s ∈ C. Because the degree of the denominator of Gc(s) is
np +2n− 2 and that of Rm(s) is pm ≤ n, for the matching equation (6.3.11)
to hold, an additional np +2n−2−pm zero-pole cancellations must occur in
Gc(s). Now because Zp(s) is Hurwitz by assumption and Λ(s) = Λ0(s)Zm(s)
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is designed to be Hurwitz, it follows that all the zeros of Gc(s) are stable
and therefore any zero-pole cancellation can only occur in C−. Choosing

c∗0 =
km

kp
(6.3.12)

and using Λ(s) = Λ0(s)Zm(s) the matching equation (6.3.11) becomes
(
Λ− θ∗>1 α

)
Rp − kpZp

(
θ∗>2 α + θ∗3Λ

)
= ZpΛ0Rm (6.3.13)

or

θ∗>1 α(s)Rp(s)+kp

(
θ∗>2 α(s) + θ∗3Λ(s)

)
Zp(s) = Λ(s)Rp(s)−Zp(s)Λ0(s)Rm(s)

(6.3.14)
Equating the coefficients of the powers of s on both sides of (6.3.14), we can
express (6.3.14) in terms of the algebraic equation

Sθ̄∗ = p (6.3.15)

where θ̄∗ =
[
θ∗>1 , θ∗>2 , θ∗3

]>
, S is an (n + np − 1) × (2n− 1) matrix that

depends on the coefficients of Rp, kpZp and Λ, and p is an n + np − 1 vector
with the coefficients of ΛRp−ZpΛ0Rm. The existence of θ̄∗ to satisfy (6.3.15)
and, therefore, (6.3.14) will very much depend on the properties of the matrix
S. For example, if n > np, more than one θ̄∗ will satisfy (6.3.15), whereas if
n = np and S is nonsingular, (6.3.15) will have only one solution.

Remark 6.3.2 For the design of the control input (6.3.8), we assume that
n ≥ np. Because the plant is known exactly, there is no need to assume
an upper bound for the degree of the plant, i.e., because np is known
n can be set equal to np. We use n ≥ np on purpose in order to use
the result in the unknown plant parameter case treated in Sections 6.4
and 6.5, where only the upper bound n for np is known.

Remark 6.3.3 Instead of using (6.3.15), one can solve (6.3.13) for θ∗1, θ∗2, θ∗3
as follows: Dividing both sides of (6.3.13) by Rp(s), we obtain

Λ− θ∗>1 α− kp
Zp

Rp
(θ∗>2 α + θ∗3Λ) = Zp

(
Q + kp

∆∗

Rp

)
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where Q(s) (of degree n− 1−mp) is the quotient and kp∆∗ (of degree
at most np − 1) is the remainder of Λ0Rm/Rp, respectively. Then the
solution for θ∗i , i = 1, 2, 3 can be found by inspection, i.e.,

θ∗>1 α(s) = Λ(s)− Zp(s)Q(s) (6.3.16)

θ∗>2 α(s) + θ∗3Λ(s) =
Q(s)Rp(s)− Λ0(s)Rm(s)

kp
(6.3.17)

where the equality in the second equation is obtained by substituting
for ∆∗(s) using the identity Λ0Rm

Rp
= Q+ kp∆∗

Rp
. The parameters θ∗i , i =

1, 2, 3 can now be obtained directly by equating the coefficients of the
powers of s on both sides of (6.3.16), (6.3.17).

Equations (6.3.16) and (6.3.17) indicate that in general the controller
parameters θ∗i , i = 1, 2, 3 are nonlinear functions of the coefficients of
the plant polynomials Zp(s), Rp(s) due to the dependence of Q(s) on
the coefficients of Rp(s). When n = np and n∗ = 1, however, Q(s) = 1
and the θ∗i ’s are linear functions of the coefficients of Zp(s), Rp(s).

Lemma 6.3.1 Let the degrees of Rp, Zp, Λ, Λ0 and Rm be as specified in
(6.3.8). Then (i) The solution θ̄∗ of (6.3.14) or (6.3.15) always exists.
(ii) In addition if Rp, Zp are coprime and n = np, then the solution θ̄∗ is

unique.

Proof Let Rp = R̄p(s)h(s) and Zp(s) = Z̄p(s)h(s) and R̄p(s), Z̄p(s) be coprime,
where h(s) is a monic polynomial of degree r0 (with 0 ≤ r0 ≤ mp). Because Zp(s)
is Hurwitz, it follows that h(s) is also Hurwitz. If Rp, Zp are coprime, h(s) = 1, i.e.,
r0 = 0. If Rp, Zp are not coprime, r0 ≥ 1 and h(s) is their common factor. We can
now write (6.3.14) as

θ∗>1 αR̄p + kp(θ∗>2 α + θ∗3Λ)Z̄p = ΛR̄p − Z̄pΛ0Rm (6.3.18)

by canceling h(s) from both sides of (6.3.14). Because h(s) is Hurwitz, the cancella-
tion occurs in C−. Equation (6.3.18) leads to np+n−r0−2 algebraic equations with
2n−1 unknowns. It can be shown that the degree of ΛR̄p−Z̄pΛ0Rm is np+n−r0−2
because of the cancellation of the term snp+n−r0−1. Because R̄p, Z̄p are coprime,
it follows from Theorem 2.3.1 that there exists unique polynomials a0(s), b0(s) of
degree n− 2, np − r0 − 1 respectively such that

a0(s)R̄p(s) + b0(s)Z̄p(s) = Λ(s)R̄p(s)− Z̄p(s)Λ0(s)Rm(s) (6.3.19)
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is satisfied for n ≥ 2. It now follows by inspection that

θ∗>1 α(s) = f(s)Z̄p(s) + a0(s) (6.3.20)

and
kp(θ∗>2 α(s) + θ∗3Λ(s)) = −f(s)R̄p(s) + b0(s) (6.3.21)

satisfy (6.3.18), where f(s) is any given polynomial of degree nf = n− np + r0 − 1.
Hence, the solution θ∗1 , θ∗2 , θ∗3 of (6.3.18) can be obtained as follows: We first solve
(6.3.19) for a0(s), b0(s). We then choose an arbitrary polynomial f(s) of degree
nf = n − np + r0 − 1 and calculate θ∗1 , θ∗2 , θ∗3 from (6.3.20), (6.3.21) by equating
coefficients of the powers of s. Because f(s) is arbitrary, the solution θ∗1 , θ∗2 , θ∗3 is
not unique. If, however, n = np and r0 = 0, i.e., Rp, Zp are coprime, then f(s) = 0
and θ∗>1 α(s) = a0(s), kp(θ∗>2 α(s) + θ∗3Λ(s)) = b0(s) which implies that the solution
θ∗1 , θ∗2 , θ∗3 is unique due to the uniqueness of a0(s), b0(s). If n = np = 1, then
α(s) = 0, Λ(s) = 1, θ∗1 = θ∗2 = 0 and θ∗3 given by (6.3.18) is unique. 2

Remark 6.3.4 It is clear from (6.3.12), (6.3.13) that the control law (6.3.8)
places the poles of the closed-loop plant at the roots of the polynomial
Zp(s)Λ0(s)Rm(s) and changes the high frequency gain from kp to km

by using the feedforward gain c∗0. Therefore, the MRC scheme can be
viewed as a special case of a general pole placement scheme where the
desired closed-loop characteristic equation is given by

Zp(s)Λ0(s)Rm(s) = 0

The transfer function matching (6.3.11) is achieved by canceling the
zeros of the plant, i.e., Zp(s), and replacing them by those of the
reference model, i.e., by designing Λ = Λ0Zm. Such a cancellation
is made possible by assuming that Zp(s) is Hurwitz and by designing
Λ0, Zm to have stable zeros.

We have shown that the control law (6.3.8) guarantees that the closed-
loop transfer function Gc(s) of the plant from r to yp has all its poles in C−
and in addition, Gc(s) = Wm(s). In our analysis we assumed zero initial
conditions for the plant, reference model and filters. The transfer function
matching, i.e., Gc(s) = Wm(s), together with zero initial conditions guar-
antee that yp(t) = ym(t), ∀t ≥ 0 and for any reference input r(t) that is
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bounded and piecewise continuous. The assumption of zero initial condi-
tions is common in most I/O control design approaches for LTI systems and
is valid provided that any zero-pole cancellation in the closed-loop plant
transfer function occurs in C−. Otherwise nonzero initial conditions may
lead to unbounded internal states that correspond to zero-pole cancellations
in C+.

In our design we make sure that all cancellations in Gc(s) occur in C−
by assuming stable zeros for the plant transfer function and by using stable
filters in the control law. Nonzero initial conditions, however, will affect the
transient response of yp(t). As a result we can no longer guarantee that
yp(t) = ym(t) ∀t ≥ 0 but instead that yp(t) → ym(t) exponentially fast with
a rate that depends on the closed-loop dynamics. We analyze the effect of
initial conditions by using state space representations for the plant, reference
model, and controller as follows: We begin with the following state-space
realization of the control law (6.3.8):

ω̇1 = Fω1 + gup, ω1(0) = 0

ω̇2 = Fω2 + gyp, ω2(0) = 0 (6.3.22)

up = θ∗>ω

where ω1, ω2 ∈ Rn−1,

θ∗ =
[
θ∗>1 , θ∗>2 , θ∗3, c

∗
0

]>
, ω = [ω>1 , ω>2 , yp, r]>

F =




−λn−2 −λn−3 −λn−4 . . . −λ0

1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . . . . .

...
0 0 . . . 1 0




, g =




1
0
...
0




(6.3.23)

λi are the coefficients of

Λ(s) = sn−1 + λn−2s
n−2 + . . . + λ1s + λ0 = det(sI − F )

and (F, g) is the state space realization of α(s)
Λ(s) , i.e., (sI−F )−1g = α(s)

Λ(s) . The
block diagram of the closed-loop plant with the control law (6.3.22) is shown
in Figure 6.5.
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Figure 6.5 Block diagram of the MRC scheme (6.3.22).

We obtain the state-space representation of the overall closed-loop plant
by augmenting the state xp of the plant (6.3.1) with the states ω1, ω2 of the
controller (6.3.22), i.e.,

Ẏc = AcYc + Bcc
∗
0r, Yc(0) = Y0

yp = C>
c Yc (6.3.24)

where
Yc =

[
x>p , ω>1 , ω>2

]> ∈ Rnp+2n−2

Ac =




Ap + Bpθ
∗
3C

>
p Bpθ

∗>
1 Bpθ

∗>
2

gθ∗3C>
p F + gθ∗>1 gθ∗>2

gC>
p 0 F


 , Bc =




Bp

g
0


 (6.3.25)

C>
c =

[
C>

p , 0, 0
]

and Y0 is the vector with initial conditions. We have already established
that the transfer function from r to yp is given by

yp(s)
r(s)

=
c∗0kpZpΛ2

Λ
[(

Λ− θ∗>1 α
)
Rp − kpZp

(
θ∗>2 α + θ∗3Λ

)] = Wm(s)

which implies that

C>
c (sI −Ac)

−1 Bcc
∗
0 =

c∗0kpZpΛ2

Λ
[(

Λ− θ∗>1 α
)
Rp − kpZp

(
θ∗>2 α + θ∗3Λ

)] = Wm(s)
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and, therefore,

det (sI −Ac) = Λ
[(

Λ− θ∗>1 α
)

Rp − kpZp

(
θ∗>2 α + θ∗3Λ

)]
= ΛZpΛ0Rm

where the last equality is obtained by using the matching equation (6.3.13).
It is clear that the eigenvalues of Ac are equal to the roots of the polynomials
Λ, Zp and Rm; therefore, Ac is a stable matrix. The stability of Ac and the
boundedness of r imply that the state vector Yc in (6.3.24) is bounded.

Since C>
c (sI−Ac)−1Bcc

∗
0 = Wm(s), the reference model may be realized

by the triple (Ac, Bcc
∗
0, Cc) and described by the nonminimal state space

representation

Ẏm = AcYm + Bcc
∗
0r, Ym(0) = Ym0

ym = C>
c Ym (6.3.26)

where Ym ∈ Rnp+2n−2.
Letting e = Yc − Ym to be the state error and e1 = yp − ym the output

tracking error, it follows from (6.3.24) and (6.3.26) that

ė = Ace, e1 = C>
c e

i.e., the tracking error e1 satisfies

e1 = C>
c eAct (Yc(0)− Ym(0))

Because Ac is a stable matrix, e1(t) converges exponentially to zero. The
rate of convergence depends on the location of the eigenvalues of Ac, which
are equal to the roots of Λ(s)Λ0(s)Rm(s)Zp(s) = 0. We can affect the rate
of convergence by designing Λ(s)Λ0(s)Rm(s) to have fast zeros, but we are
limited by the dependence of Ac on the zeros of Zp(s), which are fixed by
the given plant.

Example 6.3.1 Let us consider the second order plant

yp =
−2 (s + 5)
s2 − 2s + 1

up =
−2 (s + 5)
(s− 1)2

up

and the reference model
ym =

3
s + 3

r
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The order of the plant is np = 2. Its relative degree n∗ = 1 is equal to that of the
reference model.

We choose the polynomial Λ(s) as

Λ(s) = s + 1 = Λ0(s)

and the control input

up = θ∗1
1

s + 1
up + θ∗2

1
s + 1

yp + θ∗3yp + c∗0r

which gives the closed-loop transfer function

yp

r
=

−2c∗0 (s + 5) (s + 1)
(s + 1− θ∗1) (s− 1)2 + 2 (s + 5) (θ∗2 + θ∗3 (s + 1))

= Gc(s)

Forcing Gc(s) = 3/(s + 3), we have c∗0 = −3/2 and the matching equation (6.3.14)
becomes

θ∗1 (s− 1)2 − 2 (θ∗2 + θ∗3 (s + 1)) (s + 5) = (s + 1) (s− 1)2 − (s + 5) (s + 1) (s + 3)

i.e.,

(θ∗1 − 2θ∗3) s2 + (−2θ∗1 − 2θ∗2 − 12θ∗3) s + θ∗1 − 10 (θ∗2 + θ∗3) = −10s2 − 24s− 14

Equating the powers of s we have

θ∗1 − 2θ∗3 = −10
θ∗1 + θ∗2 + 6θ∗3 = 12

θ∗1 − 10θ∗2 − 10θ∗3 = −14

i.e., 


1 0 −2
1 1 6
1 −10 −10







θ∗1
θ∗2
θ∗3


 =




−10
12
−14




which gives 


θ∗1
θ∗2
θ∗3


 =



−4
−2

3




The control input is therefore given by

up = −4
1

s + 1
up − 2

1
s + 1

yp + 3yp − 1.5r

and is implemented as follows:

ω̇1 = −ω1 + up, ω̇2 = −ω2 + yp

up = −4ω1 − 2ω2 + 3yp − 1.5r 5
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Figure 6.6 Implementation of the MRC scheme (6.3.28).

Remark 6.3.5 Because θ∗ is a constant vector, the control law (6.3.8) may
be also written as

up =
α>(s)
Λ(s)

(θ∗1up) +
α>(s)
Λ(s)

(θ∗2yp) + θ∗3yp + c∗0r (6.3.27)

and implemented as

ω̇1 = F>ω1 + θ∗1up

ω̇2 = F>ω2 + θ∗2yp (6.3.28)

up = g>ω1 + g>ω2 + θ∗3yp + c∗0r

where ω1, ω2 ∈ Rn−1 ; F, g are as defined in (6.3.23), i.e., g>(sI −
F>)−1 = g>((sI−F )−1)> = α>(s)

Λ(s) . The block diagram for implement-
ing (6.3.28) is shown in Figure 6.6.

Remark 6.3.6 The structure of the feedback control law (6.3.8) is not
unique. For example, instead of the control law (6.3.8) we can also
use

up = θ∗>1
α(s)
Λ1(s)

up + θ∗>2
α(s)
Λ1(s)

yp + c∗0r (6.3.29)
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where Λ1(s) = Λ0(s)Zm(s) has degree n, α(s) = αn−1(s) = [sn−1,
sn−2, . . ., s, 1]> and θ∗1, θ∗2 ∈ Rn. The overall desired controller param-

eter θ∗ =
[
θ∗>1 , θ∗>2 , c∗0

]> ∈ R2n+1 has one dimension more than that
in (6.3.8). The analysis of (6.3.29) is very similar to that of (6.3.8) and
is left as an exercise (see Problem 6.7) for the reader.

Remark 6.3.7 We can express the control law (6.3.8) in the general feed-
back form shown in Figure 6.7 with a feedforward block

C(s) =
c∗0Λ(s)

Λ(s)− θ∗>1 α(s)

and a feedback block

F (s) = −θ∗>2 α(s) + θ∗3Λ(s)
Λ(s)c∗0

where c∗0, θ∗1, θ∗2, θ∗3 are chosen to satisfy the matching equation (6.3.12),
(6.3.13). The general structure of Figure 6.7 allows us to analyze and
study properties such as robustness, disturbance rejection, etc., of the
MRC scheme using well established results from linear system theory
[57, 95].

We have shown that the MRC law (6.3.8), whose parameters θ∗i , i = 1, 2, 3
and c∗0 are calculated using the matching equations (6.3.12), (6.3.13) meets
the MRC objective. The solution of the matching equations for θ∗i and c∗0
requires the knowledge of the coefficients of the plant polynomials kpZp(s),
Rp(s). In the following sections we combine the MRC law (6.3.8) with an
adaptive law that generates estimates for θ∗i , c

∗
0 on-line to deal with the case

of unknown plant parameters.

6.4 Direct MRAC with Unnormalized Adaptive
Laws

The main characteristics of the simple MRAC schemes developed in Section
6.2 are

(i) The adaptive laws are driven by the estimation error which, due to the
special form of the control law, is equal to the regulation or tracking
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Figure 6.7 MRC in the general feedback block diagram where C(s) =
c∗0Λ(s)

Λ(s)−θ∗>1 α(s)
, F (s) = − θ∗>2 α(s)+θ∗3Λ(s)

c∗0Λ(s) .

error. They are derived using the SPR-Lyapunov design approach
without the use of normalization

(ii) A simple Lyapunov function is used to design the adaptive law and
establish boundedness for all signals in the closed-loop plant.

The extension of the results of Sections 6.2, 6.3 to the SISO plant (6.3.1)
with unknown parameters became an active area of research in the 70’s.
In 1974, Monopoli [150] introduced the concept of the augmented error, a
form of an estimation error without normalization, that he used to develop
stable MRAC schemes for plants with relative degree 1 and 2, but not for
plants with higher relative degree. Following the work of Monopoli, Feuer
and Morse [54] designed and analyzed MRAC schemes with unnormalized
adaptive laws that are applicable to plants with known relative degree of ar-
bitrary positive value. This generalization came at the expense of additional
complexity in the structure of MRAC schemes for plants with relative de-
gree higher than 2. The complexity of the Feuer and Morse MRAC schemes
relative to the ones using adaptive laws with normalized estimation errors,
introduced during the same period [48, 72, 174], was responsible for their
lack of popularity within the adaptive control research community. As a
result, it was not until the early 1990s that the MRAC schemes designed
for plants with relative degree higher than 2 and employing unnormalized
adaptive laws were revived again and shown to offer some advantages over
the MRAC with normalization when applied to certain classes of nonlinear
plants [98, 116, 117, 118, 162].

In this section, we follow an approach very similar to that of Feuer and
Morse and extend the results of Section 6.2 to the general case of higher
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order SISO plants. The complexity of the schemes increases with the relative
degree n∗ of the plant. The simplest cases are the ones where n∗ = 1 and 2.
Because of their simplicity, they are still quite popular in the literature of
continuous-time MRAC and are presented in separate sections.

6.4.1 Relative Degree n∗ = 1

Let us assume that the relative degree of the plant

yp = Gp(s)up = kp
Zp(s)
Rp(s)

up (6.4.1)

is n∗ = 1. The reference model

ym = Wm(s)r

is chosen to have the same relative degree and both Gp(s),Wm(s) satisfy
assumptions P1 to P4, and M1 and M2, respectively. In addition Wm(s) is
designed to be SPR.

The design of the MRAC law to meet the control objective defined in
Section 6.3.1 proceeds as follows:

We have shown in Section 6.3.2 that the control law

ω̇1 = Fω1 + gup, ω1(0) = 0

ω̇2 = Fω2 + gyp, ω2(0) = 0 (6.4.2)

up = θ∗>ω

where ω =
[
ω>1 , ω>2 , yp, r

]>
, and θ∗ =

[
θ∗>1 , θ∗>2 , θ∗3, c∗0

]>
calculated from the

matching equation (6.3.12) and (6.3.13) meets the MRC objective defined in
Section 6.3.1. Because the parameters of the plant are unknown, the desired
controller parameter vector θ∗ cannot be calculated from the matching equa-
tion and therefore (6.4.2) cannot be implemented. A reasonable approach
to follow in the unknown plant parameter case is to replace (6.4.2) with the
control law

ω̇1 = Fω1 + gup, ω1(0) = 0

ω̇2 = Fω2 + gyp, ω2(0) = 0 (6.4.3)

up = θ>ω
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where θ(t) is the estimate of θ∗ at time t to be generated by an appropri-
ate adaptive law. We derive such an adaptive law by following a similar
procedure as in the case of the examples of Section 6.2. We first obtain a
composite state space representation of the plant and controller, i.e.,

Ẏc = A0Yc + Bcup, Yc(0) = Y0

yp = C>
c Yc

up = θ>ω

where Yc =
[
x>p , ω>1 , ω>2

]>
.

A0 =




Ap 0 0
0 F 0

gC>
p 0 F


 , Bc =




Bp

g
0




C>
c =

[
C>

p , 0, 0
]

and then add and subtract the desired input Bcθ
∗>ω to obtain

Ẏc = A0Yc + Bcθ
∗>ω + Bc

(
up − θ∗>ω

)

If we now absorb the term Bcθ
∗>ω into the homogeneous part of the above

equation, we end up with the representation

Ẏc = AcYc + Bcc
∗
0r + Bc

(
up − θ∗>ω

)
, Yc(0) = Y0

yp = C>
c Yc (6.4.4)

where Ac is as defined in (6.3.25). Equation (6.4.4) is the same as the closed-
loop equation (6.3.24) in the known parameter case except for the additional
input term Bc(up − θ∗>ω) that depends on the choice of the input up. It
serves as the parameterization of the plant equation in terms of the desired
controller parameter vector θ∗. Let e = Yc−Ym and e1 = yp− ym where Ym

is the state of the nonminimal representation of the reference model given
by (6.3.26), we obtain the error equation

ė = Ace + Bc(up − θ∗>ω), e(0) = e0

e1 = C>
c e (6.4.5)
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Because
C>

c (sI −Ac)−1Bcc
∗
0 = Wm(s)

we have
e1 = Wm(s)ρ∗

(
up − θ∗>ω

)
(6.4.6)

where ρ∗ = 1
c∗0

, which is in the form of the bilinear parametric model analyzed
in Chapter 4. We can now use (6.4.6) to generate a wide class of adaptive
laws for estimating θ∗ by using the results of Chapter 4. We should note
that (6.4.5) and (6.4.6) hold for any relative degree and will also be used in
later sections.

The estimate ê1(t) of e1(t) based on θ(t), the estimate of θ∗ at time t, is
given by

ê1 = Wm(s)ρ
(
up − θ>ω

)
(6.4.7)

where ρ is the estimate of ρ∗. Because the control input is given by

up = θ>(t)ω

it follows that ê1 = Wm(s)[0]; therefore, the estimation error ε1 defined in
Chapter 4 as ε1 = e1 − ê1 may be taken to be equal to e1, i.e., ε1 = e1.
Consequently, (6.4.7) is not needed and the estimate ρ of ρ∗ does not have
to be generated. Substituting for the control law in (6.4.5), we obtain the
error equation

ė = Ace + B̄cρ
∗θ̃>ω, e(0) = e0

e1 = C>
c e (6.4.8)

where
B̄c = Bcc

∗
0

or
e1 = Wm(s)ρ∗θ̃>ω

which relates the parameter error θ̃
4
= θ(t) − θ∗ with the tracking error e1.

Because Wm(s) = C>
c (sI − Ac)−1Bcc

∗
0 is SPR and Ac is stable, equation

(6.4.8) is in the appropriate form for applying the SPR-Lyapunov design
approach.
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We therefore proceed by proposing the Lyapunov-like function

V
(
θ̃, e

)
=

e>Pce

2
+

θ̃>Γ−1θ̃

2
|ρ∗| (6.4.9)

where Γ = Γ> > 0 and Pc = P>
c > 0 satisfies the algebraic equations

PcAc + A>c Pc = −qq> − νcLc

PcB̄c = Cc

where q is a vector, Lc = L>c > 0 and νc > 0 is a small constant, that are
implied by the MKY lemma. The time derivative V̇ of V along the solution
of (6.4.8) is given by

V̇ = −e>qq>e

2
− νc

2
e>Lce + e>PcB̄cρ

∗θ̃>ω + θ̃>Γ−1 ˙̃
θ|ρ∗|

Because e>PcB̄c = e1 and ρ∗ = |ρ∗|sgn(ρ∗), we can make V̇ ≤ 0 by choosing

˙̃
θ = θ̇ = −Γe1ω sgn(ρ∗) (6.4.10)

which leads to

V̇ = −e>qq>e

2
− νc

2
e>Lce (6.4.11)

Equations (6.4.9) and (6.4.11) imply that V and, therefore, e, θ̃ ∈ L∞.
Because e = Yc−Ym and Ym ∈ L∞, we have Yc ∈ L∞, which implies that

yp, ω1, ω2 ∈ L∞. Because up = θ>ω and θ, ω ∈ L∞ we also have up ∈ L∞.
Therefore all the signals in the closed-loop plant are bounded. It remains to
show that the tracking error e1 = yp − ym goes to zero as t →∞.

From (6.4.9) and (6.4.11) we establish that e and therefore e1 ∈ L2.
Furthermore, using θ, ω, e ∈ L∞ in (6.4.8) we have that ė, ė1 ∈ L∞. Hence,
e1, ė1 ∈ L∞ and e1 ∈ L2, which, by Lemma 3.2.5, imply that e1(t) → 0 as
t →∞.

We summarize the main equations of the MRAC scheme in Table 6.1.
The stability properties of the MRAC scheme of Table 6.1 are given by

the following theorem.

Theorem 6.4.1 The MRAC scheme summarized in Table 6.1 guarantees
that:
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Table 6.1 MRAC scheme: n∗ = 1

Plant yp = kp
Zp(s)
Rp(s)up, n∗ = 1

Reference
model

ym = Wm(s)r, Wm(s) = km
Zm(s)
Rm(s)

Control law

ω̇1 = Fω1 + gup, ω1(0) = 0
ω̇2 = Fω2 + gyp, ω2(0) = 0
up = θ>ω
ω = [ω>1 , ω>2 , yp, r]>, ω1 ∈ Rn−1, ω2 ∈ Rn−1

Adaptive law θ̇ = −Γe1ω sgn(ρ∗)
e1 = yp − ym, sgn(ρ∗) = sgn(kp/km)

Assumptions

Zp, Rp and Wm(s) satisfy assumptions P1 to P4,
and M1 and M2, respectively; Wm(s) is SPR; (sI −
F )−1g = α(s)

Λ(s) , α(s) = [sn−2, sn−3, . . . s, 1]>, where
Λ = Λ0Zm is Hurwitz, and Λ0(s) is of degree n−1−qm,
qm is the degree of Zm(s); Γ = Γ> > 0 is arbitrary

(i) All signals in the closed-loop plant are bounded and the tracking error
e1 converges to zero asymptotically with time for any reference input
r ∈ L∞.

(ii) If r is sufficiently rich of order 2n, ṙ ∈ L∞ and Zp(s), Rp(s) are rela-
tively coprime, then the parameter error |θ̃| = |θ− θ∗| and the tracking
error e1 converge to zero exponentially fast.

Proof (i) This part has already been completed above.
(ii) Equations (6.4.8) and (6.4.10) have the same form as (4.3.30) and (4.3.35)

with n2
s = 0 in Chapter 4 whose convergence properties are established by Corollary
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4.3.1. Therefore, by using the same steps as in the proof of Corollary 4.3.1 we can
establish that if ω, ω̇ ∈ L∞ and ω is PE then θ̃(t) → 0 exponentially fast. If ṙ ∈ L∞
then it follows from the results of part (i) that ω̇ ∈ L∞. For the proof to be
complete, it remains to show that ω is PE.

We express ω as

ω =




(sI − F )−1gG−1
p (s)yp

(sI − F )−1gyp

yp

r


 (6.4.12)

Because yp = ym + e1 = Wm(s)r + e1 we have

ω = ωm + ω̄ (6.4.13)

where
ωm = H(s)r, ω̄ = H0(s)e1

and

H(s) =




(sI − F )−1gG−1
p (s)Wm(s)

(sI − F )−1gWm(s)
Wm(s)

1


 , H0(s) =




(sI − F )−1gG−1
p (s)

(sI − F )−1g
1
0




The vector ω̄ is the output of a proper transfer matrix whose poles are stable and
whose input e1 ∈ L2 ∩L∞ and goes to zero as t →∞. Hence, from Corollary 3.3.1
we have ω̄ ∈ L2 ∩ L∞ and |ω̄(t)| → 0 as t →∞. It then follows from Lemma 4.8.3
that ω is PE if ωm is PE.

It remains to show that ωm is PE when r is sufficiently rich of order 2n.
Because r is sufficiently rich of order 2n, according to Theorem 5.2.1, we can

show that ωm is PE by proving that H(jω1), H(jω2), . . . ,H(jω2n) are linearly in-
dependent on C2n for any ω1, ω2, . . . , ω2n ∈ R with ωi 6= ωj for i 6= j.

From the definition of H(s), we can write

H(s) =
1

kpZp(s)Λ(s)Rm(s)




α(s)Rp(s)kmZm(s)
α(s)kpZp(s)kmZm(s)
Λ(s)kpZp(s)kmZm(s)
Λ(s)kpZp(s)Rm(s)



4
=

1
kpZp(s)Λ(s)Rm(s)

H1(s)

(6.4.14)
Because all the elements of H1(s) are polynomials of s with order less than or equal
to that of Λ(s)Zp(s)Rm(s), we can write

H1(s) = H̄




sl

sl−1

...
1


 (6.4.15)
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where l
4
= 2n − 1 + qm is the order of the polynomial Λ(s)Zp(s)Rm(s), qm is the

degree of Zm(s) and H̄ ∈ R2n×(l+1) is a constant matrix.
We now prove by contradiction that H̄ in (6.4.15) is of full rank, i.e., rank(H̄) =

2n. Suppose rank(H̄) < 2n, i.e., there exists a constant vector C ∈ R2n with C 6= 0
such that

C>H̄ = 0

or equivalently
C>H1(s) = 0 (6.4.16)

for all s ∈ C. Let C = [C>1 , C>2 , c3, c4]>, where C1, C2 ∈ Rn−1, c3, c4 ∈ R1, then
(6.4.16) can be written as

C>1 α(s)Rp(s)kmZm(s) + C>2 α(s)kpZp(s)kmZm(s)
+c3Λ(s)kpZp(s)kmZm(s) + c4Λ(s)Rm(s)kpZp(s) = 0 (6.4.17)

Because the leading coefficient of the polynomial on the left hand side is c4, for
(6.4.17) to hold, it is necessary that c4 = 0. Therefore,

[C>1 α(s)Rp(s) + C>2 α(s)kpZp(s) + c3Λ(s)kpZp(s)]kmZm(s) = 0

or equivalently

C>1 α(s)Rp(s) + C>2 α(s)kpZp(s) + c3Λ(s)kpZp(s) = 0 (6.4.18)

Equation (6.4.18) implies that

kp
Zp(s)
Rp(s)

= − C>1 α(s)
c3Λ(s) + C>2 α(s)

(6.4.19)

Noting that c3Λ(s)+C>2 α(s) is of order at most equal to n−1, (6.4.19) contradicts
our assumption that Zp(s), Rp(s) are coprime. Therefore H̄ must be of full rank.

Now consider the 2n × 2n matrix L(ω1, . . . , ω2n)
4
= [H(jω1), , . . . ,H(jω2n)].

Using (6.4.14) and (6.4.15), we can express L(ω1, ω2, . . . , ω2n) as

L(ω1, . . . , ω2n) = H̄




(jω1)l (jω2)l . . . (jω2n)l

(jω1)l−1 (jω2)l−1 . . . (jω2n)l−1

...
...

...
1 1 . . . 1




×




1
D(jω1)

0 . . . 0
0 1

D(jω2)
. . . 0

0
. . . 0

0 0 · · · 1
D(jω2n)




(6.4.20)



352 CHAPTER 6. MODEL REFERENCE ADAPTIVE CONTROL

where D(s) = kpZp(s)Λ(s)Rm(s). Note that the matrix in the middle of the right-
hand side of (6.4.20) is a submatrix of the Vandermonte matrix, which is always
nonsingular for ωi 6= ωk, i 6= k; i, k = 1, . . . , 2n. We, therefore, conclude from
(6.4.20) that L(ω1, . . . , ω2n) is of full rank which implies that H(jω1), . . . , H(jω2n)
are linearly independent on C2n and the proof is complete. 2

Example 6.4.1 Let us consider the second order plant

yp =
kp(s + b0)

(s2 + a1s + a0)
up

where kp > 0, b0 > 0 and kp, b0, a1, a0 are unknown constants. The desired perfor-
mance of the plant is specified by the reference model

ym =
1

s + 1
r

Using Table 6.1, the control law is designed as

ω̇1 = −2ω1 + up, ω1(0) = 0
ω̇2 = −2ω2 + yp, ω2(0) = 0
up = θ1ω1 + θ2ω2 + θ3yp + c0r

by choosing F = −2, g = 1 and Λ(s) = s + 2. The adaptive law is given by

θ̇ = −Γe1ω, θ(0) = θ0

where e1 = yp − ym, θ = [θ1, θ2, θ3, c0]
> and ω = [ω1, ω2, yp, r]

>. We can choose
Γ = diag{γi} for some γi > 0 and obtain the decoupled adaptive law

θ̇i = −γie1ωi, i = 1, . . . , 4

where θ4 = c0, ω3 = yp, ω4 = r; or we can choose Γ to be any positive definite
matrix.

For parameter convergence, we choose r to be sufficiently rich of order 4.
As an example, we select r = A1 sin ω1t + A2 sin ω2t for some nonzero constants
A1, A2, ω1, ω2 with ω1 6= ω2. We should emphasize that we may not always have
the luxury to choose r to be sufficiently rich. For example, if the control objective
requires r =constant in order for yp to follow a constant set point at steady state,
then the use of a sufficiently rich input r of order 4 will destroy the desired tracking
properties of the closed-loop plant.

The simulation results for the MRAC scheme for the plant with b0 = 3, a1 = 3,
a0 = −10, kp = 1 are shown in Figures 6.8 and 6.9. The initial value of the
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Figure 6.8 Response of the MRAC scheme for Example 6.4.1 with r(t) =
unit step function.

parameters are chosen as θ(0) = [3,−10, 2, 3]>. Figure 6.8(a, b) shows the response
of the tracking error e1 and estimated parameter error θ̃i for γi = 1 and r = unit
step . Figure 6.9 shows the simulation results for Γ = diag{2, 6, 6, 2} and r =
0.5 sin 0.7t+2 cos 5.9t. From Figure 6.9 (b), we note that the estimated parameters
converge to θ∗ = [1,−12, 0, 1]> due to the use of a sufficiently rich input. 5

Remark 6.4.1 The error equation (6.4.8) takes into account the initial con-
ditions of the plant states. Therefore the results of Theorem 6.4.1 hold
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Figure 6.9 Response of the MRAC scheme for Example 6.4.1 with r(t) =
0.5 sin 0.7t + 2 cos 5.9t.

for any finite initial condition for the states of the plant and filters.
In the analysis, we implicitly assumed that the nonlinear differential
equations (6.4.8) and (6.4.10) with initial conditions e(0) = e0, θ̃(0) =
θ̃0 possess a unique solution. For our analysis to be valid, the solution
θ̃(t), e(t) has to exist for all t ∈ [0,∞). The existence and uniqueness
of solutions of adaptive control systems is addressed in [191].

Remark 6.4.2 The proof of Theorem 6.4.1 part (i) may be performed by
using a minimal state-space representation for the equation

e1 = Wm(s)ρ∗θ̃>ω (6.4.21)
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rather than the nonminimal state representation (6.4.8) to develop the
adaptive law θ̇ = −Γe1ω. In this case we establish that e1, θ ∈ L∞ and
e1 ∈ L2 by using the LKY ( instead of the MKY Lemma ) and the
properties of a Lyapunov-like function. The boundedness of e1 implies
that yp ∈ L∞.

The boundedness of ω and the rest of the signals requires the following
additional arguments: We write ω as

ω =




(sI − F )−1gG−1
p (s)yp

(sI − F )−1gyp

yp

r




Because yp ∈ L∞ and (sI − F )−1gG−1
p (s), (sI − F )−1g are proper

(note that the relative degree of Gp(s) is 1) with stable poles, we have
ω ∈ L∞. From up = θ>ω and θ, ω ∈ L∞, it follows that up ∈ L∞.
The proof of e1(t) → 0 as t →∞ follows by applying Lemma 3.2.5 and
using the properties e1 ∈ L2, ė1 = sWm(s)ρ∗θ̃>ω ∈ L∞.

Remark 6.4.3 The effect of initial conditions may be accounted for by
considering

e1 = Wm(s)ρ∗θ̃>ω + C>
c (sI −Ac)−1e(0)

instead of (6.4.21). Because the term that depends on e(0) is exponen-
tially decaying to zero, it does not affect the stability results. This can
be shown by modifying the Lyapunov-like function to accommodate
the exponentially decaying to zero term (see Problem 6.19).

6.4.2 Relative Degree n∗ = 2

Let us consider again the parameterization of the plant in terms of θ∗, de-
veloped in the previous section, i.e.,

ė = Ace + Bc

(
up − θ∗>ω

)

e1 = C>
c e (6.4.22)
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or
e1 = Wm(s)ρ∗

(
up − θ∗>ω

)
(6.4.23)

In the relative degree n∗ = 1 case, we are able to design Wm(s) to be SPR
which together with the control law up = θ>ω enables us to obtain an error
equation that is suitable for applying the SPR-Lyapunov design method.

With n∗ = 2, Wm(s) can no longer be designed to be SPR and therefore
the procedure of Section 6.4.1 fails to apply here.

Instead, let us follow the techniques of Chapter 4 and use the identity
(s + p0)(s + p0)−1 = 1 for some p0 > 0 to rewrite (6.4.22), (6.4.23) as

ė = Ace + B̄c (s + p0) ρ∗
(
uf − θ∗>φ

)
, e(0) = e0

e1 = C>
c e (6.4.24)

i.e.,
e1 = Wm(s) (s + p0) ρ∗

(
uf − θ∗>φ

)
(6.4.25)

where B̄c = Bcc
∗
0,

uf =
1

s + p0
up, φ =

1
s + p0

ω

and Wm(s), p0 > 0 are chosen so that Wm(s) (s + p0) is SPR.
We use ρ, θ, the estimate of ρ∗, θ∗, respectively, to generate the estimate

ê1 of e1 as
ê1 = Wm(s)(s + p0)ρ(uf − θ>φ)

If we follow the same procedure as in Section 6.4.2, then the next step is
to choose up so that ê1 = Wm(s)(s + p0)[0], ε1 = e1 and (6.4.24) is in the
form of the error equation (6.4.8) where the tracking error e1 is related to
the parameter error θ̃ through an SPR transfer function. The control law
up = θ>ω (used in the case of n∗ = 1 ) motivated from the known parameter
case cannot transform (6.4.23) into the error equation we are looking for.
Instead if we choose up so that

uf = θ>φ (6.4.26)

we have ê1 = Wm(s)(s + p0)[0] and by substituting (6.4.26) in (6.4.24), we
obtain the error equation

ė = Ace + B̄c (s + p0) ρ∗θ̃>φ, e(0) = e0

e1 = C>
c e (6.4.27)
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or in the transfer function form

e1 = Wm(s) (s + p0) ρ∗θ̃>φ

which can be transformed into the desired form by using the transformation

ē = e− B̄cρ
∗θ̃>φ (6.4.28)

i.e.,

˙̄e = Acē + B1ρ
∗θ̃>φ, ē(0) = ē0

e1 = C>
c ē (6.4.29)

where B1 = AcB̄c + B̄cp0 and C>
c B̄c = C>

p Bpc
∗
0 = 0 due to n∗ = 2. With

(6.4.29), we can proceed as in the case of n∗ = 1 and develop an adaptive
law for θ. Let us first examine whether we can choose up to satisfy equation
(6.4.26). We have

up = (s + p0) uf = (s + p0) θ>φ

which implies that
up = θ>ω + θ̇>φ (6.4.30)

Because θ̇ is made available by the adaptive law, the control law (6.4.30)
can be implemented without the use of differentiators. Let us now go back
to the error equation (6.4.29). Because

C>
c (sI −Ac)

−1 B1 = C>
c (sI −Ac)

−1 B̄c (s + p0) = Wm(s) (s + p0)

is SPR, (6.4.29) is of the same form as (6.4.8) and the adaptive law for
generating θ is designed by considering

V
(
θ̃, ē

)
=

ē>Pcē

2
+

θ̃>Γ−1θ̃

2
|ρ∗|

where Pc = P>
c > 0 satisfies the MKY Lemma. As in the case of n∗ = 1, for

˙̃
θ = θ̇ = −Γe1φ sgn(ρ∗) (6.4.31)

the time derivative V̇ of V along the solution of (6.4.29), (6.4.31) is given by

V̇ = − ē>qq>ē

2
− νc

2
ē>Lcē ≤ 0
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which implies that ē, θ̃, e1 ∈ L∞ and ē, e1 ∈ L2. Because e1 = yp − ym, we
also have yp ∈ L∞. The signal vector φ is expressed as

φ =
1

s + p0




(sI − F )−1gG−1
p (s)yp

(sI − F )−1gyp

yp

r


 (6.4.32)

by using up = G−1
p (s)yp. We can observe that each element of φ is the

output of a proper stable transfer function whose input is yp or r. Because
yp, r ∈ L∞ we have φ ∈ L∞. Now ē, θ, φ ∈ L∞ imply (from (6.4.28) ) that
e and, therefore, Yc ∈ L∞. Because ω, φ, e1 ∈ L∞ we have θ̇ ∈ L∞ and
up ∈ L∞ and therefore all signals in the closed -loop plant are bounded.
From (6.4.29) we also have that ˙̄e ∈ L∞, i.e., ė1 ∈ L∞, which, together with
e1 ∈ L∞ ∩ L2, implies that e1(t) → 0 as t →∞.

We present the main equations of the overall MRAC scheme in Table 6.2
and summarize its stability properties by the following theorem.

Theorem 6.4.2 The MRAC scheme of Table 6.2 guarantees that

(i) All signals in the closed-loop plant are bounded and the tracking error
e1 converges to zero asymptotically.

(ii) If Rp, Zp are coprime and r is sufficiently rich of order 2n, then the
parameter error |θ̃| = |θ − θ∗| and the tracking error e1 converge to
zero exponentially fast.

Proof (i) This part has been completed above.
(ii) Consider the error equations (6.4.29), (6.4.31) which have the same form as

equations (4.3.10), (4.3.35) with n2
s = 0 in Chapter 4. Using Corollary 4.3.1 we have

that if φ, φ̇ ∈ L∞ and φ is PE, then the adaptive law (6.4.31) guarantees that |θ̃|
converges to zero exponentially fast. We have already established that yp, φ ∈ L∞.
It follows from (6.4.32) and the fact that ė1 and therefore ẏp ∈ L∞ that φ̇ ∈ L∞.
Hence it remains to show that φ is PE.

As in the case of n∗ = 1 we write φ as

φ = φm + φ̄
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Table 6.2 MRAC scheme: n∗ = 2

Plant yp = kp
Zp(s)
Rp(s)up, n∗ = 2

Reference
model

ym = Wm(s)r, Wm(s) = km
Zm(s)
Rm(s)

Control law

ω̇1 = Fω1 + gup, ω1(0) = 0
ω̇2 = Fω2 + gyp, ω2(0) = 0
φ̇ = −p0φ + ω, φ(0) = 0
up = θ>ω + θ̇>φ = θ>ω − φ>Γφe1 sgn(kp/km)
ω = [ω>1 , ω>2 , yp, r]>, ω1 ∈ Rn−1, ω2 ∈ Rn−1

Adaptive law θ̇ = −Γe1φsgn(kp/km), e1 = yp − ym

Assumptions

Zp(s) is Hurwitz; Wm(s)(s+p0) is strictly proper and
SPR; F, g,Γ are as defined in Table 6.1; plant and
reference model satisfy assumptions P1 to P4, and
M1 and M2, respectively

where

φm =
1

s + p0




(sI − F )−1gG−1
p (s)Wm(s)

(sI − F )−1gWm(s)
Wm(s)

1


 r

and

φ̄ =
1

s + p0




(sI − F )−1gG−1
p (s)

(sI − F )−1g
1
0


 e1

Because e1 ∈ L2 ∩ L∞ and e1 → 0 as t → ∞ it follows (see Corollary 3.3.1) that
φ̄ ∈ L2 ∩ L∞ and |φ̄| → 0 as t →∞.
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Proceeding as in the proof of Theorem 6.4.1, we establish that φm is PE and use
Lemma 4.8.3 to show that φ is also PE which implies, using the results of Chapter 4,
that |θ̃| → 0 exponentially fast. Using (6.4.29) and the exponential convergence of
|θ̃| to zero we obtain that e1 converges to zero exponentially fast. 2

Example 6.4.2 Let us consider the second order plant

yp =
kp

(s2 + a1s + a0)
up

where kp > 0, and a1, a0 are constants. The reference model is chosen as

ym =
5

(s + 5)2
r

Using Table 6.2 the control law is designed as

ω̇1 = −2ω1 + up

ω̇2 = −2ω2 + yp

φ̇ = −φ + ω

up = θ>ω − φ>Γφe1

where ω = [ω1, ω2, yp, r]
>

, e1 = yp − ym, p0 = 1, Λ(s) = s + 2 and 5(s+1)
(s+5)2 is SPR.

The adaptive law is given by
θ̇ = −Γe1φ

where Γ = Γ> > 0 is any positive definite matrix and θ = [θ1, θ2, θ3, c0]>.
For parameter convergence, the input up is chosen as

up = A1 sin ω1t + A2 sin ω2t

for some A1, A2 6= 0 and ω1 6= ω2.
Figures 6.10 and 6.11 show some simulation results of the MRAC scheme for

the plant with a1 = 3, a0 = −10, kp = 1. We start with an initial parameter vector
θ(0) = [3, 18,−8, 3]> that leads to an initially destabilizing controller. The tracking
error and estimated parameter error response is shown in Figure 6.10 for Γ =
diag{2, 4, 0.8, 1}, and r = unit step. Due to the initial destabilizing controller, the
transient response is poor. The adaptive mechanism alters the unstable behavior of
the initial controller and eventually drives the tracking error to zero. In Figure 6.11
we show the response of the same system when r = 3 sin 4.9t + 0.5 cos 0.7t is a
sufficiently rich input of order 4. Because of the use of a sufficiently rich signal, θ(t)
converges to θ∗ = [1, 12,−10, 1]>. 5
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Figure 6.10 Response of the MRAC scheme for Example 6.4.2 with r(t) =
unit step function.

Remark 6.4.4 The control law (6.4.30) is a modification of the certainty
equivalence control law up = θ>ω and is motivated from stability con-
siderations. The additional term θ̇>φ = −φ>Γφe1 sgn(ρ∗) is a nonlin-
ear one that disappears asymptotically with time, i.e., up = θ>ω+ θ̇>φ

converges to the certainty equivalence control law as t →∞. The num-
ber and complexity of the additional terms in the certainty equivalence
control law increase with the relative degree n∗ as we demonstrate in
the next section.
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Figure 6.11 Response of the MRAC scheme for Example 6.4.2 with
r(t) = 3 sin 4.9t + 0.5 sin 0.7t.

Remark 6.4.5 The proof of Theorem 6.4.2 may be accomplished by using
a minimal state space realization for the error equation

e1 = Wm(s)(s + p0)ρ∗θ̃>φ

The details of such an approach are left as an exercise for the reader.

6.4.3 Relative Degree n∗ = 3

As in the case of n∗ = 2, the transfer function Wm(s) of the reference
model cannot be chosen to be SPR because according to assumption (M2),
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Wm(s) should have the same relative degree as the plant transfer function.
Therefore, the choice of up = θ>ω in the error equation

e1 = Wm(s)ρ∗(up − θ∗>ω) (6.4.33)

will not lead to the desired error equation where the tracking error is related
to the parameter error through an SPR transfer function. As in the case
of n∗ = 2, let us rewrite (6.4.33) in a form that involves an SPR transfer
function by using the techniques of Chapter 4, i.e., we express (6.4.33) as

e1 = Wm(s)(s + p0)(s + p1)ρ∗
(
uf − θ∗>φ

)
(6.4.34)

where
uf =

1
(s + p0)(s + p1)

up, φ =
1

(s + p0)(s + p1)
ω

and Wm(s), p0, p1 are chosen so that W̄m(s)
4
= Wm(s)(s + p0)(s + p1) is

SPR, which is now possible because the relative degree of W̄m(s) is 1. For
simplicity and without loss of generality let us choose

Wm(s) =
1

(s + p0)(s + p1)(s + q0)

for some q0 > 0 so that

e1 =
1

s + q0
ρ∗(uf − θ∗>φ) (6.4.35)

The estimate of ê1 of e1 based on the estimates ρ, θ is given by

ê1 =
1

s + q0
ρ(uf − θ>φ) (6.4.36)

If we proceed as in the case of n∗ = 2 we would attempt to choose

uf = θ>φ (6.4.37)

to make ê1 = 1
s+q0

[0] and obtain the error equation

e1 =
1

s + q0
ρ∗θ̃>φ (6.4.38)
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The adaptive law
θ̇ = −Γe1φsgn(ρ∗) (6.4.39)

will then follow by using the standard procedure. Equation (6.4.37), how-
ever, implies the use of the control input

up = (s + p0)(s + p1)uf = (s + p0)(s + p1)θ>φ (6.4.40)

which involves θ̈, that is not available for measurement. Consequently the
control law (6.4.40) cannot be implemented and the choice of uf = θ>φ is
not feasible.

The difficulty of not being able to extend the results for n∗ = 1, 2 to n∗ ≥
3 became the major obstacle in advancing research in adaptive control during
the 1970s. By the end of the 1970s and early 1980s, however, this difficulty
was circumvented and several successful MRAC schemes were proposed using
different approaches. Efforts to extend the procedure of n∗ = 1, 2 to n∗ ≥ 3
continued during the early 1990s and led to new designs for MRAC . One such
design proposed by Morse [164] employs the same control law as in (6.4.40)
but the adaptive law for θ is modified in such a way that θ̈ becomes an
available signal. This modification, achieved at the expense of a higher-order
adaptive law, led to a MRAC scheme that guarantees signal boundedness
and convergence of the tracking error to zero.

Another successful MRAC design that has it roots in the paper of Feuer
and Morse [54] is proposed in [162] for a third order plant with known high
frequency gain. In this design, the adaptive law is kept unchanged but the
control law is chosen as

up = θ>ω + ua

where ua is designed based on stability considerations. Below we present
and analyze a very similar design as in [162].

We start by rewriting (6.4.35), (6.4.36) as

e1 =
1

s + q0
ρ∗(θ̃>φ + r0), ê1 =

1
s + q0

ρr0 (6.4.41)

where r0 = uf − θ>φ and θ̃ = θ − θ∗.
Because r0 cannot be forced to be equal to zero by setting uf = θ>φ, we

will focus on choosing up so that r0 goes to zero as t → ∞. In this case,
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the estimation error ε1 = e1 − ê1 is not equal to e1 because ê1 6= 0 owing to
ρr0 6= 0. However, it satisfies the error equation

ε1 = e1 − ê1 =
1

s + q0
(ρ∗θ̃>φ− ρ̃r0) (6.4.42)

that leads to the adaptive law

θ̇ = −Γε1φsgn(ρ∗), ρ̇ = γε1r0 (6.4.43)

where Γ = Γ> and γ > 0 by considering the Lyapunov-like function

V =
ε21
2

+
θ̃>Γ−1θ̃

2
|ρ∗|+ ρ̃2

2γ

We now need to choose ua in up = θ>ω + ua to establish stability for the
system (6.4.41) to (6.4.43). Let us now express r0 as

r0 = uf − θ>φ =
1

s + p0

[
u1 − θ̇>φ− θ>φ1

]

where
u1 =

1
s + p1

up, φ1 = (s + p0)φ =
1

s + p1
ω

i.e.,
ṙ0 = −p0r0 + u1 − θ̇>φ− θ>φ1 (6.4.44)

Substituting for θ̇, we obtain

ṙ0 = −p0r0 + u1 + φ>Γφε1 sgn(ρ∗)− θ>φ1 (6.4.45)

If we now choose u1 = −φ>Γφε1sgn(ρ∗) + θ>φ1 then ṙ0 = −p0r0 and r0

converges to zero exponentially fast. This choice of u1, however, leads to a
control input up that is not implementable since up = (s+ p1)u1 will involve
the first derivative of u1 and, therefore, the derivative of e1 that is not
available for measurement. Therefore, the term φ>Γφε1 sgn(ρ∗) in (6.4.45)
cannot be eliminated by u1. Its effect, however, may be counteracted by
introducing what is called a “nonlinear damping” term in u1 [99]. That is,
we choose

u1 = θ>φ1 − α0

(
φ>Γφ

)2
r0 (6.4.46)



366 CHAPTER 6. MODEL REFERENCE ADAPTIVE CONTROL

where α0 > 0 is a design constant, and obtain

ṙ0 = −
[
p0 + α0

(
φ>Γφ

)2
]
r0 + φ>Γφε1sgn(ρ∗)

The purpose of the nonlinear term (φ>Γφ)2 is to “damp out” the possible
destabilizing effect of the nonlinear term φ>Γφε1 as we show in the analysis
to follow. Using (6.4.46), the control input up = (s + p1)u1 is given by

up = θ>ω + θ̇>φ1 − (s + p1)α0(φ>Γφ)2r0 (6.4.47)

If we now perform the differentiation in (6.4.47) and substitute for the
derivative of r0 we obtain

up = θ>ω + θ̇>φ1 − 4α0φ
>Γφ

(
φ>Γφ̇

)
r0 − α0 (p1 − p0)

(
φ>Γφ

)2
r0

+α2
0

(
φ>Γφ

)4
r0 − α0

(
φ>Γφ

)3
ε1sgn(ρ∗) (6.4.48)

where φ̇ is generated from

φ̇ =
s

(s + p0)(s + p1)
ω

which demonstrates that up can be implemented without the use of differ-
entiators.

We summarize the main equations of the MRAC scheme in Table 6.3.
The stability properties of the proposed MRAC scheme listed in Table

6.3 are summarized as follows.

Theorem 6.4.3 The MRAC scheme of Table 6.3 guarantees that
(i) All signals in the closed-loop plant are bounded and r0(t), e1(t) → 0 as

t →∞.
(ii) If kp is known, r is sufficiently rich of order 2n and Zp, Rp are coprime,

then the parameter error |θ̃| = |θ − θ∗| and tracking error e1 converge
to zero exponentially fast.

(iii) If r is sufficiently rich of order 2n and Zp, Rp are coprime, then |θ̃| and
e1 converge to zero asymptotically (not necessarily exponentially fast).

(iv) The estimate ρ converges to a constant ρ̄ asymptotically independent of
the richness of r.
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Table 6.3 MRAC scheme: n∗ = 3

Plant yp = kp
Zp(s)
Rp(s)up, n∗ = 3

Reference
model

ym = Wm(s)r

Control law

ω̇1 = Fω1 + gup, ω1(0) = 0
ω̇2 = Fω2 + gyp, ω2(0) = 0
ṙ0 = −(p0 + α0(φ>Γφ)2)r0 + φ>Γφε1sgn(ρ∗)
up = θ>ω + ua

ua = θ̇>φ1−α0(p1−p0)(φ>Γφ)2r0−4α0φ
>Γφ(φ>Γφ̇)r0

+α2
0(φ

>Γφ)4r0 − α0(φ>Γφ)3ε1sgn(ρ∗)

Adaptive law

θ̇ = −Γε1φsgn(ρ∗), ρ̇ = γε1r0

ε1 = e1 − ê1, ê1 = 1
s+q0

ρr0

φ = 1
(s+p0)(s+p1)ω, ω =

[
ω>1 , ω>2 , yp, r

]>

φ1 = 1
s+p1

ω, e1 = yp − ym

Design
variables

Γ = Γ> > 0, γ > 0, α0 > 0 are arbitrary design con-
stants; Wm(s)(s + p0)(s + p1) is strictly proper and
SPR; F, g are as in the case of n∗ = 1; Zp(s), Rp(s)
and Wm(s) satisfy assumptions P1 to P4, M1 and M2,
respectively; sgn(ρ∗) = sgn(kp/km)

Proof (i) The equations that describe the stability properties of the closed-loop
plant are

ε̇1 = −q0ε1 + ρ∗θ̃>φ− ρ̃r0

ṙ0 = −(p0 + α0(φ>Γφ)2)r0 + φ>Γφε1 sgn(ρ∗) (6.4.49)
˙̃
θ = −Γε1φ sgn(ρ∗), ˙̃ρ = γε1r0
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We propose the Lyapunov-like function

V =
ε21
2

+ |ρ∗|θ̃>Γ−1

2
θ̃ +

ρ̃2

2γ
+ γ0

r2
0

2

where γ0 > 0 is a constant to be selected. The time derivative of V along the
trajectories of (6.4.49) is given by

V̇ = −q0ε
2
1 − γ0p0r

2
0 − γ0α0r

2
0(φ

>Γφ)2 + γ0ε1r0φ
>Γφ sgn(ρ∗)

≤ −q0ε
2
1 − γ0p0r

2
0 − γ0α0r

2
0(φ

>Γφ)2 + γ0|ε1| |r0|φ>Γφ

By completing the squares we obtain

V̇ ≤ −q0
ε21
2
− q0

2

[
|ε1| − γ0

|r0|φ>Γφ

q0

]2

+ γ2
0

r2
0(φ

>Γφ)2

2q0
− γ0p0r

2
0 − γ0α0r

2
0(φ

>Γφ)2

≤ −q0
ε21
2
− γ0p0r

2
0 −

[
α0 − γ0

2q0

]
γ0r

2
0(φ

>Γφ)2

Because γ0 > 0 is arbitrary, used for analysis only, for any given α0 and q0 > 0, we
can choose it as γ0 = 2α0q0 leading to

V̇ ≤ −q0
ε21
2
− γ0p0r

2
0 ≤ 0

Hence, ε1, r0, ρ, θ ∈ L∞ and ε1, r0 ∈ L2. Because ρ, r0 ∈ L∞, it follows from
(6.4.41) that ê1 ∈ L∞ which implies that e1 = ε1 + ê1 ∈ L∞. Hence, yp ∈ L∞,
which, together with

φ =
1

(s + p0)(s + p1)




(sI − F )−1gG−1
p (s)yp

(sI − F )−1gyp

yp

r


 (6.4.50)

implies that φ ∈ L∞. Using ε1, φ ∈ L∞ and ε1 ∈ L2 in (6.4.49) we have θ̇, ρ̇ ∈
L∞

⋂L2. From the error equation (6.4.49) it follows that ε̇1 and, therefore, ẏp ∈ L∞
which imply that φ̇ and φ1 ∈ L∞. The second derivative ë1 can be shown to be
bounded by using θ̇, φ̇, ṙ0 ∈ L∞ in (6.4.41). Because ë1 = ÿp − s2Wm(s)r and
s2Wm(s) is proper, it follows that ÿp ∈ L∞, which, together with (6.4.50), implies
that φ̈ ∈ L∞. Because ω = (s + p0)(s + p1)φ, we have that ω ∈ L∞ and therefore
up and all signals are bounded. Because r0 ∈ L∞

⋂L2 and ρ ∈ L∞, it follows
from (6.4.41) that ê1 ∈ L∞

⋂L2, which, together with ε1 ∈ L∞
⋂L2, implies that

e1 ∈ L∞
⋂L2. Because ė1 ∈ L∞ and e1 ∈ L2, it follows that e1(t) → 0 as t → ∞

and the proof of (i) is complete. From r0 ∈ L2, ṙ0 ∈ L∞ we also have r0(t) → 0 as
t →∞.
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(ii) First, we show that φ is PE if r is sufficiently rich of order 2n. Using the
expression (6.4.50) for φ and substituting yp = Wmr + e1, we can write

φ = φm + φ̄

where

φm =
1

(s + p0)(s + p1)




(sI − F )−1gG−1
p Wm

(sI − F )−1gWm

Wm

1


 r

and

φ̄ =
1

(s + p0)(s + p1)




(sI − F )−1gG−1
p

(sI − F )−1g
1
0


 e1

Using the same arguments as in the proof of Theorem 6.4.2, we can establish that
φm is PE provided r is sufficiently rich of order 2n and Zp, Rp are coprime. Then
the PE property of φ follows immediately from Lemma 4.8.3 and e1 ∈ L2.

If kp is known, then ρ̃ = 0 and (6.4.49) is reduced to

ε̇1 = −q0ε1 + ρ∗θ̃>φ

˙̃
θ = −Γε1φsgn(ρ∗) (6.4.51)

We can use the same steps as in the proof of Corollary 4.3.1 in Chapter 4 to show
that the equilibrium ε1e = 0, θ̃e = 0 of (6.4.51) is e.s. provided φ is PE and
φ, φ̇ ∈ L∞. Since we have established in (i) that φ̇, φ ∈ L∞, (ii) follows.

(iii) When kp is unknown, we have

ε̇1 = −q0ε1 + ρ∗θ̃>φ− ρ̃r0

˙̃
θ = −Γε1φsgn(ρ∗) (6.4.52)

We consider (6.4.52) as a linear-time-varying system with ε1, θ̃ as states and ρ̃r0 as
the external input. As shown in (ii), when ρ̃r0 = 0 and φ is PE, the homogeneous
part of (6.4.52) is e.s. We have shown in (i) that ρ̃ ∈ L∞, r0 ∈ L∞

⋂L2 and r0(t) →
0 as t →∞. Therefore, it follows (by extending the results of Corollary 3.3.1) that
ε1, θ̃ ∈ L∞

⋂L2 that ε1(t), θ̃(t) → 0 as t →∞.
(iv) Because ε1, r0 ∈ L2 we have

∫ t

0

| ˙̃ρ|dτ ≤ γ

∫ t

0

|ε1||r0|dτ

≤ γ(
∫ ∞

0

ε21dτ)
1
2 (

∫ ∞

0

r2
0dτ)

1
2 < ∞
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which for t →∞ implies that ρ̇ = ˙̃ρ ∈ L1 and therefore ρ, ρ̃ converge to a constant
as t →∞. 2

Example 6.4.3 Let us consider the third order plant

yp =
kp

s3 + a2s2 + a1s + a0
up

where kp, a0, a1, a2 are unknown constants, and the sign of kp is assumed to be
known. The control objective is to choose up to stabilize the plant and force the
output yp to track the output ym of the reference model given by

ym =
1

(s + 2)3
r

Because n∗ = 3, the MRAC scheme in Table 6.3 is considered. We choose p1 = p0 =
2 so that Wm(s)(s+p1)(s+p0) = 1

s+2 is SPR. The signals ω, φ, φ1 are generated as

ω̇1 =
[ −10 −25

1 0

]
ω1 +

[
1
0

]
up, ω1(0) =

[
0
0

]

ω̇2 =
[ −10 −25

1 0

]
ω2 +

[
1
0

]
yp, ω2(0) =

[
0
0

]

ω = [ω>1 , ω>2 , yp, r]>

φ1 =
1

s + 2
ω, φ =

1
s + 2

φ1

by choosing Λ(s) = (s+5)2. Then, according to Table 6.3, the adaptive control law
that achieves the control objective is given by

up =θ>ω−ε1sgn(kp)φ>Γφ1−4α0φ
>Γφ(φ>Γφ̇)r0+α2

0(φ
>Γφ)4r0−α0(φ>Γφ)3ε1sgn(kp)

θ̇ = −Γε1φsgn(kp), ρ̇ = γε1r0

ε1 = e1 − ê1, e1 = yp − ym, ê1 =
1

s + 2
ρr0

and r0 is generated by the equation

ṙ0 = −(2 + α0(φ>Γφ)2)r0 + φ>Γφε1sgn(kp)

The simulation results of the MRAC scheme for a unit step reference input are
shown in Figure 6.12. The plant used for simulations is an unstable one with transfer
function Gp(s) = 1

s3+6s2+3s−10 . The initial conditions for the controller parameters
are: θ0 = [1.2,−9, 31, 160,−50, 9]>, and ρ(0) = 0.2. The design parameters used
for simulations are: Γ = 50I, γ = 50, α0 = 0.01. 5
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Figure 6.12 Response of the MRAC scheme for Example 6.4.3 with r(t)=
unit step function.

Remark 6.4.6 The effect of initial conditions can be taken into account by
using

e1 = Wm(s)ρ∗(up − θ∗>ω) + C>
c (sI −Ac)−1e(0)

instead of (6.4.33). The proof can be easily modified to take care of
the exponentially decaying to zero term that is due to e(0) 6= 0 (see
Problem 6.19).

Similarly, the results presented here are valid only if the existence
and uniqueness of solutions of (6.4.49) can be established. For further
discussion and details on the existence and uniqueness of solutions of
the class of differential equations that arise in adaptive systems, the
reader is referred to [191].
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Remark 6.4.7 The procedure for n∗ = 3 may be extended to the case of
n∗ > 3 by following similar steps. The complexity of the control input
up, however, increases considerably with n∗ to the point that it defeats
any simplicity we may gain from analysis by using a single Lyapunov-
like function to establish stability. In addition to complexity the highly
nonlinear terms in the control law may lead to a “high bandwidth”
control input that may have adverse effects on robustness with respect
to modeling errors. We will address some of these robustness issues in
Chapter 8. On the other hand, the idea of unnormalized adaptive laws
together with the nonlinear modification of the certainty equivalence
control laws were found to be helpful in solving the adaptive control
problem for a class of nonlinear plants [98, 99, 105].

6.5 Direct MRAC with Normalized Adaptive
Laws

In this section we present and analyze a class of MRAC schemes that domi-
nated the literature of adaptive control due to the simplicity of their design
as well as their robustness properties in the presence of modeling errors.
Their design is based on the certainty equivalence approach that combines a
control law, motivated from the known parameter case, with an adaptive law
generated using the techniques of Chapter 4. The adaptive law is driven by
the normalized estimation error and is based on an appropriate parameteri-
zation of the plant that involves the unknown desired controller parameters.
While the design of normalized MRAC schemes follows directly from the
results of Section 6.3 and Chapter 4, their analysis is more complicated than
that of the unnormalized MRAC schemes presented in Section 6.4 for the
case of n∗ = 1, 2. However, their analysis, once understood, carries over to
all relative degrees of the plant without additional complications.

6.5.1 Example: Adaptive Regulation

Let us consider the scalar plant

ẋ = ax + u, x(0) = x0 (6.5.1)
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where a is an unknown constant and −am is the desired closed-loop pole for
some am > 0.

The desired control law

u = −k∗x, k∗ = a + am

that could be used to meet the control objective when a is known, is replaced
with

u = −k(t)x (6.5.2)

where k(t) is to be updated by an appropriate adaptive law. In Section
6.2.1 we updated k(t) using an unnormalized adaptive law driven by the
estimation error, which was shown to be equal to the regulation error x.
In this section, we use normalized adaptive laws to update k(t). These are
adaptive laws driven by the normalized estimation error which is not directly
related to the regulation error x. As a result, the stability analysis of the
closed-loop adaptive system is more complicated.

As shown in Section 6.2.1, by adding and subtracting the term −k∗x in
the plant equation (6.5.1) and using k∗ = a + am to eliminate the unknown
a, we can obtain the parametric plant model

ẋ = −amx + k∗x + u

whose transfer function form is

x =
1

s + am
(k∗x + u) (6.5.3)

If we now put (6.5.3) into the form of the general parametric model
z = W (s)θ∗>ψ considered in Chapter 4, we can simply pick any adaptive
law for estimating k∗ on-line from Tables 4.1 to 4.3 of Chapter 4. Therefore,
let us rewrite (6.5.3) as

z =
1

s + am
k∗x (6.5.4)

where z = x− 1
s+am

u is available from measurement.
Using Table 4.1 of Chapter 4, the SPR-Lyapunov design approach gives

the adaptive law

k̇ = γεx
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ε = z − ẑ − 1
s + am

εn2
s (6.5.5)

ẑ =
1

s + am
kx, n2

s = x2

where γ > 0 is the adaptive gain and L(s) in Table 4.1 is taken as L(s) = 1.
Rewriting (6.5.4) as z = k∗φ, φ = 1

s+am
x, we use Table 4.2(A) to obtain

the gradient algorithm

k̇ = γεφ

ε =
z − ẑ

m2
, m2 = 1 + φ2 (6.5.6)

φ =
1

s + am
x, ẑ = kφ, γ > 0

and from Table 4.3(A), the least-squares algorithm

k̇ = pεφ, ṗ = −p2φ2

m2
, p(0) > 0

ε =
z − ẑ

m2
, ẑ = kφ, m2 = 1 + φ2, φ =

1
s + am

x (6.5.7)

The control law (6.5.2) with any one of the three adaptive laws (6.5.5)
to (6.5.7) forms an adaptive control scheme.

We analyze the stability properties of each scheme when applied to the
plant (6.5.1) as follows: We start by writing the closed-loop plant equation
as

x =
1

s + am
(−k̃x) (6.5.8)

by substituting u = −kx in (6.5.3). As shown in Chapter 4 all three adaptive
laws guarantee that k̃ ∈ L∞ independent of the boundedness of x, u, which
implies from (6.5.8) that x cannot grow or decay faster than an exponential.
However, the boundedness of k̃ by itself does not imply that x ∈ L∞, let
alone x(t) → 0 as t → ∞. To analyze (6.5.8), we need to exploit the
properties of k̃x by using the properties of the specific adaptive law that
generates k(t).

Let us start with the adaptive law (6.5.5). As shown in Chapter 4 using
the Lyapunov-like function

V =
ε2

2
+

k̃2

2γ
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and its time derivative

V̇ = −amε2 − ε2n2
s ≤ 0

the adaptive law (6.5.5) guarantees that ε, k̃ ∈ L∞ and ε, εns,
˙̃
k ∈ L2 in-

dependent of the boundedness of x. The normalized estimation error ε is
related to k̃x through the equation

ε = z − ẑ − 1
s + am

εn2
s =

1
s + am

(−k̃x− εn2
s) (6.5.9)

where n2
s = x2. Using (6.5.9) and εn2

s = εnsx in (6.5.8), we obtain

x = ε +
1

s + am
εn2

s = ε +
1

s + am
εnsx (6.5.10)

Because ε ∈ L∞
⋂L2 and εns ∈ L2 the boundedness of x is established

by taking absolute values on each side of (6.5.10) and applying the B-G
lemma. We leave this approach as an exercise for the reader.

A more elaborate but yet more systematic method that we will follow in
the higher order case involves the use of the properties of the L2δ norm and
the B-G Lemma. We present such a method below and use it to understand
the higher-order case to be considered in the sections to follow.

Step 1. Express the plant output y (or state x) and plant input u in
terms of the parameter error k̃. We have

x =
1

s + am
(−k̃x), u = (s− a)x =

(s− a)
s + am

(−k̃x) (6.5.11)

The above integral equations may be expressed in the form of algebraic
inequalities by using the properties of the L2δ norm ‖(·)t‖2δ, which for sim-
plicity we denote by ‖ · ‖.

We have
‖x‖ ≤ c‖k̃x‖, ‖u‖ ≤ c‖k̃x‖ (6.5.12)

where c ≥ 0 is a generic symbol used to denote any finite constant. Let us
now define

m2
f
4
= 1 + ‖x‖2 + ‖u‖2 (6.5.13)

The significance of the signal mf is that it bounds |x|, |ẋ| and |u| from above
provided k ∈ L∞. Therefore if we establish that mf ∈ L∞ then the bounded-
ness of all signals follows. The boundedness of |x|/mf , |ẋ|/mf , |u|/mf follows
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from k̃ ∈ L∞ and the properties of the L2δ-norm given by Lemma 3.3.2, i.e.,
from (6.5.11) we have

|x(t)|
mf

≤
∥∥∥∥

1
s + am

∥∥∥∥
2δ
|k̃|‖x‖

mf
≤ c

and
|ẋ(t)|
mf

≤ am
|x(t)|
mf

+ |k̃| |x(t)|
mf

≤ c

Similarly,
|u(t)|
mf

≤ |k| |x|
mf

≤ c

Because of the normalizing properties of mf , we refer to it as the fictitious
normalizing signal.

It follows from (6.5.12), (6.5.13) that

m2
f ≤ 1 + c‖k̃x‖2 (6.5.14)

Step 2. Use the Swapping Lemma and properties of the L2δ norm to
upper bound ‖k̃x‖ with terms that are guaranteed by the adaptive law to have
finite L2 gains. We use the Swapping Lemma A.2 given in Appendix A to
write the identity

k̃x =
(

1− α0

s + α0

)
k̃x +

α0

s + α0
k̃x =

1
s + α0

( ˙̃
kx + k̃ẋ) +

α0

s + α0
k̃x

where α0 > 0 is an arbitrary constant. Since, from (6.5.11), k̃x = −(s+am)x,
we have

k̃x =
1

s + α0
( ˙̃
kx + k̃ẋ)− α0

(s + am)
(s + α0)

x (6.5.15)

which imply that

‖k̃x‖ ≤
∥∥∥∥

1
s + α0

∥∥∥∥∞δ
(‖ ˙̃

kx‖+ ‖k̃ẋ‖) + α0

∥∥∥∥
s + am

s + α0

∥∥∥∥∞δ
‖x‖

For α0 > 2am > δ, we have ‖ 1
s+α0

‖∞δ = 2
2α0−δ < 2

α0
, therefore,

‖k̃x‖ ≤ 2
α0

(‖ ˙̃
kx‖+ ‖k̃ẋ‖) + α0c‖x‖
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where c = ‖ s+am
s+α0

‖∞δ. Since x
mf

, ẋ
mf

∈ L∞, it follows that

‖k̃x‖ ≤ c

α0
(‖ ˙̃

kmf‖+ ‖k̃mf‖) + α0c‖x‖ (6.5.16)

Equation (6.5.16) is independent of the adaptive law used to update k(t).
The term c

α0
‖ ˙̃
kmf‖ in (6.5.16) is “small” because k̇ ∈ L2 (guaranteed by any

one of the adaptive laws (6.5.5) - (6.5.7)), whereas the term c
α0
‖k̃mf‖ can

be made small by choosing α0 large but finite. Large α0, however, may
make α0c‖x‖ large unless ‖x‖ is also small in some sense. We establish
the smallness of the regulation error x by exploiting its relationship with
the normalized estimation error ε. This relationship depends on the specific
adaptive law used. For example, for the adaptive law (6.5.5) that is based
on the SPR-Lyapunov design approach, we have established that

x = ε +
1

s + am
εn2

s

which together with |εn2
s| ≤ |εns| |x|mf

mf ≤ cεnsmf imply that

‖x‖ ≤ ‖ε‖+ c‖εnsmf‖

hence,

‖k̃x‖ ≤ c

α0
(‖ ˙̃

kmf‖+ ‖k̃mf‖) + α0c‖ε‖+ α0c‖εnsmf‖ (6.5.17)

Similarly, for the gradient or least-squares algorithms, we have

x = εm2 +
1

s + am
k̇φ (6.5.18)

obtained by using the equation

1
s + am

kx = kφ− 1
s + am

k̇φ

that follows from Swapping Lemma A.1 together with the equation for εm2

in (6.5.6). Equation (6.5.18) implies that

‖x‖ ≤ ‖ε‖+ ‖εn2
s‖+ c‖k̇φ‖
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Because n2
s = φ2 and φ = 1

s+am
x, we have |φ(t)| ≤ c‖x‖ which implies that

φ
mf

∈ L∞ and, therefore,

‖x‖ ≤ ‖ε‖+ ‖εnsmf‖+ c‖k̇mf‖
Substituting for ‖x‖ in (6.5.16), we obtain the same expression for ‖k̃x‖ as
in (6.5.17).

Step 3. Use the B-G Lemma to establish boundedness. From (6.5.14)
and (6.5.17), we obtain

m2
f ≤ 1 + α2

0c +
c

α2
0

(‖ ˙̃
kmf‖2 + ‖k̃mf‖2) + cα2

0‖εnsmf‖2 (6.5.19)

by using the fact that ε ∈ L∞
⋂L2. We can express (6.5.19) as

m2
f ≤ 1 + α2

0c +
c

α2
0

‖mf‖2 + cα2
0‖g̃mf‖2 (6.5.20)

where g̃2 4
= |εns|2 + | ˙̃k|2

α4
0

. Because the adaptive laws guarantee that εns,
˙̃
k ∈

L2 it follows that g̃ ∈ L2. Using the definition of the L2δ norm, inequality
(6.5.20) may be rewritten as

m2
f ≤ 1 + cα2

0 + c

∫ t

0
e−δ(t−τ)

(
α2

0g̃
2(τ) +

1
α2

0

)
m2

f (τ)dτ

Applying the B-G Lemma III, we obtain

m2
f ≤ (1 + cα2

0)e
−δ(t−τ)Φ(t, t0) + (1 + cα2

0)δ
∫ t

t0
e−δ(t−τ)Φ(t, τ)dτ

where
Φ(t, τ) = e

c

α2
0

(t−τ)
ec

∫ t

τ
α2

0g̃2(σ)dσ

Choosing α0 so that c
α2

0
≤ δ

2 , α0 > 2am and using g̃ ∈ L2, it follows that
mf ∈ L∞. Because mf bounds x, ẋ, u from above, it follows that all signals
in the closed-loop adaptive system are bounded.

Step 4. Establish convergence of the regulation error to zero. For the
adaptive law (6.5.5), it follows from (6.5.9), (6.5.10) that x ∈ L2 and from
(6.5.8) that ẋ ∈ L∞. Hence, using Lemma 3.2.5, we have x(t) → 0 as t →∞.
For the adaptive law (6.5.6) or (6.5.7) we have from (6.5.18) that x ∈ L2

and from (6.5.8) that ẋ ∈ L∞, hence, x(t) → 0 as t →∞.
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6.5.2 Example: Adaptive Tracking

Let us consider the tracking problem defined in Section 6.2.2 for the first
order plant

ẋ = ax + bu (6.5.21)

where a, b are unknown (with b 6= 0). The control law

u = −k∗x + l∗r (6.5.22)

where
k∗ =

am + a

b
, l∗ =

bm

b
(6.5.23)

guarantees that all signals in the closed-loop plant are bounded and the plant
state x converges exponentially to the state xm of the reference model

xm =
bm

s + am
r (6.5.24)

Because a, b are unknown, we replace (6.5.22) with

u = −k(t)x + l(t)r (6.5.25)

where k(t), l(t) are the on-line estimates of k∗, l∗, respectively. We design
the adaptive laws for updating k(t), l(t) by first developing appropriate
parametric models for k∗, l∗ of the form studied in Chapter 4. We then
choose the adaptive laws from Tables 4.1 to 4.5 of Chapter 4 based on the
parametric model satisfied by k∗, l∗.

As in Section 6.2.2, if we add and subtract the desired input −bk∗x+bl∗r
in the plant equation (6.5.21) and use (6.5.23) to eliminate the unknown a,
we obtain

ẋ = −amx + bmr + b(u + k∗x− l∗r)

which together with (6.5.24) and the definition of e1 = x− xm give

e1 =
b

s + am
(u + k∗x− l∗r) (6.5.26)

Equation (6.5.26) can also be rewritten as

e1 = b(θ∗>φ + uf ) (6.5.27)
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where θ∗ = [k∗, l∗], φ = 1
s+am

[x,−r]>, uf = 1
s+am

u. Both equations are in
the form of the parametric models given in Table 4.4 of Chapter 4. We can
use them to choose any adaptive law from Table 4.4. As an example, let us
choose the gradient algorithm listed in Table 4.4(D) that does not require
the knowledge of sign b. We have

k̇ = N(w)γ1εφ1

l̇ = N(w)γ2εφ2

˙̂
b = N(w)γεξ

N(w) = w2 cosw, w = w0 +
b̂2

2γ

ẇ0 = ε2m2, w0(0) = 0

ε =
e1 − ê1

m2
, ê1 = N(w)b̂ξ (6.5.28)

ξ = kφ1 + lφ2 + uf , uf =
1

s + am
u

φ1 =
1

s + am
x, φ2 = − 1

s + am
r

m2 = 1 + n2
s, n2

s = φ2
1 + φ2

2 + u2
f

γ1, γ2, γ > 0

As shown in Chapter 4, the above adaptive law guarantees that k, l, w,
w0 ∈ L∞ and ε, εns, k̇, l̇,

˙̂
b ∈ L∞

⋂L2 independent of the boundedness of
u, e1, φ.

Despite the complexity of the adaptive law (6.5.28), the stability anal-
ysis of the closed-loop adaptive system described by the equations (6.5.21),
(6.5.25), (6.5.28) is not more complicated than that of any other adaptive
law from Table 4.4. We carry out the stability proof by using the properties
of the L2δ-norm and B-G Lemma in a similar way as in Section 6.5.1.

Step 1. Express the plant output x and input u in terms of the parameter
errors k̃, l̃. From (6.5.24), (6.5.25) and (6.5.26) we have

x = xm − b

s + am

(
k̃x− l̃r

)
=

1
s + am

(
bmr + bl̃r − bk̃x

)
(6.5.29)
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and from (6.5.21), (6.5.29)

u =
(s− a)

b
x =

(s− a)
b(s + am)

[
bmr + bl̃r − bk̃x

]
(6.5.30)

For simplicity, let us denote ‖(·)t‖2δ by ‖ · ‖. Again for the sake of clarity
and ease of exposition, let us also denote any positive finite constant whose
actual value does not affect stability with the same symbol c. Using the
properties of the L2δ-norm in (6.5.29), (6.5.30) and the fact that r, l̃ ∈ L∞
we have

‖x‖ ≤ c + c‖k̃x‖, ‖u‖ ≤ c + c‖k̃x‖
for any δ ∈ [0, 2am), which imply that the fictitious normalizing signal de-
fined as

m2
f
4
= 1 + ‖x‖2 + ‖u‖2

satisfies
m2

f ≤ c + c‖k̃x‖2 (6.5.31)

We verify, using the boundedness of r, l̃, k̃, that φ1/mf , ẋ/mf , ns/mf ∈ L∞
as follows: From the definition of φ1, we have |φ1(t)| ≤ c‖x‖ ≤ cmf . Simi-
larly, from (6.5.29) and the boundedness of r, l̃, k̃, we have

|x(t)| ≤ c + c‖x‖ ≤ c + cmf

Because ẋ = −amx + bmr + bl̃r − bk̃x, it follows that |ẋ| ≤ c + cmf . Next,
let us consider the signal n2

s = 1 +φ2
1 + φ2

2 + u2
f . Because |uf | ≤ c‖u‖ ≤ cmf

and φ1

mf
, φ2 ∈ L∞, it follows that ns ≤ cmf .

Step 2. Use the Swapping Lemma and properties of the L2δ norm to
upper bound ‖k̃x‖ with terms that are guaranteed by the adaptive law to have
finite L2-gains. We start with the identity

k̃x =
(

1− α0

s + α0

)
k̃x +

α0

s + α0
k̃x =

1
s + α0

(
˙̃
kx + k̃ẋ

)
+

α0

s + α0
k̃x

(6.5.32)
where α0 > 0 is an arbitrary constant. From (6.5.29) we also have that

k̃x = −(s + am)
b

e1 + l̃r
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where e1 = x−xm, which we substitute in the second term of the right-hand
side of (6.5.32) to obtain

k̃x =
1

s + α0

(
˙̃
kx + k̃ẋ

)
− α0

b

(s + am)
(s + α0)

e1 +
α0

s + α0
l̃r

Because k̃, l̃, r ∈ L∞ we have

‖k̃x‖ ≤ c

α0
‖ ˙̃
kx‖+

c

α0
‖ẋ‖+ α0c‖e1‖+ c (6.5.33)

for any 0 < δ < 2am < α0.
As in Section 6.5.1, the gain of the first two terms on the right-hand side

of (6.5.33) can be reduced by choosing α0 large. So the only term that needs
further examination is α0c‖e1‖. The tracking error e1, however, is related
to the normalized estimation error ε through the equation

e1 = εm2 + N(w)b̂ξ = ε + εn2
s + N(w)b̂ξ

that follows from (6.5.28).
Because ε, εns ∈ L∞

⋂L2 and N(w)b̂ ∈ L∞, the signal we need to con-
centrate on is ξ which is given by

ξ = kφ1 + lφ2 +
1

s + am
u

We consider the equation

1
s + am

u =
1

s + am
(−kx + lr) = −kφ1 − lφ2 +

1
s + am

(
k̇φ1 + l̇r

)

obtained by using the Swapping Lemma A.1 or the equation

(s + am)(kφ1 + lφ2) = kx− lr + (k̇φ1 + l̇φ2) = u + k̇φ1 + l̇φ2

Using any one of the above equations to substitute for k1φ1 + lφ2 in the
equation for ξ we obtain

ξ =
1

s + am
(k̇φ1 + l̇φ2)

hence
e1 = ε + εn2

s + N(w)b̂
1

s + am
(k̇φ1 + l̇φ2) (6.5.34)
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Because ε,N(w), b̂, l̇, φ2, r ∈ L∞ it follows from (6.5.34) that

‖e1‖ ≤ c + ‖εn2
s‖+ c‖k̇φ1‖ (6.5.35)

and, therefore, (6.5.33) and (6.5.35) imply that

‖k̃x‖ ≤ c + cα0 +
c

α0
‖ ˙̃
kx‖+

c

α0
‖ẋ‖+ α0c‖εn2

s‖+ α0c‖k̇φ1‖ (6.5.36)

Step 3. Use the B-G Lemma to establish boundedness. Using (6.5.36)
and the normalizing properties of mf , we can write (6.5.31) in the form

m2
f ≤ c + cα2

0 +
c

α2
0

‖k̇mf‖2 +
c

α2
0

‖mf‖2 + α2
0c‖εnsmf‖2 + α2

0c‖k̇mf‖2

≤ c + cα2
0 + cα2

0‖g̃mf‖2 +
c

α2
0

‖mf‖2 (6.5.37)

where g̃2 4
= 1

α4
0
|k̇|2 + |ε2n2

s| + |k̇|. Inequality (6.5.37) has exactly the same
form and properties as inequality (6.5.20) in Section 6.5.1. Therefore the
boundedness of mf follows by applying the B-G Lemma and choosing α2

0 ≥
max{4a2

m, 2c
δ } as in the example of Section 6.5.1.

From mf ∈ L∞ we have x, ẋ, ns, φ1 ∈ L∞, which imply that u and all
signals in the closed-loop plant are bounded.

Step 4. Establish convergence of the tracking error to zero. We show the
convergence of the tracking error to zero by using (6.5.34). From ε, εns, k̇, l̇ ∈
L2 and ns, N(w)b̂, φ1, φ2 ∈ L∞ we can establish, using (6.5.34), that e1 ∈ L2

which together with ė1 = ẋ − ẋm ∈ L∞ imply (see Lemma 3.2.5) that
e1(t) → 0 as t →∞.

6.5.3 MRAC for SISO Plants

In this section we extend the design approach and analysis used in the ex-
amples of Sections 6.5.1 and 6.5.2 to the general SISO plant (6.3.1). We con-
sider the same control objective as in Section 6.3.1 where the plant (6.3.1)
and reference model (6.3.4) satisfy assumptions P1 to P4, and M1 and M2,
respectively.

The design of MRAC schemes for the plant (6.3.1) with unknown pa-
rameters is based on the certainty equivalence approach and is conceptually
simple. With this approach, we develop a wide class of MRAC schemes by
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combining the MRC law (6.3.22), where θ∗ is replaced by its estimate θ(t),
with different adaptive laws for generating θ(t) on-line. We design the adap-
tive laws by first developing appropriate parametric models for θ∗ which we
then use to pick up the adaptive law of our choice from Tables 4.1 to 4.5 in
Chapter 4.

Let us start with the control law

up = θ>1 (t)
α(s)
Λ(s)

up + θ>2 (t)
α(s)
Λ(s)

yp + θ3(t)yp + c0(t)r (6.5.38)

whose state-space realization is given by

ω̇1 = Fω1 + gup, ω1(0) = 0

ω̇2 = Fω2 + gyp, ω2(0) = 0 (6.5.39)

up = θ>ω

where θ = [θ>1 , θ>2 , θ3, c0]> and ω = [ω>1 , ω>2 , yp, r]>, and search for an adap-
tive law to generate θ(t), the estimate of the desired parameter vector θ∗.

In Section 6.4.1 we develop the bilinear parametric model

e1 = Wm(s)ρ∗[up − θ∗>ω] (6.5.40)

where ρ∗ = 1
c∗0

, θ∗ = [θ∗>1 , θ∗>2 , θ∗3, c∗0]> by adding and subtracting the desired

control input θ∗>ω in the overall representation of the plant and controller
states (see (6.4.6)). The same parametric model may be developed by using
the matching equation (6.3.13) to substitute for the unknown plant polyno-
mial Rp(s) in the plant equation and by cancelling the Hurwitz polynomial
Zp(s). The parametric model (6.5.40) holds for any relative degree of the
plant transfer function.

A linear parametric model for θ∗ may be developed from (6.5.40) as
follows: Because ρ∗ = 1

c∗0
and θ∗>ω = θ∗>0 ω0 + c∗0r where θ∗0 = [θ∗>1 , θ∗>2 , θ∗3]>

and ω0 = [ω>1 , ω>2 , yp]>, we rewrite (6.5.40) as

Wm(s)up = c∗0e1 + Wm(s)θ∗>0 ω0 + c∗0Wm(s)r

Substituting for e1 = yp − ym and using ym = Wm(s)r we obtain

Wm(s)up = c∗0yp + Wm(s)θ∗>0 ω0
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which may be written as
z = θ∗>φp (6.5.41)

where

z = Wm(s)up

φp = [Wm(s)ω>1 ,Wm(s)ω>2 ,Wm(s)yp, yp]>

θ∗ = [θ∗>1 , θ∗>2 , θ∗3, c
∗
0]
>

In view of (6.5.40), (6.5.41) we can now develop a wide class of MRAC
schemes by using Tables 4.1 to 4.5 to choose an adaptive law for θ based on
the bilinear parametric model (6.5.40) or the linear one (6.5.41).

Before we do that, let us compare the two parametric models (6.5.40),
(6.5.41). The adaptive laws based on (6.5.40) listed in Table 4.4 of Chap-
ter 4 generate estimates for c∗0 as well as for ρ∗ = 1

c∗0
. In addition, some

algorithms require the knowledge of the sgn(ρ∗) and of a lower bound for
|ρ∗|. On the other hand the adaptive laws based on the linear model (6.5.41)
generate estimates of c∗0 only, without any knowledge of the sgn(ρ∗) or lower
bound for |ρ∗|. This suggests that (6.5.41) is a more appropriate parameter-
ization of the plant than (6.5.40). It turns out, however, that in the stability
analysis of the MRAC schemes whose adaptive laws are based on (6.5.41),
1/c0(t) is required to be bounded. This can be guaranteed by modifying
the adaptive laws for c0(t) using projection so that |c0(t)| ≥ c0 > 0, ∀t ≥ 0
for some constant c0 ≤ |c∗0| = |km

kp
|. Such a projection algorithm requires

the knowledge of the sgn(c∗0) = sgn
(

km
kp

)
and the lower bound c0, which is

calculated from the knowledge of an upper bound for |kp|. Consequently, as
far as a priori knowledge is concerned, (6.5.41) does not provide any spe-
cial advantages over (6.5.40). In the following we modify all the adaptive
laws that are based on (6.5.41) using the gradient projection method so that
|c0(t)| ≥ c0 > 0 ∀t ≥ 0.

The main equations of several MRAC schemes formed by combining
(6.5.39) with an adaptive law from Tables 4.1 to 4.5 based on (6.5.40) or
(6.5.41) are listed in Tables 6.4 to 6.7.

The basic block diagram of the MRAC schemes described in Table 6.4 is
shown in Figure 6.13. An equivalent representation that is useful for analysis
is shown in Figure 6.14.
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Table 6.4 MRAC schemes

Plant yp = kp
Zp(s)
Rp(s)up

Reference model ym = km
Zm(s)
Rm(s)r = Wm(s)r

Control law

ω̇1 = Fω1 + gup, ω1(0) = 0
ω̇2 = Fω2 + gyp, ω2(0) = 0
up = θ>ω
θ = [θ>1 , θ>2 , θ3, c0]>, ω = [ω>1 , ω>2 , yp, r]>

ωi ∈ Rn−1, i = 1, 2

Adaptive law Any adaptive law from Tables 6.5, 6.6

Assumptions Plant and reference model satisfy assumptions P1
to P4 and M1, M2 respectively.

Design variables
F, g chosen so that (sI − F )−1g = α(s)

Λ(s) , where
α(s) = [sn−2, sn−3, . . . , s, 1]> for n ≥ 2 and α(s) =
0 for n = 1; Λ(s) = sn−1 + λn−2s

n−2 + · · ·+ λ0 is
Hurwitz.

Figure 6.14 is obtained by rewriting up as

up = θ∗>ω + θ̃>ω

where θ̃
4
= θ − θ∗, and by using the results of Section 6.4.1, in particular,

equation (6.4.6) to absorb the term θ∗>ω.
For θ̃ = θ− θ∗ = 0, the closed-loop MRAC scheme shown in Figure 6.14

reverts to the one in the known parameter case shown in Figure 6.5. For
θ̃ 6= 0, the stability of the closed-loop MRAC scheme depends very much on
the properties of the input 1

c∗0
θ̃>ω, which, in turn, depend on the properties

of the adaptive law that generates the trajectory θ̃(t) = θ(t)− θ∗.
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Table 6.5 Adaptive laws based on e1 = Wm(s)ρ∗(up − θ∗>ω)

A. Based on the SPR-Lyapunov approach

Parametric
model

e1 = Wm(s)L(s)[ρ∗(uf − θ∗>φ)]

Adaptive law

θ̇ = −Γεφ sgn(kp/km)
ρ̇ = γεξ, ε = e1 − ê1 −Wm(s)L(s)(εn2

s)
ê1 = Wm(s)L(s)[ρ(uf − θ>φ)]
ξ = uf − θ>φ, φ = L−1(s)ω
uf = L−1(s)up, n2

s = φ>φ + u2
f

Assumptions Sign (kp) is known

Design
variables

Γ = Γ> > 0, γ > 0; Wm(s)L(s) is proper and SPR;
L−1(s) is proper and has stable poles

B. Gradient algorithm with known sgn(kp)

Parametric
model

e1 = ρ∗(uf − θ∗>φ)

Adaptive law

θ̇ = −Γεφ sgn(kp/km)
ρ̇ = γεξ

ε = e1−ê1
m2

ê1 = ρ(uf − θ>φ)
φ = Wm(s)ω, uf = Wm(s)up

ξ = uf − θ>φ
m2 = 1 + φ>φ + u2

f

Design
variables

Γ = Γ> > 0, γ > 0
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Table 6.5 (Continued)

C. Gradient algorithm with unknown sgn(kp)

Parametric
model

e1 = ρ∗(uf − θ∗>φ)

Adaptive law

θ̇ = −N(x0)Γεφ
ρ̇ = N(x0)γεξ
N(x0) = x2

0 cosx0

x0 = w0 + ρ2

2γ , ẇ0 = ε2m2, w0(0) = 0
ε = e1−ê1

m2 , ê1 = N(x0)ρ(uf − θ>φ)
φ = Wm(s)ω, uf = Wm(s)up

ξ = uf − θ>φ,m2 = 1 + n2
s, n

2
s = φ>φ + u2

f

Design
variables

Γ = Γ> > 0, γ > 0

The following theorem gives the stability properties of the MRAC scheme
shown in Figures 6.13 and 14 when the adaptive laws in Tables 6.5 and 6.6
are used to update θ(t) on-line.

Theorem 6.5.1 The closed-loop MRAC scheme shown in Figure 6.13 and
described in Table 6.4 with any adaptive law from Tables 6.5 and 6.6 has the
following properties:

(i) All signals are uniformly bounded.

(ii) The tracking error e1 = yp − ym converges to zero as t →∞.

(iii) If the reference input signal r is sufficiently rich of order 2n, ṙ ∈ L∞
and Rp, Zp are coprime, the tracking error e1 and parameter error
θ̃ = θ − θ∗ converge to zero for the adaptive law with known sgn(kp).
The convergence is asymptotic in the case of the adaptive law of Table
6.5(A, B) and exponential in the case of the adaptive law of Table 6.6.
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Table 6.6 Adaptive laws based on Wm(s)up = θ∗>φp

Constraint
g(θ) = c0 − c0 sgnc0 ≤ 0
θ = [θ>1 , θ>2 , θ3, c0]>

Projection
operator Pr[Γx]

4
=





Γx if |c0(t)| > c0 or
if |c0(t)|=c0 and (Γx)>∇g ≤ 0

Γx−Γ ∇g∇g>
∇g>Γ∇g

Γx otherwise

A. Gradient Algorithm

Adaptive law θ̇ = Pr[Γεφp]

Design variable
Γ = Γ> > 0

B. Integral gradient aAlgorithm

Adaptive law
θ̇ = Pr[−Γ(Rθ + Q)]

Ṙ = −βR + φpφ>p
m2 , R(0) = 0

Q̇ = −βQ− φp

m2 z, Q(0) = 0
z = Wm(s)up

Design
variable

Γ = Γ> > 0, β > 0

C. Least-squares with covariance resetting

Adaptive law
θ̇ = Pr[Pεφp]

Ṗ=





−Pφpφ>p P

m2 if |c0(t)| > c0 or
if |c0(t)| = c0 and (Pεφp)> 5 g ≤ 0

0 otherwise
P (t+r ) = P0 = ρ0I

Design
variable

P (0) = P>(0) > 0, tr is the time for which
λmin(P (t)) ≤ ρ1, ρ1 > ρ0 > 0

Common signals and variables

ε= Wm(s)up−ẑ
m2 , ẑ=θ>φp, m

2 =1+φ>pφp

φp =[Wm(s)ω>1 ,Wm(s)ω>2 ,Wm(s)yp, yp]>

|c0(0)| ≥ c0, 0 < c0 ≤ |c∗0|, sgn(c0(0)) = sgn(kp/km)



390 CHAPTER 6. MODEL REFERENCE ADAPTIVE CONTROL

Table 6.7 Hybrid MRAC

Parametric
model

Wm(s)up = θ∗>φp

Control law
ω̇1 = Fω1 + gup

ω̇2 = Fω2 + gyp

up(t) = θ>k ω(t), t ∈ (tk, tk+1]

Hybrid
adaptive law

θk+1=P̄ r
{
θk+Γ

∫ tk+1
tk

ε(τ)φp(τ)dτ
}

; k=0, 1, 2, . . .

ε = Wm(s)up−ẑ
m2 , ẑ(t) = θ>k φp, t ∈ (tk, tk+1]

m2 = 1 + βφ>p φp

where P̄ r[·] is the discrete-time projection

P̄ r{x} 4=
{

x if |x0| ≥ c0

x + γ0

γ00
(c0 − x0)sgn(c0) otherwise

where x0 is the last element of the vector x; γ0 is
the last column of the matrix Γ, and γ00 is the last
element of γ0

Design
variables

β > 1; tk = kTs, Ts > 0; Γ = Γ> > 0
2− Tsλmax(Γ) > γ for some γ > 0

Outline of Proof The proof follows the same procedure as that for the ex-
amples presented in Sections 6.5.1, 6.5.2. It is completed in five steps.

Step 1. Express the plant input and output in terms of the adaptation error
θ̃>ω. Using Figure 6.14 we can verify that the transfer function between the input
r + 1

c∗0
θ̃>ω and the plant output yp is given by

yp = Gc(s)
(

r +
1
c∗0

θ̃>ω

)

where

Gc(s) =
c∗0kpZp

(1− θ∗>1 (sI − F )−1g)Rp − kpZp[θ∗>2 (sI − F )−1g + θ∗3 ]

Because of the matching equations (6.3.12) and (6.3.13), and the fact that (sI −
F )−1g = α(s)

Λ(s) , we have, after cancellation of all the stable common zeros and poles
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Figure 6.13 Block diagram of direct MRAC with normalized adaptive
law.

in Gc(s), that Gc(s) = Wm(s). Therefore, the plant output may be written as

yp = Wm(s)
(

r +
1
c∗0

θ̃>ω

)
(6.5.42)

Because yp = Gp(s)up and G−1
p (s) has stable poles, we have

up = G−1
p (s)Wm(s)

(
r +

1
c∗0

θ̃>ω

)
(6.5.43)

where G−1
p (s)Wm(s) is biproper Because of Assumption M2.

We now define the fictitious normalizing signal mf as

m2
f
4
= 1 + ‖up‖2 + ‖yp‖2 (6.5.44)

where ‖ · ‖ denotes the L2δ-norm for some δ > 0. Using the properties of the L2δ

norm it follows that
mf ≤ c + c‖θ̃>ω‖ (6.5.45)
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Figure 6.14 Equivalent representation of the MRAC scheme of Table 6.4.

where c is used to denote any finite constant and δ > 0 is such that Wm(s −
δ
2 ), G−1

p (s − δ
2 ) have stable poles. Furthermore, for θ ∈ L∞ (guaranteed by the

adaptive law), the signal mf bounds most of the signals and their derivatives from
above.

Step 2. Use the Swapping Lemmas and properties of the L2δ norm to upper
bound ‖θ̃>ω‖ with terms that are guaranteed by the adaptive law to have finite
L2 gains. This is the most complicated step and it involves the use of Swapping
Lemmas A.1 and A.2 to obtain the inequality

‖θ̃>ω‖ ≤ c

α0
mf + cαn∗

0 ‖g̃mf‖ (6.5.46)

where g̃2 4
= ε2n2

s + |θ̇|2 + ε2 and g̃ is guaranteed by the adaptive law to belong to
L2 and α0 > 0 is an arbitrary constant to be chosen.

Step 3. Use the B-G Lemma to establish boundedness. From (6.5.45) and
(6.5.46), it follows that

m2
f ≤ c +

c

α2
0

m2
f + cα2n∗

0 ‖g̃mf‖2 (6.5.47)

or

m2
f ≤ c + c

∫ t

0

α2n∗
0 g̃2(τ)m2

f (τ)dτ
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for any α0 > α∗0 and some α∗0 > 0.
Applying the B-G Lemma and using g̃ ∈ L2, the boundedness of mf follows.

Using mf ∈ L∞, we establish the boundedness of all the signals in the closed-loop
plant.

Step 4. Show that the tracking error converge to zero. The convergence of e1

to zero is established by showing that e1 ∈ L2 and ė1 ∈ L∞ and using Lemma 3.2.5.

Step 5. Establish that the parameter error converges to zero. The convergence
of the estimated parameters to their true values is established by first showing that
the signal vector φ or φp, which drives the adaptive law under consideration, can
be expressed as

φ or φp = H(s)r + φ̄

where H(s) is a stable transfer matrix and φ̄ ∈ L2. If r is sufficiently rich of
order 2n and Zp, Rp are coprime then it follows from the results of Section 6.4 that
φm = H(s)r is PE, which implies that φ or φp is PE. The PE property of φp or φ

guarantees that θ̃ and e1 converge to zero as shown in Chapter 4.
A detailed proof of Theorem 6.5.1 is given in Section 6.8. 2

The MRAC scheme of Table 6.4 with any adaptive law from Table 6.5
guarantees that ξ ∈ L2 which together with ε ∈ L2 implies that ρ̇ ∈ L1, i.e.,

∫ t

0
|ρ̇|dτ ≤ γ

(∫ ∞

0
ε2dτ

) 1
2

(∫ ∞

0
ξ2dτ

) 1
2

< ∞

which, in turn, implies that ρ(t) converges to a constant as t →∞ indepen-
dent of the richness of r.

The stability properties of the hybrid MRAC scheme of Table 6.7 are
similar to the continuous-time MRAC schemes and are summarized by the
following Theorem.

Theorem 6.5.2 The closed-loop system obtained by applying the hybrid
MRAC scheme of Table 6.7 to the plant given in Table 6.4 has the following
properties:

(i) All signals are bounded.
(ii) The tracking error e1 converges to zero as t →∞.
(iii) If r is sufficiently rich of order 2n and Zp, Rp are coprime, then the

parameter error θ̃k = θk − θ∗ converges exponentially fast to zero as k,
t →∞.
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Proof First, we show that the projection algorithm used in Table 6.7 guarantees
|cok| ≥ c0 ∀k ≥ 0 without affecting (i) to (iii) of the hybrid adaptive law established
in Theorem 4.6.1. We rewrite the adaptive law of Table 6.7 as

θk+1 = θp
k+1 + ∆p

θp
k+1

4
= θk + Γ

∫ tk+1

tk

ε(τ)φp(τ)dτ (6.5.48)

∆p
4
=

{
0 if |cp

0(k+1)| ≥ c0
γ0
γ00

(c0 − cp
0(k+1))sgn(c0) otherwise

where cp
0(k+1) is the last element of the vector θp

k+1. We can view θp
k+1, θk+1 as

the pre- and post-projection estimate of θ∗ respectively. It is obvious, from the
definition of γ0, γ00 that c0(k+1) = c0sgn(c0) if |cp

0(k+1)| < c0 and c0(k+1) = cp
0(k+1)

if |cp
0(k+1)| ≥ c0. Therefore, the constraint c0k ≥ c0 is satisfied for all k.
Now consider the same Lyapunov function used in proving Theorem 4.6.1, i.e.,

V (k) = θ̃>k Γ−1θ̃k

we have

V (k + 1) = θ̃p>
k+1Γ

−1θ̃p
k+1 + 2θ̃p>

k+1Γ
−1∆p + (∆p)>Γ−1∆p (6.5.49)

In the proof of Theorem 4.6.1, we have shown that the first term in (6.5.49) satisfies

θ̃p>
k+1Γ

−1θ̃p
k+1 ≤ V (k)− (2− Tsλm)

∫ tk+1

tk

ε2(τ)m2(τ)dτ (6.5.50)

For simplicity, let us consider the case sgn(c0) = 1. Exactly the same analysis can
be carried out when sgn(c0) = −1. Using Γ−1Γ = I and the definition of γ0, γ00,
we have

Γ−1γ0 =




0
0
...
0
1




Therefore, for cp
0(k+1) < c0, the last two terms in (6.5.49) can be expressed as

2θ̃p>
k+1Γ

−1∆p + (∆p)>Γ−1∆p =
1

γ00
(cp

0(k+1) − c∗0)(c0 − cp
0) +

1
γ00

(c0 − cp
0(k+1))

2

=
1

γ00
(c0 − c∗0)(c0 + cp

0(k+1) − 2c∗0) < 0
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where the last inequality follows because c∗0 > c0 > cp
0(k+1). For cp

0(k+1) ≥ c0, we

have 2θ̃p>
k+1Γ

−1∆p + (∆p)>Γ−1∆p = 0. Hence,

2θ̃p>
k+1Γ

−1∆p + (∆p)>Γ−1∆p ≤ 0, ∀k ≥ 0 (6.5.51)

Combining (6.5.49)-(6.5.51), we have

∆V (k)
4
= V (k + 1)− V (k) ≤ −(2− Tsλm)

∫ tk+1

tk

ε2(τ)m2(τ)dτ

which is similar to (4.6.9) established for the hybrid adaptive law without projection.
Therefore, the projection does not affect the ideal asymptotic properties of the
hybrid adaptive law.

The rest of the stability proof is similar to that of Theorem 6.5.1 and is briefly
outlined as follows: Noting that θ(t) = θk,∀t ∈ [kTs, (k + 1)Ts) is a piecewise con-
stant function with discontinuities at t = kTs, k = 0, 1, . . . , and not differentiable,
we make the following change in the proof to accommodate the discontinuity in
θk. We write θ(t) = θ̄(t) + (θ(t) − θ̄(t)) where θ̄(t) is obtained by linearly inter-
polating θk, θk+1 on the interval [kTs, (k + 1)Ts). Because θk ∈ L∞,∆θk ∈ L2,
we can show that θ̄ has the following properties: (i) θ̄ is continuous, (ii) ˙̄θ(t) =
θk+1 − θk∀t ∈ [kTs, (k + 1)Ts), and ˙̄θ ∈ L∞

⋂L2, (iii) |θ(t) − θ̄(t)| ≤ |θk+1 − θk|
and |θ(t) − θ̄(t)| ∈ L∞

⋂L2. Therefore, we can use θ̄ in the place of θ and the
error resulting from this substitution is (θ − θ̄)>ω, which has an L2 gain because
|θ − θ̄| ∈ L2. The rest of the proof is then the same as that for the continuous
scheme except that an additional term (θ − θ̄)>ω appears in the equations. This
term, however, doesnot affect the stability analysis since it has an L2 gain. 2

Remark 6.5.1 In the analysis of the MRAC schemes in this section we
assume that the nonlinear differential equations describing the stability
properties of the schemes possess a unique solution. This assumption
is essential for the validity of our analysis. We can establish that these
differential equations do possess a unique solution by using the results
on existence and uniqueness of solutions of adaptive systems given in
[191].

6.5.4 Effect of Initial Conditions

The analysis of the direct MRAC schemes with normalized adaptive laws
presented in the previous sections is based on the assumption that the ini-
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tial conditions for the plant and reference model are equal to zero. This
assumption allows us to use transfer function representations and other I/O
tools that help improve the clarity of presentation.

Nonzero initial conditions introduce exponentially decaying to zero terms
in the parametric models (6.5.40) and (6.5.41) as follows:

e1 = Wm(s)ρ∗[up − θ∗>ω] + εt

z = θ∗>φp + εt (6.5.52)

where εt = C>
c (sI − Ac)−1e(0) and Ac, e(0) are as defined in Section 6.4.

Because Ac is a stable matrix, the properties of the adaptive laws based on
(6.5.52) with εt = 0 remain unchanged when εt 6= 0 as established in Section
4.3.7. Similarly, the εt terms also appear in (6.5.42) and (6.5.43) as follows:

yp = Wm(s)(r +
1
c∗0

θ̃>ω) + εt

up = G−1
p (s)Wm(s)(r +

1
c∗0

θ̃>ω) + εt (6.5.53)

where in this case εt denotes exponentially decaying to zero terms because of
nonzero initial conditions. The exponentially decaying term only contributes
to the constant in the inequality

m2
f ≤ c + εt +

c

α2
0

‖mf‖2 + α2n∗
0 c‖g̃mf‖2

where g̃ ∈ L2. Applying the B-G Lemma to the above inequality we can
establish, as in the case of εt = 0, that mf ∈ L∞. Using mf ∈ L∞, the
rest of the analysis follows using the same arguments as in the zero initial
condition case.

6.6 Indirect MRAC

In the previous sections, we used the direct approach to develop stable
MRAC schemes for controlling a wide class of plants with unknown parame-
ters. The assumption on the plant and the special form of the controller en-
abled us to obtain appropriate parameterizations for the unknown controller
vector θ∗ that in turn allows us to develop adaptive laws for estimating the
controller parameter vector θ(t) directly.
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An alternative way of controlling the same class of plants is to use the
indirect approach, where the high frequency gain kp and coefficients of the
plant polynomials Zp(s), Rp(s) are estimated and the estimates are, in turn,
used to determine the controller parameter vector θ(t) at each time t. The
MRAC schemes based on this approach are referred to as indirect MRAC
schemes since θ(t) is estimated indirectly using the plant parameter esti-
mates.

The block diagram of an indirect MRAC scheme is shown in Figure 6.15.
The coefficients of the plant polynomials Zp(s), Rp(s) and high frequency
gain kp are represented by the vector θ∗p. The on-line estimate θp(t) of θ∗p,
generated by an adaptive law, is used to calculate the controller parameter
vector θ(t) at each time t using the same mapping f : θp 7→ θ as the mapping
f : θ∗p 7→ θ∗ defined by the matching equations (6.3.12), (6.3.16), (6.3.17).
The adaptive law generating θp may share the same filtered values of up, yp,
i.e., ω1, ω2 as the control law leading to some further interconnections not
shown in Figure 6.15.

