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Lattice polygons

1 Pick’s Theorem: area of lattice polygon
2 Counting primitive triangles
3 The Farey sequences

Appendix: Regular solids
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Project: A cross number puzzle
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102 Lattice polygons

1.1 Pick’s Theorem: area of lattice polygon

A lattice point is a point with integer coordinates. A lattice polygon is
one whose vertices are lattice points (and whose sides are straight line
segments). For a lattice polygon, let
I = the number of interior points, and
B = the number of boundary points.

Theorem 1.1 (Pick). The area of a lattice polygon is I + B
2
− 1.

If the polygon is a triangle, there is a simple formula to find its area
in terms of the coordinates of its vertices. If the vertices are at the points
(x1, y1), (x2, y2), (x3, y3), then the area is1

1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
In particular, if one of the vertices is at the origin(0, 0), and the other
two have coordinates(x1, y1), (x2, y2), then the area is1

2
|x1y2 − x2y1|.

Given a lattice polygon, we can partition it intoprimitive lattice tri-
angles,i.e., each triangle contains no lattice point apart from its three
vertices. Two wonderful things happen that make it easy to find the area
of the polygon as given by Pick’s theorem.

(1) There are exactly2I + B − 2 such primitive lattice triangles no
matter how the lattice points are joined. This is an application of Euler’s
polyhedral formula.

(2) The area of a primitive lattice triangle is always1
2
. This follows

from a study of the Farey sequences.
1This formula is valid for arbitrary vertices. It is positive if the vertices are traversed counterclockwise,

otherwise negative. If it is zero, then the points are collinear.
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1.2 Counting primitive triangles

We shall make use of the famous Euler polyhedron formula.

Theorem 1.2. If a closed polyhedron has V vertices, E edges and F
faces, then V − E + F = 2.

Given a lattice polygon with a partition into primitive lattice trian-
gles, we take two identical copies and glue them along their common
boundary. Imagine the 2-sheet polygon blown into a closed polyhedron.
The number of vertices isV = 2I + B. Suppose there areT primitive
triangles in each sheet. Then there areF = 2T faces of the polyhedron.
Since every face is a triangle, and each edge is contained in exactly two
faces, we have2E = 3F . It follows thatE = 3T . Now, Euler’s poly-
hedron formula gives(2I + B) − 3T + 2T = 2. From this, we have
T = 2I +B − 2.
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1.3 The Farey sequence

Letn be a positive integer. The Farey sequence of ordern is the sequence
of rational numbers in[0, 1] of denominators≤ n arranged in increasing
order. We write0 = 0

1
and1 = 1

1
.

F1 :
0
1
, 1

1
.

F2 :
0
1
, 1

2
, 1

1
.

F3 :
0
1
, 1

3
, 1

2
, 2

3
, 1

1
.

F4 :
0
1
, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 1

1
.

F5 :
0
1
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 1

1
.

F6 :
0
1
, 1

6
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 5

6
, 1

1
.

F7 :
0
1
, 1

7
, 1

6
, 1

5
, 1

4
, 2

7
, 1

3
, 2

5
, 3

7
, 1

2
, 4

7
, 3

5
, 2

3
, 5

7
, 3

4
, 4

5
, 5

6
, 6

7
, 1

1
.

Theorem 1.3. 1.If h
k

and h′
k′ are successive terms of Fn, then

kh′ − hk′ = 1 and k + k′ > n.

2. If h
k

, h
′
k′ , and h′′

k′′ are three successive terms of Fn, then

h′

k′
=

h+ h′′

k + k′′
.

The rational numbers in[0, 1] can be represented by lattice points in
the first quadrant (below the liney = x). Restricting to the left side
of the vertical linex = n, we can record the successive terms of the
Farey sequenceFn by rotating a ruler about0 counterclockwise from the
positivex-axis. The sequence of “visible” lattice points swept through
corresponds toFn. If P andQ are two lattice points such that triangle
OPQ contains no other lattice points in its interior or boundary, then the
rational numbers corresponding toP andQ are successive terms in a
Farey sequence (of order≤ their denominators).

Corollary 1.4. A primitive lattice triangle has area 1
2
.
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The Farey polygonsP10 and P20
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Let φ(n) be the number of integersm satisfying1 ≤ m ≤ n and
gcd(m,n) = 1. The Farey sequenceFn has1 +

∑n
k=1 φ(k) terms. The

polygonPn contains2 +
∑n

k=1 φ(k) boundary points and no interior
points. By Pick’s formula, its area isAn = 1

2

∑n
k=1 φ(k). By a calcula-

tion of D. N. Lehmer [Lehmer], for large values ofn, this area is about
3

2π2 of the (smallest) square containing it:

lim
n→∞

An

n2
=

3

2π2
.
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Appendix: Regular solids

A regular solid is one whose faces of regular polygons of the same type,
say,n-gons, and each vertex belongs to the same number of faces, say,
m faces. Note thatm ≥ 3 andn ≥ 3.

Let V , E, andF be the numbers of vertices, edges, and faces re-
spectively. ThennF = 2E = mV , andV = 2E

m
, F = 2E

n
. Since

V −E + F = 2, we have2E
m
− E + 2E

n
= 2. From this,

E =
2mn

2(m+ n)−mn
.

