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Abstract. The notion of homogeneous barycentric coordinates provides
a powerful tool of analysing problems in plane geometry. In this paper,
we explain the advantages over the traditional use of trilinear coordi-
nates, and illustrate its powerfulness in leading to discoveries of new
and interesting collinearity relations of points associated with a triangle.

1. Introduction

In studying geometric properties of the triangle by algebraic methods, it has
been customary to make use of trilinear coordinates. See, for examples, [1], [2],
[3], [4], [5]. With respect to a fixed triangle ABC (of side lengths a, b, c, and
opposite angles α, β, γ), the trilinear coordinates of a point is a triple of numbers
proportional to the signed distances of the point to the sides of the triangle. The
late Jesuit mathematician Maurice Wong has given [5] a synthetic construction of
the point with trilinear coordinates cotα : cot β : cot γ, and more generally, in [4]
points with trilinear coordinates a2nx : b2ny : c2nz from one with trilinear coordi-
nates x : y : z with respect to a triangle with sides a, b, c. On a much grandiose
scale, Kimberling [2], [3] has given extensive lists of centres associated with a
triangle, in terms of trilinear coordinates, along with some collinearity relations.

The present paper advocates the use of homogeneous barycentric coordinates
instead. The notion of barycentric coordinates goes back to Möbius. See, for
example, [6]. With respect to a fixed triangle ABC , we write, for every point P on
the plane containing the triangle,

P =
1

�ABC ((�PBC)A+ (�PCA)B + (�PAB)C),

and refer to this as the barycentric coordinate of P . Here, we stipulate that the area
of a triangle XY Z be zero if X, Y , Z are collinear, positive if the orientation of
the vertices is counter - clockwise, and negative otherwise. In terms of barycentric
coordinates, there is the basic area formula.
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Proposition 1 (Bottema [7]). If the vertices of a triangle P1P2P3 have homoge-
neous coordinates Pi = xiA+ yiB + ziC , then the area of the triangle is∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣�.
Often, it is convenient to consider the homogeneous coordinates of P , namely,

�PBC : �PCA : �PAB.
Here is a useful mechanical interpretation: the homogeneous barycentric coordi-
nates of P are “weights” at A, B, C such that the “center of mass” is precisely at
P . For example, every point P on the line BC has homogeneous coordinates of
the form

0 : CP : PB,
in terms of signed lengths of directed segments.

It is clear that a point with homogeneous barycentric coordinates x : y : z
has trilinear coordinates (x/a) : (y/b) : (z/c). Conversely, a point with trilinear
coordinates u : v : w has homogeneous barycentric coordiantes au : bv : cw.

2. Traces of a point on the sides of a triangle

2.1. Coordinates of traces. The first advantage of homogeneous barycentric coor-
dinates is that the coordinates of the traces of a point on the sides of the reference
triangle can be read off easily. Let P = x : y : z in homogeneous barycentric
coordinates. The lines AP , BP , CP intersect the lines BC , CA, AB respectively
at the points X, Y , Z with homogeneous coordinates

X = 0 : y : z,
Y = x : 0 : z,
Z = x : y : 0.

(1)

See figure 1. Conversely, if X, Y , Z have homogeneous coordinates given by (1)
above, then the cevians AX, BY , and CZ are concurrent at a point with homoge-
neous barycentric coordinates x : y : z.

A

B C

P

Z

X

Y

Figure 1. The traces of a point
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2.2. An example: the Nagel point. The Nagel point Na is the point of concurrency
of the cevians joining each vertex to the point of contact of the excircle on its
opposite side. The existence of this point is clear from noticing that the points of
contact X, Y , Z have homogeneous coordinates

X = 0 : s− b : s− c,
Y = s− a : 0 : s− c,
Z = s− a : s− b : 0.

(2)

A

B C

Figure 2. The Nagel point

In barycentric coordinates, this is

Na = (s− a)A+ (s− b)B + (s− c)C normalized
= s(A+B + C) − (aA+ bB + cC) normalized
= s(3G) − (2s)I normalized
= 3G− 2I.

Here, ‘normalized’ means dividing the expression by the sum of the coefficients.
From this we conclude that the Nagel point Na divides the segment IG externally
in the ratio INa : NaG = −2 : 3. This is, of course, a well known result. See, for
example [8].

