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102 Lattice polygons

1.1 Pick's Theorem: area of lattice polygon

A lattice point is a point with integer coordinates. A lattice polygon is
one whose vertices are lattice points (and whose sides are straight line
segments). For a lattice polygon, let

I = the number of interior points, and

B = the number of boundary points.

Theorem 1.1 (Pick). The area of a lattice polygonis I + % -1

If the polygon is a triangle, there is a simple formula to find its area
in terms of the coordinates of its vertices. If the vertices are at the points
(71,91, (%2, 92), (3,¥3), then the area is

1 AT 1
— |2 y2 1.
r3 Y3 1

In particular, if one of the vertices is at the origie, 0), and the other
two have coordinate@:, y1), (22, y2), then the area i%\xlyQ — T

Given a lattice polygon, we can patrtition it inpoimitive lattice tri-
angles,i.e., each triangle contains no lattice point apart from its three
vertices. Two wonderful things happen that make it easy to find the area
of the polygon as given by Pick’s theorem.

(1) There are exactl§l + B — 2 such primitive lattice triangles no
matter how the lattice points are joined. This is an application of Euler’s
polyhedral formula.

(2) The area of a primitive lattice triangle is always This follows
from a study of the Farey sequences.

1This formula is valid for arbitrary vertices. It is positive if the vertices are traversed counterclockwise,
otherwise negative. If it is zero, then the points are collinear.



1.2 Counting primitive triangles 103

1.2 Counting primitive triangles

We shall make use of the famous Euler polyhedron formula.

Theorem 1.2.If a closed polyhedron has V' vertices, £ edges and F'
faces, thenV — E + F = 2.

Given a lattice polygon with a partition into primitive lattice trian-
gles, we take two identical copies and glue them along their common
boundary. Imagine the 2-sheet polygon blown into a closed polyhedron.
The number of vertices I8 = 21 + B. Suppose there afE primitive
triangles in each sheet. Then there Are- 27T faces of the polyhedron.
Since every face is a triangle, and each edge is contained in exactly two
faces, we haveE = 3F. It follows that ¥ = 37. Now, Euler’s poly-
hedron formula give$2/ + B) — 3T + 27" = 2. From this, we have
T=2I+B-2.
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1.3 The Farey sequence

Letn be a positive integer. The Farey sequence of oidethe sequence
of rational numbers if0, 1] of denominators< n arranged in increasing
order. We write) = ¥ and1 = 1.

L0l
AR
2 - 5 99
g, 0111
ORI N A S G NN
AR S A - S OO NI VRS
AP N A A A A A O S A OO T
g 0PV P T8 3 5 30405 601
T+ 10 7y 6 5" 42 7) 37 By 7y 20 7y By 30 7y 40 5) 6 70 1°

Theorem 1.3. 1.If % and ’,Z— are successive terms of &,,, then

Eh —hk' =1 and k+k >n.

2. If % ’;— and Z— are three successive terms of &,,, then
h/ B h+h//
k! - k‘—f—k‘”'

The rational numbers if, 1] can be represented by lattice points in
the first quadrant (below the ling = z). Restricting to the left side
of the vertical linex = n, we can record the successive terms of the
Farey sequencé, by rotating a ruler about counterclockwise from the
positivez-axis. The sequence of “visible” lattice points swept through
corresponds t&,,. If P and(@ are two lattice points such that triangle
O P(@ contains no other lattice points in its interior or boundary, then the
rational numbers corresponding b and () are successive terms in a
Farey sequence (of ordertheir denominators).

Corollary 1.4. A primitive lattice triangle has area %
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The Farey polygons?;q and Py

Let ¢(n) be the number of integers satisfyingl < m < n and
ged(m,n) = 1. The Farey sequenck, hasl + >, _, ¢(k) terms. The
polygon®,, contains2 + > 7'_, ¢(k) boundary points and no interior
points. By Pick's formula, its area id, = £ >";'_, #(k). By a calcula-
tion of D. N. Lehmer [Lehmer], for large values of this area is about
% of the (smallest) square containing it:
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Appendix: Regular solids

A regular solid is one whose faces of regular polygons of the same type,
say,n-gons, and each vertex belongs to the same number of faces, say,
m faces. Note that, > 3 andn > 3.

Let V, E, and F' be the numbers of vertices, edges, and faces re-
spectively. ThemF = 2E = mV, andV = 22 F = 2E_ Since

m

V — E+F =2, wehave?X — E + 2£ = 2, From this,

2mn

2(m+n) —mn’

Sincem,n > 3, and we requir&(m + n) > mn, the only possibilities
are as follows.

E V=221 =21 regularsolid

tetrahedron

cube

duodecahedron

octahedron

T wlw|w| S
Wl w| o | w3

icosahedron
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Exercise

1. Can a lattice triangle be equilateral? Why?

2. Can a lattice polygon be regular? Why? [You may make use of the
nontrivial fact thatthe only values of n for which sin 7~ is rational
isn =6.]

3. For B = 3, 4, 6, 8, 9, give an example of a lattice triangle with
exactly one interior point ané boundary points?

4. Give an example of an equilateral lattice hexagon.

5. How many terms does the Farey sequefigehave? [Hint: Give
the answer in terms of the Eulerfunction].

6. The Farey polygorP,, is the lattice polygon whose vertices, taken

in order, are the origin and the poir(ts, /) for % in the Farey se-
guences,,. Here isPs.

Find the area ofs and that ofP,, for a generah.

2|n [Weaver], it is shown that these are the only possible valugs ibfl = 1.
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Lattice polygons

A cross number puzzle

Across
1
4
8

9

11

13
14

17
18

20

21
22

24
27

30
31
32

A perfect square

A palindromic integer

This many degrees Fahrenheit
is 265 degrees Centigrade
With 3-down, a permutation
of the digits O through 9
Second smallest prime of
the formn? +2" +1,n >0
A gross number

19-down minus 18-down
plus 26-down

Number of 2-digit primes
The product of the digits

of this number is 78125
The sum of this number’s
positive divisors is 91

33% + 37

This number is the sum of
the factorials of its digits

A power of 6

The sum of the fourth power

of 5 consecutive triangular numbers

A Mersenne prime
A power of 2
The number of the beast

Down

1 A multiple of 11
2 The product of the positive
divisors of the numb2n2%
3 See 9-across
4 A Fermat prime
5 Product of the first 3 primes
6 Colleague of 1-across
7 In base 2, this number is
written 11010001110001
10 Yet another perfect square!
12 The first prime year after 1950
15 This many degree#’is radians
16 The 17th Fibonacci number
18 210 + 1117
19 The least common multiple of 36
and 1631
20 The number of positive perfect squares
less theo?
23  The number of positive integers
less than 625 which are not divisible by 5
25 The sum of these digits is 15, and
their product is 84
26  Palindromic square
28 The only even prime number
29 20-across minus 28-down
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2.1 Counting interior points of a lattice triangle

A lattice triangle has vertices &, 0), (a,0), and(a, b).

a

a

Counting in two ways, we obtain as

SIS

Note that each of these is the total number of interior points and those on
the hypotenuse (except the two vertices). Therezadéa, b) — 1 points
in the latter group.

If we put these two copies together to form a rectangle, we see that the
interior points along the diagonal are counted twice. Since the rectangle
has(a — 1)(b — 1) interior points, we have exactly

(a—1)(b—1) — ged(a,b) + 1
2
lattice points in the interior of the triangle.

il

a
In particular, ifged(a,b) = 1, then the triangle hag(a — 1)(b — 1)
interior points.
Note that we have an algorithm for computing the gcd of two integers:

ged(a,b) = 2 bij [%J —(a—1)(b-1)+1.
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2.2 Lattice points on a circle

How many lattice points are there on the cirefe+ y> = n2? This
number is usually denoted by (n?). The first few values can be read
from the following figure.

n (112/3]4]5/6|7/8]9/10
ro(n?)
In general, if the number is factored into a product of prime powers
n=2"-T[el ] g

i j

wherep; andg; are prime numbers of the formis + 1 and4k + 3
respectively, then

ra(n?) = 4 [J(2b: + 1).

Thus, for example, the circle of radius 100 has lattice points. On

the other hand, ip is a prime number of the forawn 4 1, then the circle

of radiusp has 12 lattice points. Four of these are on the coordinate axes.
The other 8 are of the forrtita, +b), (+b, +-a), and depend on how the
primep is written as a sum of two squares.
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Appendix: The floor and the ceiling

Thefloor of a real number is the greatest integer not exceeding

|z] ;== max{n € Z:n < z}.

On the other hand, theeiling of z is the least integer not exceeded
by x:
[z] :=min{n € Z: n > z}.

If = is not a half-integer, we denote Ry} the integemnearest x.

Project

Find all integers: for which | \/n| dividesn.
How about[/n ] dividing n?

1itis sometimes called the greatest integer function ahd denoted byz].
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Appendix: Number of lattice points inside a circle

Given a real number, how many lattice points are there inside or on the
circle of radiusr, center at the origin?

Write a computer program to find out exactly how many lattice points
are inside or on the circle radius 100.

For large values of?, the numberK (R) of lattice points inside and
on the circle of radius/R satisfies

TR —7(2V2VR —2) < K(R) < 7R+ 7(2V2VR + 2).
This is often expressed by writing
K(R) = nR+ O(VR).

Appendix: Number of lattice points under a hyperbola

Given a real numbeR, how many lattice points in the first quadrant are
under the hyperbolay = R (but not on the axes)?

This number is

1<n<|R]

As a crude estimatd{(R) = Rlog R + O(R). A better estimate was
given by Dirichlet

H(R) = Rlog R+ (2y — 1)R+ O(VR).

Here,v is the Euler constant

1 1 1
lim (1+=4=+---+— | —logn ~ 0.5772157 - - - .
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Lattice points

Exercise

1.

Consider the lattice triangld BC with A = (0,0), B = (36, 15)
andC = (16, 30). Calculate the lengths of the sides of the triangle.
What is the area of the triangle? How many boundary and interior
points does it have?

. Repeat the same for the lattice triangl&C with A = (0,0), B =

(24,45) andC' = (48, 55).

. Give an example of a lattice triangle whose side lengths are 13, 14,

15. What is the area? How many interior and boundary points does
the triangle have?

. There is a list ofn statements. Fok = 1, 2, ...,n, the k-th

statement reads:

The number of false statements in this list is greater than k.

Determine the truth value of each of these statements.

. Solve the equation

22

. Write 97 as a sum of 2 squares and find the lattice points on the

circle of radius 97.
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Project: Cross number puzzle

Fill in the accompanying square with distinct 2-, 3-, and 4-digit numbers
which are perfect squares, none of which begins with 0.
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1 Equilateral triangle inscribed in a rectangle
2 Construction
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3.1 Equilateral triangle inscribed in a rectangle

Given a rectangled BC'D, how can we choose a poiaton BC and a
point@ on C'D such that trianglel PQ is equilateral?

D x Q a—x o
b—y
b
-
Yy
A a B

SupposedB = DC = a, BC = AD = b, DQ = x, andBP = y.
These satisfy

a4y =0+ =(a—2)*+ (b—1y)*
From these2(az + by) = a® + y* = b* + 22, and we have
(2% — 2ax + b*)? = 4b*(V? + 2°) — 4a*V*.
This can be rewritten as
(2% + %) ((2® + b*) — dax — 4b*) =0,

from which
T =2a — \/§b.

Similarly, y = 2b — v/3a.
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3.2 Construction of equilateral triangle inscribed in a

rectangle

What is more interesting is that the above calculation leads to a very easy
construction of the equilateral triangieX'Y".

Construction 3.1. Construct equilateral triangleBC'Y andC' DX so
that X andY are in the interior of the rectangle.Join AX to intersect
BC at P andAY tointersecCU'D at@. ThenAXY is equilateral.

Q c
-
\ 7 /
\ ~ /
\\ /// //
\ e /
\ P /
\ P /
\ P /
\ — /
\\ /// //
-
- /
N ¢ — — — — Y /
N
\\\ /
AN /
NS /
\ ~ /
\ N /
\ S /7
\ W
\ / ~
\ / S
\ / S
\ / AN
\Xx/ P
~
~
M B

1This is not always possible.
rectangle?

What is the range of the ratior X andY to be in the interior of the
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Exercise

1. Show that Are@ABP) + AreaADQ) = Area(C' PQ).
D Q c

P

A B

2. Take a9 x 10 rectangleABC' D and obtain the equilateral triangle
APQ by folding.

3. Pisapointinthe interior of arectangeBC D. Supposel P = a,
BP = b, CP = c. Find the distanc® P in terms ofa, b, c.

A

B C

4. A pavement of widthl is constructed across a rectangular field of
dimensions: by b. What is the area of the pavement?

A a P B
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5. A piece of8 x 11 paper is to be cut into a pattern that can be folded
into a cube. Find the largest cube that can be obtained, and the
percentage of the paper wasted.

6. What is the length of the paper if the cornéiis on the edge, and
the width is 8 units?
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4.1 Geometric mean

We present two ruler-and-compass constructions of the geometric means
of two quantities given as lengths of segments. These are based on Eu-
clid’s proof of the Pythagorean theorem.

Construction 4.1. Given two segments of lengthh < b, mark three
points P, A, B on a line such thaPA = a, PB = b, and A, B are
on thesame side of P. Describe a semicircle witl®B as diameter,
and let the perpendicular throughintersect the semicircle &. Then
PQ? = PA - PB, so that the length aP() is the geometric mean aof
andb.

Construction 4.2. Given two segments of length b, mark three points
A, P, B on a line (P betweenA and B) such thatPA = a, PB = b.
Describe a semicircle wittl B as diameter, and let the perpendicular
throughP intersect the semicircle &. ThenPQ? = PA - PB, so that
the length ofP(Q is the geometric mean afandb.
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4.2 Harmonic mean

Let ABC' D be atrapezoid wittld B//C D. If the diagonalsAC' and BD
intersect ati, and the line througlk™ parallel toAB intersectAD and
BC at P andQ respectively, ther(Q is the harmonic mean of B and

CD:
2 1 1

PO AB T CD

Another construction

Ve harmonic mean




126 Basic geometric constructions

4.3 Equal subdivisions of a segment

Here is an algorithm to divide a given segment intet 2*+1 equal parts,
making use of the binary representationmfwhich contains not more
thank + 1 digits.

Construct a squar@ BC'D on the given segment. By repeated bisec-
tions of C'D, introduce the pointé’'y, Cs, ..., C) such that

We also putCy = C.

Letn < 2¥+1. Its binary representation has no more thanl1 digits.
Suppose it has: + 1 nonzero binary digits.

Along the directionC'D, relabel those points corresponding to the
nonzero digits, as@o, Q1, ..., Q. *

Let P, be the (orthogonal) projection 6§, on AB.

For eachj = 1,...,m, construct the segment§_, D andAQ);, and
mark the projection of their intersection o3 as the pointP;.

ThenP,, is the point which divides! B into n equal parts.

Here is the case for = 13 with binary representationl 01,.

D Q2 Q1 C =Qq

|
|
|
|
l

It would be interesting if this procedure can be modified to give a
simple construction of subdivision points with ratie : n instead of
1:n.

1For example, ifn. = 13, which has binary representatidn0lz, we relabelCy asQq, C2 asQ1, and
Ca asQ2.
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4.4 The Ford circles

The Ford circle of a rational number= § is the circle of radiug% in
the upper half plane tangent to theaxis at the pointr, 0).

The Ford circles of two distinct rational numbers are either disjoint
or tangent to each other externally. In the latter case we say that two
rational numbers aradjacent.

Theorem 4.1. Two rational numbers are adjacent if and only if they are
consecutive termsin a Farey sequence.

Corresponding to each Farey sequence, there is a sequence of tangent
Ford circles. Here are the Ford circles correspondirsto

Exercise

1.f 2 and L are adjacent rational numbers, what is the point of tan-
gency of their Ford circles?
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Appendix: Some basic construction principles

Theorem 4.2 (Perpendicular bisector locus)Given two distinct A and
B onaplane, apoint P isequidistant from A and B if and only if P lies
on the perpendicular bisector of the ssgment AB.

Theorem 4.3 (Angle bisector locus)A point P is equidistant from two
given intersecting lines if and only if it lies on the bisector of an angle
between the two lines.

Note that two intersecting lines have two angle bisectors.

Theorem 4.4.1f two circles are tangent to each other, the line joining
their centers passes through the point of tangency.

The distance between their centersisthe sum (respectively difference)
of their radii if the tangency is external (respectively internal).

° O
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The Geometer’s Sketchpad

Basic commands

e Construct points, segments, lines, circles.
e Construct a segment, ray, or line through two specified points.

e Construct a circle given its center and a point on it. Construct a
circle given its center and radius.

e Construct the intersection of two objects.
e Construct the midpoint of a segment.

e Given aline/ and a pointP, construct lines perpendicular and par-
allel to ¢ throughP.

e Translate, rotate, and dilate.

¢ Hide an object. (If the sketch you are making becomes too compli-
cated, you may wish to hide some of the objects to make it simpler.
Note that this iswot the same as “delete”).

e Label an object. Change the name of the object.
e Save a Sketch.

e Create New Tool.

Toolbox

Open anew sketch. Select a segment and build an equilateral triangle
on it. Hide everything except the vertices and sides of the equilateral
triangle. Select everything by dragging the mouse from top left to bot-
tom right. SelecCreate New Tool, and type a name for the tool, say,
equilateral triangle. A new tool will now appear.

Save this as a filebasic shapes.gsp in the foldertool folder.

From theFile menu, chooseDocument options, Add page, Blank
page. On this blank page, construct a square on a segment. Select
Create new tool and name thisquare. Save the file.

You can extend thidasic shapes.gsp tool by opening new blank
pages and creating new tools. Remembesaize the file.

The currentbasic shape.gsyiile contains the following tools: equi-
lateral triangle, square, rectangle, right triangle, parallelogram, rhombus.
You may of course add your own tools to the same file.
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Exercise

1. GiventriangleA BC, construct the equilateral triangl&s' X, CAY
and ABZ externally on the sides of the triangle. JoiX, BY,
C'Z. What can you say about the intersections, lengths, and direc-
tions of these lines (segments)?

2. Show that thed0° angle of a right triangle is bisected by the line
joining it to the center of the square on the hypotenuse.

3. Make a sketch to show that for two given positive quantitiesd
b,

a+b2m2 2ab'
2 a+b

4. Construct the following diagram.

B A

C D

5. Construct the following diagram.

B

kS
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6. Two congruent circles of radii have their centers on each other.
Consider the circle tangent to one of them internally, the other ex-
ternally, and the line joining their centers. It is known that this
circle has radiusfl—ga. Construct the circle.

7. An equilateral triangle of sid2a is partitioned symmetrically into
a quadrilateral, an isosceles triangle, and two other congruent trian-
gles. If the inradii of the quadrilateral and the isosceles triangle are
equal, the common inradius@s/g— \/§)a. Construct the partition.

8. Outline a simple procedure to divide a segmentinto 123 equal parts.
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5.1 gcd(a,b) as an integer combination ofe and b

It is well known that the gcd of two (positive) integetsandb can be
calculated efficiently by repeated divisions. Assume- b. We form
two sequences, andg; as follows. Beginning withr_; = a andry = b,
fork > 0, let

Tk—1

qr = {—r J ; Thp1 = mod(rg_1,7%) 1= rg_1 — QkT%-
k

These divisions eventually terminate when somédividesr,_;. In that
caseged(a,b) = ry,.

If, along with these divisions, we introduce two more sequefcgs
and(y;) with the same rule but specific initial values, namely,

Tht1 =Tp—1 — kT,  To1 =1, x9=0;
Yes1 =Yk—1 — @Yk, Y-1=0, yo =1
then we obtairged(a, b) as an integer combination afandb: *

ged(a, b) = r, = ax, + by,.

LA 0 ome [ [ 2 | e ]
-1 a * % % 1 0
0 b LT[0 |1
1 a—[3]0| ;7] ]| = Y1
n — ]- Tn—1 gn—1 | Tn—1 | Yn—1
n /rﬂ (]TL ’/I’ITL :UTL
n—+1 0

It can be proved that:,,| < b and|y,| < a.

Theorem 5.1. Given relatively prime integers a > b, there are unique
integers h, k < a such that ak — bh = 1.

Proof. Clearly, z,, andy,, are opposite in sign. Také, ) = (z,, —y»)
or (b + x,,a —y,) according as;,, > 0 or < 0. ]
Corollary 5.2. Let p bea prime number. For every integer a not divisible
by p, there exists a positive integer b < p such that ab — 1 isdivisible by
p-

1In each of these steps, = axj, + bys.
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5.2 Nonnegative integer combinations of and b

Find thelargest positive integer whicltannot as7x + 11y for integers
x,y > 0.

Let S := {7z + 11y : x, y nonnegative integers}. Arrange the posi-
tive integers in the form

8§ 15 22« 29 36 43 50 57 64 71

9 16 23 30 37 44« 51 58 65 T2
10 17 24 31 38 45 52 59 66x 73
11» 18 25 32 39 46 53 60 67 74
1219 26 33« 40 47 54 61 68 75
13 20 27 34 41 48 55%x 62 69 76
14 15 28 35 42 49 56 63 70 77

N OO W N

Observations: (i) Every number in the bottom row, being a positive
multiple of 7, is inS.
(i) Among the first 11 columns, along each of the first 6 rows, there is
a unique entry (with asterisk) which is a multiple of 11. This entry with
asterisk, and those on its right along the row, arg.in
(iif) None of the entries on the left of an entry with asterisk isSin
(iv) The entries with asterisks are on different columns.
(v) The rightmost entry with an asterisk is 66. From this, feest
integernot in S is66 — 7 = 59.

Theorem 5.3. Let ¢ and b be given relatively prime positive integers.
Every integer greater than ab — a — b can be written as ax + by for
nonnegative integers z and y.

Proof. Let S := {ax + by : x,y nonnegative integers}.

Suppose, for a contradiction) — a — b = ax + by, z,y > 0. Then
ab = a(x +1)+b(y+1). Note thata|b(y + 1). Sinceged(a,b) = 1, we
must have:|y + 1. Buty + 1 is a positive integesmaller thana. This is
clearly a contradiction. From thigh —a — b ¢ S.

Every integett in the rangd) < t < a can be written as = au — bv
for0 < u < band0 < v < a. (Chooseu € {1,2,...,b— 1} such that
au =t (mod b). Then0 < au —t < ab. It follows thatau — t = bv
for somel < v < a. Thus, every positive integet a + b is of the form
au—>bv,0 <u <b,0<wv<a. Supposéa—1)(b—1) <n < ab. Then
ab—n <a+b. Writeab—n=au—bvfor0<u<bandl < v < a.
From this,n = a(b — u) + bv. This shows that € S. ]
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5.3 Cassini formula for Fibonacci numbers

The Fibonacci numberE,, are defined recursively by
FnJrl:Fn—i_anla FO:07F1:1'
The first few Fibonacci numbers are

n|0123456 7 8 9 10 11 12
F,]0 1 1 235 8 13 21 34 55 89 144

It is easy to see that

ged(Epq1, Fr) =ged(Fy,, Frq)
- ng(Fn—la Fn—2)

:ng(FQ, Fl) =1.

However, following the euclidean algorithm, we obtain the Cassini for-
mula
Fop By — F2 = (—1)™.

Lk o Jae [ o | o |

—1 || Foyqp | %% 1 0

0 E, 1 0 1

1 Fooi| 1 F —F

2 EF, o 1 -5 E;

3 EF,s| 1 F —Fy
n—3 F3 1 (_1)71—2[7”73 (_1)n—1Fn72
n—2 F2 1 (-1)”71Fn,2 (-1)” n—1
n—1| B | 1 | (—D)"Fpy | (=1)""'F,

n 0 * %k
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5.4 gcd of generalized Fibonacci and Lucas numbers
Givena andb, the generalized Fibonacci sequetide, b)
F,1=aF, +bF,,, Fy=0, F,=1.
There is also an accompanying Lucas sequérieed)
Lpi1=aL,+bF,_1, Ly=2, L =a.

Theorem 5.4. Let a and b be relatively prime integers. The associated
Fibonacci and Lucas sequences satisfy

ng(uWH un) = Ugcd(m,n)-

Examples
(a,b) £ LY Lucas
(1,1) F, Fibonacci| L,  Lucas
(1,-1) periodic periodic
(2,-1) n  natural 2 constant
(3,—2) |2"—1 Mersenne | 2" + 1 Fermat
(11,-10) 1,  repunits | 10,41

Corollary 5.5. 1. ged(2™ — 1, 2" — 1) = 2&dmm) _ 1,
2. ged(Fn, ) = Facd(mon)-

3. ng(lrm 1n) - 1gcd(m,n)-
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Exercise
1. Find the gcd of the following pairs of numbers by completing the
second column of each table.

Express the gcd as an integer combination of the given numbers by
completing the last two columns.

‘ Tk ‘ qk ‘ Tk ‘ Yk ‘
54321 %k % 1 0
12345 0 1
‘ Tk ‘ 4k ‘ Tk ‘ Yk ‘
267914296 * ok K 1
196418 0 1

2. Find the immediate neighbors é? in Fs;.

3. Find the immediate neighbors of the fractignin the Farey se-
quenced,,.

4. Somebody received a check, calling for a certain amount of money
in dollars and cents. When he went to cash the check, the teller
made a mistake and paid him the amount which was written as
cents, in dollars, and vice versa. Later, after spending $ 3.50, he
suddenly realized that he had twice the amount of the money the
check called for. What was the amount on the check ?
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Project

Generalize

81 6561

67 " 5623
81 6561

67 T 5623
81 6561

67 T 5623
81 6561

“ 57 T 5623
81 6561

X — X ——
67 5623

N W W] Wi
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Project

Write down two 1’s, then a 2 between them, then a 3 between any two
numbers whose sum is 3, then a 4 between any two numbers whose sum
is 4, and so forth. How many’s are there in the sequence?
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6.1

Primitive Pythagorean triples

It is well known that every primitive Pythagorean trigle b, ¢) is of the

form

a=m?>—n? b=2mn, c=m?+n?

for relatively prime integers: andn of different parity.

A C

2mn

Some basic properties of Pythagorean triples:

1.
2.
3.
4.

Exactly one leg is even.
Exactly one leg is divisible by 3.
Exactly one side is divisible by 5.

The area is divisible by 6. Fermat has proved that the area of

a Pythagorean triangle can never be a square. Indeed, there is
no Pythagorean triangle with two sides whose lengths are square
(numbers).
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6.2 Primitive Pythagorean triangles with square perime-
ters

If m > n are relatively prime integers of opposite parity, they generate a
primitive Pythagorean tripléa, b, ¢) = (m? — n?, 2mn, m? + n?) with
perimeterp = 2m(m + n). If this perimeter is a square (number), we
must haven = 2¢% andm + n = p? for some integerg andq. From
these(m,n) = (2¢*, p* — 2¢?).

a =m® —n® = p*(4¢° - p?),
b =2mn = 4¢*(p* — 2¢°),
c=m?+n? = p' — 4p*¢* + 8¢*.

Note thatp is odd,[v/2¢] < p < 2¢, andged(p, ¢) = 1. The perime-
ter isdp?q® = (2pq)>.

Here are the first few of such triangles. The last column gives the
square root of the perimeter.

p q|l m n a b c 2pq
3 2] 8 1 63 16 65 12
5 3118 7 | 275 252 373 | 30
7T 432 17 | 735 1088 1313 | 56
9 5150 311 1539 3100 3461 | 90
11 6 | 72 49 | 2783 7056 7585 | 132
11 7198 23] 9075 4508 10133 | 154
13 7198 71| 4563 13916 14645 | 182
13 8 | 128 41 | 14703 10496 18065 | 208
15 8 | 128 97 | 6975 24832 25793 | 240
13 9 162 7 |26195 2268 26293 | 234
17 9 (162 12710115 41148 42373 | 306
17 101|200 89 |32079 35600 47921 | 340
19 101|200 16114079 64400 65921 | 380
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6.3 Lewis Carroll's conjecture on triples of equiareal
Pythagorean triangles

Lewis Carroll conjectured that there is an infinity of Pythagorean trian-
gles with equal areas. I, ¢,r) satisfyp® + pq + ¢*> = r?, then the
Pythagorean triangles generated(byp), (r, q), and(p + ¢, r) have the
same areagr(p + ¢q). Since there is an infinity of such triangles, there
conjecture is established. This is essentially in Diophantus.
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6.4 Points at integer distances from the sides of a prim-
itive Pythagorean triangle

Let (a,b,c) be a primitive Pythagorean triangle, with vertices0),

(0,b), and(0,0). The hypotenuse is the line: + ay = ab. The dis-

tance of an interior poinz, y) to the hypotenuse i5(ab — bz — ay). We

seek interior points which are at integer distances from the hypotenuse.
With the parameters (6,1) we have the Pythagorean triangle (35,12,37).