Sincem,n ≥ 3, and we require2(m + n) > mn, the only possibilities
are as follows.

m n E V = 2E
m

F = 2E
n

regular solid

3 3 tetrahedron

3 4 cube

3 5 duodecahedron

4 3 octahedron

5 3 icosahedron
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Exercise

1. Can a lattice triangle be equilateral? Why?

2. Can a lattice polygon be regular? Why? [You may make use of the
nontrivial fact thatthe only values of n for which sin π

n
is rational

is n = 6.]

3. For B = 3, 4, 6, 8, 9, give an example of a lattice triangle with
exactly one interior point andB boundary points.2

4. Give an example of an equilateral lattice hexagon.

5. How many terms does the Farey sequenceFn have? [Hint: Give
the answer in terms of the Eulerϕ-function].

6. The Farey polygonPn is the lattice polygon whose vertices, taken
in order, are the origin and the points(k, h) for h

k
in the Farey se-

quenceFn. Here isP6.

b b

bbbb

b

b

b

b

b

b

b

b

b

Find the area ofP6 and that ofPn for a generaln.

2In [Weaver], it is shown that these are the only possible values ofB if I = 1.
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A cross number puzzle

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
1 2 3 4 5 6 7

8 9 10

11 12 13

14 15 16 17

18 19

21

22 23 24 25 26

27 28 29

20

31 32

30

Across Down
1 A perfect square 1 A multiple of 11
4 A palindromic integer 2 The product of the positive
8 This many degrees Fahrenheit divisors of the number is2022

is 265 degrees Centigrade 3 See 9-across
9 With 3-down, a permutation 4 A Fermat prime

of the digits 0 through 9 5 Product of the first 3 primes
11 Second smallest prime of 6 Colleague of 1-across

the formn2 + 2n + 1, n > 0 7 In base 2, this number is
13 A gross number written 11010001110001
14 19-down minus 18-down 10 Yet another perfect square!

plus 26-down 12 The first prime year after 1950
17 Number of 2-digit primes 15 This many degrees is25

6
π radians

18 The product of the digits 16 The 17th Fibonacci number
of this number is 78125 18 2102 + 1112

20 The sum of this number’s 19 The least common multiple of 36
positive divisors is 91 and 1631

21 332 + 32 20 The number of positive perfect squares
22 This number is the sum of less than105

the factorials of its digits 23 The number of positive integers
24 A power of 6 less than 625 which are not divisible by 5
27 The sum of the fourth power 25 The sum of these digits is 15, and

of 5 consecutive triangular numbers their product is 84
30 A Mersenne prime 26 Palindromic square
31 A power of 2 28 The only even prime number
32 The number of the beast 29 20-across minus 28-down
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2.1 Counting interior points of a lattice triangle

A lattice triangle has vertices at(0, 0), (a, 0), and(a, b).

a

b

a

Counting in two ways, we obtain as
a−1∑
n=1

⌊
nb

a

⌋
=

b−1∑
m=1

⌊ma

b

⌋
.

Note that each of these is the total number of interior points and those on
the hypotenuse (except the two vertices). There aregcd(a, b)− 1 points
in the latter group.

If we put these two copies together to form a rectangle, we see that the
interior points along the diagonal are counted twice. Since the rectangle
has(a− 1)(b− 1) interior points, we have exactly

(a− 1)(b− 1)− gcd(a, b) + 1

2
lattice points in the interior of the triangle.

a

b

In particular, ifgcd(a, b) = 1, then the triangle has1
2
(a − 1)(b − 1)

interior points.
Note that we have an algorithm for computing the gcd of two integers:

gcd(a, b) = 2

b−1∑
m=1

⌊ma

b

⌋
− (a− 1)(b− 1) + 1.
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2.2 Lattice points on a circle

How many lattice points are there on the circlex2 + y2 = n2? This
number is usually denoted byr2(n

2). The first few values can be read
from the following figure.
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

n 1 2 3 4 5 6 7 8 9 10
r2(n

2)

In general, if the numbern is factored into a product of prime powers

n = 2a ·
∏
i

pbii ·
∏
j

q
cj
j ,

wherepi and qj are prime numbers of the forms4k + 1 and 4k + 3
respectively, then

r2(n
2) = 4

∏
i

(2bi + 1).

Thus, for example, the circle of radius 100 has lattice points. On
the other hand, ifp is a prime number of the form4n+1, then the circle
of radiusp has 12 lattice points. Four of these are on the coordinate axes.
The other 8 are of the form(±a,±b), (±b,±a), and depend on how the
primep is written as a sum of two squares.
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Appendix: The floor and the ceiling

Thefloor of a real numberx is the greatest integer not exceedingx: 1

�x� := max{n ∈ Z : n ≤ x}.
On the other hand, theceiling of x is the least integer not exceeded

by x:
�x := min{n ∈ Z : n ≥ x}.

If x is not a half-integer, we denote by{x} the integernearest x.

Project

Find all integersn for which�√n� dividesn.
How about�√n dividingn?