2.3. Some notable centres. In Table 1, we list the homogeneous barycentric coor-
dinates of some notable centres associated with a triangle ABC , with sides a, b, c,
and semiperimeter s = 1

2(a+ b+ c).
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centre Symbol Homogeneous barycentric coordinates
Centroid G 1:1:1
Incentre I a : b : c

IA −a : b : c
Excentres IB a : −b : c

IC a : b : −c

Gergonne point Ge (s − b)(s − c) : (s − c)(s − a) : (s − a)(s − b)

Nagel point N s − a : s − b : s − c

Symmedian point K a2 : b2 : c2

KA −a2 : b2 : c2

Exsymmedian points KB a2 : −b2 : c2

KC a2 : b2 : −c2

Circumcentre O a2(b2 + c2 − a2) : b2(c2 + a2 − b2) : c2(a2 + b2 − c2)

Orthocentre H (a2 + b2 − c2)(c2 + a2 − b2)
: (b2 + c2 − a2)(a2 + b2 − c2)
: (c2 + a2 − b2)(b2 + c2 − a2)

Table 1. Homogeneous barycentric coordinates of some notable points.

3. Multiplication

3.1. Multiplication of points on a line. The following proposition provides a sim-
ple construction for the product of two points on a segment, and leads to the fruitful
notion of multiplication of points of the plane not on any of the lines defining the
reference triangle.

Proposition 2. LetX1,X2 be two points on the line BC , distinct from the vertices
B, C , with homogeneous coordinates 0 : y1 : z1 and 0 : y2 : z2. For i = 1, 2,
complete parallelograms AKiXiHi with Ki on AB and Hi on AC . The line
joining the intersections of BH1 and CK2, and of BH2 and CK1, passes through
the vertex A, and intersects BC at a point X with homogeneous coordinates 0 :
y1y2 : z1z2.

X1 X2X

H2

H1

K2

K1

X

A

B C

Figure 3. Multiplication of points
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Proof. Consider the cevians BH1 and CK2. Clearly,

CH1

H1A
=
CX1

X1B
=
y1
z1
,

and
AK2

K2B
=
CX2

X2B
=
y2
z2
.

By Ceva’s theorem, the unique point X on BC for which the cevians AX, BH1,
and CK2 are concurrent is given by

BX

XC
· CH1

H1A
· AK2

K2B
= 1.

From this, BX : XC = z1z2 : y1y2, and X is the point 0 : y1y2 : z1z2.
A similar calculation shows that this is the same point for which the cevians

AX, BH2, and CK1 are concurrent. �

3.2. Multiplication of points in a plane. Consider two points Pi, i = 1, 2, with
nonzero homogeneous barycentric coordinates xi : yi : zi. By applying Proposi-
tion 2 to the traces on each of the three sides of the reference triangle, we obtain
three points

X = 0 : y1y2 : z1z2,
Y = x1x2 : 0 : z1z2,
Z = x1x2 : y1y2 : 0.

(3)

The cevians AX, BY , CZ intersect at a point with homogeneous barycentric co-
ordinates

x1x2 : y1y2 : z1z2.
We shall denote this point by P1 · P2, and call it the product of P1 and P2 (with
respect to triangle ABC).

3.3. An abelian group structure. The multiplication of points considered above
clearly defines an abelian group structure on the set G of all points with nonzero
homogeneous barycentric coordinates, i.e., points not on any of the lines defining
the reference triangle. The centroid G is the multiplicative identity, since it has
homogeneous barycentric coordinates 1 : 1 : 1. The inverse of a point P =
x : y : z is precisely its isotomic conjugate ([4]), with homogeneous barycentric
coordinates 1/x : 1/y : 1/z. For this reason, we shall denote by P−1 the isotomic
conjugate of P .

3.4. Isogonal conjugates. The isogonal conjugate ([4]) of a point P = x : y : z
(with nonzero homogeneous barycentric coordinates) is the point

P ∗ =
a2

x
:
b2

y
:
c2

z
.

