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Introduction

In 1837, Dirichlet changed the landscape of number theory by introducing methods of analysis. He proved the celebrated theorem on

the infinitude of primes in an arithmetic progression. The version of proof given in these notes follow very closely (almost verbatim!)

Apostol’s exposition (see [1]) who in turn based his presentation on Shapiro (see [3]). Shapiro’s proof uses
∑

p−1 log p instead of Euler’s∑
p−1 (so somehow it is more ”sensitive” to primes). Nothing is original in these notes! They merely compile the necessary background

(so many sections in thses notes seem ”ad hoc”) and present an elementary proof as found in the above-mentioned literature. This

version is considered ”elementary” in a sense that it does not use complex analysis (and in particular Dirichlet series). But it does

use ”Dirichlet characters” (an arithmetical function formulated by Dirichlet to attack the problem) and lots of estimates. So please

be patient in going through the first two sections because, in the end, with patience everything will fall into their proper place as in a

jigsaw puzzle!

Acknowledgment: Some miscellaneous problems were taken from Dr. Kin Yin Li’s unpublished training notes (way back in 2002). The

others came from journals with problem solving sections.

Notations

Throughout these notes, we adopt the following notations:

• the letter p will denote a positive prime number

• m, n, h, k will usually be natural numbers (unless otherwise specified);

• x, y will denote real numbers (again unless otherwise specified);

• [x] is the greatest integer not exceeding x;
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•
∑
n≤x

f(n) =

[x]∑
n=1

f(n);

•
∑
p≤x

f(p) or
∏
p≤x

f(p) means p runs over all positive prime numbers less than or equal to x (if a condition is imposed, like

p ≡ 1(mod 4), instead take all primes obeying that condition);

•
∑
d|n

f(d) means d runs over all positive divisors of n;

• log x will mean the natural logarithm of x.

• ϕ(n) is Euler’s totient function (the number of positive integers not exceeding n which are relatively prime to n).
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1 Analytic Preliminaries

1.1 The Big Oh Notation

Definition 1. If g(x) > 0 for all x ≥ a, we write

f(x) = O(g(x))

(read as f(x) is big oh of g(x)) to mean that the quotient f(x)/g(x) is bounded for x ≥ a; that is, there exists a constant M > 0 such

that

|f(x)| ≤ Mg(x) for all x ≥ a.

An equation of the form

f(x) = h(x) + O(g(x))

means that f(x)− h(x) = O(g(x)).

Below are some properties of the Big Oh notation (mainly taken from Landau [2]):

(a). If f1(x) = O(g1(x)) and f2(x) = O(g2(x)), then

f1(x) + f2(x) = O(g1(x) + g2(x)).

In particular, if g1(x) = g2(x), then

f1(x) + f2(x) = O(g1(x)).

(b). If f1(x) = O(g1(x)) and f2(x) = O(g2(x)), then

f1(x)f2(x) = O(g1(x)g2(x)).

(c). If f(x) ≤ g(x) for all x ≥ a, then O(f(x)) = O(g(x)).

(d). If f(t) = O(g(t)) for all t ≥ a, then ∫ x

a

f(t)dt = O

(∫ x

a

g(t)dt

)
for all x ≥ a.
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1.2 Abel’s Identity

Theorem 1.1 (Abel’s Identity). For any arithmetical function a(n) let A(x) =
∑

n≤x a(n), where A(x) = 0 if x < 1. Assume f has

a continuous derivative on the interval [y, x], where 0 < y < x. Then we have

(1)
∑

y<n≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt

Proof

Let k = [x] and m = [y], so that A(k) = A(x) and A(m) = A(y). Then

∑
y<n≤x

a(n)f(n) =
k∑

n=m+1

(A(n)− A(n− 1)) f(n)

= −
k−1∑

n=m+1

A(n)

∫ n+1

n

f ′(t)dt + A(k)f(k)− A(m)f(m + 1)

= −
k−1∑

n=m+1

∫ n+1

n

A(t)f ′(t)dt + A(k)f(k)− A(m)f(m + 1)

= −
∫ k

m+1

A(t)f ′(t)dt + A(k)f(k)− A(m)f(m + 1)

= −
∫ k

m+1

A(t)f ′(t)dt + A(x)f(x)− A(x)

∫ x

k

f ′(t)dt− A(m)

∫ m+1

m

f ′(t)dt + A(m)

∫ y

m

f ′(t)dt− A(y)f(y)

= −
∫ k

m+1

A(t)f ′(t)dt + A(x)f(x)−
∫ x

k

A(t)f ′(t)dt−
∫ m+1

y

A(t)f ′(t)dt− A(y)f(y)

= A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt.
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Theorem 1.2 (Euler’s Summation Formula). If f has a continuous derivative f ′ on the interval [y, x], where 0 < y < x, then∑
y<n≤x

f(n) =

∫ x

y

f(t)dt +

∫ x

y

(t− [t])f ′(t)dt + f(x)([x]− x)− f(y)([y]− y).

Proof

Let a(n) = 1 for all n in Abel’s Identity. Then A(x) = [x] and we get∑
y<n≤x

f(n) = f(x)[x]− f(y)[y]−
∫ x

y

[t]f ′(t)dt.

Combine this with the integration by parts formula∫ x

y

tf ′(t)dt = xf(x)− yf(y)−
∫ x

y

f(t)dt

and the result follows.

Definition 2. The Riemann zeta function ζ(s) is defined by the equation

ζ(s) =
∞∑

n=1

1

ns
if s > 1

and by the equation

ζ(s) = lim
x→∞

(∑
n≤x

1

ns
− x1−s

1− s

)
if 0 < s < 1.
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Theorem 1.3. We have ∑
n≤x

1

ns
=

x1−s

1− s
+ ζ(s) + O(x−s).

Proof

Take f(x) = x−s, where s > 0, s 6= 1, in the Euler’s Summation Formula to obtain∑
n≤x

1

ns
=

∫ x

1

1

ts
dt− s

∫ x

1

t− [t]

ts+1
dt + 1− x− [x]

xs

=
x1−s

1− s
− 1

1− s
+ 1− s

∫ ∞

1

t− [t]

ts+1
dt + O(x−s).

Therefore

(2)
∑
n≤x

1

ns
=

x1−s

1− s
+ C(s) + O(x−s),

where

C(s) = 1− 1

1− s
− s

∫ ∞

1

t− [t]

ts+1
dt.

If s > 1 the left side of (2) approaches ζ(s) as x →∞ and the terms x1−s and x−s both approach 0. Hence C(s) = ζ(s) if s > 1.

If 0 < s < 1, x−s → 0 and (2) show that

lim
x→∞

(∑
n≤x

1

ns
− x1−s

1− s

)
= C(s).

Therefore C(s) is also equal to ζ(s) if 0 < s < 1.
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1.3 Dirichlet Convolution

Definition 3. Let f and g be arithmetical functions. Their Dirichlet convolution (or Dirichlet product) is defined as the

arithmetical function h given by

h(n) =
∑
d|n

f(d)g
(n

d

)
.

We write f ∗ g for h and (f ∗ g)(n) for h(n).

Definition 4. An arithmetical function f is called multiplicative if f is not identically zero and if

f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

A multiplicative function f is completely multiplicative if we also have

f(mn) = f(m)f(n) for all m,n.

Definition 5. The Möbius function µ is defined as follows:

µ(1) = 1;

If n > 1, write n = pa1
1 · . . . · pak

k . Then

µ(n) =

 (−1)k if a1 = . . . = ak,

0 otherwise.

Definition 6. For every integer n ≥ 1 we define the Mangoldt’s function Λ(n) as follows:

Λ(n) =

 log p if n = pm for some prime p and some m ≥ 1,

0 otherwise.
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Theorem 1.4. If n ≥ 1 we have

(3) log n =
∑
d|n

Λ(d).

Proof

The theorem is true for n = 1 since both sides are 0. Therefore assume that n > 1 and write

n =
r∏

k=1

pak
k .