In the following sections we develop a wide class of indirect MRAC
schemes that are based on the same assumptions and have the same sta-
bility properties as their counterparts direct MRAC schemes developed in
Sections 6.4 and 6.5.

6.6.1 Scalar Example

Let us consider the plant
ẋ = ax + bu (6.6.1)

where a, b are unknown constants and sgn(b) is known. It is desired to choose
u such that all signals in the closed-loop plant are bounded and the plant
state x tracks the state xm of the reference model

ẋm = −amxm + bmr (6.6.2)

where am > 0, bm and the reference input signal r are chosen so that xm(t)
represents the desired state response of the plant.

Control Law As in Section 6.2.2, if the plant parameters a, b were known,
the control law

u = −k∗x + l∗r (6.6.3)
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Figure 6.15 Block diagram of an indirect MRAC scheme.

with
k∗ =

am + a

b
, l∗ =

bm

b
(6.6.4)

could be used to meet the control objective. In the unknown parameter case,
we propose

u = −k(t)x + l(t)r (6.6.5)

where k(t), l(t) are the on-line estimates of k∗, l∗ at time t, respectively. In
direct adaptive control, k(t), l(t) are generated directly by an adaptive law.
In indirect adaptive control, we follow a different approach. We evaluate
k(t), l(t) by using the relationship (6.6.4) and the estimates â, b̂ of the un-
known parameters a, b as follows:

k(t) =
am + â(t)

b̂(t)
, l(t) =

bm

b̂(t)
(6.6.6)
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where â, b̂ are generated by an adaptive law that we design.

Adaptive Law The adaptive law for generating â, b̂ is obtained by following
the same procedure as in the identification examples of Chapter 4, i.e., we
rewrite (6.6.1) as

x =
1

s + am
[(a + am)x + bu]

and generate x̂, the estimate of x, from

x̂ =
1

s + am
[(â + am)x + b̂u] = xm (6.6.7)

where the last equality is obtained by using (6.6.5), (6.6.6). As in Section
6.2.2, the estimation error ε1 = x−xm = e1 is the same as the tracking error
and satisfies the differential equation

ė1 = −ame1 − ãx− b̃u (6.6.8)

where

ã
4
= â− a, b̃

4
= b̂− b

are the parameter errors. Equation (6.6.8) motivates the choice of

V =
1
2

(
e2
1 +

ã2

γ1
+

b̃2

γ2

)
(6.6.9)

for some γ1, γ2 > 0, as a potential Lyapunov-like function candidate for
(6.6.8). The time derivative of V along any trajectory of (6.6.8) is given by

V̇ = −ame2
1 − ãxe1 − b̃ue1 +

ã ˙̃a
γ1

+
b̃
˙̃
b

γ2
(6.6.10)

Hence, for
˙̃a = ˙̂a = γ1e1x,

˙̃
b = ˙̂

b = γ2e1u (6.6.11)

we have
V̇ = −ame2

1 ≤ 0

which implies that e1, â, b̂ ∈ L∞ and that e1 ∈ L2 by following the usual
arguments. Furthermore, xm, e1 ∈ L∞ imply that x ∈ L∞. The bound-
edness of u, however, cannot be established unless we show that k(t), l(t)
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are bounded. The boundedness of 1
b̂

and therefore of k(t), l(t) cannot be
guaranteed by the adaptive law (6.6.11) because (6.6.11) may generate esti-
mates b̂(t) arbitrarily close or even equal to zero. The requirement that b̂(t)
is bounded away from zero is a controllability condition for the estimated
plant that the control law (6.6.5) is designed for. One method for avoid-
ing b̂(t) going through zero is to modify the adaptive law for b̂(t) so that
adaptation takes place in a closed subset of R1 which doesnot include the
zero element. Such a modification is achieved by using the following a priori
knowledge:

The sgn(b) and a lower bound b0 > 0 for |b| is known (A2)

Applying the projection method with the constraint b̂ sgn(b) ≥ b0 to the
adaptive law (6.6.11), we obtain

˙̂a = γ1e1x,
˙̂
b =





γ2e1u
if |b̂| > b0 or
if |b̂| = b0 and e1u sgn(b) ≥ 0

0 otherwise
(6.6.12)

where b̂(0) is chosen so that b̂(0)sgn(b) ≥ b0.

Analysis It follows from (6.6.12) that if b̂(0)sgn(b) ≥ b0, then whenever

b̂(t)sgn(b) = |b̂(t)| becomes equal to b0 we have ˙̂
bb̂ ≥ 0 which implies that

|b̂(t)| ≥ b0, ∀t ≥ 0. Furthermore the time derivative of (6.6.9) along the
trajectory of (6.6.8), (6.6.12) satisfies

V̇ =

{
−ame2

1 if |b̂| > b0 or |b̂| = b0 and e1u sgn(b) ≥ 0
−ame2

1 − b̃e1u if |b̂| = b0 and e1u sgn(b) < 0

Now for |b̂| = b0, we have (b̂ − b)sgn(b) < 0. Therefore, for |b̂| = b0 and
e1u sgn(b) < 0, we have

b̃e1u = (b̂− b)e1u = (b̂− b)sgn(b)(e1usgn(b)) > 0

which implies that
V̇ ≤ −ame2

1 ≤ 0, ∀t ≥ 0

Therefore, the function V given by (6.6.9) is a Lyapunov function for the
system (6.6.8), (6.6.12) since u, x in (6.6.8) can be expressed in terms of e1

and xm where xm(t) is treated as an arbitrary bounded function of time.
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Figure 6.16 Block diagram for implementing the indirect MRAC scheme
given by (6.6.5), (6.6.6), and (6.6.12).

Hence the equilibrium e1e = 0, âe = a, b̂e = b is u.s. and e1, b̂, â ∈ L∞.
Using the usual arguments, we have e1 ∈ L2 and ė1 ∈ L∞ which imply that
e1(t) = x(t) − xm(t) → 0 as t → ∞ and therefore that ˙̂a(t), ˙̂

b(t) → 0 as
t →∞.

As in the direct case it can be shown that if the reference input signal
r(t) is sufficiently rich of order 2 then b̃, ã and, therefore, k̃, l̃ converge to
zero exponentially fast.

Implementation The proposed indirect MRAC scheme for (6.6.1) described
by (6.6.5), (6.6.6), and (6.6.12) is implemented as shown in Figure 6.16.

6.6.2 Indirect MRAC with Unnormalized Adaptive Laws

As in the case of direct MRAC considered in Section 6.5, we are interested
in extending the indirect MRAC scheme for the scalar plant of Section 6.6.1
to a higher order plant. The basic features of the scheme of Section 6.6.1 is
that the adaptive law is driven by the tracking error and a single Lyapunov
function is used to design the adaptive law and establish signal boundedness.
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In this section, we extend the results of Section 6.6.1 to plants with
relative degree n∗ = 1. The same methodology is applicable to the case of
n∗ ≥ 2 at the expense of additional algebraic manipulations. We assign these
more complex cases as problems for the ambitious reader in the problem
section.

Let us start by considering the same plant and control objective as in
the direct MRAC scheme of Section 6.4.1 where the relative degree of the
plant is assumed to be n∗ = 1. We propose the same control law

ω̇1 = Fω1 + gup, ω1(0) = 0

ω̇2 = Fω2 + gyp, ω2(0) = 0 (6.6.13)

up = θ>ω

as in the direct MRAC case where θ(t) is calculated using the estimate of kp

and the estimates of the coefficients of the plant polynomials Zp(s), Rp(s),
represented by the vector θp(t), at each time t. Our goal is to develop an
adaptive law that generates the estimate θp(t) and specify the mapping from
θp(t) to θ(t) that allows us to calculate θ(t) at each time t. We start with

the mapping that relates the unknown vectors θ∗ =
[
θ∗>1 , θ∗>2 , θ∗3, c∗0

]>
and

θ∗p specified by the matching equations (6.3.12), (6.3.16), and (6.3.17) (with
Q(s) = 1 due to n∗ = 1), i.e.,

c∗0 =
km

kp

θ∗>1 α(s) = Λ(s)− Zp(s), (6.6.14)

θ∗>2 α(s) + θ∗3Λ(s) =
Rp(s)− Λ0(s)Rm(s)

kp

To simplify (6.6.14) further, we express Zp(s), Rp(s), Λ(s), Λ0(s)Rm(s)
as

Zp(s) = sn−1 + p>1 αn−2(s)

Rp(s) = sn + an−1s
n−1 + p>2 αn−2(s)

Λ(s) = sn−1 + λ>αn−2(s)

Λ0(s)Rm(s) = sn + rn−1s
n−1 + ν>αn−2(s)

where p1, p2∈Rn−1, an−1 are the plant parameters, i.e., θ∗p =[kp, p
>
1 , an−1, p

>
2 ]>;

λ, ν ∈ Rn−1 and rn−1 are the coefficients of the known polynomials Λ(s),
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Λ0(s)Rm(s) and αn−2(s) =
[
sn−2, sn−3, . . . , s, 1

]>, which we then substitute
in (6.6.14) to obtain the equations

c∗0 =
km

kp

θ∗1 = λ− p1

θ∗2 =
p2 − an−1λ + rn−1λ− ν

kp
(6.6.15)

θ∗3 =
an−1 − rn−1

kp

If we let k̂p(t), p̂1(t), p̂2(t), ân−1(t) be the estimate of kp, p1, p2, an−1 re-
spectively at each time t, then θ(t) = [θ>1 , θ>2 , θ3, c0]> may be calculated
as

c0(t) =
km

k̂p(t)
θ1(t) = λ− p̂1(t)

θ2(t) =
p̂2(t)− ân−1(t)λ + rn−1λ− ν

k̂p(t)
(6.6.16)

θ3(t) =
ân−1(t)− rn−1

k̂p(t)

provided |k̂p(t)| 6= 0, ∀t ≥ 0.
The adaptive laws for generating p̂1, p̂2, ân−1, k̂p on-line can be devel-

oped by using the techniques of Chapter 4. In this section we concentrate
on adaptive laws that are driven by the tracking error e1 rather than the
normalized estimation error, and are developed using the SPR-Lyapunov
design approach. We start with the parametric model given by equation
(6.4.6), i.e.,

e1 = Wm(s)ρ∗(up − θ∗>ω) (6.6.17)

where ρ∗ = 1
c∗0

= kp

km
. As in the direct case, we choose Wm(s), the transfer

function of the reference model, to be SPR with relative degree n∗ = 1.
The adaptive law for θp = [k̂p, p̂

>
1 , ân−1, p̂

>
2 ]> is developed by first relating

e1 with the parameter error θ̃p = θp − θ∗p through the SPR transfer function
Wm(s) and then proceeding with the Lyapunov design approach as follows:
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We rewrite (6.6.17) as

e1 = Wm(s)
1

km

(
kpup − kpθ

∗>ω − k̂pup + k̂pθ
>ω

)
(6.6.18)

where −k̂pup + k̂pθ
>ω = 0 because of (6.6.13). If we now substitute for

kpθ
∗, k̂pθ from (6.6.15) and (6.6.16), respectively, in (6.6.18) we obtain

e1=Wm(s)
1

km

[
k̃p

(
λ>ω1−up

)
+p̃>2 ω2+ãn−1

(
yp−λ>ω2

)
−k̂pp̂

>
1 ω1+kpp

>
1 ω1

]

where k̃p
4
= k̂p − kp, p̃2

4
= p̂2 − p2, ãn−1

4
= ân−1 − an−1 are the parameter

errors. Because −k̂pp̂
>
1 ω1 +kpp

>
1 ω1 +kpp̂

>
1 ω1−kpp̂

>
1 ω1 = −k̃pp̂

>
1 ω1−kpp̃

>
1 ω1

we have

e1 = Wm(s)
1

km

[
k̃pξ1 + ãn−1ξ2 + p̃>2 ω2 − kpp̃

>
1 ω1

]
(6.6.19)

where

ξ1
4
= λ>ω1 − up − p̂>1 ω1, ξ2

4
= yp − λ>ω2, p̃1

4
= p̂1 − p1

A minimal state-space representation of (6.6.19) is given by

ė = Ace + Bc

[
k̃pξ1 + ãn−1ξ2 + p̃>2 ω2 − kpp̃

>
1 ω1

]

e1 = C>
c e (6.6.20)

where C>
c (sI −Ac)−1Bc = Wm(s) 1

km
. Defining the Lyapunov-like function

V =
e>Pce

2
+

k̃2
p

2γp
+

ã2
n−1

2γ1
+

p̃>1 Γ−1
1 p̃1

2
|kp|+ p̃>2 Γ−1

2 p̃2

2

where Pc = P>
c > 0 satisfies the algebraic equations of the LKY Lemma,

γ1, γp > 0 and Γi = Γ>i > 0, i = 1, 2, it follows that by choosing the adaptive
laws

˙̂an−1 = −γ1e1ξ2

˙̂p1 = Γ1e1ω1 sgn(kp)
˙̂p2 = −Γ2e1ω2 (6.6.21)

˙̂
kp =





−γpe1ξ1 if |k̂p| > k0

or if |k̂p| = k0 and e1ξ1 sgn(kp) ≤ 0
0 otherwise
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where k̂p(0) sgn(kp) ≥ k0 > 0 and k0 is a known lower bound for |kp|, we
have

V̇ =





−e> qq>
2 e− νce

>Lc
2 e if |k̂p| > 0 or if |k̂p| = k0 and

e1ξ1 sgn(kp) ≤ 0
−e> qq>

2 e− νce
>Lc

2 e + e1ξ1k̃p if |k̂p| = k0 and e1ξ1 sgn(kp) > 0

where the scalar νc > 0, matrix Lc = L>c > 0 and vector q are defined in the
LKY Lemma.

Because for e1ξ1 sgn(kp) > 0 and |k̂p| = k0 we have (k̂p−kp) sgn(kp) < 0
and e1ξ1k̃p < 0, it follows that

V̇ ≤ −νc
e>Lce

2

which implies that e1, e, ân−1, p̂1, p̂2, k̂p ∈ L∞ and e, e1 ∈ L2. As in Section
6.4.1, e1 ∈ L∞ implies that yp, ω1, ω2 ∈ L∞, which, together with θ ∈ L∞
(guaranteed by (6.6.16) and the boundedness of θp,

1
k̂p

), implies that up ∈
L∞. Therefore, all signals in the closed-loop system are bounded. The
convergence of e1 to zero follows from e1 ∈ L2 and ė1 ∈ L∞ guaranteed by
(6.6.18).

We summarize the stability properties of above scheme, whose main equa-
tions are listed in Table 6.8, by the following theorem.

Theorem 6.6.1 The indirect MRAC scheme shown in Table 6.8 guarantees
that all signals are u.b., and the tracking error e1 converges to zero as t →∞.

We should note that the properties of Theorem 6.6.1 are established un-
der the assumption that the calculation of θ(t) is performed instantaneously.
This assumption is quite reasonable if we consider implementation with a
fast computer. However, we can relax this assumption by using a hybrid
adaptive law to update θp at discrete instants of time thus providing suffi-
cient time for calculating θ(t). The details of such a hybrid scheme are left
as an exercise for the reader.

As in the case of the direct MRAC schemes with unnormalized adaptive
laws, the complexity of the indirect MRAC without normalization increases
with the relative degree n∗ of the plant. The details of such schemes for the
case of n∗ = 2 and higher are given as exercises in the problem section.
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Table 6.8 Indirect MRAC scheme with unnormalized adaptive
law for n∗ = 1

Plant yp = kp
Zp(s)
Rp(s)up, n∗ = 1

Reference
model

ym = Wm(s)r, Wm(s) = km
Zm(s)
Rm(s)

Control law

ω̇1 = Fω1 + gup

ω̇2 = Fω2 + gyp

up = θ>ω

θ =
[
θ>1 , θ>2 , θ3, c0

]
; ω = [ω>1 , ω>2 , yp, r]>

Adaptive law

˙̂
kp =





−γpe1ξ1 if |k̂p| > k0 or
if |k̂p| = k0 and e1ξ1sgn(kp) ≤ 0

0 otherwise
˙̂an−1 = −γ1e1ξ2
˙̂p1 = Γ1e1ω1 sgn(kp)
˙̂p2 = −Γ2e1ω2

e1 = yp − ym

ξ1 = λ>ω1 − up − p̂>1 ω1; ξ2 = yp − λ>ω2

Calculation
of θ(t)

c0(t) = km/k̂p(t)
θ1(t) = λ− p̂1(t)
θ2(t) = (p̂2(t)− ân−1(t)λ + rn−1λ− ν)/k̂p(t)
θ3(t) = (ân−1(t)− rn−1)/k̂p(t)

Design
variables

k0 : lower bound for |kp| ≥ k0 > 0; λ ∈ Rn−1 : coeffi-
cient vector of Λ(s)− sn−1; rn−1 ∈ R1 : coefficient of
sn−1 in Λ0(s)Rm(s); ν ∈ Rn−1 : coefficient vector of
Λ0(s)Rm(s)−sn−rn−1s

n−1; Λ(s), Λ0(s) as defined in
Section 6.4.1
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Another interesting class of indirect MRAC schemes with unnormalized
adaptive laws is developed in [116, 117, 118] using a systematic recursive
procedure, called backstepping. The procedure is based on a specific state
space representation of the plant and leads to control and adaptive laws that
are highly nonlinear.

6.6.3 Indirect MRAC with Normalized Adaptive Law

As in the direct MRAC case, the design of indirect MRAC with normalized
adaptive laws is conceptually simple. The simplicity arises from the fact that
the control and adaptive laws are designed independently and are combined
using the certainty equivalence approach. As mentioned earlier, in indirect
MRAC the adaptive law is designed to provide on-line estimates of the high
frequency gain kp and of the coefficients of the plant polynomials Zp(s), Rp(s)
by processing the plant input and output measurements. These estimates
are used to compute the controller parameters at each time t by using the
relationships defined by the matching equations (6.3.12), (6.3.16), (6.3.17).

The adaptive law is developed by first expressing the plant in the form
of a linear parametric model as shown in Chapters 2, 4, and 5. Starting with
the plant equation (6.3.2) that we express in the form

yp =
bmsm + bm−1s

m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
up

where bm = kp is the high frequency gain, and using the results of Sec-
tion 2.4.1 we obtain the following plant parametric model:

z = θ∗>p φ (6.6.22)

where

z =
sn

Λp(s)
yp, φ =

[
α>n−1(s)
Λp(s)

up,−
α>n−1(s)
Λp(s)

yp

]>

θ∗p = [0, . . . , 0︸ ︷︷ ︸
n−m−1

, bm, · · · , b0, an−1, . . . , a0]>

and Λp(s) = sn +λ>p αn−1(s) with λp = [λn−1, . . . , λ0]> is a Hurwitz polyno-
mial. Since in this case m is known, the first n −m − 1 elements of θ∗p are
known to be equal to zero.
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The parametric model (6.6.22) may be used to generate a wide class of
adaptive laws by using Tables 4.2 to 4.5 from Chapter 4. Using the estimate
θp(t) of θ∗p, the MRAC law may be formed as follows:

The controller parameter vectors θ1(t), θ2(t), θ3(t), c0(t) in the control
law

up = θ>1
α(s)
Λ(s)

up + θ>2
α(s)
Λ(s)

yp + θ3yp + c0r = θ>ω (6.6.23)

where ω=
[

α>(s)
Λ(s) up,

α>(s)
Λ(s) yp, yp, r

]>
, α(s)=αn−2(s) and θ=[θ>1 , θ>2 , θ3, c0]> is

calculated using the mapping θ(t) = f(θp(t)). The mapping f(·) is obtained
by using the matching equations (6.3.12), (6.3.16), (6.3.17), i.e.,

c∗0 =
km

kp

θ∗>1 α(s) = Λ(s)− Zp(s)Q(s) (6.6.24)

θ∗>2 α(s) + θ∗3Λ(s) =
Q(s)Rp(s)− Λ0(s)Rm(s)

kp

where Q(s) is the quotient of Λ0Rm
Rp

and Λ(s) = Λ0(s)Zm(s). That is, if

R̂p(s, t), ˆ̄Zp(s, t) are the estimated values of the polynomials Rp(s), Z̄p(s)
4
=

kpZp(s) respectively at each time t, then c0, θ1, θ2, θ3 are obtained as solu-
tions to the following polynomial equations:

c0 =
km

k̂p

θ>1 α(s) = Λ(s)− 1
k̂p

ˆ̄Zp(s, t) · Q̂(s, t) (6.6.25)

θ>2 α(s) + θ3Λ(s) =
1
k̂p

[Q̂(s, t) · R̂p(s, t)− Λ0(s)Rm(s)]

provided k̂p 6= 0, where Q̂(s, t) is the quotient of Λ0(s)Rm(s)

R̂p(s,t)
. Here A(s, t) ·

B(s, t) denotes the frozen time product of two operators A(s, t), B(s, t).
The polynomials R̂p(s, t), ˆ̄Zp(s, t) are evaluated from the estimate

θp = [0, . . . , 0︸ ︷︷ ︸
n−m−1

, b̂m, . . . , b̂0, ân−1, . . . , â0]>

of θ∗p, i.e.,
R̂p(s, t) = sn + ân−1s

n−1 + · · ·+ â0
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ˆ̄Zp(s, t) = b̂msm + b̂m−1s
m−1 + · · ·+ b̂0

k̂p = b̂m

As in Section 6.6.2, the estimate b̂m = k̂p should be constrained from going
through zero by using projection.

The equations of the indirect MRAC scheme are described by (6.6.23),
(6.6.25) where θ is generated by any adaptive law from Tables 4.2 to 4.5 based
on the parametric model (6.6.22). Table 6.9 summarizes the main equations
of an indirect MRAC scheme with the gradient algorithm as the adaptive
law. Its stability properties are summarized by the following theorem:

Theorem 6.6.2 The indirect MRAC scheme summarized in Table 6.9 guar-
antees that all signals are u.b., and the tracking error e1 = yp−ym converges
to zero as t →∞.

The proof of Theorem 6.6.2 is more complex than that for a direct MRAC
scheme due to the nonlinear transformation θp 7→ θ. The details of the
proof are given in Section 6.8. The number of filters required to generate
the signals ω, φ in Table 6.9 may be reduced from 4n− 2 to 2n by selecting
Λp(s) = (s + λ0)Λ(s) for some λ0 > 0 and sharing common signals in the
control and adaptive law.

Remark 6.6.1 Instead of the gradient algorithm, a least-squares or a hy-
brid adaptive law may be used in Table 6.9. The hybrid adaptive law
will simplify the computations considerably since the controller param-
eter vector θ will be calculated only at discrete points of time rather
than continuously.

The indirect MRAC scheme has certain advantages over the correspond-
ing direct scheme. First, the order of the adaptive law in the indirect case
is n + m + 1 compared to 2n in the direct case. Second, the indirect scheme
allows us to utilize any apriori information about the plant parameters to
initialize the parameter estimates or even reduce the order of the adaptive
law further as indicated by the following example.

Example 6.6.1 Consider the third order plant

yp =
1

s2(s + a)
up (6.6.26)
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Table 6.9 Indirect MRAC scheme with normalized adaptive law

Plant yp = Gp(s)up, Gp(s) = Z̄p(s)/Rp(s), Z̄p(s) = kpZp(s)

Reference
model ym = km

Zm(s)
Rm(s)r

Control
law

up = θ>ω

ω =
[
ω>1 , ω>2 , yp, r

]>
, θ =

[
θ>1 , θ>2 , θ3, c0

]>

ω1 = αn−2(s)
Λ(s) up, ω2 = αn−2(s)

Λ(s) yp

Adaptive
law

˙̂p1 = Γ1φ̄1ε, ˙̂p2 = Γ2φ2ε

˙̂
kp =





γmεφ1m if |k̂p| > k0 or
if |k̂p| = k0 and φ1mεsgn(kp) ≥ 0

0 otherwise
k̂p(0)sgn(kp) ≥ k0 > 0
ε = (z − ẑ)/m2, z = yp + λ>p φ2

ẑ = θ>p φ, m2 = 1 + φ>φ, φ = [φ>1 , φ>2 ]>

θp = [0, . . . , 0︸ ︷︷ ︸
n−m−1

, k̂p, p̂
>
1 , p̂>2 ]>

φ1 = αn−1(s)
Λp(s) up, φ2 = −αn−1(s)

Λp(s) yp

φ1 = [φ>0 , φ̄>1 ]>, φ0 ∈ Rn−m, φ̄1 ∈ Rm

φ1m ∈ R1 is the last element of φ0

p̂1 = [b̂m−1, . . . , b̂0]>, p̂2 = [ân−1, . . . , â0]>
ˆ̄Zp(s, t)= k̂ps

m+p̂>1 αm−1(s), R̂p(s, t)=sn+p̂>2 αn−1(s)

Calculation
of θ

c0(t) = km

k̂p(t)

θ>1 (t)αn−2(s) = Λ(s)− 1
k̂p(t)

ˆ̄Zp(s, t) · Q̂(s, t)

θ>2 (t)αn−2(s) + θ3(t)Λ(s)
= 1

k̂p
(Q̂(s, t) · R̂p(s, t)− Λ0(s)Rm(s))

Q̂(s, t) = quotient of Λ0(s)Rm(s)/R̂p(s, t)

Design
variables

k0: lower bound for |kp| ≥ k0 > 0; Λp(s): monic Hurwitz
of degree n; For simplicity, Λp(s) = (s + λ0)Λ(s), λ0 > 0;
Λ(s)=Λ0(s)Zm(s); Γ1 =Γ>1 >0, Γ2 =Γ>2 >0; Γ1∈Rm×m,
Γ2 ∈ Rn×n; λp ∈ Rn is the coefficient vector of Λp(s)−sn



6.6. INDIRECT MRAC 411

where a is the only unknown parameter. The output yp is required to track the
output of ym of the reference model

ym =
1

(s + 2)3
r

The control law is given by

up = θ11
s

(s + λ1)2
up+θ12

1
(s + λ1)2

up+θ21
s

(s + λ1)2
yp+θ22

1
(s + λ1)2

yp+θ3yp+c0r

where θ = [θ11, θ12, θ21, θ22, θ3, c0]> ∈ R6. In direct MRAC, θ is generated by a
sixth-order adaptive law. In indirect MRAC, θ is calculated from the adaptive law
as follows:

Using Table 6.9, we have

θp = [0, 0, 1, â, 0, 0]>

˙̂a = γaφaε

ε =
z − ẑ

1 + φ>φ
, ẑ = θ>p φ, z = yp + λ>p φ2

φ = [φ>1 , φ>2 ]>, φ1 =
[s2, s, 1]>

(s + λ1)3
up, φ2 = − [s2, s, 1]>

(s + λ1)3
yp

where Λp(s) is chosen as Λp(s) = (s + λ1)3, λp = [3λ1, 3λ2
1, λ

3
1]
>.

φa = [0, 0, 0, 1, 0, 0, ]φ = − s2

(s + λ1)3
yp

and γa > 0 is a constant. The controller parameter vector is calculated as

c0 = 1, θ>1

[
s
1

]
= (s + λ1)2 − Q̂(s, t)

θ>2

[
s
1

]
+ θ3(s + λ1)2 = Q̂(s, t) · [s3 + âs2]− (s + λ1)2(s + 2)3

where Q̂(s, t) is the quotient of (s+λ1)
2(s+2)3

s3+âs2 . 5

The example demonstrates that for the plant (6.6.26), the indirect scheme
requires a first order adaptive law whereas the direct scheme requires a sixth-
order one.
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6.7 Relaxation of Assumptions in MRAC

The stability properties of the MRAC schemes of the previous sections are
based on assumptions P1 to P4, given in Section 6.3.1. While these as-
sumptions are shown to be sufficient for the MRAC schemes to meet the
control objective, it has often been argued whether they are also necessary.
We have already shown in the previous sections that assumption P4 can be
completely relaxed at the expense of a more complex adaptive law, therefore
P4 is no longer necessary for meeting the MRC objective. In this section we
summarize some of the attempts to relax assumptions P1 to P3 during the
1980s and early 1990s.

6.7.1 Assumption P1: Minimum Phase

This assumption is a consequence of the control objective in the known
parameter case that requires the closed-loop plant transfer function to be
equal to that of the reference model. Since this objective can only be achieved
by cancelling the zeros of the plant and replacing them by those of the
reference model, Zp(s) has to be Hurwitz, otherwise zero-pole cancellations
in C+ will take place and lead to some unbounded state variables within the
closed-loop plant. The assumption of minimum phase in MRAC has often
been considered as one of the limitations of adaptive control in general, rather
than a consequence of the MRC objective, and caused some confusion to
researchers outside the adaptive control community. One of the reasons for
such confusion is that the closed-loop MRAC scheme is a nonlinear dynamic
system and zero-pole cancellations no longer make much sense. In this case,
the minimum phase assumption manifests itself as a condition for proving
that the plant input is bounded by using the boundedness of other signals
in the closed-loop.

For the MRC objective and the structures of the MRAC schemes pre-
sented in the previous sections, the minimum phase assumption seems to be
not only sufficient, but also necessary for stability. If, however, we modify
the MRC objective not to include cancellations of unstable plant zeros, then
it seems reasonable to expect to be able to relax assumption P1. For exam-
ple, if we can restrict ourselves to changing only the poles of the plant and
tracking a restricted class of signals whose internal model is known, then we
may be able to allow plants with unstable zeros. The details of such designs



6.7. RELAXATION OF ASSUMPTIONS IN MRAC 413

that fall in the category of general pole placement are given in Chapter 7.
It has often been argued that if we assume that the unstable zeros of the
plant are known, we can include them to be part of the zeros of the reference
model and design the MRC or MRAC scheme in a way that allows only the
cancellation of the stable zeros of the plant. Although such a design seems
to be straightforward, the analysis of the resulting MRAC scheme requires
the incorporation of an adaptive law with projection. The projection in turn
requires the knowledge of a convex set in the parameter space where the es-
timation is to be constrained. The development of such a convex set in the
higher order case is quite awkward, if possible. The details of the design and
analysis of MRAC for plants with known unstable zeros for discrete-time
plants are given in [88, 194].

The minimum phase assumption is one of the main drawbacks of MRAC
for the simple reason that the corresponding discrete-time plant of a sampled
minimum phase continuous-time plant is often nonminimum phase [14].

6.7.2 Assumption P2: Upper Bound for the Plant Order

The knowledge of an upper bound n for the plant order is used to determine
the order of the MRC law. This assumption can be completely relaxed if the
MRC objective is modified. For example, it has been shown in [102, 159, 160]
that the control objective of regulating the output of a plant of unknown
order to zero can be achieved by using simple adaptive controllers that are
based on high-gain feedback, provided the plant is minimum phase and the
plant relative degree n∗ is known. The principle behind some of these high-
gain stabilizing controllers can be explained for a minimum phase plant with
n∗ = 1 and arbitrary order as follows: Consider the following minimum phase
plant with relative degree n∗ = 1:

yp =
kpZp(s)
Rp(s)

up

From root locus arguments, it is clear that the input

up = −θypsgn(kp)

with sufficiently large gain θ will force the closed loop characteristic equation

Rp(s) + |kp|θZp(s) = 0
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to have roots in Re [s] < 0. Having this result in mind, it can be shown that
the adaptive control law

up = − θypsgn (kp) , θ̇ = y2
p

can stabilize any minimum phase plant with n∗ = 1 and of arbitrary or-
der. As n∗ increases, the structure and analysis of the high gain adaptive
controllers becomes more complicated [159, 160].

Another class of adaptive controllers for regulation that attracted con-
siderable interest in the research community is based on search methods and
discontinuous adjustments of the controller gains [58, 137, 147, 148]. Of par-
ticular theoretical interest is the controller proposed in [137] referred to as
universal controller that is based on the rather weak assumption that only
the order nc of a stabilizing linear controller needs to be known for the sta-
bilization and regulation of the output of the unknown plant to zero. The
universal controller is based on an automated dense search throughout the
set of all possible nc-order linear controllers until it passes through a subset
of stabilizing controllers in a way that ensures asymptotic regulation and the
termination of the search. One of the drawbacks of the universal controller is
the possible presence of large overshoots as pointed out in [58] which limits
its practicality.

An interesting MRAC scheme that is also based on high gain feedback
and discontinuous adjustment of controller gains is given in [148]. In this
case, the MRC objective is modified to allow possible nonzero tracking errors
that can be forced to be less than a prespecified (arbitrarily small) constant
after an (arbitrarily short) prespecified period of time, with an (arbitrarily
small) prespecified upper bound on the amount of overshoot. The only
assumption made about the unknown plant is that it is minimum phase.

The adaptive controllers of [58, 137, 147, 148] where the controller gains
are switched from one constant value to another over intervals of times based
on some cost criteria and search methods are referred to in [163] as non-
identifier-based adaptive controllers to distinguish them from the class of
identifier-based ones that are studied in this book.

6.7.3 Assumption P3: Known Relative Degree n∗

The knowledge of the relative degree n∗ of the plant is used in the MRAC
schemes of the previous sections in order to develop control laws that are free
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of differentiators. This assumption may be relaxed at the expense of addi-
tional complexity in the control and adaptive laws. For the identifier-based
schemes, several approaches have been proposed that require the knowledge
of an upper bound n∗u for n∗ [157, 163, 217]. In the approach of [163], n∗u
parameterized controllers Ci, i = 1, 2, . . . , n∗u are constructed in a way that
Ci can meet the MRC objective for a reference model Mi of relative degree i

when the unknown plant has a relative degree i. A switching logic with hys-
teresis is then designed that switches from one controller to another based
on some error criteria. It is established in [165] that switching stops in finite
time and the MRC objective is met exactly.

In another approach given in [217], the knowledge of an upper bound n∗u
and lower bound n∗l of n∗ are used to construct a feedforward dynamic term
that replaces cor in the standard MRC law, i.e., up is chosen as

up = θ>1
α(s)
Λ(s)

+ θ>2
α(s)
Λ(s)

+ θ3yp + θ>4 b1(s)n1(s)Wm(s)r

where b1(s) =
[
1, s, . . . , sn̄∗

]>
, n̄∗ = n∗u − n∗l , θ∗4 ∈ Rn̄∗+1 and n1(s) is an

arbitrary monic Hurwitz polynomial of degree n∗l . The relative degree of
the transfer function Wm(s) of the reference model is chosen to be equal to
n∗u. It can be shown that for some constant vectors θ∗1, θ∗2, θ∗3, θ∗4 the MRC
objective is achieved exactly, provided θ∗4 is chosen so that kpθ

∗>
4 b1(s) is a

monic Hurwitz polynomial of degree n∗ − n∗l ≤ n̄∗, which implies that the
last n̄∗ − n∗ − n∗l elements of θ∗ are equal to zero.

The on-line estimate θi of θ∗i , i = 1, . . . , 4 is generated by an adaptive law
designed by following the procedure of the previous sections. The adaptive
law for θ4, however, is modified using projection so that θ4 is constrained
to be inside a convex set C which guarantees that kpθ

>
4 b1(s) is a monic

Hurwitz polynomial at each time t. The development of such set is trivial
when the uncertainty in the relative degree, i.e., n̄∗ is less or equal to 2. For
uncertainties greater than 2, the calculation of C, however, is quite involved.

6.7.4 Tunability

The concept of tunability introduced by Morse in [161] is a convenient tool for
analyzing both identifier and nonidentifier-based adaptive controllers and for
discussing the various questions that arise in conjunction with assumptions



416 CHAPTER 6. MODEL REFERENCE ADAPTIVE CONTROL

P1 to P4 in MRAC. Most of the adaptive control schemes may be represented
by the equations

ẋ = A(θ)x + B (θ) r

ε1 = C(θ)x (6.7.1)

where θ : R+ 7→ Rn is the estimated parameter vector and ε1 is the estima-
tion or tuning error.

Definition 6.7.1 [161, 163] The system (6.7.1) is said to be tunable on a
subset S ⊂ Rn if for each θ ∈ S and each bounded input r, every possible
trajectory of the system for which ε1(t) = 0, t ∈ [0,∞) is bounded.

Lemma 6.7.1 The system (6.7.1) is tunable on S if and only if {C(θ),A(θ)}
is detectable for each θ ∈ S.

If {C(θ), A(θ)} is not detectable, then it follows that the state x may grow un-
bounded even when adaptation is successful in driving ε1 to zero by adjusting
θ. One scheme that may exhibit such a behavior is a MRAC of the type
considered in previous sections that is designed for a nonminimum-phase
plant. In this case, it can be established that the corresponding system of
equations is not detectable and therefore not tunable.

The concept of tunability may be used to analyze the stability properties
of MRAC schemes by following a different approach than those we discussed
in the previous sections. The details of this approach are given in [161, 163]
where it is used to analyze a wide class of adaptive control algorithms. The
analysis is based on deriving (6.7.1) and establishing that {C(θ), A(θ)} is
detectable, which implies tunability. Detectability guarantees the existence
of a matrix H(θ) such that for each fixed θ ∈ S the matrix Ac(θ) = A(θ)−
H(θ)C(θ) is stable. Therefore, (6.7.1) may be written as

ẋ = [A (θ)−H(θ)C(θ)]x + B(θ)r + H(θ)ε1 (6.7.2)

by using the so called output injection. Now from the properties of the adap-
tive law that guarantees θ̇, ε1

m ∈ L2 where m = 1 + (C>
0 x)2 for some vector

C0, we can establish that the homogeneous part of (6.7.2) is u.a.s., which,
together with the B-G Lemma, guarantees that x ∈ L∞. The boundedness
of x can then be used in a similar manner as in the previous sections to es-
tablish the boundedness of all signals in the closed loop and the convergence
of the tracking error to zero.
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6.8 Stability Proofs of MRAC Schemes

6.8.1 Normalizing Properties of Signal mf

In Section 6.5, we have defined the fictitious normalizing signal mf

m2
f
4
= 1 + ‖up‖2 + ‖yp‖2 (6.8.1)

where ‖ · ‖ denotes the L2δ-norm, and used its normalizing properties to establish
stability of the closed-loop MRAC for the adaptive tracking and regulation exam-
ples. We now extend the results to the general SISO MRAC scheme as follows:

Lemma 6.8.1 Consider the plant equation (6.3.2) and control law (6.5.39). There
exists a δ > 0 such that:
(i) ω1/mf , ω2/mf ∈ L∞.
(ii) If θ ∈ L∞, then up/mf , yp/mf , ω/mf ,W (s)ω/mf ∈ L∞ where W (s) is a

proper transfer function with stable poles.
(iii) If ṙ, θ ∈ L∞, then in addition to (i) and (ii), we have ‖ẏp‖/mf , ‖ω̇‖/mf ∈ L∞.

Proof (i) Because

ω1 =
α(s)
Λ(s)

up, ω2 =
α(s)
Λ(s)

yp

and each element of α(s)
Λ(s) has relative degree greater or equal to 1, it follows from

Lemma 3.3.2 and the definition of mf that ω1/mf , ω2/mf ∈ L∞.
(ii) We can apply Lemma 3.3.2 to equation (6.5.42), i.e.,

yp = Wm(s)
(

r +
1
c∗0

θ̃>ω

)

to obtain (using θ ∈ L∞) that

|yp(t)| ≤ c + c‖θ̃>ω‖ ≤ c + c‖ω‖

where c ≥ 0 denotes any finite constant and ‖ · ‖ the L2δ norm. On the other hand,
we have

‖ω‖ ≤ ‖ω1‖+ ‖ω2‖+ ‖yp‖+ ‖r‖ ≤ c‖up‖+ c‖yp‖+ c ≤ cmf + c

therefore, yp

mf
∈ L∞. Because ω = [ω>1 , ω>2 , yp, r]> and ω1/mf , ω2/mf , yp/mf ,

r/mf ∈ L∞, it follows that ω/mf ∈ L∞. From up = θ>ω and ω/mf , θ ∈ L∞ we

conclude that up/mf ∈ L∞. Consider φ
4
= W (s)ω. We have |φ| ≤ c‖ω‖ for some

δ > 0 such that W (s− δ
2 ) is stable. Hence, φ

mf
∈ L∞ due to ‖ω‖/mf ∈ L∞.
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(iii) Note that ẏp = sWm(s)[r + 1
c∗0

θ̃>ω] and sWm(s) is a proper stable transfer
function, therefore from Lemma 3.3.2 we have

‖ẏp‖ ≤ c + c‖θ̃>ω‖ ≤ c + cmf

i.e., ‖ẏp‖/mf ∈ L∞. Similarly, because ‖ω̇‖ ≤ ‖ω̇1‖+ ‖ω̇2‖+ ‖ẏp‖+ ‖ṙ‖, applying
Lemma 3.3.2 we have ‖ω̇1‖ ≤ c‖up‖, ‖ω̇2‖ ≤ c‖yp‖ which together with ‖ẏp‖

mf
, ṙ ∈ L∞

imply that ‖ω̇‖/mf ∈ L∞ and the lemma is proved. In (i) to (iii), δ > 0 is chosen
so that 1

Λ(s) ,Wm(s),W (s) are analytic in Re[s] ≥ δ/2. 2

6.8.2 Proof of Theorem 6.5.1: Direct MRAC

In this section we present all the details of the proof in the five steps outlined in
Section 6.5.3.

Step 1. Express the plant input and output in terms of the adaptation error
θ̃>ω. From Figure 6.14, we can verify that the transfer function between the input
r + 1

c∗0
θ̃>ω and the plant output yp is given by

yp = Gc(s)
(

r +
1
c∗0

θ̃>ω

)

where

Gc(s) =
c∗0kpZp

(1− θ∗>1 (sI − F )−1g)Rp − kpZp[θ∗>2 (sI − F )−1g + θ∗3 ]

Using (6.3.12), (6.3.13), and (sI−F )−1g= α(s)
Λ(s) , we have, after cancellation of

all the stable common zeros and poles in Gc(s), that Gc(s) = Wm(s). Therefore,
the plant output may be written as

yp = Wm(s)
(

r +
1
c∗0

θ̃>ω

)
(6.8.2)

Because yp = Gp(s)up and G−1
p (s) has stable poles, we have

up = G−1
p (s)Wm(s)

(
r +

1
c∗0

θ̃>ω

)
(6.8.3)

where G−1
p (s)Wm(s) is stable (due to assumption P1) and biproper (due to assump-

tion M2). For simplicity, let us denote the L2δ-norm ‖(·)t‖2δ for some δ > 0 by

‖ · ‖. Using the fictitious normalizing signal m2
f

4
= 1+‖up‖2 +‖yp‖2, it follows from

(6.8.2), (6.8.3) and Lemma 3.3.2 that

m2
f ≤ c + c‖θ̃>ω‖2 (6.8.4)
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holds for some δ > 0 such that Wm(s−δ/2)G−1
p (s−δ/2) is a stable transfer function,

where c ≥ 0 in (6.8.4) and in the remainder of this section denotes any finite
constant. The normalizing properties of mf have been established in Section 6.8.1,
i.e., all signals in the closed-loop adaptive system and some of their derivatives are
bounded from above by mf provided θ ∈ L∞.

Step 2. Use the swapping lemmas and properties of the L2δ norm to bound
‖θ̃>ω‖ from above with terms that are guaranteed by the adaptive law to have finite
L2 gains. Using the Swapping Lemma A.2 in Appendix A, we can express θ̃>ω as

θ̃>ω = F1(s, α0)
(

˙̃
θ
>

ω + θ̃>ω̇

)
+ F (s, α0)

(
θ̃>ω

)
(6.8.5)

where F (s, α0) = αn∗
0

(s+α0)n∗ , F1(s, α0) = 1−F (s,α0)
s , α0 > 0 is an arbitrary con-

stant and n∗ is the relative degree of Wm(s). On the other hand, using Swapping
Lemma A.1, we can write

θ̃>ω = W−1(s)
(
θ̃>W (s)ω + Wc(s)((Wb(s)ω>) ˙̃θ)

)
(6.8.6)

where W (s) is a strictly proper transfer function with poles and zeros in C− that
we will specify later. Using (6.8.6) in (6.8.5) we obtain

θ̃>ω = F1[
˙̃
θ
>

ω + θ̃>ω̇] + FW−1[θ̃>W (s)ω + Wc((Wbω
>) ˙̃θ)] (6.8.7)

where F (s)W−1(s) can be made proper by choosing W (s) appropriately.
We obtain a bound for ‖θ̃>ω‖ by considering each adaptive law separately.

Adaptive Law of Table 6.5. We express the normalized estimation error as

ε = WmL(ρ∗θ̃>φ− ρ̃ξ − εn2
s)

i.e.,

θ̃>φ = θ̃>L−1ω =
1
ρ∗

(W−1
m L−1ε + ρ̃ξ + εn2

s) (6.8.8)

Choosing W (s) = L−1(s) and substituting for θ̃>W (s)ω = θ̃>L−1(s)ω from (6.8.8)
into (6.8.7), we obtain

θ̃>ω = F1(
˙̃
θ
>

ω + θ̃>ω̇) +
1
ρ∗

FW−1
m ε + FL

[
ρ̃

ρ∗
ξ +

εn2
s

ρ∗
+ Wc(Wbω

>) ˙̃θ
]

Now from the definition of ξ and using Swapping Lemma A.1 with W (s) =
L−1(s), we have ξ = uf − θ>φ = L−1up − θ>φ, i.e.,

ξ = −θ>φ + L−1θ>ω = Wc[(Wbω
>)θ̇]
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Therefore,

θ̃>ω = F1[
˙̃
θ
>

ω + θ̃>ω̇] +
1
ρ∗

FW−1
m ε +

1
ρ∗

FL[ρWc(Wbω
>)θ̇ + εn2

s] (6.8.9)

From the definition of F (s), F1(s) and Swapping Lemma A.2, it follows that for
α0 > δ

‖F1(s)‖∞δ ≤ c

α0
, ‖F (s)W−1

m (s)‖∞δ ≤ cαn∗
0

Therefore,

‖θ̃>ω‖ ≤ c

α0
(‖ ˙̃

θ
>

ω‖+ ‖θ̃>ω̇‖) + cαn∗
0 (‖ε‖+ ‖ω̄‖+ ‖εn2

s‖) (6.8.10)

where ω̄ = ρWc(s)[Qb(t)θ̇], Qb = Wb(s)ω>. Using Lemma 3.3.2, we can show that
Qb/mf ∈ L∞ and, therefore,

‖ω̄‖ ≤ c‖ ˙̃
θmf‖ (6.8.11)

Using the normalizing properties of mf established in Lemma 6.8.1, we have

‖ ˙̃
θ
>

ω‖ ≤ c‖θ̇mf‖, ‖θ̃>ω̇‖ ≤ c‖ω̇‖ ≤ cmf , ‖εn2
s‖ ≤ c‖εnsmf‖

It, therefore, follows from (6.8.10), (6.8.11) that

‖θ̃>ω‖ ≤ c

α0
‖θ̇mf‖+

c

α0
mf + cαn∗

0 (‖ε‖+ ‖θ̇mf‖+ ‖εnsmf‖) (6.8.12)

which we express as
‖θ̃>ω‖ ≤ cαn∗

0 ‖g̃mf‖+
c

α0
mf (6.8.13)

where g̃2 = ε2n2
s + ε2 + |θ̇|2, by taking α0 > 1 so that 1

α0
≤ αn∗

0 and using ‖ε‖ ≤
‖εmf‖ due to mf ≥ 1. Since εns, ε, θ̇ ∈ L2, it follows that g̃ ∈ L2.

Adaptive Laws of Table 6.6. The normalized estimation error is given by

ε =
Wm(s)up − ẑ

1 + n2
s

= − θ̃>φp

1 + n2
s

, n2
s = φ>p φp

where φp = [Wm(s)ω>1 ,Wm(s)ω>2 ,Wm(s)yp, yp]>. Let

ωp = [ω>1 , ω>2 , yp,W
−1
m yp]>

then φp = Wm(s)ωp. To relate θ̃>ω with ε, we write

θ̃>ω = θ̃>0 ω0 + c̃0r
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where ω0 = [ω>1 , ω>2 , yp]> and θ̃0 = [θ̃>1 , θ̃>2 , θ̃3]>. From

yp = Wm(r +
1
c∗0

θ̃>ω)

we have r = W−1
m yp − 1

c∗0
θ̃>ω, therefore,

θ̃>ω = θ̃>0 ω0 + c̃0W
−1
m [yp]− c̃0

c∗0
θ̃>ω = θ̃>ωp − c̃0

c∗0
θ̃>ω

i.e.,

θ̃>ω =
c∗0
c0

θ̃>ωp (6.8.14)

Using φp = Wm(s)ωp and applying Swapping Lemma A.1 we have

Wm(s)θ̃>ωp = θ̃>φp + Wc(Wbω
>
p ) ˙̃θ

From Swapping Lemma A.2, we have

θ̃>ωp = F1(
˙̃
θ
>

ωp + θ̃>ω̇p) + F (θ̃>ωp)

where F1(s), F (s) satisfy ‖F1(s)‖∞δ‖ ≤ c
α0

, ‖F (s)W−1
m (s)‖∞δ ≤ cαn∗

0 for α0 > δ.
Using the above two inequalities, we obtain

θ̃>ωp = F1(
˙̃
θ
>

ωp + θ̃>ω̇p) + FW−1
m [θ̃>φp + Wc(Wbω

>
p ) ˙̃θ] (6.8.15)

Using (6.8.14) we obtain

˙̃
θ
>

ωp + θ̃>ω̇p =
ċ0

c∗0
θ̃>ω +

c0

c∗0
˙̃
θ
>

ω +
c0

c∗0
θ̃>ω̇

which we use together with θ̃>φp = −ε− εn2
s to express (6.8.15) as

θ̃>ωp = F1

(
ċ0

c∗0
θ̃>ω +

c0

c∗0
˙̃
θ
>

ω +
c0

c∗0
θ̃>ω̇

)
+FW−1

m [−ε−εn2
s+Wc(Wbω

>
p ) ˙̃θ] (6.8.16)

Due to the boundedness of 1
c0

, it follows from (6.8.14) that

‖θ̃>ω‖ ≤ c‖θ̃>ωp‖ (6.8.17)

Using the same arguments as we used in establishing (6.8.13) for the adaptive laws
of Table 6.5, we use (6.8.16), (6.8.17) and the normalizing properties of mf to obtain

‖θ̃>ω‖ ≤ c‖θ̃>ωp‖ ≤ cαn∗
0 ‖g̃mf‖+

c

α0
mf (6.8.18)
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where g̃ ∈ L2.

Step 3. Use the B-G Lemma to establish signal boundedness. Using (6.8.13) or
(6.8.18) in m2

f ≤ c + c‖θ̃>ω‖2, we have

m2
f ≤ c + cα2n∗

0 ‖g̃mf‖2 +
c

α2
0

m2
f (6.8.19)

which for large α0 implies

m2
f ≤ c + cα2n∗

0 ‖g̃mf‖2

for some other constant c ≥ 0. The boundedness of mf follows from g̃ ∈ L2 and
the B-G Lemma.

Because mf , θ ∈ L∞, it follows from Lemma 6.8.1 that up, yp, ω ∈ L∞ and
therefore all signals in the closed-loop plant are bounded.

Step 4. Establish convergence of the tracking error to zero. Let us now consider
the equation for the tracking error that relates e1 with signals that are guaranteed
by the adaptive law to be in L2. For the adaptive law of Table 6.5(A), we have

e1 = ε + WmLεn2
s + WmLρξ

Because ξ = L−1θ>ω − θ>φ = Wc(Wbω
>)θ̇, ε, εns, θ̇ ∈ L2 and ω, ns ∈ L∞, it

follows that e1 ∈ L2. In addition we can establish, using (6.8.2), that ė1 ∈ L∞ and
therefore from Lemma 3.2.5, we conclude that e1(t) → 0 as t →∞.

For the adaptive laws of Table 6.5(B,C) the proof follows by using L(s)=W−1
m (s)

and following exactly the same arguments as above. For the adaptive laws of Ta-
ble 6.6 we have

εm2 = Wmθ>ω − θ>φp

Applying Swapping Lemma A.1, we have

Wmθ>ω = θ>Wmω + Wc(Wbω
>)θ̇

i.e.,
εm2 = θ>[Wmω − φp] + Wc(Wbω

>)θ̇

Now, Wmω − φp = [0, . . . , 0,−e1]>, hence,

c0e1 = −εm2 + Wc(Wbω
>)θ̇

Because 1
c0

,m, ω are bounded and εm, θ̇ ∈ L2, it follows that e1 ∈ L2. As before we
can use the boundedness of the signals to show that ė1 ∈ L∞ which together with
e1 ∈ L2 imply that e1(t) → 0 as t →∞.
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Step 5. Establish parameter convergence. First, we show that φ, φp are PE if
r is sufficiently rich of order 2n. From the definition of φ, we can write

φ = H(s)




(sI − F )−1gup

(sI − F )−1gyp

yp

r




where H(s) = Wm(s) if the adaptive law of Table 6.5(B) is used and H(s) = L−1(s)
if that of Table 6.5(A) is used. Using up = G−1

p (s)yp and yp = Wm(s)r + e1, we
have

φ = φm + φ̄

where

φm =H(s)




(sI − F )−1gG−1
p (s)Wm(s)

(sI − F )−1gWm(s)
Wm(s)

1


r, φ̄=H(s)




(sI − F )−1gG−1
p (s)

(sI − F )−1g
1
0


e1

Because e1 ∈ L2, it follows from the properties of the PE signals that φ is PE if
and only if φm is PE. In the proof of Theorem 6.4.1 and 6.4.2, we have proved that

φ0
4
=




(sI − F )−1gG−1
p (s)Wm(s)

(sI − F )−1gWm(s)
Wm(s)

1


 r

is PE provided r is sufficiently rich of order 2n. Because H(s) is stable and minimum
phase and φ̇0 ∈ L∞ owing to ṙ ∈ L∞, it follows from Lemma 4.8.3 (iv) that
φm = H(s)φ0 is PE.

From the definition of φp, we have

φp =Wm(s)




(sI−F )−1gG−1
p (s)Wm(s)

(sI − F )−1gWm(s)
Wm(s)

1


r +




Wm(s)(sI−F )−1gG−1
p (s)

Wm(s)(sI − F )−1g
Wm(s)

1


e1

Because φp has the same form as φ, the PE property of φp follows by using the
same arguments.

We establish the convergence of the parameter error and tracking error to zero
as follows: First, let us consider the adaptive laws of Table 6.5. For the adaptive
law based on the SPR-Lyapunov approach (Table 6.5(A)), we have

ε = WmL(ρ∗θ̃>φ− ρ̃ξ − εn2
s)

˙̃
θ = −Γεφsgn(kp/km) (6.8.20)
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where C>c (sI − Ac)−1Bc = Wm(s)L(s) is SPR. The stability properties of (6.8.20)
are established by Theorem 4.5.1 in Chapter 4. According to Theorem 4.5.1 (iii),
θ̃(t) → 0 as t → ∞ provided φ, φ̇ ∈ L∞, φ is PE and ξ ∈ L2. Because ξ =
Wc(Wbω

>)θ̇ and ω ∈ L∞, θ̇ ∈ L2, we have ξ ∈ L2. From up, yp ∈ L∞ and the
expression for φ, we can establish that φ, φ̇ ∈ L∞. Because φ is shown to be PE,
the convergence of θ̃(t) to zero follows. From θ̃(t) → 0 as t → ∞ and ρ̃ξ, εn2

s ∈ L2

and the stability of Ac, we have that e(t) → 0 as t → ∞. In fact, the convergence
of e(t) to zero follows from the properties of the Lyapunov-like function used to
analyze (6.8.20) in Theorem 4.5.1 without requiring φ to be PE.

The proof for the adaptive law of Table 6.5(B) follows from the above arguments
by replacing L−1(s) with Wm(s) and using the results of Theorem 4.5.2 (iii).

For the adaptive laws of Table 6.6, we have established in Chapter 4 that without
projection, θ̃(t) → 0 as t →∞ exponentially fast provided φp is PE. Since projection
can only make the derivative V̇ of the Lyapunov-like function V , used to analyze the
stability properties of the adaptive law, more negative the exponential convergence
of θ̃ to zero can be established by following exactly the same steps as in the case of
no projection.

6.8.3 Proof of Theorem 6.6.2: Indirect MRAC

We follow the same steps as in proving stability for the direct MRAC scheme:

Step 1. Express yp, up in terms of θ̃>ω. Because the control law for the indirect
MRAC is the same as the direct MRAC scheme, equations (6.8.2), (6.8.3) still hold,
i.e., we have

yp = Wm(s)
(

r +
1
c∗0

θ̃>ω

)
, up = G−1

p (s)Wm(s)
(

r +
1
c∗0

θ̃>ω

)

As in the direct case, we define the fictitious normalizing signal

m2
f
4
= 1 + ‖up‖2 + ‖yp‖2

where ‖ · ‖ denotes the L2δ-norm for some δ > 0. Using the same arguments as in
the proof of Theorem 6.5.1, we have

m2
f ≤ c + c‖θ̃>ω‖2

Step 2. We upper bound ‖θ̃>ω‖ with terms that are guaranteed by the adaptive
laws to have L2 gains. From (6.6.25), we have

θ>1 αn−2(s) = Λ(s)− 1

k̂p

ˆ̄Zp(s, t) · Q̂(s, t) (6.8.21)
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θ>2 αn−2(s) + θ3Λ(s) =
1

k̂p

[Q̂(s, t) · R̂p(s, t)− Λ0(s)Rm(s)] (6.8.22)

Consider the above polynomial equations as operator equations. We apply (6.8.21)
to the signal Wm(s)

Λ(s) up, and (6.8.22) to Wm(s)
Λ(s) yp to obtain

θ>1 Wm(s)ω1 = Wm(s)up − 1

k̂p

ˆ̄Zp(s, t) · Q̂(s, t)
Wm(s)
Λ(s)

up

θ>2 Wm(s)ω2 + θ3Wm(s)yp =
1

k̂p

[Q̂(s, t) · R̂p(s, t)− Λ0(s)Rm(s)]
Wm(s)
Λ(s)

yp

Combining these two equations, we have

θ>0 Wm(s)ω0 = Wm(s)up − 1

k̂p

ˆ̄Zp(s, t) · Q̂(s, t)
Wm(s)
Λ(s)

up

+
1

k̂p

[Q̂(s, t) · R̂p(s, t)− Λ0(s)Rm(s)]
Wm(s)
Λ(s)

yp (6.8.23)

where θ0 = [θ>1 , θ>2 , θ3]>, ω0 = [ω>1 , ω>2 , yp]>. Repeating the same algebraic manip-
ulation, but replacing θ, θp by θ∗, θ∗p in the polynomial equations, we have

θ∗>0 Wm(s)ω0 = Wm(s)up − Z̄p(s)Q(s)
kp

Wm(s)
Λ(s)

up

+
Q(s)Rp(s)− Λ0(s)Rm(s)

kp

Wm(s)
Λ(s)

yp (6.8.24)

where Q(s) is the quotient of Λ0(s)Rm(s)/Rp(s) whose order is n∗ − 1 and n∗ is
the relative degree of Gp(s). Subtracting (6.8.24) from (6.8.23), we have

θ̃>0 Wm(s)ω0 =

{
− 1

k̂p

ˆ̄Zp(s, t) · Q̂(s, t)
Wm(s)
Λ(s)

up+
1

k̂p

Q̂(s, t) · R̂p(s, t)
Wm(s)
Λ(s)

yp

}

−
{

1

k̂p

Λ0(s)Rm(s)
Λ(s)

Wm(s)yp − 1
kp

Λ0(s)Rm(s)
Λ(s)

Wm(s)yp

}

+
{

Z̄p(s)Q(s)
kpΛ(s)

Wm(s)up − Rp(s)Q(s)
kpΛ(s)

Wm(s)yp

}

4
= ef − e1f + e2f (6.8.25)

where θ̃0
4
= θ0 − θ∗0 and

ef
4
= − 1

k̂p

ˆ̄Zp(s, t) · Q̂(s, t)
Wm(s)
Λ(s)

up +
1

k̂p

Q̂(s, t) · R̂p(s, t)
Wm(s)
Λ(s)

yp
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e1f , e2f are defined as the terms in the second and third brackets of (6.8.25), re-
spectively. Because c0 = km

k̂p
, c∗0 = km

kp
, Λ(s) = Λ0(s)Zm(s) and Z̄p(s)up = Rp(s)yp,

we have
e1f = (c0 − c∗0)yp, e2f = 0 (6.8.26)

Using (6.8.26) in (6.8.25) and defining ωp
4
= [ω>0 ,W−1

m (s)yp]> we can write

θ̃>Wm(s)ωp = ef (6.8.27)

Because θ̃>ω = c∗0
c0

θ̃>ωp, proved in Section 6.8.2 (see equation (6.8.14) ), we use
Swapping Lemma A.2 to write

θ̃>ω =
c∗0
c0

(
F1(s, α0)(

˙̃
θ>ωp + θ̃>ω̇p) + F (s, α0)θ̃>ωp

)
(6.8.28)

where F (s, α0) and F1(s, α0) are as defined in Section 6.8.2 and satisfy

‖F1(s, α0)‖∞δ ≤ c

α0
, ‖F (s, α0)W−1

m (s)‖∞δ ≤ cαn∗
0

for any α0 > δ > 0. Applying Swapping Lemma A.1 to Wm(s)θ̃>ωp and using
(6.8.27), we obtain

θ̃>ωp = W−1
m (s)

(
θ̃>Wm(s)ωp + Wc(s)(Wb(s)ω>p )θ̇

)

= W−1
m (s)

(
ef + Wc(s)(Wb(s)ω>p )θ̇

)
(6.8.29)

Substituting (6.8.29) in (6.8.28), we have

θ̃>ω =
c∗0
c0

(
F1(s, α0)(

˙̃
θ>ωp + θ̃>ω̇p) + F (s, α0)W−1

m (s)
(
ef + Wc(s)(Wb(s)ω>p )θ̇

))

Because c0 is bounded from below, i.e., |c0|> c0> 0, it follows from Lemma 3.3.2
that

‖θ̃>ω‖ ≤ c

α0

(
‖ ˙̃
θ
>

ωp‖+ ‖θ̃>ω̇p‖) + cαn∗
0 (‖ef‖+ ‖ω̄ ˙̃

θ‖)
)

(6.8.30)

where ω̄ = Wb(ωp)>. From θ̃ ∈ L∞ and the normalizing properties of mf , we have

‖θ̃>ω‖ ≤ c

α0
‖θ̇mf‖+

c

α0
mf + cαn∗

0 (‖ef‖+ ‖θ̇mf‖) (6.8.31)

We now concentrate on the term ‖ef‖ in (6.8.31). Let us denote

Q̂(s, t)
4
= q>αn∗−1(s), ˆ̄Zp(s, t) = b̂>p αm(s), R̂p(s, t) = sn + â>p αn−1(s)
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where b̂p = [k̂p, p̂
>
1 ]>, âp = p̂2 and p̂1, p̂2 are defined in Table 6.9. Treating s as the

differentiation operator, using Λp(s) = Λ(s)(s + λ0) and Swapping Lemma A.3 (i),
we have

1

k̂p

ˆ̄Zp(s, t) · Q̂(s, t)
Wm(s)
Λ(s)

up =
1

k̂p

Q̂(s, t) · ˆ̄Zp(s, t)
Wm(s)(s + λ0)

Λp(s)
up

=
1

k̂p

{
Q̂(s, t)

(
ˆ̄Zp(s, t)

Wm(s)(s + λ0)
Λp(s)

up

)
(6.8.32)

−q>Dn∗−2(s)
[
αn∗−2(s)

(
α>m(s)

Wm(s)(s + λ0)
Λp(s)

up

)]
˙̂
bp

}

(by taking A(s, t) = Q̂(s, t), B(s, t) = ˆ̄Zp(s, t), f = Wm(s)
Λ(s) up) and

1

k̂p

Q̂(s, t) · ˆ̄Rp(s, t)
Wm(s)
Λ(s)

yp

=
1

k̂p

{
Q̂(s, t)

(
ˆ̄Rp(s, t)

Wm(s)(s + λ0)
Λp(s)

yp

)
(6.8.33)

−q>Dn∗−2(s)
[
αn∗−2(s)

(
α>n−1(s)

Wm(s)(s + λ0)
Λp(s)

yp

)]
˙̂ap

}

(by taking A(s, t) = Q̂(s, t), B(s, t) = ˆ̄Rp(s, t), f = Wm(s)
Λ(s) yp). Using (6.8.32),

(6.8.33) in the expression for ef and noting that

R̂p(s, t)
Wm(s)(s + λ0)

Λp(s)
yp − Ẑp(s, t)

Wm(s)(s + λ0)
Λp(s)

up = −θ̃>p Wm(s)(s + λ0)φ

we have
ef =

1

k̂p

{
−θ̃>p Wm(s)(s + λ0)φ + e

′
f

}
(6.8.34)

where θp, φ are as defined in Table 6.9 and

e
′
f

4
= q>Dn∗−2(s)

(
αn∗−2(s)

[
α>m(s)

Wm(s)(s + λ0)
Λp(s)

up

−α>n−1(s)
Wm(s)(s + λ0)

Λp(s)
yp

][
˙̂
bp

˙̂ap

])
(6.8.35)

Using the normalizing properties of mf and the fact that yp = Wm(s)(r + 1
c∗0

θ̃>ω)
and θ ∈ L∞, we have

‖e′f‖ ≤ c‖θ̇pmf‖
Applying Swapping Lemma A.1 and using θ̃>p φ = −εm2, we can write

θ̃>p Wm(s)(s + λ0)φ = −Wm(s)(s + λ0)εm2 −Wc[Wbφ
>] ˙̃θp (6.8.36)
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Again using the normalizing properties of mf , it follows from (6.8.34), (6.8.36) that

‖ef‖ ≤ c(‖εmmf‖+ ‖θ̇pmf‖) (6.8.37)

for some constant c. Combining (6.8.31), (6.8.37), we have

‖θ̃>ω‖ ≤ c

α0
mf +

c

α0
‖θ̇mf‖+ cαn∗

0 ‖θ̇mf‖+ cαn∗
0 (‖εmmf‖+ ‖θ̇pmf‖) (6.8.38)

From (6.6.25), we can establish, using θp ∈ L∞, 1
k̂p
∈ L∞, θ̇p ∈ L2, that θ ∈ L∞

and θ̇ ∈ L2. Hence,

‖θ̃>ω‖ ≤ c

α0
mf + c‖g̃mf‖

where g̃2 = 1
α2

0
|θ̇|2 + α2n∗

0 (|θ̇|2 + ε2m2 + |θ̇p|2) and g̃ ∈ L2.

Step 3. Use the B-G Lemma to establish boundedness. This step is identical
to Step 3 in the proof of stability for the direct MRAC scheme and is omitted.

Step 4. Convergence of the tracking error to zero. From

yp = Wm(s)(r +
1
c∗0

θ̃>ω)

and θ̃>ω = c∗0
c0

θ̃>ωp, we have

e1 =
1
c∗0

Wm(s)θ̃>ω = Wm(s)
1
c0

θ̃>ωp

=
1
c0

Wm(s)θ̃>ωp −Wc(s)
(

(Wb(s)θ̃>ωp)
ċ0

c2
0

)
(6.8.39)

where the last equality is obtained by applying the Swapping Lemma A.1. Substi-
tuting θ̃>p ω from (6.8.29) in (6.8.39), we have

e1 =
1
c0

(
ef + Wc(s)(Wb(s)ω>p )θ̇

)
−Wc(s)

(
(Wb(s)θ̃>ωp)

ċ0

c2
0

)

Note from (6.8.35) and ˙̂ap,
˙̂
bp ∈ L2, up, yp ∈ L∞ that e′f ∈ L2. From εm,

˙̃
θp ∈ L2

and the boundedness of 1
k̂p

,m and φ, it also follows from (6.8.34), (6.8.37) that

ef ∈ L2. From ef , θ̇, ċ0 ∈ L2, it follows that e1 ∈ L2 which together with ė1 ∈ L∞
imply that e1(t) → 0 as t →∞. 2
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6.9 Problems

6.1 Consider the first order plant

y =
b

s− 1
u

where b > 0 is the only unknown parameter. Design and analyze a direct
MRAC scheme that can stabilize the plant and force y to follow the output
ym of the reference model

ym =
2

s + 2
r

for any bounded and continuous reference signal r.

6.2 The dynamics of a throttle to speed subsystem of a vehicle may be represented
by the first-order system

V =
b

s + a
θ + d

where V is the vehicle speed, θ is the throttle angle and d is a constant load
disturbance. The parameters b > 0, a are unknown constants whose values
depend on the operating state of the vehicle that is defined by the gear state,
steady-state velocity, drag, etc. We would like to design a cruise control
system by choosing the throttle angle θ so that V follows a desired velocity
Vm generated by the reference model

Vm =
0.5

s + 0.5
Vs

where Vs is the desired velocity set by the driver.

(a) Assume that a, b, and d are known exactly. Design an MRC law that
meets the control objective.

(b) Design and analyze a direct MRAC scheme to be used in the case of a, b,
and d (with b > 0) being unknown.

(c) Simulate your scheme in (b) by assuming Vs = 35 and using the following
values for a, b, and d: (i) a = 0.02, b = 1.3, d = 10; (ii) a = 0.02(2 +
sin 0.01t), b = 1.3, d = 10 sin 0.02t.

6.3 Consider the adaptive tracking problem discussed in Section 6.2.2, i.e., the
output y of the plant

ẋ = ax + bu
y = x

is required to track the output ym of the reference model

ẋm = −amxm + bmr, ym = xm

where a and b are unknown constants with b 6= 0 and sign(b) unknown. Design
an adaptive controller to meet the control objective.
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6.4 Consider the following plant
ẋ = −x + bu

where b 6= 0 is unknown. Design an adaptive controller that will force x to
track xm, the state of the reference model

ẋm = −xm + r

for any bounded reference input r.

6.5 Consider the following SISO plant

yp = kp
Zp(s)
Rp(s)

up

where kp, Zp(s), and Rp(s) are known. Design an MRC scheme for yp to track
ym generated by the reference model

ym = km
Zm(s)
Rm(s)

r

where Rm(s) has the same degree as Rp(s). Examine stability when Zp(s) is
Hurwitz and when it is not. Comment on your results.

6.6 Consider the third order plant

yp =
kp(s + b0)

s3 + a2s2 + a1s + a0
up

where ai, i = 0, 1, 2; b0, kp are constants and b0 > 0. The transfer function of
the reference model is given by

ym =
1

(s + 1)2
r

(a) Assuming that ai, b0, and kp are known, design an MRC law that guar-
antees closed-loop stability and yp → ym as t → ∞ for any bounded
reference input r.

(b) Repeat (a) when ai, b0, and kp are unknown and kp > 0.

(c) If in (b) a2 = 0, a1 = 0, a0 = 1 are known but kp, b0 are unknown,
indicate the simplification that results in the control law.

6.7 Show that the MRC law given by (6.3.29) in Remark 6.3.6 meets the MRC
objective for the plant given by (6.3.1).

6.8 Show that the MRC law given by (6.3.27) or (6.3.28) in Remark 6.3.5 meets the
MRC objective for the plant (6.3.1) for any given nonzero initial conditions.
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6.9 Repeat the proof of Theorem 6.4.2 by using a minimal state space representa-
tion of the error system e1 = Wm(s) (s + p0) ρ∗θ̃>φ as explained in Remark
6.4.5.

6.10 Consider the third-order plant

yp =
1

s3 + a2s2 + a1s + a0
up

where ai, i = 0, 1, 2 are unknown constants and the reference model

ym =
2

(s + 1)(s + 2)(s + 2.5)
r

(a) Design a direct MRAC law with unnormalized adaptive law so that all
signals in the closed-loop plant are bounded and yp(t) → ym(t) as t →∞
for any bounded reference input r.

(b) Simulate your scheme by assuming the following values for the plant
parameters

a0 = 1, a1 = −1.5, a2 = 0

and examine the effect of your choice of r on parameter convergence.

6.11 Design and analyze a direct MRAC with normalized adaptive law for the
plant

yp =
b

s + a
up

where b > 0.5, a are unknown constants. The reference model is given by

ym =
3

s + 3
r

(a) Design a direct MRAC scheme based on the gradient algorithm
(b) Repeat (a) for a least-squares algorithm
(c) Repeat (a) using the SPR-Lyapunov design approach with normalization
(d) Simulate your design in (c) with and without normalization. For simu-

lations use b = 1.2, a = −1 and r a signal of your choice.

6.12 Repeat Problem 6.11(a), for a hybrid MRAC scheme. Simulate your scheme
using the values of b = 1.2, a = −1 and r a signal of your choice.

6.13 Consider the plant

yp =
(s + b0)
(s + a)2

up

where b0 > 0.2 and a are unknown constants. The reference model is given
by

ym =
1

s + 1
r
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(a) Design a direct MRAC scheme with unnormalized adaptive law

(b) Repeat (a) with a normalized adaptive law

(c) Design an indirect MRAC scheme with an unnormalized adaptive law

(d) Repeat (c) with a normalized adaptive law

(e) Simulate one direct and one indirect MRAC scheme of your choice from
(a) to (d) and compare their performance when b0 = 2, a = −5, a nd
r = 2 + sin0.8t. Comment.

6.14 Consider the control law (6.3.27) for the plant (6.3.1) where θ∗i , i = 1, 2, 3, c∗0
are the desired controller parameters. Design and analyze a direct MRAC
scheme based on this control law.

6.15 Consider the control law given by equation (6.3.29) in Remark 6.3.6 designed
for the plant (6.3.1). Design and analyze a direct MRAC scheme based on
this control law.

6.16 Consider the SISO plant

yp =
kpZp(s)
Rp(s)

up

where Zp(s), Rp(s) are monic, Zp(s) is Hurwitz and the relative degree
n∗ = 1. The order n of Rp is unknown. Show that the adaptive control law

up = − θypsgn(kp), θ̇ = y2
p

guarantees signal boundedness and convergence of yp to zero for any finite n.
(Hint: The plant may be represented as

ẋ1 = A11x1 + A12yp, x1 ∈ Rn−1

ẏp = A21x1 + a0yp + kpup

where A11 is stable.)

6.17 Following the same procedure used in Section 6.6.2, derive an indirect MRAC
scheme using unnormalized adaptive laws for a plant with n∗ = 2.

6.18 Let ω ∈ L∞ be PE and e ∈ S(µ)
⋂L∞ where µ ≥ 0. Let ωµ = ω + e. Show

that there exists a µ∗ > 0 such that for any µ ∈ [0, µ∗), ωµ is PE.

6.19 Consider the MRAC problem of Section 6.4.1. It has been shown (see Remark
6.4.3) that the nonzero initial condition appears in the error equation as

e1 = Wm(s)ρ∗(up − θ∗>ω) + C>c (sI −Ac)−1e(0)
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Show that the same stability results as in the case of e(0) = 0 can be estab-
lished when e(0) 6= 0 by using the new Lyapunov-like function

V =
e>Pce

2
+

θ̃>Γ−1θ̃

2
|ρ∗|+ βe>0 P0e0

where e0 is the zero-input response, i.e.,

ė0 = Ace0, e0(0) = e(0)

P0 satisfies A>c P0 + P0Ac = −I and β > 0 is an arbitrary positive constant.



Chapter 7

Adaptive Pole Placement
Control

7.1 Introduction

In Chapter 6 we considered the design of a wide class of MRAC schemes for
LTI plants with stable zeros. The assumption that the plant is minimum
phase, i.e., it has stable zeros, is rather restrictive in many applications. For
example, the approximation of time delays often encountered in chemical
and other industrial processes leads to plant models with unstable zeros. As
we discussed in Chapter 6, the minimum phase assumption is a consequence
of the MRC objective that requires cancellation of the plant zeros in an
effort to make the closed-loop plant transfer function equal to that of the
reference model. The same assumption is also used to express the desired
controller parameters in the form of a linear or bilinear parametric model,
and is, therefore, crucial for parameter estimation and the stability of the
overall adaptive control scheme.

Another class of control schemes that is popular in the known parameter
case are those that change the poles of the plant and do not involve plant
zero-pole cancellations. These schemes are referred to as pole placement
schemes and are applicable to both minimum and nonminimum phase LTI
plants. The combination of a pole placement control law with a parameter
estimator or an adaptive law leads to an adaptive pole placement control
(APPC) scheme that can be used to control a wide class of LTI plants with

434



7.1. INTRODUCTION 435

unknown parameters.
As in the MRAC case, the APPC schemes may be divided into two

classes: The indirect APPC schemes where the adaptive law generates on-
line estimates of the coefficients of the plant transfer function that are then
used to calculate the parameters of the pole placement control law by solving
a certain algebraic equation; and the direct APPC where the parameters of
the pole placement control law are generated directly by an adaptive law
without any intermediate calculations that involve estimates of the plant
parameters.

The direct APPC schemes are restricted to scalar plants and to spe-
cial classes of plants where the desired parameters of the pole placement
controller can be expressed in the form of the linear or bilinear parametric
models. Efforts to develop direct APPC schemes for a general class of LTI
plants led to APPC schemes where both the controller and plant parameters
are estimated on-line simultaneously [49, 112], leading to a rather complex
adaptive control scheme.

The indirect APPC schemes, on the other hand, are easy to design and
are applicable to a wide class of LTI plants that are not required to be
minimum phase or stable. The main drawback of indirect APPC is the
possible loss of stabilizability of the estimated plant based on which the
calculation of the controller parameters is performed. This drawback can
be eliminated by modifying the indirect APPC schemes at the expense of
adding more complexity. Because of its flexibility in choosing the controller
design methodology (state feedback, compensator design, linear quadratic,
etc.) and adaptive law (least squares, gradient, or SPR-Lyapunov type),
indirect APPC is the most general class of adaptive control schemes. This
class also includes indirect MRAC as a special case where some of the poles
of the plant are assigned to be equal to the zeros of the plant to facilitate
the required zero-pole cancellation for transfer function matching. Indirect
APPC schemes have also been known as self-tuning regulators in the litera-
ture of adaptive control to distinguish them from direct MRAC schemes.

The chapter is organized as follows: In Section 7.2 we use several ex-
amples to illustrate the design and analysis of APPC. These examples are
used to motivate the more complicated designs in the general case treated in
the rest of the chapter. In Section 7.3, we define the pole placement control
(PPC) problem for a general class of SISO, LTI plants and solve it for the
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case of known plant parameters using several different control laws. The
significance of Section 7.3 is that it provides several pole placement control
laws to be used together with adaptive laws to form APPC schemes. The
design and analysis of indirect APPC schemes for a general class of SISO,
LTI plants is presented in Section 7.4. Section 7.5 is devoted to the design
and analysis of hybrid APPC schemes where the estimated plant parameters
are updated at distinct points in time. The problem of stabilizability of the
estimated plant model at each instant of time is treated in Section 7.6. A
simple example is first used to illustrate the possible loss of stabilizability
and a modified indirect APPC scheme is then proposed and analyzed. The
modified scheme is guaranteed to meet the control objective and is therefore
not affected by the possible loss of stabilizability during parameter estima-
tion. Section 7.7 is devoted to stability proofs of the various theorems given
in previous sections.

7.2 Simple APPC Schemes

In this section we use several examples to illustrate the design and analysis of
simple APPC schemes. The important features and characteristics of these
schemes are used to motivate and understand the more complicated ones to
be introduced in the sections to follow.

7.2.1 Scalar Example: Adaptive Regulation

Consider the scalar plant
ẏ = ay + bu (7.2.1)

where a and b are unknown constants, and the sign of b is known. The control
objective is to choose u so that the closed-loop pole is placed at −am, where
am > 0 is a given constant, y and u are bounded, and y(t) converges to zero
as t →∞.

If a and b were known and b 6= 0 then the control law

u = −ky + r (7.2.2)

k =
a + am

b
(7.2.3)
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where r is a reference input, would lead to the closed-loop plant

ẏ = −amy + br (7.2.4)

i.e., the control law described by (7.2.2) and (7.2.3) changes the pole of the
plant from a to −am but preserves the zero structure. This is in contrast to
MRC, where the zeros of the plant are canceled and replaced with new ones.
It is clear from (7.2.4) that the pole placement law (7.2.2) and (7.2.3) with
r=0 meets the control objective exactly.

Let us now consider the case where a and b are unknown. As in the
MRAC case, we use the certainty equivalence approach to form adaptive
pole placement control schemes as follows: We use the same control law as
in (7.2.2) but replace the unknown controller parameter k with its on-line
estimate k̂. The estimate k̂ may be generated in two different ways: The
direct one where k̂ is generated by an adaptive law and the indirect one
where k̂ is calculated from

k̂ =
â + am

b̂
(7.2.5)

provided b̂ 6= 0 where â and b̂ are the on-line estimates of a and b, respec-
tively. We consider each design approach separately.

Direct Adaptive Regulation In this case the time-varying gain k̂ in the
control law

u = −k̂y + r, r = 0 (7.2.6)

is updated directly by an adaptive law. The adaptive law is developed as
follows: We add and subtract the desired control input, u∗ = −ky + r with
k = a+am

b in the plant equation, i.e.,

ẏ = ay + bu∗ − bu∗ + bu = −amy − b(k̂ − k)y + br

to obtain, for r = 0, the error equation

ẏ = −amy − bk̃y (7.2.7)

where k̃
4
= k̂ − k, that relates the parameter error term bk̃y and regulation

error y through the SPR transfer function 1
s+am

. As shown in Chapter 4,
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(7.2.7) is in the appropriate form for applying the Lyapunov design approach.
Choosing

V =
y2

2
+

k̃2 | b |
2γ

it follows that for
˙̂
k = γy2sgn(b) (7.2.8)

we have
V̇ = −amy2 ≤ 0

which implies that y, k̃, u ∈ L∞ and y ∈ L2. From (7.2.7) and y, k̃ ∈ L∞ we
have ẏ ∈ L∞; therefore, using Lemma 3.2.5 we obtain y(t) → 0 as t →∞.

In summary, the direct APPC scheme in (7.2.6) and (7.2.8) guaran-
tees signal boundedness and regulation of the plant state y(t) to zero. The
scheme, however, does not guarantee that the closed-loop pole of the plant
is placed at −am even asymptotically with time. To achieve such a pole
placement result, we need to show that k̂ → a+am

b as t →∞. For parameter
convergence, however, y is required to be PE which is in conflict with the
objective of regulating y to zero. The conflict between parameter identifica-
tion and regulation or control is well known in adaptive control and cannot
be avoided in general.

Indirect Adaptive Regulation In this approach, the gain k̂(t) in the
control law

u = −k̂(t)y + r, r = 0 (7.2.9)

is calculated by using the algebraic equation

k̂ =
â + am

b̂
(7.2.10)

with b̂ 6= 0 and the on-line estimates â and b̂ of the plant parameters a and
b, respectively. The adaptive law for generating â and b̂ is constructed by
using the techniques of Chapter 4 as follows:

We construct the series-parallel model

ẏm = −am(ym − y) + ây + b̂u (7.2.11)
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then subtract (7.2.11) from the plant equation (7.2.1) to obtain the error
equation

ė = −ame− ãy − b̃u (7.2.12)

where e
4
= y − ym, ã

4
= â− a, b̃

4
= b̂− b. Using the Lyapunov-like function

V =
e2

2
+

ã2

2γ1
+

b̃2

2γ2

for some γ1, γ2 > 0 and choosing

˙̃a = γ1ey,
˙̃
b = γ2eu (7.2.13)

we have
V̇ = −ame2 ≤ 0

which implies that e, â, b̂ ∈ L∞ and e ∈ L2. These properties, however,
do not guarantee that b̂(t) 6= 0 ∀t ≥ 0, a condition that is required for k̂,
given by (7.2.10), to be finite. In fact, for k̂ to be uniformly bounded, we
should have |b̂(t)| ≥ b0 > 0 ∀t ≥ 0 and some constant b0. Because such a
condition cannot be guaranteed by the adaptive law, we modify (7.2.13) by
assuming that |b| ≥ b0 > 0 where b0 and sgn(b) are known a priori, and use
the projection techniques of Chapter 4 to obtain

˙̂a = γ1ey (7.2.14)

˙̂
b =

{
γ2eu if |b̂| > b0 or if |b̂| = b0 and sgn(b)eu ≥ 0
0 otherwise

where b̂(0) is chosen so that b̂(0)sgn(b) ≥ b0. The modified adaptive law
guarantees that |b̂(t)| ≥ b0 ∀t ≥ 0. Furthermore, the time derivative V̇ of V

along the solution of (7.2.12) and (7.2.14) satisfies

V̇ =

{
−ame2 if |b̂| > b0 or if |b̂| = b0 and sgn(b)eu ≥ 0
−ame2 − b̃eu if |b̂| = b0 and sgn(b)eu < 0

Now for |b̂| = b0 and sgn(b)eu < 0, since |b| ≥ b0, we have

b̃eu = b̂eu− beu = (|b̂| − |b|)eu sgn(b) = (b0 − |b|)eu sgn(b) ≥ 0

therefore,
V̇ ≤ −ame2
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Hence, e, ã, b̃ ∈ L∞; e ∈ L2 and |b̂(t)| ≥ b0 ∀t ≥ 0, which implies that
k̃ ∈ L∞. Substituting for the control law (7.2.9) and (7.2.10) in (7.2.11),
we obtain ẏm = −amym, which implies that ym ∈ L∞, ym(t) → 0 as t →∞
and, therefore, y, u ∈ L∞. From (7.2.12), we have ė ∈ L∞, which, together
with e ∈ L2, implies that e(t) = y(t) − ym(t) → 0 as t → ∞. Therefore, it
follows that y(t) = e(t) + ym(t) → 0 as t →∞.

The indirect adaptive pole placement scheme given by (7.2.9), (7.2.10),
and (7.2.14) has, therefore, the same stability properties as the direct one.
It has also several differences. The main difference is that the gain k̂ is
updated indirectly by solving an algebraic time varying equation at each
time t. According to (7.2.10), the control law (7.2.9) is designed to meet the
pole placement objective for the estimated plant at each time t rather than
the actual plant. Therefore, for such a design to be possible, the estimated
plant has to be controllable or at least stabilizable at each time t, which
implies that |b̂(t)| 6= 0 ∀t ≥ 0. In addition, for uniform signal boundedness, b̂

should satisfy |b̂(t)| ≥ b0 > 0 where b0 is a lower bound for |b| that is known
a priori.

The fact that only the sign of b is needed in the direct case, whereas the
knowledge of a lower bound b0 is also needed in the indirect case motivated
the authors of [46] to come up with a modified indirect scheme presented in
the next section where only the sign of b is needed.

7.2.2 Modified Indirect Adaptive Regulation

In the indirect case, the form of the matching equation

a− bk = −am

is used to calculate k̂ from the estimates of â, b̂ by selecting k̂ to satisfy

â− b̂k̂ = −am

as indicated by (7.2.10).
If instead of calculating k(t) we update it using an adaptive law driven

by the error
εc = â(t)− b̂(t)k̂(t) + am

then we end up with a modified scheme that does not require the knowledge
of a lower bound for |b| as shown below. The error εc is motivated from the
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fact that as εc → 0 the estimated closed-loop pole â(t)− b̂(t)k̂(t) converges
to −am, the desired pole. The adaptive law for k̂ is developed by expressing
εc in terms of k̃, ã, b̃ by using am = bk − a and adding and subtracting the
term bk̂, i.e.,

εc = â− b̂k̂ + bk − a + bk̂ − bk̂ = ã− b̃k̂ − bk̃

The adaptive law for k̂ is then obtained by using the gradient method to
minimize ε2

c
2 w.r.t. k̃, i.e.,

˙̃
k = −γ

1
2

∂ε2
c

∂k̃
= γbεc

where γ > 0 is an arbitrary constant. Because b = |b|sgn(b) and γ is arbi-
trary, it follows that

˙̂
k = ˙̃

k = γ0εcsgn(b)

for some other arbitrary constant γ0 > 0. To assure stability of the overall
scheme, the adaptive laws for ã, b̃ in (7.2.13) are modified as shown below:

˙̂a = ˙̃a = γ1ey − γ1
1
2

∂ε2
c

∂ã
= γ1ey − γ1εc

˙̂
b = ˙̃

b = γ2eu− γ2
1
2

∂ε2
c

∂b̃
= γ2eu + γ2k̂εc

The overall modified indirect scheme is summarized as follows:

u = −k̂y
˙̂
k = γ0εcsgn(b)
˙̂a = γ1ey − γ1εc

˙̂
b = γ2eu + γ2k̂εc

εc = â− b̂k̂ + am, e = y − ym

ẏm = −am(ym − y) + ây + b̂u

Stability Analysis Let us choose the Lyapunov-like function

V =
e2

2
+

ã2

2γ1
+

b̃2

2γ2
+

k̃2|b|
2γ0
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where e = y − ym satisfies the error equation
ė = −ame− ãy − b̃u (7.2.12)

The time-derivative V̇ of V along the trajectories of the overall system
is given by

V̇ = −ame2 − εc(ã− b̃k̂ − bk̃) = −ame2 − ε2
c ≤ 0

which implies that e, ã, b̃, k̃ ∈ L∞; e, εc ∈ L2. The boundedness of ym and,
therefore, of y, u is established as follows: The series-parallel model equation
(7.2.11) can be rewritten as

ẏm = −am(ym − y) + (â− b̂k̂)y = −(am − εc)ym + εce

Because e, εc ∈ L∞
⋂L2, it follows that ym ∈ L∞ and, therefore, y, u ∈ L∞.

From ε̇c, ė ∈ L∞ and e, εc ∈ L2, we have e(t), εc(t) → 0 as t → ∞, which
imply that ym(t) → 0 as t →∞. Therefore, y(t) → 0 as t →∞.

The modified indirect scheme demonstrates that we can achieve the same
stability result as in the direct case by using the same a priori knowledge
about the plant, namely, the knowledge of the sign of b. For the modified
scheme, the controller parameter k̂ is adjusted dynamically by using the
error εc between the closed-loop pole of the estimated plant, i.e., â − b̂k̂

and the desired pole −am. The use of εc introduces an additional gradient
term to the adaptive law for â, b̂ and increases the complexity of the overall
scheme. In [46] it was shown that this method can be extended to higher
order plants with stable zeros.

7.2.3 Scalar Example: Adaptive Tracking

Let us consider the same plant (7.2.1) as in Section 7.2.1, i.e.,

ẏ = ay + bu

The control objective is modified to include tracking and is stated as follows:
Choose the plant input u so that the closed-loop pole is at −am; u, y ∈ L∞
and y(t) tracks the reference signal ym(t) = c,∀t ≥ 0, where c 6= 0 is a finite
constant.

Let us first consider the case where a and b are known exactly. It follows
from (7.2.1) that the tracking error e = y − c satisfies

ė = ae + ac + bu (7.2.15)
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Because a, b, and c are known, we can choose

u = −k1e− k2 (7.2.16)

where
k1 =

a + am

b
, k2 =

ac

b

(provided b 6= 0) to obtain
ė = −ame (7.2.17)

It is clear from (7.2.17) that e(t) = y(t)− ym → 0 exponentially fast.
Let us now consider the design of an APPC scheme to meet the control

objective when a and b are constant but unknown. The certainty equivalence
approach suggests the use of the same control law as in (7.2.16) but with
k1 and k2 replaced with their on-line estimates k̂1(t) and k̂2(t), respectively,
i.e.,

u = −k̂1(t)e− k̂2(t) (7.2.18)

As in Section 7.2.1, the updating of k̂1 and k̂2 may be done directly, or
indirectly via calculation using the on-line estimates â and b̂ of the plant
parameters. We consider each case separately.

Direct Adaptive Tracking In this approach we develop an adaptive
law that updates k̂1 and k̂2 in (7.2.18) directly without any intermediate
calculation. By adding and subtracting the desired input u∗ = −k1e− k2 in
the error equation (7.2.15), we have

ė = ae + ac + b(−k1e− k2) + b(k1e + k2) + bu

= −ame + b(u + k1e + k2)

which together with (7.2.18) imply that

ė = −ame− b(k̃1e + k̃2) (7.2.19)

where k̃1
4
= k̂1−k1, k̃2

4
= k̂2−k2. As in Chapter 4, equation (7.2.19) motivates

the Lyapunov-like function

V =
e2

2
+

k̃2
1|b|
2γ1

+
k̃2

2|b|
2γ2

(7.2.20)
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whose time-derivative V̇ along the trajectory of (7.2.19) is forced to satisfy

V̇ = −ame2 (7.2.21)

by choosing
˙̂
k1 = γ1e

2sgn(b), ˙̂
k2 = γ2esgn(b) (7.2.22)

From (7.2.20) and (7.2.21) we have that e, k̂1, k̂2 ∈ L∞ and e ∈ L2, which,
in turn, imply that y, u ∈ L∞ and e(t) → 0 as t →∞ by following the usual
arguments as in Section 7.2.1.

The APPC scheme (7.2.18), (7.2.22) may be written as

u = −k̂1e− γ2sgn(b)
∫ t

0
e(τ)dτ

˙̂
k1 = γ1e

2sgn(b) (7.2.23)

indicating the proportional control action for stabilization and the integral
action for rejecting the constant term ac in the error equation (7.2.15). We
refer to (7.2.23) as the direct adaptive proportional plus integral (PI) con-
troller. The same approach may be repeated when ym is a known bounded
signal with known ẏm ∈ L∞. The reader may verify that in this case, the
adaptive control scheme

u = −k̂1e− k̂2ym − k̂3ẏm

˙̂
k1 = γ1e

2sgn(b) (7.2.24)
˙̂
k2 = γ2eymsgn(b), ˙̂

k3 = γ3eẏmsgn(b)

where e = y − ym, guarantees that all signals in the closed-loop plant in
(7.2.1) and (7.2.24) are bounded, and y(t) → ym(t) as t →∞.

Indirect Adaptive Tracking In this approach, we use the same control
law as in the direct case, i.e.,

u = −k̂1e− k̂2 (7.2.25)

but with k̂1, k̂2 calculated using the equations

k̂1 =
â + am

b̂
, k̂2 =

âc

b̂
(7.2.26)
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provided b̂ 6= 0, where â and b̂ are the on-line estimates of the plant param-
eters a and b, respectively.

We generate â and b̂ using an adaptive law as follows: We start with the
series-parallel model

ėm = −am(em − e) + â(e + c) + b̂u

based on the tracking error equation (7.2.15) and define the error e0
4
= e−em,

which satisfies the equation

ė0 = −ame0 − ã(e + c)− b̃u (7.2.27)

The following adaptive laws can now be derived by using the same approach
as in Section 7.2.1:

˙̂a = γ1e0(e + c) = γ1e0y (7.2.28)

˙̂
b =

{
γ2e0u if |b̂| > b0 or if |b̂| = b0 and sgn(b)e0u ≥ 0
0 otherwise

where b̂(0) satisfies b̂(0)sgn(b) ≥ b0. The reader may verify that the time
derivative of the Lyapunov-like function

V =
e2
0

2
+

ã2

2γ1
+

b̃2

2γ2

along the trajectories of (7.2.27), (7.2.28) satisfies

V̇ ≤ −ame2
0

which implies e0, ã, b̃ ∈ L∞ and e0 ∈ L2. Because of (7.2.25) and (7.2.26),
we have ėm = −amem, and, thus, em ∈ L∞ and em(t) → 0 as t → ∞.
Therefore, we conclude that e, u and ė0 ∈ L∞. From e0 ∈ L2, ė0 ∈ L∞
we have e0(t) → 0 as t → ∞, which implies that e(t) → 0 as t → ∞. As
in Section 7.2.2, the assumption that a lower bound b0 for b is known can
be relaxed by modifying the indirect scheme (7.2.25) to (7.2.28). In this
case both k̂1 and k̂2 are adjusted dynamically rather than calculated from
(7.2.26).

Example 7.2.1 Adaptive Cruise Control Most of today’s automobiles are
equipped with the so-called cruise control system. The cruise control system is
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responsible for maintaining a certain vehicle speed by automatically controlling the
throttle angle. The mass of air and fuel that goes into the combustion cylinders and
generates the engine torque is proportional to the throttle angle. The driver sets
the desired speed Vd manually by speeding to Vd and then switching on the cruise
control system. The driver can also set the speed Vd by using the “accelerator”
button to accelerate from a lower speed to Vd through the use of the cruise control
system. Similarly, if the driver interrupts a previously set speed by using the brake,
the “resume” button may be used to allow the cruise control system to accelerate
to the preset desired speed. Because of the changes in the dynamics of vehicles
that are due to mechanical wear, loads, aerodynamic drag, etc., the use of adaptive
control seems to be attractive for this application.

The linearized model of the throttle system with throttle angle θ as the input
and speed Vs as the output is of the form

V̇s = −aVs + bθ + d (7.2.29)

where a and b are constant parameters that depend on the speed of the vehicle,
aerodynamic drag and on the type of the vehicle and its condition. The variable d
represents load disturbances resulting from uphill situations, drag effects, number
of people in the vehicle, road condition, etc. The uncertainty in the values of a, b,
and d makes adaptive control suitable for this application.

Equation (7.2.29) is of the same form as equation (7.2.15); therefore, we can
derive a direct adaptive PI control scheme by following the same procedure, i.e.,
the adaptive cruise control system is described by the following equations:

θ = −k̂1V̄s − k̂2

˙̂
k1 = γ1V̄

2
s (7.2.30)

˙̂
k2 = γ2V̄s

where V̄s = Vs − Vd and Vd is the desired speed set by the driver and γ1, γ2 > 0 are
the adaptive gains. In (7.2.30), we use the a priori knowledge of sgn(b) > 0 which
is available from experimental data.

The direct adaptive cruise control scheme given by (7.2.30) is tested on an actual
vehicle [92]. The actual response for a particular test is shown in Figure 7.1.

The design of an indirect adaptive cruise control scheme follows in a similar
manner by modifying the approach of Section 7.2.3 and is left as an exercise for the
reader. 5
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Figure 7.1 Response of the adaptive cruise control system.

7.3 PPC: Known Plant Parameters

As we demonstrated in Sections 6.6 and 7.2, an indirect adaptive control
scheme consists of three parts: the adaptive law that provides on-line es-
timates for the plant parameters; the mapping between the plant and con-
troller parameters that is used to calculate the controller parameters from
the on-line estimates of the plant parameters; and the control law.

The form of the control law and the mapping between plant parameter
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estimates and controller parameters are the same as those used in the known
plant parameter case. The purpose of this section is to develop several
control laws that can meet the pole placement control objective when the
plant parameters are known exactly. The form of these control laws as well
as the mapping between the controller and plant parameters will be used
in Section 7.4 to form indirect APPC schemes for plants with unknown
parameters.

7.3.1 Problem Statement

Consider the SISO LTI plant

yp = Gp(s)up, Gp(s) =
Zp(s)
Rp(s)

(7.3.1)

where Gp(s) is proper and Rp(s) is a monic polynomial. The control objec-
tive is to choose the plant input up so that the closed-loop poles are assigned
to those of a given monic Hurwitz polynomial A∗(s). The polynomial A∗(s),
referred to as the desired closed-loop characteristic polynomial, is chosen
based on the closed-loop performance requirements. To meet the control
objective, we make the following assumptions about the plant:

P1. Rp(s) is a monic polynomial whose degree n is known.

P2. Zp(s), Rp(s) are coprime and degree(Zp) < n.

Assumptions (P1) and (P2) allow Zp, Rp to be non-Hurwitz in contrast to the
MRC case where Zp is required to be Hurwitz. If, however, Zp is Hurwitz,
the MRC problem is a special case of the general pole placement problem
defined above with A∗(s) restricted to have Zp as a factor. We will explain
the connection between the MRC and the PPC problems in Section 7.3.2.

In general, by assigning the closed-loop poles to those of A∗(s), we can
guarantee closed-loop stability and convergence of the plant output yp to zero
provided there is no external input. We can also extend the PPC objective
to include tracking, where yp is required to follow a certain class of reference
signals ym, by using the internal model principle discussed in Chapter 3 as
follows: The reference signal ym ∈ L∞ is assumed to satisfy

Qm(s)ym = 0 (7.3.2)
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where Qm(s), the internal model of ym, is a known monic polynomial of
degree q with nonrepeated roots on the jω-axis and satisfies

P3. Qm(s), Zp(s) are coprime.

For example, if yp is required to track the reference signal ym = 2 + sin(2t),
then Qm(s) = s(s2 + 4) and, therefore, according to P3, Zp(s) should not
have s or s2 + 4 as a factor.

The effect of Qm(s) on the tracking error e1 = yp − ym is explained
in Chapter 3 for a general feedback system and it is analyzed again in the
sections to follow.

In addition to assumptions P1 to P3, let us also assume that the co-
efficients of Zp(s), Rp(s), i.e., the plant parameters are known exactly and
propose several control laws that meet the control objective. The knowledge
of the plant parameters is relaxed in Section 7.4.

7.3.2 Polynomial Approach

We consider the control law

Qm(s)L(s)up = −P (s)yp + M(s)ym (7.3.3)

where P (s), L(s),M(s) are polynomials (with L(s) monic) of degree q +n−
1, n− 1, q + n− 1, respectively, to be found and Qm(s) satisfies (7.3.2) and
assumption P3.

Applying (7.3.3) to the plant (7.3.1), we obtain the closed-loop plant
equation

yp =
ZpM

LQmRp + PZp
ym (7.3.4)

whose characteristic equation

LQmRp + PZp = 0 (7.3.5)

has order 2n + q − 1. The objective now is to choose P, L such that

LQmRp + PZp = A∗ (7.3.6)

is satisfied for a given monic Hurwitz polynomial A∗(s) of degree 2n+ q− 1.
Because assumptions P2 and P3 guarantee that QmRp, Zp are coprime, it
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follows from Theorem 2.3.1 that L,P satisfying (7.3.6) exist and are unique.
The solution for the coefficients of L(s), P (s) of equation (7.3.6) may be
obtained by solving the algebraic equation

Slβl = α∗l (7.3.7)

where Sl is the Sylvester matrix of QmRp, Zp of dimension 2(n+q)×2(n+q)

βl = [l>q , p>]>, a∗l = [0, . . . , 0︸ ︷︷ ︸
q

, 1, α∗>]>

lq = [0, . . . , 0︸ ︷︷ ︸
q

, 1, l>]> ∈ Rn+q

l = [ln−2, ln−3, . . . , l1, l0]> ∈ Rn−1

p = [pn+q−1, pn+q−2, . . . , p1, p0]> ∈ Rn+q

α∗ = [a∗2n+q−2, a
∗
2n+q−3, . . . , a

∗
1, a

∗
0]
> ∈ R2n+q−1

li, pi, a
∗
i are the coefficients of

L(s) = sn−1 + ln−2s
n−2 + · · ·+ l1s + l0 = sn−1 + l>αn−2(s)

P (s) = pn+q−1s
n+q−1 + pn+q−2s

n+q−2 + · · ·+ p1s + p0 = p>αn+q−1(s)

A∗(s) = s2n+q−1+a∗2n+q−2s
2n+q−2+· · ·+a∗1s+a∗0 = s2n+q−1+α∗>α2n+q−2(s)

The coprimeness of QmRp, Zp guarantees that Sl is nonsingular; therefore,
the coefficients of L(s), P (s) may be computed from the equation

βl = S−1
l α∗l

Using (7.3.6), the closed-loop plant is described by

yp =
ZpM

A∗
ym (7.3.8)

Similarly, from the plant equation in (7.3.1) and the control law in (7.3.3)
and (7.3.6), we obtain

up =
RpM

A∗
ym (7.3.9)
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P (s)
Qm(s)L(s)

Gp(s)lΣ- - - -

6

ym −e1 up yp+
−

Figure 7.2 Block diagram of pole placement control.

Because ym ∈ L∞ and ZpM
A∗ ,

RpM
A∗ are proper with stable poles, it follows

that yp, up ∈ L∞ for any polynomial M(s) of degree n + q − 1. Therefore,
the pole placement objective is achieved by the control law (7.3.3) without
having to put any additional restrictions on M(s), Qm(s). When ym = 0,
(7.3.8), (7.3.9) imply that yp, up converge to zero exponentially fast.

When ym 6= 0, the tracking error e1 = yp − ym is given by

e1 =
ZpM −A∗

A∗
ym =

Zp

A∗
(M − P )ym − LRp

A∗
Qmym (7.3.10)

For zero tracking error, (7.3.10) suggests the choice of M(s) = P (s) to null
the first term in (7.3.10). The second term in (7.3.10) is nulled by using
Qmym = 0. Therefore, for M(s) = P (s), we have

e1 =
Zp

A∗
[0]− LRp

A∗
[0]

Because Zp

A∗ ,
LRp

A∗ are proper with stable poles, it follows that e1 converges
exponentially to zero. Therefore, the pole placement and tracking objective
are achieved by using the control law

QmLup = −P (yp − ym) (7.3.11)

which is implemented as shown in Figure 7.2 using n + q − 1 integrators
to realize C(s) = P (s)

Qm(s)L(s) . Because L(s) is not necessarily Hurwitz, the
realization of (7.3.11) with n+q−1 integrators may have a transfer function,
namely C(s), with poles outside C−. An alternative realization of (7.3.11) is
obtained by rewriting (7.3.11) as

up =
Λ− LQm

Λ
up − P

Λ
(yp − ym) (7.3.12)
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P (s)
Λ(s)
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Λ(s)−Qm(s)L(s)
Λ(s)
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¾
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ym +
−
−e1 +

+

up yp

Figure 7.3 An alternative realization of the pole placement control.

where Λ is any monic Hurwitz polynomial of degree n+q−1. The control law
(7.3.12) is implemented as shown in Figure 7.3 using 2(n+ q−1) integrators
to realize the proper stable transfer functions Λ−LQm

Λ , P
Λ . We summarize the

main equations of the control law in Table 7.1.

Remark 7.3.1 The MRC law of Section 6.3.2 shown in Figure 6.1 is a
special case of the general PPC law (7.3.3), (7.3.6). We can obtain the
MRC law of Section 6.3.2 by choosing

Qm = 1, A∗ = ZpΛ0Rm, M(s) =
RmΛ0

kp

L(s) = Λ(s)− θ∗>1 αn−2(s), P (s) = −(θ∗>2 αn−2(s) + θ∗3Λ(s))

Λ = Λ0Zm, ym = km
Zm

Rm
r

where Zp, Λ0, Rm are Hurwitz and Λ0, Rm, kp, θ
∗
1, θ

∗
2, θ

∗
3, r are as defined

in Section 6.3.2.

Example 7.3.1 Consider the plant

yp =
b

s + a
up

where a and b are known constants. The control objective is to choose up such that
the poles of the closed-loop plant are placed at the roots of A∗(s) = (s + 1)2 and
yp tracks the constant reference signal ym = 1. Clearly the internal model of ym is
Qm(s) = s, i.e., q = 1. Because n = 1, the polynomials L,P, Λ are of the form

L(s) = 1, P (s) = p1s + p0, Λ = s + λ0
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Table 7.1 PPC law: polynomial approach

Plant yp = Zp(s)
Rp(s)up

Reference input Qm(s)ym = 0

Calculation

Solve for L(s) = sn−1 + l>αn−2(s) and
P (s)=p>αn+q−1(s) the polynomial equation
L(s)Qm(s)Rp(s) + P (s)Zp(s) = A∗(s)
or solve for βl the algebraic equation Slβl = α∗l ,
where Sl is the Sylvester matrix of RpQm, Zp

βl = [l>q , p>]> ∈ R2(n+q)

lq = [0, . . . , 0︸ ︷︷ ︸
q

, 1, l>]> ∈ Rn+q

A∗(s) = s2n+q−1 + α∗>α2n+q−2(s)
α∗l = [0, . . . , 0︸ ︷︷ ︸

q

, 1, α∗>]> ∈ R2(n+q)

Control law up = Λ−LQm

Λ up − P
Λ e1

e1 = yp − ym

Design variables

A∗(s) is monic Hurwitz; Qm(s) is a monic poly-
nomial of degree q with nonrepeated roots on jω
axis; Λ(s) is a monic Hurwitz polynomial of degree
n + q − 1

where λ0 > 0 is arbitrary and p0, p1 are calculated by solving

s(s + a) + (p1s + p0)b = (s + 1)2 (7.3.13)

Equating the coefficients of the powers of s in (7.3.13), we obtain

p1 =
2− a

b
, p0 =

1
b
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Equation (7.3.13) may be also written in the form of the algebraic equation (7.3.7),
i.e., the Sylvester matrix of s(s + a), b is given by

Sl =




1 0 0 0
a 1 0 0
0 a b 0
0 0 0 b




and

βl =




0
1
p1

p0


 , α∗l =




0
1
2
1




Therefore, the PPC law is given by

up =
(s + λ0 − s)

s + λ0
up −

[
2− a

b
s +

1
b

]
1

s + λ0
e1

=
λ0

s + λ0
up − (2− a)s + 1

b(s + λ0)
e1

where e1 = yp − ym = yp − 1. A state-space realization of the control law is given
by

φ̇1 = −λ0φ1 + up

φ̇2 = −λ0φ2 + e1

up = λ0φ1 − 1− 2λ0 + aλ0

b
φ2 − 2− a

b
e1

5

7.3.3 State-Variable Approach

An alternative approach for deriving a PPC law is to use a state observer
and state-variable feedback.

We start by considering the expression

e1 =
Zp(s)
Rp(s)

up − ym (7.3.14)

for the tracking error. Filtering each side of (7.3.14) with Qm(s)
Q1(s) , where Q1(s)

is an arbitrary monic Hurwitz polynomial of degree q, and using Qm(s)ym =0
we obtain

e1 =
ZpQ1

RpQm
ūp (7.3.15)
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where
ūp =

Qm

Q1
up (7.3.16)

With (7.3.15), we have converted the tracking problem into the regulation
problem of choosing ūp to regulate e1 to zero.

Let (A, B,C) be a state space realization of (7.3.15) in the observer
canonical form, i.e.,

ė = Ae + Būp

e1 = C>e (7.3.17)

where

A =


−θ∗1

∣∣∣∣∣∣∣

In+q−1

−−−
0


 , B = θ∗2, C = [1, 0, . . . , 0]> (7.3.18)

θ∗1, θ∗2∈Rn+q are the coefficient vectors of the polynomials Rp(s)Qm(s)− sn+q

and Zp(s)Q1(s), respectively. Because RpQm, Zp are coprime, any possible
zero-pole cancellation in (7.3.15) between Q1(s) and Rp(s)Qm(s) will oc-
cur in C− due to Q1(s) being Hurwitz, which implies that (A,B) is always
stabilizable.

We consider the feedback law

ūp = −Kcê, up =
Q1

Qm
ūp (7.3.19)

where ê is the state of the full-order Luenberger observer

˙̂e = Aê + Būp −Ko(C>ê− e1) (7.3.20)

and Kc and Ko are calculated from

det(sI −A + BKc) = A∗c(s) (7.3.21)

det(sI −A + KoC
>) = A∗o(s) (7.3.22)

where A∗c and A∗o are given monic Hurwitz polynomials of degree n+ q. The
roots of A∗c(s) = 0 represent the desired pole locations of the transfer function
of the closed-loop plant whereas the roots of A∗o(s) are equal to the poles of
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the observer dynamics. As in every observer design, the roots of A∗o(s) = 0
are chosen to be faster than those of A∗c(s) = 0 in order to reduce the effect
of the observer dynamics on the transient response of the tracking error e1.
The existence of Kc in (7.3.21) follows from the controllability of (A, B).
If (A,B) is stabilizable but not controllable because of the common factors
between Q1(s), Rp(s), the solution for Kc in (7.3.21) still exists provided
A∗c(s) is chosen to contain the common factors of Q1, Rp. Because A∗c(s)
is chosen based on the desired closed-loop performance requirements and
Q1(s) is an arbitrary monic Hurwitz polynomial of degree q, we can choose
Q1(s) to be a factor of A∗c(s) and, therefore, guarantee the existence of Kc

in (7.3.21) even when (A,B) is not controllable. The existence of Ko in
(7.3.22) follows from the observability of (C, A). Because of the special form
of (7.3.17) and (7.3.18), the solution of (7.3.22) is given by Ko = α∗0 − θ∗1
where α∗0 is the coefficient vector of A∗o(s).

Theorem 7.3.1 The PPC law (7.3.19) to (7.3.22) guarantees that all sig-
nals in the closed-loop plant are bounded and e1 converges to zero exponen-
tially fast.