1It is sometimes called the greatest integer function ofx and denoted by[x].
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Appendix: Number of lattice points inside a circle

Given a real numberr, how many lattice points are there inside or on the
circle of radiusr, center at the origin?

Write a computer program to find out exactly how many lattice points
are inside or on the circle radius 100.

For large values ofR, the numberK(R) of lattice points inside and
on the circle of radius

√
R satisfies

πR− π(2
√
2
√
R − 2) < K(R) < πR+ π(2

√
2
√
R+ 2).

This is often expressed by writing

K(R) = πR +O(
√
R).

Appendix: Number of lattice points under a hyperbola

Given a real numberR, how many lattice points in the first quadrant are
under the hyperbolaxy = R (but not on the axes)?

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b

b b b b b b

b b b b b

b b b b

b b b

b b

b b

b b

b b

b

b

b

b

b

b

b

b

b

b

This number is
H(R) =

∑
1≤n≤�R�

d(n).

As a crude estimate,H(R) = R logR + O(R). A better estimate was
given by Dirichlet

H(R) = R logR+ (2γ − 1)R+O(
√
R).

Here,γ is the Euler constant

lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
− logn ≈ 0.5772157 · · · .
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Exercise

1. Consider the lattice triangleABC with A = (0, 0), B = (36, 15)
andC = (16, 30). Calculate the lengths of the sides of the triangle.
What is the area of the triangle? How many boundary and interior
points does it have?

2. Repeat the same for the lattice triangleABC with A = (0, 0),B =
(24, 45) andC = (48, 55).

3. Give an example of a lattice triangle whose side lengths are 13, 14,
15. What is the area? How many interior and boundary points does
the triangle have?

4. There is a list ofn statements. Fork = 1, 2, . . . , n, the k-th
statement reads:

The number of false statements in this list is greater than k.

Determine the truth value of each of these statements.

5. Solve the equation⌊
x+ 1

2

⌋⌊
x+ 2

3

⌋⌊
x+ 3

4

⌋
= 819.

6. Write 97 as a sum of 2 squares and find the lattice points on the
circle of radius 97.
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Project: Cross number puzzle

Fill in the accompanying square with distinct 2-, 3-, and 4-digit numbers
which are perfect squares, none of which begins with 0.

0 1 2 3 4 5 6
0

1

2

3

4

5

6
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Equilateral triangle in a
rectangle

1 Equilateral triangle inscribed in a rectangle
2 Construction

Exercise
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3.1 Equilateral triangle inscribed in a rectangle

Given a rectangleABCD, how can we choose a pointP onBC and a
pointQ onCD such that triangleAPQ is equilateral?

P

Q

A B

CD

a

y

b− y

a− xx

b

SupposeAB = DC = a, BC = AD = b, DQ = x, andBP = y.
These satisfy

a2 + y2 = b2 + x2 = (a− x)2 + (b− y)2.

From these,2(ax+ by) = a2 + y2 = b2 + x2, and we have

(x2 − 2ax+ b2)2 = 4b2(b2 + x2)− 4a2b2.

This can be rewritten as

(x2 + b2)((x2 + b2)− 4ax− 4b2) = 0,

from which
x = 2a−

√
3b.

Similarly, y = 2b−√
3a.
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3.2 Construction of equilateral triangle inscribed in a
rectangle

What is more interesting is that the above calculation leads to a very easy
construction of the equilateral triangleAXY .

Construction 3.1. Construct equilateral trianglesBCY andCDX so
thatX andY are in the interior of the rectangle.1 JoinAX to intersect
BC atP andAY to intersectCD atQ. ThenAXY is equilateral.

P

Q

A B

CD

X

Y

M

N

1This is not always possible. What is the range of the ratioa
b

for X andY to be in the interior of the
rectangle?
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Exercise

1. Show that Area(ABP ) + Area(ADQ) = Area(CPQ).

P

Q

A B

CD

2. Take a9× 10 rectangleABCD and obtain the equilateral triangle
APQ by folding.

3. P is a point in the interior of a rectangleABCD. SupposeAP = a,
BP = b, CP = c. Find the distanceDP in terms ofa, b, c.

P

A

B C

D

4. A pavement of widthd is constructed across a rectangular field of
dimensionsa by b. What is the area of the pavement?

b

a

d

A B

CD

P

Q
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5. A piece of8×11 paper is to be cut into a pattern that can be folded
into a cube. Find the largest cube that can be obtained, and the
percentage of the paper wasted.

A

6. What is the length of the paper if the cornerA is on the edge, and
the width is 8 units?

A
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Appendix: Some basic construction principles
Appendix: The Geometer’s Sketchpad
Exercise
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4.1 Geometric mean

We present two ruler-and-compass constructions of the geometric means
of two quantities given as lengths of segments. These are based on Eu-
clid’s proof of the Pythagorean theorem.

Construction 4.1. Given two segments of lengtha < b, mark three
pointsP , A, B on a line such thatPA = a, PB = b, andA, B are
on thesame side ofP . Describe a semicircle withPB as diameter,
and let the perpendicular throughA intersect the semicircle atQ. Then
PQ2 = PA · PB, so that the length ofPQ is the geometric mean ofa
andb.