Here the five points (29,1), (23,2), (17,3), (11,4), (5,5) are at distances 1,

2, 3, 4, 5 from the hypotenuse.

S~
- =N

~ 7 ===

& ~ o — g
0 35

Another example: with paramters (5,2) we have the triangle (21,20,29).
Here we have the interior points (8,11), (16,2), (3,13), (11,4), (6,6), (1,8),
(4,1) at distances 1, 2, 3, 4, 6, 8, 11 from the hypotenuse. The arrange-
ment is not as regular as the previous example.
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6.5 Dissecting a rectangle into Pythagorean triangles

How many matches (of equal lengths) are required to make up the fol-
lowing figure?

D T Q a—1I c
b—y
w
b v P
u
Yy
A B

a

This is Problem 2237 of thdournal of Recreational Mathematics,
which asks for the
(i) the smallest such rectangle,
(ii) the smallest such rectangle withP = AQ),
(iif) the smallest such rectangle withP(@) Pythagorean,
(iv) the smallest square.

In (iii), the three right triangles) PC, AQD and APQ are similar.
If they are similar to the Pythagorean triangle b : ¢, the ratios of
similarity are alsoa : b : c. If we putCP = a2, then the lengths
of the various segments are as shown below. NoteAlaf now is a
Pythagorean triangle with parametéranda. With (a, b, c¢) = (3,4, 5),
we obtain the smallest rectangle satisfying (iv). This also answers (i)
since itis clearly also the smallest rectangle (with any restrictions).

D ab Q ab c
ac

(L2
9 be
b S P

2=

b2 _ o2

A B

(i) is also tractable without the help of a computer. Here, we want
two Pythagorean triangles with the same hypotenuse. It is well known
that the smallest such hypotenuse is 65. Indésd,= 632 + 162 =
562 + 33%. From this it is easy to complete the data.

The answer to (iv) is given in the Appendix.
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Appendix: Primitive Pythagorean triples < 1000
| m,n | a,b,c || m,n | a,b,c || m,n | a,b, c || m,n | a,b,c |
2,1 3,4,5 3,2 5,12, 13 4,1 15,8, 17 4,3 7,24, 25
5,2 21, 20, 29 5,4 9,40, 41 6,1 35,12, 37 6,5 11, 60, 61
7.2 45, 28,53 7.4 33, 56, 65 7, 13,84, 85 8,1 63, 16, 65
8,3 55,48, 73 8,5 39, 80, 89 8,7 | 15,112,113 9,2 77,36, 85
9,4 65, 72,97 9,8 | 17,144,145 || 10,1 | 99,20, 101 10,3 | 91,60, 109
10,7 | 51,140,149 || 10,9 | 19,180,181 || 11,2 | 117,44,125 || 11,4 | 105,88, 137
11,6 | 85,132,157 || 11,8 | 57,176,185 || 11,10 | 21,220,221 || 12,1 | 143,24,145
12,5 | 119,120,169 || 12,7 | 95,168,193 || 12,11 | 23,264,265 || 13,2 | 165,52,173
13,4 | 153,104,185 || 13,6 | 133,156,205 || 13,8 | 105,208,233 || 13,10 | 69,260,269
13,12 | 25,312,313 || 14,1 | 195,28,197 || 14,3 | 187,84,205 || 14,5 | 171,140,221
14,9 | 115,252,277 || 14,11 | 75,308,317 || 14,13 | 27,364,365 || 15,2 | 221,60,229
15,4 | 209,120,241 || 15,8 | 161,240,289 || 15,14 | 29,420,421 || 16,1 | 255,32,257
16,3 | 247,96,265 || 16,5 | 231,160,281 || 16,7 | 207,224,305 || 16,9 | 175,288,337
16,11 | 135,352,377 || 16,13 | 87,416,425 || 16,15 | 31,480,481 || 17,2 | 285,68,293
17,4 | 273,136,305 || 17,6 | 253,204,325 || 17,8 | 225,272,353 || 17,10 | 189, 340, 389
17,12 | 145,408,433 || 17,14 | 93,476,485 || 17,16 | 33,544,545 || 18,1 | 323,36,325
18,5 | 299,180,349 || 18,7 | 275,252,373 || 18,11 | 203, 396,445 || 18,13 | 155, 468, 493
18,17 | 35,612,613 || 19,2 | 357,76,365 || 19,4 | 345,152,377 || 19,6 | 325,228,397
19,8 | 297,304,425 || 19,10 | 261,380,461 || 19,12 | 217, 456,505 || 19,14 | 165,532, 557
19,16 | 105,608,617 || 19,18 | 37,684,685 || 20,1 | 399,40,401 || 20,3 | 391,120,409
20,7 | 351,280,449 || 20,9 | 319,360,481 || 20,11 | 279,440,521 || 20, 13 | 231, 520, 569
20,17 | 111,680,689 || 20,19 | 39,760,761 || 21,2 | 437,84,445 || 21,4 | 425,168,457
21,8 | 377,336,505 || 21,10 | 341,420,541 || 21,16 | 185,672,697 || 21,20 | 41,840,841
22,1 | 483,44,485 || 22,3 | 475,132,493 || 22,5 | 459,220,509 || 22,7 | 435,308, 533
22,9 | 403,396,565 || 22,13 | 315,572,653 || 22,15 | 259,660,709 || 22,17 | 195,748,773
22,19 | 123,836,845 || 22,21 | 43,924,925 || 23,2 | 525,92,533 || 23,4 | 513, 184, 545
23,6 | 493,276,565 || 23,8 | 465,368,593 || 23, 10 | 429,460,629 || 23,12 | 385,552, 673
23,14 | 333,644,725 || 23,16 | 273,736,785 || 23,18 | 205,828,853 || 23,20 | 129,920, 929
24,1 | 575,48,577 || 24,5 | 551,240,601 || 24,7 | 527,336,625 || 24, 11 | 455, 528, 697
24,13 | 407,624,745 || 24,17 | 287,816,865 || 24,19 | 215,912,937 || 25,2 | 621, 100, 629
25,4 | 609,200,641 || 25,6 | 589,300,661 || 25,8 | 561,400,689 || 25,12 | 481, 600, 769
25,14 | 429,700,821 || 25,16 | 369,800,881 || 25,18 | 301,900,949 || 26,1 | 675,52,677
26,3 | 667, 156,685 || 26,5 | 651,260,701 || 26,7 | 627,364,725 || 26,9 | 595,468, 757
26,11 | 555,572,797 || 26,15 | 451,780,901 || 26,17 | 387,884,965 || 27,2 | 725, 108, 733
27,4 | 713,216,745 || 27,8 | 665,432,793 || 27,10 | 629,540,829 || 27,14 | 533,756, 925
27,16 | 473,864,985 || 28,1 | 783,56,785 || 28,3 | 775,168,793 || 28,5 | 759,280,809
28,9 | 703,504,865 || 28,11 | 663,616,905 || 28,13 | 615,728,953 || 29,2 | 837,116,845
20,4 | 825,232,857 || 29,6 | 805,348,877 || 29,8 | 777,464,905 || 29,10 | 741, 580, 941
29,12 | 697,696,985 || 30,1 | 899,60,901 || 30,7 | 851,420,949 || 31,2 | 957, 124,965
31,4 | 945,248,977 || 31,6 | 925,372,997
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Appendix: Dissection of a square

136

224

255

105

289

424

375

360

360
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Exercise

1. A man has a square field, 60 feet by 60 feet, with other property
adjoining the highway. He put up a straight fence in the line of 3
trees, atd, P, (). If the distance betweeR and() is 91 feet, and
that from P to B is an exact number of feet, what is this distance?

60

A B

60
97

D c

2. What is the least number of matches of equal lengths to make up
the following configuration?

3. What is the least number of matches of equal lengths to make up
the following configuration?

4. Do there exist Pythagorean triangles whose sides are Fibonacci
numbers?

5. Give an example of a primitive Pythagorean triangle in which the
hypotenuse is a square.

6. Give an example of a primitive Pythagorean triangle in which the
even leg is a square.
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10.

11.

12.

. Give an example of a primitive Pythagorean triangle in which the

odd leg is a square. triangle to be a square?

. Find the shortest perimeter common to two different primitive Pythagorean

triangles.

. Find an integer-sided right angled triangle with sidés- 1, y> — 1

22 — 1, wherez, y, z are integers.

The number oprimitive Pythagorean triangle with a fixed inradius
is always a power of 2.

Show that there are an infinite number of Pythagorean triangles
whose hypotenuse is an integer of the fai383 - - - 3.

For each natural number, how many Pythagorean triangles are
there such that the areasstimes the perimeter ? How many of
these are primitive ?
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Project: Factorable 2> + px + ¢

Theorem 6.1.Let p and ¢ berelatively primeintegers. The polynomials
r? + px + ¢ are both factorable (over integers) if and only if |p| and
|q| are respectively the hypotenuse and area of a primitive Pythagorean
triangle.
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Project: 64 primitive Pythagorean triangles with a common hypotenuse

A product ofn + 1 distint prime numbers of the fornbk + 1 can be
written a sum of two squares ¥t different ways, repeatedly by making
use of the identity

(27 + y1) (23 + v3) = (v122 — 1192)° + (T1y2 + T211)°.

The first 7 primes of the formdk + 1 are 5, 13, 17, 29, 37, 41, and 53.
Their product is 2576450045. What are the 64 triples?
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Project: Primitive Pythagorean triangles with equal perimeters

perimeter

m+n

2m

m

n

a

b

c

1716

33

39

14280

85

105

119

317460

407

429

481

555

1542684

899

957

1023

1131

1209

6240360

1785

1955

1995

2185

2261

2415

19399380

3135

3315

3553

3705

3927

4199

4389
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Project: Two pairs of primitive Pythagorean triples with almost
equal perimeters

In a class in Number Theory the professor gave four students the assign-
ment of finding a fairly large primitive Pythagorean triangle using the
well known formula for the legs:

A=2mn, B=m?-n* C=m>+n?

wherem andn are coprime integers, not both odd. The four students
produced four entirely different primitive triangles, but on comparing
them it was found that two of them had the same perimeter, while the
other two also had the same perimeter, this perimeter differing from the
first one by 2. This interested the class greatly, and much time was spent
in an effort to find other such sets, only to discover that there were only
four such sets with perimeters less than 500,000. Can you find at least
one such set ?

perimeter || m+n |2m | m | n a b c
117390 273
301
117392 253
319
313038 459
527
313040 455
559
339150 425
475
525
339152 451
517
371448 469
603
371450 437
475
575
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Project: Cross number puzzle on primitive Pythagorean triplest

14 15

20

33

11

16

24

29

21

34

22

35

1B,3D,9B 29B,7A,21D 12B, 11U, 20U
2D,6D,5B 19U, 15D, 7D 22D, 18B, 15U
27A,2D, 26D 204,8D,8A 164, 314, 334
5D, 3A,25B 30D, 144,94 16B,24D,23B
28D, 354, 3U 30U, 9U, 13D 224, 32U, 32D
4U,21A,21D 19U, 17D, 10A 32U, 344, 33A

The answers are distinct 2- and 3-digit decimal numbers, none be-
ginning with zero. Each of the above sets of answers is a primitive
Pythagorean triple, in increasing size, so that the third member is the
hypotenuse.

A =across, B =back, D =down, U =up.

For example] B has its tens and units digits in the squares labelled 2
and 1 respectivelyt1U is a 3-digit number with its tens and units digits
in squares 16 and 11 respectively.

1R. K. Guy, Problem 1153rux Math., 12 (1986) 139.
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7.1 The Chinese tangram

It is known that exactly 1Zonvex polygons can be formed from the
tangram?! Show them?

A very interesting book on the Chinese tangram has recently ap-
peared: J. Slocunfhe Tangram Book, Sterling, New York, 2003. | fi-
nally know what the mysterious Chinese character on p.45 of Dudeney’s
Amusements in Mathematicsis. The undeciphered Chinese character is
zhuo, to drink. The Chinese inscription reads

Liang rén dui zhud (Two people having a drink togethgr
CI gi giao zhi hudjing y&! (what a sublimity of the tangrar!

1F. T. Wang and C. C. Hsiung, A theorem on the tangramerican Math. Monthly, 49 (1942) 596-599.
2There are 1 triangle, 6 quadrilaterals, 2 pentagons, and 4 hexagons.
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7.2 A British tangram

The seven pieces of the puzzle can be fitted together as shown in the
figure to make a perfect square. All sloping lines aré>at and the lines
which intersect the outer square do so at the midpoints of the sides. Find
all ways of making a rectangle using all of these pieées.

3Singmaster, Problem 26Journal of Recreational Math., 6 (1973) 152—153.
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7.3 Another British tangram

Ten pieces of the puzzle can be fitted together as shown in the figure to
make4 x 5 rectangle. All sloping lines are d6°. 4

(1) Are there any solution with the green square in a corner or not
touching a side?

(2) Prove of disprove: any solution has the two gray trapezoids and
the green square in the above relative positions.

(3) Find all solutions.

4Singmaster, Problem 812urnal of Recreational Math., 13 (1980-1981) 62-63.
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Project

Show how to dissect a 3-4-5 triangle into 4 pieces that may be rearranged
into a square>

5S. Rabinowitz, Problem 1299¢urnal Recreational Math., 16 (1983—-1984) 139.
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The following triangle centers have been known since ancient times.
We shall adopt the following notations. LétBC' be a given triangle.
The lengths of the sideBC', C'A, AB opposite toA, B, C are denoted
by a, b, c.

8.1 The centroid

The centroidd is the intersection of the three medians. It divides each
median in the rati@ : 1.

A

B C
D

The triangleDEF is called themedial triangle of ABC'. It is the
image ofABC' under the homothetly(G, —1).
The lengths of the medians are given by Apollonius’ theorem:

1
m? = 1(262 +2¢% — a?),
etc.

Exercise

Calculate the lengths of the medians of a triangle whose sidelengths are
136, 170, and 174.
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8.2 The circumcircle and the circumcircle

The perpendicular bisectors of the three sides of a triangle are concurrent
at thecircumcenter of the triangle. This is the center of the circumcircle,
the circle passing through the three vertices of the triangle.

Theorem 8.1 (The law of sines)Let R denote the circumradius of a
triangle ABC with sides a, b, ¢ opposite to the angles A, B, C respec-
tively.
a b c
sinA sinB  sinC
Since the area of a triangle is given By= 1bcsin A, the circumra-
dius can be written as

2R.

abe

R="C.
AN
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8.3 The incenter and the incircle

The internal angle bisectors of a triangle are concurrent aitndeater
of the triangle. This is the center of tivcircle, the circle tangent to the
three sides of the triangle.

If the incircle touches the sidd3C', C'A and AB respectively atX,
Y,andZ,

AY = AZ = s—a, BX =BZ =s—0, CX=CY=s—c.

Denote byr the inradius of the triangld BC.
2N A

==
a+b+c s
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8.4 The orthocenter and the Euler line

The orthocenter{ is the intersection of the three altitudes of triangle
ABC'. These altitudes can be seen as the perpendicular bisectors of the
antimedial triangle XY Z of ABC, which is bounded by the three lines
each passing through, B, C' parallel to their respective opposite sides.

N\
Y

XY Z is the image of trianglel BC' under the homothetly(G, —2).
It follows that H is the image ofO under the same homothety. We
conclude thaO, G, andH are collinear, andG : GH =1 : 2.

The line containingD, G, H is the famous Euler line of triangle
ABC.
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8.5 The excenters and the excircles

The internal bisector of each angle and &xternal bisectors of the re-
maining two angles are concurrent at @wenter of the triangle. An
excircle can be constructed with this as center, tangent to the lines con-

taining the three sides of the triangle.

_V.
Al
i
|
i

1

i

/
-
SN

The exradii of a triangle with sides b, c are given by

JAN JAN
Te =

fa = ’ L a— s—c




8.5 The excenters and the excircles 237

Exercise

1.

Given a triangleABC', construct a triangle whose sides have the
same lengths as the medians4BC.

. Construct the incircle of trianglé BC', and mark the points of con-

tact X on BC, Y onCA, andZ on AB. Are the linesAX, BY,
C'Z concurrent? If so, is their intersection the incenter of triangle
ABC?

. Given arectanglel BC D, construct point$’ on BC' and@ onC'D

such that the triangld PQ is equilateral.

. Let D, E, F be the midpoints oBC, C'A, AB of triangle ABC.

Construct the circumcircle dDEF'. This is called thenine-point
circle of triangle ABC'. Construct also the incircle of triangle
ABC. What do you observe about the two circles? How would
you justify your observation?

. Construct the circle through the excenters of triangleC'. How is

its center related to the circumcenter and incenter of triaAglé’?

. Given three non-collinear points as centers, construct three circles

mutually tangent to each other externally.
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9.1 Heron’s formula for the area of a triangle

Theorem 9.1. The area of a triangle of sidelengths a, b, c is given by

A = +/s(s—a)(s—Db)(s — c),

wheres = Z(a+ b+ c).

Ta

Proof. Consider the incircle and the excircle on the opposite sidé. of
From the similarity of triangles\/Z and Al'Z’,

T S—a

Ta S

From the similarity of triangle€'/Y and/'C'Y”,
r-re=(s—0b)(s—c).

From these,

Y (CET GO

S

I

and the area of the triangle is

A =rs=1/s(s—a)(s —b)(s—c).
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9.2 Heron triangles

A Heron triangle is one whose sidelengths and area are both integers. It
can be constructed by joining two integer right triangles along a common
leg. For example, by joining the two Pythagorean triangfed2, 15)
and(5, 12, 13), we obtain the Heron triangld 3, 14, 15) with area 84.

13 /45 15

5 9

Some properties of Heron triangles
1. The semiperimeter is an integer.

2. The area is always a multiple of 6.

Exercise

1. Construct four Heron triangles by joining suitable multiples of (3,4,5)
and (5,12,13) along common legs. The Heron triangles you obtain
should be primitivei.e., the sidelengths of each should be relatively
prime.

2. Can the Heron triangle (25,34,39,420) be obtained by joining two
Pythagorean triangles along a common leg?
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9.3 Heron triangles with consecutive sides

If (b—1,b,b+1,A)is a Heron triangle, thelhmust be an even integer.
We writeb = 2m. Thens = 3m, andA? = 3m?(m — 1)(m + 1). This
requiresm? — 1 = 3k? for an integelk, andA = 3km. The solutions of
m? — 3k? = 1 can be arranged in a sequence

M1\ (2 3\ (m, my\ (2
kne1 ) \1 2 k, ]’ ki) \1)°
From these, we obtain the side lengths and the area.
The middle sides form a sequen@g) given by
bn+2 = 4bn+1 - bn7 bo = 2, by = 4.

The areas of the triangles form a sequence

An+2 - 14An+1 - ATH T() - O7 T1 = 6

‘ ‘ by, ‘ T, ‘ Heron triangle ‘
2 0 (1,2,3,0)
4 6 (3,4,5,6)
14 84 (13,14,15,84)

G|l —lof S

Exercise

1. There is a uniquely Heron triangle with sidés— 1,0, + 1) in
which b is an 8-digit number. What is the area of this Heron trian-
gle?
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Appendix: Heron triangles with sides < 100

| (a,b,c,N) (a,b,c, ) (a,b,c,N) (a,b,c, ) (a,b,c,N)
(3,4,5,6) (5,5,6,12) (5,5,8,12) (5,12,13,30) (10,13, 13,60)
(4,13,15,24) (13,14, 15, 84) (9,10, 17, 36) (8,15,17,60)  (16,17,17,120)
(11,13, 20, 66) (7,15, 20, 42) (10,17,21,84)  (13,20,21,126) (13,13, 24, 60)
(12,17, 25,90) (7,24,25,84)  (14,25,25,168) (3,25, 26,36) 17, 25, 26, 204)
(17,25,28,210)  (20,21,29,210)  (6,25,29,60)  (17,17,30,120)  (11,25,30,132)
(5,29, 30, 72) (8,29,35,84)  (15,34,35,252)  (25,29,36,360) (19,2037, 114)

(15, 26, 37, 156)
(17,28, 39, 210)
(25, 39, 40, 468)
(29,29, 42, 420)
(29, 35, 48, 504)
(25, 38,51, 456)
(15,41, 52, 234)
(4,51, 53,90)
(53,53, 56, 1260)
(11, 60, 61, 330)
(12, 55,65, 198)
(32,65, 65, 1008)
(7,65, 68, 210)
(9,65, 70, 252)
(19, 60, 73, 456)
(29,52, 75, 546)
(52, 73,75, 1800)
(17, 65, 80, 288)
(29, 60, 85, 522)
(41, 84, 85, 1630)
(38,65, 87, 1140)
(53, 75,88, 1980)
(21, 82, 89, 840)
(37,72,91, 1260)
(29,75, 92, 966)
(68,87, 95, 2850)
(26, 73,97, 420)
(78,95, 97, 3420)

(13, 30, 37, 180)
(25, 34, 39, 420)
(15,28, 41,126)
(15,37, 44, 264)
(21,41, 50, 420)
(13,40, 51, 156)
(5,51, 52,126)
(51,52, 53, 1170)
(33,41, 58, 660)
(22, 61, 61, 660)
(33,56, 65, 924)
(35,53, 66,924)
(29, 65, 68, 936)
(41,50, 73,984)
(50, 69, 73, 1656)
(32,53, 75, 720)
(40, 51,77, 924)
(9,73, 80, 216)
(39, 62, 85, 1116)
(26, 85,85, 1092)
(44, 65, 87, 1386)
(65, 87,88, 2640)
(57, 82, 89, 2280)
(60, 73,91, 2184)
(39, 85, 92, 1656)
(73,73, 96, 2640)
(44, 75,97, 1584)

(12, 35, 37, 210)
(10, 35, 39, 168)
(9,40, 41, 180)

(17, 39, 44, 330)
(39, 41, 50, 780)
(27, 29, 52, 270)
(25,51, 52, 624)
(26, 51, 55, 660)
(41,51, 58, 1020)
(25, 52, 63, 630)
(14, 61, 65, 420)
(65,65, 66, 1848)
(57, 65,68, 1710)
(26,51, 73, 420)
(25, 51, 74, 300)
(34,61, 75, 1020)
(25,74, 77,924)
(39, 55, 82, 924)
(41, 66, 85, 1320)
(72, 85,85, 2772)
(31, 68, 87, 930)
(41, 50, 89, 420)
(78, 89, 89, 3120)
(26, 75,91, 840)
(34, 65,93, 744)
(37,91, 96, 1680)
(35, 78,97, 1260)

(24, 37, 37, 420)
(29, 29, 40, 420)
(17, 40, 41, 336)
(13, 40, 45, 252)
(26, 35, 51, 420)
(25, 33, 52, 330)
(24, 35, 53, 336)
(20, 53, 55, 528)
(17, 55, 60, 462)
(33, 34, 65, 264)
(36, 61,65, 1080)
(21, 61, 68, 630)
(29, 52, 69, 690)
(35,52, 73, 840)
(25, 63, 74, 756)
(56,61, 75, 1680)
(68, 75,77, 2310)
(35, 65,82, 1092)
(36,77, 85, 1386)
(34, 55, 87, 396)
(61,74, 87, 2220)
(28, 65, 89, 546)
(53,53, 90, 1260)
(22, 85,91,924)
(39, 58, 95, 456)
(51, 52,97, 840)
(75, 86,97, 3096)

16, 25,39, 120)
13, 37,40, 240)
18, 41,41, 360)
25, 25,48, 168)
20, 37, 51, 306)
37,39, 52, 720)
28, 45, 53, 630)
25, 39, 56, 420)
15,52, 61, 336)
20, 51,65, 408)
16, 63,65, 504)
(43,61, 68, 1290)
(37, 37,70, 420)
(48,55, 73, 1320)
(35, 44,75, 462)
(13,68, 75, 390)
(41, 41,80, 360)
(33, 58,85, 660)
(13, 84, 85, 546)
(52, 61,87, 1560)
(65, 76, 87, 2394)
(39, 80, 89, 1560)
(17, 89, 90, 756)
(48, 85,91, 2016)
(41, 60, 95, 798)
(65,72, 97, 2340)
(11, 90,97, 396)

Py
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Appendix: A famous unsolved problem

Find a Heron triangle whose medians have integer lengths. This is a
famous unsolved problem. See [Guy, Problem D21]. The triangle with
sides 136, 170, 174 have medians 158, 131, 127. But it is not a Heron
triangle. It has an area .

Buchholz and Rathbun have found an infinite set of Heron triangles
with two integer medians. Here is the first one.

Leta = 52, b = 102, andc = 146.

Verify that this triangle is Heron and find the lengths of the medians.
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Project: Triangles whose sides and one altitude are in arithmetic
progression

This is an extension of Problem 29 of Isaac Newtdsgstures on Alge-
bra ([Whiteside, pp.234 — 237]).

(A) Newton considered a triangkeBC' with an altitudeDC'. Clearly,
DC' is shorter thamlAC' and BC. SettingAC' = a, BC = z, DC =
2x — a, andAB = 2a — x, he obtained

162* — 80ax® 4 14442 — 10a3x + 25a* = 0. ()

“Divide this equation by2z — a and there will resul8x? — 36az? +
54a*xr — 25a = 0". Newton did not solve this equation nor did he give
any numerical example. Actually)(can be rewritten as

(22 — 3a)® + 2a* = 0,

so thatr = (3 — V/2), the other two roots being complex. By taking
a = 2, we may assume the sides of the triangles to be

and the altitude on the longest side to be .
The angles of the triangles are

(B) Recalling the Heron triangle with sides 13, 14, 15 with altitude
12 on the side 14, we realize that these lengths can be in A.P. in some
other order. Note that the altitude in question is either the first or the
second terms of the A.P. (in increasing order). Assuming unit length for
this altitude, and: > 0 for the common difference, we have either

1. the three sides of the triangles dre- x, 1 + 2z, and1 + 3z, or

2. the sides of the triangles ate-x, 1+, and1+2x, and the altitude
on the shortest side is 1.

In (1), the area of the triangle, by the Heron formula, is given by

3
A = 1—6(1 +22)%(1 + 4x).

Onthe other hand) = 3 -1 (1+ kx) for k = 1,2, 3. These lead to the
equations
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o for k = 1: 48z% + 562 + 162 — 1 = 0,

o fork =2: 4823 + 4422 +8x — 1 =0,

o for k = 3: 4823 + 242 — 1 = 0.

The casé = 3 has been dealt with in Newton'’s solution.

For k = 2, the polynomial factors as
so that we have = . This leads to the Heronian triangle
with sides 13, 14, 15, and altitude 12 on the side 14. The angles of the
triangles are

Fork =1, itis easy to see, using elementary calculus, that the poly-
nomial48z3 + 5622+ 16x — 1 has exactly one real root, which is positive.

This gives a similarity class of triangle with the three sides and the
altitude on the shortest side in A.P. More detailed calculation shows that
the angles of such triangles are

Now we consider (2), when the altitude in question is the second term
of the A.P. Instead of constructing an equatiorzjnve seek one such
triangle with sides 1517 + 2z, 18 + 3z, and the altitudé6 + z on the
shortest side. By considering the area of the triangle in two different
ways, we obtain the cubic equation

25— 1202 + 16 = 0. (%)

This can be solved by writing = 41/10sin 6 for an angled. Using the
trigonometric identitysin 30 = 3sin § — 4 sin® #, we reduce this to

sin 30 =

so that the positive roots of) are the two numbers

Zz = ,

We obtaintwo similarity classes of triangles, respectively with angles

and

There are altogethdive similarity classes of triangles whose three
sides and one altitude, in some order, are in arithmetic progression.
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10.1 The golden sectiorp

A segmentd B is said to be divided into the golden ratio by a pakhif
AP? = AB - PB.