Proof We define the observation error eo
4
= e − ê. Subtracting (7.3.20) from

(7.3.17) we have
ėo = (A−KoC

>)eo (7.3.23)

Using (7.3.19) in (7.3.20) we obtain

˙̂e = (A−BKc)ê + KoC
>eo (7.3.24)

Because A−KoC
>, A−BKc are stable, the equilibrium eoe = 0, êe = 0 of (7.3.23),

(7.3.24) is e.s. in the large. Therefore ê, eo ∈ L∞ and ê(t), eo(t) → 0 as t → ∞.
From eo = e − ê and ūp = −Kcê, it follows that e, ūp, e1 ∈ L∞ and e(t), ūp(t),
e1(t) → 0 as t → ∞. The boundedness of yp follows from that of e1 and ym. We
prove that up ∈ L∞ as follows: Because of Assumption P3 and the stability of
Q1(s), the polynomials ZpQ1, RpQm have no common unstable zeros. Therefore
there exists polynomials X, Y of degree n + q − 1 with X monic that satisfy the
Diophantine equation

RpQmX + ZpQ1Y = A∗ (7.3.25)

where A∗ is a monic Hurwitz polynomial of degree 2(n + q) − 1 that contains the
common zeros of Q1(s), Rp(s)Qm(s). Dividing each side of (7.3.25) by A∗ and using
it to filter up, we obtain the equation

RpQmX

A∗
up +

Q1Y Zp

A∗
up = up
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Because Qmup = Q1ūp and Zpup = Rpyp, we have

up =
RpXQ1

A∗
ūp +

Q1Y Rp

A∗
yp

Because the transfer functions operating on ūp, yp are proper with poles in C−, then
ūp, yp ∈ L∞ imply that up ∈ L∞ and the proof is complete. 2

The main equations of the state variable feedback law are summarized
in Table 7.2.

Example 7.3.2 Let us consider the same plant and control objective as in Example
7.3.1, i.e.,

Plant yp =
b

s + a
up

Control Objective Choose up such that the closed-loop poles are placed at the
roots of A∗(s) = (s + 1)2 and yp tracks ym = 1.

Clearly, the internal model of ym is Qm(s) = s and the tracking error e1 =
yp − ym satisfies

e1 =
b

s + a
up − ym

Filtering each side of the above equation with s
s+1 , i.e., using Q1(s) = s + 1, we

obtain

e1 =
b(s + 1)
(s + a)s

ūp (7.3.26)

where ūp = s
s+1up. The state-space realization of (7.3.26) is given by

ė =
[ −a 1

0 0

]
e +

[
1
1

]
būp

e1 = [1 0]e

The control law is then chosen as follows:

Observer ˙̂e =
[ −a 1

0 0

]
ê +

[
1
1

]
būp −K0([1 0]ê− e1)

Control Law ūp = −Kcê, up =
(s + 1)

s
ūp = ūp +

∫ t

0

ūp(τ)dτ

where Ko = [ko1 , ko2 ]
>, Kc = [kc1 , kc2 ] are calculated using (7.3.21) and (7.3.22).

We select the closed-loop polynomial A∗c(s) = (s + 1)2 and the observer polynomial
A∗o(s) = (s + 5)2 and solve

det(sI −A + BKc) = (s + 1)2, det(sI −A + KoC
>) = (s + 5)2
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Table 7.2 State-space pole placement control law

Plant yp = Zp(s)
Rp(s)up

Reference input Qm(s)ym = 0

Observer

˙̂e=Aê+Būp−Ko(C>ê−e1)

A =


−θ∗1

∣∣∣∣∣∣∣

In+q−1

−−−−
0


 , B = θ∗2

C> = [1, 0, . . . , 0], e1 = yp − ym

where θ∗1, θ∗2 ∈Rn+q are the coefficient vectors
of Rp(s)Qm(s) − sn+q and Zp(s)Q1(s), respec-
tively

Calculation

Ko = α∗0 − θ∗1 where α∗0 is the coefficient vector of
A∗o(s)− sn+q; Kc is solved from
det(sI −A + BKc) = A∗c(s)

Control law ūp = −Kcê, up = Q1(s)
Qm(s) ūp

Design variables

A∗o(s), A∗c(s) are monic Hurwitz polynomials of
degree n + q; Q1(s) is a monic Hurwitz polyno-
mial of degree q; A∗c(s) contains Q1(s) as a fac-
tor;Qm(s) is a monic polynomial of degree q with
nonrepeated roots on the jω axis

where

A =
[ −a 1

0 0

]
, B =

[
1
1

]
b, C> = [1, 0]

for Ko,Kc to obtain

Kc =
1
b
[1− a, 1], Ko = [10− a, 25]>
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Note that the solution for Kc holds for any a and b 6= 0. For a = 1 and b 6= 0 the
pair {[ −a 1

0 0

]
,

[
1
1

]
b

}

is uncontrollable due to a zero-pole cancellation in (7.3.26) at s = −1. Because,
however, A∗c(s) = (s+1)2 contains s+1 as a factor the solution of Kc still exists. The
reader can verify that for A∗c(s) = (s + 2)2 (i.e., A∗c(s) doesnot have Q1(s) = s + 1
as a factor) and a = 1, no finite value of Kc exists to satisfy (7.3.21). 5

7.3.4 Linear Quadratic Control

Another method for solving the PPC problem is using an optimization tech-
nique to design a control input that guarantees boundedness and regulation
of the plant output or tracking error to zero by minimizing a certain cost
function that reflects the performance of the closed-loop system. As we have
shown in Section 7.3.3, the system under consideration is

ė = Ae + Būp

e1 = C>e (7.3.27)

where ūp is to be chosen so that the closed-loop system has eigenvalues that
are the same as the zeros of a given Hurwitz polynomial A∗c(s). If the state
e is available for measurement, then the control input

ūp = −Kce

where Kc is chosen so that A−BKc is a stable matrix, leads to the closed-
loop system

ė = (A−BKc)e

whose equilibrium ee = 0 is exponentially stable. The existence of such Kc is
guaranteed provided (A,B) is controllable (or stabilizable). In Section 7.3.3,
Kc is chosen so that det(sI − A + BKc) = A∗c(s) is a Hurwitz polynomial.
This choice of Kc leads to a bounded input ūp that forces e, e1 to converge
to zero exponentially fast with a rate that depends on the location of the
eigenvalues of A − BKc, i.e., the zeros of A∗c(s). The rate of decay of e1 to
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zero depends on how negative the real parts of the eigenvalues of A− BKc

are. It can be shown [95] that the more negative these values are, the larger
the value of Kc and, therefore, the higher the required signal energy in ūp.
In the limit, as the eigenvalues of A−BKc are forced to −∞, the input ūp

becomes a string of impulsive functions that restore e(t) instantaneously to
zero. These facts indicate that there exists a trade-off between the rate of
decay of e1, e to zero and the energy of the input ūp. This trade-off motivates
the following linear quadratic control problem where the control input ūp is
chosen to minimize the quadratic cost

J =
∫ ∞

0
(e2

1 + λū2
p)dt

where λ > 0, a weighting coefficient to be designed, penalizes the level of the
control input signal. The optimum control input ūp that minimizes J is [95]

ūp = −Kce, Kc = λ−1B>P (7.3.28)

where P = P> > 0 satisfies the algebraic equation

A>P + PA− PBλ−1B>P + CC> = 0 (7.3.29)

known as the Riccati equation.
Because (A,B) is stabilizable, owing to Assumption P3 and the fact that

Q1(s) is Hurwitz, the existence and uniqueness of P = P> > 0 satisfying
(7.3.29) is guaranteed [95]. It is clear that as λ → 0, a situation known as low
cost of control, ||Kc|| → ∞, which implies that ūp may become unbounded.
On the other hand if λ → ∞, a situation known as high cost of control,
ūp → 0 if the open-loop system is stable. If the open loop is unstable, then
ūp is the one that minimizes

∫∞
0 ū2

pdt among all stabilizing control laws. In
this case, the real part of the eigenvalues of A − BKc may not be negative
enough indicating that the tracking or regulation error may not go to zero
fast enough. With λ > 0 and finite, however, (7.3.28), (7.3.29) guarantee
that A − BKc is a stable matrix, e, e1 converge to zero exponentially fast,
and ūp is bounded. The location of the eigenvalues of A−BKc depends on
the particular choice of λ. For a given λ > 0, the polynomial

f(s)
4
= Rp(s)Qm(s)Rp(−s)Qm(−s) + λ−1Zp(s)Q1(s)Zp(−s)Q1(−s)
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is an even function of s and f(s) = 0 has a total of 2(n + q) roots with
n + q of them in C− and the other n + q in C+. It can be shown that the
poles corresponding to the closed-loop LQ control are the same as the roots
of f(s) = 0 that are located in C− [6]. On the other hand, however, given
a desired polynomial A∗c(s), there may not exist a λ so that det(sI − A +
Bλ−1B>P ) = A∗c(s). Hence, the LQ control solution provides us with a
procedure for designing a stabilizing control input for the system (7.3.27).
It doesnot guarantee, however, that the closed-loop system has the same
eigenvalues as the roots of the desired polynomial A∗c(s). The significance
of the LQ solution also relies on the fact that the resulting closed-loop has
good sensitivity properties.

As in Section 7.3.3, the state e of (7.3.28) may not be available for mea-
surement. Therefore, instead of (7.3.28), we use

ūp = −Kcê, Kc = λ−1B>P (7.3.30)

where ê is the state of the observer equation

˙̂e = Aê + Būp −Ko(C>ê− e1) (7.3.31)

and Ko = α∗0 − θ∗1 as in (7.3.20). As in Section 7.3.3, the control input is
given by

up =
Q1(s)
Qm(s)

ūp (7.3.32)

Theorem 7.3.2 The LQ control law (7.3.30) to (7.3.32) guarantees that
all signals in the closed-loop plant are bounded and e1(t) → 0 as t → ∞
exponentially fast.

Proof As in Section 7.3.3, we consider the system described by the error equations

ėo = (A−KoC
>)eo

˙̂e = (A−BKc)ê + KoC
>eo

(7.3.33)

where Kc = λ−1B>P and Ko is chosen to assign the eigenvalues of A −KoC
> to

the zeros of a given Hurwitz polynomial A∗o(s). Therefore, the equilibrium eoe = 0,
êe = 0 is e.s. in the large if and only if the matrix A−BKc is stable. We establish
the stability of A−BKc by considering the system

˙̄e = (A−BKc)ē = (A− λ−1BB>P )ē (7.3.34)
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and proving that the equilibrium ēe = 0 is e.s. in the large. We choose the Lyapunov
function

V (ē) = ē>P ē

where P = P> > 0 satisfies the Riccati equation (7.3.29). Then V̇ along the
trajectories of (7.3.34) is given by

V̇ = −ē>CC>ē− λ−1ē>PBB>P ē = −(C>ē)2 − 1
λ

(B>P ē)2 ≤ 0

which implies that ēe = 0 is stable, ē ∈ L∞ and C>ē, B>P ē ∈ L2. We now rewrite
(7.3.34) as

˙̄e = (A−KoC
>)ē + KoC

>ē− 1
λ

BB>P ē

by using output injection, i.e., adding and subtracting the term KoC
>ē. Because

A−KoC
> is stable and C>ē, B>P ē ∈ L∞

⋂L2, it follows from Corollary 3.3.1 that
ē ∈ L∞

⋂L2 and ē → 0 as t →∞. Using the results of Section 3.4.5 it follows that
the equilibrium ēe = 0 is e.s. in the large which implies that

A−BKc = A− λ−1BB>P

is a stable matrix. The rest of the proof is the same as that of Theorem 7.3.1 and
is omitted. 2

The main equations of the LQ control law are summarized in Table 7.3.

Example 7.3.3 Let us consider the scalar plant

ẋ = −ax + bup

yp = x

where a and b are known constants and b 6= 0. The control objective is to choose
up to stabilize the plant and regulate yp, x to zero. In this case Qm(s) = Q1(s) = 1
and no observer is needed because the state x is available for measurement. The
control law that minimizes

J =
∫ ∞

0

(y2
p + λu2

p)dt

is given by

up = − 1
λ

bpyp
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Table 7.3 LQ control law

Plant yp = Zp(s)
Rp(s)up

Reference input Qm(s)ym = 0

Observer As in Table 7.2

Calculation
Solve for P = P> > 0 the equation
A>P + PA− PBλ−1B>P + CC> = 0
A,B,C as defined in Table 7.2

Control law ūp = −λ−1B>P ê, up = Q1(s)
Qm(s) ūp

Design variables λ > 0 penalizes the control effort; Q1(s), Qm(s)
as in Table 7.2

where p > 0 is a solution of the scalar Riccati equation

−2ap− p2b2

λ
+ 1 = 0

The two possible solutions of the above quadratic equation are

p1 =
−λa +

√
λ2a2 + b2λ

b2
, p2 =

−λa−√λ2a2 + b2λ

b2

It is clear that p1 > 0 and p2 < 0; therefore, the solution we are looking for is
p = p1 > 0. Hence, the control input is given by

up = −

−a

b
+

√
a2 + b2

λ

b


 yp
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that leads to the closed-loop plant

ẋ = −
√

a2 +
b2

λ
x

which implies that for any finite λ > 0, we have x ∈ L∞ and x(t) → 0 as t → ∞
exponentially fast. It is clear that for λ → 0 the closed-loop eigenvalue goes to
−∞. For λ → ∞ the closed-loop eigenvalue goes to −|a|, which implies that if
the open-loop system is stable then the eigenvalue remains unchanged and if the
open-loop system is unstable, the eigenvalue of the closed-loop system is flipped to
the left half plane reflecting the minimum effort that is required to stabilize the
unstable system. The reader may verify that for the control law chosen above, the
cost function J becomes

J = λ

√
a2 + b2

λ − a

b2
x2(0)

It is clear that if a > 0, i.e., the plant is open-loop stable, the cost J is less than when
a < 0, i.e., the plant is open-loop unstable. More details about the LQ problem
may be found in several books [16, 95, 122]. 5

Example 7.3.4 Let us consider the same plant as in Examples 7.3.1, i.e.,

Plant yp =
b

s + a
up

Control Objective Choose up so that the closed-loop poles are stable and yp

tracks the reference signal ym = 1.

Tracking Error Equations The problem is converted to a regulation problem
by considering the tracking error equation

e1 =
b(s + 1)
(s + a)s

ūp, ūp =
s

s + 1
up

where e1 = yp − ym generated as shown in Example 7.3.2. The state-space repre-
sentation of the tracking error equation is given by

ė =
[ −a 1

0 0

]
e +

[
1
1

]
būp

e1 = [1, 0]e

Observer The observer equation is the same as in Example 7.3.2, i.e.,

˙̂e =
[ −a 1

0 0

]
ê +

[
1
1

]
būp −Ko([1 0]ê− e1)
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where Ko = [10− a, 25]> is chosen so that the observer poles are equal to the roots
of A∗o(s) = (s + 5)2.

Control law The control law, according to (7.3.30) to (7.3.32), is given by

ūp = −λ−1[b, b]P ê, up =
s + 1

s
ūp

where P satisfies the Riccati equation
[ −a 1

0 0

]>
P + P

[ −a 1
0 0

]
− P

[
b
b

]
λ−1[b b]P +

[
1 0
0 0

]
= 0 (7.3.35)

where λ > 0 is a design parameter to be chosen. For λ = 0.1, a = −0.5, b = 2, the
positive definite solution of (7.3.35) is

P =
[

0.1585 0.0117
0.0117 0.0125

]

which leads to the control law

ūp = −[3.4037 0.4829]ê, up =
s + 1

s
ūp

This control law shifts the open-loop eigenvalues from λ1 = 0.5, λ2 = 0 to λ1 =
−1.01, λ2 = −6.263.

For λ = 1, a = −0.5, b = 2 we have

P =
[

0.5097 0.1046
0.1046 0.1241

]

leading to
ūp = −[1.2287 0.4574]ê

and the closed-loop eigenvalues λ1 = −1.69, λ2 = −1.19.
Let us consider the case where a = 1, b = 1. For these values of a, b the pair

{[ −1 1
0 0

]
,

[
1
1

]}

is uncontrollable but stabilizable and the open-loop plant has eigenvalues at λ1 = 0,
λ2 = −1. The part of the system that corresponds to λ2 = −1 is uncontrollable. In
this case, λ = 0.1 gives

P =
[

0.2114 0.0289
0.0289 0.0471

]

and ūp = −[2.402 0.760]ê, which leads to a closed-loop plant with eigenvalues at
−1.0 and −3.162. As expected, the uncontrollable dynamics that correspond to
λ2 = −1 remained unchanged. 5
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7.4 Indirect APPC Schemes

Let us consider the plant given by (7.3.1), i.e.,

yp = Gp(s)up, Gp(s) =
Zp(s)
Rp(s)

where Rp(s), Zp(s) satisfy Assumptions P1 and P2. The control objective is
to choose up so that the closed-loop poles are assigned to the roots of the
characteristic equation A∗(s) = 0, where A∗(s) is a given monic Hurwitz
polynomial, and yp is forced to follow the reference signal ym ∈ L∞ whose
internal model Qm(s), i.e.,

Qm(s)ym = 0

is known and satisfies assumption P3.
In Section 7.3, we assume that the plant parameters (i.e., the coefficients

of Zp(s), Rp(s)) are known exactly and propose several control laws that meet
the control objective. In this section, we assume that Zp(s), Rp(s) satisfy
Assumptions P1 to P3 but their coefficients are unknown constants; and use
the certainty equivalence approach to design several indirect APPC schemes
to meet the control objective. As mentioned earlier, with this approach we
combine the PPC laws developed in Section 7.3 for the known parameter case
with adaptive laws that generate on-line estimates for the unknown plant
parameters. The adaptive laws are developed by first expressing (7.3.1)
in the form of the parametric models considered in Chapter 4, where the
coefficients of Zp, Rp appear in a linear form, and then using Tables 4.1 to
4.5 to pick up the adaptive law of our choice. We illustrate the design of
adaptive laws for the plant (7.3.1) in the following section.

7.4.1 Parametric Model and Adaptive Laws

We consider the plant equation

Rp(s)yp = Zp(s)up

where Rp(s) = sn+an−1s
n−1+· · ·+a1s+a0, Zp(s) = bn−1s

n−1+· · ·+b1s+b0,
which may be expressed in the form

[sn + θ∗>a αn−1(s)]yp = θ∗>b αn−1(s)up (7.4.1)
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where αn−1(s)=[sn−1, . . . , s, 1]> and θ∗a =[an−1, . . . , a0]>, θ∗b =[bn−1, . . . , b0]>

are the unknown parameter vectors. Filtering each side of (7.4.1) with 1
Λp(s) ,

where Λp(s) = sn + λn−1s
n−1 + · · ·λ0 is a Hurwitz polynomial, we obtain

z = θ∗>p φ (7.4.2)

where

z =
sn

Λp(s)
yp, θ∗p = [θ∗>b , θ∗>a ]>, φ =

[
α>n−1(s)
Λp(s)

up,−
α>n−1(s)
Λp(s)

yp

]>

Equation (7.4.2) is in the form of the linear parametric model studied in
Chapter 4, thus leading to a wide class of adaptive laws that can be picked
up from Tables 4.1 to 4.5 for estimating θ∗p.

Instead of (7.4.1), we can also write

yp = (Λp −Rp)
1
Λp

yp + Zp
1
Λp

up

that leads to the linear parametric model

yp = θ∗>λ φ (7.4.3)

where θ∗λ =
[
θ∗>b , (θ∗a − λp)>

]>
and λp = [λn−1, λn−2, . . . , λ0]> is the coeffi-

cient vector of Λp(s) − sn. Equation (7.4.3) can also be used to generate a
wide class of adaptive laws using the results of Chapter 4.

The plant parameterizations in (7.4.2) and (7.4.3) assume that the plant
is strictly proper with known order n but unknown relative degree n∗ ≥
1. The number of the plant zeros, i.e., the degree of Zp(s), however, is
unknown. In order to allow for the uncertainty in the number of zeros,
we parameterize Zp(s) to have degree n − 1 where the coefficients of si for
i = m+1,m+2, . . . , n− 1 are equal to zero and m is the degree of Zp(s). If
m < n−1 is known, then the dimension of the unknown vector θ∗p is reduced
to n + m + 1.

The adaptive laws for estimating on-line the vector θ∗p or θ∗λ in (7.4.2),
(7.4.3) have already been developed in Chapter 4 and are presented in Tables
4.1 to 4.5. In the following sections, we use (7.4.2) or (7.4.3) to pick up
adaptive laws from Tables 4.1 to 4.5 of and combine them with the PPC
laws of Section 7.3 to form APPC schemes.
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7.4.2 APPC Scheme: The Polynomial Approach

Let us first illustrate the design and analysis of an APPC scheme based on
the PPC scheme of Section 7.3.2 using a first order plant model. Then we
consider the general case that is applicable to an nth-order plant.

Example 7.4.1 Consider the same plant as in example 7.3.1, i.e.,

yp =
b

s + a
up (7.4.4)

where a and b are unknown constants and up is to be chosen so that the poles of
the closed-loop plant are placed at the roots of A∗(s) = (s + 1)2 = 0 and yp tracks
the constant reference signal ym = 1 ∀t ≥ 0.

Let us start by designing each block of the APPC scheme, i.e., the adaptive law
for estimating the plant parameters a and b; the mapping from the estimates of a,
b to the controller parameters; and the control law.

Adaptive Law We start with the following parametric model for (7.4.4)

z = θ∗>p φ

where

z =
s

s + λ
yp, φ =

1
s + λ

[
up

−yp

]
, θ∗p =

[
b
a

]
(7.4.5)

and λ > 0 is an arbitrary design constant. Using Tables 4.1 to 4.5 of Chapter 4, we
can generate a number of adaptive laws for estimating θ∗p. For this example, let us
choose the gradient algorithm of Table 4.2

θ̇p = Γεφ (7.4.6)

ε =
z − θ>p φ

m2
, m2 = 1 + φ>φ

where Γ = Γ> > 0, θp = [b̂, â]> and â(t), b̂(t) is the estimate of a and b respectively.

Calculation of Controller Parameters As shown in Section 7.3.2, the control
law

up =
Λ− LQm

Λ
up − P

Λ
e1 (7.4.7)

can be used to achieve the control objective, where Λ(s) = s + λ0, L(s) = 1,

Qm(s) = s , P (s) = p1s+ p0, e1
4
= yp− ym and the coefficients p1, p0 of P (s) satisfy

the Diophantine equation

s(s + a) + (p1s + p0)b = (s + 1)2 (7.4.8)
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or equivalently the algebraic equation



1 0 0 0
a 1 0 0
0 a b 0
0 0 0 b







0
1
p1

p0


 =




0
1
2
1


 (7.4.9)

whose solution is
p1 =

2− a

b
, p0 =

1
b

Because a and b are unknown, the certainty equivalence approach suggests the use of
the same control law but with the controller polynomial P (s) = p1s+ p0 calculated
by using the estimates â(t) and b̂(t) of a and b at each time t as if they were the
true parameters, i.e., P (s, t) = p̂1(t)s+ p̂0(t) is generated by solving the polynomial
equation

s · (s + â) + (p̂1s + p̂0) · b̂ = (s + 1)2 (7.4.10)

for p̂1 and p̂0 by treating â(t) and b̂(t) as frozen parameters at each time t, or by
solving the algebraic time varying equation




1 0 0 0
â(t) 1 0 0
0 â(t) b̂(t) 0
0 0 0 b̂(t)







0
1

p̂1(t)
p̂0(t)


 =




0
1
2
1


 (7.4.11)

for p̂0 and p̂1. The solution of (7.4.10), where â(t) and b̂(t) are treated as constants
at each time t, is referred to as pointwise to distinguish it from solutions that may
be obtained with s treated as a differential operator, and â(t) and b̂(t) treated as
differentiable functions of time.

The Diophantine equation (7.4.10) or algebraic equation (7.4.11) has a unique
solution provided that (s + â), b̂ are coprime, i.e., provided b̂ 6= 0. The solution is
given by

p̂1(t) =
2− â

b̂
, p̂0(t) =

1

b̂

In fact for â, b̂ ∈ L∞ to imply that p̂0, p̂1 ∈ L∞, (s+â), b̂ have to be strongly coprime,
i.e., |b̂| ≥ b0 for some constant b0 > 0. For this simple example, the adaptive law
(7.4.6) can be modified to guarantee that |b̂(t)| ≥ b0 > 0 ∀t ≥ 0 provided sgn(b) and
a lower bound b0 of |b| are known as shown in Section 7.2 and previous chapters.
For clarity of presentation, let us assume that the adaptive law (7.4.6) is modified
using projection (as in Section 7.2) to guarantee |b̂(t)| ≥ b0 ∀t ≥ 0 and proceed with
the rest of the design and analysis.

Control Law The estimates p̂0(t), p̂1(t) are used in place of the unknown p0, p1

to form the control law

up =
λ0

s + λ0
up −

(
p̂1(t)

s

s + λ0
+ p̂0(t)

1
s + λ0

)
(yp − ym) (7.4.12)
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b

s + a

θ̇p = Γεφ

p̂1 =
2− â

b̂
, p̂0 =

1
b̂λ

s + λ

(p̂1s+p̂0)
1

s+λ
nΣ nΣ

- -

-

-

¾

¾¾¾
?

? ?

?
?

?

¡¡ª ¡¡ª

up yp

up

+
−

e1
+

−
ym

â b̂

p̂1 p̂0

Figure 7.4 Block diagram of APPC for a first-order plant.

where λ0 > 0 is an arbitrary design constant. For simplicity of implementation,
λ0 may be taken to be equal to the design parameter λ used in the adaptive law
(7.4.6), so that the same signals can be shared by the adaptive and control law.

Implementation The block diagram of the APPC scheme with λ = λ0 for the
first order plant (7.4.4) is shown in Figure 7.4.

For λ = λ0, the APPC scheme may be realized by the following equations:

Filters

φ̇1 = −λφ1 + up, φ1(0) = 0

φ̇2 = −λφ2 − yp, φ2(0) = 0

φ̇m = −λφm + ym, φm(0) = 0
z = λφ2 + yp = −φ̇2

Adaptive Law

˙̂
b =

{
γ1εφ1 if |b̂| > b0 or if |b̂| = b0 and εφ1sgnb̂ ≥ 0
0 otherwise

˙̂a = γ2εφ2

ε =
z − b̂φ1 − âφ2

m2
, m2 = 1 + φ2

1 + φ2
2
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Control Law

up = λφ1 − (p̂1(t)λ− p̂0(t))(φ2 + φm)− p̂1(t)(yp − ym)

p̂1 =
2− â

b̂
, p̂0 =

1

b̂

where γ1, γ2, λ > 0 are design constants and b̂(0)sgn(b) ≥ b0.

Analysis The stability analysis of the indirect APPC scheme is carried out in the
following four steps:

Step 1. Manipulate the estimation error and control law equations to express
yp, up in terms of the estimation error ε. We start with the expression for the
normalized estimation error

εm2 = z − b̂φ1 − âφ2 = −φ̇2 − b̂φ1 − âφ2

which implies that
φ̇2 = −b̂φ1 − âφ2 − εm2 (7.4.13)

From the control law, we have

up = λφ1 + p̂1(φ̇2 + φ̇m) + p̂0φ2 + p̂0φm

Because up − λφ1 = φ̇1, it follows that

φ̇1 = p̂1φ̇2 + p̂0φ2 + ȳm

where ȳm
4
= p̂1φ̇m + p̂0φm. Substituting for φ̇2 from (7.4.13) we obtain

φ̇1 = −p̂1b̂φ1 − (p̂1â− p̂0)φ2 − p̂1εm
2 + ȳm (7.4.14)

Equations (7.4.13), (7.4.14) form the following state space representation for the
APPC scheme:

ẋ = A(t)x + b1(t)εm2 + b2ȳm[
up

−yp

]
= ẋ + λx = (A(t) + λI)x + b1(t)εm2 + b2ȳm (7.4.15)

where

x =
[

φ1

φ2

]
, A(t) =

[ −p̂1b̂ p̂0 − p̂1â

−b̂ −â

]
, b1(t) =

[ −p̂1

−1

]
, b2 =

[
1
0

]

m2 = 1 + x>x and ȳm ∈ L∞.
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Step 2. Show that the homogeneous part of (7.4.15) is e.s. For each fixed t,
det(sI−A(t)) = (s+â)s+b̂(p̂1s+p̂0) = (s+1)2, i.e., λ(A(t)) = −1, ∀t ≥ 0. As shown

in Chapter 4, the adaptive law guarantees that ε, â, b̂ ∈ L∞; ε, εm, ˙̂a, ˙̂
b ∈ L∞

⋂L2.
From p̂1 = 2−â

b̂
, p̂0 = 1

b̂
and b̂−1 ∈ L∞ (because of projection), it follows that

p̂1, p̂0 ∈ L∞ and ˙̂p1,
˙̂p0 ∈ L∞

⋂L2. Hence, ‖Ȧ(t)‖ ∈ L∞
⋂L2 which together with

λ(A(t)) = −1 ∀t ≥ 0 and Theorem 3.4.11 imply that the state transition matrix
Φ(t, τ) associated with A(t) satisfies

‖Φ(t, τ)‖ ≤ k1e
−k2(t−τ), ∀t ≥ τ ≥ 0

for some constants k1, k2 > 0.

Step 3. Use the properties of the L2δ norm and B-G Lemma to establish
boundedness. For simplicity, let us now denote ‖(·)t‖2δ for some δ > 0 with ‖ · ‖.
Applying Lemma 3.3.3 to (7.4.15) we obtain

‖x‖ ≤ c‖εm2‖+ c, |x(t)| ≤ c‖εm2‖+ c (7.4.16)

for any δ ∈ [0, δ1) where δ1 > 0 is any constant less than 2k2, and some finite
constants c ≥ 0.

As in the MRAC case, we define the fictitious normalizing signal

m2
f
4
= 1 + ‖up‖2 + ‖yp‖2

From (7.4.15) we have ‖up‖ + ‖yp‖ ≤ c‖x‖ + c‖εm2‖ + c, which, together with
(7.4.16), implies that

m2
f ≤ c‖εm2‖2 + c

Because |φ1| ≤ c‖up‖, |φ2| ≤ c‖yp‖ for δ ∈ [0, 2λ), it follows that m =
√

1 + φ>φ ≤
cmf and, therefore,

m2
f ≤ c‖g̃mf‖2 + c

where g̃
4
= εm ∈ L2 because of the properties of the adaptive law, or

m2
f ≤ c

∫ t

0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ + c

where 0 < δ ≤ δ∗ and δ∗ = min[2λ, δ1], δ1 ∈ (0, 2k2). Applying the B-G Lemma,
we can establish that mf ∈ L∞. Because m ≤ cmf , we have m and therefore
φ1, φ2, x, ẋ, up, yp ∈ L∞.

Step 4. Establish tracking error convergence. We consider the estimation error
equation

εm2 = −φ̇2 − âφ2 − b̂φ1
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or
εm2 = (s + â)

1
s + λ

yp − b̂
1

s + λ
up (7.4.17)

Operating on each side of (7.4.17) with s
4
= d

dt , we obtain

s(εm2) = s(s + â)
1

s + λ
yp − b̂

s

s + λ
up − ˙̂

b
1

s + λ
up (7.4.18)

by using the property s(xy) = ẋy + xẏ. For λ = λ0, it follows from the control law
(7.4.12) that

s

s + λ
up = −(p̂1s + p̂0)

1
s + λ

e1

which we substitute in (7.4.18) to obtain

s(εm2) = s(s + â)
1

s + λ
yp + b̂(p̂1s + p̂0)

1
s + λ

e1 − ˙̂
b

1
s + λ

up (7.4.19)

Now, because s(s + â) 1
s+λyp = (s + â) s

s+λyp + ˙̂a 1
s+λyp and se1 = syp − sym = syp

(note that sym = 0), we have

s(s + â)
1

s + λ
yp = (s + â)

s

s + λ
e1 + ˙̂a

1
s + λ

yp

which we substitute in (7.4.19) to obtain

s(εm2) =
[
(s + â)s + b̂(p̂1s + p̂0)

] 1
s + λ

e1 + ˙̂a
1

s + λ
yp − ˙̂

b
1

s + λ
up

Using (7.4.10) we have (s + â)s + b̂(p̂1s + p̂0) = (s + 1)2 and therefore

s(εm2) =
(s + 1)2

s + λ
e1 + ˙̂a

1
s + λ

yp − ˙̂
b

1
s + λ

up

or

e1 =
s(s + λ)
(s + 1)2

εm2 − s + λ

(s + 1)2
˙̂a

1
s + λ

yp +
s + λ

(s + 1)2
˙̂
b

1
s + λ

up (7.4.20)

Because up, yp,m, ε ∈ L∞ and ˙̂a,
˙̂
b, εm ∈ L∞

⋂L2, it follows from Corollary 3.3.1
that e1 ∈ L∞

⋂L2. Hence, if we show that ė1 ∈ L∞, then by Lemma 3.2.5 we can
conclude that e1 → 0 as t → ∞. Since ė1 = ẏp = ayp + bup ∈ L∞, it follows that
e1 → 0 as t →∞.

We can continue our analysis and establish that ε, ˙̂a,
˙̂
b, ˙̂p0,

˙̂p1 → 0 as t → ∞.
There is no guarantee, however, that p̂0, p̂1, â, b̂ will converge to the actual values
p0, p1, a, b respectively unless the reference signal ym is sufficiently rich of order 2,
which is not the case for the example under consideration.
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As we indicated earlier the calculation of the controller parameters p̂0(t), p̂1(t)
at each time is possible provided the estimated plant polynomials (s+ â(t)), b̂(t) are
strongly coprime, i.e., provided |b̂(t)| ≥ b0 > 0 ∀t ≥ 0. This condition implies that
at each time t, the estimated plant is strongly controllable. This is not surprising
because the control law is calculated at each time t to meet the control objective
for the estimated plant. As we will show in Section 7.6, the adaptive law without
projection cannot guarantee that |b̂(t)| ≥ b0 > 0 ∀t ≥ 0. Projection requires
the knowledge of b0 and sgn(b) and constrains b̂(t) to be in the region |b̂(t)| ≥
b0 where controllability is always satisfied. In the higher-order case, the problem
of controllability or stabilizability of the estimated plant is more difficult as we
demonstrate below for a general nth-order plant. 5

General Case

Let us now consider the nth-order plant

yp =
Zp(s)
Rp(s)

up

where Zp(s), Rp(s) satisfy assumptions P1, P2, and P3 with the same control
objective as in Section 7.3.1, except that in this case the coefficients of Zp, Rp

are unknown. The APPC scheme that meets the control objective for the
unknown plant is formed by combining the control law (7.3.12), summarized
in Table 7.1, with an adaptive law based on the parametric model (7.4.2)
or (7.4.3). The adaptive law generates on-line estimates θa, θb of the coeffi-
cient vectors, θ∗a of Rp(s) = sn + θ∗>a αn−1(s) and θ∗b of Zp(s) = θ∗>b αn−1(s)
respectively, to form the estimated plant polynomials

R̂p(s, t) = sn + θ>a αn−1(s), Ẑp(s, t) = θ>b αn−1(s)

The estimated plant polynomials are used to compute the estimated con-
troller polynomials L̂(s, t), P̂ (s, t) by solving the Diophantine equation

L̂Qm · R̂p + P̂ · Ẑp = A∗ (7.4.21)

for L̂, P̂ pointwise in time or the algebraic equation

Ŝlβ̂l = α∗l (7.4.22)
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for β̂l, where Ŝl is the Sylvester matrix of R̂pQm, Ẑp; β̂l contains the coeffi-
cients of L̂, P̂ ; and α∗l contains the coefficients of A∗(s) as shown in Table 7.1.
The control law in the unknown parameter case is then formed as

up = (Λ− L̂Qm)
1
Λ

up − P̂
1
Λ

(yp − ym) (7.4.23)

Because different adaptive laws may be picked up from Tables 4.2 to 4.5, a
wide class of APPC schemes may be developed. As an example, we present
in Table 7.4 the main equations of an APPC scheme that is based on the
gradient algorithm of Table 4.2.

The implementation of the APPC scheme of Table 7.4 requires that
the solution of the polynomial equation (7.4.21) for L̂, P̂ or of the alge-
braic equation (7.4.22) for β̂l exists at each time. The existence of this
solution is guaranteed provided that R̂p(s, t)Qm(s), Ẑp(s, t) are coprime at
each time t, i.e., the Sylvester matrix Ŝl(t) is nonsingular at each time t.
In fact for the coefficient vectors l, p of the polynomials L̂, P̂ to be uni-
formly bounded for bounded plant parameter estimates θp, the polynomials
R̂p(s, t)Qm(s), Ẑp(s, t) have to be strongly coprime which implies that their
Sylvester matrix should satisfy

|det(Sl(t))| ≥ ν0 > 0

for some constant ν0 at each time t. Such a strong condition cannot be
guaranteed by the adaptive law without any additional modifications, giv-
ing rise to the so called “stabilizability” or “admissibility” problem to be
discussed in Section 7.6. As in the scalar case, the stabilizability problem
arises from the fact that the control law is chosen to stabilize the estimated
plant (characterized by Ẑp(s, t), R̂p(s, t)) at each time. For such a control law
to exist, the estimated plant has to satisfy the usual observability, controlla-
bility conditions which in this case translate into the equivalent condition of
R̂p(s, t)Qm(s), R̂p(s, t) being coprime. The stabilizability problem is one of
the main drawbacks of indirect APPC schemes in general and it is discussed
in Section 7.6. In the meantime let us assume that the estimated plant is
stabilizable, i.e., R̂pQm, Ẑp are strongly coprime ∀t ≥ 0 and proceed with
the analysis of the APPC scheme presented in Table 7.4.

Theorem 7.4.1 Assume that the estimated plant polynomials R̂pQm, Ẑp are
strongly coprime at each time t. Then all the signals in the closed-loop
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Table 7.4 APPC scheme: polynomial approach.

Plant

yp = Zp(s)
Rp(s)up

Zp(s) = θ∗>b αn−1(s)
Rp(s) = sn + θ∗>a αn−1(s)
αn−1(s) = [sn−1, sn−2, . . . , s, 1]>, θ∗p = [θ∗>b , θ∗>a ]>

Reference
signal

Qm(s)ym = 0

Adaptive law

Gradient algorithm from Table 4.2
θ̇p = Γεφ, Γ = Γ> > 0
ε = (z − θ>p φ)/m2, m2 = 1 + φ>φ

φ = [
α>n−1(s)

Λp(s) up,−α>n−1(s)

Λp(s) yp]>

z = sn

Λp(s)yp, θp = [θ>b , θ>a ]>

Ẑp(s, t) = θ>b αn−1(s), R̂p(s, t) = sn + θ>a αn−1(s)

Calculation

Solve for L̂(s, t) = sn−1 + l>αn−2(s),
P̂ (s, t) = p>αn+q−1(s) the polynomial equation:
L̂(s, t)·Qm(s)·R̂p(s, t) + P̂ (s, t)·Ẑp(s, t) = A∗(s)
or solve for β̂l the algebraic equation
Ŝlβ̂l = α∗l
where Ŝl is the Sylverster matrix of R̂pQm, Ẑp

β̂l =[l>q , p>]>∈R2(n+q), lq =[0, . . . , 0︸ ︷︷ ︸
q

, 1, l>]>∈Rn+q

A∗(s) = s2n+q−1 + α∗>α2n+q−2(s)
α∗l = [0, . . . , 0︸ ︷︷ ︸

q

, 1, α∗>]> ∈ R2(n+q)

Control law up = (Λ− L̂Qm) 1
Λup − P̂ 1

Λ(yp − ym)

Design
variables

A∗(s) monic Hurwitz; Λ(s) monic Hurwitz of degree
n + q − 1; for simplicity, Λ(s) = Λp(s)Λq(s), where
Λp(s), Λq(s) are monic Hurwitz of degree n, q − 1,
respectively
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APPC scheme of Table 7.4 are u.b. and the tracking error converges to zero
asymptotically with time. The same result holds if we replace the gradient
algorithm in Table 7.4 with any other adaptive law from Tables 4.2 and 4.3.

Outline of Proof: The proof is completed in the following four steps as in Example
7.4.1:

Step 1. Manipulate the estimation error and control law equations to express
the plant input up and output yp in terms of the estimation error. This step leads
to the following equations:

ẋ = A(t)x + b1(t)εm2 + b2ȳm

up = C>1 x + d1εm
2 + d2ȳm (7.4.24)

yp = C>2 x + d3εm
2 + d4ȳm

where ȳm ∈ L∞; A(t), b1(t) are u.b. because of the boundedness of the estimated
plant and controller parameters (which is guaranteed by the adaptive law and the
stabilizability assumption); b2 is a constant vector; C1 and C2 are vectors whose
elements are u.b.; and d1 to d4 are u.b. scalars.

Step 2. Establish the e.s. of the homogeneous part of (7.4.24). The matrix A(t)
has stable eigenvalues at each frozen time t that are equal to the roots of A∗(s) = 0.
In addition θ̇p, l̇, ṗ ∈ L2 (guaranteed by the adaptive law and the stabilizability
assumption), imply that ‖Ȧ(t)‖ ∈ L2. Therefore, using Theorem 3.4.11, we conclude
that the homogeneous part of (7.4.24) is u.a.s.

Step 3. Use the properties of the L2δ norm and B-G Lemma to establish
boundedness. Let m2

f

4
= 1 + ‖up‖2 + ‖yp‖2 where ‖ · ‖ denotes the L2δ norm. Using

the results established in Steps 1 and 2 and the normalizing properties of mf , we
show that

m2
f ≤ c‖εmmf‖2 + c (7.4.25)

which implies that

m2
f ≤ c

∫ t

0

e−δ(t−τ)ε2m2m2
fdτ + c

Because εm ∈ L2, the boundedness of mf follows by applying the B-G lemma.
Using the boundedness of mf , we can establish the boundedness of all signals in
the closed-loop plant.

Step 4. Establish that the tracking error e1 converges to zero. The convergence
of e1 to zero follows by using the control and estimation error equations to express
e1 as the output of proper stable LTI systems whose inputs are in L2 ∩ L∞.

The details of the proof of Theorem 7.4.1 are given in Section 7.7. 2
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7.4.3 APPC Schemes: State-Variable Approach

As in Section 7.4.2, let us start with a scalar example to illustrate the design
and analysis of an APPC scheme formed by combining the control law of
Section 7.3.3 developed for the case of known plant parameters with an
adaptive law.

Example 7.4.2 We consider the same plant as in Example 7.3.2, i.e.,

yp =
b

s + a
up (7.4.26)

where a and b are unknown constants with b 6= 0 and up is to be chosen so that the
poles of the closed-loop plant are placed at the roots of A∗(s) = (s + 1)2 = 0 and
yp tracks the reference signal ym = 1. As we have shown in Example 7.3.2, if a, b
are known, the following control law can be used to meet the control objective:

˙̂e =
[ −a 1

0 0

]
ê +

[
1
1

]
būp −Ko([1 0]ê− e1)

ūp = −Kcê, up =
s + 1

s
ūp (7.4.27)

where Ko,Kc are calculated by solving the equations

det(sI −A + BKc) = (s + 1)2

det(sI −A + KoC
>) = (s + 5)2

where

A =
[ −a 1

0 0

]
, B =

[
1
1

]
b, C> = [1, 0]

i.e.,

Kc =
1
b
[1− a, 1], Ko = [10− a, 25]> (7.4.28)

The APPC scheme for the plant (7.4.26) with unknown a and b may be formed
by replacing the unknown parameters a and b in (7.4.27) and (7.4.28) with their
on-line estimates â and b̂ generated by an adaptive law as follows:

Adaptive Law The adaptive law uses the measurements of the plant input up and
output yp to generate â, b̂. It is therefore independent of the choice of the control
law and the same adaptive law as the one used in Example 7.4.1 can be employed,
i.e.,

θ̇p = Pr{Γεφ}, Γ = Γ> > 0
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ε =
z − θ>p φ

m2
, m2 = 1 + φ>φ, z =

s

s + λ
yp (7.4.29)

θp =
[

b̂
â

]
, φ =

1
s + λ

[
up

−yp

]

where λ > 0 is a design constant and Pr {·} is the projection operator as defined in
Example 7.4.1 that guarantees b̂(t)| ≥ b0 > 0 ∀t ≥ 0.

State Observer
˙̂e = Â(t)ê + B̂(t)ūp − K̂o(C>ê− e1) (7.4.30)

where

Â =
[ −â 1

0 0

]
, B̂ =

[
1
1

]
b̂, C> = [1, 0]

Calculation of Controller Parameters Calculate K̂c, K̂o by solving

det(sI − Â + B̂K̂c) = A∗c(s) = (s + 1)2, det(sI − Â + K̂oC
>) = (s + 5)2

for each frozen time t which gives

K̂c =
1

b̂
[1− â, 1], K̂o = [10− â, 25]> (7.4.31)

Control Law:
ūp = −K̂cê, up =

s + 1
s

ūp (7.4.32)

The solution for the controller parameter vector K̂c exists for any monic Hurwitz
polynomial A∗c(s) of degree 2 provided (Â, B̂) is stabilizable and A∗c(s) contains the
uncontrollable eigenvalues of Â as roots. For the example considered, (Â, B̂) loses
its controllability when b̂ = 0. It also loses its controllability when b̂ 6= 0 and â = 1.
In this last case, however, (Â, B̂), even though uncontrollable, is stabilizable and
the uncontrollable eigenvalue is at s = −1, which is a zero of A∗c(s) = (s + 1)2.
Therefore, as it is also clear from (7.4.31), K̂c exists for all â, b̂ provided b̂ 6= 0.
Because the projection operator in (7.4.29) guarantees as in Example 7.4.1 that
|b̂(t)| ≥ b0 > 0 ∀t ≥ 0, the existence and boundedness of K̂c follows from â, b̂ ∈ L∞.

Analysis

Step 1. Develop the state error equations for the closed-loop APPC scheme.
The state error equations for the closed-loop APPC scheme include the tracking
error equation and the observer equation. The tracking error equation

e1 =
b(s + 1)
s(s + a)

ūp, ūp =
s

s + 1
up
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is expressed in the state space form

ė =
[ −a 1

0 0

]
e +

[
1
1

]
būp (7.4.33)

e1 = C>e = [1, 0]e

Let eo = e− ê be the observation error. Then from (7.4.30) and (7.4.33) we obtain
the state equations

˙̂e = Ac(t)ê +
[ −â + 10

25

]
C>eo

ėo =
[ −10 1
−25 0

]
eo +

[
1
0

]
ãe1 −

[
1
1

]
b̃ūp

ūp = −K̂cê (7.4.34)

where Ac(t)
4
= Â(t)− B̂K̂c, ã

4
= â− a, b̃

4
= b̂− b. The plant output is related to e0, ê

as follows:
yp = e1 + ym = C>(e0 + ê) + ym (7.4.35)

The relationship between up and e0, ê may be developed as follows:
The coprimeness of b, s(s + a) implies the existence of polynomials X(s), Y (s)

of degree 1 and with X(s) monic such that

s(s + a)X(s) + b(s + 1)Y (s) = A∗(s) (7.4.36)

where A∗(s) = (s+1)a∗(s) and a∗(s) is any monic polynomial of degree 2. Choosing
a∗(s) = (s + 1)2, we obtain X(s) = s + 1 and Y (s) = (2−a)s+1

b . Equation (7.4.36)
may be written as

s(s + a)
(s + 1)2

+
(2− a)s + 1

(s + 1)2
= 1 (7.4.37)

which implies that

up =
s(s + a)
(s + 1)2

up +
(2− a)s + 1

(s + 1)2
up

Using up = s+a
b yp, sup = (s + 1)ūp and ūp = −K̂cê, we have

up = −s + a

s + 1
K̂cê +

(2− a)s + 1
(s + 1)2

(s + a)
b

yp (7.4.38)

Equations (7.4.34), (7.4.35), and (7.4.38) describe the stability properties of the
closed-loop APPC scheme.

Step 2. Establish the e.s. of the homogeneous part of (7.4.34). The homoge-
neous part of (7.4.34) is considered to be the part with the input ãe1, b̃ūp set equal
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to zero. The e.s. of the homogeneous part of (7.4.34) can be established by showing

that Ac(t) is a u.a.s matrix and Ao =
[ −10 1
−25 0

]
is a stable matrix. Because Ao

is stable by design, it remains to show that Ac(t) = Â(t)− B̂(t)K̂c(t) is u.a.s.
The projection used in the adaptive law guarantees as in Example 7.4.1 that

|b̂(t)| ≥ b0 > 0, ∀t ≥ 0. Because b̂, â ∈ L∞ it follows that the elements of K̂c, Ac are
u.b. Furthermore, at each time t, λ(Ac(t)) = −1,−1, i.e., Ac(t) is a stable matrix

at each frozen time t. From (7.4.31) and ˙̂a,
˙̂
b ∈ L2, we have | ˙̂

Kc| ∈ L2. Hence,
‖Ȧc(t)‖ ∈ L2 and the u.a.s of Ac(t) follows by applying Theorem 3.4.11.

In the rest of the proof, we exploit the u.a.s of the homogeneous part of (7.4.34)
and the relationships of the inputs ãe1, b̃ūp with the properties of the adaptive
law in an effort to first establish signal boundedness and then convergence of the
tracking error to zero. In the analysis we employ the L2δ norm ‖(·)t‖2δ which for
clarity of presentation we denote by ‖ · ‖.

Step 3. Use the properties of the L2δ norm and B-G Lemma to establish
boundedness. Applying Lemmas 3.3.2 and 3.3.3 to (7.4.34), (7.4.35), and (7.4.38),
we obtain

‖ê‖ ≤ c‖C>eo‖
‖yp‖ ≤ c‖C>eo‖+ c‖ê‖+ c

‖up‖ ≤ c‖ê‖+ c‖yp‖+ c

for some δ > 0 where c ≥ 0 denotes any finite constant, which imply that

‖yp‖ ≤ c‖C>eo‖+ c

‖up‖ ≤ c‖C>eo‖+ c

Therefore, the fictitious normalizing signal

m2
f
4
= 1 + ‖yp‖2 + ‖up‖2 ≤ c‖C>eo‖2 + c (7.4.39)

We now need to find an upper bound for ‖C>eo‖, which is a function of the L2

signals εm, ˙̂a,
˙̂
b. From equation (7.4.34) we write

C>eo =
s

(s + 5)2
ãe1 − s + 1

(s + 5)2
b̃

s

s + 1
up

Applying the Swapping Lemma A.1 (see Appendix A) to the above equation and
using the fact that se1 = syp we obtain

C>eo = ã
s

(s + 5)2
yp − b̃

s

(s + 5)2
up + Wc1(Wb1e1) ˙̂a−Wc2(Wb2up)

˙̂
b (7.4.40)
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where the elements of Wci(s),Wbi(s) are strictly proper transfer functions with poles
at −1,−5. To relate the first two terms on the right-hand side of (7.4.40) with εm2,
we use (7.4.29) and z = θ∗>p φ to write

εm2 = z − θ>p φ = −θ̃>p φ = ã
1

s + λ
yp − b̃

1
s + λ

up (7.4.41)

We filter both sides of (7.4.41) with s(s+λ)
(s+5)2 and then apply the Swapping Lemma A.1

to obtain

s(s + λ)
(s + 5)2

εm2 = ã
s

(s + 5)2
yp − b̃

s

(s + 5)2
up + Wc

{
(Wbyp) ˙̂a− (Wbup)

˙̂
b
}

(7.4.42)

where the elements of Wc(s),Wb(s) are strictly proper transfer functions with poles
at −5. Using (7.4.42) in (7.4.40), we have that

C>eo =
s(s + λ)
(s + 5)2

εm2 + G(s, ˙̂a,
˙̂
b) (7.4.43)

where

G(s, ˙̂a,
˙̂
b) = Wc1(Wb1e1) ˙̂a−Wc2(Wb2up)

˙̂
b−Wc

{
(Wbyp) ˙̂a− (Wbup)

˙̂
b
}

Using Lemma 3.3.2 we can establish that φ/mf , m/mf , Wb1e1/mf , Wb2up/mf ,
Wbyp/mf , Wbup/mf ∈ L∞. Using the same lemma we have from (7.4.43) that

‖C>eo‖ ≤ c‖εmmf‖+ c‖mf
˙̂a‖+ c‖mf

˙̂
b‖ (7.4.44)

Combining (7.4.39), (7.4.44), we have

m2
f ≤ c‖gmf‖2 + c (7.4.45)

or

m2
f ≤ c

∫ t

0

e−δ(t−τ)g2(τ)m2
f (τ)dτ + c

where g2(τ) = ε2m2 + ˙̂a
2

+ ˙̂
b2. Because εm, ˙̂a,

˙̂
b ∈ L2, it follows that g ∈ L2

and therefore by applying B-G Lemma to (7.4.45), we obtain mf ∈ L∞. The
boundedness of mf implies that φ,m, Wb1e1,Wb2up,Wbyp,Wbup ∈ L∞. Because
˙̂a,

˙̂
b, εm2 ∈ L∞

⋂L2, it follows that C>eo ∈ L∞
⋂L2 by applying Corollary 3.3.1

to (7.4.43). Now by using C>eo ∈ L∞
⋂L2 in (7.4.34), it follows from the stability

of Ac(t) and Lemma 3.3.3 or Corollary 3.3.1 that ê ∈ L∞
⋂L2 and ê(t) → 0 as

t → ∞. Hence, from (7.4.35), we have yp ∈ L∞ and e1 ∈ L∞
⋂L2 and from

(7.4.38) that up ∈ L∞.
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Step 4. Convergence of the tracking error to zero. Because ė1 ∈ L∞ (due
to ė1 = ẏp and ẏp ∈ L∞) and e1 ∈ L∞

⋂L2, it follows from Lemma 3.2.5 that
e1(t) → 0 as t →∞.

We can continue the analysis and establish that ε, εm → 0 as t → ∞, which
implies that θ̇p,

˙̂
Kc → 0 as t →∞.

The convergence of θp to θ∗p = [b, a]> and of K̂c to Kc = 1
b [1 − a, 1] cannot be

guaranteed, however, unless the signal vector φ is PE. For φ to be PE, the reference
signal ym has to be sufficiently rich of order 2. Because ym = 1 is sufficiently rich
of order 1, φ ∈ R2 is not PE. 5

General Case

Let us now extend the results of Example 7.4.2 to the nth-order plant (7.3.1).
We design an APPC scheme for the plant (7.3.1) by combining the state
feedback control law of Section 7.3.3 summarized in Table 7.2 with any ap-
propriate adaptive law from Tables 4.2 to 4.5 based on the plant parametric
model (7.4.2) or (7.4.3).

The adaptive law generates the on-line estimates R̂p(s, t), Ẑp(s, t) of the
unknown plant polynomials Rp(s), Zp(s), respectively. These estimates are
used to generate the estimates Â and B̂ of the unknown matrices A and B,
respectively, that are used to calculate the controller parameters and form
the observer equation.

Without loss of generality, we concentrate on parametric model (7.4.2)
and select the gradient algorithm given in Table 4.2. The APPC scheme
formed is summarized in Table 7.5.

The algebraic equation for calculating the controller parameter vector
K̂c in Table 7.5 has a finite solution for K̂c(t) at each time t provided the
pair (Â, B̂) is controllable which is equivalent to Ẑp(s, t)Q1(s), R̂p(s, t)Qm(s)
being coprime at each time t. In fact, for K̂c(t) to be uniformly bounded,
(Â, B̂) has to be strongly controllable, i.e., the absolute value of the de-
terminant of the Sylvester matrix of Ẑp(s, t)Q1(s), R̂p(s, t)Qm(s) has to be
greater than some constant ν0 > 0 for all t ≥ 0. This strong controllability
condition may be relaxed by choosing Q1(s) to be a factor of the desired
closed-loop Hurwitz polynomial A∗c(s) as indicated in Table 7.5. By doing
so, we allow Q1(s), R̂p(s, t) to have common factors without affecting the
solvability of the algebraic equation for K̂c, because such common factors are
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Table 7.5 APPC scheme: state feedback law

Plant
yp = Zp(s)

Rp(s)up

Zp(s) = θ∗>b αn−1(s), Rp(s) = sn + θ∗>a αn−1(s)
αn−1(s) =

[
sn−1, sn−2, . . . s, 1

]>

Reference
signal

Qm(s)ym = 0

Adaptive law

Gradient algorithm based on z = θ∗>p φ

θ̇p = Γεφ, Γ = Γ> > 0

ε = z−θ>p φ

m2 , m2 = 1 + φ>φ

φ =
[

α>n−1(s)

Λp(s) up,−α>n−1(s)

Λp(s) yp

]>
, z = sn

Λp(s)yp

θp =
[
θ>b , θ>a

]>

Ẑp(s, t)=θ>b (t)αn−1(s), R̂p(s, t)=sn+θ>a(t)αn−1(s)

State observer

˙̂e = Âê + B̂ūp − K̂o(t)(C>ê− e1), ê ∈ Rn+q

Â=


−θ1(t)

∣∣∣∣∣∣∣

In+q−1

−−−−
0


 , B̂=θ2(t), C>=[1, 0, . . . , 0]

θ1∈Rn+q is the coefficient vector of R̂pQm−sn+q

θ2 ∈ Rn+q is the coefficient vector of ẐpQ1

K̂o = α∗ − θ1, and α∗ is the coefficient vector of
A∗o(s)− sn+q

Calculation of
controller
parameters

Solve for K̂c pointwise in time the equation
det(sI − Â + B̂K̂c) = A∗c(s)

Control law ūp = −K̂c(t)ê, up = Q1

Qm
ūp

Design
variables

Qm(s) monic of degree q with nonrepeated roots on
the jω-axis; Q1(s) monic Hurwitz of degree q; A∗0(s)
monic Hurwitz of degree n+q; A∗c(s) monic Hurwitz of
degree n + q and with Q1(s) as a factor; Λp(s) monic
Hurwitz of degree n
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also included in A∗c(s). Therefore the condition that guarantees the existence
and uniform boundedness of K̂c is that Ẑp(s, t), R̂p(s, t)Qm(s) are strongly
coprime at each time t. As we mentioned earlier, such a condition cannot
be guaranteed by any one of the adaptive laws developed in Chapter 4 with-
out additional modifications, thus giving rise to the so-called stabilizability
or admissibility problem to be discussed in Section 7.6. In this section, we
assume that the polynomials Ẑp(s, t), R̂p(s, t)Qm(s) are strongly coprime at
each time t and proceed with the analysis of the APPC scheme of Table 7.5.
We relax this assumption in Section 7.6 where we modify the APPC schemes
to handle the possible loss of stabilizability of the estimated plant.

Theorem 7.4.2 Assume that the polynomials Ẑp, R̂pQm are strongly co-
prime at each time t. Then all the signals in the closed-loop APPC scheme
of Table 7.5 are uniformly bounded and the tracking error e1 converges to
zero asymptotically with time. The same result holds if we replace the gra-
dient algorithm with any other adaptive law from Tables 4.2 to 4.4 that is
based on the plant parametric model (7.4.2) or (7.4.3).

Outline of Proof
Step 1. Develop the state error equations for the closed-loop APPC scheme,

i.e.,

˙̂e = Ac(t)ê + K̂oC
>eo

ėo = Aoeo + θ̃1e1 − θ̃2ūp (7.4.46)
yp = C>eo + C>ê + ym

up = W1(s)K̂c(t)ê + W2(s)yp

ūp = −K̂cê

where eo
4
= e− ê is the observation error, Ao is a constant stable matrix, W1(s) and

W2(s) are strictly proper transfer functions with stable poles, and Ac(t) = Â−B̂K̂c.

Step 2. Establish e.s. for the homogeneous part of (7.4.46). The gain K̂c is
chosen so that the eigenvalues of Ac(t) at each time t are equal to the roots of the
Hurwitz polynomial A∗c(s). Because Â, B̂ ∈ L∞ (guaranteed by the adaptive law)
and Ẑp, R̂pQm are strongly coprime (by assumption), we conclude that (Â, B̂) is
stabilizable in a strong sense and K̂c, Ac ∈ L∞. Using θ̇a, θ̇b ∈ L2, guaranteed by
the adaptive law, we have ˙̂

Kc, Ȧc ∈ L2. Therefore, applying Theorem 3.4.11, we
have that Ac(t) is a u.a.s. matrix. Because Ao is a constant stable matrix, the e.s.
of the homogeneous part of (7.4.46) follows.



486 CHAPTER 7. ADAPTIVE POLE PLACEMENT CONTROL

Step 3. Use the properties of the L2δ norm and the B-G Lemma to establish
signal boundedness. We use the properties of the L2δ norm and equation (7.4.46)
to establish the inequality

m2
f ≤ c‖gmf‖2 + c

where g2 = ε2m2 + |θ̇a|2 + |θ̇b|2 and m2
f

4
= 1 + ‖up‖2 + ‖yp‖2 is the fictitious

normalizing signal. Because g∈ L2, it follows that mf∈ L∞ by applying the B-G
Lemma. Using mf ∈ L∞, we establish the boundedness of all signals in the closed-
loop plant.

Step 4. Establish the convergence of the tracking error e1 to zero. This is done
by following the same procedure as in Example 7.4.2. 2

The details of the proof of Theorem 7.4.2 are given in Section 7.7.

7.4.4 Adaptive Linear Quadratic Control (ALQC)

The linear quadratic (LQ) controller developed in Section 7.3.4 can be made
adaptive and used to meet the control objective when the plant parameters
are unknown. This is achieved by combining the LQ control law (7.3.28) to
(7.3.32) with an adaptive law based on the plant parametric model (7.4.2)
or (7.4.3).

We demonstrate the design and analysis of ALQ controllers using the
following examples:

Example 7.4.3 We consider the same plant and control objective as in Example
7.3.3, given by

ẋ = −ax + bup

yp = x (7.4.47)

where the plant input up is to be chosen to stabilize the plant and regulate yp to
zero. In contrast to Example 7.3.3, the parameters a and b are unknown constants.

The control law up = − 1
λbpyp in Example 7.3.3 is modified by replacing the

unknown plant parameters a, b with their on-line estimates â and b̂ generated by
the same adaptive law used in Example 7.4.2, as follows:

Adaptive Law

θ̇p = Γεφ, Γ = Γ> > 0

ε =
z − θ>p φ

m2
, m2 = 1 + φ>φ, z =

s

s + λ0
yp
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θp =
[

b̂
â

]
, φ =

1
s + λ0

[
up

−yp

]

where λ0 > 0 is a design constant.

Control Law

up = − 1
λ

b̂(t)p(t)yp (7.4.48)

Riccati Equation Solve the equation

−2â(t)p(t)− p2(t)b̂2(t)
λ

+ 1 = 0

at each time t for p(t) > 0, i.e.,

p(t) =
−λâ +

√
λ2â2 + b̂2λ

b̂2
> 0 (7.4.49)

As in the previous examples, for the solution p(t) in (7.4.49) to be finite, the estimate
b̂ should not cross zero. In fact, for p(t) to be uniformly bounded, b̂(t) should
satisfy |b̂(t)| ≥ b0 > 0, ∀t ≥ 0 for some constant b0 that satisfies |b| ≥ b0. Using
the knowledge of b0 and sgn(b), the adaptive law for b̂ can be modified as before
to guarantee |b̂(t)| ≥ b0, ∀t ≥ 0 and at the same time retain the properties that
θp ∈ L∞ and ε, εm, θ̇p ∈ L2 ∩ L∞. The condition |b̂(t)| ≥ b0 implies that the
estimated plant, characterized by the parameters â, b̂, is strongly controllable at
each time t, a condition required for the solution p(t) > 0 of the Riccati equation
to exist and be uniformly bounded.

Analysis For this first-order regulation problem, the analysis is relatively simple
and can be accomplished in the following four steps:

Step 1. Develop the closed-loop error equation. The closed-loop plant can be
written as

ẋ = −(â +
b̂2p

λ
)x + ãx− b̃up (7.4.50)

by adding and subtracting âx− b̂up and using up = −b̂px/λ. The inputs ãx, b̃up are

due to the parameter errors ã
4
= â− a, b̃

4
= b̂− b.

Step 2. Establish the e.s. of the homogeneous part of (7.4.50). The eigenvalue
of the homogeneous part of (7.4.50) is

−(â +
b̂2p

λ
)
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which is guaranteed to be negative by the choice of p(t) given by (7.4.49), i.e.,

−(â +
b̂2p

λ
) = −

√
â2 +

b̂2

λ
≤ − b0√

λ
< 0

provided, of course, the adaptive law is modified by using projection to guarantee
|b̂(t)| ≥ b0, ∀t ≥ 0. Hence, the homogeneous part of (7.4.50) is e.s.

Step 3. Use the properties of the L2δ norm and B-G Lemma to establish bound-
edness. The properties of the input ãx − b̃up in (7.4.50) depend on the properties
of the adaptive law that generates ã and b̃. The first task in this step is to establish
the smallness of the input ãx− b̃up by relating it with the signals ˙̃a, ˙̃

b, and εm that
are guaranteed by the adaptive law to be in L2.

We start with the estimation error equation

εm2 = z − θ>p φ = −θ̃>p φ = ã
1

s + λ0
x− b̃

1
s + λ0

up (7.4.51)

Operating with (s + λ0) on both sides of (7.4.51) and using the property of differ-

entiation, i.e., sxy = xẏ + ẋy where s
4
= d

dt is treated as the differential operator,
we obtain

(s + λ0)εm2 = ãx− b̃up + ˙̃a
1

s + λ0
x− ˙̃

b
1

s + λ0
up (7.4.52)

Therefore,

ãx− b̃up = (s + λ0)εm2 − ˙̃a
1

s + λ0
x + ˙̃

b
1

s + λ0
up

which we substitute in (7.4.50) to obtain

ẋ = −(â +
b̂2p

λ
)x + (s + λ0)εm2 − ˙̃a

1
s + λ0

x + ˙̃
b

1
s + λ0

up (7.4.53)

If we define ē
4
= x− εm2, (7.4.53) becomes

˙̄e = −(â +
b̂2p

λ
)ē + (λ0 − â− b̂2p

λ
)εm2 − ˙̃a

1
s + λ0

x + ˙̃
b

1
s + λ0

up (7.4.54)

x = ē + εm2

Equation (7.4.54) has a homogeneous part that is e.s. and an input that is small in
some sense because of εm, ˙̃a,

˙̃
b ∈ L2.

Let us now use the properties of the L2δ norm, which for simplicity is denoted
by ‖ · ‖ to analyze (7.4.54). The fictitious normalizing signal mf satisfies

m2
f
4
= 1 + ‖yp‖2 + ‖up‖2 ≤ 1 + c‖x‖2 (7.4.55)
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for some δ > 0 because of the control law chosen and the fact that b̂, p ∈ L∞.
Because x = ē + εm2, we have ‖x‖ ≤ ‖ē‖ + ‖εm2‖, which we use in (7.4.55) to
obtain

m2
f ≤ 1 + c‖ē‖2 + c‖εm2‖2 (7.4.56)

From (7.4.54), we have

‖ē‖2 ≤ c‖εm2‖2 + c‖ ˙̃ax̄‖2 + c‖ ˙̃būp‖2 (7.4.57)

where x̄ = 1
s+λ0

x, ūp = 1
s+λ0

up. Using the properties of the L2δ norm, it can be
shown that mf bounds from above m, x̄, ūp and therefore it follows from (7.4.56),
(7.4.57) that

m2
f ≤ 1 + c‖εmmf‖2 + c‖ ˙̃amf‖2 + c‖ ˙̃bmf‖2 (7.4.58)

which implies that

m2
f ≤ 1 + c

∫ t

0

e−δ(t−τ)g2(τ)m2
f (τ)dτ

where g2 4= ε2m2 + ˙̃a
2
+ ˙̃

b
2

. Since εm, ˙̃a,
˙̃
b ∈ L2 imply that g ∈ L2, the boundedness

of mf follows by applying the B-G Lemma.
Now mf ∈ L∞ implies that m, x̄, ūp and, therefore, φ ∈ L∞. Using (7.4.54),

and the fact that ˙̃a,
˙̃
b, εm2, x̄ = (1/(s + λ0)) x, ūp = (1/(s + λ0)) up ∈ L∞, we

have ē ∈ L∞, which implies that x = yp ∈ L∞, and therefore up and all signals in
the closed loop plant are bounded.

Step 4. Establish that x = yp → 0 as t → ∞. We proceed as follows: Using
(7.4.54), we establish that ē ∈ L2, which together with εm2 ∈ L2 imply that x =
ē + εm2 ∈ L2. Because (7.4.53) implies that ẋ ∈ L∞, it follows from Lemma 3.2.5
that x(t) → 0 as t →∞.

The analysis of the ALQ controller presented above is simplified by the fact that
the full state is available for measurement; therefore, no state observer is necessary.
Furthermore, the u.a.s. of the homogeneous part of (7.4.50) is established by simply
showing that the time–varying scalar â + b̂2p/λ ≥ b0/

√
λ > 0, ∀t ≥ 0, i.e., that

the closed–loop eigenvalue is stable at each time t, which in the scalar case implies
u.a.s. 5

In the following example, we consider the tracking problem for the same
scalar plant given by (7.4.47). In this case the analysis requires some addi-
tional arguments due to the use of a state observer and higher dimensionality.

Example 7.4.4 Let us consider the same plant as in Example 7.4.3 but with the
following control objective: Choose up to stabilize the plant and force yp to follow
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the constant reference signal ym(t) = 1. This is the same control problem we solved
in Example 7.3.4 under the assumption that the plant parameters a and b are known
exactly. The control law when a, b are known given in Example 7.3.4 is summarized
below:

State Observer ˙̂e = Aê + Būp −Ko(C>ê− e1), e1 = yp − ym

Control Law ūp = −λ−1[b, b]P ê, up =
s + 1

s
ūp

Riccati Equation A>P + PA− PBB>Pλ−1 + CC> = 0

where A =
[ −a 1

0 0

]
, B =

[
1
1

]
b, C> = [1, 0], Ko = [10− a, 25]>

In this example, we assume that a and b are unknown constants and use the
certainty equivalence approach to replace the unknown a, b with their estimates â, b̂
generated by an adaptive law as follows:

State Observer
˙̂e = Â(t)ê + B̂ūp − K̂o(t) ([1 0]ê− e1)

Â =
[ −â 1

0 0

]
, B̂ = b̂

[
1
1

]
, K̂o =

[
10− â

25

]
(7.4.59)

Control Law

ūp = − b̂

λ
[1 1]P ê, up =

s + 1
s

ūp (7.4.60)

Riccati Equation Solve for P (t) = P>(t) > 0 at each time t the equation

Â>P + PÂ− P
B̂B̂>

λ
P + CC> = 0 , C> = [1, 0] (7.4.61)

The estimates â(t) and b̂(t) are generated by the same adaptive law as in Example
7.4.3.

For the solution P = P> > 0 of (7.4.61) to exist, the pair (Â, B̂) has to be
stabilizable. Because (Â, B̂, C) is the realization of b̂(s+1)

(s+â)s , the stabilizability of

(Â, B̂) is guaranteed provided b̂ 6= 0 (note that for â = 1, the pair (Â, B̂) is
no longer controllable but it is still stabilizable). In fact for P (t) to be uniformly
bounded, we require |b̂(t)| ≥ b0 > 0, for some constant b0, which is a lower bound for
|b|. As in the previous examples, the adaptive law for b̂ can be modified to guarantee
|b̂(t)| ≥ b0, ∀t ≥ 0 by assuming that b0 and sgn(b) are known a priori.

Analysis The analysis is very similar to that given in Example 7.4.2. The tracking
error equation is given by

ė =
[ −a 1

0 0

]
e +

[
1
1

]
būp, e1 = [1, 0]e
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If we define eo = e− ê to be the observation error and use the control law (7.4.60)
in (7.4.59) , we obtain the same error equation as in Example 7.4.2, i.e.,

˙̂e = Ac(t)ê +
[ −â + 10

25

]
C>eo

ėo =
[ −10 1
−25 0

]
eo +

[
1
0

]
ãe1 −

[
1
1

]
b̃ūp

where Ac(t) = Â(t)−B̂B̂>P/λ and yp, up are related to eo, ê through the equations

yp = C>e0 + C>ê + ym

up = −s + a

s + 1
B̂>P

λ
ê +

(2− a)s + 1
(s + 1)2

s + a

b
yp

If we establish the u.a.s. of Ac(t), then the rest of the analysis is exactly the
same as that for Example 7.4.2.

Using the results of Section 7.3.4, we can establish that the matrix Ac(t) at each
frozen time t has all its eigenvalues in the open left half s-plane. Furthermore,

||Ȧc(t)|| ≤ || ˙̂A(t)||+ 2|| ˙̂B(t)|| ||B̂(t)|| ||P (t)||
λ

+
||B̂(t)||2||Ṗ (t)||

λ

where || ˙̂A(t)||, || ˙̂B(t)|| ∈ L2 due to ˙̃a,
˙̃
b ∈ L2 guaranteed by the adaptive law. By

taking the first-order derivative on each side of (7.4.61), Ṗ can be shown to satisfy

ṖAc + A>c Ṗ = −Q (7.4.62)

where

Q(t) = ˙̂
A
>

P + P
˙̂
A− P

˙̂
BB̂>

λ
P − P

B̂
˙̂
B
>

λ
P

For a given Â, B̂, and P , (7.4.62) is a Lyapunov equation and its solution Ṗ

exists and is continuous with respect to Q, i.e., ‖Ṗ (t)‖ ≤ c‖Q(t)‖ for some constant
c ≥ 0. Because of ‖ ˙̂

A(t)‖, ‖ ˙̂
B(t)‖ ∈ L2 and Â, B̂, P ∈ L∞, we have ||Ṗ (t)|| ∈ L2

and, thus. Ȧc(t) ∈ L2. Because Ac(t) is a stable matrix at each frozen time t, we
can apply Theorem 3.4.11 to conclude that Ac is u.a.s. The rest of the analysis
follows by using exactly the same steps as in the analysis of Example 7.4.2 and is,
therefore, omitted. 5
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General Case

Following the same procedure as in Examples 7.4.3 and 7.4.4, we can design
a wide class of ALQ control schemes for the nth-order plant (7.3.1) by com-
bining the LQ control law of Section 7.3.4 with adaptive laws based on the
parametric model (7.4.2) or (7.4.3) from Tables 4.2 to 4.5.

Table 7.6 gives such an ALQ scheme based on a gradient algorithm for
the nth-order plant (7.3.1).

As with the previous APPC schemes, the ALQ scheme depends on the
solvability of the algebraic Riccati equation. The Riccati equation is solved
for each time t by using the on-line estimates Â, B̂ of the plant parameters.
For the solution P (t) = P>(t) > 0 to exist, the pair (Â, B̂) has to be
stabilizable at each time t. This implies that the polynomials R̂p(s, t)Qm(s)
and Ẑp(s, t)Q1(s) should not have any common unstable zeros at each frozen
time t. Because Q1(s) is Hurwitz, a sufficient condition for (Â, B̂) to be
stabilizable is that the polynomials R̂p(s, t)Qm(s), Ẑp(s, t) are coprime at
each time t. For P (t) to be uniformly bounded, however, we will require
R̂p(s, t)Qm(s), Ẑp(s, t) to be strongly coprime at each time t.

In contrast to the simple examples considered, the modification of the
adaptive law to guarantee the strong coprimeness of R̂pQm, Ẑp without
the use of additional a priori information about the unknown plant is not
clear. This problem known as the stabilizability problem in indirect APPC
is addressed in Section 7.6 . In the meantime, let us assume that the stabiliz-
ability of the estimated plant is guaranteed and proceed with the following
theorem that states the stability properties of the ALQ control scheme given
in Table 7.6.

Theorem 7.4.3 Assume that the polynomials R̂p(s, t)Qm(s), Ẑp(s, t) are
strongly coprime at each time t. Then the ALQ control scheme of Table
7.6 guarantees that all signals in the closed–loop plant are bounded and the
tracking error e1 converges to zero as t → ∞. The same result holds if we
replace the gradient algorithm in Table 7.6 with any other adaptive law from
Tables 4.2 to 4.4 based on the plant parametric model (7.4.2) or (7.4.3).

Proof The proof is almost identical to that of Theorem 7.4.2, except for some
minor details. The same error equations as in the proof of Theorem 7.4.2 that
relate ê and the observation error eo = e− ê with the plant input and output also
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Table 7.6 Adaptive linear quadratic control scheme

Plant yp = Zp(s)
Rp(s)up

Zp(s) = θ∗>b αn−1(s),
Rp(s) = sn + θ∗>a αn−1(s)
αn−1(s) = [sn−1, sn−2, . . . , s, 1]>

Reference
signal

Qm(s)ym = 0

Adaptive law Same gradient algorithm as in Table 7.5 to generate
Ẑp(s, t) = θ>b (t)αn−1(s), R̂p(s, t) = sn + θ>a (t)αn−1(s)

State observer

˙̂e = Â(t)ê + B̂ūp − K̂o(t)(C>ê− e1)

Â(t) =


−θ1

∣∣∣∣∣∣∣

In+q−1

−−−−
0


 , B̂(t) = θ2(t)

K̂o(t) = a∗ − θ1, C = [1, 0, . . . , 0]> ∈ Rn+q

θ1 is the coefficient vector of R̂p(s, t)Qm(s)−sn+q

θ2 is the coefficient vector of Ẑp(s, t)Q1(s)
a∗ is the coefficient vector of A∗o(s)− sn+q

θ1, θ2, a
∗ ∈ Rn+q

Riccati
equation

Solve for P (t) = P>(t) > 0 the equation
Â>P + PÂ− 1

λPB̂B̂>P + CC> = 0

Control law ūp = − 1
λB̂>P ê, up = Q1(s)

Qm(s) ūp

Design
variables

Qm(s) is a monic polynomial of degree q with nonre-
peated roots on the jω axis; A∗o(s) is a monic Hurwitz
polynomial of degree n + q with relatively fast zero;
λ > 0 as in Table 7.3; Q1(s) is a monic Hurwitz poly-
nomial of degree q.
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hold here, i.e.,
˙̂e = Ac(t)ê + K̂oC

>eo

ėo = Aoeo + θ̃1e1 + θ̃2K̂cê

yp = C>eo + C>ê + ym

up = W1(s)K̂c(t)ê + W2(s)yp

The only difference is that in Ac = Â − B̂K̂c, we have K̂c = B̂>(t)P (t)/λ. If we
establish that K̂c ∈ L∞, and Ac is u.a.s., then the rest of the proof is identical to
that of Theorem 7.4.2.

The strong coprimeness assumption about R̂pQm, Ẑp guarantees that the so-
lution P (t) = P>(t) > 0 of the Riccati equation exists at each time t and P ∈ L∞.
This, together with the boundedness of the plant parameter estimates, guarantee
that B̂, and therefore K̂c ∈ L∞. Furthermore, using the results of Section 7.3.4,
we can establish that Ac(t) is a stable matrix at each frozen time t. As in Example
7.4.4, we have

||Ȧc(t)|| ≤ || ˙̂A(t)||+ 2|| ˙̂B(t)|| ||B̂(t)|| ||P (t)||
λ

+
||B̂(t)||2||Ṗ (t)||

λ

and
ṖAc + A>c Ṗ = −Q

where

Q = ˙̂
A
>

P + P
˙̂
A− P

˙̂
BB̂>P

λ
− PB̂

˙̂
B
>

P

λ

which, as shown earlier, imply that ‖Ṗ (t)‖ and, thus, ‖Ȧc(t)‖ ∈ L2.

The pointwise stability of Ac together with ‖Ȧc(t)‖ ∈ L2 imply, by Theo-
rem 3.4.11, that Ac is a u.a.s. matrix. The rest of the proof is completed by
following exactly the same steps as in the proof of Theorem 7.4.2. 2

7.5 Hybrid APPC Schemes

The stability properties of the APPC schemes presented in Section 7.4 are
based on the assumption that the algebraic equations used to calculate the
controller parameters are solved continuously and instantaneously. In prac-
tice, even with high speed computers and advanced software tools, a short
time interval is always required to complete the calculations at a given time t.

The robustness and stability properties of the APPC schemes of Section 7.4
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Table 7.7 Hybrid adaptive law

Plant

yp = Zp(s)
Rp(s)up

Zp(s) = θ∗>b αn−1(s), Rp(s) = sn + θ∗>a αn−1(s)

αn−1(s) = [sn−1, sn−2, . . . , s, 1]>

Adaptive law

θp(k+1) = θpk + Γ
∫ tk+1
tk

ε(τ)φ(τ)dτ, k = 0, 1, . . .

φ =
[

α>n−1(s)

Λp(s) up,−α>n−1(s)

Λp(s) yp

]>
, z = sn

Λp(s)yp

ε =
z−θ>pkφ

m2 , m2 = 1 + φ>φ, ∀t ∈ [tk, tk+1)

θpk = [θ>bk, θ
>
ak]

>

R̂p(s, tk) = sn + θ>a(k−1)αn−1(s)

Ẑp(s, tk) = θ>b(k−1)αn−1(s)

Design variables
Ts = tk+1− tk > Tm; 2−Tsλmax(Γ) > γ, for some
γ > 0; Λp(s) is monic and Hurwitz with degree n

with respect to such computational real time delays can be considerably
improved by using a hybrid adaptive law for parameter estimation. The
sampling rate of the hybrid adaptive law may be chosen appropriately to
allow for the computations of the control law to be completed within the
sampling interval.

Let Tm be the maximum time for performing the computations required
to calculate the control law. Then the sampling period Ts of the hybrid
adaptive law may be chosen as Ts = tk+1 − tk > Tm where {tk : k =
1, 2, . . .} is a time sequence. Table 7.7 presents a hybrid adaptive law based
on parametric model (7.4.2). It can be used to replace the continuous-time
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Table 7.8 Hybrid APPC scheme: polynomial approach

Plant yp =
Zp(s)
Rp(s)

up

Reference signal Qm(s)ym = 0

Adaptive law Hybrid adaptive law of Table 7.7

Algebraic
equation

Solve for L̂(s, tk)=sn−1+l>(tk)αn−2(s)
P̂ (s, tk) = p>(tk)αn+q−1(s) from equation

L̂(s, tk)Qm(s)R̂p(s, tk) + P̂ (s, tk)Ẑp(s, tk) = A∗(s)

Control law
up =

Λ(s)− L̂(s, tk)Qm(s)
Λ(s)

up − P̂ (s, tk)
Λ(s)

(yp − ym)

Design variables
A∗ monic Hurwitz of degree 2n + q − 1; Qm(s)
monic of degree q with nonrepeated roots on the
jω axis; Λ(s) = Λp(s)Λq(s); Λp(s), Λq(s) monic
and Hurwitz with degree n, q − 1, respectively

adaptive laws of the APPC schemes discussed in Section 7.4 as shown in
Tables 7.8 to 7.10.

The controller parameters in the hybrid adaptive control schemes of Ta-
bles 7.8 to 7.10 are updated at discrete times by solving certain algebraic
equations. As in the continuous-time case, the solution of these equations ex-
ist provided the estimated polynomials R̂p(s, tk)Qm(s), Ẑp(s, tk) are strongly
coprime at each time tk.

The following theorem summarizes the stability properties of the hybrid
APPC schemes presented in Tables 7.8 to 7.10.

Theorem 7.5.1 Assume that the polynomials R̂p(s, tk)Qm(s), Ẑp(s, tk) are
strongly coprime at each time t = tk. Then the hybrid APPC schemes given
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Table 7.9 Hybrid APPC scheme: state variable approach

Plant
yp =

Zp(s)
Rp(s)

up

Reference signal Qm(s)ym = 0

Adaptive law Hybrid adaptive law of Table 7.7.

State observer

˙̂e = Âk−1ê + B̂k−1ūp − K̂o(k−1)[C>ê− e1] Âk−1 =
−θ1(k−1)

∣∣∣∣∣∣∣

In+q−1

−−−−
0


 B̂k−1 = θ2(k−1), C

> =

[1, 0, . . . , 0] K̂o(k−1) = a∗− θ1(k−1) θ1(k−1), θ2(k−1)

are the coefficient vectors of R̂p(s, tk)Qm(s)−sn+q,
Ẑp(s, tk)Q1(s), respectively, a∗ is the coefficient
vector of A∗o(s)− sn+q

Algebraic
equation

Solve for K̂c(k−1) the equation det[sI − Âk−1 +
B̂k−1K̂c(k−1)] = A∗c(s)

Control law
ūp = −K̂c(k−1)ê, up =

Q1(s)
Qm(s)

ūp

Design variables Choose Qm, Q1, A
∗
o, A

∗
c , Q1 as in Table 7.5

in Tables 7.8 to 7.10 guarantee signal boundedness and convergence of the
tracking error to zero asymptotically with time.

The proof of Theorem 7.5.1 is similar to that of the theorems in Sec-
tion 7.4, with minor modifications that take into account the discontinuities
in the parameters and is given in Section 7.7.

Table 7.10 Hybrid adaptive LQ control scheme
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Plant yp =
Zp(s)
Rp(s)

up

Reference signal Qm(s)ym = 0

Adaptive law Hybrid adaptive law of Table 7.7.

State observer
˙̂e = Âk−1ê + B̂k−1ūp − K̂o(k−1)[C>ê− e1]
K̂o(k−1), Âk−1, B̂k−1, C as in Table 7.9

Riccati equation
Solve for Pk−1 = P>

k−1 > 0 the equation
Â>k−1Pk−1+Pk−1Âk−1−1

λPk−1B̂k−1B̂
>
k−1Pk−1+CC>=0

Control law ūp = − 1
λ

B̂>
k−1Pk−1ê, up =

Q1(s)
Qm(s)

ūp

Design variables Choose λ,Q1(s), Qm(s) as in Table 7.6

The major advantage of the hybrid adaptive control schemes described in
Tables 7.7 to 7.10 over their continuous counterparts is the smaller computa-
tional effort required during implementation. Another possible advantage is
better robustness properties in the presence of measurement noise, since the
hybrid scheme does not respond instantaneously to changes in the system,
which may be caused by measurement noise.

7.6 Stabilizability Issues and Modified APPC

The main drawbacks of the APPC schemes of Sections 7.4 and 7.5 is that
the adaptive law cannot guarantee that the estimated plant parameters or
polynomials satisfy the appropriate controllability or stabilizability condi-
tion at each time t, which is required to calculate the controller parameter
vector θc. Loss of stabilizability or controllability may lead to computational
problems and instability.
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In this section we concentrate on this problem of the APPC schemes and
propose ways to avoid it. We call the estimated plant parameter vector θp at
time t stabilizable if the corresponding algebraic equation is solvable for the
controller parameters. Because we are dealing with time-varying estimates,
uniformity with respect to time is guaranteed by requiring the level of sta-
bilizability to be greater than some constant ε∗ > 0. For example, the level
of stabilizability can be defined as the absolute value of the determinant of
the Sylvester matrix of the estimated plant polynomials.

We start with a simple example that demonstrates the loss of stabiliz-
ability that leads to instability.

7.6.1 Loss of Stabilizability: A Simple Example

Let us consider the first order plant

ẏ = y + bu (7.6.1)

where b 6= 0 is an unknown constant. The control objective is to choose u

such that y, u ∈ L∞, and y(t) → 0 as t →∞.

If b were known then the control law

u = −2
b
y (7.6.2)

would meet the control objective exactly. When b is unknown, a natural
approach to follow is to use the certainty equivalence control (CEC) law

uc = −2
b̂
y (7.6.3)

where b̂(t) is the estimate of b at time t, generated on-line by an appropriate
adaptive law.

Let us consider the following two adaptive laws:

(i) Gradient
˙̂
b = γφε , b̂(0) = b̂0 6= 0 (7.6.4)

where γ > 0 is the constant adaptive gain.
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(ii) Pure Least-Squares

˙̂
b = Pφε , b̂(0) = b̂0 6= 0

Ṗ = −P 2 φ2

1 + β0φ2
, P (0) = p0 > 0 (7.6.5)

where P, φ ∈ R1,

ε =
z − b̂φ

1 + β0φ2
, yf =

1
s + 1

y , φ =
1

s + 1
u

z = ẏf − yf (7.6.6)

It can be shown that for β0 > 0, the control law (7.6.3) with b̂ generated
by (7.6.4) or (7.6.5) meets the control objective provided that b̂(t) 6= 0 ∀t ≥ 0.

Let us now examine whether (7.6.4) or (7.6.5) can satisfy the condition
b̂(t) 6= 0, ∀t ≥ 0.

From (7.6.1) and (7.6.6), we obtain

ε = − b̃φ

1 + β0φ2
(7.6.7)

where b̃
4
= b̂− b is the parameter error. Using (7.6.7) in (7.6.4), we have

˙̂
b = −γ

φ2

1 + β0φ2
(b̂− b) , b̂(0) = b̂0 (7.6.8)

Similarly, (7.6.5) can be rewritten as

˙̂
b = −P

φ2

1 + β0φ2
(b̂− b) , b̂(0) = b̂0

P (t) =
p0

1 + p0
∫ t
0

φ2

1+β0φ2 dτ
, p0 > 0 (7.6.9)

It is clear from (7.6.8) and (7.6.9) that for b̂(0) = b, ˙̂
b(t) = 0 and b̂(t) =

b, ∀t ≥ 0; therefore, the control objective can be met exactly with such an
initial condition for b̂.

If φ(t) = 0 over a nonzero finite time interval, we will have ˙̂
b = 0, u =

y = 0, which is an equilibrium state (not necessarily stable though) and the
control objective is again met.
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Figure 7.5 Output y(t) versus estimate b̂(t) for different initial conditions
y(0) and b̂(0) using the CEC uc = −2y/b̂.

For analysis purposes, let us assume that b > 0 (unknown to the designer).
For φ 6= 0, both (7.6.8), (7.6.9) imply that

sgn(˙̂b) = −sgn(b̂(t)− b)

and, therefore, for b > 0 we have

˙̂
b(t) > 0 if b̂(0) < b and ˙̂

b(t) < 0 if b̂(0) > b

Hence, for b̂(0) < 0 < b, b̂(t) is monotonically increasing and crosses zero
leading to an unbounded control uc.

Figure 7.5 shows the plots of y(t) vs b̂(t) for different initial conditions
b̂(0), y(0), demonstrating that for b̂(0) < 0 < b, b̂(t) crosses zero leading to
unbounded closed-loop signals. The value of b = 1 is used for this simulation.

The above example demonstrates that the CEC law (7.6.3) with (7.6.4)
or (7.6.5) as adaptive laws for generating b̂ is not guaranteed to meet the
control objective. If the sign of b and a lower bound for |b| are known,
then the adaptive laws (7.6.4), (7.6.5) can be modified using projection to
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constrain b̂(t) from changing sign. This projection approach works for this
simple example but its extension to the higher order case is awkward due to
the lack of any procedure for constructing the appropriate convex parameter
sets for projecting the estimated parameters.

7.6.2 Modified APPC Schemes

The stabilizability problem has attracted considerable interest in the adap-
tive control community and several solutions have been proposed. We list
the most important ones below with a brief explanation regarding their ad-
vantages and drawbacks.

(a) Stabilizability is assumed. In this case, no modifications are introduced
and stabilizability is assumed to hold for all t ≥ 0. Even though there is no
theoretical justification for such an assumption to hold, it has been often
argued that in most simulation studies, no stabilizability problems usually
arise. The example presented above illustrates that no stabilizability prob-
lem would arise if the initial condition of b̂(0) happens to be in the region
b̂(0) > b. In the higher order case, loss of stabilizability occurs at certain
isolated manifolds in the parameter space when visited by the estimated
parameters. Therefore, one can easily argue that the loss of stabilizability
is not a frequent phenomenon that occurs in the implementation of APPC
schemes.

(b) Parameter projection methods [73, 109, 111]. In this approach, the adap-
tive laws used to estimate the plant parameters on-line are modified using
the gradient projection method. The parameter estimates are constrained
to lie inside a convex subset C0 of the parameter space that is assumed to
have the following properties:

(i) The unknown plant parameter vector θ∗p ∈ C0.

(ii) Every member θp of C0 has a corresponding level of stabilizability greater
than ε∗ for some known constant ε∗ > 0.

We have already demonstrated this approach for the scalar plant

yp =
b

s + a
up
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In this case, the estimated polynomials are s + â, b̂ which, for the APPC
schemes of Section 7.4 to be stable, are required to be strongly coprime.
This implies that b̂ should satisfy |b̂(t)| ≥ b0 for some b0 > 0 for all t ≥ 0.
The subset C0 in this case is defined as

C0 =
{
b̂ ∈ R1| b̂sgn(b) ≥ b0

}

where the unknown b is assumed to belong to C0, i.e., |b| ≥ b0. As shown in
Examples 7.4.1 and 7.4.2, we guaranteed that |b̂(t)| ≥ b0 by using projection
to constrain b̂(t) to be inside C0 ∀t ≥ 0. This modification requires that b0

and the sgn(b) are known a priori.
Let us now consider the general case of Sections 7.4 and 7.5 where the

estimated polynomials R̂p(s, t)Qm(s), Ẑp(s, t) are required to be strongly co-
prime. This condition implies that the Sylvester matrix Se(θp) of R̂p(s, t)
Qm(s), Ẑp(s, t) satisfies

| detSe(θp)| ≥ ε∗

where θp ∈ R2n is the vector containing the coefficients of R̂p(s, t)− sn and
Ẑp(s, t), and ε∗ > 0 is a constant. If ε∗ > 0 is chosen so that

| detSe(θ∗p)| ≥ ε∗ > 0

where θ∗p ∈ R2n is the corresponding vector with the coefficients of the
unknown polynomials Rp(s), Zp(s), then the subset C0 may be defined as

C0 = convex subset of D ∈ R2n that contains θ∗p

where
D =

{
θp ∈ R2n| |detSe(θp)| ≥ ε∗ > 0

}

Given such a convex set C0, the stabilizability of the estimated parameters
at each time t is ensured by incorporating a projection algorithm in the
adaptive law to guarantee that the estimates are in C0, ∀t ≥ 0. The projection
is based on the gradient projection method and does not alter the usual
properties of the adaptive law that are used in the stability analysis of the
overall scheme.

This approach is simple but relies on the rather strong assumption that
the set C0 is known. No procedure has been proposed for constructing such
a set C0 for a general class of plants.

An extension of this approach has been proposed in [146]. It is assumed
that a finite number of convex subsets C1, . . . , Cp are known such that
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(i) θ∗p ∈ ∪p
i=1Ci and the stabilizability degree of the corresponding plant is

greater than some known ε∗ > 0.

(ii) For every θp ∈ ∪p
i=1Ci the corresponding plant model is stabilizable with

a stabilizability degree greater than ε∗.

In this case, p adaptive laws with a projection, one for each subset Ci,

are used in parallel. A suitable performance index is used to select the
adaptive law at each time t whose parameter estimates are to be used to
calculate the controller parameters. The price paid in this case is the use
of p parallel adaptive laws with projection instead of one. As in the case
of a single convex subset, there is no effective procedure for constructing
Ci, i = 1, 2, . . . , p, with properties (i) and (ii) in general. The assumption,
however, that θ∗p ∈ ∪p

i=1Ci is weaker.

(c) Correction Approach [40]. In this approach, a subset D in the parameter
space is known with the

following properties:

(i) θ∗p ∈ D and the stabilizability degree of the plant is greater than some
known constant ε∗ > 0.

(ii) For every θp ∈ D, the corresponding plant model is stabilizable with a
degree greater than ε∗.

Two least-squares estimators with estimates θ̂p, θ̄p of θ∗p are run in par-
allel. The controller parameters are calculated from θ̄p as long as θ̄p ∈ D.

When θ̄p 6∈ D, θ̄p is reinitialized as follows:

θ̄p = θ̂p + P 1/2γ

where P is the covariance matrix for the least–squares estimator of θ∗p, and
γ is a vector chosen so that θ̄p ∈ D. The search for the appropriate γ can be
systematic or random.

The drawbacks of this approach are (1) added complexity due to the
two parallel estimators, and (2) the search procedure for γ can be tedious
and time-consuming. The advantages of this approach, when compared with
the projection one, is that the subset D does not have to be convex. The
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importance of this advantage, however, is not clear since no procedure is
given as to how to construct D to satisfy conditions (i), (ii) above.

(d) Persistent excitation approach [17, 49]. In this approach, the reference
input signal or an external signal is chosen to be sufficiently rich in frequen-
cies so that the signal information vector is PE over an interval. The PE
property guarantees that the parameter estimate θ̂p of θ∗p converges expo-
nentially to θ∗p (provided the covariance matrix in the case of least squares
is prevented from becoming singular). Using this PE property, and by as-
suming that a lower bound ε∗ > 0 for the stabilizability degree of the plant
is known, the following modification is used: When the stabilizability de-
gree of the estimated plant is greater than ε∗, the controller parameters
are computed using θ̂p; otherwise the controller parameters are frozen to
their previous value. Since θ̂p converges to θ∗p, the stabilizability degree of
the estimated plant is guaranteed to be greater than ε∗ asymptotically with
time.

The main drawback of this approach is that the reference signal or ex-
ternal signal has to be on all the time, in addition to being sufficiently rich,
which implies that accurate regulation or tracking of signals that are not rich
is not possible. Thus the stabilizability problem is overcome at the expense
of destroying the desired tracking or regulation properties of the adaptive
scheme. Another less serious drawback is that a lower bound ε∗ > 0 for the
stabilizability degree of the unknown plant is assumed to be known a priori.

An interesting method related to PE is proposed in [114] for the sta-
bilization of unknown plants. In this case the PE property of the signal
information vector over an interval is generated by a “rich” nonlinear feed-
back term that disappears asymptotically with time. The scheme of [114]
guarantees exact regulation of the plant output to zero. In contrast to other
PE methods [17, 49], both the plant and the controller parameters are esti-
mated on-line leading to a higher order adaptive law.

(e) The cyclic switching strategy [166]. In this approach the control input is
switched between the CEC law and a finite member of specially constructed
controllers with fixed parameters. The fixed controllers have the property
that at least one of them makes the resulting closed-loop plant observable
through a certain error signal. The switching logic is based on a cyclic
switching rule. The proposed scheme does not rely on persistent excitation



506 CHAPTER 7. ADAPTIVE POLE PLACEMENT CONTROL

and does not require the knowledge of a lower bound for the level of stabi-
lizability. One can argue, however, that the concept of PE to help cross the
points in the parameter space where stabilizability is weak or lost is implic-
itly used by the scheme because the switching between different controllers
which are not necessarily stabilizing may cause considerable excitation over
intervals of time.

Some of the drawbacks of the cyclic switching approach are the complex-
ity and the possible bad transient of the plant or tracking error response
during the initial stages of adaptation when switching is active.

(f) Switched-excitation approach [63]. This approach is based on the use
of an open loop rich excitation signal that is switched on whenever the
calculation of the CEC law is not possible due to the loss of stabilizability of
the estimated plant. It differs from the PE approach described in (d) in that
the switching between the rich external input and the CEC law terminates
in finite time after which the CEC law is on and no stabilizability issues arise
again. We demonstrate this method in subsection 7.6.3.

Similar methods as above have been proposed for APPC schemes for
discrete-time plants [5, 33, 64, 65, 128, 129, 189, 190].

7.6.3 Switched-Excitation Approach

Let us consider the same plant (7.6.1) and control objective as in subsec-
tion 7.6.1. Instead of the control law (7.6.3), let us propose the following
switching control law

u =

{
−2y/b̂ if t ∈ [0, t1) ∪ (tk + jkτ, tk+1)
c if t ∈ [tk, tk + jkτ ]

(7.6.10)

where c 6= 0 is a constant.

˙̂
b = Pφε, b̂(0) = b̂0 6= 0 (7.6.11)

Ṗ = − P 2φ2

1 + β0φ2
, P (0) = P (tk) = P (tk + jτ) = p0I > 0, j = 1, 2, . . . , jk

β0 =

{
1 if t ∈ [0, t1) ∪ (tk + jkτ, tk+1)
0 if t ∈ [tk, tk + jkτ ]

where ε, φ are as defined in (7.6.6), and
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• k = 1, 2, . . .

• t1 is the first time instant for which

|b̂(t1)| = ν(1)

where

ν(k) =
|b̂0|
2k

=
ν(1)
k

, k = 1, 2, . . .

• tk is the first time instant after t = tk−1 + jk−1τ for which

|b̂(tk)| = ν(k +
k∑

i=1

ji) =
ν(1)

k +
∑k

i=1 ji

where jk = 1, 2, . . . is the smallest integer for which

|b̂(tk + jkτ)| > ν(k +
k∑

i=1

ji)

and τ > 0 is a design constant.

Even though the description of the above scheme appears complicated,
the intuition behind it is very simple. We start with an initial guess b̂0 6= 0
for b̂ and apply u = uc = −2y/b̂. If |b̂(t)| reaches the chosen threshold
ν(1) = |b̂0|/2, say at t = t1, u switches from u = uc to u = ur = c 6= 0,
where ur is a rich signal for the plant considered. The signal ur is applied for
an interval τ , where τ is a design constant, and |b̂(t1 + τ)| is compared with
the new threshold ν(2) = ν(1)/2. If |b̂(t1+τ)| > ν(2), then we switch back to
u = uc at t = t1 + τ. We continue with u = uc unless |b̂(t2)| = ν(3) = ν(1)/3
for some finite t2 in which case we switch back to u = ur. If |b̂(t1+τ)| ≤ ν(2),
we continue with u = ur until t = t1 + 2τ and check for the condition

|b̂(t1 + 2τ)| > ν(3) =
ν(1)

3
(7.6.12)

If b̂(t1 + 2τ) satisfies (7.6.12), we switch to u = uc and repeat the same
procedure by reducing the threshold ν(k) at each step. If b̂(t1 + 2τ) does
not satisfy (7.6.12) then we continue with u = ur for another interval τ and
check for

|b̂(t1 + 3τ)| > ν(4) =
ν(1)

4
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and repeat the same procedure. We show that the sequences tk, ν(k) con-
verge in a finite number of steps, and therefore |b̂(t)| > ν∗ > 0 for some
constant ν∗ and u = uc for all t greater than some finite time t∗.

In the sequel, for the sake of simplicity and without loss of generality,
we take c = 1, p0τ = 1 and adjust the initial condition φ(tk) for the filter
φ = 1

s+1u to be equal to φ(tk) = 1 so that φ(t) = 1 for t ∈ [tk, tk + jkτ ] and
∀k ≥ 1.

Let us start with a “wrong” initial guess for b̂(0), i.e., assume that b > 0
and take b̂(0) < 0. Because

˙̂
b = −Pφ2(b̂− b)/(1 + β0φ

2)

and P (t) > 0, for any finite time t, we have that ˙̂
b ≥ 0 for b̂(t) < b where

˙̂
b(t) = 0 if and only if φ(t) = 0. Because φ(t) = 1 ∀t ≥ 0, b̂(t), starting from
b̂(0) < 0, is monotonically increasing. As b̂(t) increases, approaching zero, it
satisfies, at some time t = t1,

b̂(t1) = −ν(1) = −|b̂0|/2

and, therefore, signals the switching of the control law from u=uc to u=ur,
i.e., for t ≥ t1, we have

u = ur = 1

Ṗ = −P 2φ2, P (t1) = p0 (7.6.13)

˙̂
b = −Pφ2(b̂− b) (7.6.14)

The solutions of (7.6.13) and (7.6.14) are given by

P (t) =
p0

1 + p0(t− t1)
, t ≥ t1

b̂(t) = b +
1

1 + p0(t− t1)
(b̂(t1)− b), t ≥ t1

We now need to monitor b̂(t) at t = t1 + j1τ, j1 = 1, 2, . . . until

|b̂(t1 + j1τ)| =
∣∣∣∣b−

ν(1) + b

1 + j1

∣∣∣∣ >
ν(1)

1 + j1
(because p0τ = 1) (7.6.15)
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is satisfied for some j1 and switch to u = uc at t = t1 + j1τ . We have

|b̂(t1 + j1τ)| = bj1 − ν(1)
1 + j1

(7.6.16)

Let j∗1 be the smallest integer for which bj∗1 > ν(1). Then, ∀j1 ≥ j∗1 , condition
(7.6.15) is the same as

|b̂(t1 + j1τ)| = b̂(t1 + j1τ) =
bj1 − ν(1)

1 + j1
>

ν(1)
1 + j1

(7.6.17)

Hence, for j1 = 2j∗1 , (7.6.17) is satisfied, i.e., by applying the rich signal
u = ur = 1 for 2j∗1 intervals of length τ , b̂(t) passes through zero and

exceeds the value of ν∗ = ν(1)/(1 + 2j∗1) > 0. Because ˙̂
b(t) ≥ 0, we have

b̂(t) > ν∗, ∀t ≥ t1 +2j∗1τ and therefore u = uc = −2y/b̂, without any further
switching.

Figure 7.6 illustrates typical time responses of y, u and b̂ when the
switched–excitation approach is applied to the first order plant given by
(7.6.1). The simulations are performed with b = 1 and b̂(0) = −1.5 . At
t = t1 ≈ 0.2s, b̂(t1) = ν(1) = b̂(0)/2 = −0.75, the input u = uc = −2y/b̂

is switched to u = ur = 1 for a period τ = 0.25s. Because at time t =
t1 + τ, b̂(t1 + τ) is less than ν(2) = ν(1)/2, u = ur = 1 is applied for another
period τ. Finally, at time t = t1 + 2τ , b̂(t) > ν(3) = ν(1)/3, therefore u

is switched back to u = uc. Because b̂(t) > ν(1)/3, ∀t ≥ 0.7s, no further
switching occurs and the exact regulation of y to zero is achieved.

General Case

The above example may be extended to the general plant (7.3.1) and control
objectives defined in the previous subsections as follows.

Let uc denote the certainly equivalence control law based on any one of
the approaches presented in Section 7.4. Let

Cd(θp)
4
= det |Se(θp)|
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Figure 7.6 The time response of the output y(t), control input u(t) and
estimate b̂(t) for the switched-excitation approach.

where Se(θp) denotes the Sylvester matrix of the estimated polynomials
R̂p(s, t) Qm(s), Ẑp(s, t) and θp(t) is the vector with the plant parameter
estimates.

Following the scalar example, we propose the modified control law

u =

{
uc(t) if t ∈ [0, t1) ∪ (tk + jkτ, tk+1)
ur(t) if t ∈ [tk, tk + jkτ ]

(7.6.18)
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Adaptive Law
θ̇p = Pεφ, θp(0) = θ0 (7.6.19)

Ṗ = − Pφφ>P

1 + β0φ>φ
, P (0) = P0 = P>

0 > 0

where
ε = (z − θ>p φ)/(1 + β0φ

>φ)

and θ0 is chosen so that Cd(θ0) > 0. Furthermore,

P (0) = P (tk) = P (tk + jτ) = k−1
0 I, j = 1, 2, . . . , jk (7.6.20)

where k0 = constant > 0, and

β0 =

{
1 if t ∈ [0, t1) ∪ (tk + jkτ, tk+1)
0 if t ∈ [tk, tk + jkτ ]

(7.6.21)

where
• k = 1, 2, . . .

• t1 is the first time instant for which Cd(θp(t1)) = ν(1) > 0, where

ν(k) =
Cd(θ0)

2k
=

ν(1)
k

, k = 1, 2, . . . (7.6.22)

• tk (k ≥ 2) is the first time instant after t = tk−1 + jk−1τ for which

Cd(θp(tk)) = ν(k +
k−1∑

i=1

ji) =
ν(1)

(k +
∑k−1

i=1 ji)
(7.6.23)

and jk = 1, 2, . . . is the smallest integer for which

Cd(θp(tk + jkτ)) > ν(k +
k∑

i=1

ji) (7.6.24)

where τ > 0 is a design constant.
• uc(t) is the certainty equivalence control given in Section 7.4.
• ur(t) is any bounded stationary signal which is sufficiently rich of order

2n. For example, one can choose

ur(t) =
n∑

i=1

Ai sinωit
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where Ai 6= 0, i = 1, . . . , n, and ωi 6= ωj for i 6= j.

From (7.6.18), we see that in the time intervals (tk + jkτ, tk+1), the sta-
bilizability degree Cd(θp(t)) is above the threshold ν(k +

∑k
i=1 ji) and the

adaptive control system includes a normalized least-squares estimator and
a pole placement controller. In the time intervals [tk+1, tk+1 + jk+1τ ], the
control input is equal to an external exciting input ur(t) and the parameter
vector estimate θp(t) is generated by an unnormalized least-squares estima-
tor.

The switching (at time t = tk) from the pole placement control uc to the
external rich signal ur occurs when the stabilizability degree Cd(θp(t)) of the
estimated model reaches the threshold ν(k+

∑k
i=1 ji). We keep applying u =

ur during successive time intervals of fixed length τ , until time t = tk + jkτ

for which the condition Cd(θp(tk + jkτ)) > ν(k +
∑k

i=1 ji) is satisfied and u

switches back to the CEC law. The idea behind this approach is that when
the estimated model is stabilizable, the control objective is pole placement
and closed-loop stabilization; but when the estimation starts to deteriorate,
the control priority becomes the “improvement” of the quality of estimation,
so that the estimated parameters can cross the hypersurfaces that contain
the points where Cd(θp) is close to zero.

The following theorem establishes the stability properties of the proposed
adaptive pole placement scheme.

Theorem 7.6.1 All the signals in the closed-loop (7.3.1) and (7.6.18) to
(7.6.24) are bounded and the tracking error converges to zero as t → ∞.

Furthermore, there exist finite constants ν∗, T ∗ > 0 such that for t ≥ T ∗, we
have Cd(θp(t)) ≥ ν∗ and u(t) = uc.

The proof of Theorem 7.6.1 is rather long and can be found in [63].
The design of the switching logic in the above modified controllers is

based on a simple and intuitive idea that when the quality of parameter es-
timation is “poor,” the objective changes from pole placement to parameter
identification. Parameter identification is aided by an external open-loop
sufficiently rich signal that is kept on until the quality of the parameter es-
timates is acceptable for control design purposes. One of the advantages of
the switched-excitation algorithm is that it is intuitive and easy to imple-
ment. It may suffer, however, from the same drawbacks as other switching
algorithms, that is, the transient performance may be poor during switching.
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The adaptive control scheme (7.6.18) to (7.6.24) may be simplified when a
lower bound ν∗ > 0 for Cd(θ∗p) is known. In this case, ν(k) = ν∗ ∀k. In the
proposed scheme, the sequence ν(k) converges to ν∗ and therefore the lower
bound for Cd(θ∗p) is also identified. The idea behind the identification of ν∗

is due to [189] where very similar to the switched-excitation approach meth-
ods are used to solve the stabilizability problem of APPC for discrete-time
plants.

7.7 Stability Proofs

In this section we present all the long proofs of the theorems of the previous sub-
sections. In most cases, these proofs follow directly from those already presented
for the simple examples and are repeated for the sake of completeness.

7.7.1 Proof of Theorem 7.4.1

Step 1. Let us start by establishing the expressions (7.4.24). We rewrite the control
law (7.4.23) and the normalized estimation error as

L̂Qm
1
Λ

up = −P̂
1
Λ

(yp − ym) (7.7.1)

εm2 = z − θ>p φ = R̂p
1
Λp

yp − Ẑp
1
Λp

up (7.7.2)

where Λ(s), Λp(s) are monic, Hurwitz polynomials of degree n+q−1, n, respectively,
R̂p = sn+θ>a αn−1(s), Ẑp = θ>b αn−1(s). From Table 7.4, we have Λ(s) = Λp(s)Λq(s),
where Λq(s) is a monic Hurwitz polynomial of degree q−1. This choice of Λ simplifies
the proof. We should point out that the same analysis can also be carried out with
Λ,Λp being Hurwitz but otherwise arbitrary, at the expense of some additional
algebra.

Let us define
uf

4
=

1
Λ

up, yf
4
=

1
Λ

yp

and write (7.7.1), (7.7.2) as

P̂ yf + L̂Qmuf = ym1, R̂pΛqyf − ẐpΛquf = εm2 (7.7.3)

where ym1
4
= P̂ 1

Λym ∈ L∞. By expressing the polynomials R̂p(s)Λq(s), Ẑp(s)Λq(s),
P̂ (s), L̂(s)Qm(s) as

R̂p(s)Λq(s) = sn+q−1 + θ̄>1 αn+q−2(s), Ẑp(s)Λq(s) = θ̄>2 αn+q−2(s)
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P̂ (s) = p0s
n+q−1 + p̄>αn+q−2(s), L̂(s)Qm(s) = sn+q−1 + l̄>αn+q−2(s)

we can rewrite (7.7.3) in the form of

y
(n+q−1)
f = −θ̄>1 αn+q−2(s)yf + θ̄>2 αn+q−2(s)uf + εm2

u
(n+q−1)
f = (p0θ̄1 − p̄)>αn+q−2(s)yf − (p0θ̄2 + l̄)>αn+q−2(s)uf (7.7.4)

−p0εm
2 + ym1

where the second equation is obtained from (7.7.3) by substituting for y
(n+q−1)
f .