Taking logarithms we have

log n =
r∑

k=1

ak log pk.

Now consider the sum on the right of (3). The only nonzero terms in the sum come from those divisors d of the form pm
k for

m = 1, 2, . . . , ak and k = 1, 2, . . . , r. Hence

∑
d|n

Λ(d) =
r∑

k=1

ak∑
m=1

Λ(pm
k ) =

r∑
k=1

ak log pk = log n.

Below are some properties of the Dirichlet convolution.

(a). Dirichlet convolution is commutative and associative.

(b). If f is an arithmetical function with f(1) 6= 0 there is a unique arithmetical function f−1, called the Dirichlet inverse of f ,

such that

f ∗ f−1 = f−1 ∗ f = I
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where I(n) =

[
1

n

]
. Moreover, f−1 is given by the recursion formulas

f−1(n) =
1

f(1)
, f−1(n) =

−1

f(n)

∑
d|n
d<n

f
(n

d

)
f−1(d) for n > 1.

Proof

Given f , we shall show that the equation (f ∗ f−1)(n) = I(n) has a unique solution for the function values f−1(n). For n = 1

we have to solve the equation (f ∗ f−1)(1) = I(1) which reduces to f(1)f−1(1) = 1. Since f(1) 6= 0 there is one and only one

solution, namely f−1(1) = 1/f(1). Assume now that the function values f−1(k) have been uniquely determined for all k < n.

Then we have to solve the equation (f ∗ f−1)(n) = I(n), or∑
d|n

f
(n

d

)
f−1(d) = 0.

This can be written as

f(1)f−1(n) +
∑
d|n
d<n

f
(n

d

)
f−1(d).

If the values f−1(d) are known for all divisors d < n, there is a uniquely determined value for f−1(n), namely,

f−1(n) =
1

f(1)
, f−1(n) =

−1

f(n)

∑
d|n
d<n

f
(n

d

)
f−1(d),

since f(1) 6= 0. This establishes the existence and uniqueness of f−1 by induction.

(c). The Dirichlet convolution of two multiplicative functions is multiplicative.

(d). The Dirichlet inverse of a multiplicative function is multiplicative.
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Theorem 1.5 (Möbius Inversion Formula). We have

f(n) =
∑
d|n

g(d) if and only if g(n) =
∑
d|n

f(d)µ
(n

d

)
.

Now we use the Möbius Inversion Formula to express Λ(n) in terms of the logarithm.

Theorem 1.6. If n ≥ 1 we have

Λ(n) =
∑
d|n

µ(d) log
n

d
= −

∑
d|n

µ(d) log d.

Proof

Inverting (3) by the Möbius Inversion Formula we obtain

Λ(n) =
∑
d|n

µ(d) log
n

d

= log n
∑
d|n

µ(d)−
∑
d|n

µ(d) log d

= I(n) log n−
∑
d|n

µ(d) log d.

Since I(n) log n = 0 for all n the proof is complete.
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Theorem 1.7. Let f be multiplicative. Then f is completely multiplicative if and only if

f−1(n) = µ(n)f(n) for all n ≥ 1.

Proof

Let g(n) = µ(n)f(n). If f is completely multiplicative we have

(g ∗ f)(n) =
∑
d|n

µ(d)f(d)f
(n

d

)
= f(n)

∑
d|n

µ(d) = f(n)I(n) = I(n)

since f(1) = 1 and I(n) = 0 for n > 1. Hence g = f−1.

Conversely, assume f−1(n) = µ(n)f(n). To show that f is completely multiplicative it is enough to prove that f(pa) = (f(p))a for

prime powers. The equation f−1(n) = µ(n)f(n) implies that∑
d|n

µ(d)f(d)f
(n

d

)
= 0 for all n > 1.

Hence, taking n = pa we have

µ(1)f(1)f(pa) + µ(p)f(p)f(pa−1) = 0,

from which we find f(pa) = f(p)f(pa−1). This implies f(pa) = (f(p))a, so f is completely multiplicative.
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1.4 Generalized Convolution

Definition 7. Let F be a real or complex-valued function defined on the positive real axis (0, +∞) such that F (x) = 0 for 0 < x < 1

and let α be any arithmetical function. Then the sum G given by

G(x) =
∑
n≤x

α(n)F
(x

n

)
is called the generalized convolution of α and F and is denoted by α ◦ F . If F (x) = 0 for all nonintegral x, the restriction of F

to the integers is an arithmetical function and we find that (α ◦ F )(m) = (α ∗ F )(m) for all integers m ≥ 1, so the operation ◦ can

be regarded as a generalization of the Dirichlet convolution ∗. The operation ◦ is, in general, neither commutative nor associative.

However, the following theorem serves as a useful substitute for the associative law.

Theorem 1.8. For any arithmetical functions α and β we α ◦ (β ◦ F ) = (α ∗ β) ◦ F.

Proof

For x > 0 we have

(α ◦ (β ◦ F ))(x) =
∑
n≤x

α(n)
∑

m≤x/n

β(m)F
( x

mn

)
=
∑

mn≤x

α(n)β(m)F
( x

mn

)

=
∑
k≤x

∑
n|k

α(n)β

(
k

n

)F
(x

k

)
= ((α ∗ β) ◦ F )(x).
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Next we note that the identity function

I(n) =

[
1

n

]
for the Dirichlet convolution is also a left identity for the operation ◦. That is, we have

(I ◦ F )(x) =
∑
n≤x

[
1

n

]
F
(x

n

)
= F (x).

Now we use this fact along with the associative property to prove the following inversion formula.

Theorem 1.9 (Generalized Inversion Formula). If α has a Dirichlet inverse α−1 then we have

G(x) =
∑
n≤x

α(n)F
(x

n

)
if and only if F (x) =

∑
n≤x

α−1(n)G
(x

n

)
.

Proof

If G = α ◦ F then

α−1 ◦G = α−1 ◦ (α ◦ F ) = (α−1 ∗ α) ◦ F = I ◦ F = F.

The converse is similarly proved.

Theorem 1.10 (Generalized Möbius Inversion Formula). If α is completely multiplicative then we have

G(x) =
∑
n≤x

α(n)F
(x

n

)
if and only if F (x) =

∑
n≤x

µ(n)α(n)G
(x

n

)
.

Proof

In this case α−1(n) = µ(n)α(n).
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Theorem 1.11. If h = f ∗ g, let

H(x) =
∑
n≤x

h(n), F (x) =
∑
n≤x

f(n), G(x) =
∑
n≤x

g(n).

Then we have

(4) H(x) =
∑
n≤x

f(n)G
(x

n

)
=
∑
n≤x

g(n)F
(x

n

)
.

Proof

Let

U(x) =

 0 if 0 < x < 1,

1 if x ≥ 1.

Then F = f ◦ U , G = g ◦ U . So, by Theorem 1.8

f ◦G = f ◦ (g ◦ U) = (f ∗ g) ◦ U = H

and

g ◦ F = g ◦ (f ◦ U) = (g ∗ f) ◦ U = H.

If g(n) = 1 for all n then G(x) = [x], and (4) gives us the following theorem.

Theorem 1.12. If F (x) =
∑
n≤x

f(n) we have

(5)
∑
n≤x

∑
d|n

f(d) =
∑
n≤x

f(n)
[x
n

]
=
∑
n≤x

F
(x

n

)
.
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Theorem 1.13. For x ≥ 1 we have

(6)
∑
n≤x

Λ(n)
[x
n

]
= log[x]!

Proof

From (5) we have ∑
n≤x

Λ(n)
[x
n

]
=
∑
n≤x

∑
d|n

Λ(d) =
∑
n≤x

log n = log[x]!.

Next we use the Euler’s Summation Formula to determine an asymptotic formula for log[x]!.

Theorem 1.14. If x ≥ 2 we have

(7) log[x]! = x log x− x + O(log x),

and hence

(8)
∑
n≤x

Λ(n)
[x
n

]
= x log x− x + O(log x).