I I

I I

I I >

I I

I I ©

I I

I I

| Py
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AB VE+1
Ap 7 2

Some basic properties ofp

1.902:1+<,0;é:<,0—1.

2. The diagonal and the side of a regular pentagon are in the golden
ratio.

3. The ratio of successive Fibonacci numbers tends to
4. The simple continued fraction expansionois

1
1+

1+
1+

1

1
1+ —
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10.2 Dissection of a square

Show how the square should be dissected so that it can be reassembled
into a rectangle.

A x B

Let AB = BC = a. We want to findc = AX = PC such that the
areas of the rectangle and the square are the same.
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Resolve the paradox: How can the area increase after reassembling?
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10.3 Dissection of a rectangle

Let P and( be points on the side$B and BC of rectangleABC D.

If the areas of triangled P D, BPQ andC D() are equal, the® and
Q divide the sides in the golden ratio.

If, in addition, DP = P(), then the rectangle is golden, ardd PQ
is a right angle.

D




314 The golden section

10.4 The golden right triangle

The golden right triangle is the one whose hypotenuse and one leg are in
the golden ratio.

Characterizations of the golden triangle

1. If the sides of a right triangle are in geometric progression, then it
is the golden triangle.

2. Ifthe altitude of a right triangle divides the hypotenuse in the golden
ratio, them the triangle is golden.

3. If one side of a right triangle is the geometric mean of the other two
sides, then this is a golden right triangle.

4. If the sides of a right triangle are respectively the harmonic, geo-
metric, and arithmetic means of two numbers, then the triangle is a
golden right triangle.
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Find the isosceles triangle of smallest perimeter that circumscribed a
given semicircle.

Suppose the semicircle has radius ¥, i the base angle, the perime-
ter is2(tan # + cot 6 + csc 0). We want to find thé that minimizes this
perimeter.
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10.5 What is the most non-isosceles triangle?

Given a triangle, there are 6 ratios obtained by comparing the lengths
of a pair of sides. The one which is closest to 1 is called the ratio of

non-isoscelity of the triangle. Determine the range of the ratio of non-

isoscelity of triangles.

Theorem 10.1. A number 7 istheratio of non-isoscelity of atriangle if
and only if it liesin theinterval (7, 1].

Proof. First note that ifr < 1 is the ratio of the length of two sides of
a triangle, then so i$. Sincel(r 4+ 1) > 1, ris closer to 1 thar}. It
follows that the ratio of non-isoscelity < 1.

If « < b < care the side lengths, then= max(2, 2). Sincea + b >

¢, we have .

n+1>241> 5> -

b b~ n

It follows thatn? + 7 > 1. Since the roots af? + z — 1 = 0 areé > 0
and—p < 0, we must have) > ¢ — 1. This shows that € (é, 1].

For each numberin this range, the triangle with sidesl, % is one

with ratio of non-isoscelity. O

There is therefore no “most non-isosceles” triangle. Instead, the most
non-isosceles triangtealmost degenerate to a segment divided in the
golden ratio.
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Project: Cutting a square into three similar parts

Cut a square into three similar parts, no two congruent.

2
D 1 €T c

2 —z+1
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Exercise
1. Show thatcos 36° = g.

2. Which of the two equilateral triangles inscribed in a regular pen-
tagon has larger area?

@/\

3. Which of the two squares inscribed in a regular pentagon has larger
area?

©
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If we assume the regular pentagon inscribed in a unit circle, the side-
lengths of these squares are respectively

(s
and

?( 10—2\/5—\/5+1).

The first square exceeds the second one by

1
§(20+5\/§+\/ﬁ—4\/5—4 50—10\/5) ~ 0.0324786 - - - .

One of you [GC] suggested an “easy” construction of the square as
follows.

This indeed is not exact, but it gives an approximate rectangle with

base .
3V/52-2V5+V5),
which is smaller only by.08%!

As for the triangles, the first one has Ien% (4 +vV5 — V15 + 6\/5>,

and the second one has shorter length VIO(/5+1)
(V5-1)v/5-v5+2/6

. The difference
between the two is apprdx0328 - - -.
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Chapter 11

Constructions with the golden
section

OOk, WNPEF

Construction of golden rectangle

Hofstetter's compass-only construction of the golden section
Hofstetter’s 5-step division of a segment in the golden section
Construction of a regular pentagon

Ahlburg’s parsimonious construction of the regular pentagon
Construction of a regular 17-gon

Exercise

Project
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Constructions with the golden section

11.1 Construction of golden rectangle
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11.2 Hofstetter's compass-only construction of the golden
section

Kurt Hofstetter has found the following construction of the golden sec-
tion by striking the compass only five timés.

We denote byP(Q) the circle with P as center and®(Q as radius.
Figure 1 shows two circlesl(B) and B(A) intersecting aCC and D.
The line AB intersects the circles again Btand F'. The circlesA(F)
and B(E) intersect at two pointX andY". It is clear thatC, D, X,

Y are on a line. It is much more interesting to note thatlivides the
segment’' X in the golden ratioi.e.,

CD V5-1
cx 2

This is easy to verify. If we assuméB of length 2, therC'D = 2/3
andCX = /15 + /3. From these,

cp 23 2 5-1
CX  VI5+v3 V541 2

7N 7o

Y Y

X

This shows that to construct three collinear points in golden section,
we need four circles and one line. It is possible, however, to replace the
line AB by a circle, sayC'(D). See Figure 2. Thushe golden section
can be constructed with compass only, in 5 steps.

Here is a simple application: to divide a given segment into golden
section?

Construction 11.1. Given a segment B, construct

1K. Hofstetter, A simple construction of the golden sectiBor,um Geometricorum, 2 (2002) 65-66.
2Communicated by K. Hofstetter on December 9, 2003.
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1. ¢, = A(B),
2. Gy = B(A), intersecting®; atC' andD,
3. C'D to intersectA B at (their common midpoint)/,
4. C3 = A(M) to intersectC; at F,
5. C4 = E(A) to intersectC; at F and F’, I’ closer toM thenG’,
6. FI' and extend to interseetB atG.

The pointG divides the segmem B in the golden section.

Proof. By [1], F' dividesF’B in the golden section. SindeF' is parallel
to F'A, G dividesAB in the golden section as well. O

Remark. If the linesEF’ and AB intersect aty’, thenA dividesG’B in
the golden section.
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11.3 Hofstetter’s 5-step division of a segment in the golden
section

K. Hofstetter has also found the following parsimonious division of a
given segment in the golden sectidn.

Construction 11.2. Given a segmend B, construct
1. ¢, = A(B),
2. Gy = B(A), intersecting®; atC andD,
3. C3 = C'(A), intersecting®; again atF,
4. the segment’D to intersectC; at F,
5. C4 = E(F) to intersect4d B atG.

The pointG divides the segmem B in the golden section.

3K. Hofstetter, A 5-step division of a segment in the golden secfonym Geom., 3 (2003) 205-206.
After the publication of this paper, it was found that the same construction has been given previously by
E. Lemoine, Géométrographie ou art des Constructions géométriques, C. Naud, Paris, 1902, p.51, and
J. Reusch, Planimetrische Konstruktionen in geometrographischer Ausfuhrung, (Teubner 1904), pg 37.
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Proof. Supposed B has unit length. Thed’'D = /3 andEG = EF =
V2. Let H be the orthogonal projection df on the lineAB. Since
HA = ,andHG? = EG? — EH?* = 2 — 3 = 2, we haveAG =
HG — HA = 1(v/5 — 1). This shows that' divides AB in the golden
section. O

Remark. The other intersectiod’ of ¢, and the lineAB is such that
GA:AB=1(V5+1):1.
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11.4 Construction of regular pentagon

LetOA andOY be two perpendicular radii of a circle, center

1. Mark the midpointM of OY and bisect angl® M A to intersect
OAatP.

2. Construct the perpendicular €A at P to intersect the circle aB
andF.

—

E

Then A, B, E are three adjacent vertices of a regular pentagon in-
scribed in the circle. The remaining two vertices can be easily con-
structed.
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11.5 Ahlburg’s parsimonious construction of the regu-
lar pentagon

Make use of a given right trianglé B'C' with AC' = 2B’C to construct
a regular pentagon in the fewest number of euclidean operations. (Eu-
clidean operations include (i) setting a compass, (ii) striking an arc, (iii)
drawing a line.

Between the side and the diagonal of a regular pentagon, there is

the relations = %d. Here is Hayo Ahlburg’s constructiofh.

Construction 11.3. (1) Strike an arcB’(B'C)), that is, with center3’
and radiusB’'C', meetingAB’ at P.

(2) Strike an arcA(AP).

(3) Strike an are”(AP), meeting arcA(AP) at B.

(4) Strike an ard3(C'A), meeting arcsi(AP) andC(AP) at D and
E.

Then ABC DF is the required regular pentagon. The construction
requires 3 compass settings, striking 4 arcs, and drawing 5 lines for the
sides of the pentagon, 12 euclidean construction in all.

4Crux Math., 6 (1980) 50.
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11.6 Construction of a regular 17-gon

To construct two vertices of the regular 17-gon inscribed in a given circle
O(A).

1.

On the radiug) B perpendicular t@ A, mark a point/ such that
OJ = ;OA.

. Mark a pointE on the segmer® A such that OJE = iéOJA.

. Mark a pointF’ on the diameter througH such tha is between

FandF andZEJF = 45°.

. With AF as diameter, construct a circle intersecting the radiss

at K.

. Mark the intersections of the circl&(K) with the diameter of

O(A) throughA. Label the one betweef and A points P, and
the other and?.

. Construct the perpendicular through and F; to intersect the cir-

cleO(A) atA, andA4g. °

ThenA,, Ag are two vertices of a regular 17-gon inscribedifA).
The polygon can be completed by successively laying off arcs equal to
A4A6, |eading tOAg, Alo, - ,A16, A1 = A, A3, A5, - ,A15, A17, AQ.

SNote thatP; is not the midpoint ofAF.
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Exercise

1. Let ABC be an equilateral triangle. The line joining the midpoints
D, FE of two sides intersects the circumcirclefat ThenE divides
DF in the golden section,e,,

DE 5-1
DF 2

BVC

2. M is the midpoint of the sidelB of a squareABC' D. The line
DM intersects the circle with diametdrB at two points,P inside
and () outside the square. Show that the rectangfeB(Q is a
golden rectanglé,e., PB : PA= (v/5+1) : 2.

D C
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Project

This is a classic problem you should know if you teach geometry. While
it is not difficult to guess what the answer is, it has been quite baffling to
most people to arrive at the answer logically.

ABC is an isosceles triangle with ange = 20°. F and
F are points onAC and AB such that EBC' = 60° and
ZFCB = 50°. Calculate/BEF.
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Appendix: Another construction of regular pentagon®

Given a circle, centepd, let
(i) AXY be an isosceles triangle whose heighi isf the radius of the
circle,
(i) X', Y’ be points on the circumference such theX’ = AY’ =
radius,
(i) P=AX NOB and@ = AY N OC",
(iv) the line PQ intersect the circumference BtandC'.

ThenAB andAC are two sides of a regular pentagon inscribed in the
circle.

6D. Nelson, A regular pentagon constructidiath. Gazette, 61 (1977) 215-216.



11.6 Construction of a regular 17-gon 333

ABCDEF is a pentagon inscribed in a circle such that = CD =
AFE = the radius of the circle? and (@ are the midpoints of the sides
BC andDE. Show that triagled PQ is equilateral.
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12.1 Principles

You are the magician’s assistant. What he will do is to ask a spectator to
give you any 5 cards from a deck of 52. You show him 4 of the cards,
and in no time, he will tell everybody what the 5th card is. This of course
depends on you, and you have to do things properly by making use of
the following three basic principles.

1. The pigeonhole principle. Among 5 cards at least 2 must be of the
same suit. So you and the magician agree that the secret card has
the same suit as the first card.

2. The distance of two points on a 13-hour clock is no more than 6.

We decide which of the two cards to be shown as the first, and
which to be kept secret. For calculations, we tigad, Q, andK
are respectively 1, 11, 12, and 13 respectively.

Now you can determine the distance between these two cards. From
one of these, goingockwise, you get to the other by travelling this
distance on the 13-hour clock. Keep the latter as the secret card.
Here are some examples.

hours distance clockwise
2 and7 5 2to7
3and10 6 10to 3
2 andJ 4 Jto2
A and8 6 8t0A

3. There are 6 arrangements of three objects.

The remaining three cards can be orderedraall, medium, and
large. 1 Now rearrange them properly to tell the magician what
number he should add (clockwise) to the first card to get the number
on the secret card. Let’s agree on this:

arrangement distance

sml 1
sim 2
msl 3
mls 4
Ism 5
Ims 6

LFirst by numerical order; for cards with the same number, order by shiits:) < O < .
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12.2 Examples

If, for example, you, the assistant, want to tell the magician that he
should add 4 to the number (clockwise) on the first card, deahgtium

as the second card, tharge as the third, and themall as the fourth
card. Here are two examples.

1. Suppose you havah5, &7, {J, &4, and #Q, and you decide
to use thaedk cards for the first and the secret ones. The distance
between &7 and &4 is of course 3, clockwise from&4 t0 &7.
You therefore showd4 as the first card, and arrange the other three
cards, #5, {J, and #Q), in the ordemedium, small, large. The
second card is(>J, the third &5, and the fourth&Q.

4
&)

The secret card ish7.

2. Now to the magician. Suppose your assistant show you these four
cards in order:

Q
Pl

$o
$o ~

Then you know that the secret card isaand you get the num-
ber by adding toQ the number determined by the ordarge,
medium, small, which is 6. Going clockwise, this is 5. The secret
card is #5.
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Exercise

1. For the assistant:

(a) &5, &7, $6, &b, Q.
(0) V2, &J, VK, &2, #8.

2. For the magician: what is the secret card?

5 2
a7 o lJ

<> o
ol
o
oo
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13.1 When can you cancel illegitimately and yet get the
correct answer?

Letab andbc be 2-digit numbers. When do such illegimate cancellations

as
ab _ap a
be  be ¢
give correct results in lowest terms?
How about
abt a
btd d

allowing perhaps further simplifications §f
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13.2 A Multiplication problem

A multiplication of a three-digit number by 2-digit number has the form

p pp
X p D
p p P D
p p P D
p p p p P
in which all digits involved are prime numbers. Reconstruct the multi-

plication.
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13.3 Adivision problem

Reconstruct the division problem

* % * %k
ko k) ok k 2
* %
* ok ok
%k
* *
* *
*
*

Charles Twigg: If the digit 2 is replaced by 9, the answer is also
unique.

If the dividend is prefixed by another asterisk, then there are two so-
lutions.
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Another division problem: Problem E1 of the Monthly

T T x) T T
r x

]R8 8|8 8
8 88 838 8|8
R 8|8 8
]R8

Tr X
r r T T

Clearly, the last second digit of the quotient is 0.
Let the divisor be the 3-digit number
Consider the 3-digit number in the seventh line, which is a multiple of
d. lts difference from the 4-digit number in the sixth line is a 2-digit
number. This must bgzz.
This cannot be the same as the 3-digit number in the fifth line, since the
difference between the 3-digit numbers in the fourth and fifth lines is a
3-digit number.
Therefore, in the quotient, the digit after 7 is a larger one, which must be
smaller than the first and the last digits, since these give 4-digit multiples
of d.
It follows that the quotient is 97809.
Since&d is a 3-digit numbeBzz, the 4-digit number in the third and
bottom lines iYd = 10xx or 11zzx.
From this8d must be99x, and therefor®92 = 8 x 124.

9 78 09
124 1212831°F6
1 116
9 6 8
8 6 8
1 00 3
9 9 2
1 116
1 116
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One more division problem: not even a single known digit

This is Problem E10 of thBonthly, by Fitch Cheney:

T T x)

T

T

T

T

T

i
i
i

8 88 8

8 88 88

T

8

T

X

X

8 88 8

8 88 8

8 88 8

T
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13.4 The most popular Monthly problem

The following problem, E 1111, is said to be the most popular problem in
the American Mathematical Monthly. It was proposed by P. L. Chessin
and appeared in the April issue of 1954.

Our good friend and eminent numerologist, Professor Euclide
Paracelso Bombasto Umbugio, has been busily engaged test-
ing on his desk calculator ttsd - 10° possible solutions to the
problem of reconstructing the following exact long division

in which the digits indiscriminately were each replaced:by
save in the quotient where they were almost entirely omitted.

X X 8 x X
X X X) X X X X X X X X
X X X
X X X X
X X X
X X X X
X X X X

Deflate the Professor! That is, reduce the possibiliti€d &o
10%)°.

Martin Gardner’s remark: Because any number raised to the power
of zero is one, the reader’s task is to discover the unique reconstruction
of the problem. The 8 is in correct position above the line, making it
the third digit of a five-digit answer. The problem is easier than it looks,
yielding readily to a few elementary insights.
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13.5 The problem of 4n’s

1 = nan
n+n 13 =2 n
7 =841 o
e R P P
2w
~— ntnm 16 :ﬁn_|_( ﬁn)l
6 :T(l_—;n__'_ﬁ)' 17 :n—i—?lﬁ—.ﬁ
8 =%—4 19 =242
n_n 20 __n+_n
10 =2+ 7 21 _h+nﬁ+fﬁ
11 :%—F% '
12 _h—i—.n—l—.n

Theorem 13.1 (Hoggatt and Moser).Let n be any positive number
different from 1 and let p be any integer greater than 3. Every integer
may be expressed by using p n’s and a finite number of operator symbols
used in high school texts.

Proof. It is easily verified that for every positive integer

loglogﬁnlog\/mn =k,

log ntn log\/ o

where the base of the second logarithms contéisguare root signs.
These settle the cases4@nd 5 numbers. For higher valuespfidd an
appropriate numbers ¢f. — n) +--- + (n — n). O

n =k.
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409

Appendix: Squares with 9 distinct nonzero digits

11826 | 139854276 || 12363 | 152843769 || 12543 | 157326849 || 14676 | 215384976
15681 | 245893761 || 15963 | 254817369 || 18072 | 326597184 || 19023 | 361874529
19377 | 375468129 || 19569 | 382945761 || 19629 | 385297641 || 20316 | 412739856
22887 | 523814769 || 23019 | 520874361 || 23178 | 537219684 || 23439 | 549386721
24237 | 587432169 || 24276 | 589324176 || 24441 | 597362481 || 24807 | 615387249
25059 | 627953481 || 25572 | 653927184 || 25941 | 672935481 || 26409 | 697435281
26733 | 714653289 || 27129 | 735982641 || 27273 | 743816529 || 29034 | 842973156
29106 | 847159236 || 30384 | 923187456

Appendix: Squares with 10 distinct digits

32043 | 1026753849 || 32286 | 1042385796 || 33144 | 1098524736 || 35172 | 1237069584
35337 | 1248703569 || 35757 | 1278563049 || 35853 | 1285437609 || 37176 | 1382054976
37905 | 1436789025 || 38772 | 1503267984 || 39147 | 1532487609 || 39336 | 1547320896
40545 | 1643897025 || 42744 | 1827049536 || 43902 | 1927385604 || 44016 | 1937408256
45567 | 2076351489 || 45624 | 2081549376 || 46587 | 2170348569 || 48852 | 2386517904
49314 | 2431870596 || 49353 | 2435718609 (| 50706 | 2571098436 || 53976 | 2913408576
54918 | 3015986724 || 55446 | 3074258916 || 55524 | 3082914576 || 55581 | 3089247561
55626 | 3094251876 || 56532 | 3195867024 || 57321 | 3285697041 || 58413 | 3412078569
58455 | 3416987025 || 58554 | 3428570916 || 59403 | 3528716409 || 60984 | 3719048256
61575 | 3791480625 || 61866 | 3827401956 || 62679 | 3928657041 || 62961 | 3964087521
63051 | 3975428601 || 63129 | 3985270641 || 65634 | 4307821956 || 65637 | 4308215769
66105 | 4369871025 || 66276 | 4392508176 || 67677 | 4580176329 || 68763 | 4728350169
68781 | 4730825961 || 69513 | 4832057169 || 71433 | 5102673489 || 72621 | 5273809641
75759 | 5739426081 || 76047 | 5783146209 || 76182 | 5803697124 || 77346 | 5982403716
78072 | 6095237184 || 78453 | 6154873209 || 80361 | 6457890321 || 80445 | 6471398025
81222 | 6597013284 || 81945 | 6714983025 || 83919 | 7042398561 || 84648 | 7165283904
85353 | 7285134609 || 85743 | 7351862049 || 85803 | 7362154809 || 86073 | 7408561329
87639 | 7680594321 || 88623 | 7854036129 (| 89079 | 7935068241 || 89145 | 7946831025
89355 | 7984316025 || 89523 | 8014367529 || 90144 | 8125940736 || 90153 | 8127563409
90198 | 8135679204 || 91248 | 8326197504 (| 91605 | 8391476025 || 92214 | 8503421796
94695 | 8967143025 || 95154 | 9054283716 || 96702 | 9351276804 || 97779 | 9560732841
98055 | 9614783025 || 98802 | 9761835204 || 99066 | 9814072356
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Exercise
1. Lucky Larry, a mathematics student whose plausible mistakes in

computation always results in correct answers, once wrote an an-
swer in the form
a’c® = abca
whereabca represents a four-digit integer whose digitd, c are
all different. What specific number did Lucky Larry write?

. Find all natural numbers whose square (in base 10) is represented

by odd digits only.

. Let N be the sum of the digits of a natural numbérlet B =

A+ N, let A’ be the sum of the digits of the numbgr, and let
C = B+ A’. Find A if the digits of C' are those of4 in reverse
order.

Solution.  If A hask digits, thenC' cannot exceed by more than
18k. On the other hand, if’ is the reverse ofi, thenC exceedsA
by at leas® - 10"%" is k is even, and by at leagp - 10°%° if kis
odd. This quickly implies: < 2. From this, we findA = 12 or 69.

. Find the three 3-digit numbers each of which is equal to the product

of the sum of its digits by the sum of the squares of its digits.

. Find all 4-digit numberbcd such thaty'abed = a + b + ¢ + d.

. Use each digit 1, 2, 3, 4, 5, 6, 7, 8, 9 exactly once to form prime

numbers whose sum is smallest possible.
What if we also include the digit 0?

. There are exactly four 3-digit numbers each equal to the sum of the

cubes of its own digits. Three of them are 153, 371, and 407. What
is the remaining one?

. Find digitsm, a, b, ¢, d, e, f such that

abcdef — 9m
fedcba  9m +1

. Find a number of the formaabbbcce, which when increased by 1,

gives a square.
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10.

11.

12.

13.

14.

15.

Here are seven consecutive squares for each of which its decimal
digits sum to a square:

81,100,121, 144, 169, 196, 225.

Find another set of seven consecutive squares with the same prop-
erty. !

Find a perfect square of 12 digits formed from the juxtaposition of
two squares, one having 4 digits and the other 8 digits.

A pandigital number is one whose decimal representation contains
all digits 0, 1,..., 9. There are three pandigital perfect squares
whose square roots are palindromes. Find them.

Find the smallest 3-digit numbeY¥ such that the three numbers
obtained by cyclic permutations of its digits are in arithmetic pro-
gression.

Form a square of 8 digits which is transformed into a second square
when the second digit from the left is increased by 1.

The numbeabbbb)? — 1 has 10 digits, all different. Find the num-
ber.2

‘6666 Ynm Buluuibaq siagquinu UaAas ayl

2'8CLIVE0996 = T — gLLLL6 "FTO8GI6TEL = T — £GSG958 These are the only possibilities even if we
consider more generally numbers consisting of two consecutive blocks of repeating digits, whose squares, to
within +1, contain all ten digits without repetition.
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Charles Twigg’s square number trivia

What three-digit squares have the following characteristics?

1.

© 00 N oo o B~ W DN

=
o

are palindromes.

. are permutations of consecutive digits.

. form reversal pairs.

. are three permutations of the same digit set.
. three of its permutations are prime.

. the sum of the digits is 19.

. is also a cube.

. the central digit is perfect.

. are composed of even digits.

. the central digit is a nonzero cube.
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Cross number puzzle

Place 13 three - digit square numbers in the spaces in the accompanying
grid. (The solution is unique).

PLI"Li"F
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Project
Arrange the ten digits (0, 1, ., 9, norepetition) in a row

abcde f ghij

so that the following 3-digit numbers in the table below are divisible by
the prime below them.

bed cde def efg fgh ghi hij
2 3 5 7 11 13 17

Solution: 1460357289 or 4160357289

Sincedef is divisible by 5,f must be 0 or 5. Now, the numbé¢gh must
be divisible by 11. The only number that can be formed from the first
two digits of 13m by appending a Oraa 5 on thdeft to form a multiple
of 11 are 286, 390, 728, and 832. Clearfy= 5, and fghi is only one
of
5286, 5390, 5728, 5832.

Now we want to find a multiple of 17 beginning with the last two digits
of these. This eliminates the last case.

52867, 53901, 57289.

Sinceefg is a multiple of 7,mod(e, 7) must satisfy2 mod (e, 7) +
mod(10f + ¢g,7) = 0 mod 7. Necessarilye = 2, 1, 3. Now we must
havee f ghij = 357289.

Now it remains to arrange 0, 1, 4, 6 asb, ¢, d such that the three
digit numbersicd, cd3 are 3 digit numbers divisible by 2, 3 respectively.
In particular,c + d + 3 is divisible by 3. The only choice is = 6 and
d = 0. We havenb60357289. a« andb can be 1, 4 or 4, 1.
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14.1 A quick multiplication

What is the smallest positive integer with the property that when the digit
1 is appended to both ends, the new number is 99 times the original?
Suppose the numbeéf hasn digits. We requird 0"+10X+1 = 99X
or89X = 10"+1. Note that 89 is prime. To find the smallesive divide
89 into the number 1 followed by a string of zeros, extended if necessary,
until a remainder 80 occurs. Then add 1 and obtain an integer quotient
which is the smallest possiblé.
The first time this occurs is at the 22nd zero. Thus, the smallest pos-
sible value ofX is

102 41
89

For this value ofX we have

= 112359550561797752809.

99 x 112359550561797752809 = 11123595505617977528091.

See Appendix for the factorization of numbers of the fdiim_ 1.
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14.2 The repunits

The repunitR,, is the number whose decimal representation consists of
a string ofn, ones. ThusR,, = 1,,.

Notations

A :=123456790,
B :=098765432,

1y =1y,
§kz ::12k7
my =12-(m—1)mg(m—1)---2, for3 <m <9.

Theorem 14.1.Letp =9k +m, k> 0,1 <m < 9. For g > p,
Rqu - Akmq,erlBkl.

In particular,
(Ry)?* = A;mBy1.
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14.3 Squares of repdigits

In the decimal representations of integers, we wijtdor a string ofn
digits each equal ta.

Theorem 14.2.For n > 2,

(Sn)2 :1n—108n—197
(671)2 :4n—135n—167
(9,)? =9,-189,_11.

Proof. The last one is easiest.

(9,)? =(10" — 1)?

=10"" —2-10" + 1

=10"(10" — 2) 41
—=9,,_180,_11.

From this we obtain the square ®f by division by 9, then the square of
6,, by multiplication by 4.

Theorem 14.3.Letn = 9%k +m, &k > 0,1 < m < 9. For a

1,2,4,5,7,8,

(CLRn)2 = AkmBkC,

whereA, B andc are given by

A

B|c]

123456790

098765432

1

493827160

395061728

197530864

580246913

308641975

469135802

604938271

839506172

790123456

320987654

= OO O i~

andm is given by

O

(ol T] 2] 3] 4] 5 ] 6 ] 7] 8 ] o]
1 12 1232 123432 12345432 1234565432 123456765432 12345678765432 1234567898765432
2 48 4928 493728 49381728 4938261728 493827061728 49382715061728 4938271595061728
4 1 193 19713 1974913 197526913 19753046913 1975308246913 197530860246913 19753086380246913
5 2 302 30802 3085802 308635802 30864135802 3086419135802 308641969135802 30864197469135802
7 4 592 60372 6048172 604926172 60493706172 6049381506172 604938259506172 60493827039506172
8 6 774 78854 7899654 790107654 79012187654 7901232987654 790123440987654 79012345520987654
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14.4 Sorted numbers with sorted squares

A number issorted if its digits are nondecreasing from left to right. It
is strongly sorted if its square is also sorted. It is known that the only
strongly sorted integers are given in the table befow.

e 1,2 3,6, 12, 13,15,16, 38, 116, 117.
e 16,7.

e 3,4.

e 3,5.