Defining the state x
4
=

[
y
(n+q−2)
f , . . . , ẏf , yf , u

(n+q−2)
f , . . . , u̇f , uf

]>
, we obtain

ẋ = A(t)x + b1(t)εm2 + b2ym1 (7.7.5)

where

A(t)=




−θ̄>1 | θ̄>2
−−−−−−− −−−−−−−

In+q−2

∣∣∣∣∣∣∣

0
...
0

| O(n+q−2)×(n+q−1)

−−−−−−− −−−−−−−
p0θ̄

>
1 − p̄> | −p0θ̄

>
2 − l̄>

−−−−−−− −−−−−−−

O(n+q−2)×(n+q−1) | In+q−2

∣∣∣∣∣∣∣

0
...
0




, b1(t)=




1
...
0
−p0

0
...
0




, b2 =




0
...
0
1
0
...
0




O(n+q−2)×(n+q−1) is an (n + q − 2) by (n + q − 1) matrix with all elements equal
to zero. Now, because up = Λuf = u

(n+q−1)
f + λ>αn+q−2(s)uf , yp = Λyf =

y
(n+q−1)
f + λ>αn+q−2(s)yf where λ is the coefficient vector of Λ(s) − sn+q−1, we

have

up = [0, . . . , 0︸ ︷︷ ︸
n+q−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n+q−1

]ẋ + [0, . . . , 0︸ ︷︷ ︸
n+q−1

, λ>]x

yp = [1, 0, . . . , 0︸ ︷︷ ︸
n+q−1

, 0, . . . , 0︸ ︷︷ ︸
n+q−1

]ẋ + [λ>, 0, . . . , 0︸ ︷︷ ︸
n+q−1

]x (7.7.6)

Step 2. Establish the e.s. of the homogeneous part of (7.7.5). Because P̂ , L̂
satisfy the Diophantine equation (7.4.21), we can show that for each frozen time1 t,

det(sI −A(t)) = R̂p Λq · L̂Qm + P̂ · ẐpΛq = A∗Λq (7.7.7)

1X · Y denotes the algebraic product of two polynomials that may have time-varying
coefficients.
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i.e., A(t) is a stable matrix for each frozen time t. One way to verify (7.7.7) is to
consider (7.7.3) with the coefficients of R̂p, Ẑp, P̂ , L̂ frozen at each time t. It follows
from (7.7.3) that

yf =
1

R̂pΛq · L̂Qm + P̂ · ẐpΛq

(L̂Qmεm2 + ẐpΛqym1)

whose state space realization is given by (7.7.5). Because

R̂pΛq · L̂Qm + P̂ · ẐpΛq = A∗Λq

(7.7.7) follows.
We now need to show that ‖Ȧ(t)‖ ∈ L2, ‖A(t)‖ ∈ L∞ from the properties

θp ∈ L∞ and θ̇p ∈ L2 which are guaranteed by the adaptive law of Table 7.4. Using
the assumption that the polynomials R̂pQm and Ẑp are strongly coprime at each
time t, we conclude that the Sylvester matrix Ŝl (defined in Table 7.4) is uniformly
nonsingular, i.e., |det(Ŝl)| > ν0 for some ν0 > 0, and thus θp ∈ L∞ implies that
Sl, S

−1
l ∈ L∞. Therefore, the solution β̂l of the algebraic equation Ŝlβ̂l = α∗l which

can be expressed as
β̂l = Ŝ−1

l α∗l

is u.b. On the other hand, because θp ∈ L∞ and θ̇p ∈ L2, it follows from the

definition of the Sylvester matrix that ‖ ˙̂
Sl(t)‖ ∈ L2. Noting that

˙̂
βl = −Ŝ−1

l
˙̂
SlŜ

−1
l α∗l

we have ˙̂
βl ∈ L2 which is implied by Ŝl, Ŝ

−1
l ∈ L∞ and ‖ ˙̂

Sl(t)‖ ∈ L2.
Because the vectors θ̄1, θ̄2, p̄, l̄ are linear combinations of θp, β̂l and all elements

in A(t) are uniformly bounded, we have

‖Ȧ(t)‖ ≤ c(| ˙̂βl(t)|+ |θ̇p(t)|)

which implies that ‖Ȧ(t)‖ ∈ L2. Using Theorem 3.4.11, it follows that the homo-
geneous part of (7.7.5) is e.s.

Step 3. Use the properties of the L2δ norm and B-G Lemma to establish
boundedness. As before, for clarity of presentation, we denote the L2δ norm as ‖ · ‖,
then from Lemma 3.3.3 and (7.7.5) we have

‖x‖ ≤ c‖εm2‖+ c, |x(t)| ≤ c‖εm2‖+ c (7.7.8)

for some δ > 0. Defining m2
f

4
= 1 + ‖yp‖2 + ‖up‖2, it follows from (7.7.5), (7.7.6),

(7.7.8) and Lemma 3.3.2 that φ,m ≤ mf and

m2
f ≤ c + c‖x‖2 + c‖εm2‖2 ≤ c‖εmmf‖2 + c (7.7.9)
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i.e.,

m2
f ≤ c + c

∫ t

0

e−δ(t−τ)ε2(τ)m2(τ)m2
f (τ)dτ

Because εm ∈ L2, guaranteed by the adaptive law, the boundedness of mf can be
established by applying the B-G Lemma. The boundedness of the rest of the signals
follows from mf ∈ L∞ and the properties of the L2δ norm that is used to show that
mf bounds most of the signals from above.

Step 4. Establish that the tracking error converges to zero. The tracking
properties of the APPC scheme are established by manipulating (7.7.1) and (7.7.2)
as follows: From the normalized estimation error equation we have

εm2 = R̂p
1
Λp

yp − Ẑp
1
Λp

up

Filtering each side of the above equation with L̄Qm
1

Λq
where L̄(s, t)

4
=sn−1+α>n−2(s)l

and lc = [1, l>]> is the coefficient vector of L̂(s, t), it follows that

L̄Qm
1
Λq

(εm2) = L̄Qm
1
Λq

(
R̂p

1
Λp

yp − Ẑp
1
Λp

up

)
(7.7.10)

Noting that Λ = ΛqΛp, and applying the Swapping Lemma A.1, we obtain the
following equations:

Qm

Λq
R̂p

1
Λp

yp = R̂p
Qm

Λ
yp + r1,

Qm

Λq

(
Ẑp

1
Λp

up

)
= Ẑp

Qm

Λ
up + r2 (7.7.11)

where

r1
4
= Wc1(s)

((
Wb1(s)

α>n−1(s)
Λp

yp

)
θ̇a

)
, r2

4
= Wc1(s)

((
Wb1(s)

α>n−1(s)
Λp

up

)
θ̇b

)

and Wc1,Wb1 are as defined in Swapping Lemma A.1 with W = Qm

Λq
. Because

up, yp ∈ L∞ and θ̇a, θ̇b ∈ L2, it follows that r1, r2 ∈ L2. Using (7.7.11) in (7.7.10),
we have

L̄Qm
1
Λq

(εm2) = L̄

(
R̂p

Qm

Λ
yp − Ẑp

Qm

Λ
up + r1 − r2

)
(7.7.12)

Noting that Qmyp = Qm(e1 + ym) = Qme1, we can write (7.7.12) as

L̄Qm
1
Λq

(εm2) = L̄

(
R̂p

Qm

Λ
e1 + r1 − r2

)
− L̄

(
Ẑp

Qm

Λ
up

)
(7.7.13)
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Applying the Swapping Lemma A.4 (i) to the second term in the right-hand side of
(7.7.13), we have

L̄

(
Ẑp

Qm

Λ
up

)
= Z̄p

(
L̂(s, t)

Qm

Λ
up

)
+ r3 (7.7.14)

(by taking Qm

Λ up = f in Lemma A.4 (i)), where Z̄p = α>n−1(s)θb and

r3 = α>n−2F (l, θb)αn−2(s)
Qm

Λ(s)
up

where ‖F (l, θb)‖ ≤ c1|l̇|+ c2|θ̇b| for some constants c1, c2 > 0. Because

L̂(s, t)Qm(s) = L̂(s, t) ·Qm(s)

we use the control law (7.7.1) to write

L̂(s, t)
Qm(s)
Λ(s)

up = L̂(s, t) · Qm(s)
Λ(s)

up = −P̂
1

Λ(s)
e1 (7.7.15)

Substituting (7.7.15) in (7.7.14) and then in (7.7.13), we obtain

L̄Qm
1
Λq

(εm2) = L̄

(
R̂p

Qm

Λ(s)
e1

)
+ Z̄p

(
P̂

1
Λ(s)

e1

)
+ L̄(r1 − r2)− r3 (7.7.16)

According to Swapping Lemma A.4 (ii) (with f = 1
Λe1 and Λ0(s) = 1), we can

write

L̄

(
R̂p

Qm

Λ(s)
e1

)
= L̂(s, t) · R̂p(s, t)Qm(s)

1
Λ(s)

e1 + r4

Z̄p

(
P̂

1
Λ(s)

e1

)
= Ẑp(s, t) · P̂ (s, t)

1
Λ(s)

e1 + r5 (7.7.17)

where

r4
4
= α>n−1(s)G(s, e1, l, θa), r5

4
= α>n−1(s)G

′
(s, e1, θb, p) (7.7.18)

and G(s, e1, l, θa), G
′
(s, e1, θb, p) are defined in the Swapping Lemma A.4 (ii). Be-

cause e1 ∈ L∞ and l̇, ṗ, θ̇a, θ̇b ∈ L2, it follows from the definition of G,G
′

that
G,G

′ ∈ L2. Using (7.7.17) in (7.7.16) we have

L̄Qm
1
Λq

(εm2)=
(
L̂(s, t) · R̂p(s, t)Qm(s)+Ẑp · P̂ (s, t)

) 1
Λ(s)

e1+L̄(r1−r2)−r3+r4+r5

(7.7.19)
In the above equations, we use X̄(s, t) to denote the swapped polynomial of X(s, t),
i.e.,

X(s, t)
4
= p>x (t)αn(s), X̄(s, t)

4
= α>n (s)px(t)
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Because
L̂(s, t) · R̂p(s, t)Qm(s) + Ẑp(s, t) · P̂ (s, t) = A∗(s)

we have
L̂(s, t) · R̂p(s, t)Qm(s) + Ẑp(s, t) · P̂ (s, t) = A∗(s) = A∗(s)

where the second equality holds because the coefficients of A∗(s) are constant.
Therefore, (7.7.19) can be written as

A∗(s)
1

Λ(s)
e1 = v

i.e.,

e1 =
Λ(s)
A∗(s)

v (7.7.20)

where

v
4
= L̄

(
Qm

1
Λq(s)

(εm2)− r1 + r2

)
+ r3 − r4 − r5

Because L̄(s) = α>n−1(s)lc, lc = [1, l>]> we have

v = α>n−1(s)lc[
Qm

Λq
(εm2)− r1 + r2] + r3 − r4 − r5

Therefore, it follows from (7.7.20) that

e1 =
Λ(s)
A∗(s)

α>n−1(s)lc
Qm(s)
Λq(s)

(εm2) + v0 (7.7.21)

where

v0 =
Λ(s)
A∗(s)

[α>n−1(s)lc(r2 − r1) + α>n−2(s)v1 − α>n−1(s)v2]

v1 = F (l, θb)αn−2(s)
Qm(s)
Λ(s)

up

v2 = G(s, e1, l, θa) + G
′
(s, e1, p, θb)

Because Λ(s)α>n−1(s)

A∗(s) , αn−2(s)Qm(s)
Λ(s) are strictly proper and stable, lc ∈ L∞, and

r1, r2, v1, v2 ∈ L2, it follows from Corollary 3.3.1 that v0 ∈ L2 and v0(t) → 0 as
t →∞.

Applying the Swapping Lemma A.1 to the first term on the right side of (7.7.21)
we have

e1 = l>c
αn−1(s)Λ(s)Qm(s)

A∗(s)Λq(s)
(εm2) + Wc(s)(Wb(s)(εm2))l̇c + v0
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where Wc(s),Wb(s) have strictly proper stable elements. Because αn−1QmΛ
A∗Λq

is

proper, l̇c, εm ∈ L∞
⋂L2 and v0 ∈ L∞

⋂L2, it follows that e1 ∈ L∞
⋂L2.

The plant equation yp = Zp

Rp
up assumes a minimal state space representation of

the form
Ẏ = AY + Bup

yp = C>Y

where (C,A) is observable due to the coprimeness of Zp, Rp. Using output injection
we have

Ẏ = (A−KC>)Y + Bup + Kyp

where K is chosen so that Aco
4
= A−KC> is a stable matrix. Because yp, up ∈ L∞

and Aco is stable, we have Y ∈ L∞, which implies that Ẏ , ẏp ∈ L∞. Therefore,
ė1 = ẏp − ẏm ∈ L∞, which, together with e1 ∈ L2 and Lemma 3.2.5, implies that
e1(t) → 0 as t →∞.

7.7.2 Proof of Theorem 7.4.2

Step 1. Develop the closed-loop state error equations. We start by representing
the tracking error equation

e1 =
ZpQ1

RpQm
ūp

in the following state-space form

ė =


−θ∗1

∣∣∣∣∣∣

In+q−1

−−−−
0


 e + θ∗2 ūp, e ∈ Rn+q (7.7.22)

e1 = C>e

where C> = [1, 0, . . . , 0] ∈ Rn+q and θ∗1 , θ∗2 are the coefficient vectors of RpQm −
sn+q, ZpQ1, respectively.

Let eo
4
= e− ê be the state observation error. Then from the equation for ê in

Table 7.5 and (7.7.22), we have

˙̂e = Ac(t)ê + K̂oC
>eo

ėo = Aoeo + θ̃1e1 − θ̃2ūp (7.7.23)

where

Ao
4
=


−a∗

∣∣∣∣∣∣

In+q−1

−−−−
0
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is a stable matrix; Ac(t)
4
= Â− B̂K̂c and θ̃1

4
= θ1−θ∗1 , θ̃2

4
= θ2−θ∗2 . The plant input

and output satisfy

yp = C>eo + C>ê + ym

up =
RpXQ1

A∗
ūp +

Q1Y Rp

A∗
yp (7.7.24)

where X(s), Y (s) are polynomials of degree n+q−1 that satisfy (7.3.25) and A∗(s)
is a Hurwitz polynomial of degree 2(n+q)−1. Equation (7.7.24) for up is established
in the proof of Theorem 7.3.1 and is used here without proof.

Step 2. Establish e.s. for the homogeneous part of (7.7.23). Let us first
examine the stability properties of Ac(t) in (7.7.23). For each frozen time t, we
have

det(sI −Ac) = det(sI − Â + B̂K̂c) = A∗c(s) (7.7.25)

i.e., Ac(t) is stable at each frozen time t. If Ẑp(s, t)Q1(s), R̂p(s, t)Qm(s) are strongly
coprime, i.e., (Â, B̂) is strongly controllable at each time t, then the controller gains
K̂c may be calculated at each time t using Ackermann’s formula [95], i.e.,

K̂c = [0, 0, . . . , 0, 1]G−1
c A∗c(Â)

where
Gc

4
= [B̂, ÂB̂, . . . , Ân+q−1B̂]

is the controllability matrix of the pair (Â, B̂). Because (Â, B̂) is assumed to be
strongly controllable and Â, B̂ ∈ L∞ due to θp ∈ L∞, we have K̂c ∈ L∞. Now,

˙̂
Kc = [0, 0, . . . , 0, 1]

{
−G−1

c ĠcG−1
c A∗c(Â) + G−1

c

d

dt
A∗c(Â)

}

Because θp ∈ L∞ and θ̇p ∈ L2, it follows that ‖ ˙̂
Kc(t)‖ ∈ L2, which, in turn, implies

that ‖Ȧc(t)‖ ∈ L2. From Ac being pointwise stable and ‖Ȧc(t)‖ ∈ L2, we have that
Ac(t) is a u.a.s matrix by applying Theorem 3.4.11. If Ẑp(s, t)Q1(s), R̂p(s, t)Qm(s)
are not strongly coprime but Ẑp(s, t), R̂p(s, t)Qm(s) are, the boundedness of K̂c

and ‖ ˙̂
Kc(t)‖ ∈ L2 can still be established by decomposing (Â, B̂) into the strongly

controllable and the stable uncontrollable or weakly controllable parts and using
the results in [95] to obtain an expression for K̂c. Because Ao is a stable matrix the
homogeneous part of (7.7.23) is e.s.

Step 3. Use the properties of the L2δ norm and the B-G Lemma to establish
boundedness. As in Example 7.4.2., we apply Lemmas 3.3.3, 3.3.2 to (7.7.23) and
(7.7.24), respectively, to obtain

‖ê‖ ≤ c‖C>eo‖
‖yp‖ ≤ c‖C>eo‖+ c‖ê‖+ c ≤ c‖C>eo‖+ c (7.7.26)
‖up‖ ≤ c‖ê‖+ c‖yp‖ ≤ c‖C>eo‖+ c
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where ‖ · ‖ denotes the L2δ norm for some δ > 0.
We relate the term C>eo with the estimation error by using (7.7.23) to express

C>eo as
C>eo = C>(sI −Ao)−1(θ̃1e1 − θ̃2ūp) (7.7.27)

Noting that (C,Ao) is in the observer canonical form, i.e., C>(sI − Ao)−1 =
αn+q−1(s)

A∗o(s) , we have

C>eo =
n̄∑

i=0

sn̄−i

A∗o
(θ̃1ie1 − θ̃2iūp), n̄ = n + q − 1

where θ̃i = [θ̃i1, θ̃i2, . . . , θ̃in̄]>, i = 1, 2. Applying Swapping Lemma A.1 to each
term under the summation, we have

sn̄−i

A∗o(s)
θ̃1ie1 =

Λp(s)Q1(s)
A∗o(s)

(
θ̃1i

sn̄−i

Λp(s)Q1(s)
e1 + Wci(s) (Wbi(s)e1)

˙̃
θ1i

)

and

sn̄−i

A∗o(s)
θ̃2iūp =

Λp(s)Q1(s)
A∗o(s)

(
θ̃2i

sn̄−i

Λp(s)Q1(s)
ūp + Wci(s) (Wbi(s)ūp)

˙̃
θ2i

)

where Wci, Wbi, i = 0, . . . , n + q − 1 are transfer matrices defined in Lemma A.1
with W (s) = sn̄−i

Λp(s)Q1(s)
. Therefore, C>eo can be expressed as

C>eo =
Λp(s)Q1(s)

A∗o(s)

n̄∑

i=0

(
θ̃1i

sn̄−i

Λp(s)Q1(s)
e1 − θ̃2i

sn̄−i

Λp(s)Q1(s)
ūp

)
+ r1

=
Λp(s)Q1(s)

A∗o(s)

(
θ̃>1

αn+q−1(s)
Λp(s)Q1(s)

e1 − θ̃>2
αn+q−1(s)
Λp(s)Q1(s)

ūp

)
+ r1 (7.7.28)

where

r1
4
=

Λp(s)Q1(s)
A∗o(s)

n̄∑

i=0

Wci(s)[(Wbi(s)e1)
˙̃
θ1i − (Wbi(s)ūp)

˙̃
θ2i]

From the definition of θ̃1, we have

θ̃>1 αn+q−1(s) = θ>1 αn+q−1(s)− θ∗>1 αn+q−1(s)

= R̂p(s, t)Qm(s)− sn+q −Rp(s)Qm(s) + sn+q

= (R̂p(s, t)−Rp(s))Qm(s) = θ̃>a αn−1(s)Qm(s) (7.7.29)

where θ̃a
4
= θa − θ∗a is the parameter error. Similarly,

θ̃>2 αn+q−1(s) = θ̃>b αn−1(s)Q1(s) (7.7.30)



522 CHAPTER 7. ADAPTIVE POLE PLACEMENT CONTROL

where θ̃b
4
= θb − θ∗b . Using (7.7.29) and (7.7.30) in (7.7.28), we obtain

C>eo =
Λp(s)Q1(s)

A∗o(s)

(
θ̃>a αn−1(s)

Qm(s)
Q1(s)

1
Λp(s)

e1 − θ̃>b αn−1(s)
1

Λp(s)
ūp

)
+ r1

=
Λp(s)Q1(s)

A∗o(s)

(
θ̃>a αn−1(s)

Qm(s)
Q1(s)Λp(s)

yp − θ̃>b αn−1(s)
Qm(s)

Λp(s)Q1(s)
up

)

+r1 (7.7.31)

where the second equality is obtained using

Qm(s)e1 = Qm(s)yp, Q1(s)ūp = Qm(s)up

Noting that

αn−1(s)
1

Λp(s)
up = φ1, αn−1(s)

1
Λp(s)

yp = −φ2

we use Swapping Lemma A.1 to obtain the following equalities:

Qm(s)
Q1(s)

θ̃>a φ2 = −θ̃>a αn−1(s)
Qm(s)

Q1(s)Λp(s)
yp + Wcq

(
Wbq(s)φ>2

) ˙̃
θa

Qm(s)
Q1(s)

θ̃>b φ1 = θ̃>b αn−1(s)
Qm(s)

Q1(s)Λp(s)
up + Wcq

(
Wbq(s)φ>1

) ˙̃
θb

where Wcq,Wbq are as defined in Swapping Lemma A.1 with W (s) = Qm(s)
Q1(s)

. Using
the above equalities in (7.7.31) we obtain

C>eo = −Λp(s)Qm(s)
A∗o(s)

θ̃>p φ + r2 (7.7.32)

where

r2
4
= r1 +

Λp(s)Q1(s)
A∗o(s)

(
Wcq(s)

(
Wbq(s)φ>1

) ˙̃
θb + Wcq(s)

(
Wbq(s)φ>2

) ˙̃
θa

)

From Table 7.5, the normalized estimation error satisfies the equation

εm2 = −θ̃>p φ

which can be used in (7.7.32) to yield

C>eo =
Λp(s)Qm(s)

A∗o(s)
εm2 + r2 (7.7.33)

From the definition of m2
f

4
= 1 + ‖up‖2 + ‖yp‖2 and Lemma 3.3.2 , we can show

that mf is a normalizing signal in the sense that φ/mf , m/mf ∈ L∞ for some
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δ > 0. From the expression of r1, r2 and the normalizing properties of mf , we use
Lemma 3.3.2 in (7.7.33) and obtain

‖C>eo‖ ≤ c‖εmmf‖+ c‖θ̇pmf‖ (7.7.34)

Using (7.7.34) in (7.7.26) and in the definition of mf , we have the following inequal-
ity:

m2
f ≤ c‖εmmf‖2 + ‖θ̇pmf‖2 + c

or
m2

f ≤ c‖gmf‖2 + c

where g2 4
= ε2m2 + |θ̇p|2 and g ∈ L2, to which we can apply the B-G Lemma to

show that mf ∈ L∞. From mf ∈ L∞ and the properties of the L2δ norm we can
establish boundedness for the rest of the signals.

Step 4. Convergence of the tracking error to zero. The convergence of the
tracking error to zero can be proved using the following arguments: Because all
signals are bounded, we can establish that d

dt (εm
2) ∈ L∞, which, together with

εm2 ∈ L2, implies that ε(t)m2(t) → 0, and, therefore, θ̇p(t) → 0 as t → ∞. From
the expressions of r1, r2 we can conclude, using Corollary 3.3.1, that r2 ∈ L2 and
r2(t) → 0 as t →∞. From (7.7.33), i.e.,

C>eo =
Λp(s)Qm(s)

A∗o(s)
εm2 + r2

and εm2, r2 ∈ L2 and r2 → 0 as t → ∞, it follows from Corollary 3.3.1 that
|C>eo| ∈ L2 and |C>eo(t)| → 0 as t →∞. Because, from (7.7.23), we have

˙̂e = Ac(t)ê + KoC
>eo

it follows from the u.a.s property of Ac(t) and the fact that |C>eo| ∈ L2, |C>eo| → 0

as t →∞ that ê → 0 as t →∞. From e1
4
= yp − ym = C>eo + C>ê (see (7.7.24)),

we conclude that e1(t) → 0 as t →∞ and the proof is complete.

7.7.3 Proof of Theorem 7.5.1

We present the stability proof for the hybrid scheme of Table 7.9. The proof of
stability for the schemes in Tables 7.8 and 7.10 follows using very similar tools and
arguments and is omitted.

First, we establish the properties of the hybrid adaptive law using the following
lemma.

Lemma 7.7.1 Let θ1k, θ2k, K̂ok, K̂ck be as defined in Table 7.9 and θpk as defined
in Table 7.7. The hybrid adaptive law of Table 7.7 guarantees the following:
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(i) θpk ∈ `∞ and ∆θpk ∈ `2, εm ∈ L2

(ii) θ1k, θ2k, K̂ok ∈ `∞ and ∆θ1k, ∆θ2k ∈ `2

where ∆xk
4
= xk+1 − xk; k = 0, 1, 2, . . .

(iii) If R̂p(s, tk)Qm(s), Ẑp(s, tk) are strongly coprime for each k = 0, 1, . . ., then
K̂ck ∈ `∞.

Proof The proof for (i) is given in Section 4.6.
By definition, θ1k, θ2k are the coefficient vectors of R̂p(s, tk)Qm(s) − sn+q,

Ẑp(s, tk)Q1(s) respectively, where R̂p(s, tk)= sn+ θ>akαn−1(s), Ẑp(s, tk)= θ>bkαn−1(s).
We can write

θ1k = F1θak , θ2k = F2θbk

where F1, F2 ∈ R(n+q)×n are constant matrices which depend only on the coef-
ficients of Q1(s), Qm(s), respectively. Therefore, the properties θ1k, θ2k ∈ `∞ and
∆θ1k,∆θ2k ∈ `2 follow directly from (i). Because K̂ok = a∗−θ1k, we have K̂ok ∈ `∞
and the proof of (ii) is complete.

Part (iii) is a direct result of linear system theory. 2

Lemma 7.5.1 indicates that the hybrid adaptive law given in Table 7.7 has
essentially the same properties as its continuous counterpart. We use Lemma 7.7.1
to prove Theorem 7.5.1 for the adaptive law given in Table 7.9.

As in the continuous time case, the proof is completed in four steps as follows:

Step 1. Develop the state error equation for the closed-loop APPC scheme. Be-
cause the controller is unchanged for the hybrid adaptive scheme, we follow exactly
the same steps as in the proof of Theorem 7.4.2 to obtain the error equations

˙̂e = Ack(t)ê + K̂ok(t)C>eo

ėo = Aoeo + θ̃1k(t)e1 − θ̃2kūp

yp = C>eo + C>ê + ym (7.7.35)

up = W1(s)K̂ck(t)ê + W2(s)yp

ūp = −K̂ck(t)ê

where Ack, K̂ok, K̂ck, θ̃1k, θ̃2k are as defined in Section 7.4.3 with θb(t), θa(t) re-
placed by their discrete versions θbk, θak respectively, i.e., K̂ok = α∗ − θ1k and K̂ck

is solved from det(sI − Âk + B̂kK̂ck) = A∗c(s); Ao is a constant stable matrix,
Ack = Âk− B̂kK̂ck and W1(s),W2(s) are proper stable transfer functions. Further-
more, Ack(t), K̂ck(t), K̂ok(t), θ̃1k(t), θ̃2k(t) are piecewise constant functions defined

as fk(t)
4
= fk, ∀t ∈ [kTs, (k + 1)Ts).
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Step 2. Establish e.s. for the homogeneous part of (7.7.35). Consider the
system

ż = Ākz, z(t0) = z0 (7.7.36)

where

Āk(t) =
[

Ack(t) K̂ok(t)C>

0 A0

]
, t ∈ [kTs, (k + 1)Ts)

Because ∆θ1k, ∆θ2k ∈ `2 and (Âk, B̂k) is strongly controllable, one can verify
that ∆K̂ok, ∆K̂ck ∈ `2 and thus ∆Ack, ∆Āk ∈ `2. Therefore, for any given small
number µ > 0, we can find an integer Nµ such that2

‖Āk − ĀNµ
‖ < µ, ∀k ≥ Nµ

We write (7.7.36) as

ż = ĀNµ
z + (Āk − ĀNµ

)z, ∀t ≥ NµTs (7.7.37)

Because ĀNµ
is a constant matrix that is stable and ‖Āk− ĀNµ

‖ < µ, ∀k ≥ Nµ, we
can fix µ to be small enough so that the matrix Āk = ĀNµ + (Āk − ĀNµ) is stable
which implies that

|z(t)| ≤ c1e
−α(t−NµTs)|z(NµTs)|, ∀t ≥ NµTs

for some constants c1, α > 0. Because

z(NµTs) = eĀNµ TseĀNµ−1Ts · · · eĀ1TseĀ0Tsz0

and Nµ is a fixed integer, we have

|z(NµTs)| ≤ c2e
−α(NµTs−t0)|z0|

for some constant c2 > 0. Therefore,

|z(t)| ≤ c1c2e
−α(t−t0)|z0|, ∀t ≥ NµTs (7.7.38)

where c1, c2, α are independent of t0, z0.
On the other hand, for t ∈ [t0, NµTs), we have

z(t) = eĀi(t−iTs)eĀi−1Ts · · · eĀ1TseĀ0Tsz0 (7.7.39)

2If a sequence {fk} satisfies ∆fk ∈ `2, then limn→∞
∑∞

i=n
‖∆fi‖ = 0, which implies

that for every given µ > 0, there exists an integer Nµ that depends on µ such that∑k

i=Nµ
‖∆fi‖ < µ, ∀k ≥ Nµ. Therefore, ‖fk − fNµ‖ =

∥∥∥∑k

i=Nµ
∆fi

∥∥∥ ≤ ∑k

i=Nµ
‖∆fi‖ <

µ.
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where i is the largest integer that satisfies i ≤ t
Ts

and i ≤ Nµ. Because Nµ is a
fixed integer, it follows from (7.7.39) that

|z(t)| ≤ c
′
3|z0| ≤ c3e

−α(t−t0)|z0|, ∀t ∈ [t0, NµTs) (7.7.40)

for some constant c
′
3 and c3

4
= c

′
3e

αNµTs , which is independent of t0, z0. Combining
(7.7.38) and (7.7.40), we have

|z(t)| ≤ ce−α(t−t0)|z(t0)|, ∀t ≥ t0

for some constants c, α > 0 which are independent of t0, z0 and therefore (7.7.36),
the homogeneous part of (7.7.35), is e.s.

Step 3. Use the properties of the L2δ norm and B-G Lemma to establish signal
boundedness. Following exactly the same procedure as in the proof of Theorem 7.4.2
presented in Section 7.7.2 for Step 3 of the continuous APPC, we can derive

‖mf‖2 ≤ c + c‖C>eo‖2

where ‖ · ‖ denotes the L2δ norm, and

C>eo = C>(sI −Ao)−1(θ̃1ke1 − θ̃2kūp) (7.7.41)

Because ∆θ̃ak, ∆θ̃bk∈ l2, according to Lemma 5.3.1, there exist vectors θ̄a(t), θ̄b(t)
whose elements are continuous functions of time such that |θ̃ak(t) − θ̄a(t)| ∈ L2,
|θ̃bk(t)− θ̄b(t)| ∈ L2 and ˙̄θa(t), ˙̄θb(t) ∈ L2. Let θ̄1, θ̄2 be the vectors calculated from
Table 7.9 by replacing θak, θbk with θ̄a, θ̄b respectively. As we have shown in the
proof of Theorem 7.4.2, θ̄1, θ̄2 depend linearly on θ̄a, θ̄b. Therefore, given the fact
that ˙̄θa, ˙̄θb, |θ̃a − θ̄ak|, |θ̃b − θ̄bk| ∈ L2, we have ˙̄θ1,

˙̄θ2, |θ̃1 − θ̄1k|, |θ̃2 − θ̄2k| ∈ L2.
Thus, we can write (7.7.41) as

C>eo = C>(sI −Ao)−1(θ̄1e1 − θ̄2ūp + ē) (7.7.42)

where ē
4
= (θ̃1k(t)− θ̄1(t))e1− (θ̃2k(t)− θ̄2(t))ūp. Now, θ̄1, θ̄2 have exactly the same

properties as θ̃1, θ̃2 in equation (7.7.27). Therefore, we can follow exactly the same
procedure given in subsection 7.7.2 (from equation (7.7.27) to (7.7.33)) with the
following minor changes:

• Replace θ̃1, θ̃2 by θ̄1, θ̄2

• Replace θ̃a, θ̃b by θ̄a, θ̄b

• Add an additional term C>(sI −Ao)−1ē in all equations for C>eo

• In the final stage of Step 3, to relate θ̄>a φ2 − θ̄>b φ1 with εm2, we write

θ̄>a φ2 − θ̄>b φ1 = θ̃>akφ2 − θ̃>bkφ1 + ē2

where ē2
4
= (θ̄a − θ̃ak)>φ2 − (θ̄b − θ̃bk)>φ1, i.e.,

εm2 = θ̃>akφ2 − θ̃>bkφ1 = θ̄>a φ2 − θ̄>b φ1 − ē2
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At the end of this step, we derive the inequality

m2
f ≤ c‖g̃mf‖2 + c

where g̃2 4
= ε2m2 + | ˙̄θp|2 + |θ̃pk − θ̄p|2, θ̄p = [θ̄>a , θ̄>b ]>, and g̃ ∈ L2. The rest of the

proof is then identical to that of Theorem 7.4.2.

Step 4. Establish tracking error converges to zero. This is completed by fol-
lowing the same procedure as in the continuous case and is omitted here. 2

7.8 Problems

7.1 Consider the regulation problem for the first order plant

ẋ = ax + bu
y = x

(a) Assume a and b are known and b 6= 0. Design a controller using pole
placement such that the closed-loop pole is located at −5.

(b) Repeat (a) using LQ control. Determine the value of λ in the cost
function so that the closed-loop system has a pole at −5.

(c) Repeat (a) when a is known but b is unknown.

(d) Repeat (a) when b is known but a is unknown.

7.2 For the LQ control problem, the closed-loop poles can be determined from
G(s) = Zp(s)/Rp(s) (the open-loop transfer function) and λ > 0 (the weight-
ing of the plant input in the quadratic cost function) as follows: Define

F (s)
4
= Rp(s)Rp(−s) + λ−1Zp(s)Zp(−s). Because F (s) = F (−s), it can

be factorized as

F (s) = (s + p1)(s + p2) · · · (s + pn)(−s + p1)(−s + p2) · · · (−s + pn)

where pi > 0. Then, the closed-loop poles of the LQ control are equal to
p1, p2, . . . , pn.

(a) Using this property, give a procedure for designing an ALQC without
having to solve a Riccati equation.

(b) What are the advantages and disadvantages of this procedure compared
with that of the standard ALQC described in Section 7.4.3?

7.3 Consider the speed control system given in Problem 6.2, where a, b, d are as-
sumed unknown.
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(a) Design an APPC law to achieve the following performance specifications:

(i) The time constant of the closed-loop system is less than 2 sec.
(ii) The steady state error is zero for any constant disturbance d

(b) Design an ALQC law such that

J =
∫ ∞

0

(y2 + λu2)dt

is minimized. Simulate the closed-loop ALQC system with a = 0.02, b =
1.3, d = 0.5 for different values of λ. Comment on your results.

7.4 Consider the following system:

y =
ω2

n

s2 + 2ξωns + ω2
n

u

where the parameter ωn (the natural frequency) is known, but the damping
ratio ξ is unknown. The performance specifications for the closed-loop system
are given in terms of the unit step response as follows: (a) the peak overshoot
is less than 5% and (b) the settling time is less than 2 sec.

(a) Design an estimation scheme to estimate ξ when ωn is known.

(b) Design an indirect APPC and analyze the stability properties of the
closed-loop system.

7.5 Consider the plant

y =
s + b

s(s + a)
u

(a) Design an adaptive law to generate â and b̂, the estimate of a and b,
respectively, on-line.

(b) Design an APPC scheme to stabilize the plant and regulate y to zero.

(c) Discuss the stabilizability condition â and b̂ have to satisfy at each time
t.

(d) What additional assumptions you need to impose on the parameters a
and b so that the adaptive algorithm can be modified to guarantee the
stabilizability condition? Use these assumptions to propose a modified
APPC scheme.

7.6 Repeat Problem 7.3 using a hybrid APPC scheme.

7.7 Solve the MRAC problem given by Problem 6.10 in Chapter 6 using Remark
7.3.1 and an APPC scheme.

7.8 Use Remark 7.3.1 to verify that the MRC law of Section 6.3.2 shown in Figure
6.1 is a special case of the general PPC law given by equations (7.3.3), (7.3.6).
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7.9 Establish the stability properties of the hybrid ALQ control scheme given in
Table 7.10.

7.10 Establish the stability properties of the hybrid APPC scheme of Table 7.8.

7.11 For n = 2, q = 1, show that A(t) defined in (7.7.5) satisfies det(sI − A(t)) =
A∗Λq, where A∗, Λq are defined in Table 7.4.



Chapter 8

Robust Adaptive Laws

8.1 Introduction

The adaptive laws and control schemes developed and analyzed in Chapters 4
to 7 are based on a plant model that is free of noise, disturbances and
unmodeled dynamics. These schemes are to be implemented on actual plants
that most likely deviate from the plant models on which their design is based.
An actual plant may be infinite dimensional, nonlinear and its measured
input and output may be corrupted by noise and external disturbances.
The effect of the discrepancies between the plant model and the actual plant
on the stability and performance of the schemes of Chapters 4 to 7 may
not be known until these schemes are implemented on the actual plant. In
this chapter, we take an intermediate step, and examine the stability and
robustness of the schemes of Chapters 4 to 7 when applied to more complex
plant models that include a class of uncertainties and external disturbances
that are likely to be present in the actual plant.

The question of how well an adaptive scheme of the class developed in
Chapters 4 to 7 performs in the presence of plant model uncertainties and
bounded disturbances was raised in the late 1970s. It was shown, using
simple examples, that an adaptive scheme designed for a disturbance free
plant model may go unstable in the presence of small disturbances [48].
These examples demonstrated that the adaptive schemes of Chapters 4 to
7 are not robust with respect to external disturbances. This nonrobust
behavior of adaptive schemes became a controversial issue in the early 1980s

530
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when more examples of instabilities were published demonstrating lack of
robustness in the presence of unmodeled dynamics or bounded disturbances
[85, 197]. This motivated many researchers to study the mechanisms of
instabilities and find ways to counteract them. By the mid-1980s, several
new designs and modifications were proposed and analyzed leading to a body
of work known as robust adaptive control.

The purpose of this chapter is to analyze various instability mechanisms
that may arise when the schemes of Chapters 4 to 7 are applied to plant
models with uncertainties and propose ways to counteract them.

We start with Section 8.2 where we characterize various plant model un-
certainties to be used for testing the stability and robustness of the schemes
of Chapters 4 to 7. In Section 8.3, we analyze several instability mechanisms
exhibited by the schemes of Chapters 4 to 7, in the presence of external dis-
turbances or unmodeled dynamics. The understanding of these instability
phenomena helps the reader understand the various modifications presented
in the rest of the chapter. In Section 8.4, we use several techniques to modify
the adaptive schemes of Section 8.3 and establish robustness with respect to
bounded disturbances and unmodeled dynamics. The examples presented in
Sections 8.3 and 8.4 demonstrate that the cause of the nonrobust behavior
of the adaptive schemes is the adaptive law that makes the closed-loop plant
nonlinear and time varying. The remaining sections are devoted to the devel-
opment of adaptive laws that are robust with respect to a wide class of plant
model uncertainties. We refer to them as robust adaptive laws. These robust
adaptive laws are combined with control laws to generate robust adaptive
control schemes in Chapter 9.

8.2 Plant Uncertainties and Robust Control

The first task of a control engineer in designing a control system is to obtain
a mathematical model that describes the actual plant to be controlled. The
actual plant, however, may be too complex and its dynamics may not be
completely understood. Developing a mathematical model that describes
accurately the physical behavior of the plant over an operating range is a
challenging task. Even if a detailed mathematical model of the plant is
available, such a model may be of high order leading to a complex controller
whose implementation may be costly and whose operation may not be well
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understood. This makes the modeling task even more challenging because
the mathematical model of the plant is required to describe accurately the
plant as well as be simple enough from the control design point of view.
While a simple model leads to a simpler control design, such a design must
possess a sufficient degree of robustness with respect to the unmodeled plant
characteristics. To study and improve the robustness properties of control
designs, we need a characterization of the types of plant uncertainties that
are likely to be encountered in practice. Once the plant uncertainties are
characterized in some mathematical form, they can be used to analyze the
stability and performance properties of controllers designed using simplified
plant models but applied to plants with uncertainties.

8.2.1 Unstructured Uncertainties

Let us start with an example of the frequency response of a stable plant.
Such a response can be obtained in the form of a Bode diagram by exciting
the plant with a sinusoidal input at various frequencies and measuring its
steady state output response. A typical frequency response of an actual
stable plant with an output y may have the form shown in Figure 8.1.

It is clear that the data obtained for ω ≥ ωm are unreliable because
at high frequencies the measurements are corrupted by noise, unmodeled
high frequency dynamics, etc. For frequencies below ωm, the data are accu-
rate enough to be used for approximating the plant by a finite-order model.
An approximate model for the plant, whose frequency response is shown in
Figure 8.1, is a second-order transfer function G0(s) with one stable zero
and two poles, which disregards the phenomena beyond, say ω ≥ ωm. The
modeling error resulting from inaccuracies in the zero-pole locations and
high frequency phenomena can be characterized by an upper bound in the
frequency domain.

Now let us use the above example to motivate the following relationships
between the actual transfer function of the plant denoted by G(s) and the
transfer function of the nominal or modeled part of the plant denoted by
G0(s).

Definition 8.2.1 (Additive Perturbations) Suppose that G(s) and G0(s)
are related by

G(s) = G0(s) + ∆a(s) (8.2.1)
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Figure 8.1 An example of a frequency response of a stable plant.

where ∆a(s) is stable. Then ∆a(s) is called an additive plant perturbation
or uncertainty. The structure of ∆a(s) is usually unknown but ∆a(s) is

assumed to satisfy an upper bound in the frequency domain, i.e.,

|∆a(jω)| ≤ δa(ω) ∀ω (8.2.2)

for some known function δa(ω). In view of (8.2.1) and (8.2.2) defines a family
of plants described by

Πa = {G | |G(jω)−G0(jω)| ≤ δa(ω)} (8.2.3)

The upper bound δa(ω) of ∆a(jω) may be obtained from frequency re-
sponse experiments. In robust control [231], G0(s) is known exactly and the
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uncertainties of the zeros and poles of G(s) are included in ∆a(s). In adap-
tive control, the parameters of G0(s) are unknown and therefore zero-pole
inaccuracies do not have to be included in ∆a(s). Because the main topic
of the book is adaptive control, we adopt Definition 8.2.1, which requires
∆a(s) to be stable.

Definition 8.2.2 (Multiplicative Perturbations) Let G(s), G0(s) be re-
lated by

G(s) = G0(s)(1 + ∆m(s)) (8.2.4)

where ∆m(s) is stable. Then ∆m(s) is called a multiplicative plant pertur-
bation or uncertainty.

In the case of multiplicative plant perturbations, ∆m(s) may be constrained
to satisfy an upper bound in the frequency domain, i.e.,

|∆m(jω)| ≤ δm(ω) (8.2.5)

for some known δm(ω) which may be generated from frequency response
experiments. Equations (8.2.4) and (8.2.5) describe a family of plants given
by

Πm =
{

G

∣∣∣∣
|G(jω)−G0(jω)|

|G0(jω)| ≤ δm(ω)
}

(8.2.6)

For the same reason as in the additive perturbation case, we adopt Defini-
tion 8.2.2 which requires ∆m(s) to be stable instead of the usual definition
in robust control where ∆m(s) is allowed to be unstable for a certain family
of plants.

Definition 8.2.3 (Stable Factor Perturbations) Let G(s), G0(s) have
the following coprime factorizations [231]:

G(s) =
N0(s) + ∆1(s)
D0(s) + ∆2(s)

, G0(s) =
N0(s)
D0(s)

(8.2.7)

where N0 and D0 are proper stable rational transfer functions that are co-
prime,1 and ∆1(s) and ∆2(s) are stable. Then ∆1(s) and ∆2(s) are called
stable factor plant perturbations.

1Two proper transfer functions P (s), Q(s) are coprime if and only if they have no finite
common zeros in the closed right half s-plane and at least one of them has relative degree
zero [231].
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Figure 8.2 Block diagram representations of plant models with (i) addi-
tive, (ii) multiplicative, and (iii) stable factor perturbations.

Figure 8.2 shows a block diagram representation of the three types of plant
model uncertainties.

The perturbations ∆a(s), ∆m(s),∆1(s), and ∆2(s) defined above with
no additional restrictions are usually referred to as unstructured plant model
uncertainties.
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8.2.2 Structured Uncertainties: Singular Perturbations

In many applications, the plant perturbations may have a special form be-
cause they may originate from variations of physical parameters or arise
because of a deliberate reduction in the complexity of a higher order math-
ematical model of the plant. Such perturbations are usually referred to as
structured plant model perturbations.

The knowledge of the structure of plant model uncertainties can be ex-
ploited in many control problems to achieve better performance and obtain
less conservative results.

An important class of structured plant model perturbations that describe
a wide class of plant dynamic uncertainties, such as fast sensor and actuator
dynamics, is given by singular perturbation models [106].

For a SISO, LTI plant, the following singular perturbation model in the
state space form

ẋ = A11x + A12z + B1u, x ∈ Rn

µż = A21x + A22z + B2u, z ∈ Rm (8.2.8)

y = C>
1 x + C>

2 z

can be used to describe the slow (or dominant) and fast (or parasitic) phe-
nomena of the plant. The scalar µ represents all the small parameters such
as small time constants, small masses, etc., to be neglected. In most appli-
cations, the representation (8.2.8) with a single parameter µ can be achieved
by proper scaling as shown in [106]. All the matrices in (8.2.8) are assumed
to be constant and independent of µ. As explained in [106], this assumption
is for convenience only and leads to a minor loss of generality.

The two time scale property of (8.2.8) is evident if we use the change of
variables

zf = z + L(µ)x (8.2.9)

where L(µ) is required to satisfy the algebraic equation

A21 −A22L + µLA11 − µLA12L = 0 (8.2.10)

to transform (8.2.8) into

ẋ = Asx + A12zf + B1u
µżf = Afzf + Bsu
y = C>

s x + C>
2 zf

(8.2.11)
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where As =A11−A12L, Af =A22+µLA12, Bs =B2+µLB1, C>
s =C>

1− C>
2 L.

As shown in [106], if A22 is nonsingular, then for all µ ∈ [0, µ∗) and some
µ∗ > 0, a solution of the form

L = A−1
22 A21 + O(µ)

satisfying (8.2.10) exists. It is clear that for u = 0, i.e.,

ẋ = Asx + A12zf

µżf = Afzf
(8.2.12)

the eigenvalues of (8.2.12) are equal to those of As and Af/µ, which, for
small µ and for Af nonsingular, are of O(1) and O(1/µ), respectively2. The
smaller the value of µ, the wider the distance between the eigenvalues of As

and Af/µ, and the greater the separation of time scales. It is clear that if
Af is stable then the smaller the value of µ is, the faster the state variable
zf goes to zero. In the limit as µ → 0, zf converges instantaneously, i.e.,
infinitely fast to zero. Thus for small µ, the effect of stable fast dynamics is
reduced considerably after a very short time. Therefore, when A22 is stable
(which for small µ implies that Af is stable), a reasonable approximation of
(8.2.8) is obtained by setting µ = 0, solving for z from the second equation
of (8.2.8) and substituting for its value in the first equation of (8.2.8), i.e.,

ẋ0 = A0x0 + B0u, x0 ∈ Rn

y0 = C>
0 x0 + D0u

(8.2.13)

where A0 = A11−A12A
−1
22 A21, B0 = B1−A12A

−1
22 B2, C

>
0 = C>

1 −C>
2 A−1

22 A21

and D0 = −C>
2 A−1

22 B2. With µ set to zero, the dimension of the state space
of (8.2.8) reduces from n + m to n because the differential equation for z in
(8.2.8) degenerates into the algebraic equation

0 = A21x0 + A22z0 + B2u

i.e.,
z0 = −A−1

22 (A21x0 + B2u) (8.2.14)

2We say that a function f(x) is O(|x|) in D ⊂ Rn if there exists a finite constant c > 0
such that |f(x)| ≤ c|x| for all x ∈ D where x = 0 ∈ D.
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where the subscript 0 is used to indicate that the variables belong to the
system with µ = 0. The transfer function

G0(s) = C>
0 (sI −A0)−1B0 + D0 (8.2.15)

represents the nominal or slow or dominant part of the plant.
We should emphasize that even though the transfer function G(s) from u

to y of the full-order plant given by (8.2.8) is strictly proper, the nominal part
G0(s) may be biproper because D0 = −C>

2 A−1
22 B2 may not be equal to zero.

The situation where the throughput D0 = −C>
2 A−1

22 B2 induced by the fast
dynamics is nonzero is referred to as strongly observable parasitics [106]. As
discussed in [85, 101], if G0(s) is assumed to be equal to C>

0 (sI − A0)−1B0

instead of (8.2.15), the control design based on G0(s) and applied to the
full-order plant with µ ≥ 0 may lead to instability. One way to eliminate
the effect of strongly controllable and strongly observable parasitics is to
augment (8.2.8) with a low pass filter as follows: We pass y through the
filter f1

s+f0
for some f1, f0 > 0, i.e.,

ẏf = −f0yf + f1y (8.2.16)

and augment (8.2.8) with (8.2.16) to obtain the system of order (n + 1 + m)

ẋa = Â11xa + Â12z + B̂1u

µż = Â21xa + A22z + B2u

ŷ = Ĉ>
1 xa

(8.2.17)

where xa = [yf , x>]> and Â11, Â12, Â21, B̂1, Ĉ1 are appropriately defined.
The nominal transfer function of (8.2.17) is now

Ĝ0(s) = Ĉ>
0 (sI − Â0)−1B̂0

which is strictly proper.
Another convenient representation of (8.2.8) is obtained by using the

change of variables
η = zf + A−1

f Bsu (8.2.18)

i.e., the new state η represents the difference between the state zf and the
“quasi steady” state response of (8.2.11) due to µ 6= 0 obtained by approxi-
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mating µżf ≈ 0. Using (8.2.18), we obtain

ẋ = Asx + A12η + B̄su

µη̇ = Afη + µA−1
f Bsu̇

y = C>
s x + C>

2 η + Dsu

(8.2.19)

where B̄s = B1 −A12A
−1
f Bs, Ds = −C>

2 A−1
f Bs, provided u is differentiable.

Because for |u̇| = O(1), the slow component of η is of O(µ), i.e., at steady
state |η| = O(µ), the state η is referred to as the parasitic state. It is clear
that for |u̇| = O(1) the effect of η on x at steady state is negligible for small
µ whereas for |u̇| ≥ O(1/µ), |η| is of O(1) at steady state, and its effect on
the slow state x may be significant. The effect of u̇ and η on x is examined
in later sections in the context of robustness of adaptive systems.

8.2.3 Examples of Uncertainty Representations

We illustrate various types of plant uncertainties by the following examples:

Example 8.2.1 Consider the following equations describing the dynamics of a DC
motor

Jω̇ = k1i

L
di

dt
= −k2ω −Ri + v

where i, v, R and L are the armature current, voltage, resistance, and inductance,
respectively; J is the moment of inertia; ω is the angular speed; k1i and k2ω are
the torque and back e.m.f., respectively.

Defining x = ω, z = i we have

ẋ = b0z, µż = −α2x− α1z + v
y = x

where b0 = k1/J, α2 = k2, α1 = R and µ = L, which is in the form of the singular
perturbation model (8.2.8). The transfer function between the input v and the
output y is given by

y(s)
v(s)

=
b0

µs2 + α1s + α0
= G(s, µs)

where α0 = b0α2. In most DC motors, the inductance L = µ is small and can be
neglected leading to the reduced order or nominal plant transfer function

G0(s) =
b0

α1s + α0
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Using G0(s) as the nominal transfer function, we can express G(s, µs) as

G(s, µs) = G0(s) + ∆a(s, µs), ∆a(s, µs) = −µ
b0s

2

(µs2 + α1s + α0)(α1s + α0)

where ∆a(s, µs) is strictly proper and stable since µ, α1, α0 > 0 or as

G(s, µs) = G0(s)(1 + ∆m(s, µs)), ∆m(s, µs) = −µ
s2

µs2 + α1s + α0

where ∆m(s, µs) is proper and stable.
Let us now use Definition 8.2.3 and express G(s, µs) in the form of stable factor

perturbations. We write G(s, µs) as

G(s, µs) =
b0

(s+λ) + ∆1(s, µs)
α1s+α0
(s+λ) + ∆2(s, µs)

where

∆1(s, µs) = −µ
b0s

(µs + α1)(s + λ)
, ∆2(s, µs) = −µ

α0s

(µs + α1)(s + λ)

and λ > 0 is an arbitrary constant. 5

Example 8.2.2 Consider a system with the transfer function

G(s) = e−τs 1
s2

where τ > 0 is a small constant. As a first approximation, we can set τ = 0 and
obtain the reduced order or nominal plant transfer function

G0(s) =
1
s2

leading to
G(s) = G0(s)(1 + ∆m(s))

with ∆m(s) = e−τs − 1. Using Definition 8.2.3, we can express G(s) as

G(s) =
N0(s) + ∆1(s)
D0(s) + ∆2(s)

where N0(s) = 1
(s+λ)2 , D0(s) = s2

(s+λ)2 , ∆1(s) = e−τs−1
(s+λ)2 , and ∆2(s) = 0 where λ > 0

is an arbitrary constant.
It is clear that for small τ , ∆m(s), ∆1(s) are approximately equal to zero at low

frequencies. 5
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Figure 8.3 General feedback system.

8.2.4 Robust Control

The ultimate goal of any control design is to meet the performance require-
ments when implemented on the actual plant. In order to meet such a goal,
the controller has to be designed to be insensitive, i.e., robust with respect to
the class of plant uncertainties that are likely to be encountered in real life.
In other words, the robust controller should guarantee closed-loop stability
and acceptable performance not only for the nominal plant model but also
for a family of plants, which, most likely, include the actual plant.

Let us consider the feedback system of Figure 8.3 where C, F are designed
to stabilize the nominal part of the plant model whose transfer function is
G0(s). The transfer function of the actual plant is G(s) and du, d, dn, ym are
external bounded inputs as explained in Section 3.6. The difference between
G(s) and G0(s) is the plant uncertainty that can be any one of the forms
described in the previous section. Thus G(s) may represent a family of
plants with the same nominal transfer function G0(s) and plant uncertainty
characterized by some upper bound in the frequency domain. We say that
the controller (C,F ) is robust with respect to the plant uncertainties in G(s)
if, in addition to G0(s), it also stabilizes G(s). The property of C, F to
stabilize G(s) is referred to as robust stability.

The following theorem defines the class of plant uncertainties for which
the controller C, F guarantees robust stability.

Theorem 8.2.1 Let us consider the feedback system of Figure 8.3 where

(i) G(s) = G0(s) + ∆a(s)

(ii) G(s) = G0(s)(1 + ∆m(s))
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(iii) G(s) =
N0(s) + ∆1(s)
D0(s) + ∆2(s)

, G0(s) =
N0(s)
D0(s)

where ∆a(s), ∆m(s), ∆1(s),∆2(s), N0(s), and D0(s) are as defined in Section
8.2.1 and assume that C, F are designed to internally stabilize the feedback
system when G(s) = G0(s). Then the feedback system with G(s) given by
(i), (ii), (iii) is internally stable provided conditions

(i)
∥∥∥∥

C(s)F (s)
1 + C(s)F (s)G0(s)

∥∥∥∥
∞

δa(ω) < 1 (8.2.20)

(ii)
∥∥∥∥

C(s)F (s)G0(s)
1 + C(s)F (s)G0(s)

∥∥∥∥
∞

δm(ω) < 1 (8.2.21)

(iii)
∥∥∥∥
∆2(s) + C(s)F (s)∆1(s)
D0(s) + C(s)F (s)N0(s)

∥∥∥∥
∞

< 1 (8.2.22)

are satisfied for all ω, respectively.

Proof As in Sections 3.6.1 and 3.6.2, the feedback system is internally stable if
and only if each element of the transfer matrix

H(s) =
1

1 + FCG




1 −FG −F −F
C 1 −FC −FC

CG G 1 −FCG
CG G 1 1




has stable poles. Because C, F are designed such that each element of H(s) with
G = G0 has stable poles and ∆α,∆m,∆1, and ∆2 are assumed to have stable poles,
the only instability which may arise in the feedback system is from any unstable
root of

1 + F (s)C(s)G(s) = 0 (8.2.23)

(i) Let us consider G = G0 + ∆a, then (8.2.23) can be written as

1 +
FC∆a

1 + FCG0
= 0 (8.2.24)

Because FC
1+FCG0

,∆a have stable poles, it follows from the Nyquist criterion that
the roots of (8.2.24) are in the open left-half s-plane if the Nyquist plot of FC∆a

1+FCG0
does not encircle the (−1, j0) point in the complex s = σ+jω plane. This condition
is satisfied if ∣∣∣∣

C(jω)F (jω)δa(ω)
1 + C(jω)F (jω)G0(jω)

∣∣∣∣ < 1, ∀ω ∈ R
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The above condition implies that the Nyquist plot of FC∆a

1+FCG0
does not encircle the

(−1, j0) point for any ∆a(s) that satisfies |∆a(jω)| ≤ δa(ω). Hence, the feedback
system is internally stable for any G(s) in the family

Πa = {G | |G(jω)−G0(jω)| ≤ δa(ω)}

(ii) If G = G0(1 + ∆m) equation (8.2.23) may be written as

1 +
FCG0

1 + FCG0
∆m = 0

and the proof follows as in (i).

(iii) If G = N0+∆1
D0+∆2

, equation (8.2.23) may be written as

1 +
1

(D0 + FCN0)
[∆2 + FC∆1] = 0

Because 1
D0+FCN0

, FC
D0+FCN0

,∆2, ∆1 have stable poles, the result follows by apply-
ing the Nyquist criterion as in (i). 2

We should emphasize that conditions (8.2.20) to (8.2.22) are not only
sufficient for stability but also necessary in the sense that if they are violated,
then within the family of plants considered, there exists a plant G for which
the feedback system with compensators F,C is unstable.

Conditions (8.2.20) to (8.2.22) are referred to as conditions for robust
stability. They may be used to choose F, C such that in addition to achieving
internal stability for the nominal plant, they also guarantee robust stability
with respect to a class of plant uncertainties.

As in Section 3.6.3, let us consider the performance of the feedback sys-
tem of Figure 8.3 with respect to the external inputs in the presence of
dynamic plant uncertainties. We concentrate on the case where F (s) = 1
and dn = du = 0 and the plant transfer function is given by

G(s) = G0(s)(1 + ∆m(s)) (8.2.25)

By performance, we mean that the plant output y is as close to the reference
input ym as possible for all plants G in the family Πm despite the presence
of the external inputs ym, d. From Figure 8.3, we have

y =
CG

1 + CG
ym +

1
1 + CG

d
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or
e = ym − y =

1
1 + CG

(ym − d) (8.2.26)

Because 1 + CG = 1 + CG0 + CG0∆m, (8.2.26) can be expressed as

e =
S0

1 + T0∆m
(ym − d) (8.2.27)

where S0 = 1
1+CG0

, T0 = CG0
1+CG0

are the sensitivity and complementary sen-
sitivity functions for the nominal plant, respectively.

For robust stability we require

‖T0(s)‖∞δm(ω) =
∥∥∥∥

C(s)G0(s)
1 + C(s)G0(s)

∥∥∥∥
∞

δm(ω) < 1

which suggests that the loop gain L0 = CG0 should be much less than 1
whenever δm(ω) exceeds 1. For good tracking performance, i.e., for small
error e, however, (8.2.27) implies that S0 = 1

1+CG0
should be small, which, in

turn, implies that the loop gain L0 should be large. This is the classical trade-
off between nominal performance and robust stability that is well known
in the area of robust control. A good compromise may be found when
δm(ω) < 1 at low frequencies and v = ym − d is small at high frequencies.
In this case the loop gain L0 = CG0 can be shaped, through the choice of
C, to be large at low frequencies and small at high frequencies.

The trade-off design of the compensator C to achieve robust stability and
performance can be formulated as an optimal control problem where the L2

norm of e, i.e.,

‖e‖2
2 =

∫ ∞

0
e2dt

is minimized with respect to C for the “worst” plant within the family Πm

and the “worst” input v within the family of the inputs considered. This
“min-max” approach is used in the so-called H2 and H∞ optimal control
designs that are quite popular in the literature of robust control [45, 152].

8.3 Instability Phenomena in Adaptive Systems

In Chapters 4 to 7, we developed a wide class of adaptive schemes that meet
certain control objectives successfully for a wide class of LTI plants whose
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parameters are unknown. Some of the basic assumptions made in designing
and analyzing these schemes are the following:

• The plant is free of noise disturbances, unmodeled dynamics and un-
known nonlinearities.

• The unknown parameters are constant for all time.

Because in applications most of these assumptions will be violated, it is of
interest from the practical point of view to examine the stability proper-
ties of these schemes when applied to the actual plant with disturbances,
unmodeled dynamics, etc.

In this section we show that some of the simple adaptive schemes ana-
lyzed in the previous chapters can be driven unstable by bounded distur-
bances and unmodeled dynamics. We study several instability mechanisms
whose understanding helps find ways to counteract them by redesigning the
adaptive schemes of the previous chapters.

8.3.1 Parameter Drift

Let us consider the same plant as in the example of Section 4.2.1, where the
plant output is now corrupted by some unknown bounded disturbance d(t),
i.e.,

y = θ∗u + d

The adaptive law for estimating θ∗ derived in Section 4.2.1 for d(t) = 0
∀t ≥ 0 is given by

θ̇ = γε1u, ε1 = y − θu (8.3.1)

where γ > 0 and θ(t) is the on-line estimate of θ∗. We have shown that for
d(t) = 0 and u, u̇ ∈ L∞, (8.3.1) guarantees that θ, ε1 ∈ L∞ and ε1(t) → 0 as

t → ∞. Let us now analyze (8.3.1) when d(t) 6= 0. Defining θ̃
4
= θ − θ∗, we

have

ε1 = −θ̃u + d

and
˙̃
θ = −γu2θ̃ + γdu (8.3.2)
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We analyze (8.3.2) by considering the function

V (θ̃) =
θ̃2

2γ
(8.3.3)

Along the trajectory of (8.3.2), we have

V̇ = −θ̃2u2 + dθ̃u = − θ̃2u2

2
− 1

2
(θ̃u− d)2 +

d2

2
(8.3.4)

For the class of inputs considered, i.e., u ∈ L∞ we cannot conclude that
θ̃ is bounded from considerations of (8.3.3), (8.3.4), i.e., we cannot find a
constant V0 > 0 such that for V > V0, V̇ ≤ 0. In fact, for θ∗ = 2, γ = 1,
u = (1 + t)−

1
2 ∈ L∞ and

d(t) = (1 + t)−
1
4

(
5
4
− 2(1 + t)−

1
4

)
→ 0 as t →∞

we have
y(t) =

5
4
(1 + t)−

1
4 → 0 as t →∞

ε1(t) =
1
4
(1 + t)−

1
4 → 0 as t →∞

and
θ(t) = (1 + t)

1
4 →∞ as t →∞

i.e., the estimated parameter θ(t) drifts to infinity with time. We refer to
this instability phenomenon as parameter drift.

It can be easily verified that for u(t) = (1 + t)−
1
2 the equilibrium θ̃e = 0

of the homogeneous part of (8.3.2) is u.s. and a.s., but not u.a.s. Therefore,
it is not surprising that we are able to find a bounded input γdu that leads
to an unbounded solution θ̃(t) = θ(t)− 2. If, however, we restrict u(t) to be
PE with level α0 > 0, say, by choosing u2 = α0, then it can be shown (see
Problem 8.4) that the equilibrium θ̃e = 0 of the homogeneous part of (8.3.2)
is u.a.s. (also e.s.) and that

lim
t→∞ sup

τ≥t
|θ̃(τ)| ≤ d0

α0
, d0 = sup

t
|d(t)u(t)|

i.e., θ̃(t) converges exponentially to the residual set

Dθ =
{

θ̃

∣∣∣∣|θ̃| ≤
d0

α0

}
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indicating that the parameter error at steady state is of the order of the
disturbance level.

Unfortunately, we cannot always choose u to be PE especially in the case
of adaptive control where u is no longer an external signal but is generated
from feedback.

Another case of parameter drift can be demonstrated by applying the
adaptive control scheme

u = −kx, k̇ = γx2 (8.3.5)

developed in Section 6.2.1 for the ideal plant ẋ = ax + u to the plant

ẋ = ax + u + d (8.3.6)

where d(t) is an unknown bounded input disturbance. It can be verified that
for k(0) = 5, x(0) = 1, a = 1, γ = 1 and

d(t) = (1 + t)−
1
5

(
5− (1 + t)−

1
5 − 0.4(1 + t)−

6
5

)
→ 0 as t →∞

the solution of (8.3.5), (8.3.6) is given by

x(t) = (1 + t)−
2
5 → 0 as t →∞

and
k(t) = 5(1 + t)

1
5 →∞ as t →∞

We should note that since k(0) = 5 > 1 and k(t) ≥ k(0) ∀t ≥ 0 parameter
drift can be stopped at any time t by switching off adaptation, i.e., setting
γ = 0 in (8.3.5), and still have x, u ∈ L∞ and x(t) → 0 as t → ∞. For
example, if γ = 0 for t ≥ t1 > 0, then k(t) = k̄ ∀t ≥ t1, where k̄ ≥ 5 is a
stabilizing gain, which guarantees that u, x ∈ L∞ and x(t) → 0 as t →∞.

One explanation of the parameter drift phenomenon may be obtained by
solving for the “quasi” steady state response of (8.3.6) with u = −kx, i.e.,

xs ≈ d

k − a

Clearly, for a given a and d, the only way for xs to go to zero is for k →∞.
That is, in an effort to eliminate the effect of the input disturbance d and send
x to zero, the adaptive control scheme creates a high gain feedback. This
high gain feedback may lead to unbounded plant states when in addition to
bounded disturbances, there are dynamic plant uncertainties, as explained
next.
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8.3.2 High-Gain Instability

Consider the following plant:

y

u
=

1− µs

(s− a)(1 + µs)
=

1
s− a

[
1− 2µs

1 + µs

]
(8.3.7)

where µ is a small positive number which may be due to a small time constant
in the plant.

A reasonable approximation of the second-order plant may be obtained
by approximating µ with zero leading to the first-order plant model

ȳ

u
=

1
s− a

(8.3.8)

where ȳ denotes the output y when µ = 0. The plant equation (8.3.7) is in
the form of y = G0(1 + ∆m)u where G0(s) = 1

s−a and ∆m(s) = − 2µs
1+µs . It

may be also expressed in the singular perturbation state-space form discussed
in Section 8.2, i.e.,

ẋ = ax + z − u
µż = −z + 2u
y = x

(8.3.9)

Setting µ = 0 in (8.3.9) we obtain the state-space representation of (8.3.8),
i.e.,

˙̄x = ax̄ + u
ȳ = x̄

(8.3.10)

where x̄ denotes the state x when µ = 0. Let us now design an adaptive
controller for the simplified plant (8.3.10) and use it to control the actual
second order plant where µ > 0. As we have shown in Section 6.2.1, the
adaptive law

u = −kx̄, k̇ = γε1x̄, ε1 = x̄

can stabilize (8.3.10) and regulate ȳ = x̄ to zero. Replacing ȳ with the actual
output of the plant y = x, we have

u = −kx, k̇ = γε1x, ε1 = x (8.3.11)

which, when applied to (8.3.9), gives us the closed-loop plant

ẋ = (a + k)x + z
µż = −z − 2kx

(8.3.12)
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whose equilibrium xe = 0, ze = 0 with k = k∗ is a.s. if and only if the
eigenvalues of (8.3.12) with k = k∗ are in the left-half s-plane, which implies
that

1
µ
− a > k∗ > a

Because k̇ ≥ 0, it is clear that

k(0) >
1
µ
− a ⇒ k(t) >

1
µ
− a, ∀t ≥ 0

that is, from such a k(0) the equilibrium of (8.3.12) cannot be reached.
Moreover, with k > 1

µ −a the linear feedback loop is unstable even when the
adaptive loop is disconnected, i.e., γ = 0.

We refer to this form of instability as high-gain instability. The adaptive
control law (8.3.11) can generate a high gain feedback which excites the
unmodeled dynamics and leads to instability and unbounded solutions. This
type of instability is well known in robust control with no adaptation [106]
and can be avoided by keeping the controller gains small (leading to a small
loop gain) so that the closed-loop bandwidth is away from the frequency
range where the unmodeled dynamics are dominant.

8.3.3 Instability Resulting from Fast Adaptation

Let us consider the second-order plant

ẋ = −x + bz − u
µż = −z + 2u
y = x

(8.3.13)

where b > 1/2 is an unknown constant and µ > 0 is a small number. For
u = 0, the equilibrium xe = 0, ze = 0 is e.s. for all µ ≥ 0. The objective
here, however, is not regulation but tracking. That is, the output y = x is
required to track the output xm of the reference model

ẋm = −xm + r (8.3.14)

where r is a bounded piecewise continuous reference input signal. For µ = 0,
the reduced-order plant is

˙̄x = −x̄ + (2b− 1)u
ȳ = x̄

(8.3.15)
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which has a pole at s = −1, identical to that of the reference model, and an
unknown gain 2b− 1 > 0. The adaptive control law

u = lr, l̇ = −γε1r, ε1 = x̄− xm (8.3.16)

guarantees that x̄(t), l(t) are bounded and |x̄(t)− xm(t)| → 0 as t →∞ for
any bounded reference input r. If we now apply (8.3.16) with x̄ replaced by
x to the actual plant (8.3.13) with µ > 0, the closed-loop plant is

ẋ = −x + bz − lr
µż = −z + 2lr

l̇ = −γr(x− xm)
(8.3.17)

When γ = 0 that is when l is fixed and finite, the signals x(t) and z(t) are
bounded. Thus, no instability can occur in (8.3.17) for γ = 0.

Let us assume that r = constant. Then, (8.3.17) is an LTI system of the
form

Ẏ = AY + Bγrxm (8.3.18)

where Y = [x, z, l]>, B = [0, 0, 1]>,

A =



−1 b −r
0 −1/µ 2r/µ
−γr 0 0




and γrxm is treated as a bounded input. The characteristic equation of
(8.3.18) is then given by

det(sI −A) = s3 + (1 +
1
µ

)s2 + (
1
µ
− γr2)s +

γ

µ
r2(2b− 1) (8.3.19)

Using the Routh-Hurwitz criterion, we have that for

γr2 >
1
µ

(1 + µ)
(2b + µ)

(8.3.20)

two of the roots of (8.3.19) are in the open right-half s-plane. Hence given any
µ > 0, if γ, r satisfy (8.3.20), the solutions of (8.3.18) are unbounded in the
sense that |Y (t)| → ∞ as t →∞ for almost all initial conditions. Large γr2

increases the speed of adaptation, i.e., l̇, which in turn excites the unmodeled
dynamics and leads to instability. The effect of l̇ on the unmodeled dynamics
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can be seen more clearly by defining a new state variable η = z− 2lr, called
the parasitic state [85, 106], to rewrite (8.3.17) as

ẋ = −x + (2b− 1)lr + bη
µη̇ = −η + 2µγr2(x− xm)− 2µlṙ

l̇ = −γr(x− xm)
(8.3.21)

where for r = constant, ṙ ≡ 0. Clearly, for a given µ, large γr2 may lead to
a fast adaptation and large parasitic state η which acts as a disturbance in
the dominant part of the plant leading to false adaptation and unbounded
solutions. For stability and bounded solutions, γr2 should be kept small, i.e.,
the speed of adaptation should be slow relative to the speed of the parasitics
characterized by 1

µ .

8.3.4 High-Frequency Instability

Let us now assume that in the adaptive control scheme described by (8.3.21),
both γ and |r| are kept small, i.e., adaptation is slow. We consider the case
where r = r0 sinωt and r0 is small but the frequency ω can be large. At
lower to middle frequencies and for small γr2, µ, we can approximate µη̇ ≈ 0
and solve (8.3.21) for η, i.e., η ≈ 2µγr2(x− xm)− 2µlṙ, which we substitute
into the first equation in (8.3.21) to obtain

ẋ = −(1− 2µbγr2)x + (gr − 2bµṙ)l − 2µbγr2xm

l̇ = −γr(x− xm)
(8.3.22)

where g = 2b − 1. Because γr is small we can approximate l(t) with a
constant and solve for the sinusoidal steady-state response of x from the
first equation of (8.3.22) where the small µγr2 terms are neglected, i.e.,

xss =
r0

1 + ω2
[(g − 2bµω2) sinωt− ω(g + 2bµ)cosωt]l

Now substituting for x = xss in the second equation of (8.3.22) we obtain

l̇s = −γr2
0 sinωt

1 + ω2

[
(g − 2bµω2) sin ωt− ω(g + 2bµ)cosωt

]
ls + γxmr0 sinωt

i.e.,
l̇s = α(t)ls + γxmr0 sinωt (8.3.23)



552 CHAPTER 8. ROBUST ADAPTIVE LAWS

α(t)
4
= −γr2

0 sinωt

1 + ω2

[
(g − 2bµω2) sinωt− ω(g + 2bµ)cosωt

]

where the subscript ‘s’ indicates that (8.3.23) is approximately valid for
slow adaptation, that is, for γr2

0(1 + ω2)−1/2 sufficiently small. The slow
adaptation is unstable if the integral of the periodic coefficient α(t) over the
period is positive, that is, when µω2 > g/(2b), or ω2 > g/(2bµ) [3].

The above approximate instability analysis indicates that if the reference
input signal r(t) has frequencies in the parasitic range, (i.e., of the order of 1

µ

and higher), these frequencies may excite the unmodeled dynamics, cause the
signal-to-noise ratio to be small and, therefore, lead to the wrong adjustment
of the parameters and eventually to instability. We should note again that
by setting γ = 0, i.e., switching adaptation off, instability ceases.

A more detailed analysis of slow adaptation and high-frequency instabil-
ity using averaging is given in [3, 201].

8.3.5 Effect of Parameter Variations

Adaptive control was originally motivated as a technique for compensating
large variations in the plant parameters with respect to time. It is, therefore,
important to examine whether the adaptive schemes developed in Chapters
4 to 7 can meet this challenge.

We consider the linear time varying scalar plant

ẋ = a(t)x + b(t)u (8.3.24)

where a(t) and b(t) are time varying parameters that are bounded and have
bounded first order derivatives for all t and b(t) ≥ b0 > 0. We further assume
that |ȧ(t)|, |ḃ(t)| are small, i.e., the plant parameters vary slowly with time.
The objective is to find u such that x tracks the output of the LTI reference
model

ẋm = −xm + r

for all reference input signals r that are bounded and piecewise continuous.
If a(t), b(t) were known for all t ≥ 0, then the following control law

u = −k∗(t)x + l∗(t)r

where
k∗(t) =

1 + a(t)
b(t)

, l∗(t) =
1

b(t)
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would achieve the control objective exactly. Since a(t) and b(t) are unknown,
we try

u = −k(t)x + l(t)r

together with an adaptive law for adjusting k(t) and l(t). Let us use the same
adaptive law as the one that we would use if a(t) and b(t) were constants,
i.e., following the approach of Section 6.2.2, we have

k̇ = γ1ε1x, l̇ = −γ2ε1r, γ1, γ2 > 0 (8.3.25)

where ε1 = e = x− xm satisfies

ε̇1 = −ε1 + b(t)(−k̃x + l̃r) (8.3.26)

where k̃(t)
4
= k(t) − k∗(t), l̃(t) 4

= l(t) − l∗(t). Because k∗(t), l∗(t) are time
varying, ˙̃

k = k̇ − k̇∗, ˙̃l = l̇ − l̇∗ and therefore (8.3.25), rewritten in terms of
the parameter error, becomes

˙̃
k = γ1ε1x− k̇∗, ˙̃

l = −γ2ε1r − l̇∗ (8.3.27)

Hence, the effect of the time variations is the appearance of the disturbance
terms k̇∗, l̇∗, which are bounded because ȧ(t), ḃ(t) are assumed to be bounded.
Let us now choose the same Lyapunov-like function as in the LTI case for
analyzing the stability properties of (8.3.26), (8.3.27), i.e.,

V (ε1, k̃, l̃) =
ε21
2

+ b(t)
k̃2

2γ1
+ b(t)

l̃2

2γ2
(8.3.28)

where b(t) ≥ b0 > 0. Then along the trajectory of (8.3.26), (8.3.27) we have

V̇ = −ε21 − ε1bk̃x + ε1bl̃r + ḃ
k̃2

2γ1
+ bk̃ε1x− bk̃k̇∗

γ1

+ḃ
l̃2

2γ2
− bl̃ε1r − b

l̃l̇∗

γ2

= −ε21 +
ḃ

2

(
k̃2

γ1
+

l̃2

γ2

)
− b

(
k̃k̇∗

γ1
+

l̃l̇∗

γ2

)
(8.3.29)

From (8.3.28) and (8.3.29) we can say nothing about the boundedness of
ε1, k̃, l̃ unless k̇∗, l̇∗ are either zero or decaying to zero exponentially fast.
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Even if k̇∗(t), l̇∗(t) are sufficiently small, i.e., a(t), b(t) vary sufficiently slowly
with time, the boundedness of ε1, k̃, l̃ can not be assured from the properties
of V, V̇ given by (8.3.28), (8.3.29) no matter how small ȧ, ḃ are.

It has been established in [9] by using a different Lyapunov-like function
and additional arguments that the above adaptive control scheme guarantees
signal boundedness for any bounded a(t), b(t) with arbitrary but finite speed
of variation. This approach, however, has been restricted to a special class
of plants and has not been extended to the general case. Furthermore, the
analysis does not address the issue of tracking error performance that is
affected by the parameter variations.

The above example demonstrates that the empirical observation that an
adaptive controller designed for an LTI plant will also perform well when the
plant parameters are slowly varying with time, held for a number of years in
the area of adaptive control as a justification for dealing with LTI plants, may
not be valid. In Chapter 9, we briefly address the adaptive control problem
of linear time varying plants and show how the adaptive and control laws
designed for LTI plants can be modified to meet the control objective in the
case of linear plants with time varying parameters. For more details on the
design and analysis of adaptive controllers for linear time varying plants, the
reader is referred to [226].

8.4 Modifications for Robustness: Simple Exam-
ples

The instability examples presented in Section 8.3 demonstrate that the adap-
tive schemes designed in Chapters 4 to 7 for ideal plants, i.e., plants with no
modeling errors may easily go unstable in the presence of disturbances or un-
modeled dynamics. The lack of robustness is primarily due to the adaptive
law which is nonlinear in general and therefore more susceptible to modeling
error effects.

The lack of robustness of adaptive schemes in the presence of bounded
disturbances was demonstrated as early as 1979 [48] and became a hot issue
in the early 1980s when several adaptive control examples are used to show
instability in the presence of unmodeled dynamics and bounded disturbances
[86, 197]. It was clear from these examples that new approaches and adaptive
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laws were needed to assure boundedness of all signals in the presence of plant
uncertainties. These activities led to a new body of work referred to as robust
adaptive control.

The purpose of this section is to introduce and analyze some of the
techniques used in the 1980s to modify the adaptive laws designed for ideal
plants so that they can retain their stability properties in the presence of
“reasonable” classes of modeling errors.

We start with the simple plant

y = θ∗u + η (8.4.1)

where η is the unknown modeling error term and y, u are the plant output
and input that are available for measurement. Our objective is to design an
adaptive law for estimating θ∗ that is robust with respect to the modeling
error term η. By robust we mean the properties of the adaptive law for η 6= 0
are “close” ( within the order of the modeling error) to those with η = 0.

Let us start with the adaptive law

θ̇ = γε1u, ε1 = y − θu (8.4.2)

developed in Section 4.2.1 for the plant (8.4.1) with η = 0 and u ∈ L∞, and
shown to guarantee the following two properties:

(i) ε1, θ, θ̇ ∈ L∞, (ii) ε1, θ̇ ∈ L2 (8.4.3)

If in addition u̇ ∈ L∞, the adaptive law also guarantees that ε1, θ̇ → 0 as
t → ∞. When η = 0 but u 6∈ L∞, instead of (8.4.2) we use the normalized
adaptive law

θ̇ = γεu, ε =
y − θu

m2
(8.4.4)

where m is the normalizing signal that has the property of u
m ∈ L∞. A

typical choice for m in this case is m2 = 1 + u2. The normalized adaptive
law (8.4.4) guarantees that

(i) ε, εm, θ, θ̇ ∈ L∞, (ii) ε, εm, θ̇ ∈ L2 (8.4.5)

We refer to properties (i) and (ii) given by (8.4.3) or (8.4.5) and established
for η ≡ 0 as the ideal properties of the adaptive laws. When η 6= 0, the
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adaptive law (8.4.2) or (8.4.4) can no longer guarantee properties (i) and
(ii) given by (8.4.3) or (8.4.5). As we have shown in Section 8.3.1, we can
easily find a bounded modeling error term η, such as a bounded output
disturbance, that can cause the parameter estimate θ(t) to drift to infinity.

In the following sections, we introduce and analyze several techniques
that can be used to modify the adaptive laws in (8.4.2) and (8.4.4). The
objective of these modifications is to guarantee that the properties of the
modified adaptive laws are as close as possible to the ideal properties (i) and
(ii) given by (8.4.3) and (8.4.5) despite the presence of the modeling error
term η 6= 0.

We first consider the case where η is due to a bounded output disturbance
and u ∈ L∞. We then extend the results to the case where u ∈ L∞ and
η is due to a dynamic plant uncertainty in addition to a bounded output
disturbance.

8.4.1 Leakage

The idea behind leakage is to modify the adaptive law so that the time deriva-
tive of the Lyapunov function used to analyze the adaptive scheme becomes
negative in the space of the parameter estimates when these parameters ex-
ceed certain bounds. We demonstrate the use of leakage by considering the
adaptive law (8.4.2)

θ̇ = γε1u, ε1 = y − θu

with u ∈ L∞ for the plant (8.4.1), which we rewrite in terms of the parameter

error θ̃
4
= θ − θ∗ as

˙̃
θ = γε1u, ε1 = −θ̃u + η (8.4.6)

The modeling error term η, which in this case is assumed to be bounded,
affects the estimation error which in turn affects the evolution of θ̃(t). Let
us consider the Lyapunov function

V (θ̃) =
θ̃2

2γ
(8.4.7)

that is used to establish properties (i) and (ii), given by (8.4.3), when η = 0.
The time derivative of V along the solution of (8.4.6) is given by

V̇ = θ̃ε1u = −ε21 + ε1η ≤ −|ε1|(|ε1| − d0) (8.4.8)
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where d0 > 0 is an upper bound for the error term η. From (8.4.7) and
(8.4.8), we cannot conclude anything about the boundedness of θ̃ because
the situation where |ε1| < d0, i.e., V̇ ≥ 0 and θ̃(t) →∞ as t →∞ cannot be
excluded by the properties of V and V̇ for all input signals u ∈ L∞.

One way to avoid this situation and establish boundedness in the presence
of η is to modify the adaptive law as

θ̇ = γε1u− γwθ, ε1 = y − θu (8.4.9)

where the term wθ with w > 0 converts the “pure” integral action of the
adaptive law given by (8.4.6) to a “leaky” integration and is therefore re-
ferred to as the leakage modification. The design variable w(t) ≥ 0 is to
be chosen so that for V ≥ V0 > 0 and some V0, which may depend on
d0, the time derivative V̇ ≤ 0. Such a property of V, V̇ will allow us to
apply Theorem 3.4.3 and establish boundedness for V and, therefore, for
θ. The stability properties of the adaptive law (8.4.9) are described by the
differential equation

˙̃
θ = γε1u− γwθ, ε1 = −θ̃u + η (8.4.10)

Let us analyze (8.4.10) for various choices of the leakage term w(t).

(a) σ-modification [85, 86]. The simplest choice for w(t) is

w(t) = σ > 0, ∀t ≥ 0

where σ is a small constant and is referred to as the fixed σ-modification.
The adaptive law becomes

θ̇ = γε1u− γσθ

and in terms of the parameter error

˙̃
θ = γε1u− γσθ, ε = −θ̃u + η (8.4.11)

The time derivative of V = θ̃2

2γ along any trajectory of (8.4.11) is given by

V̇ = −ε21 + ε1η − σθ̃θ ≤ −ε21 + |ε1|d0 − σθ̃θ (8.4.12)
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Using completion of squares, we write

−ε21 + |ε1|d0 ≤ −ε21
2
− 1

2
[ε1 − d0]2 +

d2
0

2
≤ −ε21

2
+

d2
0

2

and

−σθ̃θ = −σθ̃(θ̃ + θ∗) ≤ −σθ̃2 + σ|θ̃||θ∗| ≤ −σθ̃2

2
+

σ|θ∗|2
2

(8.4.13)

Therefore,

V̇ ≤ −ε21
2
− σθ̃2

2
+

d2
0

2
+

σ|θ∗|2
2

Adding and subtracting the term αV for some α > 0, we obtain

V̇ ≤ −αV − ε21
2
−

(
σ − α

γ

)
θ̃2

2
+

d2
0

2
+

σ|θ∗|2
2

If we choose 0 < α ≤ σγ, we have

V̇ ≤ −αV +
d2

0

2
+

σ|θ∗|2
2

(8.4.14)

which implies that for V ≥ V0 = 1
2α(d2

0 + σ|θ∗|2), V̇ ≤ 0. Therefore, using
Theorem 3.4.3, we have that θ̃, θ ∈ L∞ which, together with u ∈ L∞, imply
that ε1, θ̇ ∈ L∞. Hence, with the σ-modification, we managed to extend
property (i) given by (8.4.3) for the ideal case to the case where η 6= 0
provided η ∈ L∞. In addition, we can establish by integrating (8.4.14) that

V (θ̃(t)) =
θ̃2

2γ
≤ e−αt θ̃

2(0)
2γ

+
1
2α

(d2
0 + σ|θ∗|2)

which implies that θ̃ converges exponentially to the residual set

Dσ =
{

θ̃ ∈ R
∣∣∣∣θ̃2 ≤ γ

α
(d2

0 + σ|θ∗|2)
}

Let us now examine whether we can extend the ideal property (ii) ε1,
θ̇ ∈ L2 given by (8.4.3) for the case of η = 0 to the case where η 6= 0 but
η ∈ L∞.

We consider the following expression for V̇ :

V̇ ≤ −ε21
2
− σ

θ2

2
+

d2
0

2
+ σ

|θ∗|2
2

(8.4.15)
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obtained by using the inequality

−σθ̃θ ≤ −σ
θ2

2
+ σ

|θ∗|2
2

instead of (8.4.13). Integrating (8.4.15) we obtain

∫ t+T

t
ε21dτ +

∫ t+T

t
σθ2dτ ≤ (d2

0+σ|θ∗|2)T +2[V (t)−V (t+T )] ≤ c0(d2
0+σ)T +c1

(8.4.16)

∀t ≥ 0 and T > 0 where c0 = max[1, |θ∗|2], c1 = 2 supt[V (t) − V (t + T )].
Expression (8.4.16) implies that ε1,

√
σθ are (d2

0+σ)-small in the mean square
sense (m.s.s.), i.e., ε1,

√
σθ ∈ S(d2

0 + σ). Because

|θ̇|2 ≤ 2γ2ε21u
2 + 2γ2σ2θ2

it follows that θ̇ is also (d2
0 + σ)-small in the m.s.s., i.e., θ̇ ∈ S(d2

0 + σ).
Therefore, the ideal property (ii) extends to

(ii)′ ε1, θ̇ ∈ S(d2
0 + σ) (8.4.17)

The L2 property of ε1, θ̇ can therefore no longer be guaranteed in the presence
of the nonzero modeling error term η. The L2 property of ε1 was used in
Section 4.2.1 together with u̇ ∈ L∞ to establish that ε1(t) → 0 as t →∞. It
is clear from (8.4.17) and the analysis above that even when the disturbance
η disappears, i.e., η = 0, the adaptive law with the σ-modification given
by (8.4.11) cannot guarantee that ε1, θ̇ ∈ L2 or that ε1(t) → 0 as t → ∞
unless σ = 0. Thus robustness is achieved at the expense of destroying the
ideal property given by (ii) in (8.4.3) and having possible nonzero estimation
errors at steady state. This drawback of the σ-modification motivated what
is called the switching σ-modification described next.

(b) Switching-σ [91]. Because the purpose of the σ-modification is to avoid
parameter drift, it does not need to be active when the estimated parameters
are within some acceptable bounds. Therefore a more reasonable modifica-
tion would be

w(t) = σs, σs =

{
0 if |θ| < M0

σ0 if |θ| ≥ M0
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|θ|M0 2M0

σ0

σs

Figure 8.4 Continuous switching σ-modification.

where M0 > 0, σ0 > 0 are design constants and M0 is chosen to be large
enough so that M0 > |θ∗|. With the above choice of σs, however, the adaptive
law (8.4.9) is a discontinuous one and may not guarantee the existence of the
solution θ(t). It may also cause oscillations on the switching surface |θ| = M0

during implementation. The discontinuous switching σ-modification can be
replaced with a continuous one such as

w(t) = σs, σs =





0 if |θ(t)| < M0

σ0

( |θ(t)|
M0

− 1
)

if M0 ≤ |θ(t)| ≤ 2M0

σ0 if |θ(t)| > 2M0

(8.4.18)

shown in Figure 8.4 where the design constants M0, σ0 are as defined in
the discontinuous switching σ-modification. In this case the adaptive law is
given by

θ̇ = γε1u− γσsθ, ε1 = y − θu

and in terms of the parameter error

˙̃
θ = γε1u− γσsθ, ε1 = −θ̃u + η (8.4.19)

The time derivative of V (θ̃) = θ̃2

2γ along the solution of (8.4.18), (8.4.19) is
given by

V̇ = −ε21 + ε1η − σsθ̃θ ≤ −ε21
2
− σsθ̃θ +

d2
0

2
(8.4.20)

Now

σsθ̃θ = σs(θ − θ∗)θ ≥ σs|θ|2 − σs|θ||θ∗|
≥ σs|θ|(|θ| −M0 + M0 − |θ∗|)
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i.e.,
σsθ̃θ ≥ σs|θ|(|θ| −M0) + σs|θ|(M0 − |θ∗|) ≥ 0 (8.4.21)

where the last inequality follows from the fact that σs ≥ 0, σs(|θ| −M0) ≥ 0
and M0 > |θ∗|. Hence, −σsθ̃θ ≤ 0. Therefore, in contrast to the fixed σ-
modification, the switching σ can only make V̇ more negative. We can also
verify that

−σsθ̃θ ≤ −σ0θ̃θ + 2σ0M
2
0 (8.4.22)

which we can use in (8.4.20) to obtain

V̇ ≤ −ε21
2
− σ0θ̃θ + 2σ0M

2
0 +

d2
0

2
(8.4.23)

The boundedness of V and, therefore, of θ follows by using the same pro-
cedure as in the fixed σ case to manipulate the term σ0θ̃θ in (8.4.23) and
express V̇ as

V̇ ≤ −αV + 2σ0M
2
0 +

d2
0

2
+ σ0

|θ∗|2
2

where 0 ≤ α ≤ σ0γ which implies that θ̃ converges exponentially to the
residual set

Ds =
{

θ̃

∣∣∣∣|θ̃|2 ≤
γ

α
(d2

0 + σ0|θ∗|2 + 4σ0M
2
0 )

}

The size of Ds is larger than that of Dσ in the fixed σ-modification case
because of the additional term 4σ0M

2
0 . The boundedness of θ̃ implies that

θ, θ̇, ε1 ∈ L∞ and, therefore, property (i) of the unmodified adaptive law in
the ideal case is preserved by the switching σ-modification when η 6= 0 but
η ∈ L∞.

As in the fixed σ-modification case, the switching σ cannot guarantee
the L2 property of ε1, θ̇ in general when η 6= 0. The bound for ε1 in m.s.s.
follows by integrating (8.4.20) to obtain

2
∫ t+T

t
σsθ̃θdτ +

∫ t+T

t
ε21dτ ≤ d2

0T + c1

where c1 = 2 supt≥0[V (t) − V (t + T )], ∀t ≥ 0, T ≥ 0. Because σsθ̃θ ≥ 0 it

follows that
√

σsθ̃θ, ε1 ∈ S(d2
0). From (8.4.21) we have σsθ̃θ ≥ σs|θ|(M0 −

|θ∗|) and, therefore,

σ2
s |θ|2 ≤

(σsθ̃θ)2

(M0 − |θ∗|)2 ≤ cσsθ̃θ
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for some constant c that depends on the bound for σ0|θ|, which implies that
σs|θ| ∈ S(d2

0). Because

|θ̇|2 ≤ 2γ2ε21u
2 + 2γ2σ2

s |θ|2

it follows that |θ̇| ∈ S(d2
0). Hence, the adaptive law with the switching-σ

modification given by (8.4.19) guarantees that

(ii)′ ε1, θ̇ ∈ S(d2
0)

In contrast to the fixed σ-modification, the switching σ preserves the ideal
properties of the adaptive law, i.e., when η disappears ( η = d0 = 0), equation

(8.4.20) implies (because −σsθ̃θ ≤ 0) that ε1 ∈ L2 and
√

σsθ̃θ ∈ L2, which,
in turn, imply that θ̇ ∈ L2. In this case if u̇ ∈ L∞, we can also establish
as in the the ideal case that ε1(t), θ̇(t) → 0 as t → ∞, i.e., the switching
σ does not destroy any of the ideal properties of the unmodified adaptive
law. The only drawback of the switching σ when compared with the fixed
σ is that it requires the knowledge of an upper bound M0 for |θ∗|. If M0 in
(8.4.18) happens not to be an upper bound for |θ∗|, then the adaptive law
(8.4.18) has the same properties and drawbacks as the fixed σ-modification
(see Problem 8.7).

(c) ε1-modification [172]. Another attempt to eliminate the main drawback
of the fixed σ-modification led to the following modification:

w(t) = |ε1|ν0

where ν0 > 0 is a design constant. The adaptive law becomes

θ̇ = γε1u− γ|ε1|ν0θ, ε1 = y − θu

and in terms of the parameter error

˙̃
θ = γε1u− γ|ε1|ν0θ, ε1 = −θ̃u + η (8.4.24)

The logic behind this choice of w is that because in the ideal case ε1 is
guaranteed to converge to zero (when u̇ ∈ L∞), then the leakage term w(t)θ
will go to zero with ε1 when η = 0; therefore, the ideal properties of the
adaptive law (8.4.24) when η = 0 will not be affected by the leakage.
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The time derivative of V (θ̃) = θ̃2

2γ along the solution of (8.4.24) is given
by

V̇ = −ε21 + ε1η − |ε1|ν0θ̃θ ≤ −|ε1|
(
|ε1|+ ν0

θ̃2

2
− ν0

|θ∗|2
2

− d0

)
(8.4.25)

where the inequality is obtained by using ν0θ̃θ ≤ −ν0
θ̃2

2 + ν0
|θ∗|2

2 . It is

clear that for |ε1| + ν0
θ̃2

2 ≥ ν0
|θ∗|2

2 + d0, i.e., for V ≥ V0
4
= 1

γν0
(ν0

|θ∗|2
2 + d0)

we have V̇ ≤ 0, which implies that V and, therefore, θ̃, θ ∈ L∞. Because
ε1 = −θ̃u+η and u ∈ L∞ we also have that ε1 ∈ L∞, which, in turn, implies
that θ̇ ∈ L∞. Hence, property (i) is also guaranteed by the ε1-modification
despite the presence of η 6= 0.

Let us now examine the L2 properties of ε1, θ̇ guaranteed by the unmod-
ified adaptive law (w(t) ≡ 0) when η = 0. We rewrite (8.4.25) as

V̇ ≤ −ε21
2

+
d2

0

2
− |ε1|ν0θ̃

2 − |ε1|ν0θ
∗θ̃ ≤ −ε21

2
− |ε1|ν0θ̃

2

2
+ |ε1|ν0

|θ∗|2
2

+
d2

0

2

by using the inequality −a2 ± ab ≤ −a2

2 + b2

2 . If we repeat the use of the
same inequality we obtain

V̇ ≤ −ε21
4

+
d2

0

2
+ ν2

0

|θ∗|4
4

(8.4.26)

Integrating on both sides of (8.4.26), we establish that ε1 ∈ S(d2
0 + ν2

0).
Because u, θ ∈ L∞, it follows that |θ̇| ≤ c|ε1| for some constant c ≥ 0 and
therefore θ̇ ∈ S(d2

0 + ν2
0). Hence, the adaptive law with the ε1-modification

guarantees that
(ii)′ ε1, θ̇ ∈ S(d2

0 + ν2
0)

which implies that ε1, θ̇ are of order of d0, ν0 in m.s.s.
It is clear from the above analysis that in the absence of the disturbance

i.e., η = 0, V̇ cannot be shown to be negative definite or semidefinite unless
ν0 = 0. The term |ε1|ν0θ̃θ in (8.4.25) may make V̇ positive even when η = 0
and therefore the ideal properties of the unmodified adaptive law cannot
be guaranteed by the adaptive law with the ε1-modification when η = 0
unless ν0 = 0. This indicates that the initial rationale for developing the
ε1-modification is not valid. It is shown in [172], however, that if u is PE,
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then ε1(t) and therefore w(t) = ν0|ε1(t)| do converge to zero as t →∞ when
η(t) ≡ 0, ∀t ≥ 0. Therefore the ideal properties of the adaptive law can be
recovered with the ε1-modification provided u is PE.

Remark 8.4.1

(i) Comparing the three choices for the leakage term w(t), it is clear that
the fixed σ- and ε1-modification require no a priori information about
the plant, whereas the switching-σ requires the design constant M0 to
be larger than the unknown |θ∗|. In contrast to the fixed σ- and ε1-
modifications, however, the switching σ achieves robustness without
having to destroy the ideal properties of the adaptive scheme. Such
ideal properties are also possible for the ε1-modification under a PE
condition[172].

(ii) The leakage −wθ with w(t) ≥ 0 introduces a term in the adaptive law
that has the tendency to drive θ towards θ = 0 when the other term
(i.e., γε1u in the case of (8.4.9)) is small. If θ∗ 6= 0, the leakage term
may drive θ towards zero and possibly further away from the desired
θ∗. If an a priori estimate θ̂∗ of θ∗ is available the leakage term −wθ
may be replaced with the shifted leakage −w(θ − θ̂∗), which shifts the
tendency of θ from zero to θ̂∗, a point that may be closer to θ∗. The
analysis of the adaptive laws with the shifted leakage is very similar to
that of −wθ and is left as an exercise for the reader.

(iii) One of the main drawbacks of the leakage modifications is that the es-
timation error ε1 and θ̇ are only guaranteed to be of the order of the
disturbance and, with the exception of the switching σ-modification, of
the order of the size of the leakage design parameter, in m.s.s. This
means that at steady state, we cannot guarantee that ε1 is of the order
of the modeling error. The m.s.s. bound of ε1 may allow ε1 to exhibit
“bursting,” i.e., ε1 may assume values higher than the order of the mod-
eling error for some finite intervals of time. One way to avoid bursting
is to use PE signals or a dead-zone modification as it will be explained
later on in this chapter
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(iv) The leakage modification may be also derived by modifying the cost
function J(θ) = ε21

2 = (y−θu)2

2 , used in the ideal case, to

J(θ) =
(y − θu)2

2
+ w

θ2

2
(8.4.27)

Using the gradient method, we now obtain

θ̇ = −γ∇J = γε1u− γwθ

which is the same as (8.4.9). The modified cost now penalizes θ in
addition to ε1 which explains why for certain choices of w(t) the drifting
of θ to infinity due to the presence of modeling errors is counteracted.

8.4.2 Parameter Projection

An effective method for eliminating parameter drift and keeping the param-
eter estimates within some a priori defined bounds is to use the gradient pro-
jection method to constrain the parameter estimates to lie inside a bounded
convex set in the parameter space. Let us illustrate the use of projection for
the adaptive law

θ̇ = γε1u, ε1 = y − θu

We like to constrain θ to lie inside the convex bounded set

g(θ)
4
=

{
θ

∣∣∣θ2 ≤ M2
0

}

where M0 ≥ |θ∗|. Applying the gradient projection method, we obtain

˙̃
θ = θ̇ =





γε1u if |θ| < M0

or if |θ| = M0 and θε1u ≤ 0
0 if |θ| = M0 and θε1u > 0

(8.4.28)

ε1 = y − θu = −θ̃u + η

which for |θ(0)| ≤ M0 guarantees that |θ(t)| ≤ M0,∀t ≥ 0. Let us now
analyze the above adaptive law by considering the Lyapunov function

V =
θ̃2

2γ
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whose time derivative V̇ along (8.4.28) is given by

V̇ =





−ε21 + ε1η if |θ| < M0

or if |θ| = M0 and θε1u ≤ 0
0 if |θ| = M0 and θε1u > 0

(8.4.29)

Let us consider the case when V̇ = 0, |θ| = M0 and θε1u > 0. Using the
expression ε1 = −θ̃u + η, we write V̇ = 0 = −ε21 + ε1η− θ̃ε1u. The last term
in the expression of V̇ can be written as

θ̃ε1u = (θ − θ∗)ε1u = M0sgn(θ)ε1u− θ∗ε1u

Therefore, for θε1u > 0 and |θ| = M0 we have

θ̃ε1u = M0|ε1u| − θ∗ε1u ≥ M0|ε1u| − |θ∗||ε1u| ≥ 0

where the last inequality is obtained by using the assumption that M0 ≥ |θ∗|,
which implies that for |θ| = M0 and θε1u > 0 we have θ̃ε1u ≥ 0 and that
V̇ = 0 ≤ −ε21 + ε1η. Therefore, (8.4.29) implies that

V̇ ≤ −ε21 + ε1η ≤ −ε21
2

+
d2

0

2
, ∀t ≥ 0 (8.4.30)

A bound for ε1 in m.s.s. may be obtained by integrating both sides of
(8.4.30) to get

∫ t+T

t
ε21dτ ≤ d2

0T + 2 {V (t)− V (t + T )}

∀t ≥ 0 and any T ≥ 0. Because V ∈ L∞, it follows that ε1 ∈ S(d2
0).

The projection algorithm has very similar properties and the same ad-
vantages and disadvantages as the switching σ-modification. For this reason,
the switching σ-modification has often been referred to as “soft projection.”
It is soft in the sense that it allows |θ(t)| to exceed the bound M0 but it does
not allow |θ(t)| to depart from M0 too much.

8.4.3 Dead Zone

Let us consider the adaptive error equation (8.4.6) i.e.,

˙̃
θ = γε1u, ε1 = −θ̃u + η (8.4.31)
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Figure 8.5 Dead zone functions: (a) discontinuous (b) continuous.

Because supt |η(t)| ≤ d0, it follows that if |ε1| À d0 then the signal θ̃u

is dominant in ε1. If, however, |ε1| < d0 then η may be dominant in ε1.
Therefore small ε1 relative to d0 indicates the possible presence of a large
noise (because of η) to signal (θ̃u) ratio, whereas large ε1 relative to d0

indicates a small noise to signal ratio. Thus, it seems reasonable to update
the parameter estimate θ only when the signal θ̃u in ε1 is large relative to
the disturbance η and switch-off adaptation when ε1 is small relative to the
size of η. This method of adaptation is referred to as dead zone because
of the presence of a zone or interval where θ is constant, i.e., no updating
occurs. The use of a dead zone is illustrated by modifying the adaptive law
θ̇ = γε1u used when η = 0 to

θ̇ = γu(ε1 + g), g =

{
0 if |ε1| ≥ g0

−ε1 if |ε1| < g0
(8.4.32)

ε1 = y − θu

where g0 > 0 is a known strict upper bound for |η(t)|, i.e., g0 > d0 ≥
supt |η(t)|. The function f(ε1) = ε1 + g is known as the dead zone function
and is shown in Figure 8.5 (a).

It follows from (8.4.32) that for small ε1, i.e., |ε1| < g0, we have θ̇ = 0
and no adaptation takes place, whereas for “large” ε1, i.e., |ε1| ≥ g0, we
adapt the same way as if there was no disturbance, i.e., θ̇ = γε1u. Because
of the dead zone, θ̇ in (8.4.32) is a discontinuous function which may give
rise to problems related to existence and uniqueness of solutions as well as
to computational problems at the switching surface [191]. One way to avoid
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these problems is to use the continuous dead zone shown in Figure 8.5(b).
Using the continuous dead-zone function from Figure 8.5 (b), the adap-

tive law (8.4.32) becomes

θ̇ = γu(ε1 + g), g =





g0 if ε1 < −g0

−g0 if ε1 > g0

−ε1 if |ε1| ≤ g0

(8.4.33)

which together with
ε1 = −θ̃u + η

describe the stability properties of the modified adaptive law. We analyze
(8.4.33) by considering the Lyapunov function

V =
θ̃2

2γ

whose time derivative V̇ along the trajectory of (8.4.33) is given by

V̇ = θ̃u(ε1 + g) = −(ε1 − η)(ε1 + g) (8.4.34)

Now,

(ε1 − η)(ε1 + g) =





(ε1 − η)(ε1 + g0) > 0 if ε1 < −g0 < −|η|
(ε1 − η)(ε1 − g0) > 0 if ε1 > g0 > |η|
0 if |ε1| ≤ g0

i.e., (ε1 − η)(ε1 + g) ≥ 0 ∀t ≥ 0 and, therefore,

V̇ = −(ε1 − η)(ε1 + g) ≤ 0

which implies that V, θ̃, θ ∈ L∞ and that
√

(ε1 − η)(ε1 + g) ∈ L2. The
boundedness of θ, u implies that ε1, θ̇ ∈ L∞. Hence, the adaptive law with
the dead zone guarantees the property ε1, θ̇ ∈ L∞ in the presence of nonzero
η ∈ L∞. Let us now examine the L2 properties of ε1, θ̇ that are guaranteed
by the unmodified adaptive law when η = 0. We can verify that

(ε1 + g)2 ≤ (ε1 − η)(ε1 + g)

for each choice of g given by (8.4.33). Since
√

(ε1 − η)(ε1 + g) ∈ L2 it follows
that (ε1 +g) ∈ L2 which implies that θ̇ ∈ L2. Hence, the dead zone preserves
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the L2 property of θ̇ despite the presence of the bounded disturbance η. Let
us now examine the properties of ε1 by rewriting (8.4.34) as

V̇ = −ε21 − ε1g + ε1η + ηg

≤ −ε21 + |ε1|g0 + |ε1|d0 + d0g0

By completing the squares, we obtain

V̇ ≤ −ε21
2

+
(d0 + g0)2

2
+ d0g0

which implies that ε1 ∈ S(d2
0+g2

0). Therefore, our analysis cannot guarantee
that ε1 is in L2 but instead that ε1 is of the order of the disturbance and
design parameter g0 in m.s.s. Furthermore, even when η = 0, i.e., d0 = 0 we
cannot establish that ε1 is in L2 unless we set g0 = 0.

A bound for |ε1| at steady state may be established when u, η are uni-
formly continuous functions of time. The uniform continuity of u, η, together
with ˙̃

θ ∈ L∞, implies that ε1 = −θ̃u + η is uniformly continuous, which, in
turn, implies that ε1 +g is a uniformly continuous function of time. Because
ε1 + g ∈ L2, it follows from Barbălat’s Lemma that |ε1 + g| → 0 as t → ∞
which by the expression for g in (8.4.33) implies that

lim
t→∞ sup

τ≥t
|ε1(τ)| ≤ g0 (8.4.35)

The above bound indicates that at steady state the estimation error ε1 is
of the order of the design parameter g0 which is an upper bound for |η(t)|.
Hence if g0 is designed properly, phenomena such as bursting (i.e., large
errors relative to the level of the disturbance at steady state and over short
intervals of time) that may arise in the case of the leakage modification and
projection will not occur in the case of dead zone.

Another important property of the adaptive law with dead-zone is that
it guarantees parameter convergence, something that cannot be guaranteed
in general by the unmodified adaptive laws when η = 0 unless the input u

is PE. We may establish this property by using two different methods as
follows:

The first method relies on the simplicity of the example and is not ap-
plicable to the higher order case. It uses the property of V = θ̃2

2γ and V̇ ≤ 0
to conclude that V (t) and, therefore, θ̃(t) have a limit as t →∞.
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The second method is applicable to the higher order case as well and
proceeds as follows:

We have
V̇ = −(ε1 − η)(ε1 + g) = −|ε1 − η||ε1 + g| (8.4.36)

where the second equality holds due to the choice of g. Because |ε1 + g| = 0
if |ε1| ≤ g0, it follows from (8.4.36) that

V̇ = −|ε1 − η||ε1 + g| ≤ −|g0 − |η|||ε1 + g| (8.4.37)

Integrating on both sides of (8.4.37), we obtain

inf
t
|g0 − |η(t)||

∫ ∞

0
|ε1 + g|dτ

≤
∫ ∞

0
|ε1 − η||ε1 + g|dτ = V (0)− V∞

Because g0 > supt |η(t)|, it follows that ε1+g ∈ L1. We have | ˙̃θ| ≤ γ|u||ε1+g|
which implies that ˙̃

θ ∈ L1 which in turn implies that

lim
t→∞

∫ t

0

˙̃
θdτ = lim

t→∞ θ̃(t)− θ̃(0)

exists and, therefore, θ(t) converges to some limit θ̄.
The parameter convergence property of the adaptive law with dead zone

is very helpful in analyzing and understanding adaptive controllers incorpo-
rating such adaptive law. The reason is that the initially nonlinear system
that represents the closed-loop adaptive control scheme with dead zone con-
verges to an LTI one as t →∞.

One of the main drawbacks of the dead zone is the assumption that an
upper bound for the modeling error is known a priori. As we point out in
later sections, this assumption becomes more restrictive in the higher order
case. If the bound of the disturbance is under estimated, then the properties
of the adaptive law established above can no longer be guaranteed.

Another drawback of the dead zone is that in the absence of the distur-
bance, i.e., η(t) = 0, we cannot establish that ε1 ∈ L2 and/or that ε1(t) → 0
as t →∞ (when u̇ ∈ L∞) unless we remove the dead-zone, i.e., we set g0 = 0.
Therefore robustness is achieved at the expense of destroying some of the
ideal properties of the adaptive law.
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8.4.4 Dynamic Normalization

In the previous sections, we design several modified adaptive laws to estimate
the parameter θ∗ in the parametric model

y = θ∗u + η (8.4.38)

when u ∈ L∞ and η is an unknown bounded signal that may arise because
of a bounded output disturbance etc.

Let us now extend the results of the previous sections to the case where
u is not necessarily bounded and η is either bounded or is bounded from
above by |u| i.e., |η| ≤ c1|u| + c2 for some constants c1, c2 ≥ 0. In this case
a normalizing signal such as m2 = 1 + u2 may be used to rewrite (8.4.38) as

ȳ = θ∗ū + η̄

where x̄
4
= x

m denotes the normalized value of x. Since with m2 = 1 + u2 we
have ȳ, ū, η̄ ∈ L∞, the same procedure as in the previous sections may be
used to develop adaptive laws that are robust with respect to the bounded
modeling error term η̄. The design details and analysis of these adaptive
laws is left as an exercise for the reader.