Proof

Taking f(t) = log t in Euler’s Summation Formula we obtain∑
n≤x

log n =

∫ x

1

log tdt +

∫ x

1

t− [t]

t
dt− (x− [x]) log x

= x log x− x + 1 +

∫ x

1

t− [t]

t
dt + O(log x).
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This proves (7) since ∫ x

1

t− [t]

t
dt = O

(∫ x

1

1

t
dt

)
= O(log x),

and (8) follows from (6).

The next theorem is a consequence of (8).

Theorem 1.15. For x ≥ 2 we have

(9)
∑
p≤x

[
x

p

]
log p = x log x + O(x).

Proof

Since Λ(n) = 0 unless n is a prime power we have

∑
n≤x

[x
n

]
Λ(n) =

∑
p

∞∑
m=1
pm≤x

[
x

pm

]
Λ(pm).

Now pm ≤ x implies p ≤ x. Also [x/pm] = 0 if p > x so we can write the last sum as

∑
p≤x

∞∑
m=1

[
x

pm

]
log p =

∑
p≤x

[
x

p

]
log p +

∑
p≤x

∞∑
m=2

[
x

pm

]
log p.
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Next we prove that the last sum is O(x). We have

∑
p≤x

log p
∞∑

m=2

[
x

pm

]
≤
∑
p≤x

log p
∞∑

m=2

x

pm

= x
∑
p≤x

log p
∞∑

m=2

(
1

p

)m

= x
∑
p≤x

log p · 1

p2
· 1

1− 1

p

= x
∑
p≤x

log p

p(p− 1)

≤ x
∞∑

n=2

log n

n(n− 1)

= O(x)

Hence we have shown that ∑
n≤x

[x
n

]
Λ(n) =

∑
p≤x

[
x

p

]
log p + O(x),

which, when used with (8) proves (9).
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To see why
∞∑

n=2

log n

n(n− 1)
= O(1)

observe that

N∑
n=2

log n

n(n− 1)
=

N∑
n=2

(
1

n− 1
− 1

n

)
log n

=
N∑

n=2

log n

n− 1
−

N∑
n=2

log n

n

= log 2 +
N−1∑
n=2

1

n
(log(n + 1)− log n)− log N

N

< log 2 +
N−1∑
n=2

1

n
· 1

n

< log 2 +
N−1∑
n=2

1

(n− 1)n

= log 2 + 1− 1

N − 1

< log 2 + 1.
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1.5 Another Identity for the Partial Sum of a Dirichlet Convolution

As in Theorem 1.11 we write

H(x) =
∑
n≤x

h(n), F (x) =
∑
n≤x

f(n), G(x) =
∑
n≤x

g(n)

so

H(x) =
∑
n≤x

∑
d|n

f(d)g
(n

d

)
=
∑
q,d

qd≤x

f(d)g(q).

Theorem 1.16. If a and b are positive real numbers such that ab = x, then

(10)
∑
q,d

qd≤x

f(d)g(q) =
∑
n≤a

f(n)G
(x

n

)
+
∑
n≤b

g(n)F
(x

n

)
− F (a)G(b).

Proof

The sum H(x) on the left of (10) is extended over the lattice points of the hyperbolic region R bounded by qd = x, q, d ≥ 1 Note that

the point (a, b) lies on the hyperbola qd = x. Now consider the regions bounded by d ≤ a (call it R1) and q ≤ b in R (call it R2).

Add up the contributions from these two regions (namely R1 ∪ R2) and subtract contributions from the overlapping regions (namely

R1 ∩R2). Then

H(x) =
∑
d≤a

∑
q≤x/d

f(d)g(q) +
∑
q≤b

∑
d≤x/q

f(d)g(q)−
∑
d≤a

∑
q≤b

f(d)g(q).
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Theorem 1.17 (Shapiro’s Tauberian Theorem). Let {a(n)} be a nonnegative sequence such that

(11)
∑
n≤x

a(n)
[x
n

]
= x log x + O(x) for all x ≥ 1.

Then the following statements hold.

(a). There is a constant A > 0 such that ∑
n≤x

a(n) ≤ Ax for all x ≥ 1.

(b). For x ≥ 1, we have ∑
n≤x

a(n)

n
= log x + O(1).

Proof

Let

S(x) =
∑
n≤x

a(n), T (x) =
∑
n≤x

a(n)
[x
n

]
.

To prove (a), we need first to show that

(12) S(x)− S
(x

2

)
≤ T (x)− 2T

(x

2

)
.

Now observe that

T (x)− 2T
(x

2

)
=
∑
n≤x

[x
n

]
a(n)− 2

∑
n≤x

2

[ x

2n

]
a(n)

=
∑
n≤x

2

([x
n

]
− 2

[ x

2n

])
a(n) +

∑
x
2
<n≤x

[x
n

]
a(n).
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Since [2y]− 2 [y] is either 0 or 1, the first sum is nonnegative, so

T (x)− 2T
(x

2

)
≥
∑

x
2
<n≤x

[x
n

]
a(n) =

∑
x
2
<n≤x

a(n) = S(x)− S
(x

2

)
.

This proves (12). But (11) implies

T (x)− 2T
(x

2

)
= x log x + O(x)− 2

(x

2
log

x

2
+ O(x)

)
= O(x).

Hence (12) implies

S(x)− S
(x

2

)
= O(x).

This means that there is some constant K > 0 such that

S(x)− S
(x

2

)
≤ Kx for all x ≥ 1.

Replace x by x/2, x/4, . . . to get

S
(x

2

)
− S

(x

4

)
≤ K

x

2
,

S
(x

4

)
− S

(x

8

)
≤ K

x

4
,

and so on. Note that S(x/2n) = 0 when 2n > x. Adding these inequalities we get

S(x) ≤ Kx

(
1 +

1

2
+

1

4
+ · · ·

)
= 2Kx.

This proves (a) with A = 2K.

Next we prove (b). Observe that [x
n

]
=

x

n
+ O(1).
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Then

T (x) =
∑
n≤x

[x
n

]
a(n)

=
∑
n≤x

(x

n
+ O(1)

)
a(n)

= x
∑
n≤x

a(n)

n
+ O

(∑
n≤x

a(n)

)

= x
∑
n≤x

a(n)

n
+ O(x),

by part (a). Hence ∑
n≤x

a(n)

n
=

1

x
T (x) + O(1) = log x + O(1).

This proves (b).

Theorem 1.18. For all x ≥ 1 we have ∑
p≤x

log p

p
= log x + O(1).

Proof

Let

a(n) =

 log p if n is a prime p,

0 otherwise.

Since a(n) ≥ 0, (9) shows that the hypothesis of Shapiro’s Theorem is satisfied.
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2 Algebraic Background

The proof of Dirichlet’s Theorem will require a knowledge of certain arithmetical functions called Dirichlet characters. Although the

study of Dirichlet characters can be done without any knowledge of groups, the introduction of a minimal amount of group theory

places the theory of Dirichlet characters in a more natural setting and simplifies some of the discussion.

2.1 Groups

Definition 8. A group G is a nonempty set of elements together with a binary operation, which we denote by ·, such that the

following postulates are satisfied:

(a). Closure. For every a, b ∈ G, a · b is also in G.

(b). Associativity. For every a, b, c ∈ G, we have (a · b) · c = a · (b · c).

(c). Existence of Identity. There is a unique element e ∈ G, called the identity, such that a · e = e · a = a.

(d). Existence of Inverses. For every a ∈ G, there is a unique b ∈ G, such that a · b = b · a = e. This b is usually denoted by a−1.

Note that we usually omit the dot and write ab for a · b.

Definition 9. A group G is called abelian if every pair of elements commute; that is, if ab = ba for all a, b ∈ G.

Definition 10. A group G is called finite if G is a finite set. In this case the number of elements in G is called the order of G and

is denoted by |G|.

Definition 11. A nonempty subset G ′ of a group G which is itself a group, under the same operation, is called a subgroup of G.
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Examples of groups and subgroups are given below:

(a). Trivial subgroups. Every group G has at least two subgroups, G itself and the set {e} consisting of the identity alone.