Note that P · P∗ = a2 : b2 : c2. This is the symmedian point of the triangle,
and can be constructed from the incentre I as I2 = I · I . It is also the isogonal
conjugate of the centroid G = 1 : 1 : 1.
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3.5. Examples. A second advantage of the use of homogeneous barycentric coor-
dinates is that a factorization of the coordinates entails a construction procedures
of the point in question in terms of simpler ones. Consider, for example, the prob-
lem of locating in the interior of triangle ABC a point whose distances from the
sides are in the proportion of the respective exradii. This is the point with trilinear
coordinates

rA : rB : rC =
1

s− a :
1

s− b :
1

s− c,
and appears as X57 in [2]. In homogeneous barycentric coordinates, this is the
point

a · 1
s− a : b · 1

s− b : c · 1
s− c.

As such, it can be constructed as the product I · Ge of the incentre I and the
Gergonne point Ge (see table 1).

4. The square root construction

4.1. The square root of a point. Let P be a point in the interior of triangle ABC ,
with traces X, Y , Z on the sides. The square root of P is an interior point Q
such that Q · Q = P . To locate such a point Q, construct circles with respective
diameters BC ,CA, and AB, intersecting the respective perpendiculars to the sides
through X, Y , Z (respectively) atX′′, Y ′′, Z ′′. Construct the bisectors of the right
angles BX′′C , CY ′′A, AZ ′′B intersecting the sides BC , CA, AB at X′, Y ′, Z ′.
The cevians AX′, BY ′, and CZ ′ are concurrent at the requisite square root Q.
This follows easily from the lemma below.

Lemma 3. LetX be a point on a segment BC . Suppose the perpendicular through
X intersects the circle with diameter BC atX′′. Construct the bisector of the right
angle BX′′C to intersect BC at X′. Then(

BX ′

X ′C

)2

=
BX

XC
.

B CX X′

X′′

Figure 4. Square root of a point
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Proof. Since X′′X ′ bisects the right angle BX′′C , we have

BX ′

X ′C
=
X ′B
X ′C

.

It follows that (
BX ′

X ′C

)2

=
X ′B2

X ′C2
=
BC · BX
BC ·XC =

BX

XC
.

This completes the proof of the lemma. �

4.2. Examples. For example, given a triangle, to construct the point Q whose dis-
tances from the sides are proportional to the square roots of the lengths of these
sides. The trilinear coordinates of Q being

√
a :

√
b :

√
c, the homogeneous

barycentric coordinates are given by a3/2 : b3/2 : c3/2. This point is the square
root of the point a3 : b3 : c3, which is I ·K.

As another example, consider the point with homogeneous coordinates

sin
α

2
: sin

β

2
: sin

γ

2
.

Since

sin2 α

2
=

(s− b)(s− c)
bc

=
(s− a)(s − b)(s − c)

abc
· a

s− a,
we have

sin2 α

2
: sin2 β

2
: sin2 γ

2
=

a

s− a :
b

s− b :
c

s− c ,
and the point in question can be constructed as the geometric mean of the incentre
I = a : b : c and the Gergonne point Ge = 1/(s − a) : 1/(s − b) : 1/(s − c).

5. More examples of collinearity relations

A third advantage of homogeneous barycentric coordinates is the ease of obtain-
ing interesting collinearity relations of points associated with a triangle. We have
already seen one example in §2.2. Here is another interesting example of the use
of homogeneous coordinates.

5.1. Equal-intercept point. Given a triangle, to construct a point P the three lines
through which parallel to the sides of a given point cut out equal intercepts. In
general, the line through P = xA+ yB + zC parallel to BC cuts out an intercept
of length (1−x)a. It follows that the three intercepts parallel to the sides are equal
if and only if

1 − x : 1 − y : 1 − z =
1
a

:
1
b

:
1
c
.

The right hand side clearly gives the homogeneous barycentric coordinates of the
isotomic conjugate of the incentre I . It follows that

I−1 =
1
2
[(1 − x)A+ (1 − y)B + (1 − z)C] =

1
2
(3G− P ).

From this, P = 3G− 2I−1, and can be easily constructed as the point dividing the
segment I−1G externally in the ratio I−1P : PG = 3 : −2. See figure 5. Note
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that an easy application of Proposition 1 shows that the line joining P , G and I−1

does not contain I unless the triangle is isosceles.

I

A

B C

I−1

G

P

Figure 5. Equal-intercept point

In fact, many of the collinearity relations in [2], [3] can be explained by manip-
ulating homogeneous barycentric coordinates. We present a few more examples.