© 3,,6,7.

(3,51)* =(10- 3, + 5)?
=100 (3,)* + 100 - (3,,) + 25
=1,_108,_19105 + 3,25
=1,-112,_1225
=1,2,415.

If x =3,,6,7, then3x = 10,,_110,1, and it is easy to find its square.

1n3mdn—m+16m8,9, ifn+12>m,
1m3n+15m—n—16n+18n97 ifn+1<m.

@maﬂf::{

More generally, the product of any two numbers of the f&n®,,7
is sorted.

1pProblem 1234Math. Mag., 59 (1986) 1, solution, 60 (1987)1. See also R. Blecksmith and C. Nicol,
Monotonic numbersMath. Mag., 66 (1993) 257-262.
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Appendix: Factorization of 10" + 1for 1 < n < 50

Factorization of 10™ + 1

11

101

7x11 x 13

73 x 137

11 x 9091

101 x 9901

11 x 909091

17 x 5882353

7x 11 x 13 x 19 x 52579

10 101 x 3541 x 27961

11 112 x 23 x 4093 x 8779

12 73 x 137 x 99990001

13 11 x 859 x 1058313049

14 29 x 101 x 281 x 121499449

15 7 x 11 x 13 x 211 x 241 x 2161 x 9091

16 353 x 449 x 641 x 1409 x 69857

17 11 x 103 x 4013 x 21993833369

18 101 x 9901 x 999999000001

19 11 x 909090909090909091

20 73 x 137 x 1676321 x 5964848081

21 72 x 11 x 13 x 127 x 2689 x 459691 x 909091

22 89 x 101 x 1052788969 x 1056689261

23 11 x 47 x 139 x 2531 x 549797184491917

24 17 x 5882353 x 9999999900000001

25 11 x 251 x 5051 x 9091 x 78875943472201

26 101 x 521 x 1900381976777332243781

27 T x 11 x 13 x 19 x 52579 x 70541929 x 14175966169

28 73 x 137 x 7841 x 127522001020150503761

29 11 x 59 x 154083204930662557781201849

30 61 x 101 x 3541 x 9901 x 27961 x 4188901 x 39526741

31 11 x 909090909090909090909090909091

32 19841 x 976193 x 6187457 x 834427406578561

33 7 x 112 x 13 x 23 x 4093 x 8779 x 599144041 x 183411838171

34 101 x 28559389 x 1491383821 x 2324557465671829

35 11 x 9091 x 909091 x 4147571 x 265212793249617641

36 73 x 137 x 3169 x 98641 x 99990001 x 3199044596370769

37 11 x 7253 x 422650073734453 x 296557347313446299

38 101 x 722817036322379041 x 1369778187490592461

39 7 x 11 x 132 x 157 x 859 x 6397 x 216451 x 1058313049 x 388847808493

40 17 x 5070721 x 5882353 x 19721061166646717498359681

41 11 x 2670502781396266997 x 3404193829806058997303

42 29 x 101 x 281 x 9901 x 226549 x 121499449 x 4458192223320340849

43 11 x 57009401 x 2182600451 x 7306116556571817748755241

44 73 x 137 x 617 x 16205834846012967584927082656402106953

45 7T x 11 x 13 x 19 x 211 x 241 x 2161 x 9091 x 29611 x 52579
x3762091 x 8985695684401

46 101 x 1289 x 18371524594609 x 4181003300071669867932658901

47 11 x 6299 x 4855067598095567 x 297262705009139006771611927

48 97 x 353 x 449 x 641 x 1409 x 69857 x 206209 x 66554101249 x 75118313082913

49 11 x 197 x 909091 x 5076141624365532994918781726395939035533

50 101 x 3541 x 27961 x 60101 x 7019801 x 14103673319201 x 1680588011350901

© 0O Ut W =3
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Exercise
1. Show that
16, 1 19, 26, 2 49, 4
6,4 4 9,5 5 6,5 5 9,8 8

2. Show that(16,,7)? = 27,,8,.19.

3. (3,4)% = 1,,415,6.

4. John shook its head. “Multiply that huge number by 8 in my head?
You've got to be kidding.”

“But it's easy, Dad.” Mike told him. “You just shift its last digit to
the front.”

The boy was right, and it is the smallest number for which it works.
What was the number?

5. John looked over his son’s shoulder. “That must be an interesting
number,” he said. “Homework?”

“Just fun, Dad,” Doug replied. “It's the serial number on that clock
you brought back from Kaloat, and I've just noticed something spe-
cial about it. If you take the last two digits and put them in front,
you get exactly four times the original number, and it's the smallest
number that works that way.”

What was the serial number?
6. Given anintegen. Show that an integer can always be found which

contains only digits 0 and 1 (in the decimal scale) and which is
divisible byn. 2

7. Determine am-digit number such that the number formed by re-
versing the digits is nine times the original number. What other
numbers besides nine are possible ?

8. Write 559,,_5893,,_19 as a sum of three squares of natural numbers.

9. There are only two repdigits, whose squares have digital sum 37.
What are these®

2AMM Problem 4281.
SAnswer: 7.Lpue g
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Digital sum and digital root

Digital sum sequences

Digital root
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15.1 Digital sum sequences

The digital sum of a positive integeris the sum of the digits of. We
denote this byi(n).

Given a positive integeti, the digit sum sequenc®a) = (a,) is
defined recursively by

Apy1 = ay + d(ay), a; = a.

Here are the first few digit sum sequences:

S(1) 1,2,4,8,16,23,28,38,49, 62,70,77,91,101, 103, 107, . ..
S(3) 3.6.12,15,21,24,30,33,39, 51,57, 69, 84,96, 111, 114, .
S(5) 5,10, 11,13, 17, 25,32, 37,47, 58,71, 79,95, 109, 119, 130, .
S(7) 7.14,19.29. 40,44, 52, 59, 73,83, 94. 107, 115, 122, 127, 137, . ..
S$(9) 9,18,27,36,45,54,63,72,81,90,99, 117, 126, 135, 144, 153, . ..

Note that they are quite similar to the digital root sequences.

Show thai§(3) = R(3) andR(9) = 8(9).

What is the smallest number that does not appear in any of these digit
sum sequences?

Find the first 10 terms of the digital sum sequence beginning with this
number.

20,22,26,34,41,46,56,67,80,88,104,109,119,130,134,142, ...

Find the next smallest number which is not in any of the 6 digit sum
sequences and generate a new digit sum sequence from it.

31,35,43,50,55,65,76,89,106,113,118,128,139,152,160,167, ...

There are infinitely many digit sum sequences because there are in-
finitely many numbers which are not of the formt d(n).

The number 101 is + d(n) for n = 91 and100.

The number 101 traces back to 100, 86 which is a starter. It also
traces back to 91, and eventually 1.

Here are the numbers below 100 which are not of this form:

1, 3,5, 7,9, 20, 31, 42, 53, 64, 75, 86, 97.

An infinite sequence of “starters™0,122, n > 1. Every number
n < 10,114 hasn + d(n) < 10,121; every numbern > 10,115 has
d(n) > 10,123.
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15.2 Digital root

Given a positive integet, letd(n) be the sum of the digits of. If the
operationd is repeated indefinitely, it stabilizes after a finite number of
steps and yield a number between 1 and 9, which we call the digital root
of n, denotedD(n). See [DudenyAmusements, p.157].

Theorem 15.1.  1.D(m +n) = D(D(m) + D(n)).
2. D(mn) = D(D(m)D(n)).

3. D(m") = D(D(m)").
4. D(D(n)) = D(n).
5.D(n+9) =D(n).

6. D(9n) = 9.

Proof. (5)D(n+9) = D(D(n)+D(9)) = D(D(n)+9) = D(n) since
D(n) is a single-digit number.
(6) D(9n) = D(9D(n)) = 9 sinceD(n) has one single digit. [
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15.3 The digital roots of the powers of 2

3 4 5 6
8§ 16 32 64
8§ 7 5 1
digital roots ®f is periodic with

n 0 1

2" 1 2

D(2") 1 2

It follows that the sequence of
period 6.

2
4
4

‘ ‘ sequence of digital roots ‘

2" 11

3|1

47 11,4, 7

5" |1, 5,7, 8,4, 2

6"|1,6,9

™1, 7,4

8" |1,

9" | 1,
The sequence of the digital roots2¥f+ 1 is also periodic with period

6:

?

2,3,59,8, 6, ....

Digital roots of Fermat numbers

To find the digital root of the Fermat numbEf = 22" + 1, we need only
find 2 mod 6. Now, it is clear thaR* = 1 or 2 mod 3 according as is
even or odd. Therefore* = 4 or mod6 according as: is even or odd.
From this, we have

8 if k=0mod 2,

D(F,) =
(i) {5 if k=1 mod 2.

The digital roots of the Fibonacci numbers form a sequence of period
24:

1,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4,1,5,6,2,8,1,9, 1,1, . . ..



15.4 Digital root sequences 427

15.4 Digital root sequences

A digit root sequencéu,, ) is defined recursively by
any1 = an + D(ay), ay = a.
The digital root sequence beginning with 1 is

1,2,4,8,16,23,28,29,31, 35,43, 50, 55, 56, 58, 62, 70, . . .

Obviously, the digital root sequence beginning with any of these terms is
a subsequence of this. By taking a term not in this sequence we generate
a new one. Here are five digital root sequences with initial terms 1, 3, 5,

7,9.

R(1) 1,2,4,8,16,23,28,29,31, 35,43, 50, 55, 56, 58, 62, 70, 77, 82, 83, 85, 89,97, 104, . ..
R(3) 3,6,12,15,21,24, 30, 33, 39,42, 48, 51, 57, 60, 66, 69, 75, 78, 84, 87,93, 96,102, . . .
R(5) 5,10,11,13,17,25,32,37, 38,40, 44, 52, 59, 64, 65,67, 71, 79, 86, 91, 92, 94, 98, 106, . . .
R(7) 7,14,19,20, 22,26, 34, 41, 46,47, 49, 53, 61, 68, 73, 74, 76, 80, 88, 95, 100, . . .

R(9) 9,18,27,36,45,54,63,72,81,90,99,108, 117,126, 135, 144, 153, . . .

Theorem 15.2 (Kumar). 1. The digital roots of these sequences are
periodic.

2. These five sequences partition the natural numbers.

The digital roots of these sequences are

Ry 1,2,4,8,7,5

Ry 3,6
Rs 5.1,2,4,8,7
R; 7,5,1,2,4,8
Ry 9
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Exercise

1. A Filzian number is one which is the product of its digits and digial
sum. For examplel44 = 1-4-4(1 + 4 + 4). Find one more such
number?

. Find the digital root ofu!.
. Find the digital root sequence of.
. The cubes.

. The triangular numbers.

o O B~ WN

. Find all integers: such that the sum of the digits af is equal to
n,i.e, d(n?) = n.

7. What is the digital root of a number of the for2i—1 (2" — 1)?

1Answer: 135. It is known that there are only finitely many Filzian numbers. Apart from 1 and 144, the
other known one is 135.
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Project: Sum of squares of digits

Let f(n) be sum of the digits of.. For examplef(1) = 1, f(2) = 4,
f(10) = 1, f(12) = 5, f(123) = 14 etc.

Study the iterations of.

For example, the iterations gfbeginning with 4 leads to the cycle

4 — 16 — 37 — 58 — 89 — 145 — 42 — 20 — 4.
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3-4-5 triangles in the square




3-4-5 triangles in the square

432




433




434 3-4-5 triangles in the square

1
tanf = —.



435

Exercise

1. Show that the shaded triangle is a 3:4:5 triangle.

2. Find the ratio of the areas ofBY, BCXY,andAXD.

D
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Subtraction games

The nim sum

Nim

Northcott’s variation of nim
Wythoff's game

Appendix: Beatty's theorem
Exercise

Project: Another subtraction game
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17.1 Subtraction games

Starting with a given positive integé¥, two players alternately subtract
a positive amount less than a given positive numbet N. The one
who gets down to O wins.

Theorem 17.1.The player who secures a multiple of d has a winning
Strategy.

An equivalent version: the battle of numbers

Starting with 0, two players alternately add positive integers less than a
given limitd. The one who gets to a specifiddwins.

The winning positions are the terms of the arithmetic progression of
common differencé containing/V. Specifically, the small numbanod
(N, d) is a winning position. Therefore, the first player has a winning
strategy if and only ifV is not divisible byd.
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17.1.1 The Sprague-Grundy sequence

Let G be a 2-person counter game in which two players alternately re-
move a positive amount of counters according to certain specified rules.
The Sprague-Grundy sequenceSok the sequencgy(n)) of nonnega-
tive integers defined recursively as follows.

(1) g(n) = 0 for all n which have no legal move to another number.
In particular,g(0) = 0.

(2) Suppose from position it is possible to move to any of positions
mi, ma, ..., myg, (@l < n), theng(n) is the smallest nonnegative integer
different fromg(my), g(ms), ..., g(my).

Theorem 17.2.The player who secures a position n with g(n) = 0 has
awinning strategy.
Example 1: the trivial counter game

If Gisthe game which the players may subtract pogttive amount, the
Sprague-Grundy sequence is the natural sequence

0,1,2,3, ....7,....

Example 2: removing not more thand counters

If Gis the game which subtracts numbergl, then the Sprague-Grundy
sequence is periodic 1,2, ...,d — 1. The values ofi for whichg(n) =
0 are precisely the multiples of
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17.1.2 Subtraction of square numbers

Two players alternately subtract a positive square number. We calculate
the Sprague-Grundy sequence.

10 —9,6,1 = ¢(10)=0

The values ofi < 1000 for which g(n) = 0 are as follows:?

Suppose we start with 74. Player A can subtract 64 to get 10, which
has value 0. This means no matter how B moves, A can always win.
This is clear if B moves to 9 or 1. But if B moves to 6, then A can move
to 5 which again has value 0, since now B can only move to 4 or 1.

Exercise

How would you win if the starting number is 200? or 5007?

1[Smith, p.68] incorrectly asserts that this sequence is periodic, with period 5.
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17.1.3 Subtraction of square numbers
The first 100 terms of the Sprague-Grundy sequence are
123456789 10
101201012 0
101201012 0
101232 345 3
2340123201
232012323 4
501345013 4
501301012 4
301562345 6
2345016 32 4
26 45016 42 4
The winning positions within 500 are as follows.
0 2 5 7 10 12 15 17 20 22 34 39 44 52 57
62 65 67 72 85 95 109 119 124 127 130 132 137 142 147
150 170 177 180 182 187 192 197 204 210 215 238 243 249 255
257 260 262 267 272 275 312 317 322 327 332 335 340 345 350
369 377 390 392 397 425 430 437 442 447 449 464
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Subtraction of aliquot parts

Two players start with a positive integer and alternately subtract any
aliquot part (divisor) with the exception of the number itself from the
number left by the opponent. Winner is the last player able to perform
such a subtraction.

By way of example, if the original number is 12, first player may
subtract either 1, 2, 3, 4, or 6 (but not 12). If he subtract 2, leaving 10,
second player may subtract either 1, 2, or 5.

The first 100 terms of the Sprague-Grundy sequence are

123456789 10
01020103601
020104010 2
0103010201
050102010 3
01 020104°0 1
020103010 2
0106 010201
030102010 4
01020103601
020105010 2

The winning positions within 500 are as follows.

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27

29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
59 61 63 65 67 69 71 73 75 77 79 81 83 85 87
89 91 93 95 97 99 101 103 105 107 109 111 113 115 117
119 121 123 125 127 129 131 133 135 137 139 141 143 145 147
149 151 153 155 157 159 161 163 165 167 169 171 173 175 177
179 181 183 185 187 189 191 193 195 197 199 201 203 205 207
209 211 213 215 217 219 221 223 225 227 229 231 233 235 237
239 241 243 245 247 249 251 253 255 257 259 261 263 265 267
269 271 273 275 277 279 281 283 285 287 289 291 293 295 297
299 301 303 305 307 309 311 313 315 317 319 321 323 325 327
329 331 333 335 337 339 341 343 345 347 349 351 353 355 357
359 361 363 365 367 369 371 373 375 377 379 381 383 385 387
389 391 393 395 397 399 401 403 405 407 409 411 413 415 417
419 421 423 425 427 429 431 433 435 437 439 441 443 445 447
449 451 453 455 457 459 461 463 465 467 469 4Tl 473 4TS5 4AT7
479 481 483 485 487 489 491 493 495 497 499
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Subtraction of proper divisors

The rules are the same with the exception that gnbper divisors may
be subtracted. Consider 1 an improper divisor.
The first 100 terms of the Sprague-Grundy sequence are

123456789 10
000102¢0¢00 1
030102010 3
01040102¢0 1
000102010 4
01020103201
020104010 2
0105010201
040102010 3
01020104¢0 1
020106010 2

The winning positions within 500 are as follows.

0
25
53
83

113
141
171
201
231
261
291
321
351
381
411
441
471

1
27
55
85

115
143
173
203
233
263
293
323
353
383
413
443
473

2
29
57
87

117
145
175
205
235
265
295
325
355
385
415
445
475

3
31
59
89

119
147
177
207
237
267
297
327
357
387
417
447
477

5
32
61
91

121
149
179
209
239
269
299
329
359
389
419
449
479

7
33
63
93

123
151
181
211
241
271
301
331
361
391
421
451
481

8
35
65
95

125
153
183
213
243
273
303
333
363
393
423
453
483

9
37
67
97

127
155
185
215
245
275
305
335
365
395
425
455
485

11

39

69

99
128
157
187
217
247
277
307
337
367
397
427
457
487

13

41

71
101
129
159
189
219
249
279
309
339
369
399
429
459
489

15

43

73
103
131
161
191
221
251
281
311
341
371
401
431
461
491

17

45

75
105
133
163
193
223
253
283
313
343
373
403
433
463
493

19

47

7
107
135
165
195
225
255
285
315
345
375
405
435
465
495

21

49

79
109
137
167
197
227
257
287
317
347
377
407
437
467
497

23

51

81
111
139
169
199
229
259
289
319
349
379
409
439
469
499
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Subtraction of primes

The first 100 terms of the Sprague-Grundy sequence

123 4 567 8 9 10
001 1 223 3 40
011 2 233 4 4 5
56 6 7 704 1 5 2
6 34 7 001 1 2 2
334 8 576 8 9 0
415 2 604 1 5 2
6 34 7 58 410 5 7
6 8 4 7 58 6 10 9 7
4 8 510 6 04 1 5 2
6 04 1 526 3 4 7

The winning positions within 500 are as follows.

0 1 2 10 11 26 35 36 50 56 86 92 101 116 122
126 134 146 156 170 176 188 196 206 218 236 248 254 260 266
290 296 302 310 311 320 326 336 344 356 362 376 386 392 396
404 416 426 446 452 470 476 482 486 494
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17.2 The nim sum of natural numbers

The nim sum of two nonnegative integers is the addition in their base 2
notationswithout carries. If we write

0BHO0O=0, 0OH1=1H0=1, 1H1=0,
then in terms of the base 2 expansions aihdb,
alBb= (alag o -an) 25, (blbg B bn) = ((11 25, bl)((lg H bg) te ((ln 25, bn)

The nim sum is associative, commutative, and has 0 as identity ele-
ment. In particularg B a = 0 for every natural number.
Here are the nim sums of numbetsl 5:

g0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o(fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
111 o0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
22 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3(3 2 1 0 7 6 5 4 11 10 9 & 15 14 13 12
414 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5/5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
66 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
T(7v 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
88 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
919 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
0{10 11 8 9 14 15 12 13 2 3 O 1 6 7 4 5
1,11 10 9 8 15 14 13 12 3 2 1 0O 7 6 &5 4
12112 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
1313 12 15 14 9 8 1 10 5 4 7 6 1 0 3 2
14|14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
5115 14 13 12 11 10 9 & 7 6 S5 4 3 2 1 O

Theorem 17.3. Suppose two players alternately play one of the counter
games Gy, ..., G which have Sprague-Grundy sequences (g;(n)), ...,
(gx(n)) respectively. The player who securesaposition (ny, ng, ..., ng)
with

91(”1) H 92(”2) H---H gk(nk) =0

has a winning strategy.
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17.3 The gameNim

Given three piles of marbles, withy b, ¢ marbles respectively, players
A andB alternately remove a positive amount of marbles from any pile.
The player who makes the last move wins.

Theorem 17.4.1n the game nim, the player who can balance the nim
sum equation has a winning strategy.

Therefore, provided that the initial positidn, b, ¢) does not satisfy
aBbH c = 0, the first player has a winning strategy. For example,
suppose the initial position igl2,7,9). Sincel2 H 9 = 5, the first
player can remove 2 marbles from the second pile to maintain a balance
of the nim sum equation,

12H5H9=0

thereby securing a winning position.

This theorem indeed generalizes to an arbitrary number of piles.
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17.4 Northcott’s variation of Nim

Two players alternately move their counters on one of the rows, the only
restriction being not moving onto or beyond the opponent’s counter. The
one who cannot move loses.

O O
O O
O O
O O
O O

This is equivalent to nim if one considers a number of piles of coun-
ters corresponding to the number of spaces between the counters on the
rows. (If a player tries to increase the number of spaces, the other player
can force the same distance by pursueing the same number of spaces).
Therefore the player who can balance the nim sum equation has a win-
ning strategy.

For example, in the above arrangement, the numbers of spaces have
nim sum

SH2H4H2H2 =5.
It can be made 0 by moving 3 spaces in row 3.



512 Combinatorial games

17.5 Wythoff’'s game

Wythoff’'s game is a variant of Nim. Given two piles of marbles, a
player either removes an arbitrary positive amount of marbles from any
one pile, or an equal (positive) amount of marbles from both piles. The
player who makes the last move wins.

We describe the position of the game by the amounts of marbles in
the two piles.

If you can makg2, 1), then you will surely win no matter how your
opponent moves. Now, to forbid your opponent to get to this position,
you should occupy3, 5).

The sequence of winning positions: starting with, b,) = (1, 2),
construct(ax, b) by setting

ar :=min{c:c>a;b;, i < k},
by :=ay + k.

Here are the 18 smallest winning positions for Wythoff’'s game:

13 4 6 8 9 11 12 14 16 17 19 21 22 24 25 27 29
2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 41 44 47

Theorem 17.5. The winning positions of Wythoff’s game are the pairs

(lng], [n@?]), where p = Y31 isthe golden ratio.
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Appendix: Beatty’s Theorem

If « andj are positive irrational numbers satisfyilégqL % = 1, then the

sequences
la], [2a], [3e], ...

and
18], 126], [38], ...

form a partition of the sequence of positive integers.

See Russian problem book, MG Problem 1300, solution, 62 (1989)
203.

If » ands are positive integers and = r + s, then the union of the
two sequences

n 2n (r—1)n
M’_T_’ R
and
n 2n (s —1)n
H’_?_’--"_ s
is the natural sequende 2, ..., n—2 ifand only ifr ands are relatively

prime.



514 Combinatorial games

Exercise

1. What are the winning positions in the battle of numbers viNth=
100 andd = 7?

2. The golden ratiay has the property that? andy have exactly the
same digits after the decimal point. Find all numbfevghich have
exactly the same digits #3 after the decimal point.

3. A announces a two digit number from 01 to 99. B reverses the
digits of this number and adds to it the sum of its digits and then
announces his result. A continues in the same pattern. All num-
bers are reduced modulo 100, so that only two digit numbers are
announced. What choices has A for the initial number in order to
insure that B will at some time announce 08 ?

%39 10 08 ‘95
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Project: Another subtraction game

Starting with a given positive integer, two players alternately subtract
numbers not more than the predecessor used. The one who gets down
to zero is the winner. Under what condition does the first player have a
winning strategy?
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The period length of a prime

Appendix: Factorizations of repunifg,, n < 50
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18.1 k-right-transposable integers

Let k& be a given positive integer. A positive integgris k-transposable
if in moving the leftmost digit to the rightmost, the number is multiplied
by k.
Note thatX is a repdigit if and only it = 1. We shall assume > 1.
Suppose the numbéf hasn digits, with leftmost digitz. We have

10(X —a-10"1Y) +a=kX.

From this,(10 — k)X = a(10" — 1) = 9a - R,,.

If £ # 3, 10 — k can only have prime divisors 2, 3, 5. The equation
will reduce toX = a repdigit, which is clearly impossible.

Fork = 3, we have7X = a(10" — 1). If a = 7, then againX is a
repdigit. Therefore, we must havedividing 10™ — 1. This is possible
only if n is a multiple of 6. Therefor& = a - 106% and has first digit
a.

Now,

109 — 1
7
It is easy to see thatcan only be 1 or 2.

Therefore, the only-transposable numbers drel2857),,, and(285714),,

with k£ = 3.

= (142857),,.
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18.2 k-left-transposable integers

Letk be a given positive integer. A positive integ€rs k-left-transposable
if in moving the rightmost digit to the leftmost, the number is multiplied
by k. Note thatX is a repdigit if and only ift = 1. We shall assume
k > 1. Suppose the numbéf hasn digits, and its rightmost digit is.

We have X —b
10"t T kX,
T 10

From this,b - 10" + X — b = 10kX, and
(10k — 1) X = (10" — 1).

SinceX is hasn digits,b(10"—1) > (10k—1)10""!, andp > 2_10k-1) _
k — 4. This shows thak > .

k n

2 19X =0b(10"—1) 18m
3 29X =b(10" —1) 28m
4 39X =b(10" —1) 12m
5 49X =b(10" — 1) 42m
6 59X =0b(10"—1) 58m
7 69X =b(10" —1) 22m
8 79X =0b(10"—1) 13m

)

9 89X =p(10" —1
These lead to the following numbers:

44m

X5 =105263157894736842,
X3 =1034482758620689655172413793,
X, =102564102564,
X5 =102040816326530612244897959183673469387755,
X =1016949152542372881355932203389830508474576271186440677966,
X7 =1014492753623188405797,
Xg =1012658227848,
X =10112359550561797752808988764044943820224719.
Each of theseX,, can be replaced b% - Xpfork=0,...,9. Every

k-left-transposable number is of the fo(},),,, for X given above and
m > 1.
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18.3 Sam Yates’ repunit riddles

1. What digits should be substituted for the letters so that the sum of
the nine identical addends will be a repurfit?

i=vii=viiaviiaviiavii=v =yl iiay
SESRGNoRoRoRGRGN
aeBacRacRacRavBacBacBaciav
STCcCooaoaodg
zz2z2z=22=2=22=2=
NN~~~
NNNNNNNSS
NN NN ninny

_|_

2. Are two repunits with consecutive even numbers as their subscripts
relatively prime?

3. Are two repunits with consecutive numbers as their subscripts rel-
atively prime?

4. Are two repunits with consecutive odd numbers as their subscripts
relatively prime?

5. Aside from 3, what prime dividesR,?°
6. What digit does each letter of this multiplication represént?

R R R R R RR
X R R R R R RR
R E PUNTITT I NU P FE R

7. Anold car dealer’s record in the 1960’s shows that the total receipts
for the sale of new cars in one year came to 1,111,111.00 dollars.
If each car had eight cylinders and was sold for the same price as
each other car, how many cars did he sell?

1REPUNITS=12345679 and the sumis.

2No. Repunits with even subscripts are divisible by 11.

3Yes. Consecutive numbers are relatively prime, ged{ R, Ry,) = Rgcd(m,n)-
4Yes. Consecutive odd numbers are relatively prime.

BUON,

6R7 X R7 = R13.
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8. Find a pair of repunits whose product is a 100-digit palindrome.

9. If a Mersenne numbel/, = 2 — 1 is prime, is the corresponding
repunitR, also prime?8
10. What is the smallest repunit divisible by the square of 11? What is
the smallest repunit divisible by the squareryf; ?