(b). Integers under addition. The set of all integers is an abelian group with + as the operation and 0 as the identity. The inverse of

n is −n.

(c). Complex numbers under multiplication. The set of all non-zero complex numbers is an abelian group with ordinary multiplication

of complex numbers as the operation and 1 as the identity. The inverse of z is the reciprocal 1/z. The set of all complex numbers

of absolute value 1 is a subgroup.

(d). The nth roots of unity. The set {1, ε, ε2, . . . , εn−1}, where ε = e
2πi
n , together with the ordinary multiplication of complex numbers,

is a finite group of order n.

The following elementary theorems concern an arbitrary group G. Unless otherwise stated, G is not required to be abelian nor finite.

Theorem 2.1. If a, b, c ∈ G satisfy ac = bc or ca = cb, then a = b.

Proof

In the first case multiply each side on the right by c−1 and use associativity. In the second case multiply on the left by c−1 and use

associativity.

Theorem 2.2. In any group G, we have

(a). e−1 = e.

(b). For every a ∈ G, (a−1)−1 = a.

(c). For all a, b ∈ G, (ab)−1 = b−1a−1.

(d). For all a, b ∈ G, the equation ax = b has the unique solution x = a−1b; the equation ya = b has the unique solution y = ba−1.

25



Definition 12. If a ∈ G we define an for any integer n by the following relations:

a0 = e, an = aan−1, a−n = (a−1)n for n > 0.

Theorem 2.3. If a ∈ G, any two powers of a commute, and for all integers m and n we have

aman = am+n = anam and (am)n = amn = (an)m.

Moreover, if a and b commute we have anbn = (ab)n.

Theorem 2.4. If G ′ is a nonempty subset of a group G, then G is a subgroup if and only if G ′ satisfies the following:

(a). If a, b ∈ G ′, then ab ∈ G ′.

(b). If a ∈ G ′, then a−1 ∈ G ′.

2.2 Construction of Subgroups

A subgroup of a given group G can always be constructed by choosing any element a in G and forming the set of all its powers an,

n = 0,±1,±2, . . .. This set clearly satisfies the postulates of a group. It is called the cyclic subgroup generated by a and is denoted

by 〈a〉.

Note that 〈a〉 is abelian, even if G is not. If an = e for some positive integer n there will be a smallest n > 0 with this property and

the subgroup 〈a〉 will be a finite group of order n,

〈a〉 =
{
a, a2, . . . , an−1, an = e

}
.

The integer n is also called the order of the element a. The next theorem shows us that every element of a finite group has a finite

order.
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Theorem 2.5. If G is finite and a ∈ G, then there is a positive integer n ≤ |G| such that an = e.

Proof

Let g = |G|. Then at least two of the following g + 1 elements of G must be equal:

e, a, a2, . . . , ag.

Suppose that ar = as, where 0 ≤ s < r ≤ g. Then we have

e = ar (as)−1 = ar−s.

This proves the theorem with n = r − s.

If G ′ is a subgroup of a finite group G, then for any element a in G there is an integer n such that an ∈ G ′. If a is already in G ′ we

simply take n = 1. If a /∈ G ′ we can take n to be the order of a, since an = e ∈ G ′. However, there may be a smaller positive power

of a which lies in G ′. By the Well-ordering Principle, there is a smallest positive integer n such that an ∈ G ′. We call this integer the

indicator of a.
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Theorem 2.6. Let G ′ be a subgroup of a finite abelian group G, where G ′ 6= G. Choose an element a in G, a /∈ G ′, and let h be the

indicator of a in G ′. Then the set of products

G ′′ = { xak : x ∈ G ′ and k = 0, 1, . . . , h− 1 }

is a subgroup of G which contains G ′. Moreover, the order of G ′′ is h times that of G ′, that is,

|G ′′| = h |G ′| .

Proof

Choose two elements in G ′′, say xak and yaj, where x, y ∈ G ′ and 0 ≤ k, j < h. Since G is abelian the product of the elements is

(13) (xy)ak+j

Now k + j = qh + r where 0 ≤ r < h. Hence

ak+j = aqh+r = aqhar = zar

where z = aqh = (ah)q ∈ G ′ since ah ∈ G ′. Therefore the element in (13) is (xyz)ar = war, where w ∈ G ′ and 0 ≤ r < h. This proves

that G is closed.

Next we prove that the inverse of each element in G ′′ is also in G ′′. Choose an arbitrary element in G ′′, say xak. If k = 0 then the

inverse is x−1 which is in G ′′. If 0 < k < h the inverse is the element

(x−1(ah)−1)ah−k

which is again in G ′′. This proves that G ′′ is indeed a group. Obviously G ′′ contains G ′.

Finally, we determine the order of G ′′. Let m = |G ′|. As x runs through the m elements of G ′ and k runs through the h integers

0, 1, . . . , h − 1 we obtain mh products xak. If we show that all these are distinct, then G ′′ has order mh. Now consider two of these

products, say xak and yaj and assume that

xak = yaj with 0 ≤ j ≤ k < h.

Then ak−j = x−1y and 0 ≤ k − j < h. Since x−1y ∈ G ′ we must have ak−j ∈ G ′ so k = j and hence x = y.
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2.3 Characters of Finite Abelian Groups

Definition 13. Let G be an arbitrary group. A complex-valued function f defined on G is called a character of G if f has the

multiplicative property

f(ab) = f(a)f(b)

for all a, b ∈ G, and if f(c) 6= 0 for some c ∈ G.

Theorem 2.7. If f is a character of a finite group G with identity element e, then f(e) = 1 and each function value f(a) is a root of

unity. In fact, if an = e then (f(a))n = 1.

Proof

Choose c ∈ G such that f(c) 6= 0. Since ce = c we have

f(c)f(e) = f(c)

so f(e) = 1. If an = e then (f(a))n = f(an) = f(e) = 1.

Every group G has at least one character, namely the function which is identically 1 on G. This is called the principal character. The

next theorem tells us that there are further characters if G is abelian and has finite order greater than 1.

Theorem 2.8. A finite abelian group G of order n has exactly n distinct characters.

Proof

In Theorem 2.6 we learned how to construct, from a given subgroup G ′ 6= G, a new subgroup G ′′ containing G ′ and at least one more

element a not in G ′. We use the symbol 〈G ′; a 〉 to denote the subgroup G ′′ constructed in Theorem 2.6. Thus

〈G ′; a 〉 = { xak : x ∈ G ′ and 0 ≤ k < h }
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where h is the indicator of a in G ′.

Now we apply the construction repeatedly, starting with the subgroup {e} which we denote by G1. If G1 6= G, we let a1 be an element

of G other than e and define G2 = 〈G1; a1 〉. If G2 6= G, we let a2 be an element of G which is not in G2 and define G3 = 〈G2; a2 〉.
Continue the process to obtain a finite set of elements a1, a2, . . . , at and a corresponding set of subgroups G1, G2, . . . , Gt+1 such that

Gr+1 = 〈Gr; ar 〉 with G1 ⊂ G2 ⊂ · · · ⊂ Gt+1 = G.

The process must terminate in a finite number of steps since the given group is finite and each Gr+1 contains more elements than its

predecessor Gr. We consider such a chain of subgroups and prove the theorem by induction, showing that if it is true for Gr it must

also be true for Gr+1.

It is clear that there is only one character for G1, namely the function which is identically 1. Assume, therefore, that Gr has order m

and that there are exactly m distinct characters for Gr. Consider Gr+1 = 〈Gr; ar 〉 and let h be the indicator of ar in Gr, that is, the

smallest positive integer such that ah
r ∈ Gr. We shall show that there are exactly h different ways to extend each character of Gr to

obtain a character of Gr+1, and that each character of Gr+1 is the extension of some character of Gr. This will prove that Gr+1 has

exactly mh characters, and since mh is also the order of Gr+1 this will prove the theorem by induction on r.

A typical element in Gr+1 has the form

xak
r where x ∈ Gr and 0 ≤ k < h.