Our objective in this section is to go a step further and consider the case
where η in (8.4.38) is not necessarily bounded from above by |u| but it is
related to u through some transfer function. Such a case may arise in the
on-line estimation problem of the constant θ∗ in the plant equation

y = θ∗(1 + ∆m(s))u + d (8.4.39)

where ∆m(s) is an unknown multiplicative perturbation that is strictly
proper and stable and d is an unknown bounded disturbance. Equation
(8.4.39) may be rewritten in the form of (8.4.38), i.e.,

y = θ∗u + η, η = θ∗∆m(s)u + d (8.4.40)

To apply the procedure of the previous sections to (8.4.40), we need to
find a normalizing signal m that allow us to rewrite (8.4.40) as

ȳ = θ∗ū + η̄ (8.4.41)
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where ȳ
4
= y

m , ū
4
= u

m , η̄
4
= η

m and ȳ, ū, η̄ ∈ L∞. Because of ∆m(s) in (8.4.40),
the normalizing signal given by m2 = 1 + u2 is not guaranteed to bound η

from above. A new choice for m is found by using the properties of the L2δ

norm presented in Chapter 3 to obtain the inequality

|η(t)| ≤ |θ∗|‖∆m(s)‖2δ‖ut‖2δ + |d(t)| (8.4.42)

that holds for any finite δ ≥ 0 provided ∆m(s) is strictly proper and analytic
in Re[s] ≥ − δ

2 . If we now assume that in addition to being strictly proper,
∆m(s) satisfies the following assumption:

A1. ∆m(s) is analytic in Re[s] ≥ − δ0
2 for some known δ0 > 0

then we can rewrite (8.4.42) as

|η(t)| ≤ µ0‖ut‖2δ0 + d0 (8.4.43)

where µ0 = |θ∗|‖∆m(s)‖2δ0 and d0 is an upper bound for |d(t)|. Because
µ0, d0 are constants, inequality (8.4.43) motivates the normalizing signal m

given by
m2 = 1 + u2 + ‖ut‖2

2δ0 (8.4.44)

that bounds both u, η from above. It may be generated by the equations

ṁs = −δ0ms + u2, ms(0) = 0

n2
s = ms, m2 = 1 + u2 + n2

s (8.4.45)

We refer to ms = n2
s as the dynamic normalizing signal in order to distinguish

it from the static one given by m2 = 1 + u2.
Because m bounds u, η in (8.4.40), we can generate a wide class of adap-

tive laws for the now bounded modeling error term η̄ = η
m by following the

procedure of the previous sections. By considering the normalized equation
(8.4.41) with m given by (8.4.45) and using the results of Section 8.3.1, we
obtain

θ̇ = γε̄1ū− γwθ (8.4.46)

where
ε̄1 = ȳ − ˆ̄y =

y − ŷ

m
, ŷ = θu

and w is the leakage term to be chosen.
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As in the ideal case considered in Chapter 4, we can express (8.4.46) in
terms of the normalized estimation error

ε =
y − ŷ

m2
, ŷ = θu

to obtain
θ̇ = γεu− γwθ (8.4.47)

or we can develop (8.4.47) directly by using the gradient method to minimize

J(θ) =
ε2m2

2
+

wθ2

2
=

(y − θu)2

2m2
+

wθ2

2

with respect to θ.
Let us now summarize the main equations of the adaptive law (8.4.47)

for the parametric model y = θ∗u + η given by (8.4.40). We have

θ̇ = γεu− γwθ, ε =
y − ŷ

m2
, ŷ = θu

m2 = 1 + u2 + n2
s, ms = n2

s (8.4.48)

ṁs = −δ0ms + u2, ms(0) = 0

The analysis of (8.4.48) for the various choices of the leakage term w(t) is
very similar to that presented in Section 8.4.1. As a demonstration, we
analyze (8.4.48) for the fixed σ-modification, i.e., w(t) = σ. From (8.4.40),
(8.4.48) we obtain the error equations

ε =
−θ̃u + η

m2
,

˙̃
θ = γεu− γσθ (8.4.49)

where θ̃
4
= θ − θ∗. We consider the Lyapunov function

V =
θ̃2

2γ

whose time derivative V̇ along the solution of (8.4.49) is given by

V̇ = εθ̃u− σθ̃θ = −ε2m2 + εη − σθ̃θ

By completing the squares, we obtain

V̇ ≤ −ε2m2

2
− σθ̃2

2
+

η2

2m2
+

σ|θ∗|2
2



574 CHAPTER 8. ROBUST ADAPTIVE LAWS

Because η
m ∈ L∞ it follows that V, θ̃ ∈ L∞ and εm ∈ S( η2

m2 + σ). Because
˙̃
θ = γεm u

m − γσθ and u
m ∈ L∞, we can establish as in Section 8.4.1 that

˙̃
θ ∈ S( η2

m2 + σ). The boundedness of θ̃, u
m , η

m also implies by (8.4.49) that
ε, εm, θ̇ ∈ L∞. The properties of (8.4.48) with w = σ are therefore given by

• (i) ε, εm, θ, θ̇ ∈ L∞
• (ii) ε, εm, θ̇ ∈ S( η2

m2 + σ)

In a similar manner, other choices for w(t) and modifications, such as
dead zone and projections, may be used together with the normalizing signal
(8.4.45) to design adaptive laws that are robust with respect to the dynamic
uncertainty η.

The use of dynamic normalization was first introduced in [48] to handle
the effects of bounded disturbances which could also be handled by static
normalization. The use of dynamic normalization in dealing with dynamic
uncertainties in adaptive control was first pointed out in [193] where it was
used to develop some of the first global results in robust adaptive control for
discrete-time plants. The continuous-time version of the dynamic normal-
ization was first used in [91, 113] to design robust MRAC schemes for plants
with additive and multiplicative plant uncertainties. Following the work of
[91, 113, 193], a wide class of robust adaptive laws incorporating dynamic
normalizations are developed for both continuous- and discrete-time plants.

Remark 8.4.2 The leakage, projection, and dead-zone modifications are
not necessary for signal boundedness when u in the parametric model
(8.4.1) is bounded and PE and η ∈ L∞, as indicated in Section 8.3.1.
The PE property guarantees exponential stability in the absence of
modeling errors which in turn guarantees bounded states in the pres-
ence of bounded modeling error inputs provided the modeling error
term doesnot destroy the PE property of the input. In this case the
steady state bounds for the parameter and estimation error are of the
order of the modeling error, which implies that phenomena, such as
bursting, where the estimation error assumes values larger than the
order of the modeling error at steady state, are not present. The use
of PE signals to improve robustness and performance is discussed in



8.5. ROBUST ADAPTIVE LAWS 575

subsequent sections. When u, η are not necessarily bounded, the above
remarks hold provided u

m ∈ L∞ is PE.

8.5 Robust Adaptive Laws

In Chapter 4 we developed a wide class of adaptive laws for estimating
on-line a constant parameter vector θ∗ in certain plant parametric models.
The vector θ∗ could contain the unknown coefficients of the plant transfer
function or the coefficients of various other plant parameterizations. The
adaptive laws of Chapter 4 are combined with control laws in Chapters
6, 7 to form adaptive control schemes that are shown to meet the control
objectives for the plant model under consideration.

A crucial assumption made in the design and analysis of the adaptive
schemes of Chapters 4 to 7 is that the plant model is an ideal one, i.e., it
is free of disturbances and modeling errors and the plant parameters are
constant for all time.

The simple examples of Section 8.3 demonstrate that the stability prop-
erties of the adaptive schemes developed in Chapters 4 to 7 can no longer
be guaranteed in the presence of bounded disturbances, unmodeled plant
dynamics and parameter variations. The main cause of possible instabili-
ties in the presence of modeling errors is the adaptive law that makes the
overall adaptive scheme time varying and nonlinear. As demonstrated in
Section 8.4 using a simple example, the destabilizing effects of bounded dis-
turbances and of a class of dynamic uncertainties may be counteracted by
using simple modifications that involve leakage, dead-zone, projection, and
dynamic normalization. In this section we extend the results of Section 8.4
to a general class of parametric models with modeling errors that may arise
in the on-line parameter estimation problem of a wide class of plants.

We start with the following section where we develop several parametric
models with modeling errors that are used in subsequent sections to develop
adaptive laws that are robust with respect to uncertainties. We refer to such
adaptive laws as robust adaptive laws.
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8.5.1 Parametric Models with Modeling Error

Linear Parametric Models

Let us start with the plant

y = G0(s)(1 + ∆m(s))u + d (8.5.1)

where
G0(s) =

Z(s)
R(s)

(8.5.2)

represents the dominant or modeled part of the plant transfer function with
Z(s) = bn−1s

n−1 + bn−2s
n−2 + . . . + b1s + b0 and R(s) = sn + an−1s

n−1 +
. . . + a1s + a0; ∆m(s) is a multiplicative perturbation and d is a bounded
disturbance.

We would like to express (8.5.1) in the form where the coefficients of
Z(s), R(s) lumped in the vector

θ∗ = [bn−1, bn−2, . . . , b0, an−1, an−2, . . . , a0]>

are separated from signals as done in the ideal case, where ∆m = 0, d = 0,
presented in Section 2.4.1. From (8.5.1) we have

Ry = Zu + Z∆mu + Rd (8.5.3)

As in Section 2.4.1, to avoid the presence of derivatives of signals in the
parametric model, we filter each side of (8.5.3) with 1

Λ(s) , where Λ(s) is a
monic Hurwitz polynomial of degree n, to obtain

R

Λ
y =

Z

Λ
u + ηm

where
ηm =

Z∆m

Λ
u +

R

Λ
d

is the modeling error term because of ∆m, d. If instead of (8.5.1), we consider
a plant with an additive perturbation, i.e.,

y = G0(s)u + ∆a(s)u + d

we obtain
R

Λ
y =

Z

Λ
u + ηa
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where
ηa =

R

Λ
∆au +

R

Λ
d

Similarly, if we consider a plant with stable factor perturbations, i.e.,

y =
N0(s) + ∆1(s)
D0(s) + ∆2(s)

u + d

where
N0(s) =

Z(s)
Λ(s)

, D0(s) =
R(s)
Λ(s)

and N0, D0 are proper stable transfer functions that are coprime, we obtain

R

Λ
y =

Z

Λ
u + ηs

where
ηs = ∆1u−∆2y + (

R

Λ
+ ∆2)d

Therefore, without loss of generality we can consider the plant parameteri-
zation

R

Λ
y =

Z

Λ
u + η (8.5.4)

where
η = ∆y(s)y + ∆u(s)u + d1 (8.5.5)

is the modeling error with ∆y, ∆u being stable transfer functions and d1

being a bounded disturbance and proceed as in the ideal case to obtain a
parametric model that involves θ∗. If we define

z
4
=

sn

Λ(s)
y, φ

4
=

[
α>n−1(s)

Λ(s)
u,−α>n−1(s)

Λ(s)
y

]>

where αi(s)
4
= [si, si−1, . . . , s, 1]>, as in Section 2.4.1, we can rewrite (8.5.4)

in the form
z = θ∗>φ + η (8.5.6)

or in the form
y = θ∗>λ φ + η (8.5.7)

where θ∗>λ = [θ∗>1 , θ∗>2 −λ>]>, θ∗1 = [bn−1, . . . , b0]>, and θ∗2 = [an−1, . . . , a0]>;
λ = [λn−1, . . . , λ0]> is the coefficient vector of Λ(s)−sn = λn−1s

n−1+· · ·+λ0.
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The effect of possible nonzero initial conditions in the overall plant state-
space representation may be also included in (8.5.6), (8.5.7) by following
the same procedure as in the ideal case. It can be shown that the initial
conditions appear as an exponentially decaying to zero term η0, i.e.,

z = θ∗>φ + η + η0

y = θ∗>λ φ + η + η0 (8.5.8)

where η0 is the output of the system

ω̇ = Λcω, ω(0) = ω0

η0 = C>
0 ω

Λc is a stable matrix whose eigenvalues are equal to the poles of ∆m(s) or
∆a(s), or ∆1(s) and ∆2(s) and Λ(s), and the degree of ω is equal to the
order of the overall plant.

The parametric models given by (8.5.6) to (8.5.8) correspond to Param-
eterization 1 in Section 2.4.1. Parameterization 2 developed in the same
section for the plant with η = 0 may be easily extended to the case of η 6= 0
to obtain

y = Wm(s)θ∗>λ ψ + η

z = Wm(s)θ∗>ψ + η (8.5.9)

where Wm(s) is a stable transfer function with relative degree 1 and ψ =
W−1

m (s)φ.
Parametric models (8.5.6), (8.5.7) and (8.5.9) may be used to estimate

on-line the parameter vector θ∗ associated with the dominant part of the
plant characterized by the transfer function G0(s). The only signals available
for measurements in these parametric models are the plant output y and the
signals φ, ψ, and z that can be generated by filtering the plant input u

and output y as in Section 2.4.1. The modeling error term η due to the
unmodeled dynamics and bounded disturbance is unknown, and is to be
treated as an unknown disturbance term that is not necessarily bounded.
If, however, ∆y, ∆u are proper then d1, y, u ∈ L∞ will imply that η ∈ L∞.
The properness of ∆y, ∆u may be established by assuming that G0(s) and
the overall plant transfer function are proper. In fact ∆y, ∆u can be made
strictly proper by filtering each side of (8.5.4) with a first order stable filter
without affecting the form of the parametric models (8.5.6) to (8.5.9).
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Bilinear Parametric Models

Let us now extend the bilinear parametric model of Section 2.4.2 developed
for the ideal plant to the plant that includes a multiplicative perturbation
and a bounded disturbance, i.e., consider the plant

y = G0(s)(1 + ∆m(s))u + d (8.5.10)

where
G0(s) = kp

Zp(s)
Rp(s)

kp is a constant, Rp(s) is monic and of degree n, Zp(s) is monic Hurwitz of
degree m < n and kp, Zp, Rp satisfy the Diophantine equation

RpQ + kpZpP = ZpA (8.5.11)

where
Q(s) = sn−1 + q>αn−2(s), P (s) = p>αn−1(s)

and A(s) is a monic Hurwitz polynomial of degree 2n−1. As in Section 2.4.2,
our objective is to obtain a parameterization of the plant in terms of the
coefficient vectors q, p of Q,P , respectively, by using (8.5.11) to substitute
for Zp(s), Rp(s) in (8.5.10). This parameterization problem appears in direct
MRAC where q, p are the controller parameters that we like to estimate on-
line. Following the procedure of Section 2.4.2, we express (8.5.10) in the
form

Rpy = kpZpu + kpZp∆mu + Rpd

which implies that

QRpy = kpZpQu + kpZpQ∆mu + QRpd (8.5.12)

From (8.5.11) we have QRp = ZpA − kpZpP , which we use in (8.5.12) to
obtain

Zp(A− kpP )y = kpZpQu + kpZpQ∆mu + QRpd

Because Zp(s), A(s) are Hurwitz we can filter both sides of the above equa-
tion with 1/(ZpA) and rearrange the terms to obtain

y = kp
P

A
y + kp

Q

A
u + kp

Q∆m

A
u +

QRp

AZp
d
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Substituting for P (s) = p>αn−1(s), Q(s) = sn−1 + q>αn−2(s), we obtain

y =
Λ(s)
A(s)

kp

[
p>

αn−1(s)
Λ(s)

y + q>
αn−2(s)

Λ(s)
u +

sn−1

Λ(s)
u

]
+ η (8.5.13)

where Λ(s) is a Hurwitz polynomial of degree nλ that satisfies 2n−1 ≥ nλ ≥
n− 1 and

η =
kpQ∆m

A
u +

QRp

AZp
d (8.5.14)

is the modeling error resulting from ∆m, d. We can verify that Q∆m

A ,
QRp

AZp

are strictly proper and biproper respectively with stable poles provided the
overall plant transfer function is strictly proper. From (8.5.13), we obtain
the bilinear parametric model

y = W (s)ρ∗(θ∗>φ + z0) + η (8.5.15)

where ρ∗ = kp,

W (s) =
Λ(s)
A(s)

is a proper transfer function with stable poles and zeros and

θ∗ = [q>, p>]>, φ =

[
α>n−2(s)

Λ(s)
u,

α>n−1(s)
Λ(s)

y

]>
, z0 =

sn−1

Λ(s)
u

If instead of (8.5.10), we use the plant representation with an additive plant
perturbation, we obtain (8.5.15) with

η =
A− kpP

A
(∆au + d)

and in the case of a plant with stable factor perturbations ∆1, ∆2 we obtain
(8.5.15) with

η =
ΛQ

AZp
(∆1u−∆2y) +

ΛQ

AZp

(
Rp

Λ
+ ∆2

)
d

where Λ is now restricted to have degree n. If we assume that the overall
plant transfer function is strictly proper for the various plant representations
with perturbations, then a general form for the modeling error term is

η = ∆uu + ∆yy + d1 (8.5.16)
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where ∆u(s), ∆y(s) are strictly proper with stable poles and d1 is a bounded
disturbance term.

Example 8.5.1 Consider the following plant

y = e−τs b1s + b0

s2 + a1s + a0

1− µs

1 + µs
u

where µ > 0, τ > 0 are small constants. An approximate model of the plant is
obtained by setting µ, τ to zero, i.e.,

y = G0(s)u =
b1s + b0

s2 + a1s + a0
u

Treating G0(s) as the nominal or modeled part of the plant, we can express the
overall plant in terms of G0(s) and a multiplicative plant uncertainty, i.e.,

y =
b1s + b0

s2 + a1s + a0
(1 + ∆m(s))u

where

∆m(s) =
(e−τs − 1)− µs(1 + e−τs)

1 + µs

Let us now obtain a parametric model for the plant in terms of the parameter vector
θ∗ = [b1, b0, a1, a0]>. We have

(s2 + a1s + a0)y = (b1s + b0)u + (b1s + b0)∆m(s)u

i.e.,
s2y = (b1s + b0)u− (a1s + a0)y + (b1s + b0)∆m(s)u

Filtering each side with 1
(s+2)2 we obtain

z = θ∗>φ + η

where

z =
s2

(s + 2)2
y, φ =

[
s

(s + 2)2
u,

1
(s + 2)2

u,− s

(s + 2)2
y,− 1

(s + 2)2
y

]>

η =
(b1s + b0)
(s + 2)2

[(e−τs − 1)− µs(1 + e−τs)]
(1 + µs)

u 5

In the following sections, we use the linear and bilinear parametric models
to design and analyze adaptive laws for estimating the parameter vector θ∗

(and ρ∗) by treating η as an unknown modeling error term of the form given
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by (8.5.16). To avoid repetitions, we will consider the general parametric
models

z = W (s)θ∗>ψ + η (8.5.17)

z = W (s)ρ∗[θ∗>ψ + z0] + η (8.5.18)

η = ∆u(s)u + ∆y(s)y + d1 (8.5.19)

where W (s) is a known proper transfer function with stable poles, z, ψ, and
z0 are signals that can be measured and ∆u,∆y are strictly proper stable
transfer functions, and d1 ∈ L∞.

We will show that the adaptive laws of Chapter 4 developed for the
parametric models (8.5.17), (8.5.18) with η = 0 can be modified to handle
the case where η 6= 0 is of the form (8.5.19).

8.5.2 SPR-Lyapunov Design Approach with Leakage

Let us consider the general parametric model (8.5.17) which we rewrite as

z = W (s)(θ∗>ψ + W−1(s)η)

and express it in the SPR form

z = W (s)L(s)(θ∗>φ + ηs) (8.5.20)

where φ=L−1(s)ψ, ηs =L−1(s)W−1(s)η and L(s) is chosen so that W (s)L(s)
is a proper SPR transfer function and L−1(s) is proper and stable. The
procedure for designing an adaptive law for estimating on-line the constant
vector θ∗ in the presence of the unknown modeling error term

ηs = L−1(s)W−1(s)(∆u(s)u + ∆y(s)y + d1) (8.5.21)

is very similar to that in the ideal case (ηs = 0) presented in Chapter 4. As
in the ideal case, the predicted value ẑ of z based on the estimate θ of θ∗

and the normalized estimation error ε are generated as

ẑ = W (s)L(s)θ>φ, ε = z − ẑ −W (s)L(s)εn2
s (8.5.22)

where m2 = 1 + n2
s is the normalizing signal to be designed. From (8.5.20)

and (8.5.22), we obtain the error equation

ε = WL[−θ̃>φ− εn2
s + ηs] (8.5.23)
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where θ̃
4
= θ− θ∗. Without loss of generality, we assume that WL is strictly

proper and therefore (8.5.23) may assume the following minimal state rep-
resentation

ė = Ace + Bc[−θ̃>φ− εn2
s + ηs]

ε = C>
c e.

Because C>
c (sI−Ac)−1Bc = W (s)L(s) is SPR, the triple (Ac, Bc, Cc) satisfies

the following equations given by the LKY Lemma

PcAc + A>c Pc = −qq> − νcLc

PcBc = Cc

where Pc = P>
c > 0, q is a vector, νc > 0 is a scalar and Lc = L>c > 0. The

adaptive law is now developed by choosing the Lyapunov-like function

V (e, θ̃) =
e>Pce

2
+

θ̃>Γ−1θ̃

2

where Γ = Γ> > 0 is arbitrary, and designing ˙̃
θ = θ̇ so that the properties

of V̇ allow us to conclude boundedness for V and, therefore, e, θ̃. We have

V̇ = −1
2
e>qq>e− νc

2
e>Lce− θ̃>φε− ε2n2

s + εηs + θ̃>Γ−1 ˙̃
θ (8.5.24)

If ηs = 0, we would proceed as in Chapter 4 and choose ˙̃
θ = Γεφ in order to

eliminate the indefinite term −θ̃>φε. Because ηs 6= 0 and ηs is not necessarily
bounded we also have to deal with the indefinite and possibly unbounded
term εηs in addition to the term −θ̃>φε. Our objective is to design the
normalizing signal m2 = 1 + n2

s to take care of the term εηs.
For any constant α ∈ (0, 1) to be specified later, we have

−ε2n2
s + εηs = −ε2n2

s + εηs − αε2 + αε2

= −(1− α)ε2n2
s + αε2 − αε2m2 + εηs

= −(1− α)ε2n2
s + αε2 − α(εm− ηs

2αm
)2 +

η2
s

4αm2

≤ −(1− α)ε2n2
s + αε2 +

η2
s

4αm2

which together with |ε| ≤ |Cc||e| and

−νc

4
e>Lce ≤ −νcλmin

4
(Lc)|e|2 ≤ −νc

4
λmin(Lc)
|Cc|2 ε2
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imply that

V̇ ≤ −λ0|e|2 − (β0 − α)ε2 − (1− α)ε2n2
s +

η2
s

4αm2
− θ̃>φε + θ̃>Γ−1θ̇

where λ0 = νc
4 λmin(Lc), β0 = λ0/|Cc|2. Choosing α = min(1

2 , β0), we obtain

V̇ ≤ −λ0|e|2 − 1
2
ε2n2

s +
η2

s

4αm2
− θ̃>φε + θ̃>Γ−1θ̇

If we now design the normalizing signal m2 = 1 + n2
s so that ηs/m ∈ L∞ (in

addition to φ/m ∈ L∞ required in the ideal case), then the positive term
η2

s/4αm2 is guaranteed to be bounded from above by a finite constant and
can, therefore, be treated as a bounded disturbance.

Design of the Normalizing Signal

The design of m is achieved by considering the modeling error term

ηs = W−1(s)L−1(s)[∆u(s)u + ∆y(s)y + d1]

and the following assumptions:

(A1) W−1(s)L−1(s) is analytic in Re[s] ≥ − δ0
2 for some known δ0 > 0

(A2) ∆u, ∆y are strictly proper and analytic in Re[s] ≥ − δ0
2

Because WL is strictly proper and SPR, it has relative degree 1 which
means that W−1L−1∆u,W−1L−1∆y are proper and at most biproper trans-
fer functions. Hence ηs may be expressed as

ηs = c1u + c2y + ∆1(s)u + ∆2(s)y + d2

where c1 +∆1(s) = W−1(s)L−1(s)∆u(s), c2 +∆2(s) = W−1(s)L−1(s)∆y(s),
d2 = W−1(s)L−1(s)d1 and ∆1, ∆2 are strictly proper. Using the properties
of the L2δ-norm from Chapter 3, we have

|ηs(t)| ≤ c(|u(t)|+ |y(t)|) + ‖∆1(s)‖2δ0‖ut‖2δ0

+‖∆2(s)‖2δ0‖yt‖2δ0 + |d2(t)|
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Because ‖∆1(s)‖2δ0 , ‖∆2(s)‖2δ0 are finite and d2 ∈ L∞, it follows that the
choice

m2 = 1 + n2
s, n2

s = ms + φ>φ + u2 + y2

ṁs = −δ0ms + u2 + y2, ms(0) = 0
(8.5.25)

will guarantee that ηs/m ∈ L∞ and φ/m ∈ L∞.
With the above choice for m, the term η2

s/(4αm2) ∈ L∞ which motivates
the adaptive law

θ̇ = Γεφ− w(t)Γθ (8.5.26)

where Γ = Γ> > 0 is the adaptive gain and w(t) ≥ 0 is a scalar signal to
be designed so that V̇ ≤ 0 whenever V ≥ V0 for some V0 ≥ 0. In view of
(8.5.26), we have

V̇ ≤ −λ0|e|2 − 1
2
ε2n2

s − wθ̃>θ +
η2

s

4αm2
(8.5.27)

which indicates that if w is chosen to make V̇ negative whenever |θ̃| ex-
ceeds a certain bound that depends on η2

s/(4αm2), then we can establish
the existence of V0 ≥ 0 such that V̇ ≤ 0 whenever V ≥ V0.

The following theorems describe the stability properties of the adaptive
law (8.5.26) for different choices of w(t).

Theorem 8.5.1 (Fixed σ Modification) Let

w(t) = σ > 0, ∀t ≥ 0

where σ is a small constant. The adaptive law (8.5.26) guarantees that

(i) θ, ε ∈ L∞
(ii) ε, εns, θ̇ ∈ S(σ + η2

s/m2)

(iii) In addition to properties (i), (ii), if ns, φ, φ̇ ∈ L∞, and φ is PE with level
α0 > 0 that is independent of ηs, then the parameter error θ̃ = θ − θ∗

converges exponentially to the residual set

Dσ =
{
θ̃

∣∣∣|θ̃| ≤ c(σ + η̄)
}

where c ∈ R+ depends on α0 and η̄ = supt |ηs|.
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Proof We have

−σθ̃>θ ≤ −σ(θ̃>θ̃ − |θ̃||θ∗|) ≤ −σ

2
|θ̃|2 +

σ

2
|θ∗|2

and
−σθ̃>θ ≤ −σ

2
|θ|2 +

σ

2
|θ∗|2

Hence, for w = σ, (8.5.27) becomes

V̇ ≤ −λ0|e|2 − ε2n2
s

2
− σ

2
|θ̃|2 + c0

η2
s

m2
+ σ

|θ∗|2
2

(8.5.28)

where c0 = 1
4α or

V̇ ≤ −βV + c0η̄m + σ
|θ∗|2

2
+ β

(
e>Pce

2
+

θ̃>Γ−1θ̃

2

)
− λ0|e|2 − σ

2
|θ̃|2 (8.5.29)

where ηm
4
= supt

η2
s

m2 and β is an arbitrary constant to be chosen.
Because e>Pce + θ̃>Γ−1θ̃ ≤ |e|2λmax(Pc) + |θ̃|2λmax(Γ−1), it follows that for

β = min

[
2λ0

λmax(Pc)
,

σ

λmax(Γ−1)

]

(8.5.29) becomes

V̇ ≤ −βV + c0η̄m + σ
|θ∗|2

2

Hence, for V ≥ V0 = 2c0η̄m+σ|θ∗|2
2β , V̇ ≤ 0 which implies that V ∈ L∞ and therefore

e, ε, θ̃, θ ∈ L∞.
We can also use −σθ̃>θ ≤ −σ

2 |θ|2 + σ
2 |θ∗|2 and rewrite (8.5.27) as

V̇ ≤ −λ0|e|2 − ε2n2
s

2
− σ

2
|θ|2 + c0

η2
s

m2
+

σ

2
|θ∗|2 (8.5.30)

Integrating both sides of (8.5.30), we obtain
∫ t

t0

(
λ0|e|2 +

ε2n2
s

2
+

σ

2
|θ|2

)
dτ ≤

∫ t

t0

(
c0

η2
s

m2
+ σ

|θ∗|2
2

)
dτ + V (t0)− V (t)

∀t ≥ t0 and any t0 ≥ 0. Because V ∈ L∞ and ε = C>c e, it follows that e,ε, εns,√
σ|θ| ∈ S(σ + η2

s/m2). Using the property φ
m ∈ L∞, it follows from (8.5.26) with

w = σ that
|θ̇|2 ≤ c(|εm|2 + σ|θ|2)

for some constant c > 0 and, therefore, ε, εns,
√

σ|θ| ∈ S(σ + η2
s/m2) and θ ∈ L∞

imply that εm and θ̇ ∈ S(σ + η2
s/m2).
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To establish property (iii), we write (8.5.23), (8.5.26) as

ė = Ace + Bc(−θ̃>φ− εn2
s) + Bcηs

˙̃
θ = Γεφ− σΓθ (8.5.31)
ε = C>c e

Consider (8.5.31) as a linear time-varying system with ηs, σθ as inputs and e, θ̃ as
states. In Section 4.8.2, we have shown that the homogeneous part of (8.5.31) with
ηs ≡ 0, σ ≡ 0 is e.s. provided that ns, φ, φ̇ ∈ L∞ and φ is PE. Therefore, the state
transition matrix of the homogeneous part of (8.5.31) satisfies

‖Φ(t, t0)‖ ≤ β1e
−β2(t−t0) (8.5.32)

for any t, t0 > 0 and some constants β1, β2 > 0. Equations (8.5.31) and (8.5.32)
imply that θ̃ satisfies the inequality

|θ̃| ≤ β0e
−β2t + β

′
1

∫ t

0

e−β2(t−τ)(|ηs|+ σ|θ|)dτ (8.5.33)

for some constants β0, β
′
1 > 0, provided that the PE property of φ is not destroyed

by ηs 6= 0. Because θ ∈ L∞, which is established in (i), and φ ∈ L∞, it follows from
(8.5.33) that

|θ̃| ≤ β0e
−β2t +

β
′
1

β2
(η̄ + σ sup

t
|θ|)

where η̄ = supt |ηs(t)|. Hence, (iii) is proved by setting c = β
′
1

β2
max{1, supt |θ|}. 2

Theorem 8.5.2 (Switching σ) Let

w(t) = σs, σs =





0 if |θ| ≤ M0( |θ|
M0

− 1
)q0

σ0 if M0 < |θ| ≤ 2M0

σ0 if |θ| > 2M0

where q0 ≥ 1 is any finite integer and σ0,M0 are design constants with
M0 > |θ∗| and σ0 > 0. Then the adaptive law (8.5.26) guarantees that

(i) θ, ε ∈ L∞
(ii) ε, εns, θ̇ ∈ S(η2

s/m2)

(iii) In the absence of modeling errors, i.e., when ηs = 0, property (ii) can
be replaced with
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(ii′) ε, εns, θ̇ ∈ L2.

(iv) In addition, if ns, φ, φ̇ ∈ L∞ and φ is PE with level α0 > 0 that is
independent of ηs, then

(a) θ̃ converges exponentially to the residual set

Ds =
{
θ̃

∣∣∣ |θ̃| ≤ c(σ0 + η̄)
}

where c ∈ R+ and η̄ = supt |ηs|
(b) There exists a constant η̄∗ > 0 such that for η̄ < η̄∗, the parameter

error θ̃ converges exponentially fast to the residual set

D̄s =
{
θ̃

∣∣∣|θ̃| ≤ cη̄
}

Proof We have

σsθ̃
>θ = σs(|θ|2 − θ∗>θ) ≥ σs|θ|(|θ| −M0 + M0 − |θ∗|)

Because σs(|θ| −M0) ≥ 0 and M0 > |θ∗|, it follows that

σsθ̃
>θ ≥ σs|θ|(|θ| −M0) + σs|θ|(M0 − |θ∗|) ≥ σs|θ|(M0 − |θ∗|) ≥ 0

i.e.,

σs|θ| ≤ σs
θ̃>θ

M0 − |θ∗| (8.5.34)

The inequality (8.5.27) for V̇ with w = σs can be written as

V̇ ≤ −λ0|e|2 − ε2n2
s

2
− σsθ̃

>θ + c0
η2

s

m2
(8.5.35)

Because for |θ| = |θ̃ + θ∗| > 2M0, the term −σsθ̃
>θ = −σ0θ̃

>θ ≤ −σ0
2 |θ̃|2 + σ0

2 |θ∗|2
behaves as the equivalent fixed-σ term, we can follow the same procedure as in the
proof of Theorem 8.5.1 to show the existence of a constant V0 > 0 for which V̇ ≤ 0
whenever V ≥ V0 and conclude that V, e, ε, θ, θ̃ ∈ L∞.

Integrating both sides of (8.5.35) from t0 to t, we obtain that e, ε, εns, εm,√
σsθ̃>θ ∈ S(η2

s/m2). From (8.5.34), it follows that

σ2
s |θ|2 ≤ c2σsθ̃

>θ

for some constant c2 > 0 that depends on the bound for σ0|θ|, and, therefore,

|θ̇|2 ≤ c(|εm|2 + σsθ̃
>θ), for somec ∈ R+
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Because εm,
√

σsθ̃>θ ∈ S(η2
s/m2), it follows that θ̇ ∈ S(η2

s/m2).
The proof for part (iii) follows from (8.5.35) by setting ηs = 0, using −σsθ̃

>θ ≤ 0
and repeating the above calculations for ηs = 0.

The proof of (iv)(a) is almost identical to that of Theorem 8.5.1 (iii) and is
omitted.

To prove (iv)(b), we follow the same arguments used in the proof of Theorem
8.5.1 (iii) to obtain the inequality

|θ̃| ≤ β0e
−β2t + β

′
1

∫ t

0

e−β2(t−τ)(|ηs|+ σs|θ|)dτ

≤ β0e
−β2t +

β
′
1

β2
η̄ + β

′
1

∫ t

0

e−β2(t−τ)σs|θ|dτ (8.5.36)

From (8.5.34), we have

σs|θ| ≤ 1
M − |θ∗|σsθ̃

>θ ≤ 1
M − |θ∗|σs|θ| |θ̃| (8.5.37)

Therefore, using (8.5.37) in (8.5.36), we have

|θ̃| ≤ β0e
−β2t +

β
′
1

β2
η̄ + β

′′
1

∫ t

0

e−β2(t−τ)σs|θ| |θ̃|dτ (8.5.38)

where β
′′
1 = β

′
1

M0−|θ∗| . Applying B-G Lemma III to (8.5.38), it follows that

|θ̃| ≤ (β0 +
β
′
1

β2
η̄)e−β2(t−t0)e

β
′′
1

∫ t

t0
σs|θ|ds

+ β
′
1η̄

∫ t

t0

e−β2(t−τ)e
β
′′ ∫ τ

t
σs|θ|ds

dτ (8.5.39)

Note from (8.5.34), (8.5.35) that
√

σs|θ| ∈ S(η2
s/m2), i.e.,

∫ t

t0

σs|θ|dτ ≤ c1η̄
2(t− t0) + c0

∀t ≥ t0 ≥ 0 and some constants c0, c1. Therefore,

|θ̃| ≤ β̄1e
−ᾱ(t−t0) + β̄2η̄

∫ t

t0

e−ᾱ(t−τ)dτ (8.5.40)

where ᾱ = β2 − β
′′
2 c1η̄

2 and β̄1, β̄2 ≥ 0 are some constants that depend on c0 and
the constants in (8.5.39). Hence, for any η̄ ∈ [0, η̄∗), where η̄∗ =

√
β2

β
′′
1 c1

we have

ᾱ > 0 and (8.5.40) implies that

|θ̃| ≤ β̄2

ᾱ
η̄ + ce−ᾱ(t−t0)

for some constant c and for all t ≥ t0 ≥ 0. Therefore the proof for (iv) is complete.
2
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Theorem 8.5.3 (ε-Modification) Let

w(t) = |εm|ν0

where ν0 > 0 is a design constant. Then the adaptive law (8.5.26) with
w(t) = |εm|ν0 guarantees that

(i) θ, ε ∈ L∞
(ii) ε, εns, θ̇ ∈ S(ν0 + η2

s/m2)

(iii) In addition, if ns, φ, φ̇ ∈ L∞ and φ is PE with level α0 > 0 that is
independent of ηs, then θ̃ converges exponentially to the residual set

Dε
4
=

{
θ̃

∣∣∣|θ̃| ≤ c(ν0 + η̄)
}

where c ∈ R+ and η̄ = supt |ηs|.
Proof Letting w(t) = |εm|ν0 and using (8.5.26) in the equation for V̇ given by
(8.5.24), we obtain

V̇ ≤ −νc
e>Lce

2
− ε2n2

s + |εm| |ηs|
m

− |εm|ν0θ̃
>θ

Because −θ̃>θ ≤ − |θ̃|2
2 + |θ∗|2

2 , it follows that

V̇ ≤ −2λ0|e|2 − ε2n2
s − |εm|

(
ν0
|θ̃|2
2
− |ηs|

m
− |θ∗|2

2
ν0

)
(8.5.41)

where λ0 = νcλmin(Lc)
4 , which implies that for large |e| or large |θ̃|, V̇ ≤ 0. Hence,

by following a similar approach as in the proof of Theorem 8.5.1, we can show the
existence of a constant V0 > 0 such that for V > V0, V̇ ≤ 0, therefore, V , e, ε, θ,
θ̃ ∈ L∞.

Because |e| ≥ |ε|
|Cc| , we can write (8.5.41) as

V̇ ≤ −λ0|e|2 − β0ε
2 − ε2n2

s + α0ε
2(1 + n2

s)− α0ε
2m2 − |εm|ν0

|θ̃|2
2

+|εm| |ηs|
m

+ |εm| |θ
∗|2
2

ν0

by adding and subtracting the term α0ε
2m2 = α0ε

2(1 + n2
s), where β0 = λ0

|Cc|2 and
α0 > 0 is an arbitrary constant. Setting α0 = min(1, β0), we have

V̇ ≤ −λ0|e|2 − α0ε
2m2 + |εm| |ηs|

m
+ |εm| |θ

∗|2
2

ν0
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By completing the squares and using the same approach as in the proof of The-
orem 8.5.1, we can establish that ε, εns, εm ∈ S(ν0 + η2

s/m2), which, together
with |θ̇| ≤ ‖Γ‖|εm| |φ|m + ν0‖Γ‖|εm||θ| ≤ c|εm| for some c ∈ R+, implies that
θ̇ ∈ S(ν0 + η2

s/m2).

The proof of (iii) is very similar to the proof of Theorem 8.5.1 (iii), which can
be completed by treating the terms due to ηs and the ε-modification as bounded
inputs to an e.s. linear time-varying system. 2

Remark 8.5.1 The normalizing signal m given by (8.5.25) involves the dy-
namic term ms and the signals φ, u, y. Under some conditions, the
signals φ and/or u, y do not need to be included in the normalizing
signal. These conditions are explained as follows:

(i) If φ = H(s)[u, y]> where H(s) has strictly proper elements that are
analytic in Re[s] ≥ −δ0/2, then φ

1+ms
∈ L∞ and therefore the term

φ>φ in the expression for n2
s can be dropped.

(ii) If W (s)L(s) is chosen to be biproper, then W−1L−1∆u,W−1L−1∆y

are strictly proper and the terms u2, y2 in the expression for n2
s can be

dropped.

(iii) The parametric model equation (8.5.20) can be filtered on both sides
by a first order filter f0

s+f0
where f0 > δ0

2 to obtain

zf = W (s)L(s)(θ∗>φf + ηf )

where xf
4
= f0

s+f0
x denotes the filtered output of the signal x. In this

case
ηf = L−1(s)W−1(s)

f0

s + f0
[∆u(s)u + ∆y(s)y + d1]

is bounded from above by m2 given by

m2 = 1 + n2
s, n2

s = ms,

ṁs = −δ0ms + u2 + y2, ms(0) = 0

The choice of m is therefore dependent on the expression for the mod-
eling error term η in the parametric model and the properties of the
signal vector φ.



592 CHAPTER 8. ROBUST ADAPTIVE LAWS

Remark 8.5.2 The assumption that the level α0 > 0 of PE of φ is indepen-
dent of ηs is used to guarantee that the modeling error term ηs does
not destroy or weaken the PE property of φ. Therefore, the constant
β2 in the bound for the transition matrix given by (8.5.32) guaranteed
to be greater than zero for ηs ≡ 0 is not affected by ηs 6= 0.

8.5.3 Gradient Algorithms with Leakage

As in the ideal case presented in Chapter 4, the linear parametric model
with modeling error can be rewritten in the form

z = θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d1 (8.5.42)

where φ = W (s)ψ. The estimate ẑ of z and the normalized estimation error
are constructed as

ẑ = θ>φ, ε =
z − ẑ

m2
=

z − θ>φ

m2
(8.5.43)

where θ is the estimate of θ∗ and m2 = 1 + n2
s and ns is the normalizing

signal to be designed. For analysis purposes, we express (8.5.43) in terms of
the parameter error θ̃ = θ − θ∗, i.e.,

ε =
−θ̃>φ + η

m2
(8.5.44)

If we now design m so that
φ
m , η

m ∈ L∞ (A1)
then the signal εm is a reasonable measure of the parameter error θ̃ since
for any piecewise continuous signal φ and η, large εm implies large θ̃.

Design of the Normalizing Signal

Assume that ∆u(s), ∆y(s) are strictly proper and analytic in Re[s] ≥ −δ0/2.
Then, according to Lemma 3.3.2, we have

|η(t)| ≤ ‖∆u(s)‖2δ0‖ut‖2δ0 + ‖∆y(s)‖2δ0‖yt‖2δ0 + ‖d1‖2δ0

which motivates the following normalizing signal

m2 = 1 + n2
s, n2

s = ms + φ>φ

ṁs = −δ0ms + u2 + y2, ms(0) = 0 (8.5.45)
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that satisfies assumption (A1). If φ = H(s)[u, y]> where all the elements of
H(s) are strictly proper and analytic in Re[s] ≥ − δ0

2 , then φ
1+ms

∈ L∞ and
the term φ>φ can be dropped from the expression of n2

s without violating
condition (A1).

If instead of being strictly proper, ∆u, ∆y are biproper, the expression
for n2

s should be changed to

n2
s = 1 + u2 + y2 + φ>φ + ms

to satisfy (A1).
The adaptive laws for estimating θ∗ can now be designed by choosing

appropriate cost functions that we minimize w.r.t. θ using the gradient
method. We start with the instantaneous cost function

J(θ, t) =
ε2m2

2
+

w(t)
2

θ>θ =
(z − θ>φ)2

2m2
+

w(t)
2

θ>θ

where w(t) ≥ 0 is a design function that acts as a weighting coefficient.
Applying the gradient method, we obtain

θ̇ = −Γ∇J = Γεφ− wΓθ (8.5.46)

εm2 = z − θ>φ = −θ̃>φ + η

where Γ = Γ> > 0 is the adaptive gain. The adaptive law (8.5.46) has the
same form as (8.5.26) except that ε and φ are defined differently. The weight-
ing coefficient w(t) in the cost appears as a leakage term in the adaptive law
in exactly the same way as with (8.5.26).

Instead of the instantaneous cost, we can also use the integral cost with
a forgetting factor β > 0 given by

J(θ, t) =
1
2

∫ t

0
e−β(t−τ) [z(τ)− θ>(t)φ(τ)]2

m2(τ)
dτ +

1
2
w(t)θ>(t)θ(t)

where w(t) ≥ 0 is a design weighting function. As in Chapter 4, the appli-
cation of the gradient method yields

θ̇ = −Γ∇J = Γ
∫ t

0
e−β(t−τ) [z(τ)− θ>(t)φ(τ)]

m2(τ)
φ(τ)dτ − Γwθ
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which can be implemented as

θ̇ = −Γ(Rθ + Q)− Γwθ

Ṙ = −βR +
φφ>

m2
, R(0) = 0 (8.5.47)

Q̇ = −βQ− zφ

m2
, Q(0) = 0

where R ∈ Rn×n, Q ∈ Rn×1 and n is the dimension of the vector φ.
The properties of (8.5.46), (8.5.47) for the various choices of w(t) are

given by the following Theorems:

Theorem 8.5.4 The adaptive law (8.5.46) or (8.5.47) guarantees the fol-
lowing properties:

(A) For the fixed-σ modification, i.e., w(t) = σ > 0, we have

(i) ε, εns, θ, θ̇ ∈ L∞
(ii) ε, εns, θ̇ ∈ S(σ + η2/m2)
(iii) If ns, φ ∈ L∞ and φ is PE with level α0 > 0 independent of η,

then θ̃ converges exponentially to the residual set

Dσ =
{
θ̃

∣∣∣|θ̃| ≤ c(σ + η̄)
}

where η̄ = supt
|η(t)|
m(t) and c ≥ 0 is some constant.

(B) For the switching-σ modification, i.e., for w(t) = σs where σs is as
defined in Theorem 8.5.2, we have

(i) ε, εns, θ, θ̇ ∈ L∞
(ii) ε, εns, θ̇ ∈ S(η2/m2)
(iii) In the absence of modeling error, i.e., for η = 0, the proper-

ties of (8.5.46), (8.5.47) are the same as those of the respective
unmodified adaptive laws ( i.e., with w = 0)
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(iv) If ns, φ ∈ L∞ and φ is PE with level α0 > 0 independent of η,
then

(a) θ̃ converges exponentially fast to the residual set

Ds =
{
θ̃

∣∣∣|θ̃| ≤ c(σ0 + η̄)
}

where c ≥ 0 is some constant.

(b) There exists an η̄∗ > 0 such that if η̄ < η̄∗, then θ̃ converges
exponentially to the residual set D̄s =

{
θ̃

∣∣∣|θ̃| ≤ cη̄
}
.

Proof We first consider the gradient algorithm (8.5.46) based on the instantaneous
cost function. The proof of (i), (ii) in (A), (B) can be completed by using the
Lyapunov-like function V (θ̃) = θ̃>Γ−1θ̃

2 and following the same procedure as in the
proof of Theorems 8.5.1, 8.5.2.

To show that the parameter error converges exponentially to a residual set for
persistently exciting φ, we write (8.5.46) as

˙̃
θ = −Γ

φφ>

m2
θ̃ +

Γηφ

m2
− w(t)Γθ (8.5.48)

In Section 4.8.3 (proof of Theorem 4.3.2 (iii)), we have shown that the homogeneous
part of (8.5.48) with η ≡ 0 and w ≡ 0 is e.s., i.e., the state transition matrix of the
homogeneous part of (8.5.48) satisfies

‖Φ(t, t0)‖ ≤ β1e
−β2(t−t0)

for some positive constants β1, β2. Viewing (8.5.48) as a linear time-varying system
with inputs η

m , wθ, and noting that φ
m ∈ L∞ and the PE level α0 of φ is independent

of η, we have

|θ̃| ≤ β0e
−β2t + β

′
1

∫ t

0

e−β2(t−τ)

( |η|
m

+ |w(τ)θ|
)

dτ (8.5.49)

for some constant β
′
1 > 0. For the fixed σ-modification, i.e., w(t) ≡ σ, (A) (iii)

follows immediately from (8.5.49) and θ ∈ L∞. For the switching σ-modification,
we write

|θ̃| ≤ β0e
−β2t +

β
′
1η̄

β2
+ β

′
1

∫ t

0

e−β2(t−τ)|w(τ)θ|dτ (8.5.50)

To obtain a tighter bound for θ̃, we use the property of σs to write (see equation
(8.5.34))

σs|θ| ≤ σs
θ̃>θ

M0 − |θ∗| ≤
1

M0 − |θ∗|σs|θ| |θ̃| (8.5.51)
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Using (8.5.51) in (8.5.50), we have

|θ̃| ≤ β0e
−β2t +

β
′
1η̄

β2
+ β

′′
1

∫ t

0

e−β2(t−τ)σs|θ| |θ̃|dτ (8.5.52)

with β
′′
1 = β

′
1

M0−|θ∗| . Applying B-G Lemma III, we obtain

|θ̃| ≤
(

β0 +
β
′
1

β2
η̄

)
e−β2(t−t0)e

β
′′
1

∫ t

t0
σs|θ|ds

+ β
′
1η̄

∫ t

t0

e−β2(t−τ)e
β
′′
1

∫ t

τ
σs|θ|ds

dτ

(8.5.53)

Now consider the Lyapunov function V (θ̃)
4
= θ̃>Γ−1θ̃

2 . Along the solution of the
adaptive law given by (8.5.46) with w = σs, we have

V̇ = − (θ̃>φ)2

m2
+

η

m

θ̃>φ

m
− σsθ

>θ̃ ≤ cη̄ − σsθ
>θ̃ (8.5.54)

for some constant c ≥ 0, where the second inequality is obtained by using the
properties that θ̃, φ

m ∈ L∞. Equations (8.5.51) and (8.5.54) imply that

σs|θ| ≤ cη̄ − V̇

M0 − |θ∗|
which, together with the boundedness of V , leads to

∫ t

t0

σs|θ|dτ ≤ c1η̄(t− t0) + c0 (8.5.55)

for all t ≥ t0 ≥ 0 and for some constants c1, c0. Using (8.5.55) in (8.5.53), we have

|θ̃| ≤ β̄0e
−ᾱ(t−t0) + β̄1η̄

∫ t

t0

e−ᾱ(t−τ)dτ (8.5.56)

where ᾱ = β2 − β
′′
1 c1η̄. Therefore for η̄∗ = β2

β
′′
1 c1

and η̄ < η̄∗, we have ᾱ > 0 and

|θ̃| ≤ β̄1η̄

ᾱ
+ εt

where εt is an exponentially decaying to zero term and the proof of (B)(iv) is
complete.

The proof for the integral adaptive law (8.5.47) is different and is presented
below. From (8.5.47), we can verify that

Q(t) = −R(t)θ∗ −
∫ t

0

e−β(t−τ) φ(τ)
m2(τ)

η(τ)dτ



8.5. ROBUST ADAPTIVE LAWS 597

and therefore

θ̇ = ˙̃
θ = −ΓRθ̃ + Γ

∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ − Γwθ (8.5.57)

Let us now choose the same V (θ̃) as in the ideal case, i.e.,

V (θ̃) =
θ̃>Γ−1θ̃

2

Then along the solution of (8.5.57), we have

V̇ = −θ̃>Rθ̃ + θ̃>(t)
∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ − wθ̃>θ

≤ −θ̃>Rθ̃ +

(∫ t

0

e−β(t−τ) (θ̃
>(t)φ(τ))2

m2(τ)

) 1
2 (∫ t

0

e−β(t−τ) η2(τ)
m2(τ)

dτ

) 1
2

−wθ̃>θ (8.5.58)

where the inequality is obtained by applying the Schwartz inequality. Using

(θ̃>(t)φ(τ))2 = θ̃>(t)φ(τ)φ>(τ)θ̃(t)

and the definition of the norm ‖ · ‖2δ, we have

V̇ ≤ −θ̃>Rθ̃ + (θ̃>Rθ̃)
1
2

∥∥∥(
η

m
)t

∥∥∥
2β
− wθ̃>θ

Using the inequality −a2 + ab ≤ −a2

2 + b2

2 , we obtain

V̇ ≤ − θ̃>Rθ̃

2
+

1
2

(∥∥∥(
η

m
)t

∥∥∥
2β

)2

− wθ̃>θ (8.5.59)

Let us now consider the following two choices for w:
(A) Fixed σ For w = σ, we have −σθ̃>θ ≤ −σ

2 |θ̃|2 + σ
2 |θ∗|2 and therefore

V̇ ≤ − θ̃>Rθ̃

2
− σ

2
|θ̃|2 +

σ

2
|θ∗|2 +

1
2

(∥∥∥(
η

m
)t

∥∥∥
2β

)2

(8.5.60)

Because R = R> ≥ 0, σ > 0 and
∥∥( η

m )t

∥∥
2β
≤ cm for some constant cm ≥ 0, it

follows that V̇ ≤ 0 whenever V (θ̃) ≥ V0 for some V0 ≥ 0 that depends on η̄, σ and
|θ∗|2. Hence, V, θ̃ ∈ L∞ which from (8.5.44) implies that ε, εm, εns ∈ L∞. Because
R, Q ∈ L∞ and θ ∈ L∞, we also have that θ̇ ∈ L∞.
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Integrating on both sides of (8.5.60), we obtain

1
2

∫ t

t0

(θ̃>Rθ̃ + σ|θ̃|2)dτ ≤ V (t0)− V (t) +
1
2

∫ t

t0

σ|θ∗|2dτ

+
1
2

∫ t

t0

∫ τ

0

e−β(τ−s) η2(s)
m2(s)

dsdτ

By interchanging the order of the double integration, i.e., using the identity
∫ t

t0

∫ τ

0

f(τ)g(s)dsdτ =
∫ t

t0

∫ t

s

f(τ)g(s)dτds +
∫ t0

0

∫ t

t0

f(τ)g(s)dτds

we establish that
∫ t

t0

∫ τ

0

e−β(τ−s) η2(s)
m2(s)

dsdτ ≤ 1
β

∫ t

t0

η2

m2
dτ +

c

β2
(8.5.61)

where c = supt
η2(t)
m2(t) , which together with V ∈ L∞ imply that

R
1
2 θ̃,

√
σ|θ̃| ∈ S(σ + η2/m2)

It can also be shown using the inequality −σθ̃>θ ≤ −σ
2 |θ|2 + σ

2 |θ∗|2 that
√

σ|θ| ∈
S(σ + η2/m2). To examine the properties of ε, εns we proceed as follows: We have

d

dt
θ̃>Rθ̃ = 2θ̃>R

˙̃
θ + θ̃>Ṙθ̃

= −2θ̃>RΓRθ̃ + 2θ̃>RΓ
∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ

−2σθ̃>RΓθ − βθ̃>Rθ̃ +
(θ̃>φ)2

m2

where the second equality is obtained by using (8.5.57) with w = σ and the expres-
sion for Ṙ given by (8.5.47). Because ε = −θ̃>φ+η

m2 , it follows that

d

dt
θ̃>Rθ̃ = −2θ̃>RΓRθ̃ + 2θ̃>RΓ

∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ

−2σθ̃>RΓθ − βθ̃>Rθ̃ + (εm− η

m
)2

Using (εm− η
m )2 ≥ ε2m2

2 − η2

m2 , we obtain the inequality

ε2m2

2
≤ d

dt
θ̃>Rθ̃ + 2θ̃>RΓRθ̃ − 2θ̃>RΓ

∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ

+ 2σθ̃>RΓθ + βθ̃>Rθ̃ +
η2

m2
(8.5.62)
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Noting that

2
∣∣∣∣θ̃>RΓ

∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ

∣∣∣∣

≤ |θ̃>RΓ|2 +
∫ t

0

e−β(t−τ) |φ(τ)|2
m2(τ)

dτ

∫ t

0

e−β(t−τ) η2(τ)
m2(τ)

dτ

where the last inequality is obtained by using 2ab ≤ a2 + b2 and the Schwartz
inequality, it follows from (8.5.62) that

ε2m2

2
≤ d

dt
θ̃>Rθ̃ + 2θ̃>RΓRθ̃ + 2σθ̃>RΓθ + βθ̃>Rθ̃

+ |θ̃>RΓ)|2 +
∫ t

0

e−β(t−τ) |φ(τ)|2
m2(τ)

dτ

∫ t

0

e−β(t−τ) η2(τ)
m2(τ)

dτ +
η2

m2

Because R
1
2 θ̃,

√
σ|θ| ∈ S(σ + η2/m2) and φ

m , θ, R ∈ L∞, it follows from the above
inequality that ε, εns, εm ∈ S(σ + η2/m2). Now from (8.5.57) with w = σ we have

|θ̇| ≤ ‖ΓR
1
2 ‖|R 1

2 θ̃|+ σ‖Γ‖|θ|

+‖Γ‖
(∫ t

0

e−β(t−τ) |φ(τ)|2
m2(τ)

dτ

) 1
2

(∫ t

0

e−β(t−τ) η2(τ)
m2(τ)

dτ

) 1
2

which can be used to show that θ̇ ∈ S(σ + η2/m2) by performing similar manipu-
lations as in (8.5.61) and using

√
σ|θ| ∈ S(σ + η2/m2).

To establish the parameter error convergence properties, we write (8.5.57) with
w = σ as

˙̃
θ = −ΓR(t)θ̃ + Γ

∫ t

0

e−β(t−τ) φη

m2
dτ − Γσθ (8.5.63)

In Section 4.8.4, we have shown that the homogeneous part of (8.5.63), i.e., ˙̃
θ =

−ΓR(t)θ̃ is e.s. provided that φ is PE. Noting that
∣∣∣
∫ t

0
e−β(t−τ) φη

m2 dτ
∣∣∣ ≤ cη̄ for some

constant c ≥ 0, the rest of the proof is completed by following the same procedure
as in the proof of Theorem 8.5.1 (iii).

(B) Switching σ For w(t) = σs we have, as shown in the proof of Theorem 8.5.2,
that

σsθ̃
>θ ≥ σs|θ|(M0 − |θ∗|) ≥ 0, i.e., σs|θ| ≤ σs

θ̃>θ

M0 − |θ∗| (8.5.64)

and for |θ| = |θ̃ + θ∗| > 2M0 we have

−σsθ̃
>θ ≤ −σ0

2
|θ̃|2 +

σ0

2
|θ∗|2
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Furthermore, the inequality (8.5.59) with w(t) = σs can be written as

V̇ ≤ − θ̃>Rθ̃

2
+

1
2

(∥∥∥(
η

m
)t

∥∥∥
2β

)2

− σsθ̃
>θ (8.5.65)

Following the same approach as the one used in the proof of part (A), we can
show that V̇ < 0 for V > V0 and for some V0 > 0, i.e., V ∈ L∞ which implies that
ε, θ, εns ∈ L∞. Integrating on both sides of (8.5.65), we obtain that R

1
2 θ̃,

√
σsθ̃>θ ∈

S(η2/m2). Proceeding as in the proof of part (A) and making use of (8.5.64), we
show that ε, εns ∈ S(η2/m2). Because

σ2
s |θ|2 ≤ c1σsθ̃

>θ

where c1 ∈ R+ depends on the bound for σ0|θ|, we can follow the same procedure
as in part (A) to show that θ̇ ∈ S(η2/m2). Hence, the proof for (i), (ii) of part (B)
is complete.

The proof of part (B) (iii) follows directly by setting η = 0 and repeating the
same steps.

The proof of part (B) (iv) is completed by using similar arguments as in the
case of part (A) (iii) as follows: From (8.5.57), we have

˙̃
θ = −ΓR(t)θ̃ + Γ

∫ t

0

e−β(t−τ) φη

m2
dτ − Γwθ, w = σs (8.5.66)

In Section 4.8.4, we have proved that the homogeneous part of (8.5.66) is e.s. if
φ ∈ L∞ and φ is PE. Therefore, we can treat (8.5.66) as an exponentially stable
linear time-varying system with inputs σsθ,

∫ t

0
e−β(t−τ) φη

m2 dτ . Because |η|
m ≤ η̄ and

φ
m ∈ L∞, we have ∣∣∣∣

∫ t

0

e−β(t−τ) φη

m2
dτ

∣∣∣∣ ≤ cη̄

for some constant c ≥ 0. Therefore, the rest of the parameter convergence proof
can be completed by following exactly the same steps as in the proof of part (A)
(iii). 2

ε-Modification

Another choice for w(t) in the adaptive law (8.5.46) is

w(t) = |εm|ν0

where ν0 > 0 is a design constant. For the adaptive law (8.5.47), however,
the ε-modification takes a different form and is given by

w(t) = ν0‖ε(t, ·)m(·)t‖2β
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where

ε(t, τ)
4
=

z(τ)− θ>(t)φ(τ)
m2(τ)

, t ≥ τ

and

‖ε(t, ·)m(·)‖2
2β =

∫ t

0
e−β(t−τ)ε2(t, τ)m2(τ)dτ

We can verify that this choice of w(t) may be implemented as

w(t) = (r0 + 2θ>Q + θ>Rθ)
1
2 ν0

ṙ0 = −βr0 +
z2

m2
, r0(0) = 0 (8.5.67)

The stability properties of the adaptive laws with the ε-modification are
given by the following theorem.

Theorem 8.5.5 Consider the adaptive law (8.5.46) with w = |εm|ν0 and
the adaptive law (8.5.47) with w(t) = ν0‖ε(t, ·)m(·)‖2β. Both adaptive laws
guarantee that

(i) ε, εns, θ, θ̇ ∈ L∞.
(ii) ε, εns, θ̇ ∈ S(ν0 + η2/m2).
(iii) If ns, φ ∈ L∞ and φ is PE with level α0 > 0 that is independent of η,

then θ̃ converges exponentially fast to the residual set

Dε =
{
θ̃

∣∣∣|θ̃| ≤ c(ν0 + η̄)
}

where c ≥ 0 and η̄ = supt
|η|
m .

Proof The proof of (i) and (ii) for the adaptive law (8.5.46) with w(t) = ν0|εm|
follows directly from that of Theorem 8.5.3 by using the Lyapunov-like function
V = θ̃>Γ−1θ̃

2 . The time derivative V̇ of V = θ̃>Γ−1θ̃
2 along the solution of (8.5.47)

with w(t) = ν0‖ε(t, ·)m(·)‖2β becomes

V̇ = −θ̃>[Rθ + Q]− wθ̃>θ

= −θ̃>(t)
[∫ t

0

e−β(t−τ) φ(τ)[θ>(t)φ(τ)− z(τ)]
m2(τ)

dτ

]

−‖ε(t, ·)m(·)‖2β ν0θ̃
>θ



602 CHAPTER 8. ROBUST ADAPTIVE LAWS

Using ε(t, τ)m2(τ) = z(τ)− θ>(t)φ(τ) = −θ̃>(t)φ(τ) + η(τ) we have

V̇ = −
∫ t

0

e−β(t−τ)ε(t, τ)[ε(t, τ)m2(τ)− η(τ)]dτ − ‖ε(t, ·)m(·)‖2β ν0θ̃
>θ

≤ −
(
‖ε(t, ·)m(·)‖2β

)2

+ ‖ε(t, ·)m(·)‖2β

∥∥∥(
η

m
)t

∥∥∥
2β
− ‖ε(t, ·)m(·)‖2β ν0θ̃

>θ

= −‖ε(t, ·)m(·)‖2β

[
‖ε(t, ·)m(·)‖2β −

∥∥∥(
η

m
)t

∥∥∥
2β

+ ν0θ̃
>θ

]

where the second term in the inequality is obtained by using the Schwartz inequality.
Using−θ̃>θ ≤ − |θ̃|2

2 + |θ∗|2
2 and the same arguments as in the proof of Theorem 8.5.3,

we establish that V, ε, εns, θ, θ̇ ∈ L∞. From (8.5.59) and w(t) = ν0‖ε(t, ·)m(·)‖2β ,
we have

V̇ ≤ − θ̃>Rθ̃

2
+

1
2

(∥∥∥(
η

m
)t

∥∥∥
2β

)2

− ‖(ε(t, ·)m(·))t‖2β ν0θ̃
>θ

≤ − θ̃>Rθ̃

2
+

1
2

(∥∥∥(
η

m
)t

∥∥∥
2β

)2

− ‖(ε(t, ·)m(·))t‖2β ν0(
|θ̃|2
2
− |θ∗|2

2
)

Integrating on both sides of the above inequality and using the boundedness of V ,

εm and (8.5.61) we can establish that R
1
2 θ̃,

√
ν0

(
‖(ε(t, τ)m(τ))t‖2β

) 1
2 |θ̃| ∈ S(ν0 +

η2/m2). Following the same steps as in the proof of Theorem 8.5.3, we can conclude
that ε, εns, θ̇ ∈ S(ν0 + η2/m2) and the proof of (i), (ii) is complete.

Because εm, ‖ε(t, ·)m(·)t‖2β ∈ L∞, the proof of part (iii) can be completed by
repeating the same arguments as in the proof of (A) (iii) and (B) (iv) of Theo-
rem 8.5.4 for the σ-modification. 2

8.5.4 Least-Squares with Leakage

The least-squares algorithms with leakage follow directly from Chapter 4 by
considering the cost function

J(θ, t) =
∫ t

0
e−β(t−τ)

{
(z(τ)− θ>(t)φ(τ))2

2m2(τ)
+ w(τ)θ>(t)θ(τ)

}
dτ

+
1
2
e−βt(θ − θ0)>Q0(θ − θ0) (8.5.68)

where β ≥ 0 is the forgetting factor, w(t) ≥ 0 is a design weighting function
and m(t) is as designed in Section 8.5.3. Following the same procedure as
in the ideal case of Chapter 4, we obtain

θ̇ = P (εφ− wθ) (8.5.69)
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Ṗ = βP − P
φφ>

m2
P, P (0) = P0 = Q−1

0 (8.5.70)

where P0 = P>
0 > 0 and (8.5.70) can be modified when β = 0 by using

covariance resetting, i.e.,

Ṗ = −P
φφ>

m2
P, P (t+r ) = P0 = ρ0I (8.5.71)

where tr is the time for which λmin(P (t)) ≤ ρ1 for some ρ0 > ρ1 > 0. When
β > 0, (8.5.70) may be modified as

Ṗ =

{
βP − P φφ>

m2 P if ‖P (t)‖ ≤ R0

0 otherwise
(8.5.72)

with ‖P0‖ ≤ R0 for some scalar R0 > 0.
As we have shown in Chapter 4, both modifications for P guarantee that

P, P−1 ∈ L∞ and therefore the stability properties of (8.5.69) with (8.5.71)
or (8.5.72) follow directly from those of the gradient algorithm (8.5.46) given
by Theorems 8.5.4, 8.5.5. These properties can be established for the various
choices of the leakage term w(t) by considering the Lyapunov-like function
V (θ̃) = θ̃>P−1θ̃

2 where P is given by (8.5.71) or (8.5.72) and by following the
same procedure as in the proofs of Theorem 8.5.4 to 8.5.5. The details of
these proofs are left as an exercise for the reader.

8.5.5 Projection

The two crucial techniques that we used in Sections 8.5.2 to 8.5.4 to develop
robust adaptive laws are the dynamic normalization m and leakage. The
normalization guarantees that the normalized modeling error term η/m is
bounded and therefore acts as a bounded input disturbance in the adaptive
law. Since a bounded disturbance may cause parameter drift, the leakage
modification is used to guarantee bounded parameter estimates. Another
effective way to guarantee bounded parameter estimates is to use projec-
tion to constrain the parameter estimates to lie inside some known convex
bounded set in the parameter space that contains the unknown θ∗. Adaptive
laws with projection have already been introduced and analyzed in Chapter
4. In this section, we illustrate the use of projection for a gradient algorithm
that is used to estimate θ∗ in the parametric model (8.5.42):

z = θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d1
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To avoid parameter drift in θ, the estimate of θ∗, we constrain θ to lie
inside a convex bounded set that contains θ∗. As an example, consider the
set

P =
{
θ|g(θ) = θ>θ −M2

0 ≤ 0
}

where M0 is chosen so that M0 ≥ |θ∗|. The adaptive law for θ is obtained
by using the gradient projection method to minimize

J =
(z − θ>φ)2

2m2

subject to θ ∈ P, where m is designed as in the previous sections to guarantee
that φ/m, η/m ∈ L∞.

Following the results of Chapter 4, we obtain

θ̇ =





Γεφ if θ>θ < M2
0

or if θ>θ = M2
0 and (Γεφ)>θ ≤ 0

(I − Γθθ>
θ>Γθ

)Γεφ otherwise
(8.5.73)

where θ(0) is chosen so that θ>(0)θ(0) ≤ M2
0 and ε = z−θ>φ

m2 , Γ = Γ> > 0.
The stability properties of (8.5.73) for estimating θ∗ in (8.5.42) in the

presence of the modeling error term η are given by the following Theorem.

Theorem 8.5.6 The gradient algorithm with projection described by the
equation (8.5.73) and designed for the parametric model (8.5.42) guaran-
tees that

(i) ε, εns, θ, θ̇ ∈ L∞
(ii) ε, εns, θ̇ ∈ S(η2/m2)

(iii) If η = 0 then ε, εns, θ̇ ∈ L2

(iv) If ns, φ ∈ L∞ and φ is PE with level α0 > 0 that is independent of η,
then

(a) θ̃ converges exponentially to the residual set

Dp =
{

θ̃
∣∣∣ |θ̃| ≤ c(f0 + η̄)

}

where η̄ = supt
|η|
m , c ≥ 0 is a constant and f0 ≥ 0 is a design

constant.
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(b) There exists an η̄∗ > 0 such that if η̄ < η̄∗, then θ̃ converges
exponentially fast to the residual set

Dp =
{

θ̃
∣∣∣ |θ̃| ≤ cη̄

}

for some constant c ≥ 0.

Proof As established in Chapter 4, the projection guarantees that |θ(t)|≤M0, ∀t≥0
provided |θ(0)| ≤ M0. Let us choose the Lyapunov-like function

V =
θ̃>Γ−1θ̃

2

Along the trajectory of (8.5.73) we have

V̇ =




−ε2m2 + εη if θ>θ < M2

0

or if θ>θ = M2
0 and (Γεφ)>θ ≤ 0

−ε2m2 + εη − θ̃>θ
θ>Γθ

θ>Γεφ if θ>θ = M2
0 and (Γεφ)>θ > 0

For θ>θ = M2
0 and (Γεφ)>θ = θ>Γεφ > 0, we have sgn

{
θ̃>θθ>Γεφ

θ>Γθ

}
= sgn{θ̃>θ}.

For θ>θ = M2
0 , we have

θ̃>θ = θ>θ − θ∗>θ ≥ M2
0 − |θ∗||θ| = M0(M0 − |θ∗|) ≥ 0

where the last inequality is obtained using the assumption that M0 ≥ |θ∗|. There-
fore, it follows that θ̃>θθ>Γεφ

θ>Γθ
≥ 0 when θ>θ = M2

0 and (Γεφ)>θ = θ>Γεφ > 0.
Hence, the term due to projection can only make V̇ more negative and, therefore,

V̇ = −ε2m2 + εη ≤ −ε2m2

2
+

η2

m2

Because V is bounded due to θ ∈ L∞ which is guaranteed by the projection, it
follows that εm ∈ S(η2/m2) which implies that ε, εns ∈ S(η2/m2). From θ̃ ∈ L∞
and φ/m, η/m ∈ L∞, we have ε, εns ∈ L∞. Now for θ>θ = M2

0 we have ‖Γθθ>‖
θ>Γθ

≤ c
for some constant c ≥ 0 which implies that

|θ̇| ≤ c|εφ| ≤ c|εm|

Hence, θ̇ ∈ S(η2/m2) and the proof of (i) and (ii) is complete. The proof of part
(iii) follows by setting η = 0, and it has already been established in Chapter 4.

The proof for parameter error convergence is completed as follows: Define the
function

f
4
=

{
θ>Γεφ
θ>Γθ

if θ>θ = M2
0 and (Γεφ)>θ > 0

0 otherwise
(8.5.74)
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It is clear from the analysis above that f(t) ≥ 0 ∀t ≥ 0. Then, (8.5.73) may be
written as

θ̇ = Γεφ− Γfθ. (8.5.75)

We can establish that fθ̃>θ has very similar properties as σsθ̃
>θ, i.e.,

f |θ̃| |θ| ≥ fθ̃>θ ≥ f |θ|(M0 − |θ∗|), f ≥ 0

and |f(t)| ≤ f0 ∀t ≥ 0 for some constant f0 ≥ 0. Therefore the proof of (iv) (a),
(b) can be completed by following exactly the same procedure as in the proof of
Theorem 8.5.4 (B) illustrated by equations (8.5.48) to (8.5.56). 2

Similar results may be obtained for the SPR-Lyapunov type adaptive
laws and least-squares by using projection to constrain the estimated pa-
rameters to remain inside a bounded convex set, as shown in Chapter 4.

8.5.6 Dead Zone

Let us consider the normalized estimation error

ε =
z − θ>φ

m2
=
−θ̃>φ + η

m2
(8.5.76)

for the parametric model

z = θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d1

The signal ε is used to “drive” the adaptive law in the case of the gradient
and least-squares algorithms. It is a measure of the parameter error θ̃, which
is present in the signal θ̃>φ, and of the modeling error η. When η = 0 and
θ̃ = 0 we have ε = 0 and no adaptation takes place. Because η

m , φ
m ∈ L∞,

large εm implies that θ̃>φ
m is large which in turn implies that θ̃ is large.

In this case, the effect of the modeling error η is small and the parameter
estimates driven by ε move in a direction which reduces θ̃. When εm is small,
however, the effect of η may be more dominant than that of the signal θ̃>φ

and the parameter estimates may be driven in a direction dictated mostly
by η. The principal idea behind the dead zone is to monitor the size of the
estimation error and adapt only when the estimation error is large relative
to the modeling error η, as shown below:
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Figure 8.6 Normalized dead zone functions: (a) discontinuous; (b) con-
tinuous.

We first consider the gradient algorithm for the linear parametric model
(8.5.42). We consider the same cost function as in the ideal case, i.e.,

J(θ, t) =
ε2m2

2

and write

θ̇ =

{
−Γ∇J(θ) if |εm| > g0 > |η|

m
0 otherwise

(8.5.77)

In other words we move in the direction of the steepest descent only when the
estimation error is large relative to the modeling error, i.e., when |εm| > g0,
and switch adaptation off when εm is small, i.e., |εm| ≤ g0. In view of
(8.5.77) we have

θ̇ = Γφ(ε + g), g =

{
0 if |εm| > g0

−ε if |εm| ≤ g0
(8.5.78)

To avoid any implementation problems which may arise due to the disconti-
nuity in (8.5.78), the dead zone function is made continuous as follows:

θ̇ = Γφ(ε + g), g =





g0

m if εm < −g0

−g0

m if εm > g0

−ε if |εm| ≤ g0

(8.5.79)

The continuous and discontinuous dead zone functions are shown in Fig-
ure 8.6(a, b). Because the size of the dead zone depends on m, this dead
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zone function is often referred to as the variable or relative dead zone. Sim-
ilarly the least-squares algorithm with the dead zone becomes

θ̇ = Pφ(ε + g) (8.5.80)

where ε, g are as defined in (8.5.79) and P is given by either (8.5.71) or
(8.5.72).

The dead zone modification can also be incorporated in the integral adap-
tive law (8.5.47). The principal idea behind the dead zone remains the same
as before, i.e., shut off adaptation when the normalized estimation error is
small relative to the modeling error. However, for the integral adaptive law,
the shut-off process is no longer based on a pointwise-in-time comparison of
the normalized estimation error and the a priori bound on the normalized
modeling error. Instead, the decision to shut off adaptation is based on the
comparison of the L2δ norms of certain signals as shown below:

We consider the same integral cost

J(θ, t) =
1
2

∫ t

0
e−β(t−τ) [z(τ)− θ>(t)φ(τ)]2

m2(τ)
dτ

as in the ideal case and write

θ̇ =

{
−Γ∇J(θ) if ‖ε(t, ·)m(·)‖2β > g0 ≥ supt ‖( η

m)t‖2β + ν
0 otherwise

(8.5.81)

where β > 0 is the forgetting factor, ν > 0 is a small design constant,

ε(t, τ)
4
=

z(τ)− θ>(t)φ(τ)
m2(τ)

and ‖ε(t, ·)m(·)‖2β
4
= [

∫ t
0 e−β(t−τ)ε2(t, τ)m2(τ)dτ ]1/2 is implemented as

‖ε(t, ·)m(·)‖2β = (r0 + 2θ>Q + θ>Rθ)1/2

ṙ0 = −βr0 + z2

m2 , r0(0) = 0
(8.5.82)

where Q,R are defined in the integral adaptive law given by (8.5.47).
In view of (8.5.81) we have

θ̇ = −Γ(Rθ + Q− g)

Ṙ = −βR +
φφ>

m2
, R(0) = 0 (8.5.83)

Q̇ = −βQ− zφ

m2
, Q(0) = 0
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where

g =

{
0 if ‖ε(t, ·)m(·)‖2β > g0

(Rθ + Q) otherwise

To avoid any implementation problems which may arise due to the discon-
tinuity in g, the dead zone function is made continuous as follows:

g =





0 if ‖ε(t, ·)m(·)‖2β > 2g0

(Rθ + Q)
(
2− ‖ε(t,·)m(·)‖2β

g0

)
if g0 < ‖ε(t, ·)m(·)‖2β ≤ 2g0

(Rθ + Q) if ‖ε(t, ·)m(·)‖2β ≤ g0

(8.5.84)

The following theorem summarizes the stability properties of the adaptive
laws developed above.

Theorem 8.5.7 The adaptive laws (8.5.79) and (8.5.80) with P given by
(8.5.71) or (8.5.72) and the integral adaptive law (8.5.83) with g given by
(8.5.84) guarantee the following properties:

(i) ε, εns, θ, θ̇ ∈ L∞.
(ii) ε, εns, θ̇ ∈ S(g0 + η2/m2).
(iii) θ̇ ∈ L2

⋂L1.
(iv) limt→∞ θ(t) = θ̄ where θ̄ is a constant vector.
(v) If ns, φ ∈ L∞ and φ is PE with level α0 > 0 independent of η, then θ̃(t)

converges exponentially to the residual set

Dd =
{
θ̃ ∈ Rn

∣∣∣|θ̃| ≤ c(g0 + η̄)
}

where η̄ = supt
|η(t)|
m(t) and c ≥ 0 is a constant.

Proof Adaptive Law (8.5.79) We consider the function

V (θ̃) =
θ̃>Γ−1θ̃

2

whose time derivative V̇ along the solution of (8.5.79) where εm2 = −θ̃>φ + η is
given by

V̇ = θ̃>φ(ε + g) = −(εm2 − η)(ε + g) (8.5.85)

Now

(εm2−η)(ε+g) =





(εm + g0)2 − (g0 + η
m )(εm + g0) > 0 if εm < −g0

(εm− g0)2 + (g0 − η
m )(εm− g0) > 0 if εm > g0

0 if |εm| ≤ g0

(8.5.86)
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Hence, (εm2 − η)(ε + g) ≥ 0, ∀t ≥ 0 and V̇ ≤ 0, which implies that V, θ ∈ L∞ and√
(εm2 − η)(ε + g) ∈ L2. Furthermore, θ ∈ L∞ implies that θ̃, ε, εns ∈ L∞. From

(8.5.79) we have

θ̇>θ̇ =
φ>ΓΓφ

m2
(ε + g)2m2 (8.5.87)

However,

(ε + g)2m2 = (εm + gm)2 =





(εm + g0)2 if εm < −g0

(εm− g0)2 if εm > g0

0 if |εm| ≤ g0

which, together with (8.5.86), implies that

0 ≤ (ε + g)2m2 ≤ (εm2 − η)(ε + g), i.e., (ε + g)m ∈ L2

Hence, from (8.5.87) and φ
m ∈ L∞ we have that θ̇ ∈ L2. Equation (8.5.85) can also

be written as

V̇ ≤ −ε2m2 + |εm| |η|
m

+ |εm|g0 +
|η|
m

g0

by using |g| ≤ g0
m . Then by completing the squares we have

V̇ ≤ −ε2m2

2
+
|η|2
m2

+ g2
0 +

|η|
m

g0

≤ −ε2m2

2
+

3|η|2
2m2

+
3
2
g2
0

which, together with V ∈ L∞, implies that εm ∈ S(g2
0 + η2

m2 ). Because m2 = 1+n2
s

we have ε, εns ∈ S(g2
0 + η2

m2 ). Because |g| ≤ g0
m ≤ c1g0, we can show that |θ̇| ≤

(|εm|+ g0), which implies that θ̇ ∈ S(g2
0 + η2

m2 ) due to εm ∈ S(g2
0 + η2

m2 ). Because g0

is a constant, we can absorb it in one of the constants in the definition of m.s.s. and
write εm, θ̇ ∈ S(g0 + η2

m2 ) to preserve compatibility with the other modifications.
To show that limt→∞ θ = θ̄, we use (8.5.85) and the fact that (εm2−η)(ε+g) ≥ 0

to obtain

V̇ = −(εm2 − η)(ε + g) = −
∣∣∣εm− η

m

∣∣∣ |ε + g|m

≤ −
∣∣∣∣|εm| −

|η|
m

∣∣∣∣ |ε + g|m

≤ −
∣∣∣∣g0 − |η|

m

∣∣∣∣ |ε + g|m (because |ε + g| = 0 if |εm| ≤ g0)

Because η
m ∈ L∞ and g0 > |η|

m we integrate both sides of the above inequality and
use the fact that V ∈ L∞ to obtain that (ε + g)m ∈ L1. Then from the adaptive
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law (8.5.79) and the fact that φ
m ∈ L∞, it follows that | ˙̃θ| ∈ L1, which, in turn,

implies that the limt→∞
∫ t

0
θ̇dτ exists and, therefore, θ converges to θ̄.

To show that θ̃ converges exponentially to the residual set Dd for persistently
exciting φ, we follow the same steps as in the case of the fixed σ-modification or
the ε1-modification. We express (8.5.79) in terms of the parameter error

˙̃
θ = −Γ

φφ>

m2
θ̃ + Γ

φη

m2
+ Γφg (8.5.88)

where g satisfies |g| ≤ g0
m ≤ c1g0 for some constant c1 ≥ 0. Since the homogeneous

part of (8.5.88) is e.s. when φ is PE, a property that is established in Section 4.8.3,
the exponential convergence of θ̃ to the residual set Dd can be established by re-
peating the same steps as in the proof of Theorem 8.5.4 (iii).

Adaptive Law (8.5.80) The proof for the adaptive law (8.5.80) is very
similar to that of (8.5.79) presented above and is omitted.

Adaptive Law (8.5.83) with g Given by (8.5.84) This adaptive law may
be rewritten as

θ̇ = σeΓ
∫ t

0

e−β(t−τ)ε(t, τ)φ(τ)dτ (8.5.89)

where

σe =





1 if ‖ε(t, ·)m(·)‖2β > 2g0
‖ε(t,·)m(·)‖2β

g0
− 1 if g0 < ‖ε(t, ·)m(·)‖2β ≤ 2g0

0 if ‖ε(t, ·)m(·)‖2β ≤ g0

(8.5.90)

Once again we consider the positive definite function V (θ̃) = θ̃>Γ−1θ̃
2 whose time

derivative along the solution of (8.5.83) is given by

V̇ = σeθ̃
>(t)

∫ t

0

e−β(t−τ)ε(t, τ)φ(τ)dτ

Using θ̃>(t)φ(τ) = −ε(t, τ)m2(τ) + η(τ), we obtain

V̇ = −σe

∫ t

0

e−β(t−τ)ε(t, τ)m(τ)
[
ε(t, τ)m(τ)− η(τ)

m(τ)

]
dτ (8.5.91)

Therefore, by using the Schwartz inequality, we have

V̇ ≤ −σe‖ε(t, ·)m(·)‖2β

[
‖ε(t, ·)m(·)‖2β − ‖( η

m
)t‖2β

]

From the definition of σe and the fact that g0 ≥ supt

∥∥( η
m )t

∥∥
2β

+ ν, it follows

that V̇ ≤ 0 which implies that V, θ, ε ∈ L∞ and limt→∞ = V∞ exists. Also θ ∈ L∞
implies that εns ∈ L∞. Using g0 ≥ supt

∥∥( η
m )t

∥∥
2β

+ ν in (8.5.91), we obtain

V̇ ≤ −νσe‖ε(t, ·)m(·)‖2β
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Now integrating on both sides of the above inequality and using V ∈ L∞, we have

σe‖ε(t, ·)m(·)‖2β ∈ L1 (8.5.92)

Using (8.5.89) and the boundedness property of φ
m , we can establish that |θ̇| ∈ L1.

Moreover, from (8.5.83) with g given by (8.5.84) we also have that θ̇ is uniformly
continuous which together with θ̇ ∈ L1 imply that limt→∞ θ̇(t) = 0. Furthermore,
using the same arguments as in the proof for the adaptive law (8.5.79), we can
conclude from |θ̇| ∈ L1 that limt→∞ θ = θ̄ for some constant vector θ̄.

It remains to show that ε, εns ∈ S(g0 + η2

m2 ). This can be done as follows:
Instead of (8.5.91), we use the following expression for V̇ :

V̇ = θ̃>(t)
[∫ t

0

e−β(t−τ)ε(t, τ)φ(τ)dτ

]
+ θ̃>g

= −θ̃>Rθ̃ + θ̃>(t)
∫ t

0

e−β(t−τ) φ(τ)η(τ)
m2(τ)

dτ + θ̃>g

obtained by using (8.5.83) instead of (8.5.89), which has the same form as equation
(8.5.58) in the proof of Theorem 8.5.4. Hence, by following the same calculations
that led to (8.5.59), we obtain

V̇ ≤ − θ̃>Rθ̃

2
+

1
2

(∥∥∥
( η

m

)
t

∥∥∥
2β

)2

+ θ̃>g (8.5.93)

Using the definition of ε(t, τ), we obtain

|Rθ + Q| =
∣∣∣∣
∫ t

0

e−β(t−τ) φ(τ)(θ>(τ)φ(τ)− z(τ))
m2

dτ

∣∣∣∣

=
∣∣∣∣
∫ t

0

e−β(t−τ)φ(τ)ε(t, τ)dτ

∣∣∣∣

≤
[∫ t

0

e−β(t−τ) |φ(τ)|2
m2(τ)

dτ

] 1
2

‖ε(t, ·)m(·)t‖2β

where the last inequality is obtained by using the Schwartz inequality. Because
φ
m ∈ L∞, we have

|Rθ + Q| ≤ c2‖ε(t, ·)m(·)t‖2β (8.5.94)

for some constant c2 ≥ 0. Using the definition of g given in (8.5.84) and (8.5.94),
we have

|g| ≤ cg0

for some constant c ≥ 0 and therefore it follows from (8.5.93) that

V̇ ≤ − θ̃>Rθ̃

2
+

1
2

(∥∥∥
( η

m

)
t

∥∥∥
2β

)2

+ cg0
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where c ≥ 0 depends on the bound for |θ̃|.
The above inequality has the same form as (8.5.59) and we can duplicate the

steps illustrated by equations (8.5.59) to (8.5.63) in the proof of Theorem 8.5.4 (A)
to first show that R

1
2 θ̃ ∈ S(g0 + η2/m2) and then that ε, εns, θ̇ ∈ S(g0 + η2/m2).

The proof for part (v) proceeds as follows: We write

˙̃
θ = −ΓRθ̃ + Γ

∫ t

0

e−β(t−τ) φη

m2
dτ + Γg (8.5.95)

Because the equilibrium θ̃e = 0 of the homogeneous part of (8.5.95), i.e., ˙̃
θ = −ΓRθ̃,

is e.s. for persistently exciting φ, a property that has been established in Section
4.8.4, we can show as in the proof of Theorem 8.5.4 A(iii) that

|θ̃| ≤ β0e
−β2t + β1

∫ t

0

e−β2(t−τ)|d(τ)|dτ

where d
4
=

∫ t

0
e−β(t−τ) φη

m2 dτ + g, β0, β1 are nonnegative constants and β2 > 0.
Because φ

m ∈ L∞ and |η|
m ≤ η̄, we have |d| ≤ c1η̄ + |g|. Because |g| ≤ cg0, we have

|θ̃| ≤ c(η̄ + g0) + εt

for some constant c ≥ 0, where εt is an exponentially decaying to zero term which
completes the proof of part (v). 2

8.5.7 Bilinear Parametric Model

In this section, we consider the bilinear parametric model

z = W (s)ρ∗(θ∗>ψ + z0) + η
η = ∆u(s)u + ∆y(s)y + d1

(8.5.96)

where z, ψ, z0 are measurable signals, W (s) is proper and stable, ρ∗, θ∗

are the unknown parameters to be estimated on-line and η is the model-
ing error term due to a bounded disturbance d1 and unmodeled dynamics
∆u(s)u,∆y(s)y. The perturbations ∆u(s), ∆y(s) are assumed without loss
of generality to be strictly proper and analytic in Re[s] ≥ −δ0/2 for some
known δ0 > 0.

The techniques of the previous sections and the procedure of Chapter 4
may be used to develop robust adaptive laws for (8.5.96) in a straightforward
manner.
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As an example, we illustrate the extension of the gradient algorithm to
the model (8.5.96). We express (8.5.96) as

z = ρ∗(θ∗>φ + z1) + η

where φ = W (s)ψ, z1 = W (s)z0. Then the gradient algorithm (based on the
instantaneous cost) is given by

θ̇ = Γεφsgn(ρ∗)− w1Γθ

ρ̇ = γεξ − w2γρ

ε =
z − ẑ

m2
=

z − ρ(θ>φ + z1)
m2

(8.5.97)

ξ = θ>φ + z1

where θ, ρ is the estimate of θ∗, ρ∗ at time t; m > 0 is chosen so that
φ
m , z1

m , η
m ∈ L∞, w1, w2 are leakage modifications and Γ = Γ> > 0, γ > 0

are the adaptive gains. Using Lemma 3.3.2, the normalizing signal m may
be chosen as

m2 = 1 + φ>φ + z2
1 + n2

s, n2
s = ms

ṁs = −δ0ms + u2 + y2, ms(0) = 0

If ∆u, ∆y are biproper, then m2 may be modified to include u, y, i.e.,

m2 = 1 + φ>φ + z2
1 + n2

s + u2 + y2

If φ = H(s)[u, y]>, z1 = h(s)[u, y]>, where H(s), h(s) are strictly proper and
analytic in Re[s] ≥ −δ0/2, then the terms φ>φ, z2

1 may be dropped from the
expression of m2.

The leakage terms w1, w2 may be chosen as in Section 8.5.2 to 8.5.4. For
example, if we use the switching σ-modification we have

w1 = σ1s, w2 = σ2s (8.5.98)

where

σis =





0 if |xi| ≤ Mi

σ0(
|xi|
Mi

− 1) if Mi < |xi| ≤ 2Mi

σ0 if |xi| > 2Mi

with i = 1, 2 and |x1| = |θ|, |x2| = |ρ|, and σ0 > 0 is a design constant. The
properties of (8.5.97) and (8.5.98) can be established in a similar manner as
in Section 8.5.3 and are summarized below.
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Theorem 8.5.8 The gradient algorithm (8.5.97) and (8.5.98) for the bilin-
ear parametric model (8.5.96) guarantees the following properties.

(i) ε, εns, ρ, θ, ρ̇, θ̇ ∈ L∞
(ii) ε, εns, ρ̇, θ̇ ∈ S(η2/m2)

The proof of Theorem 8.5.8 is very similar to those for the linear parametric
model, and can be completed by exploring the properties of the Lyapunov
function V = |ρ∗| θ̃>Γθ̃

2 + ρ̃2

2γ .
As we discussed in Chapter 4, another way of handling the bilinear case

is to express (8.5.96) in the linear form as follows

z = W (s)(θ̄∗>ψ̄) + η (8.5.99)

where θ̄∗ = [θ̄∗1, θ̄∗>2 ]>, θ̄∗1 = ρ∗, θ̄∗2 = ρ∗θ∗ and ψ̄ = [z0, ψ
>]>. Then using the

procedure of Sections 8.5.2 to 8.5.4, we can develop a wide class of robust
adaptive laws for estimating θ̄∗. From the estimate θ̄ of θ̄∗, we calculate the
estimate θ, ρ of θ∗ and ρ∗ respectively as follows:

ρ = θ̄1, θ =
θ̄2

θ̄1
(8.5.100)

where θ̄1 is the estimate of θ̄∗1 = ρ∗ and θ̄2 is the estimate of θ̄∗2 = ρ∗θ∗.
In order to avoid the possibility of division by zero in (8.5.100), we use the
gradient projection method to constrain the estimate θ̄1 to be in the set

C =
{
θ̄ ∈ Rn+1

∣∣g(θ̄) = ρ0 − θ̄1sgnρ∗ ≤ 0
}

(8.5.101)

where ρ0 > 0 is a lower bound for |ρ∗|. We illustrate this method for the
gradient algorithm developed for the parametric model z = θ̄∗>φ̄ + η, φ̄ =
W (s)ψ̄ = [z1, φ

>]> given by

˙̄θ = Γεφ̄− wΓθ̄

ε =
z − ẑ

m2
=

z − θ̄>φ̄

m2
(8.5.102)

where m > 0 is designed so that φ̄
m , η

m ∈ L∞. We now apply the gradient
projection method in order to constrain θ̄(t) ∈ C ∀t ≥ t0, i.e., instead of
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(8.5.102) we use

˙̄θ=





Γ(εφ̄− wθ̄) if θ̄ ∈ C0

or if θ ∈ δ(C) and [Γ(εφ̄− wθ̄)]>∇g ≤ 0(
I − Γ ∇g∇g>

∇g>Γ∇g

)
Γ(εφ̄− wθ̄) otherwise.

(8.5.103)
where C0, δ(C) denote the interior and boundary of C respectively.

Because ∇g=[−sgn(ρ∗), 0, . . . , 0]>, (8.5.103) can be simplified by choos-
ing Γ=diag(γ0, Γ0) where γ0 > 0 and Γ0 = Γ>0 > 0, i.e.,

˙̄θ1 =





γ0εz1 − γ0wθ̄1 if θ̄1sgn(ρ∗) > ρ0

or if θ̄1sgn(ρ∗) = ρ0 and (εz1 − wθ̄1)sgn(ρ∗) ≥ 0
0 otherwise

˙̄θ2 = Γ0(εφ− wθ̄2)
(8.5.104)

The adaptive law (8.5.104) guarantees the same properties as the adap-
tive law (8.5.97), (8.5.98) described by Theorem 8.5.8.

8.5.8 Hybrid Adaptive Laws

The adaptive laws developed in Sections 8.5.2 to 8.5.7 update the estimate
θ(t) of the unknown parameter vector θ∗ continuously with time, i.e., at each
time t we have a new estimate. For computational and robustness reasons,
it may be desirable to update the estimates only at specific instants of time
tk where {tk} is an unbounded monotonically increasing sequence in R+.
Let tk = kTs where Ts = tk+1 − tk is the “sampling” period and k ∈ N+

and consider the design of an adaptive law that generates the estimate of
the unknown θ∗ at the discrete instances of time t = 0, Ts, 2Ts, . . . .

We can develop such an adaptive law for the gradient algorithms of Sec-
tion 8.5.3. For example, let us consider the adaptive law

θ̇ = Γεφ− wΓθ

ε =
z − ẑ

m2
=

z − θ>φ

m2
(8.5.105)

where z is the output of the linear parametric model

z = θ∗>φ + η
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and m is designed so that φ
m , η

m ∈ L∞. Integrating (8.5.105) from tk = kTs

to tk+1 = (k + 1)Ts we have

θk+1 = θk + Γ
∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)dτ (8.5.106)

where θk
4
= θ(tk). Equation (8.5.106) generates a sequence of estimates, i.e.,

θ0 = θ(0), θ1 = θ(Ts), θ2 = θ(2Ts), . . . , θk = θ(kTs) of θ∗. Although ε, φ

may vary with time continuously, θ(t) = θk = constant for t ∈ [tk, tk+1). In
(8.5.106) the estimate ẑ of z and ε are generated by using θk, i.e.,

ẑ(t) = θ>k φ(t), ε =
z − ẑ

m2
, t ∈ [tk, tk+1) (8.5.107)

We shall refer to (8.5.106) and (8.5.107) as the robust hybrid adaptive law.
The leakage term w(t) chosen as in Section 8.5.3 has to satisfy some

additional conditions for the hybrid adaptive law to guarantee similar prop-
erties as its continuous counterpart. These conditions arise from analysis
and depend on the specific choice for w(t). We present these conditions and
properties of (8.5.106) for the switching σ-modification

w(t) = σs, σs =

{
0 if |θk| < M0

σ0 if |θk| ≥ M0
(8.5.108)

where σ0 > 0 and M0 ≥ 2|θ∗|. Because of the discrete-time nature of
(8.5.106), σs can now be discontinuous as given by (8.5.108).

The following theorem establishes the stability properties of (8.5.106),
(8.5.108):

Theorem 8.5.9 Let m,σ0, Ts,Γ be chosen so that

(a) η
m ∈ L∞, φ>φ

m2 ≤ 1

(b) 2Tsλm < 1, 2σ0λmTs < 1

where λm = λmax(Γ). Then the hybrid adaptive law (8.5.106), (8.5.108)
guarantees that

(i) ε, εns ∈ L∞, θk ∈ `∞
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(ii) ε, εm ∈ S( η2

m2 ),∆θk ∈ D( η2

m2 ) where ∆θk = θk+1 − θk and

D(y)
4
=



{xk}

∣∣∣∣∣∣

k0+N∑

k=k0

x>k xk ≤ c0

∫ tk0
+NTs

tk0

y(τ)dτ + c1





for some c0, c1 ∈ R+ and any k0, N ∈ N+.

(iii) If ns, φ ∈ L∞ and φ is PE with a level of excitation α0 > 0 that is
independent of η, then

(a) θ̃k = θk − θ∗ converges exponentially to the residual set

D0 =
{
θ̃

∣∣∣|θ̃| ≤ c(σ0 + η̄)
}

where c ≥ 0, η̄ = supt | η
m |.

(b) There exists a constant η̄∗ > 0 such that if η̄ < η̄∗, then θ̃k

converges exponentially fast to the residual set

Dθ =
{
θ̃

∣∣∣|θ̃| ≤ cη̄
}

Proof Consider the function

V (k) = θ̃>k Γ−1θ̃k (8.5.109)

Using θ̃k+1 = θ̃k +∆θk in (8.5.109), where ∆θk = Γ
∫ tk+1

tk
(ε(τ)φ(τ)−w(τ)θk)dτ , we

can write

V (k + 1) = V (k) + 2θ̃>k Γ−1∆θk + ∆θ>k Γ−1∆θk

= V (k) + 2θ̃>k

∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)dτ (8.5.110)

+
∫ tk+1

tk

(ε(τ)φ(τ)−w(τ)θk)>dτΓ
∫ tk+1

tk

(ε(τ)φ(τ)−w(τ)θk)dτ

Because θ̃>k φ = −εm2 + η, we have

θ̃>k

∫ tk+1

tk

ε(τ)φ(τ)dτ =
∫ tk+1

tk

(−ε2m2 + εη)dτ ≤ −
∫ tk+1

tk

ε2m2

2
dτ +

∫ tk+1

tk

η2

2m2
dτ

(8.5.111)
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where the last inequality is obtained by using the inequality −a2 + ab ≤ −a2

2 + b2

2 .
Now consider the last term in (8.5.110), since

∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)>dτΓ
∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)dτ

≤ λm

∣∣∣∣
∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)dτ

∣∣∣∣
2

where λm = λmax(Γ−1), it follows from the inequality (a + b)2 ≤ 2a2 + 2b2 that
∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)>dτΓ
∫ tk+1

tk

(ε(τ)φ(τ)− w(τ)θk)dτ

≤ 2λm

∣∣∣∣
∫ tk+1

tk

ε(τ)m(τ)
φ(τ)
m(τ)

dτ

∣∣∣∣
2

+ 2λm

∣∣∣∣
∫ tk+1

tk

w(τ)θkdτ

∣∣∣∣
2

≤ 2λm

∫ tk+1

tk

ε2(τ)m2(τ)dτ

∫ tk+1

tk

|φ|2
m2

dτ + 2λmσ2
sT 2

s |θk|2

≤ 2λmTs

∫ tk+1

tk

ε2(τ)m2(τ)dτ + 2λmσ2
sT 2

s |θk|2 (8.5.112)

In obtaining (8.5.112), we have used the Schwartz inequality and the assumption
|φ|
m ≤ 1. Using (8.5.111), (8.5.112) in (8.5.110), we have

V (k + 1) ≤ V (k)− (1− 2λmTs)
∫ tk+1

tk

ε2(τ)m2(τ)dτ +
∫ tk+1

tk

|η|2
m2

dτ

−2σsTsθ̃
>
k θk + 2λmσ2

sT 2
s |θk|2

≤ V (k)− (1− 2λmTs)
∫ tk+1

tk

ε2(τ)m2(τ)dτ + η̄2Ts

−2σsTs(θ̃>k θk − λmσ0Ts|θk|2)

≤ V (k)− (1− 2λmTs)
∫ tk+1

tk

ε2(τ)m2(τ)dτ + η̄2Ts

−2σsTs

(
(
1
2
− λmσ0Ts)|θk|2 − |θ∗|2

2

)
(8.5.113)

where the last inequality is obtained by using θ̃>k θk ≥ |θk|2
2 − |θ∗|2

2 . Therefore, for
1−2σ0λmTs > 0 and 1−2λmTs > 0, it follows from (8.5.113) that V (k+1) ≤ V (k)
whenever

|θk|2 ≥ max

{
M2

0 ,
η̄2 + σ0|θ∗|2

σ0(1− 2λmσ0Ts)

}

Thus, we can conclude that V (k) and θk ∈ `∞. The boundedness of ε, εm follows
immediately from the definition of ε and the normalizing properties of m, i.e.,
φ
m , η

m ∈ L∞.
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To establish (ii), we use the inequality

σsθ̃
>
k θk =

σs

2
θ>k θk + (

σs

2
θ>k θk − σsθ

>
k θ∗)

≥ σs

2
|θk|2 +

σs

2
|θk|(|θk| − 2|θ∗|)

Because σs = 0 for |θk| ≤ M0 and σs > 0 for |θk| ≥ M0 ≥ 2|θ∗|, we have σs|θk|(|θk|−
2|θ∗|) ≥ 0 ∀k ≥ 0, therefore,

σsθ̃
>
k θk ≥ σs

2
|θk|2

which together with 2σ0λmTs < 1 imply that

σs(θ̃>k θk − λmσ0Ts|θk|2) ≥ cσσs|θk|2 (8.5.114)

where cσ
4
= 1

2 − λmσ0Ts. From (8.5.114) and the second inequality of (8.5.113), we
have

(1− 2λmTs)
∫ tk+1

tk

ε2(τ)m2(τ)dτ + cσσs|θk|2 ≤ V (k)− V (k + 1) +
∫ tk+1

tk

η2

m2
dτ

(8.5.115)
which implies that εm ∈ S( η2

m2 ) and
√

σsθk ∈ D( η2

m2 ). Because |ε| ≤ |εm| (because
m ≥ 1, ∀t ≥ 0 ), we have ε ∈ S( η2

m2 ).
Note from (8.5.112) that ∆θk satisfies

k0+N∑

k=k0

(∆θk)>∆θk ≤ 2λmTs

k0+N∑

k=k0

∫ tk+1

tk

ε2(τ)m2(τ)dτ + 2λmT 2
s

k0+N∑

k=k0

σ2
s |θk|2

≤ 2λmTs

∫ tk0+N

tk0

ε2(τ)m2(τ)dτ +2λmT 2
s

k0+N∑

k=k0

σ2
s |θk|2 (8.5.116)

Using the properties that εm ∈ S( η2

m2 ), σsθk ∈ D( η2

m2 ), we have

k0+N∑

k=k0

(∆θk)>∆θk ≤ c1 + c2

∫ tk0+N

tk0

η2

m2
dτ

for some constant c1, c2 > 0. Thus, we conclude that ∆θk ∈ D( η2

m2 ).
Following the same arguments we used in Sections 8.5.2 to 8.5.6 to prove pa-

rameter convergence, we can establish (iii) as follows: We have

θ̃k+1 = θ̃k − Γ
∫ tk+1

tk

φ(τ)φ>(τ)
m2(τ)

dτ θ̃k + Γ
∫ tk+1

tk

φ(τ)η(τ)
m2(τ)

dτ − ΓσsθkTs
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which we express in the form

θ̃k+1 = A(k)θ̃k + Bν(k) (8.5.117)

where A(k) = I − Γ
∫ tk+1

tk

φ(τ)φ>(τ)
m2(τ) dτ , B = Γ, ν(k) =

∫ tk+1

tk

φ(τ)η(τ)
m2(τ) dτ − σsθkTs.

We can establish parameter error convergence using the e.s. property of the homo-
geneous part of (8.5.117) when φ is PE. In Chapter 4, we have shown that φ being
PE implies that the equilibrium θ̃e = 0 of θ̃k+1 = A(k)θ̃k is e.s., i.e., the solution θ̃k

of (8.5.117) satisfies

|θ̃k| ≤ β0γ
k + β1

k∑

i=0

γk−i|νi| (8.5.118)

for some 0 < γ < 1 and β0, β1 > 0. Since |νi| ≤ c(η̄ + σ0) for some constant c ≥ 0,
the proof of (iii) (a) follows from (8.5.118). From the definition of νk, we have

|νk| ≤ c0η̄ + c1|σsθk| ≤ c0η̄ + c
′
1|σsθk| |θ̃k| (8.5.119)

for some constants c0, c1, c
′
1, where the second inequality is obtained by using

σs|θk| ≤ σs
θ̃>k θk

M0−|θ∗| ≤ 1
M0−|θ∗| |σsθk| |θ̃k|. Using (8.5.119) in (8.5.118), we have

|θ̃k| ≤ β0γ
k + β

′
1η̄ + β2

k−1∑

i=0

γk−i| σsθi||θ̃i| (8.5.120)

where β
′
1 = c0β1

1−γ , β2 = β1c
′
1.

To proceed with the parameter convergence analysis, we need the following
discrete version of the B-G Lemma.

Lemma 8.5.1 Let x(k), f(k), g(k) be real valued sequences defined for k =
0, 1, 2, . . . ,, and f(k), g(k), x(k) ≥ 0 ∀k. If x(k) satisfies

x(k) ≤ f(k) +
k−1∑

i=0

g(i)x(i), k = 0, 1, 2, . . .

then,

x(k) ≤ f(k) +
k−1∑

i=0




k−1∏

j=i+1

(1 + g(j))


 g(i)f(i), k = 0, 1, 2, . . .

where
∏k−1

j=i+1(1 + g(j)) is set equal to 1 when i = k − 1.
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The proof of Lemma 8.5.1 can be found in [42].
Let us continue the proof of Theorem 8.5.7 by using Lemma 8.5.1 to obtain

from (8.5.120) that

|θ̃k| ≤ β0γ
k +β

′
1η̄ +

k−1∑

i=0

γk





k−1∏

j=i+1

(1 + β2σs|θj |)


β2| σsθi|(β0 +β

′
1η̄γ−i) (8.5.121)

Using the inequality
∏n

i=1 xi ≤ (
∑n

i=1 xi/n)n which holds for any integer n and
positive xi, we have

k−1∏

j=i+1

(1 + β2σs|θj |)≤
(∑k−1

j=i+1(1 + β2σs|θj |)
k − i− 1

)k−i−1

=

(
1 +

∑k−1
j=i+1 β2σs|θj |
k − i− 1

)k−i−1

(8.5.122)
Because σs|θk| ≤ σs|θ̃k| |θk|

M0−|θ∗| , it follows from (8.5.115) that

σs|θk| ≤ c

{
V (k)− V (k + 1) +

∫ tk+1

tk

η2

m2
dτ

}

for some constant c, which implies that

k−1∑

j=i+1

β2σs|θj | ≤ c1η̄
2(k − i− 1) + c0

for some constant c1, c0 > 0. Therefore, it follows from (8.5.122) that

k−1∏

j=i+1

(1 + β2σs|θj |) ≤
(

1 +
c1η̄

2(k − i− 1) + c0

k − i− 1

)k−i−1

≤
(

1 + c1η̄
2 +

c0

k − i− 1

)k−i−1

(8.5.123)

Because for x > 0, the inequality (1 + x
n )n ≤ ex holds for any integer n > 0, it

follows from (8.5.123) that

k−1∏

j=i+1

(1 + β2σs|θj |) ≤
(
1 + c1η̄

2
)k−i−1

e
c0

1+c1η̄2 (8.5.124)

Using (8.5.124) in (8.5.121), we have

|θ̃k| ≤ β0γ
k + β

′
1η̄ +

k−1∑

i=0

γk(1 + c1η̄
2)k−i−1e

c0
1+c1η̄2 β2σs|θi|(β0 + β

′
1η̄γ−i) (8.5.125)
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Because β2σs|θi| ∈ L∞ and γ < 1, the inequality (8.5.125) leads to

|θ̃k| ≤ β0γ
k + β

′
1η̄ + β3(

√
γ)k

k−1∑

i=0

{√
γ(1 + c1η̄

2)
}k−i−1

+ β4η̄

k−1∑

i=0

[γ(1 + c1η̄
2)]k−i

for some constants β3, β4 > 0. If η̄ is chosen to satisfy
√

γ(1 + c1η̄
2) < 1, i.e., for

η̄∗2 = 1−√γ

c1
√

γ > 0 and η̄2 < η̄∗2, we obtain

|θ̃k| ≤ β0γ
k + β1η̄ + β

′
3(
√

γ)k + β
′
4η̄

for some constants β
′
3, β

′
4 > 0. Therefore, θ̃k converges exponentially to a residual

set whose size is proportional to η̄. 2

8.5.9 Effect of Initial Conditions

The effect of initial conditions of plants such as the one described by the
transfer function form in (8.5.1) is the presence of an additive exponentially
decaying to zero term η0 in the plant parametric model as indicated by
equation (8.5.8). The term η0 is given by

ω̇ = Λcω, ω(0) = ω0

η0 = C>
c ω

where Λc is a stable matrix and ω0 contains the initial conditions of the
overall plant. As in the ideal case presented in Section 4.3.7, the term η0

can be taken into account by modifying the Lyapunov-like functions V (θ̃)
used in the previous sections to

Vm(θ̃) = V (θ̃) + ω>P0ω

where P0 = P>
0 > 0 satisfies the Lyapunov equation P0Λc + Λ>c P0 = −γ0I

for some γ0 > 0 to be chosen. As in Section 4.3.7, it can be shown that the
properties of the robust adaptive laws presented in the previous sections are
not affected by the initial conditions.

8.6 Summary of Robust Adaptive Laws

A robust adaptive law is constructed in a straight forward manner by mod-
ifying the adaptive laws listed in Tables 4.1 to 4.5 with the two crucial
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modifications studied in the previous sections. These are: the normalizing
signal which is now chosen to bound the modeling error term η from above
in addition to bounding the signal vector φ, and the leakage or dead zone or
projection that changes the “pure” integral action of the adaptive law.

We have illustrated the procedure for modifying the adaptive laws of
Tables 4.1 to 4.5 for the parametric model

z = W (s)[θ∗>ψ + W−1(s)η], η = ∆u(s)u + ∆y(s)y + d1 (8.6.1)

which we can also rewrite as

z = θ∗>φ + η (8.6.2)

where φ = W (s)ψ. Without loss of generality, let us assume the following:

S1. W (s) is a known proper transfer function and W (s),W−1(s) are ana-
lytic in Re[s] ≥ −δ0/2 for some known δ0 > 0.

S2. The perturbations ∆u(s), ∆y(s) are strictly proper and analytic in
Re[s] ≥ −δ0/2 and δ0 > 0 is known.

S3. ψ = H0(s)[u, y]> where H0(s) is proper and analytic in Re[s] ≥ −δ0/2.

For the LTI plant models considered in this book, assumptions S1 and S3
are satisfied by choosing the various design polynomials appropriately. The
strict properness of ∆u, ∆y in assumption S2 follows from that of the overall
plant transfer function.

Let us first discuss the choice of the normalizing signal for parametric
model (8.6.1) to be used with the SPR-Lyapunov design approach. We
rewrite (8.6.1) as

zf = W (s)L(s)[θ∗>φf + ηf ] (8.6.3)

with
zf =

h0

s + h0
z, φf =

h0

s + h0
L−1(s)ψ

ηf = L−1(s)W−1(s)
h0

s + h0
(∆u(s)u + ∆y(s)y + d1)

by filtering each side of (8.6.1) with the filter h0
s+h0

. We note that L(s) is
chosen so that WL is strictly proper and SPR. In addition, L−1(s), L(s) are
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analytic in Re[s] ≥ −δ0/2 and h0 > δ0/2. Using Lemma 3.3.2, we have from
assumptions S1 to S3 that the normalizing signal m generated by

m2 = 1 + n2
s, n2

s = ms

ṁs = −δ0ms + u2 + y2, ms(0) = 0 (8.6.4)

bounds both φf , ηf from above. The same normalizing signal bounds η, φ in
the parametric model (8.6.2).

In Tables 8.1 to 8.4, we summarize several robust adaptive laws based
on parametric models (8.6.1) and (8.6.2), which are developed by modifying
the adaptive laws of Chapter 4. Additional robust adaptive laws based on
least-squares and the integral adaptive law can be developed by following
exactly the same procedure.

For the bilinear parametric model

z = ρ∗(θ∗>φ + z1) + η, η = ∆u(s)u + ∆y(s)y + d (8.6.5)

the procedure is the same. Tables 8.5 to 8.7 present the robust adaptive laws
with leakage, projection and dead zone for the parametric model (8.6.5) when
the sign of ρ∗ is known.

8.7 Problems

8.1 Consider the following system

y = e−τs 200
(s− p)(s + 100)

u

where 0 < τ ¿ 1 and p ≈ 1. Choose the dominant part of the plant and
express the unmodeled part as a (i) multiplicative; (ii) additive; and (iii)
stable factor perturbation.
Design an output feedback that regulates y to zero when τ = 0.02.