In general, the smallest repunit divisible by the squarB pfs R,
whereN = nR,,.

f Ry - Ry has 100 digitsp + ¢ = 101. Suppose < g andp = 9k + m for 1 < m < 9. Since the
product is a palindrome, it cannot contadnandB. We must havéc = 0 andp < 9. Foranyp = 2, ..., 9,
the producti, - Ry is the palindromg, 5,5, 1, where

N if p=2,
p= 12--(p=D(p—-1)32 if3<p<9.’

8Ms3 =23 — 1 =7isprime butRz = 111 = 3 x 37.
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18.4 Recurring decimals

The decimal expansion of a rational number is eventually periodic. It is
finite if and only if the denominator has no prime divisors other than 2
and 5.
The decimal expansion o}j is purely periodic if and only ifn is a

prime. Forp = 3, this is the most well known recurring decimal

L 0.333---=10.3

7 =0 =0.3.
with period length 1. Here are the periods of the reciprocals of the first
few primes, together with their period lengths.

p  period A(p)
3 3 1
7 142857 6
11 09 2
13 076923 6
17 0588235294117647 16
19  052631578947368421 18
23 0434782608695652173913 22
29 0344827586206896551724137931 28
31 032258064516129 15
37 027 3
41 0243902439 10
43 023255813953488372093 21

47 0212765957446808510638297872340425531914893617 46
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18.5 The period length of a prime

The period length of a prime numbgmeans the length of the shortest
repeating block of digits in the decimal expansion};of

Suppose;- has period length:

1
= =0.a a.

Then moving the decimal placesplaces to the right, we have
10*
P

=qay---a).a1 Gy,

and
100 1
RN — &1 .. @/\
p p
is an integer. This means thatlivides10* — 1. Clearly,p cannot be 2
or 5. Itis known that ifp # 2,5, then10P~! — 1 is divisible byp, and

any numben for which 10* — 1 is divisible byp dividesp — 1.

Theorem 18.1.1f p # 2, 5, the period length of p is the smallestdivisor
A of p — 1 such that p divides 10* — 1.

Theorem 18.2.Let p > 5 be a prime. The period length of p is the
smallest divisor n of p — 1 such that p divides R,,.

Proof. Note that10” — 1 =9, = 9 x R,. If p # 3, thenp divides
R,. O

We say thap is a primitive prime divisor the repunit. Thus, for
a primep > 5, the period length op is the numberm for which p is
primitive prime divisor. A table of primitive prime divisors of repunits
is given in an Appendix.
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Appendix: Factorizations of repunits R,, for n < 50

Ry

© 00O Uk w3

11.

3 x 37.

11 x 101.

41 x 271.

3 X 7x11x 13 x 37.

239 x 4649.

11 x 73 x 101 x 137.

32 x 37 x 333667.

11 x 41 x 271 x 9091.

21649 x 513239.

3 X 7x11 x 13 x 37 x 101 x 9901.

53 X 79 x 265371653.

11 x 239 x 4649 x 909091.

3 x 31 x 37 x 41 x 271 x 2906161.

11 x 17 x 73 x 101 x 137 x 5882353.

2071723 x 5363222357.

32 x 7 x 11 x 13 x 19 x 37 x 52579 x 333667.

prime

11 x 41 x 101 x 271 x 3541 x 9091 x 27961.

3 X 37 x 43 x 239 x 1933 x 4649 x 10838689.

112 x 23 x 4093 x 8779 x 21649 x 513239.

prime

3XT7x11x13x37x73x 101 x 137 x 9901 x 99990001.

41 x 271 x 21401 x 25601 x 182521213001.

11 x 53 x 79 x 859 x 265371653 x 1058313049.

33 X 37 x 757 x 333667 x 440334654777631.

11 x 29 x 101 x 239 x 281 x 4649 x 909091 x 121499449.

3191 x 16763 x 43037 x 62003 x 77843839397.

3XT7x11x13x31x37x41 x211 x241 x 271 x 2161 x 9091 x 2906161.
2791 x 6943319 x 57336415063790604359.

11 x 17 x 73 x 101 x 137 x 353 x 449 x 641 x 1409 x 69857 x 5882353.

3 X 37 X 67 x 21649 x 513239 x 1344628210313298373.

11 x 103 x 4013 x 2071723 x 5363222357 x 21993833369.

41 x 71 x 239 x 271 x 4649 x 123551 x 102598800232111471.

32 x 7 x 11 x 13 x 19 x 37 x 101 x 9901 x 52579 x 333667 x 999999000001.
2028119 x 247629013 x 2212394296770203368013.

11 x 909090909090909091 X Rig.

3 % 37 x 53 X 79 x 265371653 x 900900900900990990990991.

11 x 41 x 73 x 101 x 137 x 271 x 3541 x 9091 x 27961 x 1676321 x 5964848081.
83 x 1231 x 538987 x 201763709900322803748657942361.

3x 72 x 11 x 13 x 37 x 43 x 127 x 239 x 1933 x 2689 x 4649 x 459691 x 909091 x 10838689.
173 x 1527791 x 1963506722254397 x 2140992015395526641.

112 x 23 x 89 x 101 x 4093 x 8779 x 21649 x 513239 x 1052788969 x 1056689261.
32 x 31 x 37 x 41 x 271 x 238681 x 333667 x 2906161 x 4185502830133110721.
11 x 47 x 139 x 2531 x 549797184491917 X Ro3.

35121409 x 316362908763458525001406154038726382279.

3XT7x11x13x 17 x 37 x 73 x 101 x 137 x 9901 x 5882353 x 99990001 x 9999999900000001.
239 x 4649 x 505885997 x 1976730144598190963568023014679333.

11 x 41 x 251 x 271 x 5051 x 9091 x 21401 x 25601 x 182521213001 x 78875943472201.
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Appendix: Primitive prime divisors of repunits

Exercise

Find all prime numbersg for which ; has period length 12.

n  Primitive prime divisors of Ry,
2 11.
3 3,37.
4 101.
5 41,271.
6 7,13.
7 239, 4649.
8  73,137.
9  333667.
10 9091.
11 21649, 513239.
12 9901.
13 53,79, 265371653,
14 909091.
15  31,2906161.
16 17, 5882353.
17 2071723, 5363222357.
18 19, 52579.
19 1111111111111111111.
20 3541, 27961.
21 43,1933, 10838689.
22 23,4093, 8779.
23 11111111111111111111111.
24 99990001.
25 21401, 25601, 182521213001.
26 859, 1058313049.
27 757, 440334654777631.
28 29,281, 121499449,
29 3191, 16763, 43037, 62003, 77843839397.
30 211,241, 2161.
31 2791, 6943319, 57336415063790604359.
32 353,449, 641, 1409, 69857.
33 67, 1344628210313298373.
34 103, 4013, 21993833369.
35  71,123551, 102598800232111471.
36  999999000001.
37 2028119, 247629013, 2212394296770203368013.
38  909090909090909091.
39 900900900900990990990991.
40 1676321, 5964848081.
41 83,1231, 538987, 201763709900322803748657942361.
42 127, 2689, 459691.
43 173, 1527791, 1963506722254397, 2140992015395526641.
44 89,1052788969, 1056689261.
45 238681, 4185502830133110721.
46 47,139, 2531, 549797184491917.
47 35121409, 316362908763458525001406154038726382279.
48 9999999900000001.
49 505885997, 1976730144598190963568023014679333.

251, 5051, 78875943472201.

9Problem 2207,). Recreational Math., 27 (1995) 59.
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Appendix: The multiplicative digital root

The multiplicative digital root of a number is the single digit number
obtained by iterating the digital product operation. Thus,

6244 - 6-2-4-4=192—-1-9-2=18 — 1 cdot8 = 8.

Theorem 18.3 (Kuczma).The multiplicative digital root of n is1if and
only if n isa repunit.

Proof. The digital product of a number is 1 if and only if it is a repunit.
We claim that no number can have a repuRjt, » > 2, for digital
product. If so, this would mean that, factors into one digit numbers,
and its prime divisors can only be 3 and 7. In other wofdls = 3" - 7%
for some integers, k£ > 0.

The powers of 7 modulo 100 are 1, 7, 49, 43. Those of 3 modulo 100
are given in the first row of the table below. Their product cannot be 11
modulo 100.

1 3 9 27 81 43 29 87 61 83 49 47 41 23 69 7 21 63 89 67
7 21 63 89 67 1 3 9 27 81 43 29 87 61 83 49 47 41 23 69
49 47 41 23 69 7 21 63 89 67 1 3 9 27 81 43 29 87 61 83
43 29 87 61 83 49 47 41 23 69 7 21 63 89 67 1 3 9 27 813
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Exercise

1.
2.
3.

What are the decimal expansions$f =, and 5= ?

Calculate the period qof = 67.

If pis any odd prime, show that the decimal expansion of the frac-
tion }D will repeat inp—;1 digits or some factor thereof it and only if

p = £3F (mod 40).

. What is the smallest integer ®f identical digits which is the prod-

uct of twon-digit numbers?

Clearlyn > 2. Sincellll = 11 x 101, we seek 6 digit numbers.
Now,
R =3xT7x11x 13 x 37.

There are four ways of rearranging it as a product of two 3-digit
numbers:

143 x 777 = 231 x 481 = 259 x 429 = 273 x 407.

. Let N be an integer op digits. If the last digit is removed and

placed before the remaining- 1 digits, a new number gf digits is
formed which is%th of the original number. Find the most general
such numbemV.

. (a) Find the smallest integé¥ such that, if the units digits is trans-

posed from right to left, a numb@r is obtained wheré/ = 5N. 1°

. A certain 3-digit number yields a quotient of 26 when divided by

the sum of its digits. If the digits are reversed, the quotient is 48.
What is the smallest 3-digit number for which this is possible ?

. Without the use of tables, find the smallest integer whose cube ter-

minates in seven sevens.

10°N7G = GGV IL = N 'LG8TVT = N
11°LLLLLLLVLTLETTSEEITO6 = ¢£SL0996
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Project: Period lengths of primes< 100

Find the period lengths of the primes 100 by using the factorization
of repunits given above. Note that 59, 61, and 97 are the only primes
< 100 that cannot be found in the table above.

‘ Prime ‘ Period lengths ‘ ‘ Prime ‘ Period lengths ‘
7 11
13 17
19 23
29 31
37 41
43 47
53 59
61 67
71 73
79 83
89 97
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Project

It is known that the number

N = 19000458461599776807277716631

is a perfect cube. Find its cube ratt. Verify that N = N, the twenty-
eight numbersV;, 1 < i < 28 which are formed by cyclic permutations
of its digits are all divisible by the cube root of.

N;

| N+ M

19000458461599776807277716631

90004584615997768072777166311

45846159977680727771663119

458461599776807277716631190

4584615997768072777166311900

45846159977680727771663119000

58461599776807277716631190004

84615997768072777166311900045

46159977680727771663119000458

61599776807277716631190004584

15997768072777166311900045846

25| oo a| ||| =] o =

59977680727771663119000458461

[
[\

99776807277716631190004584615

J—
w

97768072777166311900045846159

—
'S

77680727771663119000458461599

[
ot

76807277716631190004584615997

—_
(@)

68072777166311900045846159977

—_
-3

80727771663119000458461599776

[
o]

7277716631190004584615997768

—_
©

72777166311900045846159977680

[\
o

27771663119000458461599776807

[\
—_

77716631190004584615997768072

N
)

77166311900045846159977680727

[\v)
w

71663119000458461599776807277

[N~}
=

16631190004584615997768072777

[\v)
ot

66311900045846159977680727771

[\
D

63119000458461599776807277716

]
3

31190004584615997768072777166

[\)
o]

11900045846159977680727771663
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More digital trivia

1. Larry, Curly, and Moe had an unusual combination of ages. The
sum of any two of the three ages was the reverse of the third age
(eg., 16 + 52 = 68, the reverse of 86). All were under 100 years
old.

(a) What was the sum of the ages?

(b) If Larry was older than either of the others, what was the youngest
he could be?

2. Let n be a nonnegative integer. The number formed by pla2ing
and2"*! side by side in any order is divisible by 3.

3. Find positive integers;, y, z (less than 100), such that + y? =
22 andX? +Y? = Z? where X, Y, Z are derived fromr, y, z by
inserting an extra digit (the same for all) on the left.

4. (a) Find the smallest positive integ8rhaving the property that the
sum of its digits does not divide the sum of the cubes of its digits.

(b) Find the two consecutive positive integers each of which equals
the sum of the cubes of its digits.

5. Find two perfect cubes which, considered jointly, contain the digits
0,1,2,3,4,5,6,7,8and 9 each once. Is the solution unigéie ?

6. Show that there is but one five-digit integer whose last three digits
are alike and whose square contains no duplicate digits.

1Suppose™ hask digits. Putting2™+! on the left hand side af* gives the numbe2*1 . 10% + 2m.
Modulo 3, this is(—1)"*+! + (—1)™ = 0.

‘g€ pue L€ (0) ‘21T = N (B)

3Unique solution:L8€¥08 = ¢£6PUe 1926 = ¢1C

4'Y8CET0L6S9 = £CCCIR
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10.

11.

12.

13.

14.

15.

16.

17.

. Determine the largest and smallest perfect squares which can be

written with the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, used once each
in both cases.

. Find two perfect squares, of five digits each, which together contain

all the digits 0, 1, 2, 3,4, 5, 6, 7, 8, 9. How many solutions are there
?

. Let k£ > 3. Determine all numbers of the forirf + 2% + - .- + n*

whose decimal expansions consist of the ten digits 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 without repetition.

Determine all binomial coefficients whose decimal expansions con-

sist of the ten digits 0, 1, 2, 3,4, 5, 6, 7, 8, and 9 without repetition.
5

Find a number whose cube and fourth power together contain the
ten digits, once each. (See E116 and Problem following E662).

Find a multiple of 7 whose square has eight digits of the form
ababbbce. ’

What is the largest prime whose square contains no duplicate digits
”? 8

Find a four-digit square which remains a square when two zeros are
intercalated between the thousands digit and the hundreds 8igit.

Find a number and its fourth power, which together have nine dig-
its, all different. 1°

Find a perfect square whose digits form one of the permutations of
five consecutive digits. (See also E538, 578).

Find a perfect square of 7 digits with all digits even and positive.
12

5'CLIGTTTOES = (goz) PUE 0TT8EL6ITS = (1)

6'9L6T0T = ;8TPUE ZE8S = gdgnu s|qissod Ajuo su1 SI 8T |n fact, 2, 18 and 69 are the only num-
bers with two distinct powers which together contain the ten digits, once each.

TVVLLLSGLSG = £88GL even without restriction to multiples of 7.
8'609TE8LEY = zL6ETC

9'7L€8 = 69S00L ‘69SL = ZL8PUR 87 = ¥0L00T V0OLG = TS
10'9.G870T = pupue ‘g = u

11'TF0TE = £6LTPUE FOTET = 7TCT

127878988 = 8L6T ‘V88TVTY = 8L8T '798CI8T = 77691
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18. Find a number of the formb0Ocd whose square contains the nine
digits 1, 2, 3, 4,5, 6,7, 8, 913

19. Find a perfect cube whose digits form a permutation of consecutive
digits. (See also E538)!4

20. Find a square of ten digits such that the two numbers formed by the
first five and last five digits are consecutive.

21. Find the smallest four-digit number such that the sum of products
of pairs of digits is equal to the sum of products of sets of three.

22. Find three three-digit numbers in geometrical progression which
can be derived from one another by cyclic permutation of digits.
(See also E714).

13The QRTALEZYY ' T8YES6.29 T80CEYILS TIEY /862G 625V, 8TIE V8T L6G9CE

14°L2759€8 = ¢€0T The only higher powers satisfying the same condition are the fifth powers of 32 and
243.

15'96707S6707 = 79£9€9 ‘STTETVITET = £8989¢
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The shoemaker’s knife

1 Archimedes’ twin circles
2 Incircle of the shoemaker’s knife
Archimedes’ construction
Bankoff’s constructions
Woo0’s constructions
3 More Archimedean circles
Exercise
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20.1 Archimedes’ twin circles

Let P be a point on a segmentB. The region bounded by the three
semicircles (on the same side4B) with diametersAB, AP andPB is
called a shoemaker’s knife. Suppose the smaller semicircles have radii
andb respectively. Lef) be the intersection of the largest semicircle with
the perpendicular througk to AB. This perpendicular is an internal
common tangent of the smaller semicircles.

Theorem 20.1 (Archimedes).The two circles each tangent to C' P, the
largest semicircle AB and one of the smaller semicircles have equal
radii ¢, given by
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20.2 Incircle of the shoemaker’s knife

20.2.1 Archimedes’ construction

Theorem 20.2 (Archimedes).The circle tangent to each of the three
semicircles has radius given by

_abla+0)
a2+ ab+ b

Construction

1 1
I I
1 1
1 1
1 1
I I
1 1
1 1
1 1
1 1
I |
1 1
1 1
1 / \ |
I |
1 1
1 1
1 1
I I
1 1
1 1
1 1
I I
1 1
1 1
1 1
I |
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20.2.2 Bankoff’'s constructions

Theorem 20.3 (Leon Bankoff). If theincircle C'(p) of the shoemaker’s
knife touchesthe smaller semicirclesat X and Y, then the circle through
the points P, X, Y hasthe same radius as the Archimedean circles.

z

A B

A
y

Proof. The circle throughP, X, Y is clearly the incircle of the triangle
C0,0,, since

OX:CYZP, OlX:Ol.P:CL, OQY:OQP:b
The semiperimeter of the trianglé0,0; is

abla+b)  (a+0b)?
a2 +ab+b2  a®+ab+ b2
The inradius of the triangle is given by

abp  |ab-abla+b)  ab
a+b+p (a+b)3 — a+b
This is the same as the common radius of Archimedes’ twin circles.
[l

a+b+p=(a+b)+

First construction
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Second construction

20.2.3 Woo0's three constructions
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20.3 More Archimedean circles

Let UV be the external common tangent of the semicirclesz) and
O,(b), which extends to a chorHl K of the semicircle)(a +b). LetCy
be the intersection ad,V andO,U. Since

OU = a, 0,V =0b, and O1P:POy=a:b,
C4P = -2 = t. This means that the circté,(¢) passes througk and

a+b

touches the common tangeftk” of the semicircles alv.

o P Oq B

Let M be the midpoint of the chord K. SinceO and P are sym-
metric (isotomic conjugates) with respect®O,,

it follows that(a+b) —QM = PN = 2t. From this, the circle tangent to
H K and the minor aré{ K of O(a +b) has radiug. This circle touches
the minor arc at the poir.

Theorem 20.4 (Thomas Schoch)The incircle of the curvilinear trian-
gle bounded by the semicircle O(a + b) and the circles A(2a) and B(2b)

H _ab
hasradiust = pae

Proof. Denote this circle byS(z). Note thatSO is a median of the
triangle SO, 0,. By Apollonius theorem,

(2a+2)* + (20 +2)* = 2[(a+ b)* + (a + b —2)%.

H __ ab __
From this,z = 25 =t O
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Exercise

1. The circles(C;) and(C7) are each tangent to the outer semicircle
of the shoemaker’s knife, and €, at@; similarly for the circles
(Cy) and(C%). Show that they have equal radi= a“—fb

2. We call the semicircle with diametér, O, the midway semicircle
of the shoemaker’s knife.

Show that the circle tangent to the lid&) and with center at the
intersection of O;) and the midway semicircle has radius a“—&

A 01 o P Oq B

3. Show that the radius of the circle tangent to the midway semicircle,

the outer semicircle, and with center on the liRé) has radius
t =
a+b
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21.1 Proofs by construction of sequence of relatively
prime numbers

Fibonacci numbers?

Sinceged(Frn, Fr,) = Faea(m,n), if there are only finitely many primes,
.., Pk, thenthe primes i, , ..., F}, are distinct, and each one of them
has only one prime divisors. This contradiéts = 4181 = 37 x 113.

Fermat numbers

The Fermat numbers ar€, := 22" + 1. It is well known that Fermat’s
conjecture of the primality of, is wrong. While

Fy=3, F =5 F,=17, F3=257, Fy=65537
are all primes, Euler found that
Fy = 2% 41 = 4294967297 = 641 x 6700417.
Note that
F—2=9"_1= (22’“ + 1) (22’” - 1) = Fy (Fyy — 2).
By induction,
F,=F, Fy o---F-Fy+2, n>1

From this, we see thak,, does not contain any factor df,, Fi, ...,
F,_1. Hence, the Fermat numbers are pairwise relatively prime. From
this, it follows that there are infinitely primes.

IM. Wunderlich, Another proof of the infinite primes theorefmerican Math. Monthly, 72 (1965) 305.
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21.2 Somos sequences

Define two sequencés,,) and(b,,) with initial values
ap=a; =1, by=0,by =1,
and forn > 2 recursively by
U =0n—2bn_1,

b, =an_1 + a,.

Here are the first few terms

n ‘ 01234 5 6 7 8 9
a, |1 1 1 2 3 10 39 490 20631 10349290
b, [0 1 2 3 5 13 49 529 21121 10369921

Theorem 21.1. The terms of the sequence (b,,), n > 1 are relatively
prime.

Proof. If we calculate the first few terms

ap =apb; = by,

az =aiby = b,

ay =abs = by b3,
as =agby = baby,
ag =aybs = b1b3bs,
ar =asbg = babyb,

we see a pattern, namely,
Agn =b1b3 -+ bop_1,
A2n 11 =b2by - - - bap.
Suppose, inductively, that, b,, ..., by, are relatively prime. Then,
ban = G2p—1 + A2p = boby - - Doy + b1b3 -+ - boyy 4
does not contain any divisor 6éf, by, ..., bs,_1; nor does
bont1 = A2n + A2py1 = b1b3 -+ - Doy 1 + baby -+ - oy

contain any divisor oby, by, . ..,bs,. It follows by induction that no two
of the term%y, b, ...,b,, ...contain a common divisor. O
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21.3 HRirstenberg’s topological proof made easy

There is a famous proof of the infinitude of primes using topology. It
can be found in many books. Apart from an introductory sentence, here
is the entire article of [Bistenberg]:

We introduce a topology into the space of integ&rdy using the arithmetic pro-

gressions (from-oo to +00) as a basis. Itis not difficult to verify that this actually

yields a topological space. In fact, under this topolagiynay be shown to be nor-

mal and hence metrizable. Each arithmetic progression is closed as well as open,

since its complement is the union of other arithmetic progressions (having the same

difference). As a result, the union of any finite number of arithmetic progression

is closed. Consider now the sét= [ J A,,, whereA, consists of all multiples of

p, andp runs through the set of primes 2. The only numbers not belonging to

Aare—1 and 1, and since the sét-1, 1} is clearly not an open sefi cannot be

closed. Hencel is not a finite union of closed sets which proves that there are an

infinity of primes.

The most recent issue of Mathematics MagaZim®ntains a para-
phrase of this proof, avoiding the language of topology.
Let Z be the set of integers. We say that a subset 7 is periodic

if there is an integek such that for every integer € Z, n € A if and
only if n + k € A. In other words, a period set is a (finite) union of
doubly infinite arithmetic progressions of the same common difference.
The following are clear.

1. If Ais periodic, then so is its complemént, A.

2. If A and B are periodic sets, so is their union, the period of the
union being the Icm of the periods of the sets. For example, if
A3 :={3n:n € Z}andA; := {in : n € Z}, thenA; U A5 is
the union of the arithmetic progressions of common difference 15,
containing the terms 0, 3, 5, 6, 9, 10.

3. (2) extends to finite unions.

For each prime number, let A, := {np : n € Z} consists of the
multiples ofp. This is clearly periodic. Suppose there are only finitely
many primes. Then, the (finite) unioth:= J, ;... 4Ap IS periodic, and
so is its complement. This complement is clearly the{set, 1}, which,
being finite, cannot be periodic. This contradiction shows that there are
indeed infinitely many primes.

2Math. Mag., 76 (2003) number 3.



21.3 Rirstenberg’s topological proof made easy 605

Appendix: Euclid’s proof 2
The prime numbers or primes are the numbers
(A) 2,3, 5,7, 11, 13, 17, 19, 23, 29, ...

which cannot be resolved into smaller factars.We have to provéhat
there are infinitely many primegge., that the serie§A) never comes to
an end.

Let us suppose that it does, and that

2,3,5 ..., P

is the complete series (so thatis the largest prime); and let us, on this
hypothesis, consider the numligdefined by the formula

Q=(2-3-5---P)+1.

It is plain that(@ is not divisible by any of 2, 3, 5,.., P; for it leaves

the remainder 1 when divided by any one of these numbers. But, if
not itself prime, it is divisible bysome prime, and therefore there is a
prime (which may bé&) itself) greater than any of them. This contradicts
our hypothesis, that there is no prime greater tRaand therefore this
hypothesis is false.

The proof is byreductio ad absurdum, andreductio ad absurdum,
which Euclid loved so much, is one of a mathematician’s finest weapon.
It is a far finer gambit than any chess gambit: a chess player may offer
the sacrifice of a pawn or even a prize, but a mathematician dffers
game.

3G. H. Hardy’s paraphrase. [Hardy, pp.95-96].
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Exercise

1. Let p,, denote the:-th prime number. Find the smallest valuerof
for whichpps - - - p, + 1 is not a prime number.

2. Find the smallest value of for whichpp, - - - p, — 1 is not a prime
number.

3. Find the smallest value af > 3 for whichn!+1 is a prime number.
4. Find the smallest value of > 7 for whichn!—1 is a prime number.

5. Find a shortest sequence of prime numhars< p, < --- < p,
satisfying the following conditions.
(i) p1 =2,
(i) pga1 < 2ppfork=1,...,n—1,
(iii) p, > 10000.
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Project: Prime links

A prime link of lengthn is a permutation of 1, 2, . n. beginning with

1 and ending witm such that the sum of each pair of adjacent terms is
prime. This was proposed and solved by Morris Wald [157]. 76T 6,

the link is unique. Forn = 7 there are two links1,4,3,2,5,6,7 and
andl1,6,5,2,3,4,7. Wald suggested working backwards. Start with

and precede it with the greatest remaining member of the set whose sum
with n is a prime, and repeat in like fashion. Here are the first 10 links:

1.

1,2.

1,2,3.

1,2,3,4.

1,4,3,2,5.

1,4,3,2,5,6.

1,4,3,2,5,6,7.

1,2,3,4,7,6,5,8.

1,2,3,4,7,6,5,8,9.

1,2,3,4,7,6,5,8,9,10.
Continue with larger values of.
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Project: Tuncatable primes

Consider the prime number 73939133. The numbers obtained by trun-
cations from the right are all primes:

73939133, 7393913, 739391, 73939, 7393, 739,73, 7.

More generally, we call a numbeé¥ a right-truncatable prime if every
number obtained from truncating from the right is a prime or 1.

A complete list of right-truncatable primes can be found in [Waltrom
and Berg].

Write a computer program to find all right-truncatable primes.

Similarly, define left-truncatable primes, and bi-truncatable primes as
those which are both left- and right-truncatable primes.

593 3797 73331 7393931
7331 373393 7393933

317 23333 593993 23399339
999 23339 719333 29399999
797 31193 739397 37337999
2393 31379 739399 59393339
3793 37397 2399333 73939133

Here are all the bi-truncatable primes:

1 2 3 5 7
11 13 17 23 31
37 53 Tl 73 113
131 137 173 311 313
317 373 1373 3137
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22.1 The prime number spiral

The first 1000 prime numbers arranged in a spiral.
-= prime of the formin + 1;
-= prime of the formin + 3.
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22.2 The prime number spiral beginning with 17
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The numbers on the 45 degree line afer n + 17.
Let f(n) = n? + n + 17. The numberg (0), f(1), ...f(15) are all

prime.
n_ f(n) n__ f(n) n__ f(n) n_ f(n)
0 17 1 19 2 23 3 29
4 37 5 47 6 59 7 73
8 89 9 107 10 127 11 149
12 173 13 199 14 227 15 257
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22.3 The prime number spiral beginning with 41
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The numbers on the 45 degree line gfe) = n? + n + 41.
f(n) =n?+n +41is prime for0 < n < 39.

n__ f(n) n__ f(n) n__ f(n) n_ f(n) n__ f(n)

0 41 1 43 2 47 3 53 4 61

5 71 6 83 7 97 8 113 9 131
10 151 11 173 12 197 13 223 14 251
15 281 16 313 17 347 18 383 19 421
20 461 21 503 22 547 23 593 24 641
25 691 26 743 27 797 28 853 29 911
30 971 31 1033 32 1097 33 1163 34 1231

35 1301 36 1373 37 1447 38 1523 39 1601
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22.3 The prime number spiral beginning with 41

Prime number spiral beginning with 41: A closer look
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Appendix: The number spiral

Beginning with the origin, we trace out a spiral clockwise through the
lattice points. Along with this, we label the lattice points 0, 1,.2consecutively.