Suppose for the moment that it is possible to extend a character f of Gr to Gr+1. Call this extension f̃ and let us see what can be

said about f̃(xak
r). The multiplicative property requires

f̃(xak
r) = f̃(x)f̃(ar)

k.

But x ∈ Gr so f̃(x) = f(x) and the foregoing equation implies

f̃(xak
r) = f(x)f̃(ar)

k.
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This tells us that f̃(xak
r) is determined as soon as f̃(ar) is known.

What are the possible values of f̃(ar)? Let c = ah
r . Since c ∈ Gr we have f̃(c) = f(c), and since f̃ is multiplicative we also have

f̃(c) = f̃(ar)
h. Hence

f̃(ar)
h = f(c),

so f̃(ar) is one of the hth roots of f(c). There are at most h choices for f̃(ar).

These observations tell us how to define f̃ . If f is a given character of Gr we choose one of the hth roots of f(c), where c = ah
r , and

define f̃(ar) to be this root. Then we define f̃ on the rest of Gr+1 by the equation

(14) f̃(xak
r) = f(x)f̃(ar)

k.

The h choices for f̃(ar) are all different so this gives us h different ways to define f̃(xak
r). Now we verify that the function f̃ so defined

has the required multiplicative property. From (14) we find

f̃(xak
r · yaj

r) = f̃(xy · ak+j
r )

= f(xy)f̃(ar)
k+j

= f(x)f(y)f̃(ar)
kf̃(ar)

j

= f̃(xak
r)f̃(yaj

r)

so f̃ is a character of Gr+1. No two of the extensions f̃ and g̃ can be identical on Gr+1 because the functions f and g which they extend

would then be identical on Gr. Therefore each of the m characters of Gr can be extended in h different ways to produce a character

of Gr+1. Moreover, if ϕ is any character of Gr+1 then its restriction to Gr is also a character of Gr, so the extension process produces

all the characters of Gr+1.
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2.4 The Character Group

In what follows G will be assumed to be a finite abelian group of order n. The principal character of G will be denoted by f1. The

others, denoted by f2, f3, . . . , fn, are called non-principal characters. They have the property that f(a) 6= 1 for some a ∈ G.

Theorem 2.9. If multiplication of characters is defined by the relation

(fifj)(a) = fi(a)fj(a)

for each a ∈ G, then the set of characters of G forms an abelian group of order n. We denote this group by Ĝ. The identity element

of Ĝ is the principal character f1. The inverse of fi is the reciprocal 1/fi.

Proof

Straightforward.

For each character f we have |f(a)| = 1. Hence the reciprocal 1/f(a) is equal to the complex conjugate f(a). Thus, the function f

defined by f(a) = f(a) is also a character of G. Moreover, we have

f(a) =
1

f(a)
= f(a−1)

for every a ∈ G.
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2.5 Orthogonality Relations for Characters

Let a1, a2, . . . , an ∈ G and denote by A = A(G) the n× n matrix (aij) whose element aij in the ith row and jth column is aij = fi(aj).

We will prove that the matrix A has an inverse and then use this fact to deduce the so-called orthogonality relations for characters.

First we determine the sum of the entries in each row of A.

Theorem 2.10. The sum of the entries in the ith row of A is given by

n∑
r=1

fi(ar) =

 n if fi is the principal character,

0 otherwise.

Proof

Let S denote the sum in question. If fi = f1, then each term of the sum is 1 and S = n. If fi 6= f1, there is an element b in G for

which fi(b) 6= 1. As ar runs through the elements of G so does the product bar. Hence

S =
n∑

r=1

fi(bar) = fi(b)
n∑

r=1

fi(ar) = fi(b)S.

Therefore S(1− fi(b)) = 0. Since fi(b) 6= 1 it follows that S = 0.

Now we use this theorem to show that A has an inverse.

Theorem 2.11. Let A∗ denote the conjugate transpose of the matrix A. Then we have AA∗ = nI, where I is the n×n identity matrix.

Hence n−1A∗ is the inverse of A.

Proof

Let B = AA∗. The entry bij in the ith row and the jth column of B is given by

bij =
n∑

r=1

fi(ar)f j(ar) =
n∑

r=1

(fif j)(ar) =
n∑

r=1

fk(ar),
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where fk = fif j = fi/fj. Now fi/fj = f1 if and only if i = j. Hence by Theorem 2.10 we have

bij =

 n if i = j,

0 if i 6= j.

In other words, B = nI.

Next we use the fact that a matrix commutes with its inverse to deduce the orthogonality relations for characters.

Theorem 2.12. We have

(15)
n∑

r=1

f r(ai)fr(aj) =

 n if ai = aj,

0 if ai 6= aj.

Proof

The relation AA∗ = nI implies A∗A = nI. But the element in the ith row and the jth column of A∗A is the sum on the left of (15).

Since f r(ai) = fr(ai)
−1 = fr(a

−1
i ), the general term of the sum in (15) is equal to

fr(a
−1
i )fr(aj) = fr(a

−1
i aj).

Therefore the orthogonality relations can be expressed as follows:

n∑
r=1

fr(a
−1
i aj) =

 n if ai = aj,

0 if ai 6= aj.

When ai is the identity element e we obtain the following result.

Theorem 2.13. The sum of the entries in the jth column of A is given by

n∑
r=1

fr(aj) =

 n if aj = e,

0 otherwise.
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2.6 Dirichlet Characters

The foregoing discussion dealt with characters of an arbitrary finite abelian group G. Now we specialize G to be the group of reduced

residue classes modulo a fixed positive integer k. First we prove that these residue classes do, indeed, form a group if multiplication is

suitably defined.

We recall that that reduced residue system modulo k is a set of ϕ(k) integers{
a1, a2, . . . , aϕ(k)

}
incongruent modulo k, each of which is relatively prime to k. For each integer a the corresponding residue class â is the set of all

integers congruent to a modulo k, that is,

â = {x : x ≡ a (mod k)} .

Multiplication of residue classes is defined by the relation

(16) â · b̂ = â b.

That is, the product of two residue classes â and b̂ is the residue class of the product ab.

Theorem 2.14. With multiplication defined by (16), the set of reduced residue classes modulo k is a finite abelian group of order ϕ(k).

The identity is the residue class 1̂. The inverse of â is the residue class b̂ where ab ≡ 1 (mod k).

Proof

The closure property is automatically satisfied because of the way multiplication of residue classes was defined. The class 1̂ is clearly

the identity element. If gcd(a, k) = 1 there is a unique b such that ab ≡ 1 (mod k). Hence the inverse of â is b̂. Finally, it is clear that

the group is abelian and that its order is ϕ(k).

35



Definition 14. Let G be a group of reduced residue classes modulo k. Corresponding to each character f of G we define an arithmetical

function χ = χf as follows:

χ(n) =

 f(n̂) if gcd(n, k) = 1,

0 if gcd(n, k) > 1.

The function χ is called a Dirichlet character modulo k. The principal character χ1 is that which has the properties

χ1(n) =

 1 if gcd(n, k) = 1,

0 if gcd(n, k) > 1.

Theorem 2.15. There are ϕ(k) distinct Dirichlet characters modulo k, each of which is completely multiplicative and periodic wih

period k. That is, we have

(17) χ(mn) = χ(m)χ(n) for all m, n

and

χ(n + k) = χ(n) for all n.

Conversely, if χ is completely multiplicative and periodic with period k, and if χ(n) = 0 whenever gcd(n, k) > 1, then χ is one of the

Dirichlet characters modulo k.

Proof

There are ϕ(k) characters f for the group G of reduced residue classes modulo k, hence ϕ(k) characters χf modulo k. The multiplicative

property (17) of χf follows from that of f when both m and n are relatively prime to k. If one of m or n is not relatively prime to

k then neither is mn, hence both sides of (17) are zero. The periodicity property follows from the fact that χf (n) = f(n̂) and that

a ≡ b (mod k) implies gcd(a, k) = gcd(b, k).
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To prove the converse we note that the function f defined on the group G by the equation

f(n̂) = χ(n) if gcd(n, k) = 1

is a character of G, so χ is a Dirichlet character modulo k.