8.2 Express the system in Problem 8.1 in terms of the general singular perturbation
model presented in Section 8.2.2.

8.3 Establish the stability properties of the switching-σ modification for the exam-
ple given in Section 8.4.1 when 0 < M0 ≤ |θ∗|.
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Table 8.1 Robust adaptive law based on the SPR-Lyapunov
method

Parametric
model

z = W (s)θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d
φ = H0(s)[u, y]>

Filtered
parametric
model

zf =W (s)L(s)(θ∗>φf +ηf ), φf = h0
s+h0

W (s)L−1(s)φ
zf = h0

s+h0
z, ηf = W−1(s)L−1(s) h0

s+h0
η

Adaptive law θ̇ = Γεφ− Γwθ
ε = z − ẑ −W (s)L(s)εn2

s

Normalizing
signal

m2 = 1 + n2
s, n2

s = ms

ṁs = −δ0ms + u2 + y2, ms(0) = 0

Leakage

(a) Fixed σ w = σ

(b) Switching σ w = σs =





0 if |θ| ≤ M0( |θ|
M0

− 1
)

σ0 if M0 < |θ| ≤ 2M0

σ0 if |θ| > 2M0

(c) ε-modification w = |εm|ν0

Assumptions

(i) ∆u, ∆y strictly proper and analytic in Re[s] ≥
−δ0/2 for some known δ0 > 0; (ii) W (s),H0(s) are
known and proper and W (s), W−1(s), H0(s) are an-
alytic in Re[s] ≥ −δ0/2

Design
variables

Γ = Γ> > 0;σ0 > 0; ν0 > 0;h0 > δ0/2; L−1(s)
is proper and L(s), L−1(s) are analytic in Re[s] ≥
−δ0/2; W (s)L(s) is proper and SPR

Properties
(i) ε, εm, θ, θ̇ ∈ L∞; (ii) ε, εm, θ̇ ∈ S(f0 + η2/m2),
where f0 = σ for w = σ, f0 = 0 for w = σs, and
f0 = ν0 for w = |εm|ν0
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Table 8.2 Robust adaptive law with leakage based on the
gradient method

Parametric model z = θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d

Adaptive law
θ̇ = Γεφ− Γwθ

ε =
z − θ>φ

m2

Normalizing
signal

As in Table 8.1

Leakage w As in Table 8.1

Assumptions

(i) ∆u,∆y strictly proper and analytic in
Re[s] ≥ −δ0/2 for some known δ0 > 0; (ii) φ =
H(s)[u, y]>, where H(s) is strictly proper and an-
alytic in Re[s] ≥ −δ0/2.

Design
variables

Γ = Γ> > 0; The constants in w are as in Table
8.1.

Properties (i) ε, εm, θ, θ̇ ∈ L∞; (ii) ε, εm, θ̇ ∈ S(η2/m2 + f0),
where f0 is as defined in Table 8.1.

8.4 Consider the following singular perturbation model

ẋ = A11x + A12z + b1u

µż = A22z + b2u

where x ∈ Rn, z ∈ Rm, y ∈ R1 and A22 is a stable matrix. The scalar
parameter µ is a small positive constant, i.e., 0 < µ ¿ 1.

(a) Obtain an nth-order approximation of the above system.
(b) Use the transformation η = z+A−1

22 b2u to transform the system into one
with states x, η.

(c) Show that if u = −Kx stabilizes the reduced-order system, then there
exists a µ∗ > 0 such that u = −Kx also stabilizes the full-order system
for any µ ∈ [0, µ∗).
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Table 8.3 Robust adaptive law with projection based on the
gradient method

Parametric
model

z = θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d

Adaptive law θ̇ =





Γεφ if |θ| < M0

or if |θ|=M0 and (Γεφ)>θ ≤ 0(
I − Γθθ>

θ>Γθ

)
Γεφ otherwise

ε =
z − θ>φ

m2

Normalizing
signal

As in Table 8.1

Assumptions As in Table 8.1

Design
variables

|θ(0)| ≤ M0; M0 ≥ |θ∗|; Γ = Γ> > 0

Properties (i) ε, εm, θ, θ̇ ∈ L∞; (ii) ε, εm, θ̇ ∈ S(η2/m2)

8.5 Establish the stability properties of the shifted leakage modification −w(θ−θ∗)
for the three choices of w and example given in Section 8.4.1.

8.6 Repeat the results of Section 8.4.1 when u is piecewise continuous but not
necessarily bounded.

8.7 Repeat the results of Section 8.4.2 when u is piecewise continuous but not
necessarily bounded.

8.8 Repeat the results of Section 8.4.3 when u is piecewise continuous but not
necessarily bounded.

8.9 Simulate the adaptive control scheme given by equation (8.3.16) in Section 8.3.3
for the plant given by (8.3.13) when b = 2. Demonstrate the effect of large
γ and large constant reference input r as well as the effect of switching-off
adaptation by setting γ = 0 when instability is detected.
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Table 8.4 Robust adaptive law with dead zone based on the
gradient Method

Parametric model z = θ∗>φ + η, η = ∆u(s)u + ∆y(s)y + d

θ̇ = Γφ(ε + g)

Adaptive law g =





g0

m if εm < −g0

−g0

m if εm > g0

−ε if |εm| ≤ g0

ε =
z − θ>φ

m2

Normalizing signal As in Table 8.1

Assumptions As in Table 8.1

Design variables g0 > |η|
m ; Γ = Γ> > 0

Properties (i) ε, εm, θ, θ̇ ∈ L∞; (ii) ε, εm, θ̇ ∈ S(η2/m2 + g0);
(iii) limt→∞ θ(t) = θ̄

8.10 Consider the closed-loop adaptive control scheme of Section 8.3.2, i.e.,

ẋ = ax + z − u
µż = −z + 2u
y = x

u = −kx, k̇ = γx2

Show that there exists a region of attraction D whose size is of O( 1
µα ) for

some α > 0 such that for x(0), z(0), k(0) ∈ D we have x(t), z(t) → 0 and
k(t) −→ k(∞) as t → ∞. (Hint: use the transformation η = z − 2u and
choose V = x2

2 + (k−k∗)2

2γ + µ (x+η)2

2 where k∗ > a.)
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Table 8.5 Robust adaptive law with leakage for the bilinear
model

Parametric
model

z = ρ∗(θ∗>φ + z1) + η, η = ∆u(s)u + ∆y(s)y + d

θ̇ = Γεφsgn(ρ∗)− w1Γθ

Adaptive law ρ̇ = γεξ − w2γρ

ε =
z − ρξ

m2
, ξ = θ>φ + z1

Normalizing
signal

As in Table 8.1.

Leakage wi

i = 1, 2 As in Table 8.1

Assumptions (i) ∆u, ∆y are as in Table 8.1; (ii) φ = H(s)[u, y]>,
z1 = h1(s)u + h2(s)y, where H(s), h1(s), h2(s) are
strictly proper and analytic in Re[s] ≥ −δ0/2

Design
variables

Γ = Γ> > 0, γ > 0; the constants in wi are as defined
in Table 8.1

Proporties (i) ε, εm, ρ, θ, ρ̇, θ̇ ∈ L∞; (ii) ε, εm, ρ̇, θ̇ ∈ S(η2/m2 +
f0), where f0 is as defined in Table 8.1

8.11 Perform simulations to compare the properties of the various choices of leakage
given in Section 8.4.1 using an example of your choice.

8.12 Consider the system
y = θ∗u + η
η = ∆(s)u

where y, u are available for measurement, θ∗ is the unknown constant to
be estimated and η is a modeling error signal with ∆(s) being proper and
analytic in Re[s] ≥ −0.5. The input u is piecewise continuous. Design an
adaptive law with a switching-σ to estimate θ∗.
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Table 8.6 Robust adaptive law with projection for the bilinear
model

Parametric
model

Same as in Table 8.5

Adaptive
law

θ̇i =





Γiεφi if |θi| < Mi

or if |θi|=Mi and (Γiεφi)>θi ≤ 0(
I − Γiθiθ

>
i

θ>i Γiθi

)
Γiεφi otherwise

i = 1, 2 with
θ1 =θ, θ2 =ρ, φ1 =φsgn(ρ∗), φ2 = ξ, Γ1 = Γ, Γ2 = γ

ε = z−ρξ
m2 , ξ = θ>φ + z1

Assumptions As in Table 8.5

Normalizing
signal

As in Table 8.1

Design
variables

|θ(0)| ≤ M1, |ρ(0)| ≤ M2; Γ = Γ> > 0, γ > 0

Properties (i) ε, εm, ρ, θ, ρ̇, θ̇ ∈ L∞; (ii) ε, εm, ρ̇, θ̇ ∈ S(η2/m2)

8.13. The linearized dynamics of a throttle angle θ to vehicle speed V subsystem
are given by the 3rd order system

V =
bp1p2

(s + a)(s + p1)(s + p2)
θ + d

where p1, p2 > 20, 1 ≥ a > 0 and d is a load disturbance.

(a) Obtain a parametric model for the parameters of the dominant part of
the system.

(b) Design a robust adaptive law for estimating on-line these parameters.
(c) Simulate your estimation scheme when a = 0.1, b = 1, p1 = 50, p2 = 100

and d = 0.02 sin 5t.
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Table 8.7 Robust adaptive law with dead zone for the bilinear
model

Parametric
model

Same as in Table 8.5

θ̇ = Γφ(ε + g)sgn(ρ∗)

ρ̇ = γξ(ε + g)

Adaptive law g =





g0

m if εm < −g0

−g0

m if εm > g0

−ε if |εm| ≤ g0

ε = z−ρξ
m2 , ξ = θ>φ + z1

Assumptions As in Table 8.5

Normalizing
signal

Same as in Table 8.1

Design
variables

g0 > |η|
m ; Γ = Γ> > 0, γ > 0

Properties (i) ε, εm, ρ, θ, ρ̇, θ̇ ∈ L∞; (ii) ε, εm, ρ̇,
θ̇ ∈ S(η2/m2 + g0); (iii) limt→∞ θ(t) = θ̄

8.14 Consider the parameter error differential equation

˙̃
θ = −γu2θ̃ + γdu

that arises in the estimation problem of Section 8.3.1 in the presence of a
bounded disturbance d.

(a) Show that for d = 0 and u = 1

(1+t)
1
2
, the equilibrium θ̃e = 0 is u.s and

a.s but not u.a.s. Verify that for

d(t) = (1 + t)−
1
4

(
5
4
− 2(1 + t)−

1
4

)



8.7. PROBLEMS 633

u = (1 + t)−
1
2 and γ = 1 we have y → 0 as t → ∞ and θ̃(t) → ∞ as

t →∞.

(b) Repeat the same stability analysis for u = u0 where u0 6= 0 is a constant,
and show that for d = 0, the equilibrium θ̃e = 0 is u.a.s. Verify that θ̃(t)
is bounded for any bounded d and obtain an upper bound for |θ̃(t)|.

8.15 Repeat Problem 8.12 for an adaptive law with (i) dead zone; (ii) projection.

8.16 Consider the dynamic uncertainty

η = ∆u(s)u + ∆y(s)y

where ∆u,∆y are proper transfer functions analytic in Re[s] ≥ − δ0
2 for some

known δ0 > 0.

(a) Design a normalizing signal m that guarantees η/m ∈ L∞ when

(i) ∆u, ∆y are biproper.
(ii) ∆u, ∆y are strictly proper.

In each case specify the upper bound for |η|
m .

(b) Calculate the bound for |η|/m when

(i) ∆u(s) =
e−τs − 1

s + 2
, ∆y(s) = µ

s2

(s + 1)2

(ii) ∆u(s) =
µs

µs + 2
,∆y(s) =

µs

(µs + 1)2

where 0 < µ ¿ 1 and 0 < τ ¿ 1.

8.17 Consider the system

y =
e−τsb

(s + a)(µs + 1)
u

where 0 < τ ¿ 1, 0 < µ ¿ 1 and a, b are unknown constants. Obtain a
parametric model for θ∗ = [b, a]> by assuming τ ≈ 0, µ ≈ 0. Show the effect
of the neglected dynamics on the parametric model.



Chapter 9

Robust Adaptive Control
Schemes

9.1 Introduction

As we have shown in Chapter 8, the adaptive control schemes of Chapters 4
to 7 may go unstable in the presence of small disturbances or unmodeled
dynamics. Because such modeling error effects will exist in any implementa-
tion, the nonrobust behavior of the schemes of Chapters 4 to 7 limits their
applicability.

The purpose of this chapter is to redesign the adaptive schemes of the
previous chapters and establish their robustness properties with respect to a
wide class of bounded disturbances and unmodeled dynamics that are likely
to be present in most practical applications.

We start with the parameter identifiers and adaptive observers of Chap-
ter 5 and show that their robustness properties can be guaranteed by de-
signing the plant input to be dominantly rich. A dominantly rich input is
sufficiently rich for the simplified plant model, but it maintains its richness
outside the high frequency range of the unmodeled dynamics. Furthermore,
its amplitude is higher than the level of any bounded disturbance that may
be present in the plant. As we will show in Section 9.2, a dominantly rich
input guarantees exponential convergence of the estimated parameter errors
to residual sets whose size is of the order of the modeling error.

While the robustness of the parameter identifiers and adaptive observers

634
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of Chapter 5 can be established by simply redesigning the plant input with-
out having to modify the adaptive laws, this is not the case with the adaptive
control schemes of Chapters 6 and 7 where the plant input is no longer a
design variable. For the adaptive control schemes presented in Chapters 6
and 7, robustness is established by simply replacing the adaptive laws with
robust adaptive laws developed in Chapter 8.

In Section 9.3, we use the robust adaptive laws of Chapter 8 to mod-
ify the MRAC schemes of Chapter 6 and establish their robustness with
respect to bounded disturbances and unmodeled dynamics. In the case of
the MRAC schemes with unnormalized adaptive laws, semiglobal bounded-
ness results are established. The use of a dynamic normalizing signal in the
case of MRAC with normalized adaptive laws enables us to establish global
boundedness results and mean-square tracking error bounds. These bounds
are further improved by modifying the MRAC schemes using an additional
feedback term in the control input. By choosing a certain scalar design pa-
rameter τ in the control law, the modified MRAC schemes are shown to
guarantee arbitrarily small L∞ bounds for the steady state tracking error
despite the presence of input disturbances. In the presence of unmodeled
dynamics, the choice of τ is limited by the trade-off between nominal per-
formance and robust stability.

The robustification of the APPC schemes of Chapter 7 is presented in
Section 9.5. It is achieved by replacing the adaptive laws used in Chapter 7
with the robust ones developed in Chapter 8.

9.2 Robust Identifiers and Adaptive Observers

The parameter identifiers and adaptive observers of Chapter 5 are designed
for the SISO plant model

y = G0(s)u (9.2.1)

where G0(s) is strictly proper with stable poles and of known order n. In
this section we apply the schemes of Chapter 5 to a more realistic plant
model described by

y = G0(s)(1 + ∆m(s))(u + du) (9.2.2)

where G(s) = G0(s)(1+∆m(s)) is strictly proper of unknown degree; ∆m(s)
is an unknown multiplicative perturbation with stable poles and du is a
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bounded disturbance. Our objective is to estimate the coefficients of G0(s)
and the states of a minimal or nonminimal state representation that cor-
responds to G0(s), despite the presence of ∆m(s), du. This problem is,
therefore, similar to the one we would face in an actual application, i.e.,
(9.2.1) represents the plant model on which our adaptive observer design is
based and (9.2.2) the plant to which the observer will be applied.

Most of the effects of ∆m(s), du on the robustness and performance of
the schemes presented in Chapter 5 that are designed based on (9.2.1) may
be illustrated and understood using the following simple examples.

Example 9.2.1 Effect of bounded disturbance. Let us consider the simple
plant model

y = θ∗u + d

where d is an external bounded disturbance, i.e., |d(t)| ≤ d0, ∀t ≥ 0, u ∈ L∞ and θ∗

is the unknown constant to be identified. The adaptive law based on the parametric
model with d = 0 is

θ̇ = γε1u, ε1 = y − θu (9.2.3)

which for d = 0 guarantees that ε1, θ ∈ L∞ and ε1, θ̇ ∈ L2. If, in addition, u is PE,
then θ(t) → θ∗ as t → ∞ exponentially fast. When d 6= 0, the error equation that
describes the stability properties of (9.2.3) is

˙̃
θ = −γu2θ̃ + γud (9.2.4)

where θ̃ = θ − θ∗. As shown in Section 8.3, if u is PE, then the homogeneous part
of (9.2.4) is exponentially stable, and, therefore, the bounded input γud implies
bounded θ̃. When u is not PE, the homogeneous part of (9.2.4) is only u.s. and
therefore a bounded input does not guarantee bounded θ̃. In fact, as shown in
Section 8.3, we can easily find an input u that is not PE, and a bounded disturbance
d that will cause θ̃ to drift to infinity. One way to counteract parameter drift and
establish boundedness for θ̃ is to modify (9.2.3) using the techniques of Chapter 8.
In this section, we are concerned with the parameter identification of stable plants
which, for accurate parameter estimates, requires u to be PE independent of whether
we have disturbances or not. Because the persistent excitation of u guarantees
exponential convergence, we can establish robustness without modifying (9.2.3).
Let us, therefore, proceed with the analysis of (9.2.4) by assuming that u is PE
with some level α0 > 0, i.e., u satisfies

∫ t+T

t

u2dτ ≥ α0T, ∀t ≥ 0, for some T > 0
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Then from (9.2.4), we obtain

|θ̃(t)| ≤ k1e
−γα

′
0t|θ̃(0)|+ k1

α
′
0

(1− e−γα
′
0t) sup

τ≤t
|u(τ)d(τ)|

for some constants k1, α
′
0 > 0, where α

′
0 depends on α0. Therefore, we have

lim
t→∞

sup
τ≥t

|θ̃(τ)| ≤ k1

α
′
0

lim
t→∞

sup
τ≥t

|u(τ)d(τ)| = k1

α
′
0

sup
τ
|u(τ)d(τ)| (9.2.5)

The bound (9.2.5) indicates that the parameter identification error at steady state
is of the order of the disturbance, i.e., as d → 0 the parameter error also reduces
to zero. For this simple example, it is clear that if we choose u = u0, where u0 is
a constant different from zero, then α

′
0 = u2

0, k1 = 1; therefore, the bound for |θ̃|
is supt |d(t)|/u0. Thus the larger the u0 is, the smaller the parameter error. Large
u0 relative to |d| implies large signal-to-noise ratio and therefore better accuracy of
identification.

Example 9.2.2 (Unmodeled Dynamics) Let us consider the plant

y = θ∗(1 + ∆m(s))u

where ∆m(s) is a proper perturbation with stable poles, and use the adaptive law
(9.2.3) that is designed for ∆m(s) = 0 to identify θ∗ in the presence of ∆m(s). The
parameter error equation in this case is given by

˙̃
θ = −γu2θ̃ + γuη, η = θ∗∆m(s)u (9.2.6)

Because u is bounded and ∆m(s) is stable, it follows that η ∈ L∞ and therefore
the effect of ∆m(s) is to introduce the bounded disturbance term η in the adaptive
law. Hence, if u is PE with level α0 > 0, we have, as in the previous example, that

lim
t→∞

sup
τ≥t

|θ̃(τ)| ≤ k1

α
′
0

sup
t
|u(t)η(t)|

The question now is how to choose u so that the above bound for |θ̃| is as small
as possible. The answer to this question is not as straightforward as in Example
9.2.1 because η is also a function of u. The bound for |θ̃| depends on the choice
of u and the properties of ∆m(s). For example, for constant u = u0 6= 0, we have
α
′
0 = u2

0, k1 = 1 and η = ∆m(s)u0, i.e., limt→∞ |η(t)| = |∆m(0)||u0|, and, therefore,

lim
t→∞

sup
τ≥t

|θ̃(τ)| ≤ |∆m(0)|

If the plant is modeled properly, ∆m(s) represents a perturbation that is small (for
s = jω) in the low-frequency range, which is usually the range of interest. Therefore,
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for u = u0, we should have |∆m(0)| small if not zero leading to the above bound,
which is independent of u0. Another choice of a PE input is u = cos ω0t for some
ω0 6= 0. For this choice of u, because

e
−γ

∫ t

0
cos2 ω0τdτ = e−

γ
2 (t+

sin 2ω0t

2ω0
) = e−

γ
4 (t+

sin 2ω0t

ω0
)e−

γ
4 t ≤ e−

γ
4 t

(where we used the inequality t + sin 2ω0t
ω0

≥ 0,∀t ≥ 0) and supt |η(t)| ≤ |∆m(jω0)|,
we have

lim
t→∞

sup
τ≥t

|θ̃(τ)| ≤ 4|∆m(jω0)|

This bound indicates that for small parameter error, ω0 should be chosen so that
|∆m(jω0)| is as small as possible. If ∆m(s) is due to high frequency unmodeled
dynamics, |∆m(jω0)| is small provided ω0 is a low frequency. As an example,
consider

∆m(s) =
µs

1 + µs

where µ > 0 is a small constant. It is clear that for low frequencies |∆m(jω)| = O(µ)
and |∆m(jω)| → 1 as ω →∞. Because

|∆m(jω0)| = |µω0|√
1 + µ2ω2

0

it follows that for ω0 = 1
µ , we have ∆m(jω0)| = 1√

2
whereas for ω0 < 1

µ we have
|∆m(jω0)| = O(µ). Therefore for accurate parameter identification, the input signal
should be chosen to be PE but the PE property should be achieved with frequencies
that do not excite the unmodeled dynamics. For the above example of ∆m(s),
u = u0 does not excite ∆m(s) at all, i.e., ∆m(0) = 0, whereas for u = sin ω0t with
ω0 ¿ 1

µ the excitation of ∆m(s) is small leading to an O(µ) steady state error for
|θ̃|. 5

In the following section we define the class of excitation signals that
guarantee PE but with frequencies outside the range of the high frequency
unmodeled dynamics.

9.2.1 Dominantly Rich Signals

Let us consider the following plant:

y = G0(s)u + ∆a(s)u (9.2.7)
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where G0(s), ∆a(s) are proper and stable, ∆a(s) is an additive perturbation
of the modeled part G0(s). We like to identify the coefficients of G0(s) by
exciting the plant with the input u and processing the I/O data.

Because ∆a(s)u is treated as a disturbance, the input u should be chosen
so that at each frequency ωi contained in u, we have |G0(jωi)| À |∆a(jωi)|.
Furthermore, u should be rich enough to excite the modeled part of the
plant that corresponds to G0(s) so that y contains sufficient information
about the coefficients of G0(s). For such a choice of u to be possible, the
spectrums of G0(s) and ∆a(s) should be separated, or |G0(jω)| À |∆a(jω)|
at all frequencies. If G0(s) is chosen properly, then |∆a(jω)| should be small
relative to |G0(jω)| in the frequency range of interest. Because we are usually
interested in the system response at low frequencies, we would assume that
|G0(jω)| À |∆a(jω)| in the low-frequency range for our analysis. But at high
frequencies, we may have |G0(jω)| being of the same order or smaller than
|∆a(jω)|. The input signal u should therefore be designed to be sufficiently
rich for the modeled part of the plant but its richness should be achieved
in the low-frequency range for which |G0(jω)| À |∆a(jω)|. An input signal
with these two properties is called dominantly rich [90] because it excites
the modeled or dominant part of the plant much more than the unmodeled
one.

Example 9.2.3 Consider the plant

y =
b

s + a

1− 2µs

1 + µs
u (9.2.8)

where µ > 0 is a small constant and a > 0, b are unknown constants. Because µ is
small, we choose G0(s) = b

s+a as the dominant part and rewrite the plant as

y =
b

s + a

(
1− 3µs

1 + µs

)
u =

b

s + a
u + ∆a(µs, s)u

where

∆a(µs, s) = − 3bµs

(1 + µs)(s + a)

is treated as an additive unmodeled perturbation. Because

|G0(jω0)|2 =
b2

ω2
0 + a2

, |∆a(jµω0, jω0)|2 =
9b2µ2ω2

0

(ω2
0 + a2)(1 + µ2ω2

0)
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it follows that |G0(jω0)| À |∆a(jµω0, jω0)| provided that

|ω0| ¿ 1√
8µ

Therefore, the input u = sinω0t qualifies as a dominantly rich input of order 2 for
the plant (9.2.8) provided 0 < ω0 < O(1/µ) and µ is small. If ω0 = 1

µ , then

|G0(jω0)|2 =
µ2b2

µ2a2 + 1
= O(µ2)

and

|∆a(jµω0, jω0)|2 =
9b2µ2

2(µ2a2 + 1)
> |G0(jω0)|2

Hence, for ω0 ≥ O( 1
µ ), the input u = sin(ω0t) is not dominantly rich because it

excites the unmodeled dynamics and leads to a small signal to noise ratio.
Let us now examine the effect of the dominantly rich input u = sin(ω0t), with

0 ≤ ω0 < O(1/µ), on the performance of an identifier designed to estimate the
parameters a, b of the plant (9.2.8). Equation (9.2.8) can be expressed as

z = θ∗>φ + η (9.2.9)

where

z =
s

s + λ
y, φ =

[
1

s + λ
u,− 1

s + λ
y

]>
, θ∗ = [b, a]>

λ > 0 is a design parameter and

η = − 3bµs

(s + λ)(1 + µs)
u

is the modeling error term, which is bounded because u ∈ L∞ and λ, µ > 0. The
gradient algorithm for estimating θ∗ when η = 0 is given by

θ̇ = Γεφ
ε = z − ẑ, ẑ = θ>φ

(9.2.10)

The error equation that describes the stability properties of (9.2.10) when applied
to (9.2.9) with η 6= 0 is given by

˙̃
θ = −Γφφ>θ̃ + Γφη (9.2.11)

Because φ ∈ L∞, it follows from the results of Chapter 4 that if φ is PE with level
α0 > 0, then the homogeneous part of (9.2.11) is exponentially stable which implies
that

lim
t→∞

sup
τ≥t

|θ̃(τ)| ≤ c

β0
sup

t
|φ(t)η(t)| (9.2.12)
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where c = ‖Γ‖ and β0 depends on Γ, α0 in a way that as α0 → 0, β0 → 0 (see proof
of Theorem 4.3.2 in Section 4.8). Therefore, for a small error bound, the input u
should be chosen to guarantee that φ is PE with level α0 > 0 as high as possible
(without increasing supt |φ(t)|) and with supt |η(t)| as small as possible.

To see how the unmodeled dynamics affect the dominant richness properties of
the excitation signal, let us consider the input signal u = sinω0t where ω0 = O( 1

µ ).
As discussed earlier, this signal u is not dominantly rich because it excites the high-
frequency unmodeled dynamics. The loss of the dominant richness property in this
case can also be seen by exploring the level of excitation of the signal φ. If we
assume zero initial conditions, then from the definition of φ, we can express φ as

φ =
[

A1(ω0) sin(ω0t + ϕ1)
A2(ω0) sin(ω0t + ϕ2)

]

where

A1(ω0) =
1√

ω2
0 + λ2

, A2(ω0) =
|b|

√
1 + 4µ2ω2

0√
(ω2

0 + λ2)(ω2
0 + a2)(1 + µ2ω2

0)

and ϕ1, ϕ2 also depend on ω0. Thus, we can calculate

∫ t+ 2π
ω0

t

φ(τ)φ>(τ)dτ=
π

ω0

[
A2

1 A1A2 cos(ϕ1 − ϕ2)
A1A2 cos(ϕ1 − ϕ2) A2

2

]
(9.2.13)

For any t ≥ 0 and T ≥ 2π
ω0

, it follows from (9.2.13) that

1
T

∫ t+T

t

φ(τ)φ>(τ)dτ =
1
T

{
nT−1∑

i=0

∫ t+(i+1) 2π
ω0

t+i 2π
ω0

φφ>dτ +
∫ t+T

t+nT

φφ>dτ

}

≤ 1
T

(
nT π

ω0
+

π

ω0

)[
A2

1 A1A2 cos(ϕ1 − ϕ2)
A1A2 cos(ϕ1 − ϕ2) A2

2

]

where nT is the largest integer that satisfies nT ≤ Tω0
2π . By noting that nT π

Tω0
≤ 1

2

and π
Tω0

≤ 1
2 , it follows that

1
T

∫ t+T

t

φ(τ)φ>(τ)dτ ≤
[

A2
1 A1A2 cos(ϕ1 − ϕ2)

A1A2 cos(ϕ1 − ϕ2) A2
2

]

≤ α

[
A2

1 0
0 A2

2

]

for any constant α ≥ 2. Taking ω0 = c
µ for some constant c > 0 (i.e., ω0 = O( 1

µ ) ),
we have

A1 =
µ√

c2 + λ2µ2
, A2 =

|b|√1 + 4c2µ2

√
(c2 + λ2µ2)(c2 + a2µ2)(1 + c2)
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which implies that
1
T

∫ t+T

t

φ(τ)φ>(τ)dτ ≤ O(µ2)I (9.2.14)

for all µ ∈ [0, µ∗] where µ∗ > 0 is any finite constant. That is, the level of PE of φ is
of O(µ2). As µ → 0 and ω0 →∞, we have 1

T

∫ t+T

t
φ(τ)φ>(τ)dτ → 0 and the level

of PE vanishes to zero. Consequently, the upper bound for limt→∞ supτ≥t |θ̃(τ)|
given by (9.2.12) will approach infinity which indicates that a quality estimate for
θ∗ cannot be guaranteed in general if the nondominantly rich signal u = sinω0t
with ω0 = O( 1

µ ) is used to excite the plant.
On the other hand if u = sinω0t is dominantly rich, i.e., 0 < |ω0| < O( 1

µ ), then
we can show that the level of PE of φ is strictly greater than O(µ) and the bound
for supt |η(t)| is of O(µ) (see Problem 9.1). 5

Example 9.2.3 indicates that if the reference input signal is dominantly
rich, i.e., it is rich for the dominant part of the plant but with frequencies
away from the parasitic range, then the signal vector φ in the adaptive law
is PE with a high level of excitation relative to the modeling error. This
high level of excitation guarantees that the PE property of φ(t) cannot be
destroyed by the unmodeled dynamics. Furthermore, it is sufficient for the
parameter error to converge exponentially fast (in the case of the gradient
algorithm (9.2.10)) to a small residual set.

Let us now consider the more general stable plant

y = G0(s)u + µ∆a(µs, s)u + d (9.2.15)

where G0(s) corresponds to the dominant part of the plant and µ∆a(µs, s)
is an additive perturbation with the property limµ→0 µ∆a(µs, s) = 0 for
any given s and d is a bounded disturbance. The variable µ > 0 is the
small singular perturbation parameter that can be used as a measure of the
separation of the spectrums of the dominant dynamics and the unmodeled
high frequency ones.

Definition 9.2.1 (Dominant Richness) A stationary signal u : R+ 7→ R
is called dominantly rich of order n for the plant (9.2.15) if (i) it consists of
distinct frequencies ω1, ω2, . . . , ωN where N ≥ n

2 ; (ii) ωi satisfies

|ωi| < O

(
1
µ

)
, |ωi − ωk| > O(µ), for i 6= k; i, k = 1, . . . , N
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and (iii) the amplitude of the spectral line at ωi defined as

fu(ωi)
4
= lim

T→∞
1
T

∫ t+T

t
u(τ)e−jωiτdτ ∀t ≥ 0

satisfies
|fu(ωi)| > O(µ) + O(d), i = 1, 2, . . . , N

For example, the input u = A1sinω1t + A2sinω2t is dominantly rich of
order 4 for the plant (9.2.15) with a second order G0(s) and d = 0 provided
|ω1 − ω2| > O(µ); |ω1|, |ω2| < O( 1

µ) and |A1|, |A2| > O(µ).

9.2.2 Robust Parameter Identifiers

Let us consider the plant

y = G0(s)(1 + µ∆m(µs, s))u = G0(s)u + µ∆a(µs, s)u (9.2.16)

where

G0(s) =
bmsm+ bm−1s

m−1+ · · ·+ b0

sn+ an−1sn−1+ · · ·+ a0
=

Zp(s)
Rp(s)

, ∆a(µs, s) = G0(s)∆m(µs, s)

and G0(s) is the transfer function of the modeled or dominant part of the
plant, ∆m(µs, s) is a multiplicative perturbation that is due to unmodeled
high frequency dynamics as well as other small perturbations; µ > 0 and
limµ→0 µ∆a(µs, s) = 0 for any given s. The overall transfer function is
assumed to be strictly proper with stable poles. Our objective is to identify
the coefficients of G0(s) despite the presence of the modeling error term
µ∆a(µs, s)u.

As in the ideal case, (9.2.16) can be expressed in the linear parametric
form

z = θ∗>φ + µη (9.2.17)

where θ∗ = [bm, . . . , b0, an−1, . . . , a0]>,

z =
sn

Λ(s)
y, φ =

[
α>m(s)
Λ(s)

u, −α>n−1(s)
Λ(s)

y

]>
, η =

Zp(s)
Λ(s)

∆m(µs, s)u

αi(s) = [si, si−1, . . . , 1]> and Λ(s) is a Hurwitz polynomial of degree n. As
shown in Chapter 8, the adaptive law

θ̇ = Γεφ, ε = z − ẑ, ẑ = θ>φ (9.2.18)
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developed using the gradient method to identify θ∗ on-line may not guarantee
the boundedness of θ for a general class of bounded inputs u. If, however,
we choose u to be dominantly rich of order n + m + 1 for the plant (9.2.16),
then the following theorem establishes that the parameter error θ(t) − θ∗

converges exponentially fast to a residual set whose size is of O(µ).

Theorem 9.2.1 Assume that the nominal transfer function G0(s) has no
zero-pole cancellation. If u is dominantly rich of order n+m+1, then there
exists a µ∗ > 0 such that for µ ∈ [0, µ∗), the adaptive law (9.2.18) or any
stable adaptive law from Tables 4.2, 4.3, and 4.5, with the exception of the
pure least-squares algorithm, based on the parametric model (9.2.17) with
η = 0 guarantees that ε, θ ∈ L∞ and θ converges exponentially fast to the
residual set

Re = {θ | |θ − θ∗| ≤ cµ}
where c is a constant independent of µ.

To prove Theorem 9.2.1 we need to use the following Lemma that gives
conditions that guarantee the PE property of φ for µ 6= 0. We express the
signal vector φ as

φ = H0(s)u + µH1(µs, s)u (9.2.19)

where

H0(s) =
1

Λ(s)

[
α>m(s),−α>n−1(s)G0(s)

]>

H1(µs, s) =
1

Λ(s)

[
0, . . . , 0,−α>n−1(s)G0(s)∆m(µs, s)

]>

Lemma 9.2.1 Let u : R+ 7→ R be stationary and H0(s),H1(µs, s) satisfy
the following assumptions:

(a) The vectors H0(jω1), H0(jω2), . . ., H0(jωn̄) are linearly independent

on Cn̄ for all possible ω1, ω2, . . . , ωn̄ ∈ R, where n̄
4
= n + m + 1 and

ωi 6= ωk for i 6= k.

(b) For any set {ω1, ω2, . . . , ωn̄} satisfying |ωi − ωk| > O(µ) for i 6= k and

|ωi| < O( 1
µ), we have | det(H̄)| > O(µ) where H̄

4
= [H0(jω1), H0(jω2),

. . . , H0(jωn̄)].
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(c) |H1(jµω, jω)| ≤ c for some constant c independent of µ and for all
ω ∈ R.

Then there exists a µ∗ > 0 such that for µ ∈ [0, µ∗), φ is PE of order n̄ with
level of excitation α1 > O(µ) provided that the input signal u is dominantly
rich of order n̄ for the plant (9.2.16).

Proof of Lemma 9.2.1: Let us define

φ0 = H0(s)u, φ1 = H1(µs, s)u

Because φ0 is the signal vector for the ideal case, i.e., H0(s) does not depend on µ,
u being sufficiently rich of order n̄ together with the assumed properties (a), (b) of
H0(s) imply, according to Theorem 5.2.1, that φ0 is PE with level α0 > 0 and α0

is independent of µ, i.e.,

1
T

∫ t+T

t

φ0(τ)φ>0 (τ)dτ ≥ α0I (9.2.20)

∀t ≥ 0 and some T > 0. On the other hand, because H1(µs, s) is stable and
|H1(jµω, jω)| ≤ c for all ω ∈ R, we have φ1 ∈ L∞ and

1
T

∫ t+T

t

φ1(τ)φ>1 (τ)dτ ≤ βI (9.2.21)

for some constant β which is independent of µ. Note that

1
T

∫ t+T

t

φ(τ)φ>(τ)dτ =
1
T

∫ t+T

t

(φ0(τ) + µφ1(τ))(φ>0 (τ) + µφ>1 (τ))dτ

≥ 1
T

{∫ t+T

t

φ0(τ)φ>0 (τ)
2

dτ − µ2

∫ t+T

t

φ1(τ)φ>1 (τ)dτ

}

where the second inequality is obtained by using (x + y)(x + y)> ≥ xx>
2 − yy>, we

obtain that
1
T

∫ t+T

t

φ(τ)φ>(τ)dτ ≥ α0

2
I − µ2βI

which implies that φ has a level of PE α1 = α0
4 , say, for µ ∈ [0, µ∗) where µ∗

4
=

√
α0
4β .
2

Lemma 9.2.1 indicates that if u is dominantly rich, then the PE level of
φ0, the signal vector associated with the dominant part of the plant, is much
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higher than that of µφ1, the signal vector that is due to the unmodeled part
of the plant, provided of course that µ is relatively small. The smaller the
parameter µ is, the bigger the separation of the spectrums of the dominant
and unmodeled high frequency dynamics.

Let us now use Lemma 9.2.1 to prove Theorem 9.2.1.
Proof of Theorem 9.2.1 The error equation that describes the stability properties
of the parameter identifier is given by

˙̃
θ = −Γφφ>θ̃ + µΓφη (9.2.22)

where θ̃
4
= θ−θ∗ is the parameter error. Let us first assume that all the conditions of

Lemma 9.2.1 are satisfied so that for a dominantly rich input and for all µ ∈ [0, µ∗),
the signal vector φ is PE with level α1 > O(µ). Using the results of Chapter 4 we
can show that the homogeneous part of (9.2.22) is u.a.s., i.e., there exists constants
α > 0, β > 0 independent of µ such that the transition matrix Φ(t, t0) of the
homogeneous part of (9.2.22) satisfies

‖Φ(t, t0)‖ ≤ βe−α(t−t0) (9.2.23)

Therefore, it follows from (9.2.22), (9.2.23) that

|θ̃(t)| ≤ ce−αt + µc, ∀µ ∈ [0, µ∗)

where c ≥ 0 is a finite constant independent of µ, which implies that θ, ε ∈ L∞ and
θ(t) converges to the residual set Re exponentially fast.

Let us now verify that all the conditions of Lemma 9.2.1 assumed above are
satisfied. These conditions are

(a) H0(jω1), . . . , H0(jωn̄) are linearly independent for all possible ω1, ω2, . . . , ωn̄

where ωi 6= ωk, i, k = 1, . . . , n̄; n̄ = n + m + 1

(b) For any set {ω1, ω2, . . . , ωn̄} where |ωi − ωk| > O(µ), i 6= k and |ωi| < O( 1
µ ),

we have
|det{[H0(jω1),H0(jω2), . . . ,H0(jωn̄)]}| > O(µ)

(c) |H1(µjω, jω)| ≤ c for all ω ∈ R
It has been shown in the proof of Theorem 5.2.4 that the coprimeness of the

numerator and denominator polynomials of G0(s) implies the linear independence
of H0(jω1),H0(jω2), . . . , H0(jωn̄) for any ω1, ω2, . . . , ωn̄ with ωi 6= ωk and thus (a)
is verified. From the definition of H1(µs, s) and the assumption of G0(s)∆m(µs, s)
being proper, we have |H1(µjω, jω)| ≤ c for some constant c, which verifies (c).
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To establish condition (b), we proceed as follows: From the definition of H0(s),
we can write

H0(s) = Q0
1

Λ(s)Rp(s)




sn̄−1

sn̄−2

...
s
1




where Q0 ∈ Rn̄×n̄ is a constant matrix. Furthermore, Q0 is nonsingular, otherwise,
we can conclude that H0(jω1),H0(jω2), . . . , H0(jωn̄) are linearly dependent that
contradicts with (a) which we have already proven to be true. Therefore,

[H0(jω1), . . . , H0(jωn̄)]

= Q0




(jω1)n̄−1 (jω2)n̄−1 · · · (jωn̄)n̄−1

(jω1)n̄−2 (jω2)n̄−2 · · · (jωn̄)n̄−2

...
...

...
jω1 jω2 · · · jωn̄

1 1 · · · 1



diag

{
1

Λ(jωi)Rp(jωi)

}
(9.2.24)

Noting that the middle factor matrix on the right hand side of (9.2.24) is a Van-
dermonde matrix [62], we have

det {[H0(jω1), . . . , H0(jωn̄)]} = det(Q0)
n̄∏

i=1

1
Λ(jωi)Rp(jωi)

∏

1≤i<k≤n̄

(jωi − jωk)

and, therefore, (b) follows immediately from the assumption that |ωi−ωk| > O(µ).
2

Theorem 9.2.1 indicates that if the input u is dominantly rich of order
n + m + 1 and there is sufficient separation between the spectrums of the
dominant and unmodeled high frequency dynamics, i.e., µ is small, then the
parameter error bound at steady state is small. The condition of dominant
richness is also necessary for the parameter error to converge exponentially
fast to a small residual set in the sense that if u is sufficiently rich but not
dominantly rich then we can find an example for which the signal vector φ

loses its PE property no matter how fast the unmodeled dynamics are. In
the case of the pure least-squares algorithm where the matrix Γ in (9.2.22)
is replaced with P generated from Ṗ = −P φφ>

m2 P , we cannot establish the
u.a.s. of the homogeneous part of (9.2.22) even when φ is PE. As a result,
we are unable to establish (9.2.23) and therefore the convergence of θ to a
residual set even when u is dominantly rich.
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9.2.3 Robust Adaptive Observers

In this section we examine the stability properties of the adaptive observers
developed in Chapter 5 for the plant model

y = G0(s)u (9.2.25)

when applied to the plant

y = G0(s)(1 + µ∆m(µs, s))u (9.2.26)

with multiplicative perturbations. As in Section 9.2.2, the overall plant
transfer function in (9.2.26) is assumed to be strictly proper with stable
poles and limµ→0 µG0(s)∆m(µs, s) = 0 for any given s. A minimal state-
space representation of the dominant part of the plant associated with G0(s)
is given by

ẋα =


−ap

∣∣∣∣∣∣∣

In−1

−−−−
0


 xα + bpu, xα ∈ Rn

y = [1, 0, . . . , 0]xα + µη

η = G0(s)∆m(µs, s)u (9.2.27)

Because the plant is stable and u ∈ L∞, the effect of the plant perturbation
appears as an output bounded disturbance.

Let us consider the adaptive Luenberger observer designed and analyzed
in Section 5.3, i.e.,

˙̂x = Â(t)x̂ + b̂p(t)u + K(t)(y − ŷ), x̂ ∈ Rn

ŷ = [1, 0, . . . , 0]x̂ (9.2.28)

where x̂ is the estimate of xα,

Â(t) =


−âp

∣∣∣∣∣∣∣

In−1

−−−−
0


 , K(t) = a∗ − âp

âp, b̂p are the estimates of ap, bp, respectively, and a∗ ∈ Rn is a constant
vector, and such that

A∗ =


−a∗

∣∣∣∣∣∣∣

In−1

−−−−
0
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is a stable matrix. It follows that the observation error x̃
4
= xα − x̂ satisfies

˙̃x = A∗x̃− b̃pu + ãpy + µ(ap − a∗)η (9.2.29)

where A∗ is a stable matrix; ãp
4
= âp − ap, b̃p

4
= b̂p − bp are the parameter

errors. The parameter vectors ap, bp contain the coefficients of the denomi-
nator and numerator of G0(s) respectively and can be estimated using the
adaptive law described by equation (9.2.18) presented in Section 9.2.2 or
any other adaptive law from Tables 4.2, 4.3. The stability properties of
the adaptive Luenberger observer described by (9.2.28) and (9.2.18) or any
adaptive law from Tables 4.2 and 4.3 based on the parametric model (9.2.17)
are given by the following theorem:

Theorem 9.2.2 Assume that the input u is dominantly rich of order 2n

for the plant (9.2.26) and G0(s) has no zero-pole cancellation. The adap-
tive Luenberger observer consisting of equation (9.2.28) with (9.2.18) or any
adaptive law from Tables 4.2 and 4.3 (with the exception of the pure least-
squares algorithm) based on the parametric model (9.2.17) with µ = 0 applied
to the plant (9.2.26) with µ 6= 0 has the following properties: There exists a
µ∗ > 0 such that for all µ ∈ [0, µ∗)

(i) All signals are u.b.

(ii) The state observation error x̃ and parameter error θ̃ converge exponen-
tially fast to the residual set

Re =
{

x̃, θ̃
∣∣∣ |x̃|+ |θ̃| ≤ cµ

}

where c ≥ 0 is a constant independent of µ.

Proof: The proof follows directly from the results of Section 9.2.2 where we have
established that a dominantly rich input guarantees signal boundedness and expo-
nential convergence of the parameter estimates to a residual set where the parameter
error θ̃ satisfies |θ̃| ≤ cµ provided µ ∈ [0, µ∗) for some µ∗ > 0. Because |b̃p|, |ãp|
converge exponentially to residual sets whose size is of O(µ) and u, y, η are bounded
for any µ ∈ [0, µ∗), the convergence of x̃, θ̃ to the set Re follows directly from the
stability of the matrix A∗ and the error equation (9.2.29). 2
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Theorem 9.2.2 shows that for stable plants, the combination of a state
observer with an adaptive law from Tables 4.2 and 4.3 developed for modeling
error and disturbance free parametric models leads to a robust adaptive
observer provided that the input signal u is restricted to be dominantly
rich. If u is not dominantly rich, then the results of Theorem 9.2.2 are no
longer valid. If, however, instead of the adaptive laws of Tables 4.2 and 4.3,
we use robust adaptive laws from Tables 8.1 to 8.4, we can then establish
signal boundedness even when u is not dominantly rich. Dominant richness,
however, is still needed to establish the convergence of the parameter and
state observation errors to residual sets whose size is of the order of the
modeling error. As in the case of the identifiers, we are unable to establish
the convergence results of Theorem 9.2.1 for the pure least-squares algorithm.

9.3 Robust MRAC

In Chapter 6, we designed and analyzed a wide class of MRAC schemes
for a plant that is assumed to be finite dimensional, LTI, whose input and
output could be measured exactly and whose transfer function G0(s) satisfies
assumptions P1 to P4 given in Section 6.3.1. We have shown that under these
ideal assumptions, an adaptive controller can be designed to guarantee signal
boundedness and convergence of the tracking error to zero.

As we explained in Chapter 8, in practice no plant can be modeled ex-
actly by an LTI finite-dimensional system. Furthermore, the measurement
of signals such as the plant input and output are usually contaminated with
noise. Consequently, it is important from the practical viewpoint to exam-
ine whether the MRAC schemes of Chapter 6 can perform well in a realistic
environment where G0(s) is not the actual transfer function of the plant
but instead an approximation of the overall plant transfer function, and the
plant input and output are affected by unknown disturbances. In the pres-
ence of modeling errors, exact model-plant transfer function matching is no
longer possible in general and therefore the control objective of zero tracking
error at steady state for any reference input signal may not be achievable.
The best one can hope for, in the nonideal situation in general, is signal
boundedness and small tracking errors that are of the order of the modeling
error at steady state.

In this section we consider MRAC schemes that are designed for a simpli-



9.3. ROBUST MRAC 651

fied model of the plant but are applied to a higher-order plant. For analysis
purposes, the neglected perturbations in the plant model can be character-
ized as unstructured uncertainties of the type considered in Chapter 8. In
our analysis we concentrate on multiplicative type of perturbations. The
same analysis can be carried out for additive and stable factor perturbations
and is left as an exercise for the reader.

We assume that the plant is of the form

yp = G0(s)(1 + ∆m(s))(up + du) (9.3.1)

where G0(s) is the modeled part of the plant, ∆m(s) is an unknown mul-
tiplicative perturbation with stable poles and du is a bounded input dis-
turbance. We assume that the overall plant transfer function and G0 are
strictly proper. This implies that G0∆m is also strictly proper. We design
the MRAC scheme assuming that the plant model is of the form

yp = G0(s)up, G0(s) = kp
Zp(s)
Rp(s)

(9.3.2)

where G0(s) satisfies assumptions P1 to P4 in Section 6.3.1, but we imple-
ment it on the plant (9.3.1). The effect of the dynamic uncertainty ∆m(s)
and disturbance du on the stability and performance of the MRAC scheme
is analyzed in the next sections.

We first treat the case where the parameters of G0(s) are known exactly.
In this case no adaptation is needed and therefore the overall closed-loop
plant can be studied using linear system theory.

9.3.1 MRC: Known Plant Parameters

Let us consider the MRC law

up = θ∗>1
α(s)
Λ(s)

up + θ∗>2
α(s)
Λ(s)

yp + θ∗3yp + c∗0r (9.3.3)

developed in Section 6.3.2 and shown to meet the MRC objective for the
plant model (9.3.2). Let us now apply (9.3.3) to the actual plant (9.3.1) and
analyze its properties with respect to the multiplicative uncertainty ∆m(s)
and input disturbance du.
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C(s)

∆m(s)

G0(s)

F (s)

lΣ lΣlΣ- - - -

-

- -

¾

6

? ?r up yp

du

Plant

+
− +

+
+

+

Figure 9.1 Closed-loop MRC scheme.

Following the analysis of Section 6.3.2 (see Figure 6.4), the closed-loop
plant is represented as shown in Figure 9.1 where

C(s) =
Λ(s)c∗0

Λ(s)− θ∗>1 α(s)
, F (s) = −θ∗>2 α(s) + θ∗3Λ(s)

c∗0Λ(s)

The closed-loop plant is in the form of the general feedback system in
Figure 3.2 analyzed in Chapter 3. Therefore using equation (3.6.1) we have

[
up

yp

]
=




C

1 + FCG

−FCG

1 + FCG
CG

1 + FCG

G

1 + FCG




[
r
du

]
(9.3.4)

where G = G0(1 + ∆m) is the overall transfer function which is assumed
to be strictly proper. The stability properties of (9.3.4) are given by the
following Theorem:

Theorem 9.3.1 Assume that θ∗ = [θ∗>1 , θ∗>2 , θ∗3, c∗0]> is chosen so that for
∆m(s) = 0, du = 0, the closed-loop plant is stable and the matching equation

CG0

1 + FCG0
= Wm

where Wm(s) = km
Zm(s)
Rm(s) is the transfer function of the reference model, is

satisfied, i.e., the MRC law (9.3.3) meets the MRC objective for the simplified
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plant model (9.3.2). If
∥∥∥∥∥
θ∗>2 α(s) + θ∗3Λ(s)

Λ(s)
kp

km
Wm(s)∆m(s)

∥∥∥∥∥∞
< 1 (9.3.5)

then the closed-loop plant is internally stable. Furthermore there exists a
constant δ∗ > 0 such that for any δ ∈ [0, δ∗] the tracking error e1 = yp − ym

satisfies
lim
t→∞ sup

τ≥t
|e1(τ)| ≤ ∆r0 + cd0 (9.3.6)

where r0, d0 are upper bounds for |r(t)|, |du(t)|, c ≥ 0 is a finite constant

∆
4
=

∥∥∥∥∥
Wm(s)(Λ(s)− C∗

1 (s))Rp(s)
Zp(s)[kmΛ(s)− kpWm(s)D∗

1(s)∆m(s)]
Wm(s)∆m(s)

∥∥∥∥∥
2δ

with C∗
1 (s) = θ∗>1 α(s), D∗

1(s) = θ∗>2 α(s) + θ∗3Λ(s) and ym = Wm(s)r is the
output of the reference model.

Proof A necessary and sufficient condition for r, du ∈ L∞ to imply that yp, up ∈ L∞
is that the poles of each element of the transfer matrix in (9.3.4) are in C−. It can
be shown using the expressions of F, C and G that the characteristic equation of
each element of the transfer matrix in (9.3.4) is given by

(Λ− C∗1 )Rp −D∗
1kpZp(1 + ∆m) = 0 (9.3.7)

Using the matching equation (6.3.13), i.e., (Λ − C∗1 )Rp − kpD
∗
1Zp = ZpΛ0Rm, the

characteristic equation (9.3.7) becomes

Zp(Λ0Rm − kpD
∗
1∆m) = 0

where Λ0 is a factor of Λ = Λ0Zm. Because Zp is Hurwitz, we examine the roots of

Λ0Rm − kpD
∗
1∆m = 0

which can be also written as

1− D∗
1kp

Λ0Rm
∆m = 1− kpD

∗
1Wm∆m

kmΛ
= 0

Because the poles of D∗
1Wm∆m

Λ are in C−, it follows from the Nyquist criterion that
for all ∆m satisfying ∥∥∥∥

kp

km

D∗
1(s)Wm(s)∆m(s)

Λ(s)

∥∥∥∥
∞

< 1 (9.3.8)
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the roots of (9.3.7) are in C−. Hence, (9.3.8), (9.3.4) imply that for r, du ∈ L∞, we
have up, yp ∈ L∞.

Because F (s) = − D∗
1 (s)

c∗0Λ(s) has stable poles and r, du, up, yp ∈ L∞, it follows from
Figure 9.1 that all signals in the closed-loop scheme are bounded.

The tracking error e1 = yp − ym is given by

e1 =
Wm∆m

1 + FCG0(1 + ∆m)
r +

G0(1 + ∆m)
1 + FCG0(1 + ∆m)

du (9.3.9)

Substituting for F,C, G0 and using the matching equation, we have

e1 =
Wm(Λ− C∗1 )Rp

Zp(kmΛ− kpWmD∗
1∆m)

Wm∆mr +
kp(Λ− C∗1 )Wm(1 + ∆m)
(kmΛ− kpWmD∗

1∆m)
du (9.3.10)

Due to G(s), G0(s) being strictly proper and the fact that Wm(s) has the same
relative degree as G0(s), it follows that Wm(s)∆m(s) is strictly proper, which implies
that the transfer function e1(s)/r(s) is strictly proper and e1(s)/du(s) is proper.
Furthermore, both e1(s)/r(s), e1(s)/du(s) have stable poles (due to (9.3.5)), which
implies that there exists a constant δ∗ > 0 such that e1(s)

r(s) , e1(s)
du(s) are analytic in

Re[s] ≥ − δ∗
2 . Using the properties of the L2δ norm, Lemma 3.3.2, (9.3.10) and the

fact that r, du ∈ L∞, the bound for the tracking error given by (9.3.6) follows. 2

Remark 9.3.1 The expression for the tracking error given by (9.3.9) sug-
gests that by increasing the loop gain FCG0, we may be able to im-
prove the tracking performance. Because F,C, G0 are constrained by
the matching equation, any changes in the loop gain must be performed
under the constraint of the matching equation (6.3.13). One can also
select Λ(s) and Wm(s) in an effort to minimize the H∞ norm in the
L2e bound for e1, i.e.,

‖e1t‖2≤
∥∥∥∥

Wm∆m

1+FCG0(1+∆m)

∥∥∥∥
∞
‖rt‖2 +

∥∥∥∥
G0(1 + ∆m)

1+FCG0(1+∆m)

∥∥∥∥
∞
‖dut‖2

under the constraint of the matching equation (6.3.13). Such a con-
strained minimization problem is beyond the scope of this book.

Example 9.3.1 Let us consider the plant

y =
1

s + a
(1 + ∆m(s))u = G(s)u (9.3.11)
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where G(s) is the overall strictly proper transfer function of the plant and ∆m is
a multiplicative perturbation. The control objective is to choose u such that all
signals in the closed-loop plant are bounded and y tracks as close as possible the
output ym of the reference model

ym =
bm

s + am
r

where am, bm > 0. The plant (9.3.11) can be modeled as

y =
1

s + a
u (9.3.12)

The MRC law based on (9.3.12) given by

u = θ∗y + bmr

where θ∗ = a− am meets the control objective for the plant model (9.3.12) exactly.
Let us now implement the same control law on the actual plant (9.3.11). The
closed-loop plant is given by

y =
bm(1 + ∆m(s))

s + am − θ∗∆m(s)
r

whose characteristic equation is

s + am − θ∗∆m(s) = 0

or

1− θ∗∆m(s)
s + am

= 0

Because θ∗∆m(s)
s+am

is strictly proper with stable poles, it follows from the Nyquist
criterion that a sufficient condition for the closed-loop system to be stable is that
∆m(s) satisfies ∥∥∥∥

θ∗∆m(s)
s + am

∥∥∥∥
∞

=
∥∥∥∥

(a− am)∆m(s)
s + am

∥∥∥∥
∞

< 1 (9.3.13)

The tracking error e1 = y − ym satisfies

e1 =
bm

(s + am)
(s + am + θ∗)

(s + am − θ∗∆m(s))
∆m(s)r

Because r ∈ L∞ and the transfer function e1(s)/r(s) has stable poles for all ∆m

satisfying (9.3.13), we have that

lim
t→∞

sup
τ≥t

|e1(τ)| ≤ ∆r0
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where |r(t)| ≤ r0 and

∆ =
∥∥∥∥

bm

s + am

(s + am + θ∗)
(s + am − θ∗∆m(s))

∆m(s)
∥∥∥∥

2δ

Furthermore,

‖e1t‖2 ≤
∥∥∥∥∥∥

bm∆m(s)(1 + θ∗
(s+am) )

(s + am)(1− θ∗∆m(s)
(s+am) )

∥∥∥∥∥∥
∞

‖rt‖2

Therefore, the smaller the term ‖∆m(s)
s+am

‖∞ is, the better the stability margin and
tracking performance will be.

Let us consider the case where

∆m(s) = − 2µs

1 + µs

and µ > 0 is small, that arises from the parameterization of the nonminimum phase
plant

y =
1− µs

(s + a)(1 + µs)
u =

1
s + a

(
1− 2µs

1 + µs

)
u (9.3.14)

For this ∆m(s), condition (9.3.13) becomes
∥∥∥∥

(a− am)
(s + am)

2µs

(1 + µs)

∥∥∥∥
∞

< 1

which is satisfied provided

µ <
1

2|a− am|
Similarly, it can be shown that ∆ = O(µ), i.e., the faster the unmodeled pole and
zero in (9.3.14) are, the better the tracking performance. As µ → 0, ∆ → 0 and
therefore limt→∞ supτ≥t |e1(τ)| → 0. 5

9.3.2 Direct MRAC with Unnormalized Adaptive Laws

The adaptive control schemes of Chapter 6 designed for the simplified plant
model (9.3.2) can no longer be guaranteed to be stable when applied to the
actual plant (9.3.1) with ∆m(s) 6= 0 or du 6= 0. We have already demon-
strated various types of instability that may arise due to the presence of
modeling errors using simple examples in Section 8.3. The main cause of in-
stability is the adaptive law that makes the overall closed-loop plant nonlin-
ear and more susceptible to modeling error effects. We have already proposed
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various types of modifications for changing the adaptive laws to counteract
instabilities and improve performance in Chapter 8. In this section, we use
some of these modification techniques to improve the robustness properties
of the direct MRAC schemes with unnormalized adaptive laws developed in
Section 6.4.

We start by considering the same plant as in Example 9.3.1, i.e.,

y =
1

s + a
(1 + ∆m(s))u (9.3.15)

where a is unknown and u is to be chosen so that the closed-loop plant is
stable and y tracks the output ym of the reference model

ym =
bm

s + am
r

as close as possible. The control law based on the modeled part of the plant
obtained by neglecting ∆m(s) is given by

u = θy + bmr (9.3.16)

where θ is to be generated by an adaptive law. Letting θ̃ = θ − θ∗ where
θ∗ = a − am is the unknown controller parameter (see Example 9.3.1), we
write the control law as

u = θ∗y + bmr + θ̃y

and use it in (9.3.15) to obtain the closed-loop plant

y = W (s)(θ̃y + bmr)

where

W (s) =
1 + ∆m(s)

s + a− θ∗ − θ∗∆m(s)
=

1 + ∆m(s)
s + am − θ∗∆m(s)

The condition for W (s) to have stable poles is the same as in the non-
adaptive case (i.e., θ̃ = 0) and is given by

∥∥∥∥
θ∗∆m(s)
s + am

∥∥∥∥∞
< 1 (9.3.17)
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Defining the tracking error e1 = y − ym, we obtain the error equation

e1 = W (s)θ̃y +
(

W (s)− 1
s + am

)
bmr

or

e1 = W (s)θ̃y +
∆m(s)(s + a)

(s + am)(s + am − θ∗∆m(s))
bmr (9.3.18)

The ideal error equation obtained by setting ∆m(s) ≡ 0 is

e1 =
1

s + am
θ̃y

which, based on the results of Chapter 4, suggests the adaptive law

θ̇ = ˙̃
θ = −γe1y (9.3.19)

due to the SPR property of 1
s+am

. As we showed in Chapter 4, the adaptive
control law (9.3.16), (9.3.19) meets the control objective for the plant (9.3.15)
provided ∆m(s) ≡ 0.

The presence of ∆m(s) introduces an external unknown input that de-
pends on ∆m, r and acts as a bounded disturbance in the error equation.
Furthermore ∆m(s) changes the SPR transfer function that relates e1 to θ̃y

from 1
s+am

to W (s) as shown by (9.3.18). As we showed in Chapter 8, adap-
tive laws such as (9.3.19) may lead to instability when applied to (9.3.15) due
to the presence of the disturbance term that appears in the error equation.
One way to counteract the effect of the disturbance introduced by ∆m(s) 6= 0
and r 6= 0 is to modify (9.3.19) using leakage, dead zone, projection etc. as
shown in Chapter 8. For this example, let us modify (9.3.19) using the fixed
σ-modification, i.e.,

θ̇ = −γe1y − γσθ (9.3.20)

where σ > 0 is small.
Even with this modification, however, we will have difficulty establishing

global signal boundedness unless W (s) is SPR. Because W (s) depends on
∆m(s) which is unknown and belongs to the class defined by (9.3.17), the
SPR property of W (s) cannot be guaranteed unless ∆m(s) ≡ 0. Below we
treat the following cases that have been considered in the literature of robust
adaptive control.
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Case I: W (s) Is SPR–Global Boundedness

Assume that ∆m(s) is such that W (s) is guaranteed to be SPR. The error
equation (9.3.18) may be expressed as

e1 = W (s)(θ̃y + d) (9.3.21)

where d =
(
1− W−1(s)

s+am

)
bmr is guaranteed to be bounded due to r ∈ L∞

and the stability of W−1(s) which is implied by the SPR property of W (s).
The state-space representation of (9.3.21) given by

ė = Ace + Bc(θ̃y + d)
e1 = C>

c e
(9.3.22)

where C>
c (sI −Ac)−1Bc = W (s) motivates the Lyapunov-like function

V =
e>Pce

2
+

θ̃2

2γ

with Pc = P>
c > 0 satisfies the equations in the LKY Lemma. The time

derivative of V along the solution of (9.3.20) and (9.3.22) is given by

V̇ = −e>qq>e− νce
>Lce + e1d− σθ̃θ

where νc > 0, Lc = L>c > 0 and q are defined by the LKY Lemma. We have

V̇ ≤ −νcλc|e|2 + c|e||d| − σ|θ̃|2 + σ|θ̃||θ∗|

where c = ‖C>‖, λc = λmin(Lc). Completing the squares and adding and
subtracting αV , we obtain

V̇ ≤ −αV +
c2|d|2
2νcλc

+
σ|θ∗|2

2
(9.3.23)

where α = min{νcλc
λp

, σγ} and λp = λmax(Pc), which implies that V and,
therefore, e, θ, e1 ∈ L∞ and that e1 converges to a residual set whose size
is of the order of the disturbance term |d| and the design parameter σ. If,
instead of the fixed-σ, we use the switching σ or the projection, we can verify
that as ∆m(s) → 0, i.e., d → 0, the tracking error e1 reduces to zero too.

Considerable efforts have been made in the literature of robust adaptive
control to establish that the unmodified adaptive law (9.3.19) can be used to
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establish stability in the case where y is PE [85, 86]. It has been shown [170]
that if W (s) is SPR and y is PE with level α0 ≥ γ0ν0 + γ1 where ν0 is an
upper bound for |d(t)| and γ0, γ1 are some positive constants, then all signals
in the closed-loop system (9.3.18), (9.3.19) are bounded. Because α0, ν0 are
proportional to the amplitude of r, the only way to generate the high level
α0 of PE relative to ν0 is through the proper selection of the spectrum
of r. If ∆m(s) is due to fast unmodeled dynamics, then the richness of r

should be achieved in the low frequency range, i.e., r should be dominantly
rich. Intuitively the spectrum of r should be chosen so that |W (jω)| À
|W (jω)− 1

jω+am
| for all ω in the frequency range of interest.

An example of ∆m(s) that guarantees W (s) to be SPR is ∆m(s) = µs
1+µs

where µ > 0 is small enough to guarantee that ∆m(s) satisfies (9.3.17).

Case II: W (s) Is Not SPR–Semiglobal Stability

When W (s) is not SPR, the error equation (9.3.18) may not be the appro-
priate one for analysis. Instead, we express the closed-loop plant (9.3.15),
(9.3.16) as

y =
1

s + a
(θ∗y + bmr + θ̃y) +

1
s + a

∆m(s)u

and obtain the error equation

e1 =
1

s + am
(θ̃y + ∆m(s)u)

or
ė1 = −ame1 + θ̃y + η
η = ∆m(s)u = ∆m(s)(θy + bmr)

(9.3.24)

Let us analyze (9.3.24) with the modified adaptive law (9.3.20)

θ̇ = −γe1y − γσθ

The input η to the error equation (9.3.24) cannot be guaranteed to be
bounded unless u is bounded. But because u is one of the signals whose
boundedness is to be established, the equation η = ∆m(s)u has to be ana-
lyzed together with the error equation and adaptive law. For this reason, we
need to express η = ∆m(s)u in the state space form. This requires to assume
some structural information about ∆m(s). In general ∆m(s) is assumed to
be proper and small in some sense. ∆m(s) may be small at all frequencies,
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i.e., ∆m(s) = µ∆1(s) where µ > 0 is a small constant whose upper bound
is to be established and ∆1(s) is a proper stable transfer function. ∆m(s)
could also be small at low frequencies and large at high frequencies. This is
the class of ∆m(s) often encountered in applications where ∆m(s) contains
all the fast unmodeled dynamics which are usually outside the frequency
range of interest. A typical example is

∆m(s) = − 2µs

1 + µs
(9.3.25)

which makes (9.3.15) a second-order nonminimum-phase plant and W (s) in
(9.3.18) nonminimum-phase and, therefore, non-SPR. To analyze the stabil-
ity of the closed-loop plant with ∆m(s) specified in (9.3.25), we express the
error equation (9.3.24) and the adaptive law (9.3.20) in the state-space form

ė1 = −ame1 + θ̃y + η
µη̇ = −η − 2µu̇
˙̃
θ = −γe1y − γσθ

(9.3.26)

Note that in this representation µ = 0 ⇒ η = 0, i.e., the state η is a
good measure of the effect of the unmodeled dynamics whose size is charac-
terized by the value of µ. The stability properties of (9.3.26) are analyzed
by considering the following positive definite function:

V (e1, η, θ̃) =
e2
1

2
+

θ̃2

2γ
+

µ

2
(η + e1)2 (9.3.27)

For each µ > 0 and some constants c0 > 0, α > 0, the inequality

V (e1, η, θ̃) ≤ c0µ
−2α

defines a closed sphere L(µ, α, c0) in R3 space. The time derivative of V

along the trajectories of (9.3.26) is

V̇ = −ame2
1 − σθ̃θ − η2 + µ[ė1 − 2u̇](η + e1)

≤ −ame2
1−

σθ̃2

2
− η2 +

σθ∗2

2
+ µc[e4

1+|e1|3+e2
1+e2

1|θ̃|+ e2
1θ̃

2 + |e1|θ̃2

+ |e1||θ̃|+ |e1||θ̃||η|+ |e1|3|η|+ |e1|+ |η|+ η2 + |e1||η|
+ |η||θ̃|+ |η|θ̃2 + e2

1|η|+ |e1θ̃
2||η|+ |θ̃|η2 + |e1||ṙ|+ |η||ṙ|] (9.3.28)



662 CHAPTER 9. ROBUST ADAPTIVE CONTROL SCHEMES

for some constant c ≥ 0, where the last inequality is obtained by substituting
for ė1, u̇ = θ̇y + θẏ + bmṙ and taking bounds. Using the inequality 2αβ ≤
α2+β2, the multiplicative terms in (9.3.28) can be manipulated so that after
some tedious calculations (9.3.28) is rewritten as

V̇ ≤ −ame2
1

2
− σθ̃2

4
− η2

2
− η2

[
1
2
− µc(|θ̃|+ 1)

]

− e2
1

[
am

2
− µc(e2

1 + |e1|+ |θ̃|+ θ̃2 + |η|+ |e1||η|+ 1)
]

− θ̃2
[
σ

4
− µc(|e1|+ 1 + |e1||η|)

]
+ µc|ṙ|2 + µc +

σ|θ∗|2
2

(9.3.29)

Inside L(µ, α, c0), |e1|, |θ̃| can grow up to O(µ−α) and |η| can grow up to
O(µ−1/2−α). Hence, there exist positive constants k1, k2, k3 such that inside
L(µ, α, c0), we have

|e1| < k1µ
−α, |θ̃| < k2µ

−α, |η| < k3µ
−1/2−α

For all e1, η, θ̃ inside L(µ, α, c0) , (9.3.29) can be simplified to

V̇ ≤ −am

4
e2
1 −

η2

2
− σ

4
θ̃2 − η2

(
1
2
− β2µ

1−α
)

−e2
1

(
am

2
− µ1/2−2αβ1

)
− θ̃2

(
σ

4
− β3µ

1−α
)

(9.3.30)

+µc|ṙ|2 + µc +
σθ∗2

2

for some positive constants β1, β2, β3. If we now fix σ > 0 then for 0 < α <

1/4, there exists a µ∗ > 0 such that for each µ ∈ (0, µ∗]

am

2
≥ µ1/2−2αβ1,

1
2
≥ β2µ

1−α,
σ

4
> β3µ

1−α

Hence, for each µ ∈ (0, µ∗] and e1, η, θ̃ inside L(µ, α, c0), we have

V̇ < −am

2
e2
1 −

η2

2
− σ

4
θ̃2 +

σθ∗2

2
+ µc|ṙ|2 + µc (9.3.31)

On the other hand, we can see from the definition of V that

V (e1, η, θ̃) =
e2
1

2
+

θ̃2

2γ
+

µ

2
(η + e1)2 ≤ c4

(
am

2
e2
1 +

η2

2
+

σ

4
θ̃2

)
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where c4 = max{1+2µ
am

, 2
γσ , 2µ}. Thus, for any 0 < β ≤ 1/c4, we have

V̇ < −βV +
σθ∗2

2
+ µc|ṙ|2 + µc

Because r, ṙ are uniformly bounded, we define the set

D0(µ)
4
=

{
e1, θ̃, η

∣∣∣∣∣V (e1, η, θ̃) <
1
β

[
σθ∗2

2
+ µc|ṙ|2 + µc

]}

which for fixed α and σ and for sufficiently small µ is inside L(µ, α, c0). Out-
side D0(µ) and inside L(µ, α, c0), V̇ < 0 and, therefore, V (e1, η, θ̃) decreases.
Hence there exist positive constants c1, c2 such that the set

D(µ)
4
=

{
e1, η, θ̃

∣∣∣|e1|+ |θ̃| < c1µ
−α, |η| < c2µ

−α−1/2
}

is inside L(µ, α, c0) and any solution e1(t), η(t), θ̃(t) which starts in D(µ)
remains inside L(µ, α, c0). Furthermore, every solution of (9.3.26) that starts
from D(µ)\D0(µ) will enter D0(µ) at t = t1 for some finite time t1 and
remain in D0(µ) thereafter. Similarly, any solution starting at t = 0 from
D0(µ) will remain in D0(µ) for all t ≥ 0.

The stability results obtained in this example are semiglobal in the sense
that as µ → 0 the size of D(µ) becomes the whole space.

The above analysis demonstrates that the unnormalized adaptive law
with σ-modification guarantees a semiglobal boundedness result in the pres-
ence of fast unmodeled dynamics. The speed of unmodeled dynamics is
characterized by the positive scalar µ > 0 in such a way that, as µ → 0, the
unmodeled dynamics become infinitely fast and reduce to their steady-state
value almost instantaneously. The region of attraction from which every so-
lution is bounded and converges to a small residual set becomes the whole
space as µ → 0.

A similar stability result is established for the general higher order case
in [85, 86] using the fixed σ-modification. Other modifications such as dead
zone, projection and various other choices of leakage can be used to estab-
lish a similar semiglobal boundedness result in the presence of unmodeled
dynamics.



664 CHAPTER 9. ROBUST ADAPTIVE CONTROL SCHEMES

Case III: W (s) Is Not SPR–Method of Averaging: Local Stability

The error system (9.3.18), (9.3.19) is a special case of the more general error
system

e1 = W (s)θ̃>ω + d (9.3.32)
˙̃
θ = −γe1ω (9.3.33)

that includes the case of higher order plants. In (9.3.32), W (s) is strictly
proper and stable and d is a bounded disturbance. The signal vector ω ∈ R2n

is a vector with the filtered values of the plant input and output and the
reference input r. For the example considered above, ω = y. In the error
system (9.3.32), (9.3.33), the adaptive law is not modified.

With the method of averaging, we assume that the adaptive gain γ > 0 is
sufficiently small (slow adaptation) so that for e1, ω bounded, θ̃ varies slowly
with time. This allows us to approximate (9.3.32) with

e1 ≈ θ̃>W (s)ω + d

which we use in (9.3.33) to obtain

˙̃
θ = −γω(W (s)ω)>θ̃ − γωd (9.3.34)

Let us consider the homogeneous part of (9.3.34)

˙̃
θ = −γR(t)θ̃ (9.3.35)

where R(t) = ω(t)(W (s)ω(t))>. Even though R(t) may vary rapidly with
time, the variations of θ̃ are slow due to small γ. This fact allows us to
obtain stability conditions for (9.3.35) in terms of sample averages

R̄i(Ti)
4
=

1
Ti

∫ ti

ti−1

R(t)dt, ti = ti−1 + Ti

over finite sample intervals 0 < Ti < ∞. We consider the case where R(t) =
R(t + T ) is bounded and periodic with period T > 0. By taking Ti = T , the
value of R̄ = R̄i(T ) is independent of the interval. It has been established
in [3] that there exists a constant γ∗ > 0 such that (9.3.35) is exponentially
stable for γ ∈ (0, γ∗) if and only if

min
i

Reλi(R̄) > 0, i = 1, 2, . . . , 2n (9.3.36)
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where R̄ = 1
T

∫ T
0 R(t)dt. Condition (9.3.36) is equivalent to the existence of

a matrix P = P> > 0 such that

PR̄ + R̄>P > 0

When the above inequality is satisfied for P = I, namely,

R̄ + R̄> > 0 (9.3.37)

its meaning can be explained in terms of the frequency content of ω by letting

ω =
∞∑

i=−∞
Qie

jωit, ωi =
2πi

T

where Q−i is the conjugate of Qi. Because

W (s)ω =
∞∑

i=−∞
QiW (jωi)ejωit

it follows that

R̄ =
1
T

∫ T

0
ω(t)(W (s)ω(t))>dt =

∞∑

i=−∞
W (jωi)QiQ

>
−i (9.3.38)

For R̄ to be nonsingular, it is necessary that

∞∑

i=−∞
QiQ

>
−i > 0

which can be shown to imply that ω must be PE. Applying the condition
(9.3.37) to (9.3.38) we obtain a signal dependent “average SPR” condition

∞∑

i=−∞
Re {W (jωi)}Re

{
QiQ

>
−i

}
> 0 (9.3.39)

Clearly, (9.3.39) is satisfied if ω is PE and W (s) is SPR. Condition (9.3.39)
allows ReW (jωi) < 0 for some ωi provided that in the sum of (9.3.39), the
terms with ReW (jωi) > 0 dominate.

The exponential stability of (9.3.35) implies that θ̃ in (9.3.34) is bounded
and converges exponentially to a residual set whose size is proportional to
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the bounds for ω and d. Because ω consists of the filtered values of the plant
input and output, it cannot be shown to be bounded or PE unless certain
assumptions are made about the stability of the plant, the initial conditions
ē1(0), θ̃(0) and disturbance d. Let ωm represent ω when θ̃ = 0, e1 = 0.
The signal ωm, often referred to as the “tuned solution,” can be made to
satisfy (9.3.39) by the proper choice of reference signal r. If we express
ω = ωm + e where e is the state of a state space representation of (9.3.32)
with the same order as ω and e1 = C>e, then ω is bounded, PE and satisfies
(9.3.39) provided e is sufficiently small. This can be achieved by assuming
that the initial conditions e(0), θ̃(0) and disturbance d are sufficiently small
and the plant is stable. Therefore, the above stability result is local. Even
though the above results are based on several restrictive assumptions, they
are very valuable in understanding the stability and instability mechanisms
of adaptive schemes in the presence of modeling errors. For further details on
averaging and the extension of the above results to a wider class of adaptive
schemes, the reader is referred to [3].

9.3.3 Direct MRAC with Normalized Adaptive Laws

The MRAC schemes with normalized adaptive laws discussed in Section 6.5
have the same robustness problems as those with the unnormalized adap-
tive laws, i.e., they can no longer guarantee boundedness of signals in the
presence of unmodeled dynamics and bounded disturbances. For MRAC
with normalized adaptive laws, however, the robustification can be achieved
by simply using the certainty equivalence principle to combine the MRC law
with any one of the robust adaptive laws presented in Section 8.5. The design
procedure is the same as that in the ideal case, that is, we use the same con-
trol law as in the known parameter case but replace the unknown controller
parameters with their on-line estimates generated by a robust adaptive law.
The stability analysis of the resulting closed-loop adaptive scheme is also
similar to the ideal case, with a few minor changes that incorporate the
small-in-the-mean, instead of the L2, properties of θ̇ and ε into the analysis.

In this section, we first use an example to illustrate the design and stabil-
ity analysis of a robust MRAC scheme with a normalized adaptive law. We
then extend the results to a general SISO plant with unmodeled dynamics
and bounded disturbances.
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Example 9.3.2 Consider the following SISO plant

y =
1

s− a
(1 + ∆m(s))u (9.3.40)

with a strictly proper transfer function, where a is unknown and ∆m(s) is a multi-
plicative plant uncertainty. Let us consider the following adaptive control law

u = −θy (9.3.41)

θ̇ = γεφ, γ > 0

ε =
z − ẑ

m2
, m2 = 1 + φ2 (9.3.42)

φ =
1

s + am
y, ẑ = θφ, z = y − 1

s + am
u

where −am is the desired closed loop pole and θ is the estimate of θ∗ = a + am.
As we have shown in Chapter 8, when (9.3.41), (9.3.42) designed for the plant

model

y =
1

s− a
u

is applied to the plant (9.3.40) with ∆m(s) 6= 0, the plant uncertainty ∆m(s)
introduces a disturbance term in the adaptive law that may easily cause θ to drift
to infinity and certain signals to become unbounded no matter how small ∆m(s)
is. The adaptive control law (9.3.41), (9.3.42) is, therefore, not robust with respect
to the plant uncertainty ∆m(s). This adaptive control scheme, however, can be
made robust if we replace the adaptive law (9.3.42) with a robust one developed by
following the procedure of Chapter 8 as follows:

We first express the desired controller parameter θ∗ = a + am in the form of a
linear parametric model by rewriting (9.3.40) as

z = θ∗φ + η

where z, φ are as defined in (9.3.42) and

η =
1

s + am
∆m(s)u

is the modeling error term. If we now assume that a bound for the stability margin
of the poles of ∆m(s) is known, that is, ∆m(s) is analytic in Re[s] ≥ − δ0

2 for some
known constant δ0 > 0, then we can verify that the signal m generated as

m2 = 1 + ms, ṁs = −δ0ms + u2 + y2, ms(0) = 0, δ0 < 2am (9.3.43)
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guarantees that η/m, φ/m ∈ L∞ and therefore qualifies to be used as a normalizing
signal. Hence, we can combine normalization with any modification, such as leak-
age, dead zone, or projection, to form a robust adaptive law. Let us consider the
switching-σ modification, i.e.,

θ̇ = γεφ− σsγθ

ε =
z − θφ

m2
(9.3.44)

where σs is as defined in Chapter 8. According to Theorem 8.5.4, the robust
adaptive law given by (9.3.43), (9.3.44) guarantees ε, εm, θ, θ̇ ∈ L∞ and ε, εm, θ̇ ∈
S

(
η2

m2

)
. Because from the properties of the L2δ norm we have

|η(t)| ≤ ∆2‖ut‖2δ0 , ∆2
4
=

∥∥∥∥
1

s + am
∆m(s)

∥∥∥∥
2δ0

and m2 = 1+‖ut‖22δ0
+‖yt‖22δ0

, it follows that |η|m ≤ ∆2. Therefore, ε, εm, θ̇ ∈ S(∆2
2).

We analyze the stability properties of the MRAC scheme described by (9.3.41),
(9.3.43), and (9.3.44) when applied to the plant (9.3.40) with ∆m(s) 6= 0 as follows:

As in the ideal case considered in Section 6.5.1 for the same example but with
∆m(s) ≡ 0, we start by writing the closed-loop plant equation as

y =
1

s + am
(−θ̃y + ∆m(s)u) = − 1

s + am
θ̃y + η, u = −θy (9.3.45)

Using the Swapping Lemma A.1 and noting that εm2 = −θ̃φ + η, we obtain from
(9.3.45) that

y = −θ̃φ +
1

s + am
( ˙̃θφ) + η

= εm2 +
1

s + am

˙̃
θφ (9.3.46)

Using the properties of the L2δ norm ‖(·)t‖2δ, which for simplicity we denote by
‖ · ‖, it follows from (9.3.46) that

‖y‖ ≤ ‖εm2‖+ ‖ 1
s + am

‖∞δ‖ ˙̃
θφ‖

for any 0 < δ ≤ δ0. Because u = −θy and θ ∈ L∞, it follows that

‖u‖ ≤ c‖y‖ ≤ c‖εm2‖+ c‖ ˙̃
θφ‖

where c ≥ 0 is used to denote any finite constant. Therefore, the fictitious normal-
izing signal

m2
f
4
= 1 + ‖u‖2 + ‖y‖2 ≤ 1 + c‖εm2‖2 + c‖ ˙̃

θφ‖2 (9.3.47)
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We can establish as in Chapter 6 that mf guarantees that m/mf , φ/mf , η/mf ∈ L∞
by using the properties of the L2δ norm, which implies that (9.3.47) can be written
as

m2
f ≤ 1 + c‖εmmf‖2 + c‖ ˙̃

θmf‖2 ≤ 1 + c‖g̃mf‖2

where g̃2 4= ε2m2 + ˙̃
θ
2

or

m2
f ≤ 1 + c

∫ t

0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ (9.3.48)

Applying the B-G Lemma III to (9.3.48), we obtain

m2
f (t) ≤ Φ(t, 0) + δ

∫ t

0

Φ(t, τ)dτ

where
Φ(t, τ) = e−δ(t−τ)e

c
∫ t

τ
g̃2(s)ds

Because the robust adaptive law guarantees that εm,
˙̃
θ ∈ S(∆2

2), we have g̃ ∈ S(∆2
2)

and
Φ(t, τ) ≤ e−(δ−c∆2

2)(t−τ)

Hence, for
c∆2

2 < δ

Φ(t, τ) is bounded from above by a decaying to zero exponential, which implies
that mf ∈ L∞. Because of the normalizing properties of mf , we have φ, y, u ∈ L∞
and all signals are bounded. The condition c∆2

2 < δ implies that the multiplicative
plant uncertainty ∆m(s) should satisfy

∥∥∥∥
∆m(s)
s + am

∥∥∥∥
2

2δ0

<
δ

c

where c can be calculated by keeping track of all the constants. It can be shown
that the constant c depends on ‖ 1

s+am
‖∞δ and the upper bound for |θ(t)|.

Because 0 < δ ≤ δ0 is arbitrary, we can choose it to be equal to δ0. The bound
for supt |θ(t)| can be calculated from the Lyapunov-like function used to analyze
the adaptive law. Such a bound, however, may be conservative. If, instead of the
switching σ, we use projection, then the bound for |θ(t)| is known a priori and the
calculation of the constant c is easier.

The effect of the unmodeled dynamics on the regulation error y is analyzed as
follows: From (9.3.46) and m, φ ∈ L∞, we have

∫ t+T

t

y2dτ ≤
∫ t+T

t

ε2m2dτ + c

∫ t+T

t

˙̃
θ
2

dτ, ∀t ≥ 0
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for some constant c ≥ 0 and any T > 0. Then using the m.s.s. property of εm, θ̇,
we have

1
T

∫ t+T

t

y2dτ ≤ c∆2
2 +

c

T

therefore y ∈ S(∆2
2), i.e., the regulation error is of the order of the modeling error

in m.s.s.
The m.s.s. bound for y2 does not imply that at steady state, y2 is of the order of

the modeling error characterized by ∆2. A phenomenon known as bursting, where
y2 assumes large values over short intervals of time, cannot be excluded by the
m.s.s. bound. The phenomenon of bursting is discussed in further detail in Section
9.4.

The stability and robustness analysis for the MRAC scheme presented above
is rather straightforward due to the simplicity of the plant. It cannot be directly
extended to the general case without additional steps. A more elaborate but yet
more systematic method that extends to the general case is presented below by the
following steps:

Step1. Express the plant input u and output y in terms of the parameter error
θ̃. We have

y = − 1
s + am

θ̃y + η

u = (s− a)y −∆m(s)u = − s− a

s + am
θ̃y + ηu (9.3.49)

where ηu = − (a+am)
s+am

∆m(s)u. Using the L2δ norm for some δ ∈ (0, 2am) we have

‖y‖ ≤ c‖θ̃y‖+ ‖η‖, ‖u‖ ≤ c‖θ̃y‖+ ‖ηu‖

and, therefore, the fictitious normalizing signal mf satisfies

m2
f = 1 + ‖u‖2 + ‖y‖2 ≤ 1 + c(‖θ̃y‖2 + ‖η‖2 + ‖ηu‖2) (9.3.50)

Step 2. Use the swapping lemmas and properties of the L2δ norm to upper
bound ‖θ̃y‖ with terms that are guaranteed by the adaptive law to have small in
m.s.s. gains. We use the Swapping Lemma A.2 given in Appendix A to write the
identity

θ̃y = (1− α0

s + α0
)θ̃y +

α0

s + α0
θ̃y =

1
s + α0

( ˙̃θy + θ̃ẏ) +
α0

s + α0
θ̃y (9.3.51)

where α0 > 0 is an arbitrary constant. Now from the equation for y in (9.3.49) we
obtain

θ̃y = (s + am)(η − y)
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which we substitute in the last term in (9.3.51) to obtain

θ̃y =
1

s + α0
( ˙̃θy + θ̃ẏ) + α0

(s + am)
s + α0

(η − y)

Therefore, by choosing δ, α0 to satisfy α0 > am > δ
2 > 0, we obtain

‖θ̃y‖ ≤
∥∥∥∥

1
s + α0

∥∥∥∥
∞δ

(‖ ˙̃
θy‖+ ‖θ̃ẏ‖) + α0

∥∥∥∥
s + am

s + α0

∥∥∥∥
∞δ

(‖η‖+ ‖y‖)

Hence,

‖θ̃y‖ ≤ 2
α0

(‖ ˙̃
θy‖+ ‖θ̃ẏ‖) + α0c(‖η‖+ ‖y‖)

where c = ‖ s+am

s+α0
‖∞δ. Using (9.3.46), it follows that

‖y‖ ≤ ‖εm2‖+ c‖ ˙̃
θφ‖

therefore,

‖θ̃y‖ ≤ 2
α0

(‖ ˙̃
θy‖+ ‖θ̃ẏ‖) + α0c(‖εm2‖+ ‖ ˙̃

θφ‖+ ‖η‖) (9.3.52)

The gain of the first term in the right-hand side of (9.3.52) can be made small by
choosing large α0. The m.s.s. gain of the second and third terms is guaranteed by
the adaptive law to be of the order of the modeling error denoted by the bound
∆2, i.e., εm,

˙̃
θ ∈ S(∆2

2). The last term has also a gain which is of the order of the
modeling error. This implies that the gain of ‖θ̃y‖ is small provided ∆2 is small
and α0 is chosen to be large.

Step 3. Use the B-G Lemma to establish boundedness. The normalizing prop-
erties of mf and θ ∈ L∞ guarantee that y/mf , φ/mf ,m/mf ∈ L∞. Because

‖ẏ‖ ≤ |a|‖y‖+ ‖∆m(s)‖∞δ‖u‖+ ‖u‖
it follows that ‖ẏ‖/mf ∈ L∞. Due to the fact that ∆m(s) is proper and analytic in
Re[s] ≥ −δ0/2, ‖∆m(s)‖∞δ is a finite number provided 0 < δ ≤ δ0. Furthermore,
‖η‖/mf ≤ ∆∞ where

∆∞ =
∥∥∥∥

∆m(s)
s + am

∥∥∥∥
∞δ

(9.3.53)

and, therefore, (9.3.52) may be written in the form

‖θ̃y‖ ≤ c

α0
(‖ ˙̃

θmf‖+ mf ) + α0c(‖εmmf‖+ ‖ ˙̃
θmf‖+ ∆∞mf ) (9.3.54)

Using (9.3.54) and ‖η‖/mf ≤ c∆∞, ‖ηu‖/mf ≤ c∆∞ in (9.3.50), we obtain

m2
f ≤ 1 + c

(
1
α2

0

+ α2
0∆

2
∞

)
m2

f + c‖g̃mf‖2
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where g̃2 = | ˙̃θ|2
α2

0
+ α2

0|εm|2 + α2
0| ˙̃θ|2 and α0 ≥ 1. For c

(
1

α2
0

+ α2
0∆

2
∞

)
< 1, we have

m2
f ≤ c + c‖g̃mf‖2 = c + c

∫ t

0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ

Applying the B-G Lemma III, we obtain

m2
f ≤ ce−δte

c
∫ t

0
g̃2(τ)dτ + cδ

∫ t

0

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds

Because ˙̃
θ, εm ∈ S(∆2

2), it follows that

c

∫ t

s

g̃2(τ)dτ ≤ c∆2
2

(
1
α2

0

+ α2
0

)
(t− s) + c

Hence, for

c∆2
2

(
1
α2

0

+ α2
0

)
< δ (9.3.55)

we have
e−δte

c
∫ t

0
g̃2(τ)dτ ≤ e−ᾱt

where ᾱ = δ− c∆2
2

(
1

α2
0

+ α2
0

)
which implies that mf is bounded. The boundedness

of mf implies that all the other signals are bounded too. The constant δ in (9.3.55)
may be replaced by δ0 since no restriction on δ is imposed except that δ ∈ (0, δ0].
The constant c > 0 may be determined by following the calculations in each of the
steps and is left as an exercise for the reader.

Step 4. Obtain a bound for the regulation error y. The regulation error, i.e.,
y, is expressed in terms of signals that are guaranteed by the adaptive law to be of
the order of the modeling error in m.s.s. This is achieved by using the Swapping
Lemma A.1 for the error equation (9.3.45) and the equation εm2 = −θ̃φ+η to obtain
(9.3.46), which as shown before implies that y ∈ S(∆2

2). That is, the regulation
error is of the order of the modeling error in m.s.s.

The conditions that ∆m(s) has to satisfy for robust stability are summarized
as follows:

c

(
1
α2

0

+ α2
0∆

2
∞

)
< 1, c∆2

2

(
1
α2

0

+ α2
0

)
< δ0

where

∆∞ =
∥∥∥∥

∆m(s)
s + am

∥∥∥∥
∞δ0

, ∆2 =
∥∥∥∥

∆m(s)
s + am

∥∥∥∥
2δ0

The constant δ0 > 0 is such that ∆m(s) is analytic in Re[s] ≥ −δ0/2 and c denotes
finite constants that can be calculated. The constant α0 > max{1, δ0/2} is arbitrary
and can be chosen to satisfy the above inequalities for small ∆2,∆∞.
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Let us now simulate the above robust MRAC scheme summarized by the equa-
tions

u = −θy

θ̇ = γεφ− σsγθ, ε =
z − θφ

m2

φ =
1

s + am
y, z = y − 1

s + am
u

m2 = 1 + ms, ṁs = −δ0ms + u2 + y2, ms(0) = 0

where σs is the switching σ, and applied to the plant

y =
1

s− a
(1 + ∆m(s))u

where for simulation purposes we assume that a = 1 and ∆m(s) = − 2µs
1+µs with

µ ≥ 0. It is clear that for µ > 0 the plant is nonminimum phase. Figure 9.2
shows the response of y(t) for different values of µ that characterize the size of
the perturbation ∆m(s). For small µ, we have boundedness and good regulation
performance. As µ increases, stability deteriorates and for µ = 0.35 the plant
becomes unstable. 5

General Case

Let us now consider the SISO plant given by

yp = G0(s)(1 + ∆m(s))(up + du) (9.3.56)

where
G0(s) = kp

Zp(s)
Rp(s)

(9.3.57)

is the transfer function of the modeled part of the plant. The high frequency
gain kp and the polynomials Zp(s), Rp(s) satisfy assumptions P1 to P4 given
in Section 6.3 and the overall transfer function of the plant is strictly proper.
The multiplicative uncertainty ∆m(s) satisfies the following assumptions:

S1. ∆m(s) is analytic in Re[s] ≥ −δ0/2 for some known δ0 > 0.

S2. There exists a strictly proper transfer function W (s) analytic in Re[s] ≥
−δ0/2 and such that W (s)∆m(s) is strictly proper.
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Figure 9.2 Simulation results of the MRAC scheme of Example 9.3.2 for
different µ.

Assumptions S1 and S2 imply that ∆∞, ∆2 defined as

∆∞
4
= ‖W (s)∆m(s)‖∞δ0

, ∆2
4
= ‖W (s)∆m(s)‖2δ0

are finite constants. We should note that the strict properness of the overall
plant transfer function and of G0(s) imply that G0(s)∆m(s) is a strictly
proper transfer function.

The control objective is to choose up and specify the bounds for ∆∞, ∆2

so that all signals in the closed-loop plant are bounded and the output yp

tracks, as close as possible, the output of the reference model ym given by

ym = Wm(s)r = km
Zm(s)
Rm(s)

r

for any bounded reference signal r(t). The transfer function Wm(s) of the
reference model satisfies assumptions M1 and M2 given in Section 6.3.

The design of the control input up is based on the plant model with
∆m(s) ≡ 0 and du ≡ 0. The control objective, however, has to be achieved
for the plant with ∆m(s) 6= 0 and du 6= 0.
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We start with the control law developed in Section 6.5.3 for the plant
model with ∆m(s) ≡ 0, du ≡ 0, i.e.,

up = θ>ω (9.3.58)

where θ = [θ>1 , θ>2 , θ3, c0]>, ω = [ω>1 , ω>2 , yp, r]>. The parameter vector θ is
to be generated on-line by an adaptive law. The signal vectors ω1, ω2 are
generated, as in Section 6.5.3, by filtering the plant input up and output yp.
The control law (9.3.58) will be robust with respect to the plant uncertainties
∆m(s), du if we use robust adaptive laws from Chapter 8, instead of the
adaptive laws used in Section 6.5.3, to update the controller parameters.

The derivation of the robust adaptive laws is achieved by first developing
the appropriate parametric models for the desired controller parameter vec-
tor θ∗ and then choosing the appropriate robust adaptive law by employing
the results of Chapter 8 as follows:

We write the plant in the form

Rpyp = kpZp(1 + ∆m)(up + du) (9.3.59)

and then use the matching equation

(Λ− θ∗>1 α)Rp − kp(θ∗>2 α + Λθ∗3)Zp = ZpΛ0Rm (9.3.60)

where α = αn−2(s) = [sn−2, · · · , s, 1]>, (developed in Section 6.3 and given
by Equation (6.3.12)) satisfied by the desired parameter vector

θ∗ = [θ∗>1 , θ∗>2 , θ∗3, c
∗
0]
>

to eliminate the unknown polynomials Rp(s), Zp(s) from the plant equation
(9.3.59). From (9.3.59) we have

(Λ− θ∗>1 α)Rpyp = (Λ− θ∗>1 α)kpZp(1 + ∆m)(up + du)

which together with (9.3.60) imply that

Zp(kp(θ∗>2 α + Λθ∗3) + Λ0Rm)yp = (Λ− θ∗>1 α)kpZp(1 + ∆m)(up + du)

Filtering each side with the stable filter 1
ΛZp

and rearranging the terms, we
obtain

kp

(
θ∗>2

α

Λ
+ θ∗3

)
yp +

Rm

Zm
yp = kpup − kpθ

∗>
1

α

Λ
up

+ kp
Λ− θ∗>1 α

Λ
(∆m(up + du) + du)
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or
(

θ∗>1
α

Λ
up+θ∗>2

α

Λ
yp + θ∗3yp−up

)
= −km

kp
W−1

m yp+
Λ− θ∗>1 α

Λ
(∆m(up + du) + du)

Because c∗0 = km
kp

it follows that

Wm

(
θ∗>1

α

Λ
up + θ∗>2

α

Λ
yp + θ∗3yp − up

)
= −c∗0yp + Wm(s)η0 (9.3.61)

where

η0 =
Λ− θ∗>1 α

Λ
(∆m(up + du) + du)

is the modeling error term due to the unknown ∆m, du.
As in the ideal case, (9.3.61) can be written as

Wm(s)up = θ∗>φp − η (9.3.62)

where

θ∗ = [θ∗>1 , θ∗>2 , θ∗3, c
∗
0]
>, φp = [Wm

α>

Λ
up,Wm

α>

Λ
yp,Wmyp, yp]>

η = Wm(s)η0 =
Λ− θ∗>1 α

Λ
Wm(s)[(∆m(up + du) + du)]

Equation (9.3.62) is in the form of the linear parametric model (8.5.6) con-
sidered in Chapter 8.

Another convenient representation of (9.3.61) is obtained by adding the
term c∗0ym = c∗0Wmr on each side of (9.3.61) to obtain

Wm(θ∗>1
α

Λ
up + θ∗>2

α

Λ
yp + θ∗>3 yp + c∗0r − up) = −c∗0yp + c∗0ym + Wm(s)η0

or
Wm(θ∗>ω − up) = −c∗0e1 + Wm(s)η0

leading to
e1 = Wm(s)ρ∗(up − θ∗>ω + η0) (9.3.63)

where e1 = yp − ym,

ρ∗ =
1
c∗0

, ω =

[
α>

Λ
up,

α>

Λ
yp, yp, r

]>
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which is in the form of the bilinear parametric model (8.5.15) considered in
Chapter 8.

Using (9.3.62) or (9.3.63), a wide class of robust MRAC schemes can be
developed by simply picking up a robust adaptive law based on (9.3.62) or
(9.3.63) from Chapter 8 and use it to update θ(t) in the control law (9.3.58).
Table 9.1 gives a summary of MRAC schemes whose robust adaptive laws
are based on (9.3.62) or (9.3.63) and are presented in Tables 9.2 to 9.4.

The robust adaptive laws of Tables 9.2 to 9.4 are based on the SPR-
Lyapunov design approach and the gradient method with an instantaneous
cost. Additional MRAC schemes may be constructed in exactly the same
way using the least-squares method or the gradient method with an integral
cost. The properties of this additional class of MRAC schemes are very
similar to those presented in Tables 9.2 to 9.4 and can be established using
exactly the same tools and procedure.

The following theorem summarizes the stability properties of the MRAC
scheme of Table 9.1 with robust adaptive laws given in Tables 9.2 to 9.4.

Theorem 9.3.2 Consider the MRAC schemes of Table 9.1 designed for the
plant model yp = G0(s)up but applied to the plant (9.3.56) with nonzero plant
uncertainties ∆m(s) and du. If

c

(
1
α2

0

+ α2k
0 ∆2

∞

)
< 1, c

(
1
α2

0

+ α2k
0

)
(f0 + ∆2

i ) ≤
δ

2
(9.3.64)

where

• ∆i = ∆02 and k = n∗ + 1 for the adaptive law of Table 9.2

• ∆i = ∆2 and k = n∗ for the adaptive laws of Tables 9.3, 9.4

• ∆∞ = ‖W (s)∆m(s)‖∞δ0

• ∆02 =

∥∥∥∥∥
Λ(s)− θ∗>1 α(s)

Λ(s)
L−1(s)

h0

s + h0
∆m(s)

∥∥∥∥∥
2δ0

• ∆2 =

∥∥∥∥∥
Λ(s)− θ∗>1 α(s)

Λ(s)
Wm(s)∆m(s)

∥∥∥∥∥
2δ0

• δ ∈ (0, δ0) is such that G−1
0 (s) is analytic in Re[s] ≥ −δ/2
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• α0 > max{1, δ0/2} is an arbitrary constant

• h0 > δ0/2 is an arbitrary constant

• c ≥ 0 denotes finite constants that can be calculated and

(a) f0 = σ in the case of fixed σ-modification

(b) f0 = ν0 in the case of ε-modification

(c) f0 = g0 in the case of dead zone modification

(d) f0 = 0 in the case of switching σ-modification and projection

Then all the signals in the closed-loop plant are bounded and the tracking
error e1 satisfies

1
T

∫ t+T

t
e2
1dτ ≤ c(∆2 + d2

0 + f0) +
c

T
, ∀t ≥ 0

and for any T > 0, where d0 is an upper bound for |du| and ∆2 = 1/α2
0 +

∆2∞ + ∆2
2 + ∆2

02 for the scheme of Table 9.1 with the adaptive law given in
Table 9.2 and ∆2 = ∆2

2 for the scheme of Table 9.1 with adaptive laws given
in Tables 9.3, 9.4.

If, in addition, the reference signal r is dominantly rich of order 2n

and Zp, Rp are coprime, then the parameter error θ̃ and tracking error e1

converge to the residual set

S =
{
θ̃ ∈ R2n, e1 ∈ R

∣∣∣|θ̃|+ |e1| ≤ c(f0 + ∆ + d0)
}

where f0, ∆ are as defined above. The convergence to the residual set S is
exponential in the case of the scheme of Table 9.1 with the adaptive law given
in Table 9.4.

Outline of Proof The main tools and Lemmas as well as the steps for the
proof of Theorem 9.3.2 are very similar to those in the proof of Theorem 6.5.1
for the ideal case. A summary of the main steps of the proof are given below.
The details are presented in Section 9.8.

Step 1. Express the plant input and output in terms of the parame-
ter error term θ̃>ω. In the presence of unmodeled dynamics and bounded
disturbances, the closed-loop MRAC scheme can be represented by the block
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Table 9.1 Robust MRAC Schemes

Actual plant yp = kp
Zp(s)
Rp(s)(1 + ∆m(s))(up + du)

Plant model yp = kp
Zp(s)
Rp(s)up

Reference
model

ym = Wm(s)r = km
Zm(s)
Rm(s)r

Control law

ω̇1 = Fω1 + gup

ω̇2 = Fω2 + gyp

up = θ>ω
θ = [θ>1 , θ>2 , θ3, c0]>, ω = [ω>1 , ω>2 , yp, r]>

ωi ∈ Rn−1, i = 1, 2

Adaptive law Any robust adaptive law from Tables 9.2 to 9.4

Assumptions
(i) Plant model and reference model satisfy assump-
tions P1 to P4, and M1 and M2 given in Section
6.3.1 for the ideal case; (ii) ∆m(s) is analytic in
Re[s] ≥ −δ0/2 for some known δ0 > 0; (iii) overall
plant transfer function is strictly proper

Design
variables

Wm,W−1
m and 1

Λ(s) , where Λ(s) = det(sI − F ) are
designed to be analytic in Re[s] ≥ −δ0/2

diagram shown in Figure 9.3. From Figure 9.3 and the matching equation
(6.3.11), we can derive

yp = Wm

(
r +

1
c∗0

θ̃>ω

)
+ ηy

up = G−1
0 Wm

(
r +

1
c∗0

θ̃>ω

)
+ ηu (9.3.65)
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Table 9.2 Robust adaptive laws based on the SPR-Lyapunov
approach and bilinear model (9.3.63)

Parametric model
(9.3.63)

e1 = Wm(s)ρ∗(up − θ∗>ω + η0)

η0 = Λ−θ∗>1 α
Λ [∆m(up + du) + du]

Filtered
parametric model

ef = Wm(s)L(s)ρ∗(uf − θ∗>φ + ηf )
ef = h0

s+h0
e1

ηf = L0(s)η0, uf = L0(s)up, φ = L0(s)ω
L0(s) = L−1(s) h0

s+h0
, h0 > δ0/2

L(s) is chosen so that WmL is proper and SPR
L(s), L−1(s) are analytic in Re(s) ≥ − δ0

2

Normalized
estimation error

ε = ef − êf −WmLεn2
s, êf = WmLρ(uf − θ>φ)

n2
s = ms, ṁs = −δ0ms + u2

p + y2
p,ms(0) = 0

Robust adaptive
laws with
(a) Leakage θ̇ = Γεφsgn(ρ∗)− w1Γθ, ρ̇ = γεξ − w2γρ

ξ = uf − θ>φ
where w1, w2 are as defined in Table 8.1 and Γ =
Γ> > 0, γ > 0

(b) Dead zone θ̇ = Γφ(ε + g)sgn(ρ∗), ρ̇ = γξ(ε + g)
where g is as defined in Table 8.7

(c) Projection θ̇ = Pr[Γφεsgn(ρ∗)], ρ̇ = Pr[γεξ]
where the operator Pr[·] is as defined in Table 8.6

Properties
(i) ε, εns, θ, ρ ∈ L∞, (ii)ε, εns, θ̇, ρ̇ ∈ S(f0 +

η2
f

m2 ),
where m2 = 1 + n2

s and f0 is a design parameter,
depending on the choice of w1, w2 and g in (a), (b),
and f0 = 0 for (c)
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Table 9.3 Robust adaptive laws based on the gradient method
and bilinear model (9.3.63)

Parametric model
(9.3.63)

e1 = Wm(s)ρ∗(up − θ∗>ω + η0)

η0 = Λ−θ∗>1 α
Λ [∆m(up + du) + du]

Parametric model
rewritten

e1 = ρ∗(uf − θ∗>φ + η), uf = Wmup, φ = Wmω

η = Λ−θ∗>1 α
Λ Wm[∆m(up + du) + du]

Normalized
estimation error

ε = e1−ρξ
m2 , ξ = uf − θ>φ, m2 = 1 + n2

s

n2
s = ms, ṁs = −δ0ms + u2

p + y2
p,ms(0) = 0

Robust
adaptive laws

Same expressions as in Table 9.2 but with
ε, φ, ξ, uf as given above

Properties (i) ε, εns, θ, ρ, θ̇, ρ̇ ∈ L∞; (ii) ε, εns, θ̇,

ρ̇ ∈ S(f0 +
η2

f

m2 ), where f0 is as defined in Table
9.2

where

ηy =
Λ− C∗

1

c∗0Λ
Wm[∆m(up + du) + du], ηu =

D∗
1

c∗0Λ
Wm[∆m(up + du) + du]

where C∗
1 (s) = θ∗>1 α(s), D∗

1 = θ∗>2 α(s) + θ∗3Λ(s). Using the properties of the
L2δ norm ‖(·)t‖2δ, which for simplicity we denote as ‖(·)‖, and the stability
of Wm, G−1

0 , it follows that there exists δ ∈ (0, δ0] such that

‖yp‖ ≤ c + c‖θ̃>ω‖+ ‖ηy‖
‖up‖ ≤ c + c‖θ̃>ω‖+ ‖ηu‖

The constant δ > 0 is such that G−1
0 (s) is analytic in Re[s] ≥ −δ/2. There-

fore, the fictitious normalizing signal m2
f
4
= 1 + ‖up‖2 + ‖yp‖2 satisfies

m2
f ≤ c + c‖θ̃>ω‖2 + c‖ηy‖2 + c‖ηu‖2 (9.3.66)
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Table 9.4 Robust adaptive laws based on the linear model
(9.3.62)

Parametric
model

z = θ∗>φp−η, η = Λ−θ∗>1 α
Λ Wm[∆m(up + du) + du]

z = Wmup, φp = [Wm
α>
Λ up,Wm

α>
Λ yp,Wmyp, yp]>

Normalized
estimation
error

ε = z−ẑ
m2 , ẑ = θ>φp, θ = [θ>1 , θ>2 , θ3, c0]>

m2 = 1 + ms, ṁs = −δ0ms + u2
p + y2

p,ms(0) = 0

Constraint B(θ) = c0 − c0sgn( kp

km
) ≤ 0 for some c0 > 0

satisfying 0 < c0 ≤ |c∗0|

Projection
operator

Pr[f ]=





f if |c0| > c0

or if |c0| = c0 and f>∇B ≤ 0
f − Γ∇B(∇B)>

(∇B)>Γ∇B
f otherwise

∇B = −[0, . . . , 0, 1]>sgn(kp/km)
Γ = Γ> > 0

Robust
adaptive law

θ̇ = Pr[f ], |c0(0)| ≥ c0

(a) Leakage f = Γεφp − wΓθ, w as given in Table 8.1

(b) Dead zone f = Γφp(ε + g), g as given in Table 8.4

(c) Projection θ̇=





Pr[Γεφp] if |θ| < M0

or |θ|=M0 and (Pr[Γεφp])>θ≤0
(I − Γθθ>

θ>Γθ
)Pr[Γεφp] otherwise

where M0 ≥ |θ∗|, |θ(0)| ≤ M0 and Pr[·] is the projec-
tion operator defined above

Properties (i) ε, εns, θ, θ̇ ∈ L∞; (ii) ε, εns, θ̇ ∈ S(f0 + η2

m2 ), where
f0 is as defined in Table 9.2
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Figure 9.3 The closed-loop MRAC scheme in the presence of unmodeled
dynamics and bounded disturbances.

Step 2. Use the swapping lemmas and properties of the L2δ norm to
bound ‖θ̃>ω‖ from above with terms that are guaranteed by the robust adap-
tive laws to have small in m.s.s. gains. In this step we use the Swapping
Lemma A.1 and A.2 and the properties of the L2δ-norm to obtain the ex-
pression

‖θ̃>ω‖ ≤ c‖gmf‖+ c(
1
α0

+ αk
0∆∞)mf + cd0 (9.3.67)

where α0 > max{1, δ0/2} is arbitrary and g ∈ S(f0 + ∆2
i + d2

0
m2 ) with ∆i =

∆02, k = n∗+1 in the case of the adaptive law of Table 9.2, ∆i = ∆2, k = n∗

in the case of the adaptive laws of Tables 9.3 and 9.4, and d0 is an upper
bound for |du|.

Step 3. Use the B-G Lemma to establish boundedness. Using (9.3.67)
in (9.3.66) we obtain

m2
f ≤ c + c‖gmf‖2 + c

(
1
α2

0

+ α2k
0 ∆2

∞

)
m2

f + cd2
0

We choose α0 large enough so that for small ∆∞

c

(
1
α2

0

+ α2k
0 ∆2

∞

)
< 1
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We then have m2
f ≤ c + c‖gmf‖2 for some constants c ≥ 0, which implies

that
m2

f ≤ c + c

∫ t

0
e−δ(t−τ)g2(τ)m2

f (τ)dτ

Applying the B-G Lemma III, we obtain

m2
f ≤ ce−δtec

∫ t

0
g2(τ)dτ + cδ

∫ t

0
e−δ(t−s)ec

∫ t

s
g2(τ)dτds

Because ∫ t

s
g2(τ)dτ ≤ c(f0 + ∆2

i )(t− s) + c

∫ t

s

d2
0

m2
dτ + c

∀t ≥ s ≥ 0, it follows that for c(f0 + ∆2
i ) < δ/2 we have

m2
f ≤ ce−

δ
2
tec

∫ t

0
(d2

0/m2)dτ + cδ

∫ t

0
e−

δ
2
(t−s)ec

∫ t

s
(d2

0/m2)dτds

The boundedness of mf follows directly if we establish that c
d2
0

m2(t)
< δ/2,

∀t ≥ 0. This condition is satisfied if we design the signal n2
s as n2

s = β0 +ms

where β0 is a constant chosen large enough to guarantee c
d2
0

m2(t)
< c

d2
0

β0
<

δ/2,∀t ≥ 0. This approach guarantees that the normalizing signal m2 =
1 + n2

s is much larger than the level of the disturbance all the time. Such a
large normalizing signal may slow down the speed of adaptation and, in fact,
improve robustness. It may, however, have an adverse effect on transient
performance.