5.2. The point with trilinear coordinates b+c : c+a : a+b. Consider, for example,
the ‘simplest unnamed centre’ X37 in [2], with trilinear coordinates b+ c : c+ a :
a+b. In homogeneous barycentric coordinates, this is a(b+c) : b(c+a) : c(a+b).
Thus,X37 = I ·P , where P is the point with homogeneous barycentric coordinates
b + c : c + a : a + b. This happens to be the point X10 of [2], the Spieker centre
of the triangle, the incentre of the triangle formed by the midpoint of the sides of
the given triangle. Without relying on this piece of knowledge, a direct, simple
calculation with the barycentric coordinates leads to an easy construction of this
point. It is indeed the point which divides the segment IG externally in the ratio
3 : −1.

P = (b+ c)A+ (c+ a)B + (a+ b)C normalized
= (a+ b+ c)(A +B + C) − (aA+ bB + cC) normalized
= (2s)(3G) − (2s)I normalized

=
1
2
(3G− I).

5.3. The Mittenpunkt. Consider the Mittenpunkt X9 with trilinear coordinates s−
a : s − b : s − c, or homogeneous barycentric coordinates a(s − a) : b(s − b) :
c(s−c). While this can certainly be interpreted as the product I ·Na of the incentre
I and the Nagel point Na, we consider the barycentric coordinates:

a(s − a)A+ b(s− b)B + c(s − c)C normalized
= s(aA+ bB + cC) − (a2A+ b2B + c2C) normalized.
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This shows that X9 is on the line joining the incentre I to the symmedian point
K = a2 : b2 : c2. Noting that

a2 + b2 + c2 = 2[s2 − (4R+ r)r], (4)

where R and r are respectively the circumradius and the inradius of the triangle,
(see [8]), we have the symmedian point K dividing the segment IX9 externally in
the ratio (4R + r)r : s2. While this certainly leads to a construction of X9, it is
much easier to locate X9 by finding another collinearity relation. Since

a(s− a) + (s− b)(s− c) = (s− a)(s − b) + (s− b)(s − c) + (s− c)(s − a)
is a symmetric function in a, b, c, say, f(a, b, c), we also have

a(s − a)A+ b(s− b)B + c(s − c)C normalized
= f(a, b, c)G − [(s − b)(s − c)A+ (s− c)(s − a)B + (s− a)(s− b)C]

normalized

From this it follows that X9 is collinear with the centroid G and the Gergonne
point Ge. It can therefore be located as the intersection of the two lines IK and
GGe. The fact that X9 lies on both of these lines is stated in [2], along with other
lines containing the same point.

5.4. Isogonal conjugates of the Nagel and Gergonne points. The isogonal conju-
gate N∗

a of the Nagel point has homogeneous barycentric coordinates

a2

s− a :
b2

s− b :
c2

s− c = a2(s− b)(s − c) : b2(s− c)(s− a) : c2(s− a)(s − b).
Making use of the formula

sin2 α

2
=

(s− b)(s− c)
bc

,

we write this in barycentric coordinates:

N∗
a =

(
a sin2 α

2

)
A+

(
b sin2 β

2

)
B +

(
c sin2 γ

2

)
C normalized

= a(1 − cosα)A+ b(1 − cos β)B + c(1 − cos γ)C normalized
= 2s · I − ((a cosα)A+ (b cos β)B + (c cos γ)C) normalized
= RI − rO normalized.

Here, we have made use of

(a cosα)A+ (b cos β)B + (c cos γ)C =
(

2rs
R

)
O.

A similar calcuation shows that the isogonal conjugate G∗e of the Gergonne point,
namely,

G∗
e = a2(s− a) : b2(s− b) : c2(s− c)

has barycentric coordinate 1
R+r (RI+rO). This means that the isogonal conjugates

of the Gergonne point and the Nagel point divide the segment OI harmonically in
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the ratio of the circumradius and the inradius. These are respectively the internal
and external centres of similitude of the circumcircle and the incircle.

We close by mentioning an interesting geometric property of each of these cen-
ters of similitude of the circumcircle and the incircle.

(i) Through the internal center of similitude G∗e , there are three congruent circles
each tangent to two sides of the triangle. See ([9]).

(ii) The mixtilinear incircles of a triangle are the three circles each tangent to two
sides and to the circumcircle internally. The three segments each joining a vertex
of the triangle to the point of tangency of the circumcircle with the mixtilinear
incircle in that angle intersect at the external center of similitude N∗

a . See ([10]).
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