Example 1. When k = 1 or k = 2 then ϕ(k) = 1 and the only Dirichlet character is the principal character χ1. For k ≥ 3, there are at

least two Dirichlet characters since ϕ(k) ≥ 2. The following tables display all the Dirichlet characters for k = 3, 4 and 5, respectively.

n 1 2 3

χ1(n) 1 1 0

χ2(n) 1 −1 0

n 1 2 3 4

χ1(n) 1 0 1 0

χ2(n) 1 0 −1 0

n 1 2 3 4 5

χ1(n) 1 1 1 1 0

χ2(n) 1 −1 −1 1 0

χ3(n) 1 i −i −1 0

χ4(n) 1 −i i −1 0

To fill these tables we use the fact that χ(n)ϕ(k) = 1 whenever gcd(n, k) = 1, so χ(n) is a ϕ(k)th root of unity. We also note that if χ

is a character modulo k so is the complex conjugate χ. This information is enough to complete the tables for k = 3 and k = 4.
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When k = 5 we have ϕ(5) = 4 so the possible values of χ(n) are ±1 and ±i when gcd(n, 5) = 1. Also χ(2)χ(3) = χ(6) = χ(1) = 1 so

χ(2) and χ(3) are reciprocals. Since χ(4) = χ(2)2 this information suffices to fill the table for k = 5. The following tables display all

the Dirichlet characters modulo 6 and 7 (where ω = e
iπ
3 )

n 1 2 3 4 5 6

χ1(n) 1 0 0 0 1 0

χ2(n) 1 0 0 0 −1 0

n 1 2 3 4 5 6 7

χ1(n) 1 1 1 1 1 1 0

χ2(n) 1 1 −1 1 −1 −1 0

χ3(n) 1 ω2 ω −ω −ω2 −1 0

χ4(n) 1 ω2 −ω −ω ω2 1 0

χ5(n) 1 −ω ω2 ω2 −ω 1 0

χ6(n) 1 −ω −ω2 ω2 ω −1 0

In our discussion of Dirichlet’s theorem on primes in an arithmetic progression we shall make use of the following orthogonality relation

for characters modulo k.

Theorem 2.16. Let χ1, . . . , χϕ(k) denote the ϕ(k) Dirichlet characters modulo k. Let m and n be two integers with gcd(n, k) = 1.

Then we have
ϕ(k)∑
r=1

χr(m)χr(n) =

 ϕ(k) if m ≡ n (mod k),

0 if m 6≡ n (mod k).

Proof

If gcd(m, k) = 1, take ai = n̂ and aj = m̂ in the orthogonality relation of Theorem 2.12 and note that m̂ = n̂ if and only if

m ≡ n (mod k). If gcd(m, k) > 1 each term in the sum vanishes and m 6≡ n (mod k).
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2.7 Sums involving Dirichlet Characters

In what follows, we will discuss certain sums which occur in the proof of Dirichlet’s Theorem on primes in arithmetical progression.

The first theorem refers to a nonprincipal character χ modulo k, but the proof is also valid if χ is any arithmetical function with

bounded partial sums.

Theorem 2.17. Let χ be any nonprincipal character modulo k, and let f be a nonnegative function which has a continuous negative

derivative f ′(x) for all x ≥ x0. Then if y ≥ x ≥ x0, we have

(18)
∑

x<n≤y

χ(n)f(n) = O(f(x)).

If, in addition, f(x) → 0 as x →∞, then the infinite series

∞∑
n=1

χ(n)f(n)

converges and we have, for x ≥ x0

(19)
∑
n≤x

χ(n)f(n) =
∞∑

n=1

χ(n)f(n) + O(f(x)).

Proof

Let A(x) =
∑
n≤x

χ(n). Since χ is nonprincipal we have

A(k) =
k∑

n=1

χ(n) = 0.

By periodicity it follows that A(nk) = 0 for n = 2, 3, . . ., hence |A(x)| < ϕ(k) for all x. In other words, A(x) = O(1).
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Now we use Abel’s Identity to express (18) as an integral. This gives us∑
x<n≤y

χ(n)f(n) = f(y)A(y)− f(x)A(x)−
∫ y

x

A(t)f ′(t)dt

= O(f(y)) + O(f(x)) + O

(∫ y

x

(−f ′(t))dt

)
= O(f(x)).

This proves (18). If f(x) → 0 as x →∞ then (18) shows that the series

∞∑
n=1

χ(n)f(n)

converges because of the Cauchy convergence criterion. To prove (19) we simply note that

∞∑
n=1

χ(n)f(n) =
∑
n≤x

χ(n)f(n) + lim
y→∞

∑
x<n≤y

χ(n)f(n).

Because of (18) the limit on the right is O(f(x)).

40



Now we apply Theorem 2.17 successively with

f(x) =
1

x
, f(x) =

log x

x
, f(x) =

1√
x

for x ≥ 1

to obtain the following result.

Theorem 2.18. If χ is any nonprincipal character modulo k and if x ≥ 1 we have

(20)
∑
n≤x

χ(n)

n
=

∞∑
n=1

χ(n)

n
+ O

(
1

x

)
,

(21)
∑
n≤x

χ(n) log n

n
=

∞∑
n=1

χ(n) log n

n
+ O

(
log x

x

)
,

(22)
∑
n≤x

χ(n)√
n

=
∞∑

n=1

χ(n)√
n

+ O

(
1√
x

)
.
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2.8 The Nonvanishing of L(1, χ) for Real Nonprincipal χ

We denote by L(1, χ) the sum of the series in (20). Thus

L(1, χ) =
∞∑

n=1

χ(n)

n
.

In the proof of Dirichlet’s Theorem we need to know that L(1, χ) 6= 0 when χ is a nonprincipal character. We prove this here for real

nonprincipal characters. First we consider the divisor sum of χ(n).

Theorem 2.19. Let χ be any real-valued character modulo k and let

A(n) =
∑
d|n

χ(d).

Then A(n) ≥ 0 for all n, and A(n) ≥ 1 if n is a square.

Proof

For prime powers we have

A(pa) =
a∑

t=0

χ(pt) = 1 +
a∑

t=1

χ(p)t.

Since χ is real-valued the only possible values for χ(p) are 0, 1,−1.

If χ(p) = 0 then A(pa) = 1; if χ(p) = 1 then A(pa) = a + 1; χ(p) = −1 then

A(pa) =

 0 if a is odd,

1 if a is even.

In any case A(pa) ≥ 1 if a is even.

Now if n = pa1
1 · . . . · par

r then A(n) = A(pa1
1 ) · . . . · A(par

r ) since A is multiplicative. Each factor A(pai
i ) ≥ 0 hence A(n) ≥ 0. Also, if n

is a square then each exponent ai is even, so each factor A(pai
i ) ≥ 1 hence A(n) ≥ 1.
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Theorem 2.20. For any real-valued nonprincipal character χ modulo k, let

A(n) =
∑
d|n

χ(d) and B(n) =
∑
n≤x

A(n)√
n

.

Then we have

(a). B(x) →∞ as x →∞.

(b). B(x) = 2
√

xL(1, χ) + O(1) for all x ≥ 1.

Therefore L(1, χ) 6= 0.

Proof

To prove part (a) we use Theorem 2.19 to write

B(x) ≥
∑
n≤x
n=m2

1√
n

=
∑

m≤
√

x

1

m
.

The last sum tends to ∞ as x →∞ since the harmonic series
∑

1
m

diverges.

To prove part (b) we write

B(x) =
∑
n≤x

1√
n

∑
d|n

χ(d) =
∑
q,d

qd≤x

χ(d)√
qd

.