P
A

B

Q

Construction 4.2. Given two segments of lengtha, b, mark three points
A, P , B on a line (P betweenA andB) such thatPA = a, PB = b.
Describe a semicircle withAB as diameter, and let the perpendicular
throughP intersect the semicircle atQ. ThenPQ2 = PA · PB, so that
the length ofPQ is the geometric mean ofa andb.

A
P

B

Q
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4.2 Harmonic mean

LetABCD be a trapezoid withAB//CD. If the diagonalsAC andBD
intersect atK, and the line throughK parallel toAB intersectAD and
BC atP andQ respectively, thenPQ is the harmonic mean ofAB and
CD:

2

PQ
=

1

AB
+

1

CD
.

a

b

harmonic mean

K

P Q

D C

A B

Another construction

a

b

harmonic mean
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4.3 Equal subdivisions of a segment

Here is an algorithm to divide a given segment inton < 2k+1 equal parts,
making use of the binary representation ofn, which contains not more
thank + 1 digits.

Construct a squareABCD on the given segment. By repeated bisec-
tions ofCD, introduce the pointsC1, C2, . . . ,Ck such that

DCi =
1

2i
DC, i = 1, 2, . . . k.

We also putC0 = C.
Letn < 2k+1. Its binary representation has no more thank+1 digits.

Suppose it hasm+ 1 nonzero binary digits.
Along the directionCD, relabel those points corresponding to the

nonzero digits, asQ0, Q1, . . . ,Qm. 1

Let P0 be the (orthogonal) projection ofQ0 onAB.
For eachj = 1, . . . , m, construct the segmentsPj−1D andAQj , and

mark the projection of their intersection onAB as the pointPj .
ThenPm is the point which dividesAB into n equal parts.

Here is the case forn = 13 with binary representation11012.

A B = P0

C = Q0D
Q1Q2

P1P2

It would be interesting if this procedure can be modified to give a
simple construction of subdivision points with ratiom : n instead of
1 : n.

1For example, ifn = 13, which has binary representation11012 , we relabelC0 asQ0, C2 asQ1, and
C2 asQ2.
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4.4 The Ford circles

The Ford circle of a rational numberr = p
q

is the circle of radius 1
2q2

in
the upper half plane tangent to thex-axis at the point(r, 0).

The Ford circles of two distinct rational numbers are either disjoint
or tangent to each other externally. In the latter case we say that two
rational numbers areadjacent.

Theorem 4.1.Two rational numbers are adjacent if and only if they are
consecutive terms in a Farey sequence.

Corresponding to each Farey sequence, there is a sequence of tangent
Ford circles. Here are the Ford circles corresponding toF5.

b

bb
b

b

b

b

b
bb

b

0 1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1

Exercise

1. If p
q

and P
Q

are adjacent rational numbers, what is the point of tan-
gency of their Ford circles?
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Appendix: Some basic construction principles

Theorem 4.2 (Perpendicular bisector locus).Given two distinct A and
B on a plane, a point P is equidistant from A and B if and only if P lies
on the perpendicular bisector of the segment AB.

Theorem 4.3 (Angle bisector locus).A point P is equidistant from two
given intersecting lines if and only if it lies on the bisector of an angle
between the two lines.

Note that two intersecting lines have two angle bisectors.

Theorem 4.4. If two circles are tangent to each other, the line joining
their centers passes through the point of tangency.

The distance between their centers is the sum (respectively difference)
of their radii if the tangency is external (respectively internal).
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The Geometer’s Sketchpad

Basic commands

• Construct points, segments, lines, circles.

• Construct a segment, ray, or line through two specified points.

• Construct a circle given its center and a point on it. Construct a
circle given its center and radius.

• Construct the intersection of two objects.

• Construct the midpoint of a segment.

• Given a line* and a pointP , construct lines perpendicular and par-
allel to * throughP .

• Translate, rotate, and dilate.

• Hide an object. (If the sketch you are making becomes too compli-
cated, you may wish to hide some of the objects to make it simpler.
Note that this isnot the same as “delete”).

• Label an object. Change the name of the object.

• Save a Sketch.

• Create New Tool.

Toolbox

Open anew sketch. Select a segment and build an equilateral triangle
on it. Hide everything except the vertices and sides of the equilateral
triangle.Select everything by dragging the mouse from top left to bot-
tom right. SelectCreate New Tool, and type a name for the tool, say,
equilateral triangle. A new tool will now appear.

Save this as a filebasic shapes.gsp in the foldertool folder.
From theFile menu, chooseDocument options, Add page, Blank

page. On this blank page, construct a square on a segment. Select
Create new tool and name thissquare. Save the file.

You can extend thisbasic shapes.gsp tool by opening new blank
pages and creating new tools. Remember tosave the file.

The currentbasic shape.gspfile contains the following tools: equi-
lateral triangle, square, rectangle, right triangle, parallelogram, rhombus.
You may of course add your own tools to the same file.
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Exercise

1. Given triangleABC, construct the equilateral trianglesBCX,CAY
andABZ externally on the sides of the triangle. JoinAX, BY ,
CZ. What can you say about the intersections, lengths, and direc-
tions of these lines (segments)?