30

16

12

Given a positive integeN, let (2m — 1)? be the largesodd square
< N, and write

N=02m-1)*+q, 0<q<8m.
Then the numbeN appears at the lattice point

(m,—m+q+1) if ¢ <2m —1,

3m—q—1,m) if2m—1<qg<4m -1,
(—=m,5m —q—1) ifdm —1<q<6m — 1,
(=tm+q+1,-m) if6m—1<qg<8m-—1.

Denote byf(m, n) the number at the lattice poifitz, n).
It is clear that along the 45-degree linpn, n) = 2n(2n — 1). Also,

f(=n,n) =4n* ifn >0,
and
fn,—(n—1))=(2n—-1)* ifn>0.
More generally,

4m* —3m+n  if m > |n|,
4m? —m—n if —m=|m|> |n|,
Flm.m) = il =1

4n* —n—m ifn>|m|,
4n? —3n+m if —n=|n|>|m|.
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Exercise

1. Label the vertices of a cube with the numbers 1 through 8 in such a
way that thesum of the endpoints of each edge is prime.
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Appendix: Long chains of primes

Beiler [p.220] also considers the cubic functiptm) = n3 + n? + 17,
and noted that fon = —14, —13,-- -, 10, the string of 25 values are all
primes. This is true only when we takel as a prime, sinc¢(—3) =
—1. Even if we break the string into two, we still get two long chains of
primes:

f(—14), f(=13), ..., f(—4) a chain of 11 primes.

f(=2), f(—1), f(0), ..., f(10). But f(0) = f(—1) = 17, we only
have 12 distinct primes.

Beyond these, the longest strings of primes have 6 members. The first
of these begin witm = 717.

Note that on the negative side, there is a string of 10 consecutive
primes from—183 to —174. Replacing: by —n we considen® —n —17
forn =174, ...,183:

n  n3+n?+ 17 factorization
173 5147771 683 x 7537
174 5237731 prime
175 5328733 prime
176 5420783 prime
177 5513887 prime
178 5608051 prime
179 5703281 prime
180 5799583 prime
181 5896963 prime
182 5995427 prime
183 6094981 prime
184 6195631 13 x 476587
185 6297383 prime

Higgins: 40 primes frony(z) = 92% — 231z + 1523,z = 0, ..., 39.
or h(z) = 92% — 471x + 6203 give the same primes in reverse order.



22.3 The prime number spiral beginning with 41 619

Appendix: Consecutive primes with consecutive prime digital sums

Charles Twigg asked, i@rux Math., Problem 228, for four consecutive
primes having digital sums that, in some order, are consecutive primes.
And then five.

The beginning of the prime number sequence provides an easy an-
swer: just consider the primes 2, 3,5, 7, or 3,5, 7, 11. Beyond these, the
first quadruple is 191, 193, 197, and 199, with digit sums 11, 13, 17, 19.

The five consecutive primes 311, 313, 317, 331, 337 all have prime
digital sums, though these are the same for 313 and 331.

The first sequence of five consecutive primes who digital sums form
another sequence of 5 consecutive primes is

(1291,13), (1297,19), (1301,5), (1303,7), (1307, 11).

Twigg listed such quadruples and quintuples up to primes around 5
million (about 350000 primes). But within this range he had overlooked
the better records

(102251, 11), (102253, 13), (102259, 19), (102293, 17), (102299, 23), (102301, 7)

and
3511973,29 3511993,31 3511999,37 3512011, 13

3512051, 17 3512053,19 3512057, 23

A little bit beyond these we find the best record for eight up to the first 1
million primes:

5919931, 37 5919937,43 5919959, 47 5919971, 41
5920003, 19 5920043,23 5920049,29 5920069, 31

Within the same range, there are also 15 consecutive primes whose
digital sums are primes, though only with 5 different values:

2442113,17 2442133,19 2442151,19 2442173,23 2442179, 29
2442191,23 2442197,29 2442199, 31 2442227,23 2442263, 23
2442287,29 2442289, 31 2442311,17 2442353,23 2442359, 29

Another “long” chain of 9 consecutive primes with 5 different con-
secutive prime digital sums can be found among “small” primes:

14293,19 14303,11 14321,11 14323,13 14327,17
14341,13 14347,19 14369,23 14387,23
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Project

>

Find the coordinates of the-th point of the path, beginning with the
origin.
What is the position of the lattice poifd, b) in the sequence?
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Project

wWN P
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Strings of composites

23.1 Strings of consecutive composite numbers

It is well known that there are strings of consecutive composite numbers
of arbitrary lengths. For example, thenumbers

m+1)!+2, (n+1)!+3, -, (n+ D!+ (n+1)

are all composites. These numbers are, however, very large.
In the table below, we give the first string@ftonsecutive composite

numbers.

first string of » composite numbers

~J ot W3

13
17
19
21
33
35
43
51
71
85
95
111
113
117
131
147
153
179
209

8..-10
24---28

90 - --96
114---126
524 - - - 540
888 - --906
1130 ---1150
1328 ---1360
9552 - - - 9586

15684 - - - 15726
19610 - - - 19660
31398 - - - 31468
155922 - - - 156006
360654 - - - 360748
370262 - - - 370372
492114 - - - 492226
1349534 - - - 1349650
1357202 - - - 1357332
2010734 - - - 2010880
4652354 - - - 4652506
17051708 - - - 17051886
20831324 - - - 20831532

The first string of 100 consecutive composite numbers begins with
3702621 These are significantly less than 101!.

1t actually extends to 370372, with 111 composite numbers. The string beginning with 396734 just
misses by 1; it gives 99 consecutive composites.
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23.2 Strings of consecutive composite values of + 1

m

n---n+m-—1

3
9
13
15
19
33
39
45
87
99
111
129
151
211

7...0
27---35
41---53
95---109
185---203
351 ---383
497---535
3391 --- 3435
3537 ---3623

45371 - - - 45469
82735 - - - 82845
99065 - - -99193
357165 - - - 357315
840905 - - - 841115
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23.3 Consecutive composite values of + = + 41

Problem 142 ofCrux Mathematicorum asks for 40 consecutive positive
integer values of: for which f(z) = 2? + = + 41 are all composites.
Several solutions were published. Unfortunately these numbers were
quite large, being constructed by a method similar to the one above. For
example, here is one. Since for=0, ..., 39,f(n) < f(39) = 1601, if

we setr,, = 1601! + n, then

f(zn) = 22 + 2, + 41 = (1601!) - (1601! + 2b + 1) + f(n)

is a multiple of f(n) which is greater tharf(n). These numbers are
therefore composite. These numbers are quite large since 1601! has
4437 digits. TheCrux editor wrote that “[i]t would be interesting if
some computer nut were to make a search and discover the smallest set
of 40 consecutive integersfor which f(x) is composite”.

A near miss is 176955. The string of 38 consecutive numbers begin-
ning with this all give compositg(z). H. L. Nelson, then (and now) ed-
itor of Journal of Recreational Mathematics, found this smallest string,
with factorization of the correspondinffx). It begins with1081296.

There are longer string$. Up to 5,000,000, the longest string of
composites has 50 numbers. There are three such strings, beginning
with 2561526, 3033715, and 3100535 respectively. See Appendix 2 for
the first of these strings.

How about long strings of primes? They are relatively few. The only
strings of> 10 consecutive primes begin with 66, 191, 219, 534, and
179856, and no more up to 5,000,000. Each of these strings contains 10
primes, except the one beginning with 219, which contains 13 primes.

2For example, beginning with 1204431, we have a string of 45 composites.
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Appendix: 50 consecutive composite values af + x + 41

xT

2+ +41

Factorization

2561525
2561526
2561527
2561528
2561529
2561530
2561531
2561532
2561533
2561534
2561535
2561536
2561537
2561538
2561539
2561540
2561541
2561542
2561543
2561544
2561545
2561546
2561547
2561548
2561549
2561550
2561551
2561552
2561553
2561554
2561555
2561556
2561557
2561558
2561559
2561560
2561561
2561562
2561563
2561564
2561565
2561566
2561567
2561568
2561569
2561570
2561571
2561572
2561573
2561574
2561575
2561576

6561412887191
6561418010243
6561423133297
6561428256353
6561433379411
6561438502471
6561443625533
6561448748597
6561453871663
6561458994731
6561464117801
6561469240873
6561474363947
6561479487023
6561484610101
6561489733181
6561494856263
6561499979347
6561505102433
6561510225521
6561515348611
6561520471703
6561525594797
6561530717893
6561535840991
6561540964091
6561546087193
6561551210297
6561556333403
6561561456511
6561566579621
6561571702733
6561576825847
6561581948963
6561587072081
6561592195201
6561597318323
6561602441447
6561607564573
6561612687701
6561617810831
6561622933963
6561628057097
6561633180233
6561638303371
6561643426511
6561648549653
6561653672797
6561658795943
6561663919091
6561669042241
6561674165393

prime

1693357 x 3874799
1097 x 5981242601
167 x 971 x 40463429
499 x 13149165089
167 x 797 x 853 x 57793
773 x 8488284121

71 x 133261 x 693487
379 x 7591 x 2280667
1512947 x 4336873
39233 x 167243497
347 x 2339 x 8084281
367 x 17878676741
3049 x 2152010327

53 X 83 x 661 x 2256559
3947 x 1662399223
10501 x 624844763
3557 x 1844672471

71 x 92415564823

47 x 139606600543
722317 x 9083983

53 X 4973 x 24894887
2927 x 2241723811
419 x 15659977847
472 x 2970364799
2003 x 3275856697

43 x 919 x 1039 x 159811
83 x 12577 x 6285667
151 x 43454015453

43 x 152594452477
653 x 10048340857

41 x 160038334213

41 x 160038459167
2053 x 3196094471
9049 x 725117369
1601 x 8933 x 458797
1994669 x 3289567
691 x 23689 x 400853
4111 x 1596109843
131 x 419 x 1259 x 94951
238363 x 27527837
4783 x 1371863461
2039 x 3218061823

61 x 97 x 1108945949
694367 x 9449813
5417 x 6529 x 185527
347 x 18909649999
4933 x 1330154809
5839 x 1123764137
151 x 397 x 109457753
313 x 1999 x 10487143
prime
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Project: Strings of consecutive composite values of +n + 1

Find the first strings of consecutive composite values®of- n + 1.

m n---n+m-—1
3 9..-11
5 28..-32

Project

The first string of 99 consecutive composite values®f 1 begins with

n = 45371. The string with more than 100 composite valuesbf+ 1

has 111 members beginning with 82735. What is the longest of such a
string you can find?
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Abundant and deficient numbers
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Appendix: Three important number theoretic functions

Exercise
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24.1 Perfect numbers

A number is perfect is the sum of its proper divisors (including 1) is
equal to the number itself.

Theorem 24.1 (Euclid). If 1 +2+ 2% + ...+ 21 =2F T isaprime
number, then 2¢~1(2% — 1) is a perfect number.

Note: 2% — 1 is usually called thé&-th Mersenne number and denoted
by M,. If M, is prime, thenk must be prime.

Theorem 24.2 (Euler). Every even perfect number is of the form given
by Euclid.

Open problem
Does there exist aodd perfect number?
Theorem-joke 24.1 (Hendrik Lenstra). Perfect squares do not exist.

Proof. Supposen is a perfect square. Look at the odd divisorsnof
They all divide the largest of them, which is itself a square,&ayThis
shows that the odd divisors afcome in pairs:, b wherea-b = d2. Only
d is paired to itself. Therefore the number of odd divisors:.a$ also
odd. In particular, it is no2n. Hencen is not perfect, a contradiction:
perfect squares don't exist. O

IMath. Intelligencer, 13 (1991) 40.
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24.2 Charles Twigg on the first 10 perfect numbers

There are only 39 known Mersenne primes, and therefore 39 known per-
fect numbers. See Appendix. LBt be then-th perfect number.

n k My, P =2k 1,

1 2 3 6

2 3 7 28

3 5 31 496

4 7 127 8128

5 13 8191 33550336

6 17 131071 8589869056

7 19 524287 137438691328

8 31 2147483647 2305843008139952128

9 61  2305843009213693951 2658455991569831744654692615953842176
10 89  618970019642690137449562111  191561942608236107294793378084303638130997321548169216

e P is the difference of the digits aP,. In P, the units digit is the
cube of the of tens digit.

e P; and P, are the first two perfect numbers prefaced by squares.
The first two digits ofP; are consecutive squares. The first and last
digits of P, are like cubes. The sums of the digits/éfand P, are
the same, namely, the prime 19.

e P, terminates bottP;; and P,,. 2
e Three repdigits are imbedded iy.
e P; contains each of the ten decimal digits except 0 and 5.

e Py isthe smallest perfect number to contain each of the nine nonzero
digits at least once. It is zerofree.

e Py isthe smallest perfect number to contain each of the ten decimal
digits at least once.

2These contain respectively 65 and 366 digits.
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24.3 Abundant and deficient numbers

A numbern is abundant, perfect, or deficient if the sum of its proper

divisors (including 1 but excluding itself) is greater than, equal to, or

less tham. If we denote by (n) the sum ofall divisors ofr, including

1 andn itself, thenn is abundant, perfect, or deficient according-és)

is greater than, equal to, or less tl#an The advantage of usingn) is

that it can be easily computed if we know haactors into primes:
Abundant numbers up to 200:

12 18 20 24 30 36 40 42 48 54 56 60 66 70 72
78 80 84 88 90 96 100 102 104 108 112 114 120 126 132
138 140 144 150 156 160 162 168 174 176 180 186 192 196 198
200

Deficienteven numbers up to 200:
2 4 8 10 14 16 22 26 32 34 38 44 46 50 52

58
122
172

62
124
178

64
128
182

68
130
184

74
134
188

76
136
190

82
142
194

86
146

92
148

94
152

98
154

106
158

110
164

116
166

118
170

All multiples of 6 are abundant. But not conversely. 20 is abundant.
945 is the first odd abundant number.

5775 and 5776 are the first pair of abundant numbers.

Pairs of consecutive abundant numbers up to 10,000:

S775,5776

21735,21736
39375, 39376
58695, 58696
76544, 76545
81675, 81676
89775,89776

5984, 5985

21944, 21945
43064, 43065
61424, 61425
77175,77176
82004, 82005
91664, 91665

7424,7425

26144, 26145
49664, 49665
69615, 69616
79695, 79696
84524, 84525
98175, 98176

The first triple of abundant numbets

11024, 11025
27404, 27405
56924, 56925
70784, 70785
81080, 81081
84644, 84645

n factorization o(n) o(n) —2n
171078830 2-5-13-23-29-1973 358162560 16004900
171078831 3%-7-11-19-61-71 342835200 677538
171078832 2%.31 - 344917 342158656 992

3Discovered in 1975 by Laurent Hodges and Reid, §Bver, p.364].
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Appendix: Mersenne primes

Primes of the form\/,, = 2¥ — 1 are called Mersenne prime. The only
known Mersenne primes are listed below.

| k Year Discoverer [ ] k Year  Discoverer |
17 1588 P.A.Cataldi 19 1588 P.A.Cataldi
31 1750 L.Euler 61 1883  I.M.Pervushin
89 1911 R.E.Powers 107 1913 E.Fauquembergue
127 1876 E.Lucas 521 1952 R.M.Robinson
607 1952 R.M.Robinson 1279 1952 R.M.Robinson
2203 1952 R.M.Robinson 2281 1952 R.M.Robinson
3217 1957 H.Riesel 4253 1961  A.Hurwitz
4423 1961  A.Hurwitz 9689 1963 D.B.Gillies
9941 1963 D.B.Gillies 11213 1963 D.B.Gillies
19937 1971 B.Tuckerman 21701 1978  C.Noll, L.Nickel
23209 1979  C.Noll 44497 1979  H.Nelson, D.Slowinski
86243 1982  D.Slowinski 110503 1988  W.N.Colquitt, L.Welsch
132049 1983  D.Slowinski 216091 1985 D.Slowinski
756839 1992  D.Slowinski,P.Gage 859433 1993 D.Slowinski
1257787 1996  Slowinski and Gage 1398269 1996 Armengaud, Woltman et al.
2976221 1997 Spence, Woltman, et.al. | 3021377 1998 Clarkson, Woltman,
Kurowski et. al.
6972593 1999  Hajratwala, Woltman, 13466917 2001 Cameron, Woltman,
Kurowski et. al. Kurowski et. al.

Mi3466017 has 4053946 digits and is the largest known prime.
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Appendix: Three important number theoretic functions

Letn be a positive integer with prime factorization

k

a;

o= 11
=1

There are several important numbers associatedwith

1. The number of divisors af is
k

dn) = [](1 + ).

=1
2. The sum of divisors of,, including 1 and itself, is
k p?i+1
pi—1

o(n) = |

3. The number of positive integeks n which are relatively prime to
n is given by

These functions are all multiplicative in the sense that

f(mn) = f(m)f(n) whenever ged(m,n) = 1.
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24.3.1 Appendix: Two enumerations of the rational numbers in
(0,1)

Consider two enumerations of the rational numbers in (0,1).
E lists them by increasing denominator, and for equal denominators,
by increasing numerator. Thus,
11 213 12 3 41 5

Ell -, =
27334455556 6

Es,, on the other hand, lists them by increasing sum of numerator
and denominator, and for equal sums of terms, by increasing numerator.
Thus,

[\]

1 11 1 1 3 1

57 ga Za 57 57 67 Z ) ga

The fractionss, £, and 2 occupy the same positions in both se-
quences. More generally, the rational numBerwith m < n and
ged(m,n) = 1) occupies position

EQI

ot w

O‘llN}
~ =

S0+ ()

in enumerationf’; and position

1 m+n—1 m
5 > ok)+ > x(k,m+n—k)
k=3 k=1

in enumeratiort)s. Here,

1 if ged(m,n) =1,
X(m’n):{ ged(m, n)

0 otherwise.

This was Computer Challenge 511Jaiurnal of Recreational Math-
ematics. The solution lists 10 of thesé.

1 1 2 9 30 59 67 97 197 513
Fraction 2 3 143 163 235 477 1238

23
Position 1 2 7 158 1617 6211 8058 16765 69093 465988

What is the next match? Fat + n < 20000, | found four more:

. 1729 1922 3239 4646
Fraction 4175 1641 7820 11217
Position 5297983 6546724 18588348 38244610

4Journal of Recreational Math., 10 (1977-78) 122-123.
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Exercise

1. The isle of Pythagora, while very sparsely populated, is capable
of supporting a population of thirty million. On the 6th day of
the 28th anniversary of his accession to the throne, the king of the
island called a meeting of his 496 advisors to decide how to cel-
ebrate the auspicious occasion. They decided to divide the regal
jewels among the people of the land. All the people, including the
king the advisors, were lined up in a single file, and the jewels were
distributed as follows.

Starting with the second in line, each person was given one jewel.

Starting with the 4th in line, each second person was given two
jewels.

Starting with the 6th in line, each third person was given three jew-

els.

Starting with the 8th in line, each fourth person was given four jew-

els, and so on.

The man at the extreme end of the line noticed that the number of
jewels he received corresponded to his position in line.

How many people were there in Pythagora ?

2. A minimum security prison contains 100 cells with one prisoner
in each. The athletic young warden was ordered to free a certain
number of these prisoners at his discretion, and this is how he did
it.

First he walked along the row of cells opening every door. Starting
at the beginning again, he shuts every second door. During his
third walk, starting at the beginning, he stopped at every third door:
if it was open he shut it, if it was shut he opened it. On his fourth
walk he did the same, opening closed doors and closing open doors,
except he did it for every fourth door. On his fifth walk he stopped
at every fifth door, closing it if it was open and opening it if it was
shut. And so on, until at last he had completed the full hundred
walks.

The prisoners in cells whose doors were still open were freed.
Which were the lucky cells?

3. For a positive integer, show that ifo(n) is prime, then so id(n).
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2 Routh theorem
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25.1 Routh theorem: an example

Given atriangleABC, X, Y, Z are points on the side lines specified by
the ratios of divisions

BX:XC=2:1, CY:YA=5:3, AZ . ZB=3:2.

The linesAX, BY, C'Z bound a triangle?Q R. Suppose triangld BC'
has area\. Find the area of triangl®Q R.

B 2 X 1 C
We make use ohomogeneous barycentric coordinates with respect
to ABC.

X=(0:1:2), Y=(5:0:3), Z=(2:3:0).

Those ofP, ), R can be worked out easily:

[ P=BYNCZ [Q=CZNAX[R=AXNDBY |
Y=(5:0:3) | Z=(2:3:0) | X=(0:1:2)
Z=(2:3:0) | X=(0:1:2) | Y=(5:0:3)
P=(10:15:6)| @ =(2:3:6) | R=(10:3:6)
This means that thabsolute barycentric coordinatesof X, Y, Z are

p= 3—11(10A+15B+60), Q- 1—11(2A+3B+6C), R= 1—19(10A+SB+60).

The area of triangl®Q R

1 10 15 6 576

—— 12 3 6|-A=—"\
31-11-19|15 5 ¢ 6479
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25.2 Routh theorem

B

A x 1 c
We make use ohomogeneous barycentric coordinates with respect

to ABC.

X=(0:1:X), Y=(u:0:1), Z=(1:v:0).
Those ofP, ), R can be worked out easily:

| P=BYNCZ | Q=CZNAX | R=AXNBY |
Y=(u:0:1) | Z=(1:v:0) | X=(0:1:X)
Z=(1:v:0) | X=0:1:X) | Y=(u:0:1)
P=(p:pv:1)|Q=([1:v:vA)|R=MAu:1:})

This means that thabsolute barycentric coordinatesof X, Y, Z are

Q :m(A + vB + VAO),

=———(MuA+ B+ \O).
)\u+)\+1(u +B+A0)

From these,

poopyo 1
1 v vA

A 1A

(v +p+1DWA+v+1)Ap+A+1)
(Apv —1)°

(v +p+ 1WA +v+1)Ap+A+1)

Area(PQR) =
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25.3 Ceva Theorem

Theorem 25.1 (Ceva)Let X, Y, Z bepointsonthelines BC, CA, AB
respectively. Thelines AX, BY, C'Z are concurrent if and only if

BX CY AZ
XC YA ZB
If this condition is satisfied, the homogeneous barycentric coordi-

nates of the common point of.X, BY, C'Z can be written down by
combining the coordinates df, Y, 7.

1.

Example: centroid

If AX, BY, CZ are the medians, the intersection is the centédid

X = (0:1:1)
Y = (1:0:1)
Z = (1:1:0)
G = (1:1:1)
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Example: incenter

If AX, BY, C'Z are the angle bisectors, the intersection is the incenter
I:

S
o
~

S
s ..

| N <
I
—~—
= =
(el N i anRlw )
o
SN—

)
~— "
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Example: Gergonne point

If X,Y, Z are the points of tangency of the incircle with the sidelines,
the linesAX, BY, CZ intersect at the Gergonne point.
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25.3 Ceva Theorem

Example: Nagel point
If X,Y, Z are the points of tangency of the excircles with the respective
sidelines, the lines\ X, BY, C'Z intersect at the Nagel point.

?

!

1
1
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Exercise
1. Calculate the area of triangfeQ R given
@ A\=p=v=2.
L) AN=1,u="7rv=4
) A=3,u=7rv=06.

2. Calculate the homogeneous barycentric coordinates of the ortho-
center of triangleA BC'.

Project

In the Routh formula, how should one choose integer values for,
andv so that the area of trianglBQ R is % of that of triangleABC for
an integem?
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25.3 Ceva Theorem

Appendix

We give those values of, i, v with numerators and denominatctsi 0

for which the area of triangl®’QR is k times that of ABC' with the

numerator and denominator biess than 10.

v]k]
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Appendix: Three mutually orthogonal circles with given centers

O wWDNER
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26.1 Feuerbach theorem

The nine-point circle is tangent internally to the incircle and externally
to each of the excircles.
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26.2 A relation among the radii

26.2 A relation among the radii
re+ 1y +7.=4R + 1.

Ic

Ia

re — 1T =2DM’,
ry + 7o =2MD = 2(2R — DM');

rg + 1y +1r.—1 =4R.
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26.3 The circumcircle of the excentral triangle

The circle through the excenters has center at the reflection of the incen-
ter in the circumcenter, and radius twice the circumradius.

/

B

\

N — — —

O'l, =r, +0'X'
=r, +20D —r
=r,+2(R—DM') —r (from previous page)
=ra+2R—(ro—r)—r
=2R.

Similarly, O'1, = O'I. = 2R.
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26.4 The radical circle of the excircles

26.4 The radical circle of the excircles
The circle orthogonal to each of the excircles has center at the Spieker
point, the incenter of the medial triangle. Its radiu%izér2 + s2.
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26.5 Apollonius circle: the circular hull of the excircles
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Appendix: Three mutually orthogonal circles with given centers

Given three points!, B, C that form an acute-angled triangle, construct
three circles with these points as centers that are mutually orthogonal to
each other.

Solution

Let BC = a, CA = b, andAB = c. If these circles have radii,, 7, .
respectively, then

2, .2 _ 2 2, .2 _ 12 2, .2 _ 2
Ty +r.=a’, r. +r, =0, ro Ty =c.

From these,

a c

1 1 1
rl = §(b2+02—a2), ry = 5(02+a2—52)7 re = §(a2+b2—02)‘

These are all positive sinca BC' is an acute triangle. Consider the
perpendicular footr of B on AC. Note thatAE = ccos A, so that

r2 =2 (b +c*—a®) = bccos A = AC- AE. It follows if we extendBE

to intersect at” the semicircle constructed externally on the sidé as
diameter, thendY? = AC - AE = r2. Therefore we have the follow-
ing simple construction of these circles. (1) With each side as diameter,
construct a semicircle externally of the triangle. (2) Extend the altitudes
of the triangle to intersect the semicircles on the same side. Label these
X, Y, Z on the semicircles oBC, C'A, AB respectively. These satify
AY = AZ, BZ = BX,andCX = CY. (3) The circlesA(Y'), B(Z)
andC'(X) are mutually orthogonal to each other.
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Chapter 27

Figurate numbers

27.1 Triangular numbers
Thenth triangular number is
1
Tn=1+2+3+---+n:§n(n+1).
The first few of these arg, 3, 6, 10, 15, 21, 28, 36, 45, 55, ....
o
o0
00
o000

27.2 Special triangular numbers

Triangular numbers which are squares

Then-th triangular number’, = %n(n + 1) is a square, sayp? if and
only if
(2n +1)% —2(2m)? = 1.

() =G s) () = (1),

()= ()
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Find the first few triangular numbers which are squares:

E 1 2 3 4 5 6 7
mr, 1 6 35
T, 1 36 1225

Palindromic triangular numbers

(n T n T | n T, |
1 109 9995 3185 5073705

3 132 8778 3369 2676765

6 173 15051 3548 6295926

25 || 363 66066 8382 35133153
11 66 | 1111 617716 | 11088 61477416
18 171 || 1287 828828 | 18906 178727871
34 595 | 1593 1269621 || 57166 1634004361
36 666 | 1833 1680861 || 102849 5289009825
77 3003 || 2662 3544453 || 111111 6172882716

-
o W =S

Th1111111 = 61728399382716.
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27.3 Pentagonal numbers

The pentagonal numbers are the sums of the arithmetic progression
L+44+7+ -+ @Bn—2)+--

Thenth pentagonal number 8, = 1n(3n — 1).