Now we invoke Theorem 1.16 which states that∑
q,d

qd≤x

f(d)g(q) =
∑
n≤a

f(n)G
(x

n

)
+
∑
n≤b

g(n)F
(x

n

)
− F (a)G(b)

where ab = x, F (x) =
∑
n≤x

f(n) and G(x) =
∑
n≤x

g(n). We take a = b =
√

x and let

f(n) =
χ(n)√

n
and g(n) =

1√
n
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to obtain

(23) B(x) =
∑
q,d

qd≤x

χ(d)√
qd

=
∑

n≤
√

x

χ(n)√
n

G
(x

n

)
+
∑

n≤
√

x

1√
n

F
(x

n

)
− F (

√
x)G(

√
x).

By Theorem 1.16,

G(x) =
∑
n≤x

1√
n

= 2
√

x + A + O

(
1√
x

)
where A is a constant, and by Theorem 2.18, Equation (22), we have

F (x) =
∑
n≤x

χ(n)√
n

= B + O

(
1√
x

)

where B =
∞∑

n=1

χ(n)√
n

. Since

F (
√

x)G(
√

x) = 2Bx
1
4 + O(1),

Equation (23) gives us

B(x) =
∑

n≤
√

x

χ(n)√
n

(
2

√
x

n
+ A + O

(√
n

x

))
+
∑

n≤
√

x

1√
n

(
B + O

(√
n

x

))
− 2Bx

1
4 + O(1)

= 2
√

x
∑

n≤
√

x

χ(n)

n
+ A

∑
n≤

√
x

χ(n)√
n

+ O

 1√
x

∑
n≤

√
x

|χ(n)|

+ B
∑

n≤
√

x

1√
n

+ O

 1√
x

∑
n≤

√
x

1

− 2Bx
1
4 + O(1)

= 2
√

xL(1, χ) + O(1).

This proves part (b). Now it is clear that parts (a) and (b) together imply L(1, χ) 6= 0.
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3 The Elementary Proof

In Theorem 1.18, we derived the asymptotic formula

(24)
∑
p≤x

log p

p
= log x + O(1),

Theorem 3.1. If k > 0 and gcd(h, k) = 1, then, for all x > 1,

(25)
∑
p≤x

p≡h (mod k)

log p

p
=

1

ϕ(k)
log x + O(1),

where the sum is extended over those primes p less than or equal to x which are congruent to h mod k.

Since log x → ∞ as x → ∞, Theorem 3.1 implies that there are infinitely many primes p ≡ h (mod k), hence infinitely many in the

progression nk + h, where n = 0, 1, . . ..

Note that the principal term on the right of (25) is independent of h. Therefore (25) not only implies Dirichlet’s Theorem but it also

shows that the primes in each of the ϕ(k) reduced residue classes mod k make the same contribution to the principal term in (24).

The proof of Theorem 3.1 will be presented through a sequence of lemmas which we have collected together in the next subsection to

reveal the plan of the proof. Throughout the section we adopt the following notation.

The positive integer k represents a fixed modulus, and h is a fixed integer relatively prime to k. The ϕ(k) Dirichlet characters mod k

are denoted by χ1, χ2, . . . , χϕ(k) with χ1 denoting the principal character. For χ 6= χ1 we write L(1, χ) and L′(1, χ) for the sums of the

following series:

L(1, χ) =
∞∑

n=1

χ(n)

n
, L′(1, χ) = −

∞∑
n=1

χ(n) log n

n
.

The convergence of each of these series was shown in Theorem 2.18. Moreover, in Theorem 2.20 we proved that L(1, χ) 6= 0 if χ is

real-valued.
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The Plan of the Proof

Lemma 3.1. For x > 1, we have

∑
p≤x

p≡h (mod k)

log p

p
=

1

ϕ(k)
log x +

1

ϕ(k)

ϕ(k)∑
r=2

χr(h)
∑
p≤x

χr(p) log p

p
+ O(1).

It is clear that Lemma 3.1 will imply Theorem 3.1 if we show that

(26)
∑
p≤x

χ(p) log p

p
= O(1)

for each χ 6= χ1. The next lemma expresses this sum in a form which is not extended over primes.

Lemma 3.2. For x > 1 and χ 6= χ1 we have∑
p≤x

χ(p) log p

p
= −L ′(1, χ)

∑
n≤x

µ(n)χ(n)

n
+ O(1).

Therefore Lemma 3.2 will imply (26) if we show that

(27)
∑
n≤x

µ(n)χ(n)

n
= O(1).

This, in turn, will be deduced from the following lemma.

Lemma 3.3. For x > 1 and χ 6= χ1 we have

(28) L(1, χ)
∑
n≤x

µ(n)χ(n)

n
= O(1).
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If L(1, χ) 6= 0 we can cancel L(1, χ) in (28) to obtain (27). Therefore, the proof of Dirichlet’s Theorem depends ultimately on the

non-vanishing of L(1, χ) for all χ 6= χ1. As already remarked, this was proved for real χ 6= χ1 in Theorem 2.20 so it remains to prove

that L(1, χ) 6= 0 for all χ 6= χ1 which take complex as well as real values.

For this purpose we let N(k) denote the number of nonprincipal characters χ mod k such that L(1, χ) = 0. If L(1, χ) = 0, then

L(1, χ) = 0 and χ 6= χ since χ is not real. Therefore the characters χ for which L(1, χ) = 0 occur in conjugate pairs, so N(k) is even.

Our goal is to prove that N(k) = 0, and this will be deduced from the following asymptotic formula.

Lemma 3.4. For x > 1 we have

(29)
∑
p≤x

p≡ 1 (mod k)

log p

p
=

1−N(k)

ϕ(k)
log x + O(1).

If N(k) 6= 0 then N(k) ≥ 2 since N(k) is even, hence the coefficient of log x in (29) is negative and the right-hand side approaches −∞
as x →∞. This is a contradiction since all the terms on the left are positive. Therefore Lemma 3.4 implies that N(k) = 0. The proof

of Lemma 3.4, in turn, will be based on the following asymptotic formula.

Lemma 3.5. For χ 6= χ1 and L(1, χ) = 0 we have

L ′(1, χ)
∑
n≤x

µ(n)χ(n)

n
= log x + O(1)

47



Proof of Lemma 3.1

To prove Lemma 3.1 we begin with the asymptotic formula∑
p≤x

log p

p
= log x + O(1)

and extract those terms in the sum arising from primes p ≡ h (mod k). The extraction is done with the aid of the orthogonality

relation for Dirichlet characters, namely

ϕ(k)∑
r=1

χr(m)χr(n) =

 ϕ(k) if m ≡ n (mod k),

0 if m 6≡ n (mod k).

This is valid for gcd(n, k) = 1. We take m = p and n = h, where gcd(h, k) = 1, then multiply both members by p−1 log p and sum over

all p ≤ x to obtain

(30)
∑
p≤x

ϕ(k)∑
r=1

χr(p)χr(h)
log p

p
= ϕ(k)

∑
p≤x

p≡h (mod k)

log p

p
.

In the sum on the left we isolate those terms involving only the principal character χ1 and rewrite (30) in the form

(31) ϕ(k)
∑
p≤x

p≡h (mod k)

log p

p
= χ1(h)

∑
p≤x

χ1(p) log p

p
+

ϕ(k)∑
r=2

χr(h)
∑
p≤x

χr(p) log p

p

Now χ1(h) = 1 and χ1(p) = 0 unless gcd(p, k) = 1, in which case χ1(p) = 1. Hence the first term on the right of (31) is given by

(32)
∑
p≤x

gcd(p,k)=1

log p

p
=
∑
p≤x

log p

p
−
∑
p≤x
p|k

log p

p
=
∑
p≤x

log p

p
+ O(1),
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since there are only a finite number of primes which divide k. Combining (32) with (31) we obtain

(33) ϕ(k)
∑
p≤x

p≡h (mod k)

log p

p
=
∑
p≤x

log p

p
+

ϕ(k)∑
r=2

χr(h)
∑
p≤x

χr(p) log p

p
+ O(1).