2. Show that the90◦ angle of a right triangle is bisected by the line
joining it to the center of the square on the hypotenuse.

3. Make a sketch to show that for two given positive quantitiesa and
b,

a+ b

2
≥
√
ab ≥ 2ab

a+ b
.

4. Construct the following diagram.
AB

C D

5. Construct the following diagram.
AB

C D
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6. Two congruent circles of radiia have their centers on each other.
Consider the circle tangent to one of them internally, the other ex-
ternally, and the line joining their centers. It is known that this
circle has radius

√
3

4
a. Construct the circle.

7. An equilateral triangle of side2a is partitioned symmetrically into
a quadrilateral, an isosceles triangle, and two other congruent trian-
gles. If the inradii of the quadrilateral and the isosceles triangle are
equal, the common inradius is(

√
3−√2)a. Construct the partition.

8. Outline a simple procedure to divide a segment into 123 equal parts.
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Greatest common divisor

1 gcd(a, b) as an integer combination ofa andb
2 Nonnegative integer combinations ofa andb
3 Cassini formula for Fibonacci numbers
4 gcd of generalized Fibonacci and Lucas numbers

Appendix: The Eulerφ-function
Exercise
Project

k rk qk xk yk
−1 Fn+1 ∗ ∗ ∗ 1 0
0 Fn 1 0 1
1 Fn−1 1 F1 −F2

2 Fn−2 1 −F2 F3

3 Fn−3 1 F3 −F4
...

n− 3 F3 1 (−1)n−2Fn−3 (−1)n−1Fn−2

n− 2 F2 1 (−1)n−1Fn−2 (−1)nFn−1

n− 1 F1 1 (−1)nFn−1 (−1)n+1Fn
n 0 ∗ ∗ ∗
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5.1 gcd(a, b) as an integer combination ofa and b

It is well known that the gcd of two (positive) integersa andb can be
calculated efficiently by repeated divisions. Assumea > b. We form
two sequencesrk andqk as follows. Beginning withr−1 = a andr0 = b,
for k ≥ 0, let

qk =

⌊
rk−1

rk

⌋
, rk+1 = mod(rk−1, rk) := rk−1 − qkrk.

These divisions eventually terminate when somern dividesrn−1. In that
case,gcd(a, b) = rn.

If, along with these divisions, we introduce two more sequences(xk)
and(yk) with the same rule but specific initial values, namely,

xk+1 =xk−1 − qkxk, x−1 = 1, x0 = 0;

yk+1 =yk−1 − qkyk, y−1 = 0, y0 = 1.

then we obtaingcd(a, b) as an integer combination ofa andb: 1

gcd(a, b) = rn = axn + byn.

k rk qk xk yk
−1 a ∗ ∗ ∗ 1 0
0 b �a

b
� 0 1

1 a− �a
b
�b � b

r1
� x1 y1

...
n− 1 rn−1 qn−1 xn−1 yn−1

n rn qn xn yn
n + 1 0

It can be proved that|xn| < b and|yn| < a.

Theorem 5.1. Given relatively prime integers a > b, there are unique
integers h, k < a such that ak − bh = 1.

Proof. Clearly,xn andyn are opposite in sign. Take(k, h) = (xn,−yn)
or (b+ xn, a− yn) according asxn > 0 or< 0.

Corollary 5.2. Let p be a prime number. For every integer a not divisible
by p, there exists a positive integer b < p such that ab− 1 is divisible by
p.

1In each of these steps,rk = axk + byk .
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5.2 Nonnegative integer combinations ofa and b

Find thelargest positive integer whichcannot as7x + 11y for integers
x, y ≥ 0.

Let S := {7x+ 11y : x, y nonnegative integers}. Arrange the posi-
tive integers in the form

1 8 15 22∗ 29 36 43 50 57 64 71 . . .
2 9 16 23 30 37 44∗ 51 58 65 72 . . .
3 10 17 24 31 38 45 52 59 66∗ 73 . . .
4 11∗ 18 25 32 39 46 53 60 67 74 . . .
5 12 19 26 33∗ 40 47 54 61 68 75 . . .
6 13 20 27 34 41 48 55∗ 62 69 76 . . .
7 14 15 28 35 42 49 56 63 70 77 . . .

Observations: (i) Every number in the bottom row, being a positive
multiple of 7, is inS.
(ii) Among the first 11 columns, along each of the first 6 rows, there is
a unique entry (with asterisk) which is a multiple of 11. This entry with
asterisk, and those on its right along the row, are inS.
(iii) None of the entries on the left of an entry with asterisk is inS.
(iv) The entries with asterisks are on different columns.
(v) The rightmost entry with an asterisk is 66. From this, thelargest
integernot in S is 66− 7 = 59.

Theorem 5.3. Let a and b be given relatively prime positive integers.
Every integer greater than ab − a − b can be written as ax + by for
nonnegative integers x and y.