The boundedness of all signals can be established, without having to
modify n2

s, by using the properties of the L2δ norm over an arbitrary interval
of time. Considering the arbitrary interval [t1, t) for any t1 ≥ 0 we can
establish by following a similar procedure as in Steps 1 and 2 the inequality

m2(t) ≤ c(1 + m2(t1))e−
δ
2
(t−t1)e

c
∫ t

t1

d2
0

m2 dτ

+cδ

∫ t

t1
e−

δ
2
(t−s)e

c
∫ t

s

d2
0

m(τ)2
dτ

ds,∀t ≥ t1 ≥ 0 (9.3.68)

We assume that m2(t) goes unbounded. Then for any given large number
ᾱ > 0 there exists constants t2 > t1 > 0 such that m2(t1) = ᾱ, m2(t2) >

f1(ᾱ), where f1(ᾱ) is any static function satisfying f1(ᾱ) > ᾱ. Using the fact
that m2 cannot grow or decay faster than an exponential, we can choose f1
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properly so that m2(t) ≥ ᾱ ∀t ∈ [t1, t2] for some t1 ≥ ᾱ where t2 − t1 > ᾱ.
Choosing ᾱ large enough so that d2

0/ᾱ < δ/2, it follows from (9.3.68) that

m2(t2) ≤ c(1 + ᾱ)e−
δ
2
ᾱecd2

0 + c

We can now choose ᾱ large enough so that m2(t2) < ᾱ which contradicts
with the hypothesis that m2(t2) > ᾱ and therefore m ∈ L∞. Because m

bounds up, yp, ω from above, we conclude that all signals are bounded.

Step 4. Establish bounds for the tracking error e1. Bounds for e1 in
m.s.s. are established by relating e1 with the signals that are guaranteed by
the adaptive law to be of the order of the modeling error in m.s.s.

Step 5. Establish convergence of estimated parameter and tracking error
to residual sets. Parameter convergence is established by expressing the pa-
rameter and tracking error equations as a linear system whose homogeneous
part is e.s. and whose input is bounded.

The details of the algebra and calculations involved in Steps 1 to 5 are
presented in Section 9.8.

Remark 9.3.2 Effects of initial conditions. The results of Theorem 9.3.2
are established using a transfer function representation for the plant.
Because the transfer function is defined for zero initial conditions the
results of Theorem 9.3.2 are valid provided the initial conditions of
the state space plant representation are equal to zero. For nonzero
initial conditions the same steps as in the proof of Theorem 9.3.2 can
be followed to establish that

m2
f (t) ≤ c + cp0 + cp0e

−δt + c

∫ t

0
e−δ(t−τ)g2(τ)m2

f (τ)dτ

where p0 ≥ 0 depends on the initial conditions. Applying the B-G
Lemma III, we obtain

m2
f (t) ≤ (c + cp0)e−δtec

∫ t

0
g2(s)ds + δ(c + cp0)

∫ t

0
e−δ(t−τ)ec

∫ t

τ
g2(s)dsdτ

where g ∈ S(f0 + ∆2
i + d2

0/m2) and f0, ∆i are as defined in Theo-
rem 9.3.2. Therefore the robustness bounds, obtained for zero initial
conditions, will not be affected by the non-zero initial conditions. The
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bounds for mf and tracking error e1, however, will be affected by the
size of the initial conditions.

Remark 9.3.3 Robustness without dynamic normalization. The results of
Theorem 9.3.2 are based on the use of a dynamic normalizing signal
ms = n2

s so that m =
√

1 + n2
s bounds both the signal vector φ and

modeling error term η from above. The question is whether the signal
ms is necessary for the results of Theorem 9.3.2 to hold. In [168, 240],
it was shown that if m is chosen as m2 = 1 + φ>φ, i.e., the same
normalization used in the ideal case, then the projection modification
alone is sufficient to obtain the same qualitative results as those of
Theorem 9.3.2. The proof of these results is based on arguments over
intervals of time, an approach that was also used in some of the original
results on robustness with respect to bounded disturbances [48]. The
extension of these results to modifications other than projection is not
yet clear.

Remark 9.3.4 Calculation of robustness bounds. The calculation of the
constants c, δ,∆i, ∆∞ is tedious but possible as shown in [221, 227].
These constants depend on the properties of various transfer func-
tions, namely their H∞δ,H2δ bounds and stability margins, and on
the bounds for the estimated parameters. The bounds for the esti-
mated parameters can be calculated from the Lyapunov-like functions
which are used to analyze the adaptive laws. In the case of projection,
the bounds for the estimated parameters are known a priori. Because
the constants c, ∆i,∆∞, δ depend on unknown transfer functions and
parameters such as G0(s), G−1

0 (s), θ∗, the conditions for robust stabil-
ity are quite difficult to check for a given plant. The importance of the
robustness bounds is therefore more qualitative than quantitative, and
this is one of the reasons we did not explicitly specify every constant
in the expression of the bounds.

Remark 9.3.5 Existence and uniqueness of solutions. Equations (9.3.65)
together with the adaptive laws for generating θ = θ̃ + θ∗ used to
establish the results of Theorem 9.3.2 are nonlinear time varying equa-
tions. The proof of Theorem 9.3.2 is based on the implicit assumption
that these equations have a unique solution ∀t ∈ [0,∞). Without
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this assumption, most of the stability arguments used in the proof of
Theorem 9.3.2 are not valid. The problem of existence and unique-
ness of solutions for a class of nonlinear equations, including those of
Theorem 9.3.2 has been addressed in [191]. It is shown that the sta-
bility properties of a wide class of adaptive schemes do possess unique
solutions provided the adaptive law contains no discontinuous modifi-
cations, such as switching σ and dead zone with discontinuities. An
exception is the projection which makes the adaptive law discontinuous
but does not affect the existence and uniqueness of solutions.

The condition for robust stability given by (9.3.64) also indicates that the
design parameter f0 has to satisfy certain bounds. In the case of switching σ

and projection, f0 = 0, and therefore (9.3.64) doesnot impose any restriction
on the design parameters of these modifications. For modifications, such as
the ε-modification, fixed σ, and dead zone, the design parameters have to
be chosen small enough to satisfy (9.3.64). Because (9.3.64) depends on
unknown constants, the design of f0 can only be achieved by trial and error.

9.3.4 Robust Indirect MRAC

The indirect MRAC schemes developed and analyzed in Chapter 6 suffer
from the same nonrobust problems the direct schemes do. Their robustifica-
tion is achieved by using, as in the case of direct MRAC, the robust adaptive
laws developed in Chapter 8 for on-line parameter estimation.

In the case of indirect MRAC with unnormalized adaptive laws, robusti-
fication leads to semiglobal stability in the presence of unmodeled high fre-
quency dynamics. The analysis is the same as in the case of direct MRAC
with unnormalized adaptive laws and is left as an exercise for the reader.
The failure to establish global results in the case of MRAC with robust but
unnormalized adaptive laws is due to the lack of an appropriate normaliz-
ing signal that could be used to bound from above the effect of dynamic
uncertainties.

In the case of indirect MRAC with normalized adaptive laws, global
stability is possible in the presence of a wide class of unmodeled dynamics
by using robust adaptive laws with dynamic normalization as has been done
in the case of direct MRAC in Section 9.3.3.
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We illustrate the robustification of an indirect MRAC with normalized
adaptive laws using the following example:

Example 9.3.3 Consider the MRAC problem for the following plant:

yp =
b

s− a
(1 + ∆m(s))up (9.3.69)

where ∆m is a proper transfer function and analytic in Re[s] ≥ −δ0/2 for some
known δ0 > 0, and a and b are unknown constants. The reference model is given by

ym =
bm

s + am
r, am > 0

If we assume ∆m(s) = 0, the following simple indirect MRAC scheme can be used
to meet the control objective:

up = −k(t)yp + l(t)r (9.3.70)

k(t) =
am + â

b̂
, l =

bm

b̂

˙̂a = γ2εφ2,
˙̂
b =





γ1εφ1, if |b̂| > b0 or
if |b̂| = b0 and εφ1sgn(b) ≥ 0

0 otherwise
(9.3.71)

where
m2 = 1 + φ2

1 + φ2
2, φ1 =

1
s + λ

up; φ2 =
1

s + λ
yp

ε =
z − ẑ

m2
, z =

s

s + λ
yp, ẑ = b̂φ1 + âφ2

b̂(0) ≥ b0, b0 is a known lower bound for |b| and λ > 0 is a design constant. When
(9.3.70) and (9.3.71) are applied to the plant (9.3.69), the ideal properties, such as
stability and asymptotic tracking, can no longer be guaranteed when ∆m(s) 6= 0.
As in the case of the direct MRAC, the boundedness of the signals can be lost due
to the presence of unmodeled dynamics.

The indirect MRAC scheme described by (9.3.70) and (9.3.71) can be made
robust by using the techniques developed in Chapter 8. For example, instead of the
adaptive law (9.3.71), we use the robust adaptive law

˙̂a = γ2εφ2 − σsγ1â

˙̂
b =





γ1εφ1 − γ1σsb̂, if |b̂| > b0 or
if |b̂| = b0 and (εφ1 − σsb̂)sgn(b) ≥ 0

0 otherwise
(9.3.72)
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where
ε =

z − ẑ

m2
, ẑ = b̂φ1 + âφ2

φ1 =
1

s + λ
up, φ2 =

1
s + λ

yp, z =
s

s + λ
yp

m2 = 1 + n2
s, n2

s = ms, ṁs = −δ0ms + u2
p + y2

p, ms(0) = 0

The design constants λ and am are chosen as λ > δ0/2, am > δ0/2, σs is the
switching σ-modification as defined in Chapter 8, b0 is a lower bound satisfying
0 < b0 ≤ |b|. The above robust adaptive law is developed using the parametric
model

z = θ∗>φ + η

for the plant (9.3.69) where θ∗ = [b, a]>,

φ =
[

1
s + λ

up,
1

s + λ
yp

]>
= [φ1, φ2]>, η =

b∆m(s)
s + λ

up

As we have shown in Chapter 8, the adaptive law (9.3.72) guarantees that

(i) ε, εm, â, b̂, ˙̂a,
˙̂
b ∈ L∞

(ii) ε, εns, ˙̂a,
˙̂
b ∈ S(∆2

2), where ∆2 = ‖∆m(s)
s+λ ‖2δ0 5

Let us now apply the MRAC scheme given by the control law (9.3.70)
and robust adaptive law (9.3.72) to the plant (9.3.69).

Theorem 9.3.3 The closed-loop indirect MRAC scheme given by (9.3.69),
(9.3.70), and (9.3.72) has the following properties: If r, ṙ ∈ L∞ and the
plant uncertainty ∆m(s) satisfies the inequalities

c

α2
0

+ c∆2
∞ + cα2

0∆
2
λ < 1, c∆2

2 ≤
δ0

2

where

∆∞ = ‖Wm(s)∆m(s)‖∞δ0 , ∆2 =
∥∥∥∥
∆m(s)
s + λ

∥∥∥∥
2δ0

,∆λ =
∥∥∥∥
∆m(s)
s + λ

∥∥∥∥∞δ0

where α0 > δ0 is an arbitrary constant and c ≥ 0 denotes any finite constant,
then all signals are bounded and the tracking error e1 satisfies

∫ t+T

t
e2
1dτ ≤ c∆2

2 + c

for all t ≥ 0 and any T > 0.
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Proof As in the direct case, the proof may be completed by using the following
steps:

Step 1. Express yp, up in terms of the plant parameter error ã
4
= â−a, b̃

4
= b̂−b.

First we write the control law as

up = −kyp + lr = −k∗yp + l∗r − k̃yp + l̃r (9.3.73)

where k∗ = (am + a)/b, l∗ = bm/b. Because k̃ = ã/b− kb̃/b and l̃ = −lb̃/b, (9.3.73)
can also be written as

up = −k∗yp + l∗r − 1
b
(ãyp + b̃up) (9.3.74)

by using the identity −kyp + lr = up. Using (9.3.74) in (9.3.69), we obtain

yp = Wm(s)
(

r − 1
bm

θ̃>ωp +
1
l∗

∆m(s)up

)
(9.3.75)

where ωp = [up, yp]> and θ̃ = [b̃, ã]>.
Equation (9.3.74) may be also written in the compact form

up = −k∗yp + l∗r − 1
b
θ̃>ωp (9.3.76)

Using the properties of the L2δ norm which for simplicity we denote by ‖(·)‖, we
have

‖yp‖ ≤ c + c‖θ̃>ωp‖+
1
|l∗| ‖Wm(s)∆m(s)‖∞δ‖up‖

‖up‖ ≤ c + c‖yp‖+ c‖θ̃>ωp‖
which imply that

‖up‖, ‖yp‖ ≤ c + c‖θ̃>ωp‖+ c∆∞‖up‖
where ∆∞

4
= ‖Wm(s)∆m(s)‖∞δ for some δ ∈ (0, δ0]. The fictitious normalizing

signal m2
f

4
= 1 + ‖up‖2 + ‖yp‖2 satisfies

m2
f ≤ c + c‖θ̃>ωp‖2 + c∆2

∞m2
f (9.3.77)

Step 2. Obtain an upper bound for ‖θ̃>ωp‖ in terms of signals that are guar-
anteed by the adaptive law to have small in m.s.s. gains. We use the Swapping
Lemma A.2 to express θ̃>ωp as

θ̃>ωp =
(

1− α0

s + α0

)
θ̃>ωp +

α0

s + α0
θ̃>ωp

=
1

s + α0
( ˙̃θ
>

ωp + θ̃>ω̇p) +
α0(s + λ)

s + α0

1
s + λ

θ̃>ωp (9.3.78)
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where α0 > δ0 is arbitrary. From Swapping Lemma A.1, we have

1
s + λ

θ̃>ωp = θ̃>φ− 1
s + λ

φ> ˙̃
θ (9.3.79)

where φ = 1
s+λωp. From the estimation error equation

εm2 = z − ẑ = −θ̃>φ + η

we have
θ̃>φ = −εm2 + η

and, therefore, (9.3.79) may be expressed as

1
s + λ

θ̃>ωp = −εm2 + η − 1
s + λ

φ> ˙̃
θ (9.3.80)

Substituting (9.3.80) in (9.3.78), we obtain

θ̃>ωp =
1

s + α0
[ ˙̃θ>ωp + θ̃>ω̇p] +

α0(s + λ)
s + α0

(
−εm2 + η − 1

s + λ
φ> ˙̃

θ

)
(9.3.81)

The signal mf bounds from above |ωp|, ‖ω̇p‖,m, 1
s+λωp. This can be shown as

follows: Because the adaptive law guarantees that θ̃ ∈ L∞, it follows from (9.3.75)
that

|yp(t)| ≤ c + c‖ωp‖+ c∆1‖up‖ ≤ c + c‖up‖+ c‖yp‖
where ∆1 = ‖Wm(s)∆m(s)‖2δ, and, therefore, yp/mf ∈ L∞. From up = −kyp + lr
and k, l ∈ L∞, it follows that up/mf ∈ L∞ and, therefore, ωp/mf ∈ L∞. Using
(9.3.75) we have

‖ẏp‖ ≤ ‖sWm(s)‖∞δ(c + c‖ωp‖) + c‖sWm(s)∆m(s)‖∞δ‖up‖
≤ c + c‖ωp‖+ c‖up‖ ≤ c + cmf

Therefore, ‖ẏp‖/mf ∈ L∞. Now u̇p = −k̇yp + kẏp + l̇r + lṙ. Because k̇, l̇ ∈ L∞ and
by assumption r, ṙ ∈ L∞, it follows from |yp|/mf ∈ L∞ and ‖ẏp‖/mf ∈ L∞ that
‖u̇p‖/mf ∈ L∞. From ‖ω̇p‖ ≤ ‖u̇p‖ + ‖ẏp‖, it follows that ‖ω̇p‖/mf ∈ L∞. The
boundedness of m/mf , φ/mf follows in a similar manner by using the properties of
the L2δ norm.

Using the normalizing properties of mf and the properties of the L2δ norm, we
obtain from (9.3.81) the following inequality:

‖θ̃>ωp‖ ≤ c

α0
(‖ ˙̃

θmf‖+ mf ) + α0(‖εmmf‖+ ∆λmf + ‖ ˙̃
θmf‖) (9.3.82)

where for the ‖η‖ term we used the inequality

‖η‖ ≤ ∆λ‖up‖ ≤ c∆λmf
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where ∆λ = ‖∆m(s)
s+λ ‖∞δ. The “smallness” of ‖θ̃>ωp‖ follows from ˙̃

θ, εm ∈ S(∆2
2)

and by choosing α0 large.

Step 3. Use the B-G Lemma to establish boundedness. Using (9.3.82) in
(9.3.77), we obtain

m2
f ≤ c + c‖g̃mf‖2 +

c

α2
0

m2
f + cα2

0∆
2
λm2

f + c∆2
∞m2

f

where g̃2 = ( 1
α2

0
+ α2

0)| ˙̃θ|2 + α2
0|εm|2, i.e., g̃ ∈ S(∆2

2). Therefore, for

c

α2
0

+ cα2
0∆

2
λ + c∆2

∞ < 1

we have
m2

f ≤ c + c‖g̃mf‖2
or

m2
f (t) ≤ c + c

∫ t

0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ

Applying the B-G Lemma III, we obtain

m2
f (t) ≤ ce−δte

c
∫ t

0
g̃2(τ)dτ + cδ

∫ t

0

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds

Because g̃ ∈ S(∆2
2), i.e.,

∫ t

s
g̃2(τ)dτ ≤ c∆2

2(t − s) + c, it follows that for c∆2
2 < δ,

m2
f ∈ L∞ which implies that all signals are bounded.

Step 4. Error bounds for the tracking error. Using (9.3.75), the tracking error
e1 = yp − ym is given by

e1 = − 1
s + am

θ̃>ωp +
s + λ

s + am
η = − s + λ

s + am

[
1

s + λ
θ̃>ωp − η

]

Using (9.3.80), we have

e1 =
s + λ

s + am

(
εm2 +

1
s + λ

φ> ˙̃
θ

)
(9.3.83)

Because εm,
˙̃
θ ∈ S(∆2

2) and φ, m ∈ L∞, it follows from (9.3.83) and Corollary 3.3.3
that e1 ∈ S(∆2

2), i.e., ∫ t+T

t

e2
1dτ ≤ c∆2

2T + c

∀t ≥ 0 and any T ≥ 0. 2

The extension of this example to the general case follows from the mate-
rial presented in Section 9.3.3 for the direct case and that in Chapter 6 for
indirect MRAC and is left as an exercise for the reader.
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9.4 Performance Improvement of MRAC

In Chapter 6 we have established that under certain assumptions on the
plant and reference model, we can design MRAC schemes that guarantee
signal boundedness and asymptotic convergence of the tracking error to
zero. These results, however, provide little information about the rate of
convergence and the behavior of the tracking error during the initial stages
of adaptation. Of course if the reference signal is sufficiently rich we have
exponential convergence and therefore more information about the asymp-
totic and transient behavior of the scheme can be inferred. Because in most
situations we are not able to use sufficiently rich reference inputs without
violating the tracking objective, the transient and asymptotic properties of
the MRAC schemes in the absence of rich signals are very crucial.

The robustness modifications, introduced in Chapter 8 and used in the
previous sections for robustness improvement of MRAC, provide no guaran-
tees of transient and asymptotic performance improvement. For example,
in the absence of dominantly rich input signals, the robust MRAC schemes
with normalized adaptive laws guarantee signal boundedness for any finite
initial conditions, and a tracking error that is of the order of the modeling
error in m.s.s. Because smallness in m.s.s. does not imply smallness point-
wise in time, the possibility of having tracking errors that are much larger
than the order of the modeling error over short time intervals at steady state
cannot be excluded. A phenomenon known as “bursting,” where the track-
ing error, after reaching a steady-state behavior, bursts into oscillations of
large amplitude over short intervals of time, have often been observed in
simulations. Bursting cannot be excluded by the m.s.s. bounds obtained in
the previous sections unless the reference signal is dominantly rich and/or
an adaptive law with a dead zone is employed. Bursting is one of the most
annoying phenomena in adaptive control and can take place even in sim-
ulations of some of the ideal MRAC schemes of Chapter 6. The cause of
bursting in this case could be the computational error which acts as a small
bounded disturbance. There is a significant number of research results on
bursting and other undesirable phenomena, mainly for discrete-time plants
[2, 68, 81, 136, 203, 239]. We use the following example to explain one of
the main mechanisms of bursting.
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Example 9.4.1 (Bursting) Let us consider the following MRAC scheme:

Plant ẋ = ax + bu + d

Reference Model ẋm = −xm + r, xm(0) = 0

Adaptive Controller

u = θ>ω, θ = [θ0, c0]>, ω = [x, r]>

θ̇ = Pr[−e1ωsgn(b)] , e1 = x− xm (9.4.1)

The projection operator in (9.4.1) constrains θ to lie inside a bounded set, where
|θ| ≤ M0 and M0 > 0 is large enough to satisfy |θ∗| ≤ M0 where θ∗ =

[−a+1
b , 1

b

]>
is the desired controller parameter vector. The input d in the plant equation is an
arbitrary unknown bounded disturbance. Let us assume that |d(t)| ≤ d0, ∀t ≥ 0 for
some d0 > 0.

If we use the analysis of the previous sections, we can establish that all signals
are bounded and the tracking error e1 ∈ S(d2

0) , i.e.,
∫ t

t0

e2
1dτ ≤ d2

0(t− t0) + k0, ∀t ≥ t0 ≥ 0 (9.4.2)

where k0 depends on initial conditions. Furthermore, if r is dominantly rich, then
e1, θ̃ = θ − θ∗ converge exponentially to the residual set

S0 =
{

e1, θ̃
∣∣∣|e1|+ |θ̃| ≤ cd0

}

Let us consider the tracking error equation

ė1 = −e1 + bθ̃>ω + d (9.4.3)

and choose the following disturbance

d = h(t)sat{−b(θ̄ − θ∗)>ω}

where h(t) is a square wave of period 100π sec and amplitude 1,

sat{x} 4=




x if |x| < d0

d0 if x ≥ d0

−d0 if x ≤ −d0

and θ̄ is an arbitrary constant vector such that |θ̄| < M0. It is clear that |d(t)| < d0

∀t ≥ 0. Let us consider the case where r is sufficiently rich but not dominantly
rich, i.e., r(t) has at least one frequency but |r| ¿ d0. Consider a time interval
[t1, t1 +T1] over which |e1(t)| ≤ d0. Such an interval not only exists but is also large
due to the uniform continuity of e1(t) and the inequality (9.4.2). Because |e1| ≤ d0
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and 0 < |r| ¿ d0, we could have |b(θ̄ − θ∗)>ω| < d0 for some values of |θ̄| < M0

over a large interval [t2, t2 + T2] ⊂ [t1, t1 + T ]. Therefore, for t ∈ [t2, t2 + T2] we
have d = −h(t)b(θ̄ − θ∗)>ω and equation (9.4.3) becomes

ė1 = −e1 + b(θ − θ̄)>ω̄ ∀t ∈ [t2, t2 + T2] (9.4.4)

where ω̄ = h(t)ω. Because r is sufficiently rich, we can establish that ω̄ is PE and
therefore θ converges exponentially towards θ̄. If T2 is large, then θ will get very
close to θ̄ as t → t2 + T2. If we now choose θ̄ to be a destabilizing gain or a gain
that causes a large mismatch between the closed-loop plant and the reference model,
then as θ → θ̄ the tracking error will start increasing, exceeding the bound of d0.
In this case d will reach the saturation bound d0 and equation (9.4.4) will no longer
hold. Since (9.4.2) does not allow large intervals of time over which |e1| > d0, we
will soon have |e1| ≤ d0 and the same phenomenon will be repeated again.

The simulation results of the above scheme for a = 1, b = 1 , r = 0.1 sin 0.01t,
d0 = 0.5, M0 = 10 are given in Figures 9.4 and 9.5. In Figure 9.4, a stabilizing
θ̄ = [−3, 4]> is used and therefore no bursting occurred. The result with θ̄ = [0, 4]>,
where θ̄ corresponds to a destabilizing controller parameter, is shown in Figure 9.5.
The tracking error e1 and parameter θ1(t), the first element of θ, are plotted as
functions of time. Note that in both cases, the controller parameter θ1(t) converges
to θ̄1, i.e., to −3 (a stabilizing gain) in Figure 9.4, and to 0 (a destabilizing gain)
in Figure 9.5 over the period where d = −h(t)b(θ̄ − θ∗)>ω. The value of θ̄2 = 4 is
larger than θ∗2 = 1 and is responsible for some of the nonzero values of e1 at steady
state shown in Figures 9.4 and 9.5. 5

Bursting is not the only phenomenon of bad behavior of robust MRAC.
Other phenomena such as chaos, bifurcation and large transient oscillations
could also be present without violating the boundedness results and m.s.s.
bounds developed in the previous sections [68, 81, 136, 239].

One way to eliminate most of the undesirable phenomena in MRAC is to
use reference input signals that are dominantly rich. These signals guarantee
a high level of excitation relative to the level of the modeling error, that in
turn guarantees exponential convergence of the tracking and parameter error
to residual sets whose size is of the order of the modeling error. The use
of dominantly rich reference input signals is not always possible especially
in the case of regulation or tracking of signals that are not rich. Therefore,
by forcing the reference signal to be dominantly rich, we eliminate bursting
and other undesirable phenomena at the expense of destroying the tracking
properties of the scheme in the case where the desired reference signal is not
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Figure 9.4 Simulation results for Example 9.4.1: No bursting because of
the stabilizing θ̄ = [−3, 4]>.
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Figure 9.5 Simulation results for Example 9.4.1: Bursting because of the
destabilizing θ̄ = [0, 4]>.
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rich. Another suggested method for eliminating bursting is to use adaptive
laws with dead zones. Such adaptive laws guarantee convergence of the
estimated parameters to constant values despite the presence of modeling
error provided of course the size of the dead zone is higher than the level
of the modeling error. The use of dead zones, however, does not guarantee
good transient performance or zero tracking error in the absence of modeling
errors.

In an effort to improve the transient and steady-state performance of
MRAC, a high gain scheme was proposed in [148], whose gains are switched
from one value to another based on a certain rule, that guarantees arbi-
trarily good transient and steady state tracking performance. The scheme
does not employ any of the on-line parameter estimators developed in this
book. The improvement in performance is achieved by modifying the MRC
objective to one of “approximate tracking.” As a result, non-zero tracking
errors remained at steady state. Eventhough the robustness properties of the
scheme of [148] are not analyzed, the high-gain nature of the scheme is ex-
pected to introduce significant trade-offs between stability and performance
in the presence of unmodeled dynamics.

In the following sections, we propose several modified MRAC schemes
that guarantee reduction of the size of bursts and an improved steady-state
tracking error performance.

9.4.1 Modified MRAC with Unnormalized Adaptive Laws

The MRAC schemes of Chapter 6 and of the previous sections are designed
using the certainty equivalence approach to combine a control law, that
works in the case of known parameters, with an adaptive law that provides
on-line parameter estimates to the controller. The design of the control law
does not take into account the fact that the parameters are unknown, but
blindly considers the parameter estimates provided by the adaptive laws to
be the true parameters. In this section we take a slightly different approach.
We modify the control law design to one that takes into account the fact
that the plant parameters are not exactly known and reduces the effect of
the parametric uncertainty on stability and performance as much as possi-
ble. This control law, which is robust with respect to parametric uncertainty,
can then be combined with an adaptive law to enhance stability and per-



698 CHAPTER 9. ROBUST ADAPTIVE CONTROL SCHEMES

formance. We illustrate this design methodology using the same plant and
control objective as in Example 9.4.1, i.e.,

Plant ẋ = ax + bu + d

Reference Model ẋm = −xm + r, xm(0) = 0

Let us choose a control law that employs no adaptation and meets the
control objective of stability and tracking as close as possible even though
the plant parameters a and b are unknown.

We consider the control law

u = θ̄0x + c̄0r + uα (9.4.5)

where θ̄0, c̄0 are constants that depend on some nominal known values of
a, b if available, and uα is an auxiliary input to be chosen. With the input
(9.4.5), the closed-loop plant becomes

ẋ = −x + b

(
θ̄0 +

a + 1
b

)
x + bc̄0r + buα + d (9.4.6)

and the tracking error equation is given by

ė1 = −e1 + b˜̄θ0e1 + b˜̄θ0xm + b˜̄c0r + buα + d (9.4.7)

where ˜̄θ0 = θ̄0 + a+1
b , ˜̄c0 = c0 − 1

b are the constant parameter errors. Let us
now choose

uα = −s + 1
τs

sgn(b)e1 (9.4.8)

where τ > 0 is a small design constant. The closed-loop error equation
becomes

e1 =
τs

τs2 + (τ + |b| − τb˜̄θ0)s + |b|
[b˜̄θ0xm + b˜̄c0r + d] (9.4.9)

If we now choose τ to satisfy

0 < τ <
1

|˜̄θ0|
(9.4.10)

the closed-loop tracking error transfer function is stable which implies that
e1,

1
se1 ∈ L∞ and therefore all signals are bounded.
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Another expression for the tracking error obtained using x = e1 + xm

and (9.4.7) is
e1 =

τs

(s + 1)(τs + |b|) [b
˜̄θ0x + b˜̄c0r + d] (9.4.11)

or for |b| 6= τ we have

e1 =
τ

|b| − τ

[ |b|
τs + |b| −

1
s + 1

]
(w + d) (9.4.12)

where w
4
= b(˜̄θ0x + ˜̄c0r) is due to the parametric uncertainty. Because

x ∈ L∞, for any given τ ∈ (0, 1/|˜̄θ0|), we can establish that there exists a
constant w0 ≥ 0 independent of τ such that supt |w(t)| ≤ w0. It, therefore,
follows from (9.4.12) that

|e1(t)| ≤ τ

|b| − τ

( |b|
τ

e−
|b|
τ

t − e−t
)
|e1(0)|+ 2τ

|b| − τ
(w0 + d0) (9.4.13)

where d0 is the upper bound for |d(t)| ≤ d0, ∀t ≥ 0. It is, therefore, clear
that if we use the modified control law

u = θ̄0x + c̄0r − s + 1
τs

sgn(b)e1

with

0 < τ < min

[
|b|, 1

|˜̄θ0|

]
(9.4.14)

then the tracking error will converge exponentially fast to the residual set

Se =
{

e1

∣∣∣∣|e1| ≤ 2τ

|b| − τ
(w0 + d0)

}
(9.4.15)

whose size reduces to zero as τ → 0.
The significance of the above control law is that no matter how we choose

the finite gains θ̄0, c̄0, there always exist a range of nonzero design parameter
values τ for stability. Of course the further θ̄0 is away from the desired
θ∗0 where θ∗0 = −a+1

b , the smaller the set of values of τ for stability as
indicated by (9.4.14). Even though the tracking performance of this modified
control law can be arbitrarily improved by making τ arbitrarily small, we
cannot guarantee that the tracking error converges to zero as t → ∞ even
when the disturbance d = 0. This is because the parameter error ˜̄θ0, ˜̄c0
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is nonzero and acts as a disturbance in the tracking error equation. The
asymptotic convergence of the tracking error to zero in the case of d = 0 can
be reestablished if, instead of using the constant gains θ̄0, c̄0 in (9.4.5), we
use an adaptive law to generate on-line estimates for the controller gains.
Therefore, instead of combining (9.4.5) with uα = 0 with an adaptive law as
we did in Chapter 6, we combine the modified control law

u = θ0(t)x + c0(t)r − s + 1
τs

sgn(b)e1 (9.4.16)

with an adaptive law that generates θ0(t), c0(t), the estimates of θ∗0, c∗0 re-
spectively. With (9.4.16) the tracking error equation may be written as

ė1 = −e1 + bθ̃>ω − |b|s + 1
τs

e1 + d (9.4.17)

where θ̃ = θ − θ∗, θ = [θ0, c0]>, θ∗ = [θ∗0, c∗0]>, θ∗0 = −a+1
b , c∗0 = 1

b , ω = [x, r]>

or

ė1 = −
(

1 +
|b|
τ

)
e1 + bθ̃>ω − |b|

τ
e2 + d

ė2 = e1 (9.4.18)

We develop the adaptive laws for θ0, c0 by considering the following Lyapu-
nov-like function

V =
(e1 + e2)2

2
+ l0

e2
2

2
+

θ̃>θ̃

2
|b| (9.4.19)

where l0 > 0 is an arbitrary constant to be selected.
The time-derivative V̇ along the solution of (9.4.18) may be written as

V̇ = −
(

1 +
|b|
τ

)
e2
1 −

|b|
τ

e2
2 + (e1 + e2)d + e1e2

(
l0 − 2|b|

τ
− 1

)

+(e1 + e2)bθ̃>ω + |b|θ̃>Pr[−(e1 + e2)ωsgn(b)] (9.4.20)

by choosing the adaptive law

θ̇ = Pr[−(e1 + e2)ωsgn(b)] (9.4.21)

=





−(e1 + e2)ωsgn(b) if |θ| < M0 or
if |θ|=M0 and θ>(e1+e2)ωsgn(b)≥0

−
(
I − θθ>

θ>θ

)
(e1 + e2)ωsgn(b) otherwise
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where |θ(0)| ≤ M0 and M0 ≥ |θ∗|. Selecting l0 = 2|b|
τ + 1, completing the

squares and using the properties of projection, we can establish that

V̇ ≤ −|b|
2τ

e2
1 −

|b|
2τ

e2
2 +

τd2

|b| (9.4.22)

which implies that θ, e1, e2 ∈ L∞ and e1, e2 ∈ S(τd2), i.e., the m.s.s. bound
for e1, e2 can be made arbitrarily small by choosing an arbitrarily small τ . In
addition, x, ω ∈ L∞. Furthermore if d = 0, we can establish that e1, e2 → 0
as t →∞.

Let us now obtain an L∞-bound for e1. From (9.4.17) we have

e1 =
τs

τs2 + (τ + |b|)s + |b|(w + d) (9.4.23)

where w = bθ̃>ω. Because we have shown above that w ∈ L∞ for any τ > 0,
we can treat w as a bounded disturbance term. As in the non-adaptive case
we express e1 as

e1 =
τ

|b| − τ

[ |b|
τs + |b| −

1
s + 1

]
(w + d) (9.4.24)

for |b| 6= τ , which implies that

|e1(t)| ≤ τ

|b| − τ

∣∣∣∣
|b|
τ

e−
|b|
τ

t − e−t

∣∣∣∣ |e1(0)|+ 2τ

|b| − τ
(w0 + d0) (9.4.25)

where w0 and d0 are the upper bounds for w and d respectively. It is therefore
clear that the modified adaptive control scheme guarantees that the tracking
error converges exponentially to the residual set

Se =
{

e1

∣∣∣∣|e1| ≤ 2τ

|b| − τ
(w0 + d0)

}
(9.4.26)

whose size can be made arbitrarily small by choosing an arbitrarily small τ .
The residual set is qualitatively the same as in the non-adaptive case. The
difference is in the value of w0, the bound for the parametric uncertainty term
bθ̃>ω. One can argue that w0 should be smaller in the adaptive case than in
the non-adaptive case due to the learning capability of the adaptive scheme.
Another significant difference is that in the absence of the disturbance, i.e.,
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Figure 9.6 Simulation for (a) MRAC without modification; (b) modified
MRAC with τ = 0.5.

d = 0, the modified adaptive scheme guarantees that e1 → 0 as t → ∞ for
any τ > 0.

The significance of the modified adaptive control scheme is that it guar-
antees m.s.s. and L∞ bounds for the tracking error that can be made small
by choosing a small design parameter τ . This means that by the proper
choice of τ , we can significantly reduce bursting and improve the tracking
error performance of the adaptive control scheme.

We demonstrate the effectiveness of the modified scheme by simulating
it with the same disturbance as in Example 9.4.1 The simulation results
with τ = 0.5 (a moderate value for the design parameter) are shown in
Figures 9.6. It can be seen that the bursting is suppressed by the additional
compensation term.

The methodology used in the above example can be extended to the
general case of MRAC with unnormalized adaptive laws.
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9.4.2 Modified MRAC with Normalized Adaptive Laws

The method used in the previous section can be extended to MRAC with
normalized adaptive laws. In this section we briefly describe two modifica-
tions that can be used to improve the performance of MRAC with normalized
adaptive laws [36, 39, 211, 212].

We consider the general plant

yp = kp
Zp(s)
Rp(s)

(up + du) (9.4.27)

where kp, Zp, and Rp satisfy assumptions P1 to P4 given in Section 6.3 and
du is a bounded input disturbance. For simplicity we assume that kp is
known. The coefficients of Zp, Rp are completely unknown. The reference
model is given by

ym = Wm(s)r = km
Zm(s)
Rm(s)

r (9.4.28)

where Wm(s) satisfies assumptions M1 and M2 given in Section 6.3.
We consider the control law

up = θ>0 (t)ω0 + c∗0r + ua (9.4.29)

where θ0 = [θ>1 , θ>2 , θ3]>, ω0 = [ω>1 , ω>2 , yp]>, c∗0 = km/kp, ω1 = α(s)
Λ(s)up, ω2 =

α(s)
Λ(s)yp, α(s) = [sn−2, · · · , s, 1]> and Λ = Λ0Zm is a Hurwitz polynomial of
degree n− 1.

The auxiliary input ua is to be chosen for performance improvement. The
parameter vector θ0(t) may be generated by any one of the robust adaptive
laws of Chapter 8. As an example let us use the gradient algorithm with
projection based on the parametric plant model z = θ∗>0 φ0 − dη, developed

using equation (9.3.62), where z = Wm(s)up − c∗0yp, dη = Λ−θ∗>1 α
Λ Wmdu, i.e.,

θ̇0 = Pr[Γεφ0]

ε =
z − θ>0 φ0

m2

m2 = 1 + n2
s, n2

s = ms (9.4.30)

ṁs = −δ0ms + u2
p + y2

p, ms(0) = 0

φ0 = Wm(s)ω0
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1
c∗0

Wm(s)

C(s)

lΣ - --

¾

6

θ̃>0 ω0 + d1 e1
+

−

Figure 9.7 A closed-loop representation of the modified MRAC scheme.

where the projection operator Pr[·] constrains θ0 to satisfy |θ0(t)| ≤ M0 ∀t ≥
0 for some M0 ≥ |θ∗0|, Γ = Γ> > 0 and δ0 > 0 is chosen so that Wm(s) and
the filters for generating ω0 are analytic in Re[s] ≥ −δ0/2.

With (9.4.29) the tracking error equation may be written as

e1 =
1
c∗0

Wm(s)[θ̃>0 ω0 + ua + d1] (9.4.31)

where d1 = Λ−θ∗>α
Λ du, θ̃0 = θ0 − θ∗0 by following the same procedure as the

one used to develop equation (9.3.65). The idea now is to choose ua so
that all signals in the closed-loop plant remain bounded as in the case of
ua = 0 and the effect of θ̃>0 ω0 + d1 on e1 is reduced as much as possible.
We present two different methods that lead to two different choices of ua

achieving similar results.

Method 1. This method is developed in [36, 212] and is described as
follows:

We choose ua as
ua = −C(s)e1 (9.4.32)

where C(s) is a proper transfer function to be designed. With (9.4.32) the
tracking error system may be represented by the Figure 9.7.

The set of all stabilizing compensators C(s) for this system is given by

C(s) =
Q(s)

1− 1
c∗0

Wm(s)Q(s)
(9.4.33)

where Q(s) ranges over the set of all stable rational transfer functions [36].
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With this choice of C(s), the tracking error equation becomes

e1 =
[
1− 1

c∗0
Wm(s)Q(s)

]
1
c∗0

Wm(s)[θ̃>0 ω0 + d1]

which implies that

‖e1t‖∞ ≤ ‖hm‖1(‖(θ̃>0 ω0)t‖∞ + ‖d1t‖∞)

where hm is the impulse response of the system with transfer function
1
c∗0

Wm(s)(1 − 1
c∗0

Wm(s)Q(s)). The problem now reduces to choosing a proper
stable rational function Q(s) to minimize the L1 norm of hm, i.e., to make
‖hm‖1 as small as possible.

Lemma 9.4.1 The transfer function

Q(s) =
c∗0W−1

m (s)
(τs + 1)n∗ (9.4.34)

where n∗ is the relative degree of the plant and τ > 0 is a design constant
guarantees that

‖hm‖1 → 0 as τ → 0

Proof We have
[
1− 1

c∗0
Wm(s)Q(s)

]
Wm(s)

c∗0
=

(τs + 1)n∗ − 1
(τs + 1)n∗

Wm(s)
c∗0

= τs
Wm(s)

c∗0

[
1

τs + 1
+

1
(τs + 1)2

+ · · ·+ 1
(τs + 1)n∗

]

Hence,
‖hm‖1 ≤ τ‖h0‖1[‖h1‖1 + ‖h2‖1 + · · · ‖hn∗‖1]

where h0(t) is the impulse response of sWm(s)/c∗0 and hi(t) the impulse response of
1/(τs + 1)i, i = 1, 2, . . . , n∗. It is easy to verify that ‖h0‖1, ‖hi‖1 are bounded from
above by a constant c > 0 independent of τ . Therefore ‖hm‖1 ≤ τc and the proof
is complete. 2

Using (9.4.32), (9.4.33) and (9.4.34), the control law (9.4.29) becomes

up = θ>0 (t)ω0 + c∗0r − C(s)e1 (9.4.35)

C(s) =
c∗0W−1

m (s)
(τs + 1)n∗ − 1
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which together with the adaptive law (9.4.30) and c∗0 = km/kp describe the
modified MRAC scheme.

The control law (9.4.35) poses no implementation problems because C(s)
is proper, and e1 is measured.

Theorem 9.4.1 The MRAC scheme described by (9.4.30) and (9.4.35) with
τ ∈ (0, 1/δ0) guarantees the following properties when applied to the plant
(9.4.27):

(i) All signals are bounded.

(ii) The tracking error satisfies

lim
t→∞ sup

τ0≥t
|e1(τ0)| ≤ τ(c + d0)

where d0 is an upper bound for the disturbance du and c ≥ 0 is a
constant independent of τ .

(iii) When du = 0, e1(t) → 0 as t →∞.

The proof of Theorem 9.4.1 follows from the proofs of the standard robust
MRAC schemes and is left as an exercise for the reader.

Theorem 9.4.1 indicates that the steady state value of e1 can be made
arbitrarily small by choosing a small design parameter τ . Small τ implies the
presence of a high gain equal to 1/τ in the control law (9.4.35). Such a high
gain is expected to have adverse effects on robust stability demonstrating the
classical trade-off between robust stability and nominal performance that is
present in every robust control scheme in the nonadaptive case. In the
presence of unmodeled dynamics it is expected that τ has to meet a lower
bound for preservation of robust stability.

Method 2. This method is developed and analyzed in [39, 211] and is
described as follows:

We consider the tracking error equation (9.4.31)

e1 =
1
c∗0

Wm(s)(θ̃>0 ω0 + ua + d1)



9.4. PERFORMANCE IMPROVEMENT OF MRAC 707

Using Swapping Lemma A.1 we have

Wm(s)θ̃>0 ω0 = θ̃>0 φ0 + Wc(s)(Wb(s)ω>0 ) ˙̃θ0

where the elements of Wc, Wb are strictly proper transfer functions with the
same poles as Wm(s). From the expression of the normalized estimation
error in (9.4.30), we have

εm2 = −θ̃>0 φ0 − dη

where dη = Wm(s)d1. Therefore, εm2 = −θ̃>0 φ0 −Wm(s)d1 leading to the
tracking error equation

e1 =
1
c∗0

[
−εm2 + Wc(Wbω

>
0 ) ˙̃θ0 + Wmua

]

Because ε,Wc,Wb, ω0,
˙̃
θ0 are known, the input ua is to be chosen to reduce

the effect of θ̃0,
˙̃
θ0 on e1.

Let us choose

ua = −Q(s)[−εm2 + Wc(s)(Wb(s)ω>0 ) ˙̃θ0] = −Q(s)Wm(s)(θ̃>0 ω0 + d1)
(9.4.36)

where Q(s) is a proper stable transfer function to be designed. With this
choice of ua, we have

e1 =
1
c∗0

[(1−Wm(s)Q(s))Wm(s)(θ̃>0 ω0 + d1)]

which implies that

‖e1t‖∞ ≤ ‖hm‖1(‖(θ̃>0 ω0)t‖∞ + ‖d1t‖∞)

where hm(t) is the impulse response of (1−Wm(s)Q(s))Wm(s).
As in Method 1 if we choose Q(s) as

Q(s) =
W−1

m (s)
(τs + 1)n∗ (9.4.37)

we can establish that ‖hm‖1 → 0 as τ → 0.
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With (9.4.37) the modified control law (9.4.29), (9.4.36) becomes

up = θ>0 ω0 + c∗0r −
W−1

m (s)
(τs + 1)n∗ (−εm2 + Wc(s)(Wb(s)ω>0 ) ˙̃θ0) (9.4.38)

where Wc, Wb can be calculated from the Swapping Lemma A.1 and ˙̃
θ0 = θ̇0

is available from the adaptive law.

Theorem 9.4.2 The modified MRAC scheme described by (9.4.30), (9.4.38)
with τ ∈ (0, 1/δ0) guarantees the following properties when applied to the
plant (9.4.27):

(i) All signals are bounded.

(ii) The tracking error e1 satisfies

lim
t→∞ sup

τ0≥t
|e1(τ0)| ≤ τ(c + d0)

where d0 is an upper bound for the disturbance du and c ≥ 0 is a finite
constant independent of τ .

(iii) When du = 0 we have |e1(t)| → 0 as t →∞.

The proof of Theorem 9.4.2 follows from the proofs of the robust MRAC
schemes presented in Section 9.3 and is given in [39].

In [39], the robustness properties of the modified MRAC scheme are
analyzed by applying it to the plant

yp = kp
Z(s)
R(s)

(1 + µ∆m(s))up

where µ∆m(s) is a multiplicative perturbation and µ > 0. It is established
that for τ ∈ (τmin, 1

δ0
) where 0 < τmin < 1

δ0
, there exists a µ∗(τmin) > 0 such

that all signals are bounded and

lim
t→∞ sup

τ0≥t
|e1(τ0)| ≤ τc + µc

where c ≥ 0 is a constant independent of τ, µ. The function µ∗(τmin) is
such that as τmin → 0, µ∗(τmin) → 0 demonstrating that for a given size
of unmodeled dynamics characterized by the value of µ∗, τ cannot be made
arbitrarily small.
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Remark 9.4.1 The modified MRAC schemes proposed above are based on
the assumption that the high frequency gain kp is known. The case of
unknown kp is not as straightforward. It is analyzed in [37] under the
assumption that a lower and an upper bound for kp is known a priori.

Remark 9.4.2 The performance of MRAC that includes transient as well
as steady-state behavior is a challenging problem especially in the
presence of modeling errors. The effect of the various design param-
eters, such as adaptive gains and filters, on the performance and ro-
bustness of MRAC is not easy to quantify and is unknown in gen-
eral. Tuning of some of the design parameters for improved perfor-
mance is found to be essential even in computer simulations, let alone
real-time implementations, especially for high order plants. For addi-
tional results on the performance of MRAC, the reader is referred to
[37, 119, 148, 182, 211, 227, 241].

9.5 Robust APPC Schemes

In Chapter 7, we designed and analyzed a wide class of APPC schemes for
a plant that is assumed to be finite dimensional, LTI, free of any noise and
external disturbances and whose transfer function satisfies assumptions P1
to P3.

In this section, we consider APPC schemes that are designed for a sim-
plified plant model but are applied to a higher-order plant with unmodeled
dynamics and bounded disturbances. In particular, we consider the higher
order plant model which we refer to it as the actual plant

yp = G0(s)[1 + ∆m(s)](up + du) (9.5.1)

where G0(s) satisfies P1 to P3 given in Chapter 7, ∆m(s) is an unknown
multiplicative uncertainty, du is a bounded input disturbance and the overall
plant transfer function G(s) = G0(s)(1+∆m(s)) is strictly proper. We design
APPC schemes for the lower-order plant model

yp = G0(s)up (9.5.2)

but apply and analyze them for the higher order plant model (9.5.1). The ef-
fect of perturbation ∆m and disturbance du on the stability and performance
of the APPC schemes is investigated in the following sections.
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C(s)

∆m(s)
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Figure 9.8 Closed-loop PPC schemes with unmodeled dynamics and
bounded disturbances.

We first consider the nonadaptive case where G0(s) is known exactly.

9.5.1 PPC: Known Parameters

Let us consider the control laws of Section 7.3.3 that are designed for the
simplified plant model (9.5.2) with known plant parameters and apply them
to the higher order plant (9.5.1). The block diagram of the closed-loop plant
is shown in Figure 9.8 where C(s) is the transfer function of the controller.
The expression for C(s) for each of the PPC laws developed in Chapter 7 is
given as follows.

For the control law in (7.3.6) and (7.3.11) of Section 7.3.2 which is based
on the polynomial approach, i.e.,

QmLup = P (ym − yp), LQmRp + PZp = A∗ (9.5.3)

where Qm(s) is the internal model of the reference signal ym, i.e., Qm(s)ym =
0, we have

C(s) =
P (s)

Qm(s)L(s)
(9.5.4)

The control law (7.3.19), (7.3.20) of Section 7.3.3 based on the state-variable
approach, i.e.,

˙̂e = Aê + Būp −Ko(C>ê− e1)

ūp = −Kcê, up =
Q1

Qm
ūp (9.5.5)



9.5. ROBUST APPC SCHEMES 711

where Kc satisfies (7.3.21) and Ko satisfies (7.3.22), can be put in the form
of Figure 9.8 as follows:

We have
ê(s) = (sI −A + KoC

>)−1(Būp + Koe1)

and
ūp = −Kc(sI −A + KoC

>)−1(Būp + Koe1)

i.e.,

ūp = − Kc(sI −A + KoC
>)−1Ko

1 + Kc(sI −A + KoC>)−1B
e1

and, therefore,

C(s) =
Kc(sI −A + KoC

>)−1Ko

(1 + Kc(sI −A + KoC>)−1B)
Q1(s)
Qm(s)

(9.5.6)

For the LQ control of Section 7.3.4, the same control law (9.5.5) is used,
but Kc is calculated by solving the algebraic equation

A>P + PA− PBλ−1B>P + CC> = O, Kc = λ−1B>P (9.5.7)

Therefore, the expression for the transfer function C(s) is exactly the same
as (9.5.6) except that (9.5.7) should be used to calculate Kc.

We express the closed-loop PPC plant into the general feedback form
discussed in Section 3.6 to obtain

[
up

yp

]
=




C

1 + CG

−CG

1 + CG
CG

1 + CG

G

1 + CG




[
ym

du

]
(9.5.8)

where G = G0(1 + ∆m) is the overall transfer function and C is different
for different pole placement schemes. The stability properties of (9.5.8) are
given by the following theorem:

Theorem 9.5.1 The closed-loop plant described by (9.5.8) is internally sta-
ble provided

‖T0(s)∆m(s)‖∞ < 1

where T0(s) = CG0
1+CG0

is the complementary sensitivity function of the nomi-
nal plant. Furthermore, the tracking error e1 converges exponentially to the
residual set

De = {e1 ||e1| ≤ cd0 } (9.5.9)
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where d0 is an upper bound for |du| and c > 0 is a constant.

Proof The proof of the first part of Theorem 9.5.1 follows immediately from equa-
tion (9.5.8) and the small gain theorem by expressing the characteristic equation of
(9.5.8) as

1 +
CG0

1 + CG0
∆m = 0

To establish (9.5.9), we use (9.5.8) to write

e1 =
[

CG

1 + CG
− 1

]
ym +

G

1 + CG
du = − 1

1 + CG
ym +

G

1 + CG
du

It follows from (9.5.4), (9.5.6) that the controller C(s) is of the form C(s) = C0(s)
Qm(s)

for some C0(s). Therefore

e1 = − Qm

Qm + C0G
ym +

GQm

Qm + C0G
du

where G = G0(1 + ∆m). Since Qmym = 0 and the closed-loop plant is internally
stable due to ‖T0(s)∆m(s)‖∞ < 1, we have

e1 =
(1 + ∆m)G0Qm

Qm + C0G0 + ∆mC0G0
du + εt (9.5.10)

where εt is an exponentially decaying to zero term. Therefore, (9.5.9) is implied by
(9.5.10) and the internal stability of the closed-loop plant. 2

It should be pointed out that the tracking error at steady state is not
affected by ym despite the presence of the unmodeled dynamics. That is, if
du ≡ 0 and ∆m 6= 0, we still have e1(t) → 0 as t → ∞ provided the closed-
loop plant is internally stable. This is due to the incorporation of the internal
model of ym in the control law. If Qm(s) contains the internal model of du

as a factor, i.e., Qm(s) = Qd(s)Q̄m(s) where Qd(s)du = 0 and Q̄m(s)ym = 0,
then it follows from (9.5.10) that e1 = εt, i.e., the tracking error converges
to zero exponentially despite the presence of the input disturbance. The
internal model of du can be constructed if we know the frequencies of du.
For example, if du is a slowly varying signal of unknown magnitude we could
choose Qd(s) = s.

The robustness and performance properties of the PPC schemes given by
Theorem 9.5.1 are based on the assumption that the parameters of the mod-
eled part of the plant, i.e., the coefficients of G0(s) are known exactly. When
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the coefficients of G0(s) are unknown, the PPC laws (9.5.3) and (9.5.5) are
combined with adaptive laws that provide on-line estimates for the unknown
parameters leading to a wide class of APPC schemes. The design of these
APPC schemes so that their robustness and performance properties are as
close as possible to those described by Theorem 9.5.1 for the known param-
eter case is a challenging problem in robust adaptive control and is treated
in the following sections.

9.5.2 Robust Adaptive Laws for APPC Schemes

The adaptive control schemes of Chapter 7 can meet the control objective
for the ideal plant (9.5.2) but not for the actual plant (9.5.1) where ∆m(s) 6=
0, du 6= 0. The presence of ∆m and/or du may easily lead to various types
of instability. As in the case of MRAC, instabilities can be counteracted
and robustness properties improved if instead of the adaptive laws used in
Chapter 7, we use robust adaptive laws to update or estimate the unknown
parameters.

The robust adaptive laws to be combined with PPC laws developed for
the known parameter case are generated by first expressing the unknown
parameters of the modeled part of the plant in the form of the parametric
models considered in Chapter 8 and then applying the results of Chapter 8
directly.

We start by writing the plant equation (9.5.1) as

Rpyp = Zp(1 + ∆m)(up + du) (9.5.11)

where Zp = θ∗>b αn−1(s), Rp = sn + θ∗>a αn−1(s); θ∗b , θ
∗
a are the coefficient

vectors of Zp, Rp respectively and αn−1(s) = [sn−1, sn−2, . . . , s, 1]>. Filtering
each side of (9.5.11) with 1

Λp(s) , where Λp(s) = sn + λ1s
n−1 + · · · + λn is

Hurwitz, we obtain
z = θ∗>p φ + η (9.5.12)

where
z =

sn

Λp(s)
yp, θ∗p = [θ∗>b , θ∗>a ]>

φ =

[
α>n−1(s)

Λp
up,−

α>n−1(s)
Λp

yp

]>
, η =

Zp

Λp
[∆mup + (1 + ∆m)du]
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Equation (9.5.12) is in the form of the linear parametric model considered
in Chapter 8, and therefore it can be used to generate a wide class of robust
adaptive laws of the gradient and least-squares type. As we have shown
in Chapter 8, one of the main ingredients of a robust adaptive law is the
normalizing signal m that needs to be chosen so that |φ|

m , η
m ∈ L∞. We apply

Lemma 3.3.2 and write

|η(t)| ≤
∥∥∥∥∥
Zp(s)
Λp(s)

∆m(s)

∥∥∥∥∥
2δ

‖(up)t‖2δ+

∥∥∥∥∥
Zp(s)(1 + ∆m(s))

Λp(s)

∥∥∥∥∥
2δ

d0√
δ
+εt (9.5.13)

for some δ > 0, where εt is an exponentially decaying to zero term and
d0 = supt |du(t)|. Similarly,

|φ(t)| ≤
n∑

i=1

∥∥∥∥∥
sn−i

Λp(s)

∥∥∥∥∥
2δ

(‖(up)t‖2δ + ‖(yp)t‖2δ) (9.5.14)

The above H2δ norms exist provided 1/Λp(s) and ∆m(s) are analytic in
Re[s] ≥ −δ/2 and Zp∆m

Λp
is strictly proper. Because the overall plant transfer

function G(s) and G0(s) are assumed to be strictly proper, it follows that
G0∆m and therefore Zp∆m

Λp
are strictly proper. Let us now assume that

∆m(s) is analytic in Re[s] ≥ −δ0/2 for some known δ0 > 0. If we design
Λp(s) to have roots in the region Re[s] < −δ0/2 then it follows from (9.5.13),
(9.5.14) by setting δ = δ0 that the normalizing signal m given by

m2 = 1 + ‖upt‖2
2δ0 + ‖ypt‖2

2δ0

bounds η, φ from above. The signal m may be generated from the equations

m2 = 1 + n2
s, n2

s = ms

ṁs = −δ0ms + u2
p + y2

p, ms(0) = 0 (9.5.15)

Using (9.5.15) and the parametric model (9.5.12), a wide class of robust
adaptive laws may be generated by employing the results of Chapter 8 or by
simply using Tables 8.2 to 8.4.

As an example let us consider a robust adaptive law based on the gradient
algorithm and switching σ-modification to generate on-line estimates of θ∗

in (9.5.12). We have from Table 8.2 that

θ̇p = Γεφ− σsΓθp
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ε =
z − θ>p φ

m2
, m2 = 1 + n2

s, n2
s = ms

z =
sn

Λp(s)
yp (9.5.16)

ṁs = −δ0ms + u2
p + y2

p, ms(0) = 0

σs =





0 if |θp| ≤ M0

σ0(
|θp|
M0

− 1) if M0 < |θp| ≤ 2M0

σ0 if |θp| > M0

where θp is the estimate of θ∗p,M0 > |θ∗p|, σ0 > 0 and Γ = Γ> > 0. As estab-
lished in Chapter 8, the above adaptive law guarantees that (i) ε, εns, θp, θ̇p ∈
L∞, (ii) ε, εns, θ̇p ∈ S(η2/m2) independent of the boundedness of φ, z, m.

The adaptive law (9.5.16) or any other robust adaptive law based on para-
metric model (9.5.12) can be combined with the PPC laws (9.5.3), (9.5.5)
and (9.5.7) to generate a wide class of robust APPC schemes as demonstrated
in the following sections.

9.5.3 Robust APPC: Polynomial Approach

Let us combine the PPC law (9.5.3) with a robust adaptive law by replac-
ing the unknown polynomials Rp, Zp of the modeled part of the plant with
their on-line estimates R̂p(s, t), Ẑp(s, t) generated by the adaptive law. The
resulting robust APPC scheme is summarized in Table 9.5.

We like to examine the properties of the APPC schemes designed for
(9.5.2) but applied to the actual plant (9.5.1) with ∆m(s) 6= 0 and du 6= 0.

As in the MRAC case, we first start with a simple example and then
generalize it to the plant (9.5.1).

Example 9.5.1 Let us consider the plant

yp =
b

s + a
(1 + ∆m(s))up (9.5.17)

where a, b are unknown constants and ∆m(s) is a multiplicative plant uncertainty.
The input up has to be chosen so that the poles of the closed-loop modeled part
of the plant (i.e., with ∆m(s) ≡ 0) are placed at the roots of A∗(s) = (s + 1)2

and yp tracks the constant reference signal ym = 1 as close as possible. The same
control problem has been considered and solved in Example 7.4.1 for the case where
∆m(s) ≡ 0.
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Table 9.5 Robust APPC scheme: polynomial approach

Actual plant yp = Zp

Rp
(1 + ∆m)(up + du)

Plant model yp = Zp(s)
Rp(s)up, Zp(s) = θ∗>b α(s), Rp(s) = sn + θ∗>a α(s)

θ∗p = [θ∗>b , θ∗>a ]>, α(s) = αn−1(s)

Reference
signal

Qm(s)ym = 0

Assumptions

(i) Modeled part of the plant yp = Zp

Rp
up and Qm(s)

satisfy assumptions P1 to P3 given in Section 7.3.1;
(ii) ∆m(s) is analytic in Re[s] ≥ −δ0/2 for some
known δ0 > 0

Robust
adaptive law

Use any robust adaptive law from Tables 8.2 to 8.4
based on the parametric model z = θ∗>p φ + η with

z = sn

Λp(s)yp, φ = [α
>(s)

Λp(s) up,−α>(s)
Λp(s) yp]>

η = Zp

Λp
[∆m(up + du) + du]

Calculation of
controller
parameters

Solve for L̂(s, t)=sn−1+l>(t)αn−2(s)
P̂ (s, t)=p>(t)αn+q−1(s) from the equation
L̂(s, t) · Qm(s) · R̂p(s, t) + P̂ (s, t) · Ẑp(s, t) = A∗(s),
where Ẑp(s, t) = θ>b (t)α(s), R̂p(s, t) = sn + θ>a (t)α(s)

Control law up = (Λ− L̂Qm) 1
Λup − P̂ 1

Λ(yp − ym)

Design
variables

Λ(s) = Λp(s)Λq(s), Λp, Λq are monic and Hurwitz
of degree n and q − 1 respectively and with roots
in Re[s] < −δ0/2; A∗(s) is monic Hurwitz of degree
2n+q−1 with roots in Re[s] < −δ0/2; Qm(s) is monic
of degree q with nonrepeated roots on the jω-axis
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We design each block of the robust APPC for the above plant as follows:

Robust Adaptive Law The parametric model for the plant is

z = θ∗>p φ + η

where
z =

s

s + λ
yp, θ∗p = [b, a]>

φ =
1

s + λ
[up,−yp]>, η =

b

s + λ
∆m(s)up

We assume that ∆m(s) is analytic in Re[s] ≥ −δ0/2 for some known δ0 > 0 and
design λ > δ0/2. Using the results of Chapter 8, we develop the following robust
adaptive law:

θ̇p = Pr {Γ(εφ− σsθp)} , Γ = Γ> > 0 (9.5.18)

ε =
z − θ>p φ

m2
, m2 = 1 + n2

s, n2
s = ms

ṁs = −δ0ms + |up|2 + |yp|2, ms(0) = 0

σs =





0 if |θp| < M0(
|θp|
M0

− 1
)

σ0 if M0 ≤ |θp| < 2M0

σ0 if |θp| ≥ 2M0

where θp = [b̂, â]>; Pr{·} is the projection operator which keeps the estimate |b̂(t)| ≥
b0 > 0 ∀t ≥ 0 as defined in Example 7.4.1 where b0 is a known lower bound for |b|;
and M0 > |θ∗|, σ0 > 0 are design constants.

Control Law The control law is given by

up =
λ

s + λ
up − (p̂1s + p̂0)

1
s + λ

(yp − ym) (9.5.19)

where p̂1, p̂0 satisfy

s · (s + â) + (p̂1s + p̂0) · b̂ = (s + 1)2

leading to

p̂1 =
2− â

b̂
, p̂0 =

1

b̂

As shown in Chapter 8, the robust adaptive law (9.5.18) guarantees that

(i) ε, εm, θ ∈ L∞, (ii) ε, εm, θ̇ ∈ S(η2/m2)
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Because of the projection that guarantees |b̂(t)| ≥ b0 > 0 ∀t ≥ 0, we also have that
p̂0, p̂1 ∈ L∞ and ˙̂p0,

˙̂p1 ∈ S(η2/m2). Because

|η|
m
≤

∥∥∥∥
b

s + λ
∆m(s)

∥∥∥∥
2δ0

4
= ∆2 (9.5.20)

we have ˙̂p0,
˙̂p1, ε, εm, θ̇ ∈ S(∆2

2).
We use the properties of the adaptive law to analyze the stability properties of

the robust APPC scheme (9.5.18) and (9.5.19) when applied to the plant (9.5.17)
with ∆m(s) 6= 0. The steps involved in the analysis are the same as in the ideal
case presented in Chapter 7 and are elaborated below:

Step1. Express up, yp in terms of the estimation error. As in Example 7.4.1,
we define the states

φ1 =
1

s + λ
up, φ2 = − 1

s + λ
yp, φm =

1
s + λ

ym

From the adaptive law, we have

εm2 =
s

s + λ
yp − θ>p

1
s + λ

[up,−yp]> = −φ̇2 − θ>p [φ1, φ2]>

i.e.,
φ̇2 = −b̂φ1 − âφ2 − εm2 (9.5.21)

From the control law, we have

up = λφ1 + p̂1φ̇2 + p̂0φ2 + p̂0φm + p̂1φ̇m

Because up = φ̇1 + λφ1, it follows from above and the equation (9.5.21) that

φ̇1 = −p̂1b̂φ1 − (p̂1â− p̂0)φ2 − p̂1εm
2 + ȳm (9.5.22)

where ȳm
4
= p̂1φ̇m + p̂0φm ∈ L∞ due to p̂0, p̂1 ∈ L∞. Combining (9.5.21), (9.5.22),

we obtain exactly the same equation (7.4.15) as in the ideal case, i.e.,

ẋ = A(t)x + b1(t)εm2 + b2ȳm

up = ẋ1 + λx1, yp = −ẋ2 − λx2 (9.5.23)

where x = [x1, x2]>
4
= [φ1, φ2]>,

A(t) =
[ −p̂1b̂ −(p̂1â− p̂0)

−b̂ −â

]
, b1(t) =

[ −p̂1

−1

]
, b2 =

[
1
0

]

Note that in deriving (9.5.23), we only used equation εm2 = z − θ>p φ and the
control law (9.5.19). In both equations, η or ∆m(s) do not appear explicitly.
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Equation (9.5.23) is exactly the same as (7.4.15) and for each fixed t, we have
det(sI −A(t)) = (s + 1)2. However, in contrast to the ideal case where εm, ‖Ȧ(t)‖ ∈
L2

⋂L∞, here we can only establish that εm, ‖Ȧ(t)‖ ∈ S(∆2
2)

⋂L∞, which follows
from the fact that εm, θ̇ ∈ S(∆2

2)
⋂L∞, θ ∈ L∞ and |b̂(t)| ≥ b0 guaranteed by the

adaptive law.

Step 2. Show that the homogeneous part of (9.5.23) is e.s. For each fixed
t, det(sI − A(t)) = (s + â)s + b̂(p̂1s + p̂0) = (s + 1)2, i.e., λ(A(t)) = −1, ∀t ≥
0. From ˙̂a,

˙̂
b, ˙̂p1,

˙̂p0 ∈ S(∆2
2)

⋂L∞, we have ‖Ȧ(t)‖ ∈ S(∆2
2)

⋂L∞. Applying
Theorem 3.4.11(b), it follows that for ∆2 < ∆∗ for some ∆∗ > 0, the matrix A(t)
is u.a.s. which implies that the transition matrix Φ(t, τ) of the homogeneous part
of (9.5.23) satisfies

‖Φ(t, τ)‖ ≤ k1e
−k2(t−τ), ∀t ≥ τ ≥ 0

for some constants k1, k2 > 0.

Step 3. Use the B-G lemma to establish signal boundedness. Proceeding the
same way as in the ideal case and applying Lemma 3.3.3 to (9.5.23), we obtain

|x(t)|, ‖x‖ ≤ c‖εm2‖+ c

where ‖(·)‖ denotes the L2δ norm ‖(·)t‖2δ for any 0 < δ < min[δ0, 2k2] and c ≥ 0
denotes any finite constant. From (9.5.23), we also have

‖up‖, ‖yp‖ ≤ c‖εm2‖+ c

Therefore, the fictitious normalizing signal m2
f

4
= 1 + ‖up‖2 + ‖yp‖2 satisfies

m2
f ≤ c‖εm2‖2 + c

The signal mf bounds m,x, up, yp from above. This property of mf is established
by using Lemma 3.3.2 to first show that φ1/mf , φ2/mf and therefore x/mf ∈ L∞.
From δ < δ0 we also have that m/mf ∈ L∞. Because the elements of A(t) are
bounded (guaranteed by the adaptive law and the coprimeness of the estimated
polynomials) and εm ∈ L∞, it follows from (9.5.23) that ẋ/mf ∈ L∞ and therefore
up/mf , yp/mf ∈ L∞. The signals φ1, φ2, x, up, yp can also be shown to be bounded
from above by m due to λ > δ0/2. We can therefore write

m2
f ≤ c‖εmmf‖2 + c = c + c

∫ t

0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ

where g̃ = εm ∈ S(∆2
2). Applying B-G Lemma III, we obtain

m2
f ≤ ce−δte

c
∫ t

0
g̃2(τ)dτ + cδ

∫ t

0

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds
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Because c
∫ t

s
g̃2(τ)dτ ≤ c∆2

2(t−s)+c, it follows that for c∆2
2 < δ, we have mf ∈ L∞.

From mf ∈ L∞, we have x, up, yp,m ∈ L∞ and therefore all signals are bounded.
The condition on ∆2 for signal boundedness is summarized as follows:

c∆2 < min[
√

δ, c∆∗], 0 < δ < min[δ0, 2k2]

where as indicated before ∆∗ > 0 is the bound for ∆2 for A(t) to be u.a.s.

Step 4. Establish tracking error bounds. As in the ideal case considered in
Example 7.4.1 (Step 4), we can establish by following exactly the same procedure
that

e1 =
s(s + λ)
(s + 1)2

εm2 − s + λ

(s + 1)2
( ˙̂a

1
s + λ

yp − ˙̂
b

1
s + λ

up) (9.5.24)

This equation is exactly the same as in the ideal case except that εm, ˙̂a,
˙̂
b ∈ S(∆2

2)
instead of being in L2. Because yp, up,m ∈ L∞, it follows that

εm2, ( ˙̂a
1

s + λ
yp − ˙̂

b
1

s + λ
up) ∈ S(∆2

2)

Therefore by writing s(s+λ)
(s+1)2 = 1 + (λ−2)s−1

(s+1)2 , using εm2 ∈ S(∆2
2) and applying

Corollary 3.3.3 to (9.5.24), we obtain
∫ t

0

e2
1dτ ≤ c∆2

2t + c (9.5.25)

which implies that the mean value of e2
1 is of the order of the modeling error char-

acterized by ∆2.
Let us now simulate the APPC scheme (9.5.18), (9.5.19) applied to the plant

given by (9.5.17). For simulation purposes, we use a=−1, b=1 and ∆m(s)= −2µs
1+µs .

The plant output response yp versus t is shown in Figure 9.9 for different values
of µ that indicate the size of ∆m(s). As µ increases from 0, the response of yp

deteriorates and for µ = 0.28, the closed loop becomes unstable. 5

Remark 9.5.1 The calculation of the maximum size of unmodeled dynam-
ics characterized by ∆2 for robust stability is tedious and involves sev-
eral conservative steps. The most complicated step is the calculation
of ∆∗ using the proof of Theorem 3.4.11 and the rate of decay of the
state transition matrix of A(t). In addition, these calculations involve
the knowledge or bounds of the unknown parameters. The robustness
results obtained are therefore more qualitative than quantitative.
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Figure 9.9 Plant output response for the APPC scheme of Example 9.5.1
for different values of µ.

Remark 9.5.2 In the above example the use of projection guarantees that
|b(t)| ≥ b0 > 0 ∀t ≥ 0 where b0 is a known lower bound for |b| and
therefore stabilizability of the estimated plant is assured. As we showed
in Chapter 7, the problem of stabilizability becomes more difficult to
handle in the higher order case since no procedure is yet available
for the development of convex parameter sets where stabilizability is
guaranteed.

Let us now extend the results of Example 9.5.1 to higher order plants.
We consider the APPC scheme of Table 9.5 that is designed based on the
plant model (9.5.2) and applied to the actual plant (9.5.1).

Theorem 9.5.2 Assume that the estimated polynomials R̂p(s, t), Ẑp(s, t) of
the plant model are such that R̂pQm, Ẑp are strongly coprime at each time t.
There exists a δ∗ > 0 such that if

c(f0 + ∆2
2) < δ∗, where ∆2

4
=

∥∥∥∥∥
Zp(s)
Λp(s)

∆m(s)

∥∥∥∥∥
2δ0
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then the APPC schemes of Table 9.5 guarantee that all signals are bounded
and the tracking error e1 satisfies

∫ t

0
e2
1dτ ≤ c(∆2

2 + d2
0 + f0)t + c, ∀t ≥ 0

where f0 = 0 in the case of switching-σ and projection and f0 > 0 in the
case of fixed-σ(f0 = σ), dead zone (f0 = g0) and ε-modification (f0 = ν0)
and d0 is an upper bound for |du|.

The proof of Theorem 9.5.2 for du = 0 follows directly from the analysis
of Example 9.5.1 and the proof for the ideal case in Chapter 7. When du 6= 0
the proof involves a contradiction argument similar to that in the MRAC
case. The details of the proof are presented in Section 9.9.1.

Remark 9.5.3 As discussed in Chapter 7, the assumption that the esti-
mated time varying polynomials R̂pQm, Ẑp are strongly coprime can-
not be guaranteed by the adaptive law. The modifications discussed
in Chapter 7 could be used to relax this assumption without changing
the qualitative nature of the results of Theorem 9.5.2.

9.5.4 Robust APPC: State Feedback Law

A robust APPC scheme based on a state feedback law can be formed by
combining the PPC law (9.5.5) with a robust adaptive law as shown in
Table 9.6. The design of the APPC scheme is based on the plant model
(9.5.2) but is applied to the actual plant (9.5.1). We first demonstrate the
design and analysis of the robust APPC scheme using the following example.

Example 9.5.2 Let us consider the same plant as in Example 9.5.1,

yp =
b

s + a
(1 + ∆m(s))up (9.5.26)

which for control design purposes is modeled as

yp =
b

s + a
up

where a, b are unknown and ∆m(s) is a multiplicative plant uncertainty that is
analytic in Re[s] ≥ −δ0/2 for some known δ0 > 0. The control objective is to
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Table 9.6 Robust APPC scheme: state feedback law

Actual plant yp = Zp

Rp
(1 + ∆m)(up + du)

Plant model yp = Zp

Rp
up

Reference
signal

Qm(s)ym = 0

Assumptions Same as in Table 9.5

Robust
adaptive law

Same as in Table 9.5; it generates the estimates
Ẑp(s, t), R̂p(s, t)

State observer

˙̂e = Âê + B̂ūp − K̂o(t)(C>ê− e1), ê ∈ Rn+q

Â=


−θ1(t)

∣∣∣∣∣∣∣

In+q−1

−−−−
0


 , B̂=θ2(t), C>=[1, 0, . . . ,0]

R̂pQm = sn+q + θ>1 (t)αn+q−1(s)
ẐpQ1 = θ>2 (t)αn+q−1(s)
K̂o = a∗ − θ1, A

∗
o(s) = sn+q + a∗>αn+q−1(s)

e1 = yp − ym

Calculation of Solve K̂c(t) from
controller det(sI − Â + B̂K̂c) = A∗c(s)
parameters at each time t

Control law ūp = −K̂c(t)ê, up = Q1

Qm
ūp

Design
variables

Q1(s), A∗o(s), A∗c(s) monic of degree q, n + q, n + q,
respectively, with roots in Re[s] < −δ0/2; A∗c(s)
has Q1(s) as a factor; Qm(s) as in Table 9.5.
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stabilize the actual plant and force yp to track the reference signal ym = 1 as close
as possible. As in Example 9.5.1, the parametric model for the actual plant is given
by

z = θ∗>p φ + η (9.5.27)

where z = s
s+λyp, φ = 1

s+λ [up,−yp]>, θ∗p = [b, a]>, η = b
s+λ∆mu and λ > 0 is chosen

to satisfy λ > δ0/2. A robust adaptive law based on (9.5.27) is

θ̇p = Pr[Γ(εφ− σsθp)] (9.5.28)

where θp = [b̂, â]>; Pr(·) is the projection operator that guarantees that |b̂(t)| ≥
b0 > 0 ∀t ≥ 0 where b0 is a known lower bound for |b|. The other signals used in
(9.5.28) are defined as

ε =
z − θ>p φ

m2
, m2 = 1 + n2

s, n2
s = ms

ṁs = −δ0ms + u2
p + y2

p, ms(0) = 0 (9.5.29)

and σs is the switching σ-modification. Because ym = 1 we have Qm(s) = s and
select Q1(s) = s+1, i.e., we assume that δ0 < 2. Choosing K̂o = [10, 25]>− [â, 0]>,
the state-observer is given by

˙̂e =
[ −â 1

0 0

]
ê +

[
1
1

]
b̂ūp −

[ −â + 10
25

]
([1, 0]ê− e1) (9.5.30)

where the poles of the observer, i.e., the eigenvalues of Â − K̂0C, are chosen as
the roots of Ao(s) = s2 + 10s + 25 = (s + 5)2. The closed-loop poles chosen as
the roots of A∗c(s) = (s + 1)2 are used to calculate the controller parameter gain
K̂c(t) = [k̂1, k̂2] using

det(sI − Â + B̂K̂c) = (s + 1)2

which gives

k̂1 =
1− â

b̂
, k̂2 =

1

b̂

The control law is given by

ūp = −[k̂1, k̂2]ê, up =
s + 1

s
ūp (9.5.31)

The closed-loop plant is described by equations (9.5.26) to (9.5.31) and analyzed
by using the following steps.

Step 1. Develop the state error equations for the closed-loop plant. We start
with the plant equation

(s + a)yp = b(1 + ∆m(s))up
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which we rewrite as
(s + a)syp = b(1 + ∆m(s))sup

Using syp = se1 and filtering each side with 1
Q1(s)

= 1
s+1 , we obtain

(s + a)
s

s + 1
e1 = b(1 + ∆m)ūp, ūp =

s

s + 1
up

which implies that

e1 =
b(s + 1)
s(s + a)

(1 + ∆m)ūp (9.5.32)

We consider the following state representation of (9.5.32)

ė =
[ −a 1

0 0

]
e +

[
1
1

]
būp +

[
λ− a + 1

λ

]
η

e1 = [1, 0]e + η, η =
b

s + λ
∆m(s)up (9.5.33)

Let eo = e − ê be the observation error. It follows from (9.5.30), (9.5.33) that eo

satisfies

ėo =
[ −10 1
−25 0

]
eo +

[
1
0

]
ãe1 −

[
1
1

]
b̃ūp +

[
λ− 9
λ− 25

]
η (9.5.34)

The plant output is related to ê, eo, e1 as follows:

yp = C>eo + C>ê + η + ym, e1 = yp − ym (9.5.35)

where C> = [1, 0]. A relationship between up and ê, eo, η that involves stable
transfer functions is developed by using the identity

s(s + a)
(s + 1)2

+
(2− a)s + 1

(s + 1)2
= 1 (9.5.36)

developed in Section 7.4.3 (see (7.4.37)) under the assumption that b, s(s + a) are
coprime, i.e., b 6= 0. From (9.5.36), we have

up =
s(s + a)
(s + 1)2

up +
(2− a)s + 1

(s + 1)2
up

Using sup = (s+1)ūp = −(s+1)K̂cê and up = s+a
b yp−∆mup in the above equation,

we obtain

up = −s + a

s + 1
[k̂1, k̂2]ê +

[(2− a)s + 1](s + a)
b(s + 1)2

yp − [(2− a)s + 1](s + λ)
b(s + 1)2

η (9.5.37)
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Substituting for ūp = −K̂c(t)ê in (9.5.30) and using C>ê − e1 = −C>eo − η,
C> = [1, 0], we obtain

˙̂e = Ac(t)ê +
[ −â + 10

25

]
(C>eo + η) (9.5.38)

where

Ac(t) =
[ −â 1

0 0

]
− b̂

[
1
1

]
[k̂1, k̂2] =

[ −1 0
−(1− â) −1

]
(9.5.39)

Equations (9.5.34) to (9.5.39) are the error equations to be analyzed in the steps to
follow.

Step 2. Establish the e.s. of the homogeneous parts of (9.5.34) and (9.5.38).
The homogeneous part of (9.5.34), i.e.,

Ẏ0 = AY0, A =
[ −10 1
−25 0

]

is e.s. because det(sI − A) = (s + 5)2. The homogeneous part of (9.5.38) is
Ẏ = Ac(t)Y where det(sI −Ac(t)) = (s+1)2 at each time t. Hence, λ(Ac(t)) = −1

∀t ≥ 0. The adaptive law guarantees that |b̂(t)| ≥ b0 > 0 ∀t ≥ 0 and â, b̂, ˙̂a,
˙̂
b, k̂i,

˙̂
ki ∈

L∞ and ˙̂a,
˙̂
b,

˙̂
ki ∈ S(η2/m2). Because |η|

m ≤
∥∥∥b∆m(s)

s+λ

∥∥∥
2δ0

4
= ∆2, it follows that

‖Ȧc(t)‖ ∈ S(∆2
2). Applying Theorem 3.4.11(b), we have that Ac(t) is e.s. for

∆2 < ∆∗ and some ∆∗ > 0.

Step 3. Use the properties of the L2δ norm and B-G lemma to establish sig-
nal boundedness. Let us denote ‖(·)t‖2δ for some δ ∈ (0, δ0] with ‖(·)‖. Using
Lemma 3.3.2 and the properties of the L2δ-norm, we have from (9.5.35), (9.5.37)
that for δ < 2

‖yp‖ ≤ ‖C>eo‖+ c‖ê‖+ ‖η‖+ c

‖up‖ ≤ c(‖ê‖+ ‖yp‖+ ‖η‖)
Combining the above inequalities, we establish that the fictitious normalizing signal
m2

f

4
= 1 + ‖up‖2 + ‖yp‖2 satisfies

m2
f ≤ c + c‖C>eo‖2 + c‖ê‖2 + c‖η‖2

If we now apply Lemma 3.3.3 to (9.5.38), we obtain

‖ê‖ ≤ c(‖C>eo‖+ ‖η‖)

and, therefore,
m2

f ≤ c + c‖C>eo‖2 + c‖η‖2 (9.5.40)
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To evaluate the term ‖C>eo‖ in (9.5.40), we use (9.5.34) to write

C>eo =
s

(s + 5)2
ãe1 − s + 1

(s + 5)2
b̃

s

s + 1
up +

(λ− 9)s + λ− 25
(s + 5)2

η

Applying the Swapping Lemma A.1 and using the fact that se1 = syp, we have

C>eo = ã
s

(s + 5)2
yp − b̃

s

(s + 5)2
up (9.5.41)

+Wc1(Wb1e1) ˙̃a−Wc2(Wb2up)
˙̃
b +

(λ− 9)s + (λ− 25)
(s + 5)2

η

where Wci(s),Wbi(s) are strictly proper transfer functions with poles at −5. The
first two terms on the right side of (9.5.41) can be related to the normalized esti-
mation error. Using z = θ∗>φ + η we express equation (9.5.29) as

εm2 = θ∗>φ + η − θ>p φ

= ã
1

s + λ
yp − b̃

1
s + λ

up + η (9.5.42)

We now filter each side of (9.5.42) with s(s+λ)
(s+5)2 and apply the Swapping Lemma A.1

to obtain

s(s + λ)
(s + 5)2

εm2 = ã
s

(s + 5)2
yp − b̃

s

(s + 5)2
up (9.5.43)

+ Wc

{
(Wbyp) ˙̃a− (Wbup)

˙̃
b
}

+
s(s + λ)
(s + 5)2

η

where Wc,Wb are strictly proper transfer functions with poles at −5. Using (9.5.43)
in (9.5.41) we obtain

C>eo =
s(s + λ)
(s + 5)2

εm2 −Wc

{
(Wbyp) ˙̃a− (Wbup)

˙̃
b
}

+Wc1(Wb1e1) ˙̃a−Wc2(Wb2up)
˙̃
b− s2 + 9s + 25− λ

(s + 5)2
η

Using the fact that W (s)yp,W (s)up are bounded from above by mf for any strictly
proper W (s) that is analytic in Re[s] ≥ − δ

2 and m ≤ mf , we apply Lemma 3.3.2
to obtain

‖C>eo‖ ≤ c‖εmmf‖+ c‖ ˙̃amf‖+ c‖ ˙̃bmf‖+ c‖η‖ (9.5.44)

which together with (9.5.40) imply that

m2
f ≤ c + c‖g̃mf‖2 + c‖η‖2
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where g̃2 = | ˙̃a|2 + | ˙̃b|2 + |εm|2. Since

‖η‖
mf

≤
∥∥∥∥

b∆m(s)
s + λ

∥∥∥∥
∞δ

4
= ∆∞

we have
m2

f ≤ c + c‖gmf‖2 + c∆2
∞m2

f

Therefore, for
c∆2

∞ < 1

we have

m2
f ≤ c + c‖g̃mf‖2 = c + c

∫ t

0

e−δ(t−τ)g2(τ)m2
f (τ)dτ

Applying B-G Lemma III we obtain

m2
f ≤ ce−δte

c
∫ t

0
g̃2(τ)dτ + cδ

∫ t

0

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds

Because c
∫ t

s
g̃2(τ)dτ ≤ c∆2

2(t− s) + c, it follows that for

c∆2
2 < δ

we have mf ∈ L∞. The boundedness of all the signals is established as follows:
Because m ≤ mf , ‖η‖ ≤ ∆∞mf , |η| < ∆2m, we have m, ‖η‖, η ∈ L∞. Applying
Lemma 3.3.3 to (9.5.38) and (9.5.34), we obtain

‖ê‖, |ê(t)| ≤ c‖C>eo‖+ c‖η‖
‖eo‖, |eo(t)| ≤ c‖ê‖+ c‖η‖+ c‖e1‖ (9.5.45)

‖e1‖ ≤ ‖C>e0‖+ c‖ê‖+ ‖η‖

From ε, m,mf , ‖η‖, ˙̃a,
˙̃
b ∈ L∞, it follows from (9.5.44) that ‖C>eo‖ ∈ L∞ and

therefore using the above inequalities, we have ‖ê‖, |ê|, ‖eo‖, |eo|, ‖e1‖ ∈ L∞. From
(9.5.35), (9.5.37) and η ∈ L∞, it follows that yp, up ∈ L∞ which together with
e = eo + ê and eo, ê ∈ L∞, we can conclude that all signals are bounded.

The conditions on ∆m(s) for robust stability are summarized as follows:

c∆2 < min[c∆∗,
√

δ], c∆2
∞ < 1

∆2 =
∥∥∥∥

b∆m(s)
s + λ

∥∥∥∥
2δ0

, ∆∞ =
∥∥∥∥

b∆m(s)
s + λ

∥∥∥∥
∞δ

where ∆∗ is a bound for the stability of Ac(t) and 0 < δ ≤ δ0 is a measure of the
stability margin of Ac(t) and c > 0 represents finite constants that do not affect the
qualitative nature of the above bounds.
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Step 4. Establish tracking error bounds. We have, from (9.5.35) that

e1 = C>eo + C>ê + η

Because (9.5.44), (9.5.45) hold for δ = 0, it follows that

‖e1t‖22
4
=

∫ t

0

e2
1(τ)dτ ≤ ‖(C>eo)t‖22 + c‖êt‖22 + ‖ηt‖22

≤ c‖(gmf )t‖22 + c‖ηt‖22
Because mf ∈ L∞, |η|m ≤ ∆2 and ‖gt‖22 =

∫ t

0
g2(τ)dτ ≤ ∆2

2t + c, we have
∫ t

0

e2
1dτ ≤ c∆2

2t + c

and the stability analysis is complete. 5

Let us now extend the results of Example 9.5.2 to the general scheme
presented in Table 9.6.

Theorem 9.5.3 Assume that R̂p(s, t)Qm(s), Ẑp(s, t) are strongly coprime
and consider the APPC scheme of Table 9.6 that is designed for the plant
model but applied to the actual plant with ∆m, du 6= 0. There exists constants
δ∗, ∆∗∞ > 0 such that for all ∆m(s) satisfying

∆2
2 + f0 ≤ δ∗, ∆∞ ≤ ∆∗

∞

where
∆∞

4
=

∥∥∥∥
Zp(s)
Λ(s)

∆m(s)
∥∥∥∥
∞δ

, ∆2
4
=

∥∥∥∥
Zp(s)
Λ(s)

∆m(s)
∥∥∥∥
2δ0

and Λ(s) is an arbitrary polynomial of degree n with roots in Re[s] < − δ0
2 , all

signals in the closed-loop plant are bounded and the tracking error satisfies
∫ t

0
e2
1(τ)dτ ≤ c(∆2

2 + d2
0 + f0)t + c

where f0 = 0 in the case of switching σ and projection and f0 > 0 in the
case of fixedσ (f0 = σ), ε-modification (f0 = ν0), and dead zone (f0 = g0).

The proof for the input disturbance free (du = 0) case or the case where du
m

is sufficiently small follows from the proof in the ideal case and in Exam-
ple 9.5.2. The proof for the general case where du

m is not necessarily small
involves some additional arguments and the use of the L2δ norm over an
arbitrary time interval and is presented in Section 9.9.2.
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9.5.5 Robust LQ Adaptive Control

Robust adaptive LQ control (ALQC) schemes can be formed by combining
the LQ control law (9.5.5), where Kc is calculated from the Riccati Equation
(9.5.7), with robust adaptive laws as shown in Table 9.7.

The ALQC is exactly the same as the one considered in Section 9.5.4
and shown in Table 9.6 with the exception that the controller gain matrix
K̂c is calculated using the algebraic Riccati equation at each time t instead
of the pole placement equation of Table 9.6.

The stability properties of the ALQC scheme of Table 9.7 applied to the
actual plant are the same as those of APPC scheme based on state feedback
and are summarized by the following theorem.

Theorem 9.5.4 Assume that R̂p(s, t)Qm(s), Ẑp(s, t) are strongly coprime.
There exists constants δ∗,∆∗∞ > 0 such that for all ∆m(s) satisfying

∆2
2 + f0 ≤ δ∗, ∆∞ ≤ ∆∗

∞

where

∆∞
4
=

∥∥∥∥
Zp(s)
Λ(s)

∆m(s)
∥∥∥∥
∞δ

, ∆2
4
=

∥∥∥∥
Zp(s)
Λ(s)

∆m(s)
∥∥∥∥
2δ0

all signals are bounded and the tracking error e1 satisfies

∫ t

0
e2
1(τ)dτ ≤ c(∆2

2 + d2
0 + f0)t + c

where f0,Λ(s) are as defined in Theorem 9.5.3.

Proof The proof is almost identical to that of Theorem 9.5.3. The only difference
is that the feedback gain K̂c is calculated using a different equation. Therefore, if
we can show that the feedback gain calculated from the Riccati equation guaran-
tees that ‖ ˙̂

Ac(t)‖ ∈ S( η2

m2 + f0), then the rest of the proof can be completed by
following exactly the same steps as in the proof of Theorem 9.5.3. The proof for
‖ ˙̂
Ac(t)‖ ∈ S( η2

m2 + f0) is established by using the same steps as in the proof of Theo-

rem 7.4.3 to show that ‖Ȧc(t)‖ ≤ c‖ ˙̂
A(t)‖+c‖ ˙̂

B(t)‖. Because ‖ ˙̂
A(t)‖, ‖ ˙̂

B(t)‖ ≤ c|θ̇p|
and θ̇p ∈ S( η2

m2 + f0) we have ‖Ȧc(t)‖ ∈ S( η2

m2 + f0). 2
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Table 9.7 Robust adaptive linear quadratic control scheme

Actual plant yp = Zp(s)
Rp(s)(1 + ∆m)(up + du)

Plant model yp = Zp(s)
Rp(s)up

Reference signal Qm(s)ym = 0

Assumptions Same as in Table 9.5

Robust
adaptive law

Same as in Table 9.5 to generate Ẑp(s, t), R̂p(s, t)
and Â, B̂

State observer Same as in Table 9.6

Calculation K̂c = λ−1B̂>P

of controller Â>P + PÂ− 1
λPB̂B̂>P + CC> = 0

parameters C> = [1, 0, . . . , 0], P = P> > 0

Control law ūp = −K̂c(t)ê, up = Q1

Qm
ūp

Design variables λ > 0 and Q1, Qm as in Table 9.6

Example 9.5.3 Consider the same plant as in Example 9.5.2, i.e.,

yp =
b

s + a
(1 + ∆m(s))up

and the same control objective that requires the output yp to track the constant
reference signal ym = 1. A robust ALQC scheme can be constructed using Table 9.7
as follows:

Adaptive Law

θ̇p = Pr[Γ(εφ− σsθp)]
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ε =
z − θ>p φ

m2
, m2 = 1 + n2

s, n2
s = ms

ṁs = −δ0ms + u2
p + y2

p, ms(0) = 0

z =
s

s + λ
yp, φ =

1
s + λ

[up,−yp]>

θp = [b̂, â]>

The projection operator Pr[·] constraints b̂ to satisfy |b̂(t)| ≥ b0 ∀t ≥ 0 where
b0 is a known lower bound for |b| and σs is the switching σ-modification.

State Observer
˙̂e = Âê + B̂ūp − K̂o([1 0]ê− e1)

where

Â =
[ −â 1

0 0

]
, B̂ = b̂

[
1
1

]
, K̂o =

[
10− â

25

]

Controller Parameters K̂c = λ−1B̂>P where P = P> > 0 is solved pointwise
in time using

Â>P + PÂ− PB̂λ−1B̂>P + CC> = O, C> = [1 0]

Control Law ūp = −K̂c(t)ê, up =
s + 1

s
ūp 5

9.6 Adaptive Control of LTV Plants

One of the main reasons for considering adaptive control in applications is to
compensate for large variations in the plant parameters. One can argue that
if the plant model is LTI with unknown parameters a sufficient number of
tests can be performed off-line to calculate these parameters with sufficient
accuracy and therefore, there is no need for adaptive control when the plant
model is LTI. One can also go further and argue that if some nominal values
of the plant model parameters are known, robust control may be adequate
as long as perturbations around these nominal values remain within certain
bounds. And again in this case there is no need for adaptive control. In
many applications, however, such as aerospace, process control, etc., LTI
plant models may not be good approximations of the plant due to drastic
changes in parameter values that may arise due to changes in operating
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points, partial failure of certain components, wear and tear effects, etc. In
such applications, linear time varying (LTV) plant models of the form

ẋ = A(t)x + B(t)u

y = C>(t)x + D(t)u (9.6.1)

where A,B, C, and D consist of unknown time varying elements, may be
necessary. Even though adaptive control was motivated for plants modeled
by (9.6.1), most of the work on adaptive control until the mid 80’s dealt
with LTI plants. For some time, adaptive control for LTV plants whose
parameters vary slowly with time was considered to be a trivial extension of
that for LTI plants. This consideration was based on the intuitive argument
that an adaptive system designed for an LTI plant should also work for a
linear plant whose parameters vary slowly with time. This argument was
later on proved to be invalid. In fact, attempts to apply adaptive control to
simple LTV plants led to similar unsolved stability and robustness problems
as in the case of LTI plants with modeling errors. No significant progress was
made towards the design and analysis of adaptive controllers for LTV plants
until the mid-1980s when some of the fundamental robustness problems of
adaptive control for LTI plants were resolved.

In the early attempts [4, 74], the notion of the PE property of certain
signals in the adaptive control loop was employed to guarantee the exponen-
tial stability of the unperturbed error system, which eventually led to the
local stability of the closed-loop time-varying (TV) plant. Elsewhere, the
restriction of the type of time variations of the plant parameters also led to
the conclusion that an adaptive controller could be used in the respective
environment. More specifically, in [31] the parameter variations were as-
sumed to be perturbations of some nominal constant parameters, which are
small in the norm and modeled as a martingale process with bounded covari-
ance. A treatment of the parameter variations as small TV perturbations,
in an L2-gain sense, was also considered in [69] for a restrictive class of LTI-
nominal plants. Special models of parameter variations, such as exponential
or 1/t-decaying or finite number of jump discontinuities, were considered in
[70, 138, 181]. The main characteristic of these early studies was that no
modifications to the adaptive laws were necessary due to either the use of
PE or the restriction of the parameter variations to a class that introduces
no persistent modeling error effects in the adaptive control scheme.
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The adaptive control problem for general LTV plants was initially treated
as a robustness problem where the effects of slow parameter variations were
treated as unmodeled perturbations [9, 66, 145, 222]. The same robust adap-
tive control techniques used for LTI plants in the presence of bounded distur-
bances and unmodeled dynamics were shown to work for LTV plants when
their parameters are smooth and vary slowly with time or when they vary
discontinuously, i.e., experience large jumps in their values but the disconti-
nuities occur over large intervals of time [225].

The robust MRAC and APPC schemes presented in the previous sections
can be shown to work well with LTV plants whose parameters belong to the
class of smooth and slowly varying with respect to time or the class with
infrequent jumps in their values. The difficulty in analyzing these schemes
with LTV plants has to do with the representations of the plant model. In
the LTI case the transfer function and related input/output results are used
to design and analyze adaptive controllers. For an LTV plant, the notion
of a transfer function and of poles and zeros is no longer applicable which
makes it difficult to extend the results of the LTI case to the LTV one. This
difficulty was circumvented in [223, 224, 225, 226] by using the notion of
the polynomial differential operator and the polynomial integral operator to
describe an LTV plant such as (9.6.1) in an input-output form that resembles
a transfer function description.

The details of these mathematical preliminaries as well as the design
and analysis of adaptive controllers for LTV plants of the form (9.6.1) are
presented in a monograph [226] and in a series of papers [223, 224, 225].
Interested readers are referred to these papers for further information.

9.7 Adaptive Control for Multivariable Plants

The design of adaptive controllers for MIMO plant models is more complex
than in the SISO case. In the MIMO case we are no longer dealing with a
single transfer function but with a transfer matrix whose elements are trans-
fer functions describing the coupling between inputs and outputs. As in the
SISO case, the design of an adaptive controller for a MIMO plant can be
accomplished by combining a control law, that meets the control objective
when the plant parameters are known, with an adaptive law that generates
estimates for the unknown parameters. The design of the control and adap-



9.7. ADAPTIVE CONTROL OF MIMO PLANTS 735

tive law, however, requires the development of certain parameterizations of
the plant model that are more complex than those in the SISO case.

In this section we briefly describe several approaches that can be used to
design adaptive controllers for MIMO plants.

9.7.1 Decentralized Adaptive Control

Let us consider the MIMO plant model

y = H(s)u (9.7.1)

where y ∈ RN , u ∈ RN and H(s) ∈ CN×N is the plant transfer matrix that
is assumed to be proper. Equation (9.7.1) may be also expressed as

yi = hii(s)ui +
∑

1≤j≤N

j 6=i

hij(s)uj , i = 1, 2, . . . , N (9.7.2)

where hij(s), the elements of H(s), are transfer functions.
Another less obvious but more general decomposition of (9.7.1) is

yi = hii(s)ui +
∑

1≤j≤N

j 6=i

(hij(s)uj + qij(s)yj) , i = 1, 2, . . . , N (9.7.3)

for some different transfer functions hij(s), qij(s).
If the MIMO plant model (9.7.3) is such that the interconnecting or

coupling transfer functions hij(s), qij(s) (i 6= j) are stable and small in some
sense, then they can be treated as modeling error terms in the control design.
This means that instead of designing an adaptive controller for the MIMO
plant (9.7.3), we can design N adaptive controllers for N SISO plant models
of the form

yi = hii(s)ui, i = 1, 2, . . . , N (9.7.4)

If these adaptive controllers are designed based on robustness considerations,
then the effect of the small unmodeled interconnections present in the MIMO
plant will not destroy stability. This approach, known as decentralized adap-
tive control, has been pursued in [38, 59, 82, 185, 195].

The analysis of decentralized adaptive control designed for the plant
model (9.7.4) but applied to (9.7.3) follows directly from that of robust adap-
tive control for plants with unmodeled dynamics considered in the previous
sections and is left as an exercise for the reader.
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9.7.2 The Command Generator Tracker Approach

The command generator tracker (CGT) theory was first proposed in [26] for
the model following problem with known parameters. An adaptive control
algorithm based on the CGT method was subsequently developed in [207,
208]. Extensions and further improvements of the adaptive CGT algorithms
for finite [18, 100] as well as for infinite [233, 234] dimensional plant models
followed the work of [207, 208].

The adaptive CGT algorithms are based on a plant/reference model
structural matching and on an SPR condition. They are developed using
the SPR-Lyapunov design approach.

The plant model under consideration in the CGT approach is in the state
space form

ẋ = Ax + Bu , x(0) = x0

y = C>x (9.7.5)

where x ∈ Rn; y, u ∈ Rm; and A, B, and C are constant matrices of appro-
priate dimensions. The control objective is to choose u so that all signals in
the closed-loop plant are bounded and the plant output y tracks the output
ym of the reference model described by

ẋm = Amxm + Bmr xm(0) = xm0

ym = C>
mxm (9.7.6)

where xm ∈ Rnm , r ∈ Rpm and ym ∈ Rm.
The only requirement on the reference model at this point is that its

output ym has the same dimension as the plant output. The dimension of
xm can be much lower than that of x.

Let us first consider the case where the plant parameters A,B, and C

are known and use the following assumption.

Assumption 1 (CGT matching condition) There exist matrices S∗11,
S∗12, S∗21, S∗22 such that the desired plant input u∗ that meets the control
objective satisfies

[
x∗

u∗

]
=

[
S∗11 S∗12

S∗21 S∗22

] [
xm

r

]
(9.7.7)
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where x∗ is equal to x when u = u∗, i.e., x∗ satisfies

ẋ∗ = Ax∗ + Bu∗

y∗ = C>x∗ = ym

Assumption 2 (Output stabilizability condition) There exists a ma-
trix G∗ such that A + BG∗C> is a stable matrix.

If assumptions 1, 2 are satisfied we can use the control law

u = G∗(y − ym) + S∗21xm + S∗22r (9.7.8)

that yields the closed-loop plant

ẋ = Ax + BG∗e1 + BS∗21xm + BS∗22r

where e1 = y−ym. Let e = x−x∗ be the state error between the actual and
desired plant state. Note the e is not available for measurement and is used
only for analysis. The error e satisfies the equation

ė = (A + BG∗C>)e

which implies that e and therefore e1 are bounded and converge to zero
exponentially fast. If xm, r are also bounded then we can conclude that all
signals are bounded and the control law (9.7.8) meets the control objective
exactly.

If A,B, and C are unknown, the matrices G∗, S∗21, and S∗22 cannot be
calculated, and, therefore, (9.7.8) cannot be implemented. In this case we
use the control law

u = G(t)(y − ym) + S21(t)xm + S22(t)r (9.7.9)

where G(t), S21(t), S22(t) are the estimates of G∗, S∗21, S
∗
22 to be generated

by an adaptive law. The adaptive law is developed using the SPR-Lyapunov
design approach and employs the following assumption.

Assumption 3 (SPR condition) There exists a matrix G∗ such that
C>(sI −A−BG∗C>)−1B is an SPR transfer matrix.



738 CHAPTER 9. ROBUST ADAPTIVE CONTROL SCHEMES

Assumption 3 puts a stronger condition on the output feedback gain
G∗, i.e., in addition to making A + BG∗C stable it should also make the
closed-loop plant transfer matrix SPR.

For the closed-loop plant (9.7.5), (9.7.9), the equation for e = x − x∗

becomes

ė = (A + BG∗C>)e + BG̃e1 + BS̃ω

e1 = C>e (9.7.10)

where
G̃(t) = G(t)−G∗, S̃(t) = S(t)− S∗

S(t) = [S21(t), S22(t)], S∗ = [S∗21, S
∗
22]

ω = [x>m, r>]>

We propose the Lyapunov-like function

V = e>Pce + tr[G̃>Γ−1
1 G̃] + tr[S̃>Γ−1

2 S̃]

where Pc = P>
c > 0 satisfies the equations of the matrix form of the LKY

Lemma (see Lemma 3.5.4) because of assumption 3, and Γ1,Γ2 are symmet-
ric positive definite matrices.

Choosing

˙̃G = Ġ = −Γ1e1e
>
1

˙̃S = Ṡ = −Γ2e1ω
> (9.7.11)

it follows as in the SISO case that

V̇ = −e>QQ>e− νce
>Lce

where Lc = L>c > 0 and νc > 0 is a small constant and Q is a constant matrix.
Using similar arguments as in the SISO case we can establish that e,G, S

are bounded and e ∈ L2. If in addition xm, r are bounded we can establish
that all signals are bounded and e, e1 converge to zero as t →∞. Therefore
the adaptive control law (9.7.9), (9.7.11) meets the control objective.

Due to the restrictive nature of Assumptions 1 to 3, the CGT approach
did not receive as much attention as other adaptive control methods. As
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shown in [233, 234], the CGT matching condition puts strong conditions on
the plant and model that are difficult to satisfy when the reference signal r is
allowed to be bounded but otherwise arbitrary. If r is restricted to be equal
to a constant these conditions become weaker and easier to satisfy. The class
of plants that becomes SPR by output feedback is also very restrictive. In
an effort to expand this class of plants and therefore relax assumption 3,
the plant is augmented with parallel dynamics [18, 100], i.e., the augmented
plant is described by

ya = [C>(sI −A)−1B + Wa(s)]u

where Wa(s) represents the parallel dynamics. If Wa(s) is chosen so that
assumptions 1, 2, 3 are satisfied by the augmented plant, then we can estab-
lish signal boundedness and convergence of ya to ym. Because ya 6= y the
convergence of the true tracking error to zero cannot be guaranteed.

One of the advantages of the adaptive control schemes based on the CGT
approach is that they are simple to design and analyze.

The robustness of the adaptive CGT based schemes with respect to
bounded disturbances and unmodeled dynamics can be established using the
same modifications and analysis as in the case of MRAC with unnormalized
adaptive laws and is left as an exercise for the reader.

9.7.3 Multivariable MRAC

In this section we discuss the extension of some of the MRAC schemes for
SISO plants developed in Chapter 6 to the MIMO plant model

y = G(s)u (9.7.12)

where y ∈ RN , u ∈ RN and G(s) is an N×N transfer matrix. The reference
model to be matched by the closed-loop plant is given by

ym = Wm(s)r (9.7.13)

where ym, r ∈ RN . Because G(s) is not a scalar transfer function, the
multivariable counterparts of high frequence gain, relative degree, zeros and
order need to be developed. The following Lemma is used to define the
counterpart of the high frequency gain and relative degree for MIMO plants.
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Lemma 9.7.1 For any N×N strictly proper rational full rank transfer ma-
trix G(s), there exists a (non-unique) lower triangular polynomial matrix
ξm(s), defined as the modified left interactor (MLI) matrix of G(s), of the
form

ξm(s) =




d1(s) 0 · · · 0 0
h21(s) d2(s) 0 · · · 0

...
. . . 0

hN1(s) · · · · · · hN(N−1)(s) dN (s)




where hij(s), j = 1, . . . , N − 1, i = 2, . . . , N are some polynomials and di(s),
i = 1, . . ., N , are arbitrary monic Hurwitz polynomials of certain degree
li > 0, such that lims→∞ ξm(s)G(s) = Kp, the high-frequency-gain matrix of
G(s), is finite and nonsingular.

For a proof of Lemma 9.7.1, see [216].
A similar concept to that of the left interactor matrix, which was intro-

duced in [228] for a discrete-time plant is the modified right interactor (MRI)
matrix used in [216] for the design of MRAC for MIMO plants.

To meet the control objective we make the following assumptions about
the plant:

A1. G(s) is strictly proper, has full rank and a known MLI matrix ξm(s).

A2. All zeros of G(s) are stable.

A3. An upper bound ν̄0 on the observability index ν0 of G(s) is known
[50, 51, 73, 172].

A4. A matrix Sp that satisfies KpSp = (KpSp)> > 0 is known.

Furthermore we assume that the transfer matrix Wm(s) of the reference
model is designed to satisfy the following assumptions:

M1. All poles and zeros of Wm(s) are stable.

M2. The zero structure at infinity of Wm(s) is the same as that of G(s),
i.e., lims→∞ ξm(s)Wm(s) is finite and nonsingular. Without loss of
generality we can choose Wm(s) = ξ−1

m (s).
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Assumptions A1 to A4, and M1 and M2 are the extensions of the as-
sumptions P1 to P4, and M1 and M2 in the SISO case to the MIMO one.
The knowledge of the interactor matrix is equivalent to the knowledge of
the relative degree in the SISO case. Similarly the knowledge of Sp in A4 is
equivalent to the knowledge of the sign of the high frequency gain.

The a priori knowledge about G(s) which is necessary for ξm(s) to be
known is very crucial in adaptive control because the parameters of G(s)
are considered to be unknown. It can be verified that if ξm(s) is diagonal
and the relative degree of each element of G(s) is known then ξm(s) can be
completely specified without any apriori knowledge about the parameters of
G(s). When ξm(s) is not diagonal, it is shown in [172, 205] that a diag-
onal stable dynamic pre-compensator Wp(s) can be found, using only the
knowledge of the relative degree for each element of G(s), such that for most
cases G(s)Wp(s) has a diagonal ξm(s). In another approach shown in [216]
one could check both the MLI and MRI matrices and choose the one that is
diagonal, if any, before proceeding with the search for a compensator. The
design of MRAC using the MRI is very similar to that using the MLI that
is presented below.

We can design a MRAC scheme for the plant (9.7.12) by using the cer-
tainty equivalence approach as we did in the SISO case. We start by as-
suming that all the parameters of G(s) are known and propose the control
law

u = θ∗>1 ω1 + θ∗>2 ω2 + θ∗3r = θ∗>ω (9.7.14)

where θ∗> = [θ∗>1 , θ∗>2 , θ∗3], ω = [ω>1 , ω>2 , r>]>.

ω1 =
A(s)
Λ(s)

u, ω2 =
A(s)
Λ(s)

y

A(s) = [Isν̄0−1, Isν̄0−2, . . . , Is, I]>

θ∗1 = [θ∗11, . . . , θ
∗
1ν̄0

]>, θ∗2 = [θ∗21, . . . , θ
∗
2ν̄0

]>

θ∗3, θ
∗
ij ∈ RN×N , i = 1, 2, j = 1, 2, . . . , ν̄0

and Λ(s) is a monic Hurwitz polynomial of degree ν̄0.
It can be shown [216] that the closed-loop plant transfer matrix from y

to r is equal to Wm(s) provided θ∗3 = K−1
p and θ∗1, θ∗2 are chosen to satisfy
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the matching equation

I − θ∗>1
A(s)
Λ(s)

− θ∗>2
A(s)
Λ(s)

G(s) = θ∗3W
−1
m (s)G(s) (9.7.15)

The same approach as in the SISO case can be used to show that the control
law (9.7.14) with θ∗i , i = 1, 2, 3 as chosen above guarantees that all closed-
loop signals are bounded and the elements of the tracking error e1 = y− ym

converge to zero exponentially fast.
Because the parameters of G(s) are unknown, instead of (9.7.14) we use

the control law
u = θ>(t)ω (9.7.16)

where θ(t) is the on-line estimate of the matrix θ∗ to be generated by an
adaptive law. The adaptive law is developed by first obtaining an appro-
priate parametric model for θ∗ and then using a similar procedure as in
Chapter 4 to design the adaptive law.

From the plant and matching equations (9.7.12), (9.7.15) we obtain

u− θ∗>1 ω1 − θ∗>2 ω2 = θ∗3W
−1
m (s)y

θ∗−1
3 (u− θ∗>ω) = W−1

m (s)(y − ym) = ξm(s)e1 (9.7.17)

Let dm be the maximum degree of ξm(s) and choose a Hurwitz polynomial
f(s) of degree dm. Filtering each side of (9.7.17) with 1/f(s) we obtain

z = ψ∗[θ∗>φ + z0] (9.7.18)

where

z = −ξm(s)
f(s)

e1, ψ∗ = θ∗−1
3 = Kp

φ =
1

f(s)
ω, z0 = − 1

f(s)
u

which is the multivariable version of the bilinear parametric model for SISO
plants considered in Chapter 4.