Using (24) and dividing by ϕ(k) we obtain Lemma 3.1.
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Proof of Lemma 3.2

We begin with the sum ∑
n≤x

χ(n)Λ(n)

n
,

where Λ(n) is Mangoldt’s function, and express this sum in two ways. First we note that the definition of Λ(n) gives us

∑
n≤x

χ(n)Λ(n)

n
=
∑
p≤x

∞∑
a=1
pa≤x

χ(pa) log p

pa
.

We separate the terms with a = 1 and write

(34)
∑
n≤x

χ(n)Λ(n)

n
=
∑
p≤x

χ(p) log p

p
+
∑
p≤x

∞∑
a=2
pa≤x

χ(pa) log p

pa

Since |χ(pa)| ≤ 1, it follows that the second sum on the right is majorized by

∑
p

log p

∞∑
a=2

1

pa
=
∑

p

log p

p(p− 1)
<

∞∑
n=2

log n

n(n− 1)
= O(1),

so (34) gives us

(35)
∑
p≤x

χ(p) log p

p
=
∑
n≤x

χ(n)Λ(n)

n
+ O(1).

Now we recall that

Λ(n) =
∑
d|n

µ(d) log
n

d
,
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hence ∑
n≤x

χ(n)Λ(n)

n
=
∑
n≤x

χ(n)

n

∑
d|n

µ(d) log
n

d
.

In the last sum we write n = cd and use the multiplicative property of χ to obtain

(36)
∑
n≤x

χ(n)Λ(n)

n
=
∑
d≤x

µ(d)χ(d)

d

∑
c≤x/d

χ(c) log c

c
.

Since x/d ≥ 1, in the sum over c we may use Equation (21) of Theorem 2.18 to obtain∑
c≤x/d

χ(c) log c

c
= −L ′(1, χ) + O

(
log x/d

x/d

)
.

Equation (36) now becomes

(37)
∑
n≤x

χ(n)Λ(n)

n
= −L ′(1, χ)

∑
d≤x

µ(d)χ(d)

d
+ O

(∑
d≤x

1

d

log x/d

x/d

)
.

The sum in the O-term is
1

x

∑
d≤x

(log x− log d) =
1

x

(
[x] log x−

∑
d≤x

log d

)
= O(1)

since ∑
d≤x

log d = log[x]! = x log x + O(x).

Therefore (37) becomes ∑
n≤x

χ(n)Λ(n)

n
= −L ′(1, χ)

∑
d≤x

µ(d)χ(d)

d
+ O(1)

which, with (35), proves Lemma 3.2.
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Proof of Lemma 3.3

We use the Generalized Möbius Inversion Formula proved in Theorem 1.10 which states that if α is completely multiplicative we have

(38) G(x) =
∑
n≤x

α(n)F
(x

n

)
if and only if F (x) =

∑
n≤x

µ(n)α(n)G
(x

n

)
.

We take α(n) = χ(n) and F (x) = x to obtain

(39) x =
∑
n≤x

µ(n)χ(n)G
(x

n

)
where

G(x) =
∑
n≤x

χ(n)
x

n
= x

∑
n≤x

χ(n)

n
.

By Equation (20) of Theorem 2.18 we can write

G(x) = xL(1, χ) + O(1).

Using this in (39) we find

x =
∑
n≤x

µ(n)χ(n)
(x

n
L(1, χ) + O(1)

)
= xL(1, χ)

∑
n≤x

µ(n)χ(n)

n
+ O(x).

Now we divide by x to obtain Lemma 3.3.
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Proof of Lemma 3.5

We prove Lemma 3.5 and then use it to prove Lemma 3.4. Once again we make use of the Generalized Möbius Inversion Formula (38).

This time we take F (x) = x log x to obtain

(40) x log x =
∑
n≤x

µ(n)χ(n)G
(x

n

)
where

G(x) =
∑
n≤x

χ(n)
x

n
log

x

n
= x log x

∑
n≤x

χ(n)

n
− x

∑
n≤x

χ(n) log n

n
.

Now use Equations (20) and (21) of Theorem 2.18 to get

G(x) = x log x

(
L(1, χ) + O

(
1

x

))
− x

(
L ′(1, χ) + O

(
log x

x

))
= xL ′(1, χ) + O(log x)

since we are assuming L(1, χ) = 0. Hence (40) gives us

x log x =
∑
n≤x

µ(n)χ(n)
(x

n
L ′(1, χ) + O

(
log

x

n

))
= xL ′(1, χ)

∑
n≤x

µ(n)χ(n)

n
+ O

(∑
n≤x

(log x− log n)

)

= xL ′(1, χ)
∑
n≤x

µ(n)χ(n)

n
+ O(x),

which when we divide by x we obtain Lemma 3.5.

53



Proof of Lemma 3.4

We use Lemma 3.1 with h = 1 to get

(41)
∑
p≤x

p≡ 1 (mod k)

log p

p
=

1

ϕ(k)
log x +

1

ϕ(k)

ϕ(k)∑
r=2

∑
p≤x

χr(p) log p

p
+ O(1).

In the sum over p on the right we use Lemma 3.2 which states that∑
p≤x

χr(p) log p

p
= −L ′(1, χr)

∑
n≤x

µ(n)χr(n)

n
+ O(1).

If L ′(1, χr) 6= 0, Lemma 3.3 shows that the right member of the foregoing equation is O(1). But if L(1, χr) = 0 then Lemma 3.5 implies

−L ′(1, χr)
∑
n≤x

µ(n)χr(n)

n
= − log x + O(1).

Therefore the sum on the right of (41) is
1

ϕ(k)
(−N(k) log x + O(1)) ,

so (41) becomes ∑
p≤x

p≡ 1 (mod k)

log p

p
=

1−N(k)

ϕ(k)
log x + O(1).

This proves Lemma 3.4 and therefore also Theorem 3.1.

As remarked earlier, Theorem 3.1 implies Dirichlet’s Theorem.

Theorem 3.2 (Dirichlet). If k > 0 and gcd(h, k) = 1 there are infinitely many primes in the arithmetic progression nk + h,

n = 0, 1, 2, . . ..
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4 Miscellaneous Problems

Problem 1

Dirichlet’s Theorem implies the following statement: If h and k > 0 are any two integers with gcd(h, k) = 1, there exists at least one prime

of the form kn + h. Prove that this statement also implies Dirichlet’s Theorem.

Problem 2

Prove that for any positive integers n, N there are blocks of consecutive integers of length greater than N , with the property that each of

their totients is divisible by n.

Problem 3

Prove that for any positive integer n an arithmetic progression exists in which the first two terms are primes, the first n terms are pairwise

relatively prime and there are infinitely many primes in the progression.

Problem 4

Prove that if f(x) is a polynomial with rational coefficients such that f(p) is prime for every prime p, then either f(x) = x for all x or f(x)

is the same prime constant for all x.

Problem 5

Let m and n be fixed integers greater than 1, n odd. Suppose n is a quadratic residue modulo p for all sufficiently large prime numbers

p ≡ −1 (mod 2m). Show that n is a square.

Problem 6

Find all positive integers N that are quadratic residues modulo all primes greater than N .

Problem 7

Let pn be the nth prime number. For every N , prove that there exists a positive integer k such that both pk−1 and pk+1 are outside the

interval [ pk −N, pk + N ].
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Problem 8

Construct an infinite set S of primes with the following property: If p, q ∈ S, then gcd(1
2
(p−1), 1

2
(q−1)) = gcd(p, q−1) = gcd(p−1, q) = 1.

Problem 9

Let s(n) denote the smallest r such that −1 is a sum of r squares mod n. Show that s(n) can be computed as follows:

s(n) =


1 if 4 |6 n and p |6 n for all primes p ≡ 3 (mod 4),

2 if 4 |6 n and p | n for some prime p ≡ 3 (mod 4),

3 if 4 | n and 8 |6 n,

4 if 8 | n.

Problem 10

Let b1 < b2 < b3 < · · · be distinct positive integers expressible as sums of two squares of integers. Prove that for any given positive integer

d the equality bn+1 − bn = d holds for infinitely many n.
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