Proof. Let S := {ax+ by : x, y nonnegative integers}.
Suppose, for a contradiction,ab − a − b = ax + by, x, y ≥ 0. Then

ab = a(x+1)+ b(y+1). Note thata|b(y+1). Sincegcd(a, b) = 1, we
must havea|y+ 1. But y+1 is a positive integersmaller thana. This is
clearly a contradiction. From thisab− a− b /∈ S.

Every integert in the range0 < t < a can be written ast = au− bv
for 0 < u < b and0 ≤ v < a. (Chooseu ∈ {1, 2, . . . , b − 1} such that
au ≡ t (mod b). Then0 < au − t < ab. It follows thatau − t = bv
for some1 ≤ v < a. Thus, every positive integer< a+ b is of the form
au− bv, 0 < u < b, 0 ≤ v < a. Suppose(a−1)(b−1) ≤ n < ab. Then
ab− n < a+ b. Write ab− n = au− bv for 0 < u < b and0 ≤ v < a.
From this,n = a(b− u) + bv. This shows thatn ∈ S.
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5.3 Cassini formula for Fibonacci numbers

The Fibonacci numbersFn are defined recursively by

Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1.

The first few Fibonacci numbers are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 . . .

It is easy to see that

gcd(Fn+1, Fn) = gcd(Fn, Fn−1)

= gcd(Fn−1, Fn−2)

...

=gcd(F2, F1) = 1.

However, following the euclidean algorithm, we obtain the Cassini for-
mula

Fn+1Fn−1 − F 2
n = (−1)n.

k rk qk xk yk
−1 Fn+1 ∗ ∗ ∗ 1 0
0 Fn 1 0 1
1 Fn−1 1 F1 −F2

2 Fn−2 1 −F2 F3

3 Fn−3 1 F3 −F4
...

n− 3 F3 1 (−1)n−2Fn−3 (−1)n−1Fn−2

n− 2 F2 1 (−1)n−1Fn−2 (−1)nFn−1

n− 1 F1 1 (−1)nFn−1 (−1)n+1Fn
n 0 ∗ ∗ ∗
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5.4 gcd of generalized Fibonacci and Lucas numbers

Givena andb, the generalized Fibonacci sequenceF(a, b)

Fn+1 = aFn + bFn−1, F0 = 0, F1 = 1.

There is also an accompanying Lucas sequenceL(a, b)

Ln+1 = aLn + bFn−1, L0 = 2, L1 = a.

Theorem 5.4. Let a and b be relatively prime integers. The associated
Fibonacci and Lucas sequences satisfy

gcd(um, un) = ugcd(m,n).

Examples

(a, b) F
(a,b)
n L

(a,b)
n Lucas

(1, 1) Fn Fibonacci Ln Lucas
(1,−1) periodic periodic
(2,−1) n natural 2 constant
(3,−2) 2n − 1 Mersenne 2n + 1 Fermat

(11,−10) 1n repunits 10k−11

Corollary 5.5. 1. gcd(2m − 1, 2n − 1) = 2gcd(m,n) − 1.

2. gcd(Fm, Fn) = Fgcd(m,n).

3. gcd(1m, 1n) = 1gcd(m,n).
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Exercise

1. Find the gcd of the following pairs of numbers by completing the
second column of each table.

Express the gcd as an integer combination of the given numbers by
completing the last two columns.

rk qk xk yk
54321 ∗ ∗ ∗ 1 0
12345 0 1

rk qk xk yk
267914296 ∗ ∗ ∗ 1 0
196418 0 1

2. Find the immediate neighbors of13
31

in F31.

3. Find the immediate neighbors of the fraction1
2

in the Farey se-
quenceFn.

4. Somebody received a check, calling for a certain amount of money
in dollars and cents. When he went to cash the check, the teller
made a mistake and paid him the amount which was written as
cents, in dollars, and vice versa. Later, after spending $ 3.50, he
suddenly realized that he had twice the amount of the money the
check called for. What was the amount on the check ?



5.4 gcd of generalized Fibonacci and Lucas numbers 207

Project

Generalize

3 +
3

2
= 3 × 3

2
.

3 +
3

2
+

9

7

=3 × 3

2
+

9

7

=3 × 3

2
× 9

7
.

3 +
3

2
+

9

7
+

81

67

=3 × 3

2
+

9

7
+

81

67

=3 × 3

2
× 9

7
+

81

67

=3 × 3

2
× 9

7
× 81

67

3 +
3

2
+

9

7
+

81

67
+

6561

5623

=3 × 3

2
+

9

7
+

81

67
+

6561

5623

=3 × 3

2
× 9

7
+

81

67
+

6561

5623

=3 × 3

2
× 9

7
× 81

67
+

6561

5623

=3 × 3

2
× 9

7
× 81

67
× 6561

5623
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Project

Write down two 1’s, then a 2 between them, then a 3 between any two
numbers whose sum is 3, then a 4 between any two numbers whose sum
is 4, and so forth. How manyn’s are there in the sequence?
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6.1 Primitive Pythagorean triples

It is well known that every primitive Pythagorean triple(a, b, c) is of the
form

a = m2 − n2, b = 2mn, c = m2 + n2

for relatively prime integersm andn of different parity.