Following the procedure of Chapter 4 we generate the estimated value

ẑ = ψ(t)[θ>(t)φ + z0]
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of z and the normalized estimation error

ε =
z − ẑ

m2

We can verify that

ε = − ψ̃ξ + ψ∗θ̃>φ

m2

where ξ = z0 + θ>φ and m2 could be chosen as m2 = 1 + |ξ|2 + |φ|2. The
adaptive law for θ can now be developed by using the Lyapunov-like function

V =
1
2
tr[θ̃>Γpθ̃] +

1
2
tr[ψ̃>Γ−1ψ̃]

where Γp = K>
p S−1

p = (S−1
p )>(KpSp)>S−1

p and Γ = Γ> > 0. If we choose

θ̇> = −Spεφ
>, ψ̇ = −Γεξ> (9.7.19)

it follows that

V̇ = −ε>εm2 ≤ 0

which implies that θ, ψ are bounded and |εm| ∈ L2.
The stability properties of the MRAC (9.7.12), (9.7.16), (9.7.19) are sim-

ilar to those in the SISO case and can be established following exactly the
same procedure as in the SISO case. The reader is referred to [216] for the
stability proofs and properties of (9.7.12), (9.7.16), (9.7.19).

The multivariable MRAC scheme (9.7.12), (9.7.16), (9.7.19) can be made
robust by choosing the normalizing signal as

m2 = 1 + ms, ṁs = −δ0ms + |u|2 + |y|2,ms(0) = 0 (9.7.20)

where δ0 > 0 is designed as in the SISO case and by modifying the adaptive
laws (9.7.19) using exactly the same techniques as in Chapter 8 for the SISO
case.

For further information on the design and analysis of adaptive controllers
for MIMO plants, the reader is referred to [43, 50, 51, 73, 151, 154, 172, 201,
205, 213, 214, 216, 218, 228].
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9.8 Stability Proofs of Robust MRAC Schemes

9.8.1 Properties of Fictitious Normalizing Signal

As in Chapter 6, the stability analysis of the robust MRAC schemes involves the
use of the L2δ norm and its properties as well as the properties of the signal

m2
f
4
= 1 + ‖up‖2 + ‖yp‖2 (9.8.1)

where ‖(·)‖ denotes the L2δ norm ‖(·)t‖2δ. The signal mf has the property of
bounding from above almost all the signals in the closed-loop plant. In this, book,
mf is used for analysis only and is referred to as the fictitious normalizing signal, to
be distinguished from the normalizing signal m used in the adaptive law. For the
MRAC law presented in Table 9.1, the properties of the signal mf are given by the
following Lemma. These properties are independent of the adaptive law employed.

Lemma 9.8.1 Consider the MRAC scheme of Table 9.1. For any given δ ∈ (0, δ0],
the signal mf given by (9.8.1) guarantees that:

(i) ‖ω‖
mf

, |ωi|
mf

, i = 1, 2 and ns

mf
∈ L∞.

(ii) If θ ∈ L∞, then up

mf
,

yp

mf
, ω

mf
, W (s)ω

mf
,
‖up‖
mf

,
‖ẏp‖
mf

∈ L∞ where W (s) is any proper
transfer function that is analytic in Re[s] ≥ −δ0/2.

(iii) If θ, ṙ ∈ L∞, then ‖ω̇‖
mf

∈ L∞.

(iv) For δ = δ0, (i) to (iii) are satisfied by replacing mf with m =
√

1 + n2
s, where

n2
s = ms and ṁs = −δ0ms + u2

p + y2
p,ms(0) = 0.

Proof (i) We have

ω1 =
α(s)
Λ(s)

up, ω2 =
α(s)
Λ(s)

yp

Because the elements of α(s)
Λ(s) are strictly proper and analytic in Re[s] ≥ −δ0/2, it

follows from Lemma 3.3.2 that ‖ωi‖
mf

, |ωi|
mf

∈ L∞, i = 1, 2 for any δ ∈ (0, δ0]. Now

‖ω‖ ≤ ‖ω1‖ + ‖ω2‖ + ‖yp‖ + c ≤ cmf + c and therefore ‖ω‖
mf

∈ L∞. Because
n2

s = ms = ‖upt‖22δ0
+ ‖ypt‖22δ0

and ‖(·)t‖2δ0 ≤ ‖(·)t‖2δ for any δ ∈ (0, δ0], it follows
that ns/mf ∈ L∞.

(ii) From equation (9.3.63) and up = θ>ω we have

yp = Wm(s)ρ∗θ̃>ω + ρ∗η + Wm(s)r

where η = Λ−θ∗>1 α
Λ Wm[∆m(up + du)+ du]. Because Wm,Wm∆m are strictly proper

and analytic in Re[s] ≥ −δ0/2, and θ̃ ∈ L∞, it follows that for any δ ∈ (0, δ0]

|yp(t)| ≤ c‖ω‖+ c‖up‖+ c ≤ cmf + c



9.8. STABILITY PROOFS OF ROBUST MRAC SCHEMES 745

i.e., yp/mf ∈ L∞. Since ω = [ω>1 , ω>2 , yp, r]> and r, ωi/mf , i = 1, 2 and yp/mf ∈
L∞, it follows that ω/mf ∈ L∞. From up = θ>ω and θ, ‖ω‖mf

, |ωi|
mf

∈ L∞, we

have ‖up‖
mf

,
up

mf
∈ L∞. We have |W (s)ω| ≤ ‖W0(s)‖2δ‖ω‖ + |d|‖ω‖ ≤ cmf where

W0(s) + d = W (s) and, therefore, W (s)ω
mf

∈ L∞. The signal ẏp is given by

ẏp = sWm(s)r + sWm(s)ρ∗θ̃>ω + ρ∗η̇

Because sWm(s) is at most biproper we have

‖ẏp‖ ≤ c‖sWm(s)‖∞δ‖ω‖+ c‖η̇‖+ c

where

‖η̇‖ ≤
∥∥∥∥

Λ− θ∗>1 α(s)
Λ(s)

sWm(s)∆m(s)
∥∥∥∥
∞δ

‖up‖+ cd0

≤ cmf + cd0

which together with ‖ω‖
mf

∈ L∞ imply that ‖ẏp‖
mf

∈ L∞.

(iii) We have ω̇ = [ sα(s)
Λ(s) up,

sα(s)
Λ(s) yp, ẏp, ṙ]>. Because the elements of sα(s)

Λ(s) are

proper and analytic in Re[s] ≥ −δ0/2 and ṙ, ‖ẏp‖
mf

∈ L∞, it follows that ‖ω̇‖
mf

∈ L∞.
(iv) For δ = δ0 we have m2

f = 1 + ‖upt‖22δ0
+ ‖ypt‖22δ0

. Because m2 = 1 +
‖upt‖22δ0

+ ‖ypt‖22δ0
= m2

f , the proof of (iv) follows. 2

Lemma 9.8.2 Consider the systems

v = H(s)vp (9.8.2)

and

ṁs = −δ0ms + |up|2 + |yp|2, ms(0) = 0
m2 = 1 + ms

where δ0 > 0, ‖vpt‖2δ0 ≤ cm(t) ∀t ≥ 0 and some constant c > 0 and H(s) is a
proper transfer function with stable poles.

Assume that either ‖vt‖2δ0 ≤ cm(t) ∀t ≥ 0 for some constant c > 0 or H(s) is
analytic in Re[s] ≥ −δ0/2. Then there exists a constant δ > 0 such that

(i) ‖vt,t1‖ ≤ ce−
δ
2 (t−t1)m(t1) + ‖H(s)‖∞δ‖vpt,t1

‖, ∀t ≥ t1 ≥ 0

(ii) If H(s) is strictly proper, then

|v(t)| ≤ ce−
δ
2 (t−t1)m(t1) + ‖H(s)‖2δ‖vpt,t1

‖, ∀t ≥ t1 ≥ 0

where ‖(·)t,t1‖ denotes the L2δ norm over the interval [t1, t)
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Proof Let us represent (9.8.2) in the minimal state space form

ẋ = Ax + Bvp, x(0) = 0
v = C>x + Dvp (9.8.3)

Because A is a stable matrix, we have ‖eA(t−τ)‖ ≤ λ0e
−α0(t−τ) for some λ0, α0 > 0.

Applying Lemma 3.3.5 to (9.8.3) we obtain

‖vt,t1‖ ≤ ce−
δ
2 (t−t1)|x(t1)|+ ‖H(s)‖∞δ‖vpt,t1

‖ (9.8.4)

and for H(s) strictly proper

|v(t)| ≤ ce−
δ
2 (t−t1)|x(t1)|+ ‖H(s)‖2δ‖vpt,t1

‖ (9.8.5)

for any 0 < δ < 2α0 and for some constant c ≥ 0. If H(s) is analytic in Re[s] ≥
−δ0/2 then A− δ0

2 I is a stable matrix and from Lemma 3.3.3 we have

|x(t)| ≤ c‖vpt‖2δ0 ≤ cm(t) ∀t ≥ 0

Hence, |x(t1)| ≤ cm(t1), (i) and (ii) follow from (9.8.4) and (9.8.5), respectively.
When H(s) is not analytic in Re[s] ≥ −δ0/2 we use output injection to rewrite

(9.8.3) as
ẋ = (A−KC>)x + Bvp + KC>x

or
ẋ = Acx + Bcvp + Kv (9.8.6)

where Ac = A−KC>, Bc = B −KD and K is chosen so that Ac − δ0
2 I is a stable

matrix. The existence of such a K is guaranteed by the observability of (C,A)[95].
Applying Lemma 3.3.3 (i) to (9.8.6), we obtain

|x(t)| ≤ c‖vpt‖2δ0 + c‖vt‖2δ0 ≤ cm(t) ∀t ≥ 0 (9.8.7)

where the last inequality is established by using the assumption ‖vt‖2δ0 , ‖vpt‖2δ0 ≤
cm(t) of the Lemma. Hence, ‖x(t1)‖ ≤ cm(t1) and (i), (ii) follow directly from
(9.8.4), (9.8.5). 2

Instead of mf given by (9.8.1), let us consider the signal

m2
f1

(t)
4
= e−δ(t−t1)m2(t1) + ‖upt,t1

‖2 + ‖ypt,t1
‖2, t ≥ t1 ≥ 0 (9.8.8)

The signal mf1 has very similar normalizing properties as mf as indicated by the
following lemma:

Lemma 9.8.3 The signal mf1 given by (9.8.8) guarantees that
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(i) ωi(t)/mf1 , i = 1, 2; ‖ωt,t1‖/mf1 and ns/mf1 ∈ L∞
(ii) If θ ∈ L∞, then yp/mf1 , up/mf1 , ω/mf1 , W (s)ω/mf1 ∈ L∞ and ‖upt,t1

‖/mf1 ,
‖ẏpt,t1

‖/mf1 ∈ L∞
(iii) If θ, ṙ ∈ L∞, then ‖ω̇t,t1‖/mf1 ∈ L∞

where ‖(·)t,t1‖ denotes the L2δ-norm defined over the interval [t1, t], t ≥ t1 ≥ 0; δ is
any constant in the interval (0, δ0] and W (s) is a proper transfer function, which is
analytic in Re[s] ≥ −δ0/2.

Proof (i) We have ω1 = α(s)
Λ(s)up, ω2 = α(s)

Λ(s)yp. Since each element of α(s)
Λ(s) is strictly

proper and analytic in Re[s] ≥ − δ0
2 and ‖upt‖2δ0 , ‖ypt‖2δ0 ≤ cm, it follows from

Lemma 9.8.2 that

|ω1(t)|, ‖ω1t,t1
‖ ≤ ce−

δ
2 (t−t1)m(t1) + c‖upt,t1

‖ ≤ cmf1

|ω2(t)|, ‖ω2t,t1
‖ ≤ ce−

δ
2 (t−t1)m(t1) + c‖ypt,t1

‖ ≤ cmf1

and, therefore, |ωi(t)|, ‖ωit,t1
‖, i = 1, 2 are bounded from above by mf1 . Because

‖ωt,t1‖2 ≤ ‖ω1t,t1
‖2 + ‖ω2t,t1

‖2 + ‖ypt,t1
‖2 + c ≤ cm2

f1

therefore, ‖ωt,t1‖ is bounded from above by mf1 . We have n2
s = ms = m2 − 1 and

n2
s = ms(t) = e−δ0(t−t1)(m2(t1)− 1) + ‖upt,t1

‖22δ0
+ ‖ypt,t1

‖22δ0

≤ e−δ(t−t1)m2(t1) + ‖upt,t1
‖2 + ‖ypt,t1

‖2 = m2
f1

for any given δ ∈ (0, δ0], and the proof of (i) is complete.
(ii) We have

yp = Wm(s)ρ∗θ̃>ω + ρ∗η + Wm(s)r

Because Wm(s) is strictly proper and analytic in Re[s] ≥ −δ0/2, and Lemma 9.8.1
together with θ̃ ∈ L∞ imply that ‖ρ∗θ̃>ωt‖2δ0 ≤ cm(t) ∀t ≥ 0, it follows from
Lemma 9.8.2 that

|yp(t)|, ‖ypt,t1
‖ ≤ ce−

δ
2 (t−t1)m(t1) + c‖ωt,t1‖+ c‖ηt,t1‖+ c, ∀t ≥ t1 ≥ 0

Now η = ∆(s)up + dη where ∆(s) is strictly proper and a nalytic in Re[s] ≥ − δ0
2 ,

dη ∈ L∞ and ‖upt‖2δ0 ≤ m(t). Hence from Lemma 9.8.2 we have

‖ηt,t1‖ ≤ ce−
δ
2 (t−t1)m(t1) + c‖upt,t1

‖+ c

Because up = θ>ω and θ ∈ L∞, we have ‖upt,t1
‖ ≤ c‖ωt,t1‖, and from part (i) we

have ‖ωt,t1‖ ≤ cmf1 . Therefore ‖upt,t1
‖ ≤ cmf1 , ‖ηt,t1‖ ≤ ce−

δ
2 (t−t1)m(t1)+cmf1+c

and
|yp(t)|, ‖ypt,t1

‖ ≤ ce−
δ
2 (t−t1)m(t1) + cmf1 + c ≤ cmf1
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In a similar manner, we show ‖ẏpt,t1
‖ ≤ cmf1 . From |ω(t)| ≤ |ω1(t)| + |ω2(t)| +

|yp(t)|+ c, it follows that |ω(t)| ≤ cmf1 . Because up = θ>ω and θ ∈ L∞, it follows
directly that |up(t)| ≤ cmf1 .

Consider v
4
= W (s)ω where W (s) is proper and analytic in Re[s] ≥ −δ0/2.

Because from Lemma 9.8.1 ‖ωt‖2δ0 ≤ cm(t), it follows from Lemma 9.8.2 that

|v(t)| ≤ ce−
δ
2 (t−t1)m(t1) + c‖ωt,t1‖ ≤ cmf1

(iii) We have ω̇ = [ω̇>1 , ω̇>2 , ẏp, ṙ]>, where ω̇1 = sα(s)
Λ(s) up, ω̇2 = sα(s)

Λ(s) yp. Because

the elements of sα(s)
Λ(s) are proper, it follows from the results of (i), (ii) that ‖ω̇it,t1

‖ ≤
cmf1 , i = 1, 2 which together with ṙ ∈ L∞ and ‖ẏpt,t1

‖ ≤ cmf1 imply (iii). 2

9.8.2 Proof of Theorem 9.3.2

We complete the proof of Theorem 9.3.2 in five steps outlined in Section 9.3.

Step1. Express the plant input and output in terms of the parameter error term
θ̃>ω. We use Figure 9.3 to express up, yp in terms of the parameter error θ̃ and
modeling error input. We have

yp =
G0Λc∗0

(Λ− C∗1 )−G0D∗
1

[
r +

1
c∗0

θ̃>ω +
Λ− C∗1

c∗0Λ
η1

]

η1 = ∆m(s)(up + du) + du

up =
Λc∗0

(Λ− C∗1 )−G0D∗
1

[
r +

1
c∗0

θ̃>ω

]
+

G0D
∗
1

(Λ− C∗1 )−G0D∗
1

η1

where C∗1 (s) = θ∗>1 α(s), D∗
1 = θ∗3Λ(s) + θ∗>2 α(s). Using the matching equation

G0Λc∗0
(Λ− C∗1 )−G0D∗

1

= Wm

we obtain

yp = Wm

(
r +

1
c∗0

θ̃>ω

)
+ ηy

up = G−1
0 Wm

(
r +

1
c∗0

θ̃>ω

)
+ ηu (9.8.9)

where

ηu =
θ∗3Λ + θ∗>2 α

c∗0Λ
Wmη1, ηy =

Λ− θ∗>1 α

c∗0Λ
Wmη1
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Let us simplify the notation by denoting ‖(·)t‖2δ with ‖ · ‖. From (9.8.9) and
the stability of Wm, G−1

0 Wm, we obtain

‖yp‖ ≤ c + c‖θ̃>ω‖+ ‖ηy‖, ‖up‖ ≤ c + c‖θ̃>ω‖+ ‖ηu‖ (9.8.10)

for some δ > 0 by applying Lemma 3.3.2. Using the expressions for ηu, ηy, we have

‖ηy‖ ≤
∥∥∥∥

Λ(s)− θ∗>1 α(s)
c∗0Λ(s)

∥∥∥∥
∞δ

‖Wm(s)∆m(s)‖∞δ‖up‖+ cd0

‖ηu‖ ≤
∥∥∥∥

θ∗3Λ(s) + θ∗>2 α(s)
c∗0Λ(s)

∥∥∥∥
∞δ

‖Wm(s)∆m(s)‖∞δ‖up‖+ cd0

where d0 is the upper bound for du and c ≥ 0 denotes any finite constant, which
implies that

‖ηy‖ ≤ c∆∞mf + cd0, ‖ηu‖ ≤ c∆∞mf + cd0 (9.8.11)

where ∆∞
4
= ‖Wm(s)∆m(s)‖∞δ. From (9.8.10) and (9.8.11), it follows that the

fictitious normalizing signal m2
f

4
= 1 + ‖up‖2 + ‖yp‖2 satisfies

m2
f ≤ c + c‖θ̃>ω‖2 + c∆2

∞m2
f (9.8.12)

Step 2. Use the swapping lemmas and properties of the L2δ-norm to bound
‖θ̃>ω‖ from above. Using the Swapping Lemma A.2 from Appendix A, we express
θ̃>ω as

θ̃>ω = F1(s, α0)(
˙̃
θ
>

ω + θ̃>ω̇) + F (s, α0)θ̃>ω (9.8.13)

where F (s, α0) = αk
0

(s+α0)k , F1(s, α0) = 1−F (s,α0)
s , α0 is an arbitrary constant to be

chosen, k ≥ n∗ and n∗ is the relative degree of G0(s) and Wm(s). Using Swapping
Lemma A.1, we have

θ̃>ω = W−1(s)
[
θ̃>W (s)ω + Wc(Wbω

>) ˙̃θ
]

(9.8.14)

where W (s) is any strictly proper transfer function with the property that W (s),
W−1(s) are analytic in Re[s] ≥ −δ0/2. The transfer matrices Wc(s), Wb(s) are
strictly proper and have the same poles as W (s). Substituting for θ̃>ω given by
(9.8.14) to the right hand side of (9.8.13), we obtain

θ̃>ω = F1[
˙̃
θ
>

ω + θ̃>ω̇] + FW−1[θ̃>Wω + Wc(Wbω
>) ˙̃θ] (9.8.15)

where FW−1 can be made proper by choosing W (s) appropriately.
We now use equations (9.8.13) to (9.8.15) together with the properties of the ro-

bust adaptive laws to obtain an upper bound for ‖θ̃>ω‖. We consider each adaptive
law of Tables 9.2 to 9.4 separately as follows:
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Robust Adaptive Law of Table 9.2 We have

ε = ef − êf −WmLεn2
s = WmL[ρ∗θ̃>φ− ρ̃ξ − εn2

s + ρ∗ηf ]

therefore,

θ̃>φ =
1
ρ∗

(
W−1

m L−1ε + ρ̃ξ + εn2
s

)− ηf (9.8.16)

where φ = L0(s)ω, L0(s) = L−1(s) h0
s+h0

. Choosing W (s) = L0(s) in (9.8.15) we
obtain

θ̃>ω = F1[
˙̃
θ
>

ω + θ̃>ω̇] + FL−1
0 [θ̃>L0ω + Wc(Wbω

>) ˙̃θ]

Substituting for θ̃>φ = θ̃>L0ω and L0(s) = L−1(s) h0
s+h0

, and using (9.8.16), we
obtain

θ̃>ω = F1[
˙̃
θ
>

ω + θ̃>ω̇]

+ FW−1
m

s + h0

h0ρ∗
ε + FL−1

0

[
ρ̃ξ + εn2

s

ρ∗
− ηf + Wc(Wbω

>) ˙̃θ
]

Substituting for ξ = uf − θ>φ = L0θ
>ω − θ>L0φ = Wc(Wbω

>)θ̇, where the last
equality is obtained by applying Swapping Lemma A.1 to L0(s)θ>ω, we obtain

θ̃>ω = F1[
˙̃
θ
>

ω + θ̃>ω̇] + FW−1
m

s + h0

h0ρ∗
ε + FL−1

0

[
εn2

s

ρ∗
− ηf +

ρ

ρ∗
Wc(Wbω

>) ˙̃θ
]

(9.8.17)
Choosing k = n∗ + 1 in the expression for F (s, α0), it follows that FW−1

m (s + h0)
is biproper, FL−1

0 = FL s+h0
h0

is strictly proper and both are analytic in Re[s] ≥
−δ0/2. Using the properties of F, F1 given by Swapping Lemma A.2, and noting
that ‖ 1

(s+α0)k
s+h0

h0
W−1

m (s)‖∞δ and ‖ 1
(s+α0)k

s+h0
h0

L(s)‖∞δ are finite constants, we
have

‖F1(s, α0)‖∞δ ≤ c

α0
,

∥∥∥∥F (s, α0)W−1
m (s)

s + h0

h0

∥∥∥∥
∞δ

≤ cαk
0

∥∥F (s, α0)L−1
0 (s)

∥∥
∞δ

=
∥∥∥∥F (s, α0)L(s)

s + h0

h0

∥∥∥∥
∞δ

≤ cαk
0 (9.8.18)

for any δ ∈ (0, δ0].
We can use (9.8.17), (9.8.18) and the properties of the L2δ norm given by

Lemma 3.3.2 to derive the inequality

‖θ̃>ω‖ ≤ c

α0
(‖ ˙̃

θ
>

ω‖+ ‖θ̃>ω̇‖) + cαk
0‖ε‖+ cαk

0‖εn2
s‖

+cαk
0‖Wc(Wbω

>) ˙̃θ‖+ ‖FL−1
0 ηf‖ (9.8.19)
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From Lemma 9.8.1 and θ ∈ L∞, we have

ω

mf
,
‖ω̇‖
mf

,
Wbω

>

mf
,

ns

mf
∈ L∞

‖Wc(Wbω
>)θ̇‖ ≤ c‖θ̇mf‖, ‖θ̃>ω̇‖ ≤ cmf , ‖εn2

s‖ ≤ ‖εnsmf‖
Furthermore,

‖FL−1
0 ηf‖ = ‖Fη0‖ = ‖FW−1

m η‖ ≤ ‖F (s)W−1
m (s)‖∞δ‖η‖ ≤ cαk

0‖η‖
where

η =
Λ(s)− θ∗>1 α(s)

Λ(s)
Wm(s)[∆m(s)(up + du) + du]

and

‖η‖ ≤
∥∥∥∥

Λ(s)− θ∗>1 α(s)
Λ(s)

∥∥∥∥
∞δ

‖Wm(s)∆m(s)‖∞δ‖up‖+ cd0

≤ c∆∞mf + cd0

Hence,
‖FL−1

0 ηf‖ ≤ cαk
0∆∞mf + cd0

and (9.8.19) may be rewritten as

‖θ̃>ω‖ ≤ c

α0
‖ ˙̃
θmf‖+

c

α0
mf + cαk

0(‖εnsmf‖+ ‖εmf‖+ ‖ ˙̃
θmf‖) + cαk

0∆∞mf + cd0

(9.8.20)
where c ≥ 0 denotes any finite constant and for ease of presentation, we use the
inequality ‖ε‖ ≤ ‖εmf‖ in order to simplify the calculations. We can also express
(9.8.20) in the compact form

‖θ̃>ω‖ ≤ c‖g̃mf‖+ c

(
1
α0

+ αk
0∆∞

)
mf + cd0 (9.8.21)

where g̃2 = | ˙̃θ|2
α2

0
+α2k

0 (|εns|2 + | ˙̃θ|2 + ε2). Since ε, εns,
˙̃
θ ∈ S(f0 +

η2
f

m2 ), it follows that

g̃ ∈ S(f0 +
η2

f

m2 ). Because

ηf =
Λ(s)− θ∗>1 α(s)

Λ(s)
L−1(s)

h0

s + h0
[∆m(s)(up + du) + du]

we have
|ηf (t)| ≤ ∆02m(t) + cd0

where

∆02
4
=

∥∥∥∥
Λ(s)− θ∗>1 α(s)

Λ(s)
L−1(s)

h0

s + h0
∆m(s)

∥∥∥∥
2δ0

(9.8.22)
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Hence, in (9.8.21), g ∈ S(f0 + ∆2
02 + d2

0
m2 ).

Robust Adaptive Law of Table 9.3 This adaptive law follows directly from that
of Table 9.2 by taking L−1(s) = Wm(s), L0(s) = Wm(s) and by replacing h0

s+h0
by

unity. We can therefore go directly to equation (9.8.17) and obtain

θ̃>ω = F1(
˙̃
θ
>

ω + θ̃>ω̇) +
FW−1

m

ρ∗
ε + FW−1

m

[
εn2

s

ρ∗
+

ρ

ρ∗
Wc(Wbω

>) ˙̃θ − η

]

where

η =
Λ(s)− θ∗>1 α(s)

Λ(s)
Wm(s)[∆m(s)(up + du) + du]

The value of k in the expression for F (s, α0) can be taken as k = n∗ (even though
k = n∗ + 1 will also work) leading to FW−1

m being biproper.
Following the same procedure as in the case of the adaptive law of Table 9.2,

we obtain

‖θ̃>ω‖ ≤ c

α0
(‖ ˙̃

θ
>

ω‖+ ‖θ̃>ω̇‖) + cαk
0‖ε‖+ cαk

0‖εn2
s‖

+ cαk
0‖Wc(Wbω

>) ˙̃θ‖+ ‖FW−1
m η‖

which may be rewritten in the form

‖θ̃>ω‖ ≤ c‖g̃mf‖+ c

(
c

α0
+ αk

0∆∞

)
mf + cd0 (9.8.23)

where g̃2 = | ˙̃θ|2
α2

0
+ α2k

0 (|εns|2 + | ˙̃θ|2 + ε2). Because ε, εns,
˙̃
θ ∈ S(f0 + η2

m2 ), it follows

that g̃ ∈ S(f0 + η2

m2 ). Because

|η(t)| ≤ ∆2m(t) + cd0

where

∆2 =
∥∥∥∥

Λ(s)− θ∗>1 α(s)
Λ(s)

Wm(s)∆m(s)
∥∥∥∥

2δ0

(9.8.24)

it follows that in (9.8.23) g̃ ∈ S(f0 + ∆2
2 + d2

0
m2 ).

Robust Adaptive Law of Table 9.4 We have εm2 = z − ẑ = −θ̃>φp − η, i.e.,
θ̃>φp = −η − εm2. We need to relate θ̃>φp with θ̃>ω. Consider the identities

θ̃>φp = θ̃>0 φ0 + c̃0yp, θ̃>ω = θ̃>0 ω0 + c̃0r

where θ̃0 = [θ̃>1 , θ̃>2 , θ̃3]>, ω0 = [ω>1 , ω>2 , yp]> and φ0 = Wm(s)ω0. Using the above
equations, we obtain

θ̃>0 φ0 = θ̃>φp − c̃0yp = −εm2 − c̃0yp − η (9.8.25)
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Let us now use the Swapping Lemma A.1 to write

Wm(s)θ̃>ω = θ̃>0 Wm(s)ω0 + c̃0ym + Wc(Wbω
>) ˙̃θ

Because θ̃>0 φ0 = θ̃>0 Wm(s)ω0, it follows from above and (9.8.25) that

Wm(s)θ̃>ω = −εm2 − c̃0yp − η + c̃0ym + Wc(Wbω
>) ˙̃θ (9.8.26)

Substituting for

yp = ym +
1
c∗0

Wm(s)θ̃>ω + ηy

in (9.8.26) and using η = c∗0ηy, where

ηy =
Λ(s)− θ∗>1 α(s)

c∗0Λ(s)
Wm(s)[∆m(s)(up + du) + du]

we obtain

Wm(s)θ̃>ω = −εm2 − c̃0

c∗0
Wm(s)θ̃>ω + Wc(Wbω

>) ˙̃θ − c0ηy

Because 1 + c̃0
c∗0

= c0
c∗0

and 1
c0
∈ L∞, we have

Wm(s)θ̃>ω =
c∗0
c0

[
−εm2 + Wc(Wbω

>) ˙̃θ − c0ηy

]
(9.8.27)

Rewriting (9.8.13) as

θ̃>ω = F1(
˙̃
θ
>

ω + θ̃>ω̇) + FW−1
m (Wmθ̃>ω)

and substituting for Wm(s)θ̃>ω from (9.8.27), we obtain

θ̃>ω = F1(
˙̃
θ
>

ω + θ̃>ω̇)

+ FW−1
m

c∗0
c0

[
−εm2 + Wc(Wbω

>) ˙̃θ − c0ηy

]
(9.8.28)

Following the same approach as with the adaptive law of Table 9.3, we obtain

‖θ̃>ω‖ ≤ c‖g̃mf‖+ c

(
c

α0
+ αk

0∆∞

)
mf + cd0 (9.8.29)

where g̃ ∈ S(f0 + η2

m2 ) or g̃ ∈ S(f0 +∆2
2 + d2

0
m2 ) and g̃2 4= | ˙̃θ|2

α2
0

+α2k
0 (|εn2

s|+ | ˙̃θ|2 + ε2).

Step 3. Use the B-G Lemma to establish boundedness. The bound for ‖θ̃>ω‖
in (9.8.21), (9.8.23), and (9.8.29) has exactly the same form for all three adaptive
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laws given in Tables 9.2 to 9.4. Substituting for the bound of ‖θ̃>ω‖ in (9.8.12) we
obtain

m2
f ≤ c + c‖g̃mf‖2 + c

(
1
α2

0

+ α2k
0 ∆2

∞

)
m2

f + cd2
0

For

c

(
1
α2

0

+ α2k
0 ∆2

∞

)
< 1 (9.8.30)

we have
m2

f ≤ c0 + c‖g̃mf‖2

where c0 depends on d2
0, which may be rewritten as

m2
f ≤ c0 + c

∫ t

0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ

Applying the B-G Lemma III, we obtain

m2
f ≤ ce−δte

c
∫ t

0
g̃2(τ)dτ + c0δ

∫ t

0

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds

Because g̃ ∈ S(f0+∆2
i + d2

0
m2 ) where ∆i = ∆02 for the SPR-Lyapunov based adaptive

law and ∆i = ∆2 for the adaptive laws of Tables 9.2 and 9.4, we obtain

m2
f ≤ ce−

δ
2 te

c
∫ t

0

d2
0

m2(τ)
dτ + c0δ

∫ t

0

e−
δ
2 (t−s)e

c
∫ t

s

d2
0

m2(τ)
dτ

ds (9.8.31)

provided

c(f0 + ∆2
i ) ≤

δ

2
(9.8.32)

where c in (9.8.32) is proportional to 1
α2

0
+ α2k

0 and can be calculated by keeping
track of all the constants in each step. The constant c also depends on the H∞δ and
H2δ norms of the transfer functions involved and the upper bound for the estimated
parameters.

To establish the boundedness of mf , we have to show that cd2
0

m2(t) < δ
2 for all

t ≥ 0 or for most of the time. The boundedness of mf will follow directly if we
modify the normalizing signal as m2 = 1+n2

s, n
2
s = β0+ms and choose the constant

β0 large enough so that
cd2

0

m2(t)
≤ cd2

0

β0
≤ δ

2

∀t ≥ 0. This means that m is always larger than the level of the disturbance. Such a
large m will slow down the speed of adaptation and may in fact improve robustness.
A slow adaptation, however, may have an adverse effect on performance.

The boundedness of signals can be established, however, without having to
modify the normalizing signal by using the properties of the L2δ norm defined over
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an arbitrary interval [t1, t] given by Lemma 9.8.2, 9.8.3 and by repeating steps 1 to
3 as follows:

We apply Lemma 9.8.2 to (9.8.9) to obtain

‖upt,t1
‖2, ‖ypt,t1

‖2 ≤ ce−δ(t−t1)m2(t1) + c‖θ̃>ωt,t1‖2 + c∆2
∞‖upt,t1

‖2 + cd2
0

where we use the fact that ‖θ̃>ωt‖2δ0 , ‖ypt‖2δ0 , ‖upt‖2δ0 ≤ cm(t). Therefore, the

fictitious signal m2
f1

4
= e−δ(t−t1)m2(t1) + ‖upt,t1

‖2 + ‖ypt,t1
‖2 satisfies

m2
f1 ≤ ce−δ(t−t1)m2(t1) + c‖θ̃>ωt,t1‖2 + c∆2

∞m2
f1

+ cd2
0 ∀t ≥ t1 ≥ 0

Following the same procedure as in step 2 and using Lemma 9.8.2, 9.8.3 we obtain

‖θ̃>ω‖2 ≤ ce−δ(t−t1)m2(t1) + c‖(g̃mf1)t,t1‖2 + c

(
1
α2

0

+ α2k
0

)
∆2
∞m2

f1
+ cd2

0

where g̃ is as defined before. Therefore,

m2
f1
≤ ce−δ(t−t1)m2(t1) + c‖(g̃mf1)t,t1‖2 + c

(
1
α2

0

+ α2k
0

)
∆2
∞m2

f1
+ cd2

0

Using (9.8.30), we obtain

m2
f1
≤ ce−δ(t−t1)m2(t1) + c‖(g̃mf1)t,t1‖2 + cd2

0, ∀t ≥ t1

or

m2
f1

(t) ≤ c + ce−δ(t−t1)m2(t1) + c

∫ t

t1

e−δ(t−τ)g̃2(τ)m2
f1

(τ)dτ

Applying the B-G Lemma III, we obtain

m2
f1

(t) ≤ ce−δ(t−t1)(1 + m2(t1))e
c
∫ t

t1
g̃2(τ)dτ

+ cδ

∫ t

t1

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds

∀t ≥ t1 ≥ 0. Because g̃ ∈ S(f0 +∆2
i + d2

0
m2 ), it follows as before that for cf0 + c∆2

i ≤
δ/2, we have

m2(t) ≤ m2
f1

(t) ≤ ce−δ/2(t−t1)(1 + m2(t1))e
c
∫ t

t1
d2
0/m2dτ

+cδ

∫ t

t1

e−δ/2(t−s)e
c
∫ t

s
d2
0/m2(τ)dτ

ds (9.8.33)

∀t ≥ t1, where the inequality m2(t) ≤ m2
f1

follows from the definition of mf1 . If we
establish that m ∈ L∞, then it will follow from Lemma 9.8.1 that all signals are
bounded. The boundedness of m is established by contradiction as follows: Let us
assume that m2(t) grows unbounded. Because θ ∈ L∞, it follows that

m2(t) ≤ ek1(t−t0)m2(t0)
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for some k1 > 0, i.e., m2(t) cannot grow faster than an exponential. As m2(t) grows
unbounded, we can find a t0 > ᾱ > 0 and a t2 > t0 with ᾱ > t2 − t0 such that
m2(t2) > ᾱek1ᾱ for some large constant ᾱ > 0. We have

ᾱek1ᾱ < m2(t2) ≤ ek1(t2−t0)m2(t0)

which implies that
ln m2(t0) > ln ᾱ + k1[ᾱ− (t2 − t0)]

Because ᾱ > t2 − t0, it follows that ln m2(t0) > ln ᾱ, i.e., m2(t0) > ᾱ for t0 ∈
(t2 − ᾱ, t2).

Let t1 = supτ≤t2{arg(m2(τ) = ᾱ)}. Since m2(t0) > ᾱ for all t0 ∈ (t2 − ᾱ, t2),
it follows that t1 ≤ t2 − ᾱ and m2(t) ≥ ᾱ ∀t ∈ [t1, t2) and t2 − t1 ≥ ᾱ. We now
consider (9.8.33) with t1 as defined above and t = t2. We have

m2(t2) ≤ c(1 + ᾱ)e−β(t2−t1) + cδ

∫ t2

t1

e−β(t−s)ds

where β = δ
2 −

cd2
0

ᾱ . For large ᾱ, we have β = δ
2 −

cd2
0

ᾱ > 0 and

m2(t2) ≤ c(1 + ᾱ)e−βᾱ +
cδ

β

Hence, for sufficiently large ᾱ, we have m2(t2) < c < ᾱ, which contradicts the
hypothesis that m2(t2) > ᾱek1ᾱ > ᾱ. Therefore, m ∈ L∞, which, together with
Lemma 9.8.1, implies that all signals are bounded.

Step 4. Establish bounds for the tracking error. In this step, we establish
bounds for the tracking error e1 by relating it with signals that are guaranteed by
the adaptive law to be of the order of the modeling error in m.s.s. We consider each
adaptive law separately.

Robust Adaptive Law of Table 9.2 Consider the tracking error equation

e1 = Wm(s)ρ∗θ̃>ω + ηy

We have
|e1(t)| ≤ ‖Wm(s)‖2δ‖θ̃>ω‖|ρ∗|+ |ηy|

Therefore,
|e1(t)| ≤ c‖θ̃>ω‖+ c|ηy|

Using (9.8.21) and mf ∈ L∞ in the above equation, we obtain

|e1(t)|2 ≤ c‖g̃‖2 + c

(
1
α0

+ αk
0∆∞

)2

+ cd2
0 + c|ηy|2
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We can also establish that
|ηy(t)|2 ≤ c∆2

2 + cd2
0

Therefore,

|e1(t)|2 ≤ c‖g̃‖2 + c

(
1
α0

+ αk
0∆∞

)2

+ cd2
0 + c∆2

2

where g̃ ∈ S(f0 + ∆2
02 + d2

0). Using Corollary 3.3.3, we can establish that ‖g̃‖ ∈
S(f0 + ∆2

02 + d2
0) and, therefore,

∫ t+T

t

|e1|2dτ ≤ c(f0 + ∆2 + d2
0)T + c

where ∆ = 1
α2

0
+ ∆2

∞ + ∆2
2 + ∆2

02.

Robust Adaptive Law of Table 9.3 It follows from the equation of the estimation
error that

e1 = ρξ + εm2

Because ε, ξ, εm ∈ S(f0+∆2
2+d2

0) and ρ,m ∈ L∞, it follows that e1 ∈ S(f0+∆2
2+d2

0).

Robust Adaptive Law of Table 9.4 Substituting (9.8.27) in the tracking error
equation

e1 =
1
c∗0

Wm(s)θ̃>ω + ηy

and using η = c∗0ηy, we obtain

e1 =
1
c0

(
−εm2 + Wc(Wbω

>) ˙̃θ
)

Using ω ∈ L∞, θ̇ ∈ S(f0 + ∆2
2 + d2

0) , we have that the signal ξ = Wc(Wbω
>) ˙̃θ ∈

S(f0 + ∆2
2 + d2

0). Since 1
c0

,m ∈ L∞ and εm ∈ S(f0 + ∆2
2 + d2

0), it follows that
e1 ∈ S(f0 + ∆2

2 + d2
0).

Step 5: Establish parameter and tracking error convergence. As in the ideal
case, we first show that φ, φp is PE if r is dominantly rich. From the definition of
φ, φp, we have

φ = H(s)




α(s)
Λ(s)up

α(s)
Λ(s)yp

yp

r


 , φp =




Wm(s)α(s)
Λ(s)up

Wm(s)α(s)
Λ(s)yp

Wm(s)yp

yp




where H(s) = L0(s) for the adaptive law of Table 9.2 and H(s) = Wm(s) for the
adaptive law of Table 9.3. Using yp = Wm(s)r+e1, up = G−1

0 (s)(Wm(s)r+e1)−η1,
η1 = ∆m(s)(up + du) + du, we can write

φ = φm + φe, φp = φpm + φpe
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where

φm = H(s)




α(s)
Λ(s)G

−1
0 (s)Wm(s)

α(s)
Λ(s)Wm(s)

Wm(s)
1


 r, φpm = Wm(s)




α(s)
Λ(s)G

−1
0 (s)Wm(s)

α(s)
Λ(s)Wm(s)

Wm(s)
1


 r

φe = H(s)




α(s)
Λ(s)G

−1
0 (s)

α(s)
Λ(s)

1
0


 e1 −H(s)




α(s)
Λ(s)

0
0
0


 η1

φpe =




Wm(s)α(s)
Λ(s)G

−1
0 (s)

Wm(s)α(s)
Λ(s)

Wm(s)
1


 e1 −




Wm(s)α(s)
Λ(s)

0
0
0


 η1

Because we have established that e1 ∈ S(∆2 + d2
0 + f0) and up ∈ L∞, we conclude

that φe, φpe ∈ S(∆2 + d2
0 + f0). In Chapter 8, we have proved that φm, φpm are

PE with level α0 > O(∆2 + d2
0) provided that r is dominantly rich and Zp, Rp are

coprime, i.e., there exist T0 > 0, Tp0 > 0, α0 > 0, αp0 > 0 such that

1
T0

∫ t+T0

t

φm(τ)φ>m(τ)dτ ≥ α0I,
1

Tp0

∫ t+Tp0

t

φpm(τ)φ>pm(τ)dτ ≥ αp0I

∀t ≥ 0. Note that

1
nT0

∫ t+nT0

t

φ(τ)φ>(τ)dτ ≥ 1
2nT0

∫ t+nT0

t

φm(τ)φ>m(τ)dτ

− 1
nT0

∫ t+nT0

t

φe(τ)φ>e (τ)dτ

≥ α0

2
I −

(
c(∆2 + d2

0 + f0) +
c

nT0

)
I

where n is any positive integer. If we choose n to satisfy c
nT0

< α0
8 , then for

c(∆2 + d2
0 + f0) < α0

8 , we have

1
nT0

∫ t+nT0

t

φ(τ)φ>(τ)dτ ≥ α0

4
I

which implies that φ is PE. Similarly, we can establish the PE property for φp.
Using the results of Chapters 4 and 8, we can establish that when φ, or φp is

PE, the robust adaptive laws guarantee that θ̃ converges to a residual set whose
size is of the order of the modeling error, i.e., θ̃ satisfies

|θ̃(t)| ≤ c(f0 + ∆ + d0) + rθ̃(t) (9.8.34)
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where rθ̃(t) → 0 as t → ∞. Furthermore, for the robust adaptive law of Table 9.4
based on the linear parametric model, we have rθ̃(t) → 0 exponentially fast. Now

e1(t) =
1
c∗0

Wm(s)θ̃>ω + ηy (9.8.35)

where ηy = Λ−θ∗>1 α
c∗0Λ Wm(du + ∆m(s)(up + du)). Because ω ∈ L∞ and |ηy| ≤ c(∆2 +

d0), we can conclude from (9.8.34) and (9.8.35) that

|e1(t)| ≤ c(f0 + ∆ + d0) + cre(t) (9.8.36)

where re(t)
4
=

∫ t

0
hm(t − τ)rθ̃(τ)dτ and hm(t) = L−1{Wm(s)}. Therefore, we have

re(t) → 0 as t → ∞. Furthermore, when rθ̃(t) converges to zero exponentially
fast (i.e., the adaptive law of Table 9.4 is used), re(t) → 0 exponentially fast.
Combining (9.8.34) and (9.8.36), the parameter error and tracking error convergence
to S follows.

9.9 Stability Proofs of Robust APPC Schemes

9.9.1 Proof of Theorem 9.5.2

The proof is completed by following the same steps as in the ideal case and Example
9.5.1.

Step 1. Express up, yp in terms of the estimation error. Following exactly the
same steps as in the ideal case given in Section 7.7.1, we can show that the input
up and output yp satisfy the same equations as (7.4.24), that is

ẋ = A(t)x + b1(t)εm2 + b2ȳm

yp = C>1 x + d1εm
2 + d2ȳm (9.9.1)

up = C>2 x + d3εm
2 + d4ȳm

where x,A(t), b1(t), b2 and Ci, i = 1, 2, dk, k = 1, 2, 3, 4 are as defined in Section 7.7.1
and ȳm = P̂ 1

Λ(s)ym. As illustrated in Example 9.5.1, the modeling error terms due
to ∆m(s), du do not appear explicitly in (9.9.1). Their effect, however, is manifested
in ε, εm, ‖Ȧ(t)‖ where instead of belonging to L2 as in the ideal case, they belong
to S( η2

m2 + f0). Because η2

m2 ≤ ∆2
2 + d2

0
m2 , we have ε, εm, ‖Ȧ(t)‖ ∈ S(∆2

2 + d2
0

m2 + f0).

Step 2. Establish the e.s. property of A(t). As in the ideal case, the APPC law
guarantees that det(sI − A(t)) = A∗(s) for each time t where A∗(s) is Hurwitz. If
we apply Theorem 3.4.11 (b) to the homogeneous part of (9.9.1), we can establish
that A(t) is u.a.s which is equivalent to e.s. provided

c(f0 + ∆2
2 +

1
T

∫ t+T

t

d2
0

m2
dτ) < µ∗ (9.9.2)
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∀t ≥ 0, any T ≥ 0 and some µ∗ > 0 where c ≥ 0 is a finite constant. Because
m2 > 0, condition (9.9.2) may not be satisfied for small ∆2, f0 unless d0, the upper
bound for the input disturbance, is zero or sufficiently small. As in the MRAC
case, we can deal with the disturbance in two different ways. One way is to modify
m2 = 1 + ms to m2 = 1 + β0 + ms where β0 is chosen to be large enough so that
c

d2
0

m2 ≤ c
d2
0

β0
< µ∗

2 , say, so that for

c(f0 + ∆2
2) <

µ∗

2

condition (9.9.2) is always satisfied and A(t) is e.s. The other way is to keep the same
m2 and establish that when m2 grows large over an interval of time I1 = [t1, t2],
say, the state transition matrix Φ(t, τ) of A(t) satisfies ‖Φ(t, τ)‖ ≤ k1e

−k2(t−τ)

∀t ≥ τ and t, τ ∈ I1. This property of A(t) (when m2 grows large) is used in
Step 3 to contradict the hypothesis that m2 could grow unbounded and conclude
boundedness.

Let us start by assuming that m2 grows unbounded. Because all the elements
of the state x are the outputs of strictly proper transfer functions with the same
poles as the roots of Λ(s) and inputs up, yp (see Section 7.7.1) and the roots of Λ(s)
are located in Re[s] < −δ0/2, it follows from Lemma 3.3.2 that x

m ∈ L∞. Because
ȳm, εm ∈ L∞, it follows from (9.9.1) that yp

m ,
up

m ∈ L∞. Because u2
p, y

2
p are bounded

from above by m2, it follows from the equation for m2 that m2 cannot grow faster
than an exponential, i.e., m2(t) ≤ ek1(t−t0)m2(t0), ∀t ≥ t0 ≥ 0 for some k > 0.
Because m2(t) is assumed to grow unbounded, we can find a t0 > ᾱ > 0 for any
arbitrary constant ᾱ > t2 − t0 such that m2(t2) > ᾱek1ᾱ. We have

ᾱek1ᾱ < m2(t2) ≤ ek1(t2−t0)m2(t0)

which implies that
ln m2(t0) > ln ᾱ + k1[ᾱ− (t2 − t0)]

Because ᾱ > t2 − t0 and t0 ∈ (t2 − ᾱ, t2), it follows that

m2(t0) > ᾱ, ∀t0 ∈ (t2 − ᾱ, t2)

Let t1 = supτ≤t2{arg(m2(τ) = ᾱ)}. Then, m2(t1) = ᾱ and m2(t) ≥ ᾱ, ∀t ∈ [t1, t2)
where t1 ≤ t2 − ᾱ, i.e., t2 − t1 ≥ ᾱ. Let us now consider the behavior of the
homogeneous part of (9.9.1), i.e.,

Ẏ = A(t)Y (9.9.3)

over the interval I1
4
= [t1, t2) for which m2(t) ≥ ᾱ and t2− t1 ≥ ᾱ where ᾱ > 0 is an

arbitrary constant. Because det(sI −A(t)) = A∗(s), i.e., A(t) is a pointwise stable
matrix, the Lyapunov equation

A>(t)P (t) + P (t)A(t) = −I (9.9.4)
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has the solution P (t) = P>(t) > 0 for each t ∈ I1. If we consider the Lyapunov
function

V (t) = Y >(t)P (t)Y (t)

then along the trajectory of (9.9.3), we have

V̇ = −Y >Y + Y >Ṗ Y ≤ −Y >Y + ‖Ṗ (t)‖Y >Y

As in the proof of Theorem 3.4.11, we can use (9.9.4) and the boundedness of P,A
to establish that ‖Ṗ (t)‖ ≤ c‖Ȧ(t)‖. Because λ1Y

>Y ≤ V ≤ λ2Y
>Y for some

0 < λ1 < λ2, it follows that

V̇ ≤ −(λ−1
2 − cλ−1

1 ‖Ȧ(t)‖)V

i.e.,

V (t) ≤ e
−

∫ t

τ
(λ−1

2 −cλ−1
1 ‖Ȧ(s)‖)ds

V (τ)

∀ t ≥ τ ≥ 0. For the interval I1 = [t1, t2), we have m2(t) ≥ ᾱ and, therefore,

∫ t

τ

‖Ȧ(τ)‖dτ ≤ c(∆2
2 + f0 +

d2
0

ᾱ
)(t− τ) + c

and therefore,
V (t) ≤ e−λ0(t−τ)V (τ), ∀t, τ ∈ [t1, t2) (9.9.5)

and t ≥ τ provided

c(f0 + ∆2
2 +

d2
0

ᾱ
) < λ0 (9.9.6)

where λ0 = λ−1
2
2 . From (9.9.5) we have

λ1Y
>(t)Y (t) ≤ Y >(t)PY (t) ≤ e−λ0(t−τ)λ2Y

>(τ)Y (τ)

which implies that

|Y (t)| ≤
√

λ2

λ1
e−λ0(t−τ)|Y (τ)|, ∀t, τ ∈ [t1, t2)

which, in turn, implies that the transition matrix Φ(t, τ) of (9.9.3) satisfies

‖Φ(t, τ)‖ ≤ β0e
−α0(t−τ), ∀t, τ ∈ [t1, t2) (9.9.7)

where β0 =
√

λ2
λ1

, α0 = λ0
2 . Condition (9.9.6) can now be satisfied by choosing

ᾱ large enough and by requiring ∆2, f0 to be smaller than some constant, i.e.,
c(f0 + ∆2

2) <
λ−1

2
4 , say. In the next step we use (9.9.7) and continue our argument

over the interval I1 in order to establish boundedness by contradiction.
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Step 3. Boundedness using the B-G Lemma and contradiction. Let us apply
Lemma 3.3.6 to (9.9.1) for t ∈ [t1, t2). We have

‖xt,t1‖ ≤ ce−δ/2(t−t1)|x(t1)|+ c‖(εm2)t,t1‖+ c

where ‖(·)t,t1‖ denotes the L2δ norm ‖(·)t,t1‖2δ defined over the interval [t1, t), for
any 0 < δ < δ1 < 2α0. Because x

m ∈ L∞ it follows that

‖xt,t1‖ ≤ ce−δ/2(t−t1)m(t1) + c‖(εm2)t,t1‖+ c

Because ‖ypt,t1‖, ‖upt,t1‖ ≤ c‖xt,t1‖+ c‖(εm2)t,t1‖+ c, it follows that

‖ypt,t1‖, ‖upt,t1‖ ≤ ce−δ/2(t−t1)m(t1) + c‖(εm2)t,t1‖+ c

Now m2(t) = 1 + ms(t) and

ms(t) = e−δ0(t−t1)ms(t1) + ‖ypt,t1‖22δ0
+ ‖upt,t1‖22δ0

Because ‖(·)t,t1‖2δ0 ≤ ‖(·)t,t1‖ for δ ≤ δ0, it follows that

m2(t) = 1 + ms(t) ≤ 1 + e−δ0(t−t1)m2(t1) + ‖ypt,t1‖2 + ‖upt,t1‖2 ∀t ≥ t1

Substituting for the bound for ‖ypt,t1‖, ‖upt,t1‖ we obtain

m2(t) ≤ ce−δ(t−t1)m2(t1) + c‖(εm2)t,t1‖2 + c ∀t ≥ t1 ≥ 0

or

m2(t) ≤ c + ce−δ(t−t1)m2(t1) + c

∫ t

t1

e−δ(t−τ)ε2m2m2(τ)dτ (9.9.8)

Applying B-G Lemma III we obtain

m2(t) ≤ c(1 + m2(t1))e−δ(t−t1)e
c
∫ t

t1
ε2m2dτ

+ cδ

∫ t

t1

e−δ(t−s)e
c
∫ t

s
ε2m2dτ

ds, ∀t ≥ t1

For t, s ∈ [t1, t2) we have

c

∫ t

s

ε2m2dτ ≤ c

(
∆2

2 + f0 +
d2
0

ᾱ

)
(t− s) + c

By choosing ᾱ large enough so that c
d2
0

ᾱ < δ
4 and by requiring

c(∆2
2 + f0) <

δ

4

we have

m2(t2) ≤ c(1 + m2(t1))e−
δ
2 (t2−t1) + cδ

∫ t2

t1

e−
δ
2 (t2−s)ds

≤ c(1 + m2(t1))e−
δ
2 (t2−t1) + c
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Because t2 − t1 ≥ ᾱ, m2(t1) = ᾱ and m2(t2) > ᾱ, we have

ᾱ < m2(t2) ≤ c(1 + ᾱ)e−
δᾱ
2 + c

Therefore, we can choose ᾱ large enough so that m2(t2) < ᾱ which contradicts the
hypothesis that m2(t2) > ᾱ. Therefore, m ∈ L∞ which implies that x, up, yp ∈ L∞.

The condition for robust stability is, therefore,

c(f0 + ∆2
2) < min{λ−1

2

2
,
δ

4
} 4= δ∗

for some finite constant c > 0.

Step 4. Establish bounds for the tracking error. A bound for the tracking
error e1 is obtained by expressing e1 in terms of signals that are guaranteed by the
adaptive law to be of the order of the modeling error in m.s.s. The tracking error
equation has exactly the same form as in the ideal case in Section 7.7.1 and is given
by

e1 =
Λ(s)sn−1Qm(s)

A∗(s)
εm2 +

Λ(s)α>n−2(s)
A∗(s)

v0

(see equation (7.7.21)) where v0 is the output of proper stable transfer functions
whose inputs are elements of θ̇p multiplied by bounded signals. Because θ̇p, εm

2 ∈
S( η2

m2 + f0) and η2

m2 ≤ c(∆2
2 + d2

0), due to m ∈ L∞, it follows from Corollary 3.3.3
that e1 ∈ S(∆2

2 + d2
0 + f0) and the proof is complete.

9.9.2 Proof of Theorem 9.5.3

We use the same steps as in the proof of Example 9.5.2.

Step 1. Develop the state error equations for the closed-loop plant. We start
with the plant equation

Rpyp = Zp(1 + ∆m)(up + du)

Operating with Qm(s)
Q1(s)

on each side, we obtain

Rp
Qm

Q1
yp = Rp

Qm

Q1
e1 = Zpūp + Zp

Qm

Q1
[∆m(up + du) + du]

i.e.,

e1 =
ZpQ1

RpQm
ūp +

ZpQm

RpQm
[∆m(up + du) + du]

Because Zp

Rp
∆m is strictly proper, we can find an arbitrary polynomial Λ(s) whose

roots are in Re[s] < −δ0/2 and has the same degree as Rp, i.e., n and express e1 as

e1 =
ZpQ1

RpQm
ūp +

ΛQm

RpQm
η (9.9.9)
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where

η =
Zp

Λ
[∆m(up + du) + du]

We express (9.9.9) in the following canonical state-space form

ė = Ae + Būp + B1η

e1 = C>e + d1η (9.9.10)

where C>(sI −A)−1B = ZpQ1
RpQm

, C>(sI −A)−1B1 + d1 = ΛQm

RpQm
with

A =


−θ∗1

∣∣∣∣∣∣

In+q−1

−−−−
0


 , B = θ∗2 , C> = [1, 0, . . . , 0]

and θ∗1 , θ∗2 are defined as RpQm = sn+q + θ∗>1 αn+q−1(s), ZpQ1 = θ∗>2 αn+q−1.
It follows that eo = e− ê is the state observation error. From the equation of ê

in Table 9.6 and (9.9.10), and the control law ūp = −Kc(t)ê, we obtain

˙̂e = Ac(t)ê + K̂oC
>eo + K̂od1η (9.9.11)

ėo = Aoeo + θ̃1e1 − θ̃2ūp + B2η (9.9.12)

where B2 = B1 − θ̃1d1 − K̂o(t)d1 and

Ao =


−a∗

∣∣∣∣∣∣

In+q−1

−−−−
0




whose eigenvalues are equal to the roots of A∗o(s) and therefore are located in

Re[s] < −δ0/2; Ac(t) = Â − B̂K̂c and θ̃1
4
= θ1 − θ∗1 , θ̃2

4
= θ2 − θ∗2 . The plant

output satisfies
yp = C>eo + C>ê + ym + d1η (9.9.13)

As shown in Section 7.3.3, the polynomials Zp, Q1, Rp, Qm satisfy the equation
(7.3.25), i.e.,

RpQmX + ZpQ1Y = A∗ (9.9.14)

where X, Y have degree n+q−1, X is monic and A∗ is an arbitrary monic Hurwitz
polynomial of degree 2(n + q) − 1 that contains the common zeros of Q1, RpQm.
Without loss of generality, we require A∗(s) to have all its roots in Re[s] < −δ0/2.
From (9.9.14) and Qmup = Q1ūp, it follows that

up =
RpXQ1

A∗
ūp +

Q1Y Zp

A∗
up
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Because Rpyp = Zpup + Zp[∆m(up + du) + du], we have

up =
RpXQ1

A∗
ūp +

Q1Y Rp

A∗
yp − Q1Y Λ

A∗
η (9.9.15)

by using the definition of Λ, η given earlier.
Equations (9.9.11) to (9.9.15) together with ūp = −Kc(t)ê describe the stability

properties of the closed-loop APPC scheme of Table 9.6.

Step 2. Establish stability of the homogeneous part of (9.9.11) and (9.9.12).
The stability of the homogeneous part of (9.9.12) is implied by the stability of
the matrix Ao whose eigenvalues are the same as the roots of A∗o(s). Because
det(sI − Ac(t)) = A∗c(s), we have that Ac(t) is pointwise stable. As we showed in
the ideal case in Section 7.7.2, the assumption that Ẑp, Q1R̂p are strongly coprime
implies that (Â, B̂) is a stabilizable pair [95] in the strong sense which can be used to

show that K̂c,
˙̂
Kc are bounded provided θ1, θ2, θ̇1, θ̇2 ∈ L∞. Because the coefficients

of Ẑp(s, t), R̂p(s, t) generated by the adaptive law are bounded and their derivatives

belong to ∈ S( η2

m2 + f0), it follows that |θi|, |θ̇i|, |K̂c|, | ˙̂
Kc| ∈ L∞ and |θ̇i|, | ˙̂

Kc| ∈
S( η2

m2 +f0) for i = 1, 2. Because Ac = Â−B̂K̂c, it follows that ‖Ac(t)‖, ‖Ȧc(t)‖ ∈ L∞
and ‖Ȧc(t)‖ ∈ S(η2/m2 +f0). Because |η|2

m2 ≤ ∆2 +
∫ t

0
d2
0

m2(τ)dτ where d0 is an upper
bound for |du|, the stability of Ac(t) cannot be established using Theorem 3.4.11 (b)
unless d0

m is assumed to be small. The term d0/m can be made small by modifying
m to be greater than a large constant β0, say, all the time as discussed in the proof
of Theorem 9.5.2. In this proof we keep the same m as in Table 9.6 and consider
the behavior of the state transition matrix Φ(t, τ) of Ac(t) over a particular finite
interval where m(t) has grown to be greater than an arbitrary constant ᾱ > 0. The
properties of Φ(t, τ) are used in Step 3 to contradict the hypothesis that m2 can
grow unbounded and conclude boundedness.

Let us start by showing that m cannot grow faster than an exponential due to
the boundedness of the estimated parameters Â, B̂. Because (C, A) in (9.9.10) is
observable, it follows from Lemma 3.3.4 that

|e(t)|, ‖et‖2δ0 ≤ c‖ūpt‖2δ0 + c‖ηt‖2δ0 + c‖ypt‖2δ0 + c

Because ūp = Qm

Q1
up, it follows from Lemma 3.3.2 that ‖ūpt‖2δ0 ≤ cm which together

with ‖ηt‖2δ0 ≤ ∆2m imply that e/m ∈ L∞. Similarly, applying Lemma 3.3.3 to
(9.9.12) and using θi ∈ L∞, we can establish that eo/m ∈ L∞ which implies that
ê = e − eo is bounded from above by m. From (9.9.13), (9.9.15), it follows that
up/m, yp/m ∈ L∞ which together with the equation for m2 imply that m2(t) ≤
ek1(t−t0)m(t0) ∀t ≥ t0 ≥ 0 for some constant k1.

We assume that m2(t) grows unbounded and proceed exactly the same way as
in Step 2 of the proof of Theorem 9.5.2 in Section 9.9.1 to show that for

c(∆2
2 + f0) < λ
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and some constant λ > 0 that depends on the pointwise stability of Ac(t), we have

‖Φ(t, τ)‖ ≤ λ0e
−α0(t−τ) ∀t, τ ∈ [t1, t2)

where t2 − t1 > ᾱ,m2(t1) = ᾱ, m2(t2) ≥ ᾱek1ᾱ > ᾱ, m2(t) ≥ ᾱ ∀t ∈ [t1, t2) and ᾱ
is large enough so that d0/ᾱ < cλ.

Step 3. Boundedness using the B-G Lemma and contradiction. Let us apply
Lemma 3.3.6 to (9.9.11) for t ∈ [t1, t2). We have

‖êt,t1‖ ≤ ce−
δ
2 (t−t1)|ê(t1)|+ c‖(C>eo)t,t1‖+ c‖ηt,t1‖

where ‖(·)t,t1‖ denotes the L2δ-norm ‖(·)t,t1‖2δ for some δ > 0. Because ê/m ∈ L∞,
we have

‖êt,t1‖ ≤ ce−
δ
2 (t−t1)m(t1) + c‖(C>eo)t,t1‖+ c‖ηt,t1‖ (9.9.16)

From (9.9.13), we have

‖ypt,t1‖ ≤ c‖(C>eo)t,t1‖+ c‖êt,t1‖+ c‖ηt,t1‖+ c (9.9.17)

Applying Lemma 3.3.6 to (9.9.15) and noting that the states of any minimal state
representation of the transfer functions in (9.9.15) are bounded from above by m
due to the location of the roots of A∗(s) in Re[s] < −δ0/2 and using ūp = −K̂cê,
we obtain

‖upt,t1‖ ≤ c‖êt,t1‖+ c‖ypt,t1‖+ c‖ηt,t1‖+ ce−
δ
2 (t−t1)m(t1) (9.9.18)

Combining (9.9.16), (9.9.17) and (9.9.18) we have

m2
f1

(t)
4
= e−δ0(t−t1)m2(t1) + ‖upt,t1‖2 + ‖ypt,t1‖2 (9.9.19)

≤ ce−δ(t−t1)m2(t1) + c‖(C>eo)t,t1‖2 + c‖ηt,t1‖+ c, ∀t ∈ [t1, t2)

Now from (9.9.12) we have

C>eo = C>(sI −Ao)−1(θ̃1e1 − θ̃2ūp) + C>(sI −Ao)−1B2η

=
αn+q−1(s)

A∗o(s)
(θ̃1e1 − θ̃2ūp) +

αn+q−1(s)
A∗o(s)

B2η (9.9.20)

Following exactly the same procedure as in Step 3 of the proof of Theorem 7.4.2 in
Section 7.7.2 in dealing with the first term of (9.9.20), we obtain

C>e0 =
Λp(s)Qm(s)

A∗o(s)
εm2 + r2 + W (s)η (9.9.21)

where r2 consists of terms of the form W1(s)ω̄>θ̇p with ω̄/m ∈ L∞ and W1(s),W (s)
being proper and analytic in Re[s] ≥ −δ0/2. Applying Lemma 3.3.5 to (9.9.21)
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and noting that any state of a minimal state-space representation of the transfer
functions in (9.9.21) is bounded from above by m, we obtain

‖(C>e0)t,t1‖ ≤ ce−
δ
2 (t−t1)m(t1) + c‖(εm2)t,t1‖+ c‖(θ̇pm)t,t1‖+ c‖ηt,t1‖ (9.9.22)

Using (9.9.22) in (9.9.19), and noting that ‖ηt,t1‖ ≤ ∆∞mf1 , we obtain

m2
f1

(t) ≤ ce−δ(t−t1)(1 + m2(t1)) + c‖(g̃m)t,t1‖2 + c∆∞mf1(t), ∀t ∈ [t1, t2)

where g̃2 = ε2m2 + |θ̇p|2. Therefore, for

c∆2
∞ < 1 (9.9.23)

we have m2(t) ≤ m2
f1

(t) and

m2(t) ≤ ce−δ(t−t1)(1 + m2(t1)) + c

∫ t

t1

g̃2(τ)m2(τ)dτ, ∀t ∈ [t1, t2) (9.9.24)

Applying B-G Lemma III we obtain

m2(t) ≤ c(1 + m2(t1))e−δ(t−t1)e
c
∫ t

t1
g̃2(τ)dτ

+ cδ

∫ t

t1

e−δ(t−s)e
c
∫ t

s
g̃2(τ)dτ

ds

Because m2(t) ≥ ᾱ ∀t ∈ [t1, t2), we have c
∫ t

s
g̃2(τ)dτ ≤ c(∆2

2 + f0 + d2
0

ᾱ )(t − s) +

c, ∀t, s ∈ [t1, t2). Choosing ᾱ large enough so that c
d2
0

ᾱ < δ
4 , and restricting ∆2, f0

to satisfy

c(∆2
2 + f0) <

δ

4
(9.9.25)

we obtain
m2(t2) ≤ c(1 + m2(t1))e−

δ
2 (t2−t1) + c

Hence,
ᾱ < m2(t2) ≤ c(1 + ᾱ)e−

δᾱ
2 + c

which implies that for ᾱ large, m2(t2) < ᾱ which contradicts the hypothesis that
m2(t2) > ᾱ. Hence, m ∈ L∞ which implies that e, ê, eo, yp, up ∈ L∞.

Using (9.9.23), (9.9.25) and c(∆2
2+f0) < λ in Step 2, we can define the constants

∆∗
∞, δ∗ > 0 stated in the theorem.

Step 4. Tracking error bounds. The tracking error equation is given by

e1 = C>eo + C>ê + d1η

We can verify that the L2e-norm of ê and C>eo satisfy

‖êt‖2e ≤ c‖(C>eo)t‖2e + c‖ηt‖2e

‖(C>eo)t‖2e ≤ c‖εmt‖2e + c‖θ̇pt‖2e + c‖ηt‖2e
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by following the same approach as in the previous steps and using δ = 0, which
imply that

‖e1t‖22e
4
=

∫ t

0

e2
1dτ ≤ c

∫ t

0

(ε2m2 + |θ̇p|2 + η2)dτ

≤ c(∆2
2 + f0 + d2

0)t + c

and the proof is complete. 2

9.10 Problems

9.1 Show that if u = sinω0t is dominantly rich, i.e., 0 < ω0 < O(1/µ) in Example
9.2.3, then the signal vector φ is PE with level of excitation α0 > O(µ).

9.2 Consider the nonminimum-phase plant

yp = G(s)up, G(s) =
1− µs

s2 + as + b

where µ > 0 is a small number.

(a) Express the plant in the form of equation (9.3.1) so that the nominal
part of the plant is minimum-phase and the unmodeled part is small for
small µ.

(b) Design a robust MRAC scheme with a reference model chosen as

Wm(s) =
1

s2 + 1.4s + 1

based on the nominal part of the plant

(c) Simulate the closed-loop MRAC system with a = −3, b = 2 and r =step
function for µ = 0, 0.01, 0.05, 0.1, respectively. Comment on your simu-
lation results.

9.3 In Problem 9.2, the relative degree of the overall plant transfer function is
n∗ = 1 when µ 6= 0. Assume that the reference model is chosen to be
Wm1(s) = am

s+am
. Discuss the consequences of designing an MRAC scheme

for the full order plant using Wm1(s) as the reference model. Simulate the
closed-loop scheme using the values given in part (c) of Problem 9.2.

9.4 For the MRAC problem given in Problem 9.2,

(a) Choose one reference input signal r that is sufficiently rich but not dom-
inantly rich and one that is dominantly rich.
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(b) Simulate the MRAC scheme developed in Problem 9.2 using the input
signals designed in (a).

(c) Compare the simulation results with those obtained in Problem 9.2.
Comment on your observations.

9.5 Consider the plant

yp =
1

s(s + a)
up

where a is an unknown constant and

ym =
9

(s + 3)2
r

is the reference model.

(a) Design a modified MRAC scheme using Method 1 given in Section 9.4.2

(b) Simulate the modified MRAC scheme for different values of the design
parameter τ .

9.6 Consider Problem 9.2.

(a) Replace the standard robust MRAC scheme with a modified one from
Section 9.4. Simulate the modified MRAC scheme using the same pa-
rameters as in Problem 9.2 (c) and τ = 0.1.

(b) For a fixed µ (for example, µ = 0.01), simulate the closed MRAC scheme
for different τ .

(c) Comment on your results and observations.

9.7 Consider the speed control problem described in Problem 6.2 of Chapter 6.
Suppose the system dynamics are described by

V =
b

s + a
(1 + ∆m(s))θ + d

where d is a bounded disturbance and ∆m represents the unmodeled dynam-
ics, and the reference model

Vm =
0.5

s + 0.5
Vs

is as described in Problem 6.2.

(a) Design a robust MRAC scheme with and without normalization

(b) Simulate the two schemes for a = 0.02 sin 0.01t, b = 1.3, ∆m(s) = − 2µs
µs+1

and d = 0 for µ = 0, 0.01, 0.2. Comment on your simulation results.
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9.8 Consider the plant

y =
1

s− a
u− µ∆a(s)u

where µ > 0 is a small parameter, a is unknown and ∆a(s) is a strictly proper
stable unknown transfer function perturbation independent of µ. The control
objective is to choose u so that all signals are bounded and y tracks, as close
as possible, the output ym of the reference model

ym =
1

s + 1
r

for any bounded reference input r as close as possible.

(a) Design a robust MRAC to meet the control objective.

(b) Develop bounds for robust stability.

(c) Develop a bound for the tracking error e1 = y − ym.

Repeat (a), (b), (c) for the plant

y =
e−τs

s− a
u

where τ > 0 is a small constant.

9.9 Consider the following expressions for the plant

yp = G0(s)up + ∆a(s)up (9.10.1)

yp =
N0(s) + ∆1(s)
D0(s) + ∆2(s)

up (9.10.2)

where ∆a,∆1, ∆2 are plant perturbations as defined in Section 8.2 of Chapter
8.

(a) Design a model reference controller based on the dominant part of the
plant given by

yp = G0(s)up (9.10.3)

where G0(s) = N0(s)
D0(s)

= kp
Zp(s)
Rp(s) satisfies the MRAC Assumptions P1 to

P4 and

ym = Wm(s)r = km
Zm(s)
Rm(s)

r

is the reference model that satisfies Assumptions M1 and M2 given in
Section 6.3 of Chapter 6.

(b) Apply the MRC law designed using (9.10.3) to the full-order plants given
by (9.10.1), (9.10.2) and obtain bounds for robust stability.
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(c) Obtain bounds for the tracking error e1 = yp − ym.

9.10 Consider the plant
yp = G0(s)up + ∆a(s)up

where
yp = G0(s)up

is the plant model and ∆a(s) is an unknown additive perturbation. Consider
the PPC laws given by (9.5.3), (9.5.5), and (9.5.7) designed based on the
plant model but applied to the plant with ∆a(s) 6= 0. Obtain a bound for
∆a(s) for robust stability.

9.11 Consider the plant

yp =
N0 + ∆1

D0 + ∆2
up

where G0 = N0
D0

is the modeled part and ∆1, ∆2 are stable factor perturba-
tions. Apply the PPC laws of Problem 9.10 to the above plant and obtain
bounds for robust stability.

9.12 Consider the robust APPC scheme of Example 9.5.1 given by (9.5.18), (9.5.19)
designed for the plant model

yp =
b

s + a
up

but applied to the following plants

(i) yp =
b

s + a
up + ∆a(s)up

(ii) yp =
b

s+λ0
+ ∆1(s)

s+a
s+λ0

+ ∆2(s)
up

where ∆a(s) is an additive perturbation and ∆1(s),∆2(s) are stable factor
perturbations and λ0 > 0.

(a) Obtain bounds and conditions for ∆a(s), ∆1(s),∆2(s) for robust stabil-
ity.

(b) Obtain a bound for the mean square value of the tracking error.

(c) Simulate the APPC scheme for the plant (i) when b = 2(1+0.5 sin 0.01t),
a = −2 sin 0.002t, ∆a(s) = − µs

(s+5)2 for µ = 0, 0.1, 0.5, 1.

9.13 Consider the robust APPC scheme based on state feedback of Example 9.5.2
designed for the plant model

yp =
b

s + a
up
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but applied to the following plants:

(i) yp =
b

s + a
up + ∆a(s)up

(ii) yp =
b

s+λ0
+ ∆1(s)

s+a
s+λ0

+ ∆2(s)
up

where ∆a(s) is an additive perturbation and ∆1(s),∆2(s) are stable factor
perturbations and λ0 > 0.

(a) Obtain bounds and conditions for ∆a(s), ∆1(s), ∆2(s) for robust stabil-
ity.

(b) Obtain a bound for the mean square value of the tracking error.

(c) Simulate the APPC scheme with plant (ii) when

b = 1, a = −2 sin 0.01t, λ0 = 2, ∆1(s) =
(e−τs − 1)

s + 2
, ∆2(s) = 0

for τ = 0, 0.1, 0.5, 1.

9.14 Simulate the ALQC scheme of Example 9.5.3 for the plant

yp =
b

s + a
(1 + ∆m(s))up

where ∆m(s) = − 2µs
1+µs and µ ≥ 0.

(a) For simulation purposes, assume b = −1, a = −2(1 + 0.02 sin 0.1t). Con-
sider the following values of µ: µ = 0, µ = 0.05, µ = 0.2, µ = 0.5.

(b) Repeat (a) with an adaptive law that employs a dead zone.

9.15 Consider the following MIMO plant
[

y1

y2

]
=

[
h11(s) h12(s)

0 h22(s)

] [
u1

u2

]

where h11 = b1
s+a1

, h12 = µ∆(s), h22 = b2
s+a2

and ∆(s) is strictly proper and
stable.

(a) Design a decentralized MRAC scheme so that y1, y2 tracks ym1, ym2, the
outputs of the reference model

[
ym1

ym2

]
=

[ 1
s+1 0
0 2

s+2

] [
r1

r2

]

for any bounded reference input signal r1, r2 as close as possible.

(b) Calculate a bound for µ∆(s) for robust stability.
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9.16 Design a MIMO MRAC scheme using the CGT approach for the plant

ẋ = Ax + Bu
y = C>x

where x ∈ R2, u ∈ R2, y ∈ R2 and (A,B, C) corresponds to a minimal state
representation. The reference model is given by

ẋm =
[ −2 0

0 −2

]
xm +

[
1
1

]
r

ym = xm

Simulate the MRAC scheme when

A =
[ −3 1

0 0.2

]
, B =

[
1 0
0 2

]
, C =

[
1 0
0 1

]



Appendix

A Swapping Lemmas

The following lemmas are useful in establishing stability in most of the adap-
tive control schemes presented in this book:

Lemma A.1 (Swapping Lemma A.1) Let θ̃, w : R+ 7→ Rn and θ̃ be
differentiable. Let W (s) be a proper stable rational transfer function with a
minimal realization (A,B, C, d), i.e.,

W (s) = C>(sI −A)−1B + d

Then
W (s)θ̃>ω = θ̃>W (s)ω + Wc(s)

(
(Wb(s)ω>) ˙̃θ

)

where
Wc(s) = −C>(sI −A)−1, Wb(s) = (sI −A)−1B

Proof We have

W (s)θ̃>ω = W (s)ω>θ̃ = dθ̃>ω + C>
∫ t

0

eA(t−τ)Bω>θ̃dτ

= dθ̃>ω + C>eAt

(∫ τ

0

e−AσBω>(σ)dσθ̃(τ)
∣∣∣∣
τ=t

τ=0

−
∫ t

0

∫ τ

0

e−AσBω>(σ)dσ
˙̃
θ(τ)dτ

)
(A.1)

= θ̃>
[
dω + C>

∫ t

0

eA(t−σ)Bω(σ)dσ

]

−C>
∫ t

0

eA(t−τ)

∫ τ

0

eA(τ−σ)Bω>(σ)dσ
˙̃
θ(τ)dτ

774
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Noting that

dω + C>
∫ t

0

eA(t−σ)Bω(σ)dσ = (d + C>(sI −A)−1B)ω = W (s)ω,

∫ t

0

eA(t−σ)Bω>(σ)dσ = (sI −A)−1Bω>

and

C>
∫ t

0

eA(t−τ)f(τ)dτ = C>(sI −A)−1f

we can express (A.1) as

W (s)θ̃>ω = θ̃>W (s)ω − C>(sI −A)−1
{(

(sI −A)−1Bω>
) ˙̃
θ
}

(A.2)

and the proof is complete. 2

Other proofs of Lemma A.1 can be found in [201, 221].

Lemma A.2 (Swapping Lemma A.2) Let θ̃, ω : R+ 7→ Rn and θ̃, ω be
differentiable. Then

θ̃>ω = F1(s, α0)
[
˙̃
θ
>
ω + θ̃>ω̇

]
+ F (s, α0)[θ̃>ω] (A.3)

where F (s, α0)
4
= αk

0

(s+α0)k , F1(s, α0)
4
= 1−F (s,α0)

s , k ≥ 1 and α0 > 0 is an
arbitrary constant. Furthermore, for α0 > δ where δ ≥ 0 is any given
constant, F1(s, α0) satisfies

‖F1(s, α0)‖∞δ ≤
c

α0

for a finite constant c ∈ R+ which is independent of α0.

Proof Let us write

θ̃>ω = (1− F (s, α0)) θ̃>ω + F (s, α0)θ̃>ω

Note that

(s + α0)k =
k∑

i=0

Ci
ksiαk−i

0 = αk
0 +

k∑

i=1

Ci
ksiαk−i

0 = αk
0 + s

k∑

i=1

Ci
ksi−1αk−i

0
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where Ci
k

4
= k!

i!(k−i)! (0!
4
= 1), we have

1− F (s, α0) =
(s + α0)k − αk

0

(s + α0)k
= s

∑k
i=1 Ci

ksi−1αk−i
0

(s + α0)k

Defining

F1(s, α0)
4
=

∑k
i=1 Ci

ksi−1αk−i
0

(s + α0)k
=

1− F (s, α0)
s

we can write

θ̃>ω = F1(s, α0)s(θ̃>ω) + F (s, α0)(θ̃>ω)

= F1(s, α0)(
˙̃
θ
>

ω + θ̃>ω̇) + F (s, α0)(θ̃>ω) (A.4)

To show that ‖F1(s, α0)‖∞δ ≤ c
α0

for some constant c, we write

F1(s, α0) =
∑k

i=1 Ci
ksi−1αk−i

0

(s + α0)k
=

1
s + α0

k∑

i=1

Ci
k

si−1

(s + α0)i−1

αk−i
0

(s + α0)k−i

Because
∥∥∥∥

αi
0

(s + α0)i

∥∥∥∥
∞δ

=
(∥∥∥∥

α0

s + α0

∥∥∥∥
∞δ

)i

=
(

2α0

2α0 − δ

)i

≤ 2i, i ≥ 1

and ∥∥∥∥
1

s + α0

∥∥∥∥
∞δ

=
2

2α0 − δ
≤ 2

α0
,

∥∥∥∥
si−1

(s + α0)i−1

∥∥∥∥
∞δ

= 1, i ≥ 1

we have

‖F1(s, α0)‖∞δ ≤
∥∥∥∥

1
s + α0

∥∥∥∥
∞δ

k∑

i=1

Ci
k

∥∥∥∥
si−1

(s + α0)i−1

∥∥∥∥
∞δ

∥∥∥∥∥
αk−i

0

(s + α0)k−i

∥∥∥∥∥
∞δ

=
∑k

i=1 Ci
k2k−i+1

2α0 − δ

≤ c

α0

where c
4
=

∑k
i=1 Ci

k2k−i+1 is a constant independent of α0. The above inequalities
are established by using α0 > δ. 2

In the stability proofs of indirect adaptive schemes, we need to manipu-
late polynomial operators which have time-varying coefficients. We should
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note that given a(t) ∈ Rn+1, and αn(s)
4
= [sn, sn−1, . . . , s, 1]>, A(s, t), Ā(s, t)

defined as

A(s, t)
4
= an(t)sn + an−1(t)sn−1 + · · ·+ a1(t)s + a0(t) = a>(t)αn(s)

Ā(s, t)
4
= snan(t) + sn−1an−1(t) + · · ·+ sa1(t) + a0(t) = α>n (s)a(t)

refer to two different operators because of the time-varying nature of a(t).
For the same reason, two polynomial operators with time-varying parameters
are not commutable, i.e.,

A(s, t)B(s, t) 6= B(s, t)A(s, t), Ā(s, t)B(s, t) 6= B̄(s, t)A(s, t)

The following two swapping lemmas can be used to interchange the sequence
of time-varying polynomial operators that appear in the proof of indirect
adaptive control schemes.

Lemma A.3 (Swapping Lemma A.3). Let

A(s, t) = an(t)sn + an−1(t)sn−1 + · · · a1(t)s + a0(t) = a>(t)αn(s)

B(s, t) = bm(t)sm + bm−1(t)sm−1 + · · · b1(t)s + b0(t) = b>(t)αm(s)

be any two polynomials with differentiable time-varying coefficients, where
a = [an, an−1, . . . , a0]>, b = [bm, bm−1, . . . , b0]>, a(t) ∈ Rn+1, b(t) ∈ Rm+1

and αi(s) = [si, si−1, · · · , s, 1]. Let

C(s, t)
4
= A(s, t) ·B(s, t) = B(s, t) ·A(s, t)

be the algebraic product of A(s, t) and B(s, t). Then for any function f(t)
such that C(s, t)f, A(s, t)(B(s, t)f), B(s, t)(A(s, t)f) are well defined, we
have

(i) A(s, t)(B(s, t)f) = C(s, t)f + a>(t)Dn−1(s)
[
αn−1(s)(α>m(s)f)ḃ

]

(A.5)
and
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(ii) A(s, t)(B(s, t)f) = B(s, t)(A(s, t)f) + G(s, t)

(
(H(s)f)

[
ȧ

ḃ

])

(A.6)
where

G(s, t)
4
= [a>Dn−1(s), b>Dm−1(s)]

Di(s),H(s) are matrices of dimension (i + 2)× (i + 1) and (n + m)×
(n + 1 + m + 1) respectively, defined as

Di(s)
4
=




1 s s2 · · · si

0 1 s · · · si−1

0 0
. . . . . .

...
...

. . . 1 s
0 · · · 0 1
0 · · · 0 0




H(s)
4
=

[
0 αn−1(s)α>m(s)

−αm−1(s)α>n (s) 0

]

Proof (i) Using the relation s(f1f2) = f1sf2 + (sf1)f2, we can write

A(s, t)(B(s, t)f) = a0B(s, t)f +
n∑

i=1

ai

m∑

j=0

si
(
bjs

jf
)

= a0B(s, t)f +
n∑

i=1

ai

m∑

j=0

si−1
(
bjs

j+1f + ḃjs
jf

)
(A.7)

= a0B(s, t)f +
n∑

i=1

ai

m∑

j=0

[
si−2

(
bjs

j+2f + ḃjs
j+1f

)
+ si−1ḃjs

jf
]

... (A.7)

= a0B(s, t)f +
n∑

i=1

ai

m∑

j=0

(
bjs

j+if +
i−1∑

k=0

sk
(
ḃjs

j+i−1−kf
))

=
n∑

i=0

ai

m∑

j=0

bjs
j+if +

n∑

i=1

m∑

j=0

i−1∑

k=0

sk
(
ḃjs

j+i−1−kf
)

= C(s, t)f + r(t)

where

r(t)
4
=

n∑

i=1

ai

i−1∑

k=0

sk
m∑

j=0

(
ḃjs

j+i−1−kf
)
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and the variable t in a, b, f is omitted for the sake of simplicity.
From the expression of r(t), one can verify through simple algebra that

r(t) = a>Dn−1(s)rb(t) (A.8)

where

rb(t)
4
=




∑m
j=0 ḃjs

j+n−1f∑m
j=0 ḃjs

j+n−2f
...

∑m
j=0 ḃjs

j+1f∑m
j=0 ḃjs

jf




To simplify the expression further, we write

rb(t) =







sn−1+m sn−1+m−1 · · · sn−1

sn−2+m sn−2+m−1 · · · sn−2

...
...

...
sm sm−1 · · · 1


 f







ḃm

ḃm−1

...
ḃ0




=
(
αn−1(s)α>m(s)f

)
ḃ (A.9)

Using (A.8) and (A.9) in (A.7), the result of Lemma A.3 (i) follows immediately.
(ii) Using the result (i), we have

A(s, t)(B(s, t)f) = C(s, t)f + a>Dn−1(s)
([

αn−1(s)α>m(s)f
]
ḃ
)

(A.10)

B(s, t)(A(s, t)f) = C(s, t)f + b>Dm−1(s)
([

αm−1(s)α>n (s)f
]
ȧ
)

(A.11)

Subtracting (A.11) from (A.10), we obtain

A(s, t)(B(s, t)f)−B(s, t)(A(s, t)f) (A.12)

= a>Dn−1(s)
([

(αn−1(s)α>m(s)f
]
ḃ
)
− b>Dm−1(s)

([
(αm−1(s)α>n (s)f

]
ȧ
)

The right-hand side of (A.12) can be expressed, using block matrix manipulation,
as

[
a>Dn−1(s), b>Dm−1(s)

] ([
0 αn−1(s)α>m(s)

−αm−1(s)α>n (s) 0

] [
ȧ

ḃ

])

and the proof is complete. 2
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Lemma A.4 (Swapping Lemma A.4) Let

A(s, t)
4
= an(t)sn + an−1(t)sn−1 + · · · a1(t)s + a0(t) = a>(t)αn(s)

Ā(s, t)
4
= snan(t) + sn−1an−1(t) + · · · sa1(t) + a0(t) = α>n (s)a(t)

B(s, t) = bm(t)sm + bm−1(t)sm−1 + · · · b1(t)s + b0(t) = b>(t)αm(s)

B̄(s, t)
4
= smbm(t) + sm−1bm−1(t) + · · · sb1(t) + b0(t) = α>m(s)b(t)

where s
4
= d

dt , a(t)∈Rn+1, b(t)∈Rm+1 and a, b ∈ L∞, αi =[si,· · · , s, 1]>. Let

A(s, t) ·B(s, t)
4
=

n∑

i=0

m∑

j=0

aibjs
i+j , A(s, t) ·B(s, t)

4
=

n∑

i=0

m∑

j=0

si+jaibj

be the algebraic product of A(s, t), B(s, t) and Ā(s, t), B̄(s, t), respectively.
Then for any function f for which A(s, t) ·B(s, t)f and Ā(s, t) (B(s, t)f)
and B̄(s, t) (A(s, t)f) are defined, we have

(i) Ā(s, t)(B(s, t)f) = B̄(s, t)(A(s, t)f)+α>n̄ (s)F (a, b)αn̄(s)f (A.13)

where n̄ = max{n, m}−1 and F (a, b) satisfies ‖F (a, b)‖ ≤ c1|ȧ|+ c2|ḃ|
for some constants c1, c2

(ii)Ā(s, t)
(
B(s, t)

1
Λ0(s)

f

)
=

1
Λ0(s)

A(s, t) ·B(s, t)f + α>n (s)G(s, f, a, b)

(A.14)
for any Hurwitz polynomial Λ0(s) of order greater or equal to m, where
G(s, f, a, b) is defined as

G(s, f, a, b)
4
=[gn, . . . , g1, g0], gj =−

m∑

j=0

Wjc(s)
(
(Wjb(s)f)(ȧibj+aiḃj)

)

and Wjc,Wjb are strictly proper transfer functions that have the same
poles as 1

Λ0(s) .

Proof (i) From the definition of Ā(s, t), A(s, t), B̄(s, t), B(s, t), we have

Ā(s, t)(B(s, t)f) =
n∑

i=0

m∑

j=0

si(aibjs
jf) (A.15)
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B̄(s, t)(A(s, t)f) =
n∑

i=0

m∑

j=0

sj(aibjs
if) (A.16)

Now we consider si(aibjs
jf) and treat the three cases i > j, i < j and i = j

separately: First, we suppose i > j and write

si(aibjs
jf) = sj

(
si−j(aibjs

jf)
)

Using the identity s(aibjs
lf) = aibjs

l+1f + (ȧibj + aiḃj)slf , where l is any integer,
for i− j times, we can swap the operator si−j with aibj and obtain

si−j(aibjs
jf) = aibjs

if +
i−j∑

k=1

si−j−k(ȧibj + aiḃj)sj−1+kf

and, therefore,

si(aibjs
jf) = sj(aibjs

if) +
i−j∑

k=1

si−k(ȧibj + aiḃj)sj−1+kf, i > j (A.17)

Similarly, for i < j, we write

si(aibjs
jf) = si((aibjs

j−i)sif)

Now using aibjs
lf = s(aibj)sl−1f − (ȧibj + aiḃj)sl−1f , where l is any integer, for

j − i times, we have

(aibjs
j−i)sif = sj−i(aibj)sif −

j−i∑

k=1

sj−i−k(ȧibj + aiḃj)si−1+kf

and, therefore,

si(aibjs
jf) = sj(aibjs

if)−
j−i∑

k=1

sj−k(ȧibj + aiḃj)si−1+kf, i < j (A.18)

For i = j, it is obvious that

si(aibjs
jf) = sj(aibjs

if), i = j (A.19)

Combining (A.17), (A.18) and (A.19), we have

Ā(s, t)(B(s, t)f) =
n∑

i=0

m∑

j=0

sj(aibjs
if) + r1 = B̄(s, t)(A(s, t)f) + r1 (A.20)
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where

r1
4
=

n∑

i=0

m∑
j=0
j<i

i−j∑

k=1

si−k(ȧibj + aiḃj)sj−1+kf −
n∑

i=0

m∑
j=0
j>i

j−i∑

k=1

sj−k(ȧibj + aiḃj)si−1+kf

Note that for 0 ≤ i ≤ n, 0 ≤ j ≤ m and 1 ≤ k ≤ |i− j|, we have

j ≤ i− k, j + k − 1 ≤ i− 1, if i ≥ j
i ≤ j − k, i + k − 1 ≤ j − 1, if i < j

Therefore all the s-terms in r1 ( before and after the term ȧibj + aiḃj) have order
less than max{n,m} − 1, and r1 can be expressed as

r1 = α>n̄ (s)F (a, b)αn̄(s)f

where n̄ = max{n,m} − 1 and F (a, b) ∈ Rn̄×n̄ is a time-varying matrix whose
elements are linear combinations of ȧibj + aiḃj . Because a, b ∈ L∞, it follows from
the definition of F (a, b) that

‖F (a, b)‖ ≤ c1|ȧ|+ c2|ḃ|

(ii) Applying Lemma A.1 with W (s) = sj

Λ0(s)
, we have

aibj
sj

Λ0(s)
f =

sj

Λ0(s)
aibjf −Wjc((Wjbf)(ȧibj + aiḃj))

where Wjc(s),Wjb(s) are strictly proper transfer functions, which have the same
poles as 1

Λ0(s)
. Therefore

Ā(s, t)
(

B(s, t)
1

Λ0(s)
f

)
=

n∑

i=0

m∑

j=0

si

(
aibj

sj

Λ0(s)
f

)

=
n∑

i=0

m∑

j=0

si+j

Λ0(s)
(aibjf)−

n∑

i=0

m∑

j=0

siWjc((Wjbf)(ȧibj + aiḃj))

=
1

Λ0(s)
A(s, t) ·B(s, t)f + r2 (A.21)

where

r2
4
= −

n∑

i=0

m∑

j=0

siWjc((Wjbf)(ȧibj + aiḃj))

From the definition of r2, we can write

r2 = α>n (s)G(s, f, a, b)
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by defining

G(s, f, a, b)
4
= [gn, , . . . , g1, g0], gj = −

m∑

j=0

Wjc(s)
(
(Wjbf)(ȧibj + aiḃj)

)

2

B Optimization Techniques

An important part of every adaptive control scheme is the on-line estimator
or adaptive law used to provide an estimate of the plant or controller param-
eters at each time t. Most of these adaptive laws are derived by minimizing
certain cost functions with respect to the estimated parameters. The type of
the cost function and method of minimization determines the properties of
the resulting adaptive law as well as the overall performance of the adaptive
scheme.

In this section we introduce some simple optimization techniques that
include the method of steepest descent, referred to as the gradient method,
Newton’s method and the gradient projection method for constrained mini-
mization problems.

B.1 Notation and Mathematical Background

A real-valued function f : Rn 7→ R is said to be continuously differentiable
if the partial derivatives ∂f(x)

∂x1
, · · · , ∂f(x)

∂xn
exist for each x ∈ Rn and are con-

tinuous functions of x. In this case, we write f ∈ C1. More generally, we
write f ∈ Cm if all partial derivatives of order m exist and are continuous
functions of x.

If f ∈ C1, the gradient of f at a point x ∈ Rn is defined to be the
column vector

∇f(x)
4
=




∂f(x)
∂x1
...

∂f(x)
∂xn




If f ∈ C2, the Hessian of f at x is defined to be the symmetric n×n matrix
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having ∂2f(x)/∂xi∂xj as the ijth element, i.e.,

∇2f(x)
4
=

[
∂2f(x)
∂xi∂yj

]

n×n

A subset S of Rn is said to be convex if for every x, y ∈ S and α ∈ [0, 1],
we have αx + (1− α)y ∈ S.

A function f : S 7→ R is said to be convex over the convex set S if for
every x, y ∈ S and α ∈ [0, 1] we have

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)

Let f ∈ C1 over an open convex set S, then f is convex over S iff

f(y) ≥ f(x) + (∇f(x))>(y − x), ∀x, y ∈ S (B.1)

If f ∈ C2 over S and ∇2f(x) ≥ 0 ∀x ∈ S, then f is convex over S.
Let us now consider the following unconstrained minimization problem

minimize J(θ)
subject to θ ∈ Rn (B.2)

where J : Rn 7→ R is a given function. We say that the vector θ∗ is a global
minimum for (B.2) if

J(θ∗) ≤ J(θ) ∀θ ∈ Rn

A necessary and sufficient condition satisfied by the global minimum θ∗ is
given by the following lemma.

Lemma B.1 Assume that J ∈ C1 and is convex over Rn. Then θ∗ is a
global minimum for (B.2) iff

∇J(θ∗) = 0

The proof of Lemma B.1 can be found in [132, 196].
A vector θ̄ is called a regular point of the surface Sθ = {θ ∈ Rn |g(θ) = 0}

if ∇g(θ̄) 6= 0. At a regular point θ̄, the set

M(θ̄) =
{
θ ∈ Rn

∣∣∣θ>∇g(θ̄) = 0
}

is called the tangent plane of g at θ̄.
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B.2 The Method of Steepest Descent (Gradient Method)

This is one of the oldest and most widely known methods for solving the
unconstrained minimization problem (B.2). It is also one of the simplest for
which a satisfactory analysis exists. More sophisticated methods are often
motivated by an attempt to modify the basic steepest descent technique for
better convergence properties [21, 132, 196]. The method of steepest descent
proceeds from an initial approximation θ0 for the minimum θ∗ to successive
points θ1, θ2, · · · in Rn in an iterative manner until some stopping condition
is satisfied. Given the current point θk, the point θk+1 is obtained by a linear
search in the direction dk where

dk = −∇J(θk)

It can be shown [196] that dk is the direction from θk in which the initial rate
of decrease of J(θ) is the greatest. Therefore, the sequence {θk} is defined
by

θk+1 = θk + λkdk = θk − λk∇J(θk), (k = 0, 1, 2, · · ·) (B.3)

where θ0 is given and λk, known as the step size or step length, is determined
by the linear search method, so that θk+1 minimizes J(θ) in the direction dk

from θk. A simpler expression for θk+1 can be obtained by setting λk = λ ∀k,
i.e.,

θk+1 = θk − λ∇J(θk) (B.4)

In this case, the linear search for λk is not required, though the choice of the
step length λ is a compromise between accuracy and efficiency.

Considering infinitesimally small step lengths, (B.4) can be converted to
the continuous-time differential equation

θ̇ = −∇J(θ(t)), θ(t0) = θ0 (B.5)

whose solution θ(t) is the descent path in the time domain starting from
t = t0.

The direction of steepest descent d = −∇J can be scaled by a constant
positive definite matrix Γ = Γ> as follows: We let Γ = Γ1Γ>1 where Γ1 is an
n× n nonsingular matrix and consider the vector θ̄ ∈ Rn given by

Γ1θ̄ = θ
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Then the minimization problem (B.2) is equivalent to

minimize J̄(θ̄)
4
= J(Γ1θ̄)

subject to θ̄ ∈ Rn
(B.6)

If θ̄∗ is a minimum of J̄ , the vector θ∗ = Γ1θ̄
∗ is a minimum of J . The

steepest descent for (B.6) is given by

θ̄k+1 = θ̄k − λ∇J̄(θ̄k) (B.7)

Because ∇J̄(θ̄) = ∂J(Γ1θ̄)
∂θ̄

= Γ>1 ∇J(θ) and Γ1θ̄ = θ it follows from (B.7) that

θk+1 = θk − λΓ1Γ>1 ∇J(θk)

Setting Γ = Γ1Γ>1 , we obtain the scaled version for the steepest descent
algorithm

θk+1 = θk − λΓ∇J(θk) (B.8)

The continuous-time version of (B.8) is now given by

θ̇ = −Γ∇J(θ) (B.9)

The convergence properties of (B.3), (B.4), (B.8) for different step lengths
are given in any standard book on optimization such as [132, 196]. The
algorithms (B.5), (B.9) for various cost functions J(θ) are used in Chapters 4
to 9 where the design and analysis of adaptive laws is considered.

B.3 Newton’s Method

Let us consider the minimization problem (B.2) and assume that J(θ) is con-
vex over Rn. Then according to Lemma B.1, any global minimum θ∗ should
satisfy ∇J(θ∗) = 0. Usually ∇J(θ∗) = 0 gives a set of nonlinear algebraic
equations whose solution θ∗ may be found by solving these equations using
a series of successive approximations known as the Newton’s method.

Let θk be the estimate of θ∗ at instant k. Then ∇J(θ) for θ close to θk

may be approximated by the linear portion of the Taylor’s series expansion

∇J(θ) ' ∇J(θk) +
∂

∂θ
∇J(θ) |θ=θk

(θ − θk) (B.10)
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The estimate θk+1 of θ∗ at the k + 1 iteration can now be generated from
(B.10) by setting its right-hand side equal to zero and solving for θ = θk+1,
i.e.,

θk+1 = θk −H−1(θk)∇J(θk), k = 0, 1, 2, ... (B.11)

where H(θk) = ∂
∂θ∇J(θk) = ∇2J(θk) is the Hessian matrix whose inverse is

assumed to exist at each iteration k.
A continuous time version of (B.11) can also be developed by constructing

a differential equation whose solution θ(t) converges to the root of∇J(θ) = 0
as t →∞. Treating θ(t) as a smooth function of time we have

d

dt
∇J(θ(t)) =

∂

∂θ
∇J(θ)θ̇ = H(θ)θ̇ (B.12)

Choosing
θ̇ = −βH−1(θ)∇J(θ), θ(t0) = θ0 (B.13)

for some scalar β > 0, we have

d

dt
∇J(θ(t)) = −β∇J(θ)

or
∇J(θ(t)) = e−β(t−t0)∇J(θ0) (B.14)

It is therefore clear that if a solution θ(t) of (B.13) exists ∀t ≥ t0, then
equation (B.14) implies that this solution will converge to a root of ∇J = 0
as t →∞.

When the cost J depends explicitly on the time t, that is J = J(θ, t) and
is convex for each time t, then any global minimum θ∗ should satisfy

∇J(θ∗, t) = 0, ∀t ≥ t0 ≥ 0

In this case, (B.12) becomes

d

dt
∇J(θ, t) =

∂

∂θ
∇J(θ, t)θ̇ +

∂

∂t
∇J(θ, t)

Therefore, if we choose

θ̇ = −H−1(θ)
(

β∇J(θ, t) +
∂

∂t
∇J(θ, t)

)
(B.15)
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for some scalar β > 0, where H(θ, t) = ∂
∂θ∇J(θ, t) we have

d

dt
∇J(θ, t) = −β∇J(θ, t)

or
∇J(θ(t), t) = e−β(t−t0)∇J(θ(t0), t0) (B.16)

If (B.15) has a solution, then (B.16) implies that such solution will converge
to a root of ∇J = 0 as t →∞.

Newton’s method is very attractive in terms of its convergence properties,
but suffers from the drawback of requiring the existence of the inverse of
the Hessian matrix H(θ) at each instant of time (k or t). It has to be
modified in order to avoid the costly and often impractical evaluation of the
inverse of H. Various modified Newton’s methods use an approximation
of the inverse Hessian. The form of the approximation ranges from the
simplest where H−1 remains fixed throughout the iterative process, to the
more advanced where improved approximations are obtained at each step
on the basis of information gathered during the descent process [132]. It
is worth mentioning that in contrast to the steepest descent method, the
Newton’s method is “scale free” in the sense that it cannot be affected by a
change in the coordinate system.

B.4 Gradient Projection Method

In sections B.2 and B.3, the search for the minimum of the function J(θ)
given in (B.2) was carried out for all θ ∈ Rn. In some cases, θ is constrained
to belong to a certain convex set

S 4
= {θ ∈ Rn |g(θ) ≤ 0} (B.17)

in Rn where g(·) is a scalar-valued function if there is only one constraint
and a vector-valued function if there are more than one constraints. In this
case, the search for the minimum is restricted to the convex set defined by
(B.17) instead of Rn.

Let us first consider the simple case where we have an equality constraint,
that is, we

minimize J(θ)
subject to g(θ) = 0

(B.18)
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where g(θ) is a scalar-valued function. One of the most common techniques
for handling constraints is to use a descent method in which the direction
of descent is chosen to reduce the function J(θ) by remaining within the
constrained region. Such method is usually referred to as the gradient
projection method.

We start with a point θ0 satisfying the constraint, i.e., g(θ0) = 0. To
obtain an improved vector θ1, we project the negative gradient of J at θ0

i.e., −∇J(θ0) onto the tangent plane M(θ0) =
{
θ ∈ Rn

∣∣∣∇g>(θ0)θ = 0
}

obtaining the direction vector Pr(θ0). Then θ1 is taken as θ0 + λ0Pr(θ0)
where λ0 is chosen to minimize J(θ1). The general form of this iteration is
given by

θk+1 = θk + λkPr(θk) (B.19)

where λk is chosen to minimize J(θk) and Pr(θk) is the new direction vector
after projecting −∇J(θk) ontoM(θk). The explicit expression for Pr(θk) can
be obtained as follows: The vector −∇J(θk) can be expressed as a linear
combination of the vector Pr(θk) and the normal vector N(θk) = ∇g(θk) to
the tangent plane M(θk) at θk, i.e.,

−∇J(θk) = α∇g(θk) + Pr(θk) (B.20)

for some constant α. Because Pr(θk) lies on the tangent plane M(θk), we
also have ∇g>(θk)Pr(θk) = 0 which together with (B.20) implies that

−∇g>∇J = α∇g>∇g

i.e.,
α = −(∇g>∇g)−1∇g>∇J

Hence, from (B.20), we obtain

Pr(θk) = −
[
I −∇g(∇g>∇g)−1∇g>

]
∇J (B.21)

We refer to Pr(θk) as the projected direction onto the tangent plant M(θk).
The gradient projection method is illustrated in Figure B.1.

It is clear from Figure B.1 that when g(θ) is not a linear function of θ, the
new vector θk+1 given by (B.19) may not satisfy the constraint, so it must
be modified. There are several successive approximation techniques that can
be employed to move θk+1 from M(θk) to the constraint surface g(θ) = 0
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∇J(θk)

∇g(θk) -∇J(θk) M(θk)

g(θ)=0

θk

Pr(θk)
θk+1

Figure B.1 Gradient projection method.

[132, 196]. One special case, which is often encountered in adaptive control
applications, is when θ is constrained to stay inside a ball with a given center
and radius, i.e., g(θ) = (θ − θ0)>(θ − θ0)−M2 where θ0 is a fixed constant
vector and M > 0 is a scalar. In this case, the discrete projection algorithm
which guarantees that θk ∈ S ∀k is

θ̄k+1 = θk + λk∇J

θk+1 =

{
θ̄k+1 if |θ̄k+1 − θ0| ≤ M

θ0 + θ̄k+1−θ0

|θ̄k+1−θ0|M if |θ̄k+1 − θ0| > M
(B.22)

Letting the step length λk become infinitesimally small, we obtain the
continuous-time version of (B.19), i.e.,

θ̇ = Pr(θ) = −
[
I −∇g(∇g>∇g)−1∇g>

]
∇J (B.23)

Because of the sufficiently small step length, the trajectory θ(t), if it exists,
will satisfy g(θ(t)) = 0 ∀t ≥ 0 provided θ(0) = θ0 satisfies g(θ0) = 0.

The scaled version of the gradient projection method can be obtained by
using the change of coordinates Γ1θ̄ = θ where Γ1 is a nonsingular matrix
that satisfies Γ = Γ1Γ>1 and Γ is the scaling positive definite constant matrix.
Following a similar approach as in section B.2, the scaled version of (B.23)
is given by

θ̇ = P̄r(θ)
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where
P̄ r(θ) = −

[
I − Γ∇g(∇g>Γ∇g)−1∇g>

]
Γ∇J (B.24)

The minimization problem (B.18) can now be extended to

minimize J(θ)
subject to g(θ) ≤ 0

(B.25)

where S = {θ ∈ Rn |g(θ) ≤ 0} is a convex subset of Rn.
The solution to (B.25) follows directly from that of the unconstrained

problem and (B.18). We start from an initial point θ0 ∈ S. If the current

point is in the interior of S, defined as S0
4
= {θ ∈ Rn |g(θ) < 0}, then the

unconstrained algorithm is used. If the current point is on the boundary of
S, defined as δ(S)

4
= {θ ∈ Rn |g(θ) = 0} and the direction of search given

by the unconstrained algorithm is pointing away from S, then we use the
gradient projection algorithm. If the direction of search is pointing inside S
then we keep the unconstrained algorithm. In view of the above, the solution
to the constrained optimization problem (B.25) is given by

θ̇ =

{ −∇J(θ) if θ ∈ S0or θ ∈ δ(S) and −∇J>∇g ≤ 0
−∇J + ∇g∇g>

∇g>∇g
∇J otherwise

(B.26)
where θ(0) ∈ S or with the scaling matrix

θ̇ =





−Γ∇J(θ) if θ ∈ S0

or θ ∈ δ(S) and − (Γ∇J)>∇g ≤ 0
−Γ∇J + Γ ∇g∇g>

∇g>Γ∇g
Γ∇J otherwise

(B.27)

B.5 Example

Consider the scalar time varying equation

y(t) = θ∗u(t) (B.28)

where y, u : R+ 7→ R are bounded uniformly continuous functions of time
and θ∗ ∈ R is a constant. We would like to obtain an estimate of θ∗ at
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each time t from the measurements of y(τ), u(τ), 0 ≤ τ ≤ t. Let θ(t) be the
estimate of θ∗ at time t, then

ŷ(t) = θ(t)u(t)

is the estimate of y(t) at time t and

ε(t) = y − ŷ = −(θ(t)− θ∗)u (B.29)

is the resulting estimation error due to θ(t) 6= θ∗. We would like to generate
a trajectory θ(t) so that ε(t) → 0 and θ(t) → θ∗ as t → ∞ by minimizing
certain cost functions of ε(t) w.r.t. θ(t).

Let us first choose the simple quadratic cost

J(θ, t) =
1
2
ε2(t) =

(θ − θ∗)2u2(t)
2

(B.30)

and minimize it w.r.t. θ. For each given t, J(θ, t) is convex over R and
θ = θ∗ is a minimum for all t ≥ 0. J(θ, t), however, can reach its minimum
value, i.e., zero when θ 6= θ∗.

The gradient and Hessian of J are

∇J(θ, t) = (θ − θ∗)u2(t) = −εu (B.31)

∇2J(θ, t) = H(θ, t) = u2(t) ≥ 0 (B.32)

Using the gradient method we have

θ̇ = γεu, θ(0) = θ0 (B.33)

for some γ > 0. Using the Newton’s method, i.e., (B.15), we obtain

θ̇ = − 1
u2

[
−εu +

∂

∂t
∇J

]
=

ε

u2
[u + 2u̇] (B.34)

which is valid provided u2 > 0 and u̇ exists.
For the sake of simplicity, let us assume that u2 ≥ c0 > 0 for some con-

stant c0 and u̇ ∈ L∞ and analyze (B.33), (B.34) using a Lyapunov function
approach.

We first consider (B.33) and choose the function

V (θ̃) =
θ̃2

2γ
(B.35)
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where θ̃(t) = θ(t)− θ∗ is the parameter error. Because θ∗ is a constant, we
have ˙̃

θ = θ̇ = γεu and from (B.29) ε = −θ̃u. Therefore, along any solution
of (B.33) we have

V̇ =
θ̃
˙̃
θ

γ
= θ̃εu = −θ̃2u2 ≤ −c0θ̃

2 < 0

which implies that the equilibrium θ̃e = 0, i.e, θe = θ∗ is e.s.
Similarly, for (B.34) we choose

V (θ̃) =
θ̃2u4

2

Because u2 is bounded from above and below by c0 > 0, V (θ̃) is positive
definite, radially unbounded and decrescent. The time derivative V̇ of V (θ̃)
along the solution of (B.34) is given by

V̇ = u4θ̃
˙̃
θ + 2θ̃2u3u̇ = u2εθ̃u + 2u2εθ̃u̇ + 2θ̃2u3u̇

Using ε = −θ̃u we have

V̇ = −θ̃2u4 − 2θ̃2u3u̇ + 2θ̃2u3u̇ = −θ̃2u4 ≤ −c2
0θ̃

2

which implies that the equilibrium θ̃e = 0 i.e., θe = θ∗ of (B.34) is e.s.
Let us now assume that an upper bound for θ∗ is known, i.e., |θ∗| ≤ c for

some constant c > 0. If instead of (B.30) we consider the minimization of

J(θ, t) =
(θ − θ∗)2

2
u2

subject to g(θ) = θ2 − c2 ≤ 0

the gradient projection algorithm will give us

θ̇ =





γεu if θ2 < c2

or if θ2 = c2 and εuθ ≤ 0
0 otherwise

(B.36)

where θ(0) is chosen so that θ2(0) ≤ c2. We analyze (B.36) by considering
the function given by (B.35). Along the trajectory of (B.36), we have

V̇ = −θ̃2u2 ≤ −2γc0V (θ̃) if θ2 < c2 or if θ2 = c2 and εuθ ≤ 0
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and
V̇ = 0 if θ2 = c2 and εuθ > 0.

Now θ2 = c2 and εuθ > 0 ⇒ θθ∗ > c2. Since |θ∗| ≤ c and θ2 = c2, the
inequality θθ∗ > c2 is not possible which implies that for θ2 = c2, εuθ ≤ 0
and no switching takes place in (B.36). Hence,

V̇ (θ̃) ≤ −2γc0V (θ̃) ∀t ≥ 0

i.e., V (θ̃) and therefore θ̃ converges exponentially to zero.
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[105] Kokotović, P.V. (Ed.), Foundations of Adaptive Control, Springer-
Verlag, New York, 1991.
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