Palindromic pentagonal numbers

‘ n P, H n P, H n P, ‘
1 1 101 12521 6010 54177145

2 5 693 720027 | 26466 1050660501
4 22 || 2173 7081807 || 26906 1085885801
26 1001 || 2229 7451547 | 31926 1528888251
44 2882 || 4228 26811862 || 44059 2911771192
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27.4 The polygonal numbersP, ;,

More generally, for a fixed, the k-gonal numbers are the sums of the
arithmetic progression

I+ (k—=1)4+2k—=3)+---.
Thenth k-gonal number i, ,, = in((k — 2)n — (k — 4)).
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27.4.1 Appendix: Solution of Pell’'s equation

(1) Letd be a positive integer which is not a square. The positive integer
solutions of the equation? — dy? = 1 can be arranged in a sequence as
follows. If (z,y) = (a, b) is the smallest positive solution, then

Tpy1) _ [a dbY [z, 1\ _ (a
Yn+1 b a)\yn)’ Y1 b)"
(2) If the equation:? — dy? = —1 has a solution in nonzero integers,
its integer solutions can be arranged in the form a sequence satisfying the

same recurrence relation above (W(ithb) the smallest positive solution
of 22 — dy* = 1) but with (z1, y1) given by its smallest positive solution.
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Exercise
1. Prove that every hexagonal number is a triangular number.
2. Find two triangular numbers (apart from 1) that are squares.
3. Find a pentagonal numbers (apart from 1) that is also a square.
4. Itis known that there is only one value offor which
12422+ 3%+ 4+ n?

is a square. What is this value?

ol

. Ramanujan’s house number.

o

. An unidentified country has 7-digit population — and everyone has
been given a National ID Number, sequentially from one, allocated
by no identifiable logic.

The Censure Minister has chosen three names at random, and is
finding their ID number on the computer. When the first number
appears on the screen, the Government’s mathematical whiz-kid
informs the Minister that there is precisely a 50-50 chance that the
other two numbers will both be less than the one just displayed.

What is the population, and what is the first numbler?

1Problem 2585JRM, 31 (2002-2003) 71.
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Polygonal triples

We consider polygonal numbers of a fixed shape. For a given positive
integerk, the sequence df-gonal numbers consists of the integers

Pin =5 (k= 2" — (5~ 4)n). (28.1)

By a k-gonal triple, we mean a triple of positive integéusb, ¢) satis-
fying

Pyo+ Prp= Prp. (28.2)
A 4-gonal triple is simply a Pythagorean triple satisfyirtg+ v*> = 2.
We shall assume that £ # 4. By completing squares, we rewrite (28.2)
as

(2(k —2)a— (k—4))" + (2(k — 2)b— (k — 4))?
= (2(k—=2)c— (k—4))*+ (k —4)?, (28.3)

and note, by dividing throughout byt — 4)2, that this determines a
rational point on the surfac8:

2?4yt =2 (28.4)

namely,
P(k;a,b,c):=(ga—1, gb—1, gc—1), (28.5)
whereg = 25-2) This is always an integer point fér= 3, 5, 6, 8, with

corresponding = —2, 6,4, 3. Fork = 3 (triangular numbers), we shall
change signs, and consider instead the point

P'(3;a,b,¢):== (2a+1, 2b+ 1, 2¢+ 1). (28.6)

The coordinates of’(3; a, b, ¢) are all odd integers exceeding 1.
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28.1 Double ruling of 8

The surfaces, being the surface of revolution of a rectangular hyperbola
about its conjugate axis, is a rectangular hyperboloid of one sheet. It
has a double ruling,e., through each point on the surface, there are two
straight lines lying entirely on the surface.

Figure 28.1:

Let P(zo, o, 20) be a point on the surfa& A line ¢ throughP with
direction numberg : ¢ : r has parametrization

l: r=x9+pt, y=vyo+qt, z=zy+rt.

Substitution of these expressions into (28.4) shows that the imen-
tirely contained in the surfacgif and only if

PTo+qYo = TZo, (28.7)
P+q¢ = i (28.8)

It follows that

2 2/ 2, 2 2
T+ Yy — %)

r(

r’ g:v% + yS)Q— (pzo + qyo)* )
= (p +4q )($%+ yo) — (pxo + qyo)
(qro — pyo)°.

r

This means
q%o — PYo = €T, € = *£1. (28.9)

Solving equations (28.7) and (28.9), we determine the direction numbers
of the line. We summarize this in the following proposition.
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Proposition 28.1. The two lines lying entirely on the hyperboloid §
2?4 y? = 22 + 1 and passing through P(x, 10, 20) have direction num-
bers

T020 — €Yo © YoZo + €To : Ty + Yg

for e = +1.

In particular, if P is a rational point, these direction numbers are ra-
tional.

28.2 Primitive Pythagorean triple associated with ak-
gonal triple

Let P be the rational point determined bykagonal triple(a, b, ¢), as
given by (28.5), fork > 5 and (28.6) fork = 3 (triangular numbers).
We first note that the coordinates #fall exceed 1. This is clear for
k = 3, and fork > 5, it follows from the fact thay = 2=2 > 2,
The direction numbers of the ruling lines 8rthrough the point?, as
given in Proposition 1, are all positive. In view of (28.8), we may there-
fore choose grimitive Pythagorean triple (p, ¢,r) for these direction

numbers. As is well known, every such triple is given by

p=m?—n? q = 2mn, r=m?>+n? (28.10)
for relatively prime integers: > n of different parity.
We study the converse question of determiningonal triples from
(primitive) Pythagorean triples.

28.3 Triples of triangular numbers

Given a primitive Pythagorean triple, ¢, ) as in (28.10), we want to
determine a triangular tripléz, b, ¢) corresponding to it. Given aodd
integerz, > 1, we obtain, from (28.7) and (28.9),

Ty = Pz + eq, Yo = %0 — ep. (2811)

r r

We claim that it is possible to choosg > 1 so thatz, andy, are
also odd integers- 1.

By the euclidean algorithm, there avdd integersu andwv such that
qu + rv = 1. (Note thatv must be odd, sinceis even. Ifu is even, we
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replace(u, v) by (u —r, v + ¢), in which both entries are odd). Clearly,
the integerzy = epu is such thayzy — ep = ep(qu — 1) is divisible by
r. This makesgy, an integer. The corresponding is also an integer.
Replacingz, by z, + rt for a positive integet if necessary, the integers
20, Lo, andy, can be chosen greater than 1. From (28.11), the integers
xo andy, are both odd, sinceandq are of different parity and, is odd.

We summarize this in the following theorem.

Theorem 28.2.Let (p, ¢, ) be a primitive Pythagorean triple. There
aretwo infinite families of triangular triples (a (), be(t), c.(t)), e = +1,
such that one of thelines . (P), P = P'(3; a.(t), b.(t), c.(t)), hasdirec-
tion numbersp : ¢q : r.

Triangular triples from primitive Pythagorean triples

Lm,n) | (par) ] (a4(0),64(0),c+(0) [ (a—(0),5—(0),c—-(0)) ]

21 | .45 2,2,3) (3 5,6)

1) | (15,8,17) (9, 4, 10) (5,3,6)

(3,2) | (5,12,13) (4,9,10) (5,14, 15)
(6,1) | (35,12,37) (20, 6,21) (14, 5,15)
(5,2) | (21, 20,29) (6,5, 8) (14, 14, 20)
(4,3) | (7,24,25) (6,20, 21) (7,27, 28)
(8,1) | (63,16,65) (35, 8, 36) (27,7,28)
(7,2) | (45,28,53) (35,21, 41) (9,6,11)

(5,4) | (9,40, 41) (8, 35, 36) (9, 44, 45)

28.4 k-gonaltriples determined by a Pythagorean triple

Now, we considek > 5. We shall adopt the notation

h if his odd,
h/ = { h
2

if h is even,
for an integer.

Theorem 28.3.Letk > 5and g = k’“ D) The primitive Pythagorean
triple (p, ¢, ) defined in (28.10) by relatlvely primeintegersm > n with
different parity corresponds to a k-gonal triple if and only if one of 2;‘

and 2"=") i an integer.

Sincem andn are relatively prime, the integék — 2)’ > 1 cannot
divide bothn andm — n. This means that a primitive Pythagorean triple
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(p,q,r) corresponds t@t most one line on 8§ associated wittk-gonal
triples (fork > 5).

Indeed, ifk = 4h + 2, (k — 2) is the even numbe2h, and cannot
divide the odd integet. —n. It follows that only those pairgn, n), with
n a multiple of2h give (4h + 2)-gonal pairs. For example, by choosing
m = 2h + 1, n = 2h, we have

p=4h+1, q=8h?+4h, r=8h%+4h +1,
a0:4h+1, b0:8h2—|—2h+1, 00:8h2+2h—|—2

These give an infinite family of4h + 2)-gonal triples:
a = (dh+1)(t+1),

b 8h* +2h + 1 + (8h* + 4h)t,
i = 8h*+2h+2+ (8h% +4h + 1)t.

(4h + 2) — gonal triples

| (kg [ (mn) | (par) [ (abeo |

(1,6,4) | (3,2) (5,12, 13) (5,11, 12)
(5,2) | (21,20,29) | (14,13,19)

(5,4) (9, 40, 41) (9, 38, 39)

(7,2) | (45,28,53) | (18,11,21)

(7,4) | (33,56,65) | (1L,18,21)

(7,6) | (13,84,85) | (13,81,82)

(9,2) | (77,36,85) (11,5,12)

(9,4) | (65,72,97) | (13,14,19)
(9,8) | (17,144, 145) | (17, 140, 141)
(11,2) | (117,44,125) | (104,39, 111)

(11,4) | (105,88,137) | (60,50, 78)
(11,6) | (85,132,157) | (68,105, 125)
(11,8) | (57,176,185) | (38, 116, 122)
(11,10) | (21,220,221) | (2L, 215, 216)

0
(2,10,3) | (5,9 (9,40,41) (9,37,38)
(7,4) (33, 56, 65) (33,55, 64)
)
)

(65,72,97) | (52,57,77)
(17,144, 145) | (17, 138, 139)
(11,4) | (105,88,137) | (90,75, 117)
(11,8) | (57,176, 185) | (57, 174, 183)
(3,14, 2) [ (7,6) | (13,84,85) | (13,79,80)
(11,6) | (85,132, 157) | (85, 131, 156)
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28.5 Correspondence betweef2h + 1)-gonal and 4h-
gonal triples

Let %k, < ky be two positive integers 5. Theorem 2 suggests that there
IS a one-to-one correspondence betweéeigonal triples andc;-gonal
triples, provided k; — 2)' = (ky — 2)". This is the case if and only if

ki1 =2h+1, ko= 4h, for some h > 2. (28.12)

In this case(k; — 2)" = (ks — 2)' = 2h — 1, while (k; —4)" = 2h — 3,
and(ky—4)" = 2h—2. The(2h+ 1)-gonal triple(a, b, ¢) and adh-gonal
triple (a’, V', ¢') are related by

(m—n)(c—"{)=

(2h 4+ 1) — gonal and 4h — gonal triples

(2h 4+ 1) — gonal | 4h — gonal

(h,2h +1,4h) | (m,n) (p,q,7) (a,b,c) (a’, ¥, )
,5,8) @D | (15,817 (7,4,9) (14,3, 16)
4,3) | (7,24,25) (7,23, 24) (7,22,23)

(5,2) | (21,20,29) 5,5,7) (10, 10, 14)

(7,4) | (33,56,65) (,7,8) (8,14, 16)

(7,6) | (13,84,85) (13,82, 83) (13,80, 81)

(8,3) | (55,48,73) (22,19, 29) (44, 38, 53)

(8,5 | (39,80,89) (35,72, 80) (31,64, 71)

(10,1) | (99, 20, 101) (48, 10, 49) (96,20, 98)

(10,3) | (91, 60, 109) (26,17, 31) (52,34, 62)

(10,7) | (51,140,149) | (40,110, 117) (29, 80, 85)
(10,9) | (19,180,181) | (19,177,178) | (19,174, 175)

(3,7,12) 6,1) | (35,12,37) (16,6, 17) (33,12, 35)
(6,5) | (11,60,61) (11, 57, 58) (11,56,57)
(7,2) | (45,28,53) (33,21, 39) (44,28, 52)
(8,3) | (55,48,73) (27,24, 36) (36,32, 48)
(8,5) | (39,80,89) (39,79, 88) (26,52, 58)
(9,4) | (65,72,97) (24,27,36) (32,36, 48)

(4,9,16) (8,1) | (63,16,65) (29, 8, 30) (60, 16, 62)
(8,7) | (15,112,113) | (15,107,108) | (15,106, 107)
(9,2) | (77,36,85) (18,9, 20) (37,18, 41)
(10,3) | (91, 60, 109) (75, 50, 90) (90, 60, 108)
(10,7) | (51, 140, 149) (17,45, 48) (51, 138, 147)

(5,11,20) | (10,1) | (99,20, 101) (46, 10, 47) (95,20, 97)

(10,9) | (19,180,181) | (19,173,174) | (19,172,173)




Chapter 29

Sums of consecutive squares

1 Sum of squares of natural numbers
2 Sums of consecutive squares: odd number case
3 Sums of consecutive squares: even number case
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29.1 Sum of squares of natural numbers

Theorem 29.1.
1
12422434 +n?= 6n(n+1)(2n+1).

Proof. LetT, =1+2+3---4+n=in(n+ 1) and

S, =124+22 432+ ... +n2%

23 = 13 + 312 +  3-1 + 1
33 23 + 3.22 + 3-2 + 1
43 = 33 + 3.3 + 3.3 4+ 1

n = (n—1P% 4+ 3n-12% + 3n-1) + 1
n+1? = »* + 3.0 + 3-n 4+ 1

Combining these equations, we have
(n+1)*=1°+38S, + 3T, +n.

SinceT,, is known, we have

1 1
Sn = 3 ((n +1P2—n—1- gn(n—i- 1)) = 6n(n+ 1)(2n+1).
O
Exercise

1. Find12 4+ 32+ 5%+ -+ (2n — 1)

2. Findn so thatn® + (n + 1) is a square.
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29.2 Sums of consecutive squares: odd number case

Suppose the sum of the squarefbf+ 1 consecutiveositive integers
is a square. If the integers areh + 1,...,b + k. We require

(2k + 1)b* + %k(k +1)(2k + 1) = a®
for an integew. From this we obtain the equation
a® — (2k +1)b* = %k(k; +1)(2k + 1). (Ey)
1. Supposek + 1 is a square. Show that’,) has solution only when

k = 6m(m + ¢) for some integersn > 1, ande = £1. In each
case, the number of solutionsfisite.

Number of solutions of (£} ) when 2k + 1 is a square

2k+1 25 49 121 169 289 361 529 625 841 961
0o 1 1 2 7 3 5 3 3 10

2. Find theunique sequence of 49 (respectively 121) consecutive pos-
itive integers whose squares sum to a square.

3. Find the two sequences of 169 consecutive squares whose sums are
squares.

4. Supposek + 1 is not a square. It + 1 is divisible9 = 32 or
by any prime of the formik + 3 > 7, then the equatio(F}) has
no solution. Verify that for the following values df < 50, the
equation( E) has no solution:
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k = 6,8,10,13,17,18,20, 21,22, 26,27, 30, 32,
34,35, 37,40,41, 42, 44, 45, 46,48, . ..

. Suppose = 2k+1isaprime. If the Legendre symbél/%k;iw =

—1, then the equatio(F}) hasno solution. Verify that for the fol-
lowing values oft < 50, the equatiori ;) has no solution:

1,2,3,8,9,14, 15, 20, 21, 26, 33, 39, 44.

. Fork < 50, it remains to considg(E);) for the following values of

k:

5,7,11,16,19, 23, 25, 28,29, 31, 36, 38, 43, 47, 49.
Among these, only fok = 5, 11, 16, 23, 29 are the equation&y,)
solvable.

. Work out 5 sequences of 23 consecutive integers whose squares

add up to a square in each case.
Answer:

P48+ 4297 = 92%
8817 +882% + .- + 903> = 42787
427877 4 427882 4 - - - +42809° = 205252%
20534012 + 2053402% + - - - +2053423% = 9847818%;

. Consider the equatiaifss) : u?—73v? = 12-37-73. This equation

does in fact have solutiong:, v) = (4088,478), (23360, 2734).

The fundamental solution of the Pell equatioh- 73y? = 1 being
(a,b) = (2281249, 267000), we obtain two sequences of solutions
of (E73):

Answer:

(4088, 478), (18642443912, 2181933022), (85056113063608088, 9955065049008478), . . .
(23360, 2734), (106578370640, 12474054766), (486263602888235360, 56912849921762734), . . .

This means, for example, the sum of the squares of the 73 numbers
with center 478 (respectively 2734) is equal to the square of 4088
(respectively 23360).
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29.3 Sums of consecutive squares: even number case

Suppose the sum of the squares of2heonsecutive numbers
b—k+1,b—k+2,....b...,0+k—1,b+k,
is equal toe®. This means

(2a)* — 2k(2b+1)* = %(4%2 —1). (E})

Note that the number&k, 4k? — 1 are relatively prime.

1. Show that the equatiof¥’;,) has no solution iRk is a square.

2. Supposek is not a square. Show thatdk + 1 is divisible by 9,
or by any prime of the formk + 1, then the equatiofZ}) has no
solution.

3. For k < 50, the equation E},) has no solution for the following
values ofk:

k = 3,4,5,9,11,13,15,17,21,23,24, 27,29, 31, 33,
35, 38,39, 40, 41, 45, 47, 49.

4. Letk be a prime. The equatiqit;,) can be written as

4k — 1
(20 4+ 1)* — 2ky* = — T

By considering Legendre symbols, the equatiéi)) has no solu-
tion for the following values ok < 50:

k=5,7,17,19,29, 31,41, 43.

5. Excluding square values af: < 100, the equatior{ £},) has solu-
tions only fork = 1,12, 37, 44.

6. Show that (34, 0), (38, 3), (50, 7) are solutiong bf ;5). Construct
from them three infinite sequences of expressions of the sum of 24
consecutive squares as a square.
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7. The equatior( £Y,) has solutions (185, 2), (2257,261), and (2849,
330). From these we construct three infinite sequences of expres-
sions of the sum of 74 consecutive squares as a square.

Answer:

2252 +226% + .- - +298% = 2257%
2042 42952 + ... + 3672 = 2849%
130962 4 130972 + - - - + 13179 = 7638652,

8. The equation(£/,) has solutions (242, 4) and (2222,235). From
these we obtain two infinite sequences of expressions of the sum of
88 consecutive squares as a square.

1922 4193% + ... + 279 = 2222%
59252 + 59262 + - - - 60122 = 559902
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Sums of powers of natural
numbers

Notation
Si(n) :==1F + 28 + ...+ k.

Theorem 30.1 (Bernoulli). S(n) isa polynomial in n of degree k + 1
without constant term. It can be obtained recursively as

S (n) = / (ki + 1)Sp(n)dn + en,

where c is determined by the condition that the sum of the coefficientsis
1

Examples

(1) S3(n) =13 +23+ -+ n3 = Lin2(n+1)%
4
(2) SincedS;(n) = n* + 2n® 4+ n?, we have
1

1 1
Si(n) = gn‘r’ + §n4 + §n3 + en,

wherec = 1 — (% +1+ %) = 5—01 Therefore,

1 1 1 1
14194 ... 4_ 25y T4 T3 T
+ 27 + +n 5n +2n +3n 30n
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Exercise

1. Find the sum of the first odd numbers.

2. Find the sum of the cubes of the firsbdd numbers.
3. Find S5(TL) andS6(n).
4. Find the sum of the series

1:2:342-3-443-4-54+-+n(n+1)(n+2).

5. Find the sum of the first triangular numbers.



Chapter 31

A high school mathematics
contest

Christopher Newport University Regional High School Mathemat-
ics Contest, November, 2002

1. Randy and Hannah are eating at a restaurant. The items ordered by
Randy cost twice as much as the items ordered by Hannah. Randy
leaves a tip of 15% of the price of what he has ordered. Hannah
leaves a tip of 20% of her items. The total, including tips, paid by
the pair is exactly 70 dollars. How much was the cost of the items
Hannah ordered?

1Crux Math., 29 (2003) 193-195.
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2. Solve the equation
2 —|z| —1=0.

3. Let (a,) be an arithmetic sequence. df = ¢ anda, = p, find
Optq-

4. A five-digit number is called a mountain number if the first three
digits are increasing and the last three are decreasing. For exam-
ple, 34541 is a mountain number, but 34534 is not. How many
mountain numbers are greater than 70000?
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5. Each day, Hai and Wai separately play a video game and compare
scores. Hai’'s score on Tuesday was 10% less than his score on
Monday, while Wai’s score on Tuesday was 20 points higher than
on Monday. However, on Wednesday, Hai’'s score was 10 points
higher than on Tuesday, while Wai's score on Wednesday was 20%
less than his score on Tuesday. Strangely, Hai's score plus Wai's
score turned out to be the same on all three days. What were their
scores on Wednesday?
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6. A point P is given in the interior of a rectangléBC D with AB =
CD = 24andAD = BD = 5. What is the total area of the two
trianglesPAD and PBC (shaded in the figure)?

A B

7. Samantha bought a stock for 1000 dollars whose price then doubled
every year for the next years. In the year after that, the stock
price fell by 99%. Nevertheless, the stock was still worth than 1000
dollars. What is the smallest whole number of years for which this
is possible?
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8. In triangle ABC, cos(A — B) + sin(A + B) = 2. Determine the
shape of the triangle.

9. Four small circles of radius 1 are tangent to each other and to a
larger circle containing them, as shown in the diagram. What is the
area of the region inside the larger circle, but outside all the smaller
circles?
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10. Two circles of radii 9 and 17 centimeters are enclosed in a rectan-
gle with one side of length 50 centimeters. The two circles touch
each other, and each touches two adjacent sides of the rectangle, as
indicated. Find the area of the rectangle.

~
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11. Find three different prime numbetss, ¢ so that their sum+b+c
and their productibc both end in the digit 7.

12. Karen ran a 42 kilometer marathon in 3 hours, 49 minutes. She did
this by running for 10 minutes, walking for 2 minutes, then running
for 10 minutes, walking for 2 minutes, and so on until she crossed
the finish line. She runs twice as fast as she walks. What is her
average speed, in kilometers per hour, while running?
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Chapter 32

Mathematical entertainments

1 David Wells’ survey of Beauty in Mathematics
2 T. M. Apostol's mathematical acrostic
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32.1 Beauty in mathematics: David Wells’ survey?

Give each of the following theorems a score for beauty between 0O (the
least) and 10 (the most beautiful).

1 iav] I s IS
<O~ QT
SIS
| | 2| ~| D

N Q| w|

A Euler’s formula for a polyhedron? — £ + F' = 2.
B Any square matrix satisfies its own characteristic equation.
C If p(n) is the number of partitions of, then

5((1 — .1'2)(1 _ xlO)(l _ 1.15> . _)5
(I—2)I—2) (1 -2 (1 —a%)--- )8
=p(4) + p(9x + p(14)2® + - - -

D The number of primes is infinite.
E There is no rational number whose square is 2.

F Every prime of the formin + 1 is the sum of two integral squares in
exactly one way.

1 1 1 2

Gl+p+s+ +LH+ =T,
1 1 1 _ 73

H 2x3x4 4><5><6+6><7><8 4

| 7 is transcendental.

J Every number greater than 77 is the sum of integers, the sum of whose
reciprocal is 1.

K The maximum area of a quadrilateral with side$, ¢, d is

V(s = a)(s = b)(s — o)(s — d),

wheres is half the perimeter.

IMath. Intelligencer, 10:4 (1988) 31.
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L There is no equilateral triangle whose vertices are plane lattice points.

M At any party, there is a pair of people who have the same number of
friends present.

N The number of partitions of an integer into odd integers is equal to the
number of partitions into distinct integers.

O If the points of the plane are each colored red, yellow, or blue, there
is a pair of points of the same color of mutual distance unity.

P Every plane map can be colored with 4 colors.

Q A continuous mapping of the closed unit disk into itself has a fixed
point.

R Write down the multiples o#/2, igonoring fractional parts, and un-
derneath the number missing from the first sequence:

12 4 5 7 8 9 11 12
3 6 10 13 17 20 23 27 30

The difference i2n in then-th place.

S A regular icosahedron inscribed in a regular octahedron divides the
edges in the golden ratio.

T The number of representations of an odd number as the sum of 4
squares is 8 times the sum of its divisors; of an even number, 24
times the sum of its odd divisors.

U The word problem for groups is unsolvable.
V The order of a subgroup divides the order the group.
W e™ = —1.

X There are 5 regular polyhedra.
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32.2 T. M. Apostol’'s mathematical acrostic?

Guess as many WORDS as you can, then write each letter in the cor-
respondingly numbered square in the diagram. When completely filled
in, the diagram contains a passage from a published work concerning
mathematics. The initial letters of the WORDS spell out the author and
title of the work. All the WORDS are related to mathematics or mathe-
maticians.

2Math. Intelligencer, 10:3 (1988) 43.
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A Unit of speed o _ o _
131 9 153 62
B  The second cervical o o
vertebra 87 4 177 20
C In opposition o _ o _ _ o _
160 2 84 28 145 171 104
D Countless o o o o o o o o _ _
61 49 110 93 63 163 42 183 115 24
E  Pallet of an escapement o . o o
180 3 137 90 170
F  Successive volumes o o o o o o o
(2 words) 30 159 41 86 119 75 185
G Pupil of Gauss, last name __ _ o _ _ o _ o
followed by initials 184 45 155 27 125 70 150 43
H  One way to describe o o o o o o
Pythagoras 15 144 121 82 33 55
| Exact opposite o _ o _ _ o _ _
52 133 12 142 25 101 76 64
J Make a mosaic of o o o o o o o o
148 14 21 102 32 141 85 1 182
K First to provee o _ o _ _ o _
transcendental 114 67 122 10 18 139 158
L  Logical and sophistical o o o o o o o
reasoning 108 31 176 58 100 109 34 111
M Atype of polynomial - o - o o
46 81 59 138 149
N Providing pleasure or o _ o _ _ o _ o _ _
delight 22 17 35 127 147 29 50 69 97 66
O Added o o o o o o
154 26 7 71 164 53
P Contour connecting points __ _ o _ _ o _
of equal depth below 5 92 48 60 179 89 146
a water surface
Q Oneofthefirsttousethe o . o o
method of successive 74 11 124 103 156
approximations
R Equal to the end proposed __ _ o _ _ o _ o o _
129 169 39 136 132 120 162 72 151 143
S  Three-digit code o o o o
98 44 38 130
T  M? =0 (two words) - _
80 106 174 168 77 56 91 167 113 116
U  Distribution o o o o o o o
157 23 95 57 79 126 173 88
V  French mathematician o _ o _ _ o _
(1765-1843) 172 112 19 40 135 96 68
W  Directed o o o o o o o
36 51 134 78 161 123 165
X Lowness in pitch o _ o _ _ o _
83 65 140 107 54 118 173
Y  One of Cayley's o o o o o o o
hyperdeterminants 8 152 105 16 94 166 117 73 181
A German geometer _ o _ o o _ o
(1833-1872) 47 99 128 37 6 178 13
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8 Y |9
19 v |20 B 21 J
30 F |31 L |32
39 R |40 V |41 42 D
50 N |51 W |52 53 O
62 A 63 64 I
73 Y |74 Q|75
83 X |84 C |85 86 F
95 U |96 V |97 98 S
106 T | 107 X | 108
117 v | 118 X | 119 120 R
129 R 130
138 M | 139 K | 140 141 J
149 M | 150 G | 151 152 v
160 C | 161 W | 162 163 D
171 C | 172 v | 173
182 J | 183 D | 184 185 F
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Chapter 33

Maxima and minima without
calculus

1. We have 1000 feet of fencing and wish to make with it a rectangular
pen, at one side of a long wall. How can we arrange to surround
the maximum area?

1000 — 22
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2. A Norman window has a fixed perimeter Find the largest possi-
ble area.

-

2r

3. Aright pyramid has a square base and a given surface/arééat
is the largest possible volume?
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4. A tray is constructed from a square metal sheet by dimension
a by cutting squares of the same size from the four corners and
folding up the sides. What is the largest possible capacity of the
tray?

5. The perimeter of a triangle is a const&st What is the largest
possible area of the triangle?
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6. The volume of a cylindrical can is given by = 7?2l and the
surface area byl = 27r(l + r). If the volume is a constarit,
what is the least possible surface area?