B

CA 2mn

m2 − n2
m
2 + n

2

Some basic properties of Pythagorean triples:

1. Exactly one leg is even.

2. Exactly one leg is divisible by 3.

3. Exactly one side is divisible by 5.

4. The area is divisible by 6. Fermat has proved that the area of
a Pythagorean triangle can never be a square. Indeed, there is
no Pythagorean triangle with two sides whose lengths are square
(numbers).
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6.2 Primitive Pythagorean triangles with square perime-
ters

If m > n are relatively prime integers of opposite parity, they generate a
primitive Pythagorean triple(a, b, c) = (m2 − n2, 2mn, m2 + n2) with
perimeterp = 2m(m + n). If this perimeter is a square (number), we
must havem = 2q2 andm + n = p2 for some integersp andq. From
these,(m,n) = (2q2, p2 − 2q2).

a =m2 − n2 = p2(4q2 − p2),

b =2mn = 4q2(p2 − 2q2),

c =m2 + n2 = p4 − 4p2q2 + 8q4.

Note thatp is odd,�√2q ≤ p < 2q, andgcd(p, q) = 1. The perime-
ter is4p2q2 = (2pq)2.

Here are the first few of such triangles. The last column gives the
square root of the perimeter.

p q m n a b c 2pq
3 2 8 1 63 16 65 12
5 3 18 7 275 252 373 30
7 4 32 17 735 1088 1313 56
9 5 50 31 1539 3100 3461 90
11 6 72 49 2783 7056 7585 132
11 7 98 23 9075 4508 10133 154
13 7 98 71 4563 13916 14645 182
13 8 128 41 14703 10496 18065 208
15 8 128 97 6975 24832 25793 240
13 9 162 7 26195 2268 26293 234
17 9 162 127 10115 41148 42373 306
17 10 200 89 32079 35600 47921 340
19 10 200 161 14079 64400 65921 380
...

...
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6.3 Lewis Carroll’s conjecture on triples of equiareal
Pythagorean triangles

Lewis Carroll conjectured that there is an infinity of Pythagorean trian-
gles with equal areas. If(p, q, r) satisfyp2 + pq + q2 = r2, then the
Pythagorean triangles generated by(r, p), (r, q), and(p + q, r) have the
same areapqr(p + q). Since there is an infinity of such triangles, there
conjecture is established. This is essentially in Diophantus.
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6.4 Points at integer distances from the sides of a prim-
itive Pythagorean triangle

Let (a, b, c) be a primitive Pythagorean triangle, with vertices(a, 0),
(0, b), and(0, 0). The hypotenuse is the linebx + ay = ab. The dis-
tance of an interior point(x, y) to the hypotenuse is1

c
(ab−bx−ay). We

seek interior points which are at integer distances from the hypotenuse.
With the parameters (6,1) we have the Pythagorean triangle (35,12,37).

Here the five points (29,1), (23,2), (17,3), (11,4), (5,5) are at distances 1,
2, 3, 4, 5 from the hypotenuse.

12

350

4

3

2

1

5

Another example: with paramters (5,2) we have the triangle (21,20,29).
Here we have the interior points (8,11), (16,2), (3,13), (11,4), (6,6), (1,8),
(4,1) at distances 1, 2, 3, 4, 6, 8, 11 from the hypotenuse. The arrange-
ment is not as regular as the previous example.

20

210

8

3

11
4

1

2

6
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6.5 Dissecting a rectangle into Pythagorean triangles

How many matches (of equal lengths) are required to make up the fol-
lowing figure?

a

b− y

y

x a− x

b
w

v u

B

CD

A

Q

P

This is Problem 2237 of theJournal of Recreational Mathematics,
which asks for the
(i) the smallest such rectangle,
(ii) the smallest such rectangle withAP = AQ,
(iii) the smallest such rectangle withAPQ Pythagorean,
(iv) the smallest square.

In (iii), the three right trianglesQPC, AQD andAPQ are similar.
If they are similar to the Pythagorean trianglea : b : c, the ratios of
similarity are alsoa : b : c. If we put CP = a2, then the lengths
of the various segments are as shown below. Note thatABP now is a
Pythagorean triangle with parametersb anda. With (a, b, c) = (3, 4, 5),
we obtain the smallest rectangle satisfying (iv). This also answers (i)
since it is clearly also the smallest rectangle (with any restrictions).

2ab

a2

b2 − a2

ab ab

b2

ac

bc

c
2 = a

2 + b
2

B

CD

A

Q

P

(ii) is also tractable without the help of a computer. Here, we want
two Pythagorean triangles with the same hypotenuse. It is well known
that the smallest such hypotenuse is 65. Indeed,652 = 632 + 162 =
562 + 332. From this it is easy to complete the data.