7. Inscribe in a given cone a cylinder whose volume is largest possi-
ble.

2r
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8. Find the largest cylinder contained in a sphere of radius
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9. Find the largest right circular cone contained in a sphere of radius
R.
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10. Two corridors of widths andb meet at a right-angled corner. What
is the length of the longest ladder which may be carried round the
corner? Assume the workman sufficiently unimaginative to keep
the ladder horizontal).
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A British test of teachers’
mathematical background

Samples from a test on the mathematical background of (British) teach-
ers in training in the late 1960'S.
1. A necessary condition for the truth of a statem@rsg thats > 7.
Which one of the following statement must be true?

Alf 3 >7,Pistrue.
B If 3>7,7isfalse.
Clfg <7 Pistrue.
D If 3 <7, Pisfalse.
E None of these.

Answer:

2. A sufficient condition for the truth a statemedis thats < 0.
Which one of the following statements must be true?

A If Qistrue,5 > 0.
B If Qisfalse,s > 0.
C If Qistrue,3 < 0.
D If Qis false,5 < 0.
E None of these.

Answer:

IMath. Gazette, 53 (1969) 357-362.



912 A British test of teachers’ mathematical background

3. “The condition for aquadrilateral to becyclic is that the opposite
angles must beupplementary'.

Which of the words irboldfont should be altered?

A The

B quadrilateral
C cyclic

D supplementary
E None of them

Answer:
4. What is the value of=2 whenz = 3?
AO
B1
C6
D o
E Do not know

Answer:

5. A certain theorem in Euclidean geometry has been proved.
Which of the following statements is necessarily true?

A The converse is true and does not require proof.
B The converse is true but requires proof.
C The converse is false and does not require dis-proof.

D The converse is false but requires dis-proof.
E None of the above.

Answer:
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6. It has been proved that an infinite number of triangles possess a
propertyQ.

Satemens8: All triangles possess property

Which of the following is necessarily correct?
A S istrue, and no further proof is required.
B S is true, but proof is required.
C S is more likely to be true than false.
D S is more likely to be false than true.
E None of the above.

Answer:
7. Consider the following calculation (all logarithms to ba$e

|5 = losta+ 1 ()

[log(a + 1)] =3 =log(—2) — log(—4) (In

log(—2) — log(—4) =log (:—i) (1)

log (:—Z) = —log2 (V)

In which line, if any, does thirst mistake in the calculation occur?

A ()
B (Il
C (1
D (IV)

E None of these: it is correct.

Answer:
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8. An algebraic problem involves b, ¢, and we have to write the sum
of the products, two at a time.

With which of the following statements do you agree?

A The best order iab + ac + be.
B The best order igc + ba + cb.
C The best order i& + ca + ab.
D The best order igb + ab + ac.
E There is no “best” order.

Answer:

9. We wish to letter the points 1, 2, 3 in the diagram with the lefter
M, N in some order.

With which of the following statements do you agreey,

A The best orderis L, 2M, 3N.
B The best orderisM, 2N, 3L.
C The best order is¥, 2L, 3M.
D The best order isil, 2N, 3M.
E There is no “best” order.

Answer:
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A mathematical contest

2001 Canadian Invitational Mathematics Challenge

1 Thirty years ago, the ages of Xaviere, Yolanda, anel &eie in the
ratio 1:2:5. Today, the ratio of Xavior’s age to Yolanda’'s age is 6:7.
What is Z@&’s present age?

1Grades 10 and 1LCrux Math., 29 (2003) 129-132.
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2 Solve the system of equations
T+y+z=2,
2% —y? 4 2 =2,
x — 3y* + 2z =0.
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3(a) A flat mirror is perpendicular to they-plane and stands on the
liney = x + 4. A laser beam from the origin strikes the mirror at
P(—1,3) and is reflected to the poig} on thex-axis. Determine
the coordinates of the poin}.

3(b) A flat mirror is perpendicular to they-plane and stands on a line
L. A laser beam from the origin strikes the mirror/at—1, 5) and
is reflected to the poir®® (24, 0). Determine the equation of the line
L.
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4 Determine all pairs of nonnegative integérs, n) which are solu-
tions to the equatioB(2™) + 1 = n?.

5 Letf(n) =n*+2n*—n?+2n+1.

(a) Show thatf(n) can be written as the product of two quadratic
polynomials with integer coefficients.

(b) Determine all integers for which | f(n)| is a prime number.



Chapter 36

Some geometry problems from
recent journals

1 Crux Mathematicorum
Jim Totten
Department of Mathematics and Statistics
University College of the Cariboo
Kamloops, BC, Canada, V2C 4279
2 Mathematics Magazine
Elgin Johnston, Problem Editor
Department of Mathematics
lowa State University
Ames, IA 50011
3 American Mathematical Monthly
Doug Hensley, Monthly Problems
Department of Mathematics
Texas A&M University
3368 TAMU
College Station, TX 77843-3368
4 Pi Mu Epsilon Journal
Michael McConnell
840 Wood Street
Mathematics Department
Clarion University
Clarion, PA 16214
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Crux 2813, proposed by Barry Monson, University of New Brunswick,
Fredericton, NB and J. Chris Fisher, University of Regina, Regina,
SK, Canada

Suppose thad/ is the midpoint of sideA B of the squareABC'D. Let
P and(@ be the points of intersections of the lidé D with the circle,
center)M, radiusM A(= M B), whereP is inside the square an@ is
outside. Prove that the rectanglé’ BQ is a golden rectangle, that is,

PB:PA=(V5+1):2.
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Crux 2822, proposed by Peter Woo, Biola University, La Mirada,
CA

Suppose thall is a parallelogram with sides of lengths and2b and
with acute angley, and thatF" and F” are the foci of the ellipsd that is
tangent to the four sides of at their midpoints.
(a) Find the major and minor semi-axesldfn terms ofa, b anda.
(b) Find a straight-edge and compass constructiodfand F’.
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Crux 2823, proposed by Christopher J. Bradley, Clifton COllege,
Britol, UK

Suppose thak, M, N are points orBC, C A, AB respectively, and are
distinct from A, B, C'. Suppose further that
BL 1-2A\ CM 1—up AN 1-v

c~ A\ MA NB v’
and that the circled M N, BN L, andC' LM meet at the Miquel poinP.

Find [BCP] : [CAP] : [ABP] interms of), i, v and the side lengths
of triangle ABC'.
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Crux 2830, proposed by D. J. Smeenk, Zaltbommel, the Netherlands

Suppose thdt (O, R) is the circumcircle of trianglel BC'. Suppose that
sideAB is fixed and tha’ varies onl” (always on the same side 4f3).

Suppose that,, I, I. are the centers of the excircles of triangl8C
oppositeA, B, C respectively. IfQ) is the center of the circumcircle of
trianglel, I, 1., determine the locus &t asC varies.
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Crux 2836, proposed by G. Tsintsifas, Thessaloniki, Greece

Suppose that trianglé BC' is equilateral and tha® is an interior point.
The linesAP, BP, C'P intersect the opposite sidesiat £, F' respec-
tively. Suppose thaPD = PE = PF. Determine the locus af.
Suppose P has homogeneous barycentric coordinates (z : y :
z) with respect to triangle ABC'. Then, D divides BC' in the ratio

BP:PC=z:y,and PD = x+§+z - AD. By Stewart’s theorem,

g Y e YR s ytyrt e
y+z yt+z  (y+2)? (y+2)? '

AD?

Therefore,
Py +yr+2%) .2

PD* =
(@ +y+2)*(y + 2)?

Similarly, we obtain

y2 (2% + 2w + 2?) 9

PE? = -a”,
(z+y+2)%(z+2)?

o a4y +y°) Q2

(z+y+2)?2(x+y)?

Therefore, PE = PF if and only if
(x +y)?2 (2% + 2z + 2%) = (2 + 2)222 (2% + 2y + o),
or
(y—2)(@+y+2)(@°(y+2)+2° (V¥ +yz+2°) +ayz(y+2) +y22%) = 0.

Since P is an interior point, z, y, z are positive. We conclude that
y = z. Similarly, PF' = PD if and only if z = x.

The point P has coordinates = : y: z =1:1: 1; itis the center
of the equilateral triangle.
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Crux 2840, proposed by Juan-Bosco Romero Brquez, University
of Valladolid, Valldolid, Spain

Let A’ be an interior point of the line segmeBC in triangle ABC'. The
interior bisectors o BA’A andZC A’ A intersectA B andC' A at D and
E respectively. Prove that A’, BE, andC' D are concurrent.
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Crux 2847, proposed by G. Tsintsifas, Thessaloniki, Greece

Theinscircle inscribed in a tetrahedron is a circle of maximum radius
inscribed in the tetrahedron, considering every possible orientations in
E3.

Find the radius of thenscircle of a regular tetrahedron.
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Crux 2849, proposed by Toshio Seimiya, Kawasaki, Japan

In a convex quadrilateral BC'D, we have/ABC = ZBCD = 120°.
Suppose thatiB* + BC? + CD? = AD?. Prove thatABCD has an
inscribed circle.
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Mathematics Magazine, Problem 1669, proposed by A. N. Duman,
Bilkent University, Turkey

Let ABC be atriangle and et be the midpoint oBC'. A circle passing
throughA andC' intersectsBA and BC' in pointsG and E' respectively.
Let D be the midpoint ofEC'. A line throughD and perpendicular to
BC intersectsAC' at F', with 3AF = F'C. Prove that trianglé’ DG is
similar to triangleABC.
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Mathematics Magazine, Problem 1671, proposed by M. N. Desh-
pande, Institute of Science, Nagpur, India

Let T be the set of triangled BC' for which there is a poinD on BC
such that segmentd B, BD, AD, DC, and AC' have integral lengths
andZ/ACD = 1/ABC = 1 /ADB.

(a) Characterize the sefs, b, c} that are sets of side lengths of trian-
glesinT.

(b) Find the triangle of minimum area ih
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American Mathematical Monthly, Problem 11006, proposed by B. Suceay
California State University, Fullerton, CA

Let ABC be an acute triangld; the midpoint of arcBC' of the circle
circumscribingABC'. Let G and K be the projections oA andT re-
spectively onBC, let H and L be the projections o2 andC' on AT,
and letE’ be the midpoint ofAB. Prove that

(8 KH//AC,GL//BT,GH//TC,andLK//AB.
(b) G, H, K andL are concyclic.

(c) The center of the circle through, H, and K lies on the Euler
circle (nine-point circle) of trianglel BC'.
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Pi Mu Epsilon Journal, Problem 1058, proposed by P. A. Lindstrom,
Batavia, NY

Suppose that triangld BC' has an interior poinf. Let D, E, F be
points on sidesAB, BC, C' A respectively, so thaPD | AB, PE L
BC, PF 1 CA. Let|AB| = z, |BC| = y, |CA| = z, |AB| = a,
|BE| = b, and|C'F| = c.

1. Show that(x — a)? + (y — b)* + (2 — ¢)* = a® + b* + .

2. Show that ifAABC is an equilateral triangle, then+ b + ¢ =
s(perimeter) of triangled BC.
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Pi Mu Epsilon Journal, Problem 1060, proposed by A. B. Ayoub,
Pennsylvania State University, Abington, College, Abington, PA

SupposeNABC' is an equilateral triangle. The point E, andF' are
on AB, BC, C' A respectively such thalD| = |[BE = |CF|. Show
that the circumcircles of triangle$BC and D E I are concentric.
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The Josephus problem and its
generalization

37.1 The Josephus problem

n prisoners are arranged in a circle. In succession, eseegnd one is
removed from the circle and executed, and the last one is set free. Who
is the survivor?

Examples

1. n=10:

2. n = 21. After the removal of the 10 even numbered ones and then
the first, there are the 10 odd numbers 3.5, 19, 21. Theurvivor
is the 5-th of this list, which is 11.
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Theorem 37.1.Let f(n) be the survivor in the Josephus problem of n
prisoners.

f(2n) =2f(n) -1,
f(2n+1)=2f(n)+ 1.

Example

F(100) =2£(50) — 1
=2(2f(25) — 1) — 1 = 4f(25) — 3
—4(2f(12) + 1) =3 = 8f(12) + 1
=8(2f(6) — 1) +1 = 16£(6) — 7
—16(2f(3) — 1) — 7 = 32f(3) — 23
=32(2f(1) 4+ 1) — 23 = 64f(1) + 9
—73.

There is an almost explicit expression fffn): if 2™ is the largest
power of 2< n, then

f(n)=2(n—-2")+1.

Corollary 37.2. The binary expansion of f(n) is obtained by transfer-
ring the leftmost digit 1 of n to the rightmost.

£(100) = £(1100100,) = 10010015 = 64 + 8 + 1 = 73.
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37.2 Generalized Josephus problerfi(n, k)
J(10, 3):

J(10, k) for various values of k

Forn = 10, here are the sequences of execution depending on the values
of k. The last column gives the survivors.

k *
1 1 2 3 4 5 6 7 8 9]10
2 2 4 6 8 10 3 7 1 915
3 3 6 9 2 7 1 8 5 10|4
4 |4 8 2 7 3 10 9 1 615
5 5 10 6 2 9 8 1 4 7|3
6 6 2 9 7 5 8 1 10 4|3
T\N7 4 2 1 3 6 10 5 8|9
8 8 6 5 7 10 3 2 9 41
9 9 8 10 2 5 3 4 1 67
010 1 3 6 2 9 5 7 4|8

Positions 2 and 6 ardeadly positions for the Josephus problem of 10
prisoners and random choice /af
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Exercise
1. For what values of. is f(n) = n?
2. For what values ofvis f(n) =n — 1?

3. Make a list of the deadly positions of the Josephus problem for
n=45,...,9.

4. Forn = 7, there is only one deadly position 1. This means that one
other position is most likely to survive? Which one is it?

5. Find out the survivor in the Josephus problg(a4, 11).

6. The deadly positions faf(24, k), k = 1,...,24 are 5, 12, 13, 16,
18, 19, 22. What is the one with the best chance of survival?
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Permutations

38.1 The universal sequence of permutations

For convenient programming we seek an enumeration of the permuta-
tions. Regard each permutation of 1, 2,n as a bijectiont : N — N
which is “eventually” constant,e., f(m) = m for m > n. The enu-
meration begins with the identity permutation. The permutations of 1,
2, ...n are among the first! of them, and each of the firgtr — 1)!
permutations ends with.

Given an integem, we write
m—1=rox1l4+r3x2+- - 4+r,x (k—1)!

for 0 < r; < i. These can be calculated recursively as follows. Begin-
ning with (¢1,71) = (m — 1,0), we set, for each > 2,

Gi—1 =1 X ¢ + 1.

In other words,

(g, 7mi) = qul_lj , mod(qi_l,i)) .

Along with these, we construct a sequence of lists which ends at the
desired permutation. Legt; = (1). For:i > 2, form L; by inserting:

into L;_; so that there are exactly members smaller thainon its right
hand side. Theld,, is the permutation correspondingsta
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Example

To find the 12345th permutation, we write
12344 =0 x U+ 1 x 21+ 1 x 31 +4 x4+ 0 x5! +3x6!+2xT7.

The corresponding sequences are

L] L |
L] (D)

2| (1,2)

31(1,3,2)
41(1,3,4,2)
51(5,1,3,4,2)
6|(5,1,3,4,2,6)
71(5,1,3,7,4,2,6)
81(5,1,3,7,4,8,2,6)

The permutation is (5,1,3,7,4,8,2,6).
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38.2 The position of a permutation in the universal se-
quence

Given a permutatiori.,,, we want to determine its position in the enu-
meration scheme above. Fpe=n,n — 1, ...,2, let

(i) r; be the number of elements i on the right hand side of,

(i) L,_, be the sequenck; with j deleted.

Then, the position number of the permutationis

L+ryx U4rgx2l+---4r, x(n—-1).

This number can be computed recursively as follows.

S9 =S89 X 2+ 19,
S1 252X1+1.

Example

Consider the permutatiobh = (1,4,6,2,3,7,9,8,5).

J L T S

9 (1,4,6,2,3,7,9.8,5) 2 2

8 (1,4,6,2,3,7.8,5) 1 17

7 (1,4,6,2,3,7,5) 1120
6 (1,4,6,2,3,5) 3 723
5 (1,4,2,3,5) 0 3615
4 (1,4,2,3) 92 14462
3 (1,2,3) 0 43386
2 (1,2) 0 86772
1 (1) 1 86773

n

This permutation appears as the 86773-th in the universal sequence.



1008 Permutations

Exercise
1. Find the one-billionth permutation in the universal sequence.

2. The inverse permutation of (5,1,3,7,4,8,2,6) is (2,7,3,5,1,8,4,6). What
is its position number in the universal sequence?

3. Let(ay,...,1,) be a permutation ofl, 2,...,n).

(I) chclic ’ai o &i+1’ > 2n —2.
(if) For how many distinct permutations 6f, 2, . . ., n) does equal-
ity hold? Answer:n - 2".

Project: Nice odd integers

An odd integem is said to be nice if and only if there is a permutation
(ay,aq,...,a,)0f (1,2,...,n) such that the sums

al_af2+"'_a'n—1+an7
ag—a3+-~-—an—|—a1,
an_a1+"'_an—2+an—1

are all positive. Find all nice integers.
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Cycle decompositions

39.1 The disjoint cycle decomposition of a permutation

Theorem 39.1.Every permutation can be decomposed into a product of
digoint cycles.

For example, the permutation

123456 789 X J QK
6 98342 K7 5 1 J X

decomposes into the two disjoint cycl@®$29¢).J ) (387K X 54).
Theorem 39.2.Every cycle decomposesinto a product of transpositions.

Theorem 39.3. A permutation can be decomposed into a product of
transpositions. The parity (of the number of transpositions) of the per-
mutation is independent of the decomposition.

Thus, permutations are classified into even and odd permutations.
Even (respectively odd) permutations are said to have paiitfrespec-
tively —1).

Corollary 39.4. Acycle of length k hasparity (—1)*~*. More generally,
a permutation of n. objects has parity

(_1)717 number of disjoint cycles in a decomposition

In using this formula, the fixed points are counted as 1-cycles, though
we usually do not write them in the cycle decomposition of a permuta-
tion.
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39.2 Dudeney’s puzzlé

Take nine counters numbered 1 to 9, and place them in a row
in the natural order. It is required in as few exchanges of pairs
as possible to convert this into a square number. As an ex-
ample in six moves we give the following: (7846932), which
give the number 139854276, which is the square of 11826.
But it can be done in much fewer moves.

The square of 12543 can be found in four moves, as follows.

1234567389
@251 53426 7 89
BT 57426 3389
B3)I1T 574262839
BGHIT 57 3 262849

The squares of 25572, 26733, and 27273 can always be obtained in
four moves.

1Puzzle 128 of [Dudeney]
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However, there is one which can be madehree moves. Can you
find it?

123456789
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The pandigital case of Dudeney’s puzzle

In the pandigital case, there are 4 ways to move

123456728090
B IT 274563890
(48) 1 2 7 856 3 49 0
(4X)1 2 7 856 3 09 4
(49) 1 2 7 856 3 0 4 9

This gives the 1278563049, the square of 35757.
There are three other ways of making 4 moves to make a pandigital
square. These are the squares of 35853, 38772, and 39147.

1234567890
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39.3 Dudeney’s Canterbury puzzle 3

[7]x[2][8]=1][o]l6] = [3][4] < [5]

While 7 x 28 = 196, it is not true thaB4 x 5 = 196. Move as few
counters as possible to make the equations valid.

2% X 6¢ = 96T = 8L X ¢ 0} (96¥)(L2)
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Project

The multiplication

[1][2] < [3][4][5] = [6][7][8][9]

is clearly not valid. Move as few counters as possible to make the equa-
tion valid. 3

How about

[1][2] <[3]14][5]=e][7][8][a][0f

396LG = €8F X ¢T 0} (G96STE)
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39.4 The game of ropes and rungs

Each of the seven players starts by sliding down his own vertical rope,

and makes a turn every time he encounters a rung. Who wins the prize

*o

A B C D E F G

Suppose you are at positioh and are permitted to add any number
of rungs in any positions, (provided that no two rungs are at the same

horizontal level). How would you add rungs to claim the pr’lkz@
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Chapter 40

Graph labelling

40.1 Edge-magic triangle

Label the vertices and edges of a triangle with the numbers.1, 26
without repitition so that the sum of the three number along each edge is
constant.
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40.2 Face-magic tetrahedron

The vertices and edges of a tetrahedron with consecutive integers 1, 2,
..., 10 sathat the four faces all have the same sum 32.

Can you label them with a smaller common face sum?
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40.3 Magic cube

Label the vertices of a cube by the numbers 1, 2, 8without repetition
such that the sum of the numbers at the four vertices of each face is a
constant.
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40.4 Edge-magic heptagon

Label the vertices and edges with the fourteen numbers 1,.2,14
(without repetition) so that the sum of the three numbers along each
edge is constant.
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40.5 Edge-magic pentagram

It is known that the pentagram cannot be labelled with the numbers 1, 2,
..., 10without repetition such that the sum of the four numbers along
each line is constant.

However, given the labelling of the five inner vertices below, it is
possible to label the five outer vertices such that the sum of the four
vertices along each of the five edges is constant. Find such a labelling
with minimum edge sum.
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40.6 A perfect magic circle




Chapter 41

Card tricks from permutations

Considermn cards arranged in order, from left to right, and from top to
bottom. We call this the standard order.

© @ 6 6
® ©® 0 G

® W @ ®
@ ® © ©

Rearrangements with simple cycle structure lead to interesting card
puzzles. For example, the magician asks an audience to note the card at
a specific spot, rearranges the cards according to some simple rule, then
asks the audience to tell the new card at the spot. The magician is able
to tell the card that originally occupies this position.
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The rearrangementw = wy, ,

Pick up the cards along the columns, from top to bottom, and from left
to right. Then rearrange them in the standard order.
Form = n, this rearrangement is the reflection in the main diagonal.
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The rearrangementp = p,, .

Pick up the cards along the columfr®m bottom to top, and from left
to right. Then rearrange them in the standard order.

Form = n = 4, this rearrangement is the cyclic permutation of the
vertices of 4 squares:

The cycle structure is simpler after one more application: it is simply
rotation throughl 80° about the center of the square.



1104 Card tricks from permutations

The repeated diagonal rearrangement

Pick up the cards along thétagonals from from bottom to top, and
from left to right. Then rearrange them in the standard order.
Form = n = 4, this is the permutatiot = 9,, ,,

1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16
15 2 9 6 3 13 10 7 4 14 11 8 15 12 16

with cycle structure

The cycle structure is simpler after one more application:

© @ (9
® O—6
19 @ _®©

rd

B @ ©® O
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The repeated snake rearrangement

Pick up the card along the columns, first from top to bottom, then from

bottom to top, and alternately. Rearrange in the standard order. This is
the permutationr = o, ,

®
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Chapter 42

Tetrahedra

42.1 The isosceles tetrahedron

An isosceles tetrehedron is one whose four faces are congruent trian-
gles. Given a triangled BC', construct its anticomplimentary triangle
A'B'C’" by drawing lines through the vertices parallel to their opposite
sides. Fold along the sides of the given triangle to bring the vertices

B’, C" into a pointD, forming an isosceles tetrahedrdiBC' D. Every
isosceles tetrahedron arises from any one of its faces in this way. We
may therefore ask for the volume of the isosceles tetrahedi@' D in

terms of the side lengths of triangleBC.

A' =D

To compute the volume of a tetrahedron, we would drop the perpen-
dicular from a vertex to its opposite face (of araa to determine the
heighth on this face. The volume of the tetrahedron is ther- $Ah.

For an isosceles tetrahedron, the position of this perpendicular foot is
clearly the same for the four faces.
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42.2 The volume of an isosceles tetrahedron

Let L be the pedal of the verteR on the faceABC.>! Consider the
plane throughD perpendicular to the face$BC and D BC. This is the
plane containing), L, and the common pedal of these points on the
line BC. Upon unfolding the facé> AB into triangle ABC’, triangle
DZL becomes the segme@t L intersectingAB at Z. SinceC'Z is
perpendicular toA B, C'L is perpendicular tel’ B’. The same reasoning
applied to the other two face® BC' and DC'A shows thatd’L, B'L,
C'L are perpendicular t&'C’, C'A’, A’ B’ respectively. It follows that
L is the orthocenter of trianglé’ B'C".

Proposition 42.1. The point L isthereflection of H in O.
The pointL is called the de Longchamps point of triangi&C.
Proposition 42.2.
OL? = OH? = R*(1 — 8cosacos 3cos ).

Theorem 42.3.The volume of theisoscelestetrahedronontriangle ABC
isgiven by

1
Vieo = \/5(1)2 + 2 —a?)( +a? —b?)(a® + b — ).

1We use the worghedal for perpendicular foot or orthogonal projection.
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42.3 \Volume of a tetrahedron

Let ABCD be a tetrahedron with

BC=a, CA=b, AB=C,
AD=4d, BD=V, CD=/.

The volumeV of the tetrahedron is given by

,.lk

() (Cre) v e -gove).

edges faces
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42.4 Charles Twigg’s envelope model of the tetrahedron
2

Take an sealed envelope which is two copies of a rectahgl€ D glued
along the perimeter. Assum&B < BC.

A D

B

B F c

1. Fold the diagonalsiC' and BD. Their intersection is the double
point £ andE’.

2. Cut along two half diagonalslE and DE to remove the sector
containing one long side and the flap of the envelope.

3. Fold along the remaining portions of the half diagonaks(and
C'F) and crease firmly. Fold back along the same lines and crease
firmly again.

4. Fold AB into DC' to form the creas& F'. Here, I is the midpoint
of the sideBC'. Underneatht is the pointE’

5. Separately and £’ until EFE'’ is a straight line. Fold up around
EFE'" until D meetsA, thus forming a hexahedron.

6. Tuck D underAB (or A underDC') and press up o andC' until
DC and BA coincide.

2C. W. Trigg, Tetrahedral models from envelopbth. Mag., 51 (1978) 66-67.
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Exercise

1. Find the volumes of the isosceles tetrahedra with face given below:

a b c¢c| V
11 20 21
33 65 72
69 91 100
21 99 100

2. Find the volumes of the following tetrahedra:

a b cld b V
32 33 35|76 70 44
21 32 47158 76 H6

3. What is the shape of the envelope in Twigg’s model for which the
resulting tetrahedron is regular?

4. In Twigg’s envelope model, supposeéB = 2a and BC' = 2b.
What is the volume of the resulting tetrahedroh?

3This is an isosceles tetrahedron with fa&e /a2 + b2, andv/a? + b2. Its volume isgcﬁ b2 —a?.
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Chapter 43

Lewis Carroll’'s unused
geometry pillow problem

According to [Rowe], one of the pillow problems Lewis Carroll had at-
tempted but did not include in his collection of pillow problems was the
following.

Given atriangled BC, to find, by paper folding, a linéwhich
intersectsAC and AB atY and Z respectively) such that if
A’ is the reflection ofd in ¢, then the reflections aB in A’Z
and ofC in A’Y coincide.

The pointI¥ is both the reflection of3 in A’Y, and that ofC in
A'Z. Itfollows thatA’'B = A'W = A’C, andA’ is on the perpendicular
bisector of BC.
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Consider thalirected angle/BA’C'. This is

/BA'C =/BA'W + L/WA'C
=2/YAW +2/WA'Z
=2/YA'Z
=—2/LYAZ

sinceA’Y AZ is arhombus. This meansthaBA'C = —2/BAC. The
reflection of A’ in the sideBC is therefore the point) on the perpen-
dicular bisector such that BQC' = 2/BAC, which is necessarily the
circumcenteiO of triangle ABC'. We therefore conclude that' is the
reflection of the circumcentép in the sideBC', and the reflection liné
is the perpendicular bisector of the lided’.

Let D be the midpointBC' and H the orthocenter of triangld BC'.
In a standard proof of the Euler line theorem, it is establishedAliat=
20D, ! and that the midpoint of H is the nine-point center of triangle
ABC. This means that H = OA’, andAOA’H is a parallelogram. It
follows that the midpoint ofAA’ is the same as that @¢?H, the nine-
point centerNV of triangle ABC'. The Lewis Carroll paper-folding line
isthe perpendicular to AN at N.

1AH = 2. 0D = 2R cos A, whereR is the circumradius of trianglel BC..
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Japanese Temple Geometry
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