The answer to (iv) is given in the Appendix.
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Appendix: Primitive Pythagorean triples < 1000

m,n a, b, c m, n a, b, c m, n a, b, c m, n a, b, c

2, 1 3, 4, 5 3, 2 5, 12, 13 4, 1 15, 8, 17 4, 3 7, 24, 25
5, 2 21, 20, 29 5, 4 9, 40, 41 6, 1 35, 12, 37 6, 5 11, 60, 61
7, 2 45, 28, 53 7, 4 33, 56, 65 7, 6 13, 84, 85 8, 1 63, 16, 65
8, 3 55, 48, 73 8, 5 39, 80, 89 8, 7 15, 112, 113 9, 2 77, 36, 85
9, 4 65, 72, 97 9, 8 17, 144, 145 10, 1 99, 20, 101 10, 3 91, 60, 109
10, 7 51, 140, 149 10, 9 19, 180, 181 11, 2 117, 44, 125 11, 4 105, 88, 137
11, 6 85, 132, 157 11, 8 57, 176, 185 11, 10 21, 220, 221 12, 1 143, 24, 145
12, 5 119, 120, 169 12, 7 95, 168, 193 12, 11 23, 264, 265 13, 2 165, 52, 173
13, 4 153, 104, 185 13, 6 133, 156, 205 13, 8 105, 208, 233 13, 10 69, 260, 269
13, 12 25, 312, 313 14, 1 195, 28, 197 14, 3 187, 84, 205 14, 5 171, 140, 221
14, 9 115, 252, 277 14, 11 75, 308, 317 14, 13 27, 364, 365 15, 2 221, 60, 229
15, 4 209, 120, 241 15, 8 161, 240, 289 15, 14 29, 420, 421 16, 1 255, 32, 257
16, 3 247, 96, 265 16, 5 231, 160, 281 16, 7 207, 224, 305 16, 9 175, 288, 337
16, 11 135, 352, 377 16, 13 87, 416, 425 16, 15 31, 480, 481 17, 2 285, 68, 293
17, 4 273, 136, 305 17, 6 253, 204, 325 17, 8 225, 272, 353 17, 10 189, 340, 389
17, 12 145, 408, 433 17, 14 93, 476, 485 17, 16 33, 544, 545 18, 1 323, 36, 325
18, 5 299, 180, 349 18, 7 275, 252, 373 18, 11 203, 396, 445 18, 13 155, 468, 493
18, 17 35, 612, 613 19, 2 357, 76, 365 19, 4 345, 152, 377 19, 6 325, 228, 397
19, 8 297, 304, 425 19, 10 261, 380, 461 19, 12 217, 456, 505 19, 14 165, 532, 557
19, 16 105, 608, 617 19, 18 37, 684, 685 20, 1 399, 40, 401 20, 3 391, 120, 409
20, 7 351, 280, 449 20, 9 319, 360, 481 20, 11 279, 440, 521 20, 13 231, 520, 569
20, 17 111, 680, 689 20, 19 39, 760, 761 21, 2 437, 84, 445 21, 4 425, 168, 457
21, 8 377, 336, 505 21, 10 341, 420, 541 21, 16 185, 672, 697 21, 20 41, 840, 841
22, 1 483, 44, 485 22, 3 475, 132, 493 22, 5 459, 220, 509 22, 7 435, 308, 533
22, 9 403, 396, 565 22, 13 315, 572, 653 22, 15 259, 660, 709 22, 17 195, 748, 773
22, 19 123, 836, 845 22, 21 43, 924, 925 23, 2 525, 92, 533 23, 4 513, 184, 545
23, 6 493, 276, 565 23, 8 465, 368, 593 23, 10 429, 460, 629 23, 12 385, 552, 673
23, 14 333, 644, 725 23, 16 273, 736, 785 23, 18 205, 828, 853 23, 20 129, 920, 929
24, 1 575, 48, 577 24, 5 551, 240, 601 24, 7 527, 336, 625 24, 11 455, 528, 697
24, 13 407, 624, 745 24, 17 287, 816, 865 24, 19 215, 912, 937 25, 2 621, 100, 629
25, 4 609, 200, 641 25, 6 589, 300, 661 25, 8 561, 400, 689 25, 12 481, 600, 769
25, 14 429, 700, 821 25, 16 369, 800, 881 25, 18 301, 900, 949 26, 1 675, 52, 677
26, 3 667, 156, 685 26, 5 651, 260, 701 26, 7 627, 364, 725 26, 9 595, 468, 757
26, 11 555, 572, 797 26, 15 451, 780, 901 26, 17 387, 884, 965 27, 2 725, 108, 733
27, 4 713, 216, 745 27, 8 665, 432, 793 27, 10 629, 540, 829 27, 14 533, 756, 925
27, 16 473, 864, 985 28, 1 783, 56, 785 28, 3 775, 168, 793 28, 5 759, 280, 809
28, 9 703, 504, 865 28, 11 663, 616, 905 28, 13 615, 728, 953 29, 2 837, 116, 845
29, 4 825, 232, 857 29, 6 805, 348, 877 29, 8 777, 464, 905 29, 10 741, 580, 941
29, 12 697, 696, 985 30, 1 899, 60, 901 30, 7 851, 420, 949 31, 2 957, 124, 965
31, 4 945, 248, 977 31, 6 925, 372, 997
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Appendix: Dissection of a square

360

360

255 105

224

136
289

375
424
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Exercise

1. A man has a square field, 60 feet by 60 feet, with other property
adjoining the highway. He put up a straight fence in the line of 3
trees, atA, P , Q. If the distance betweenP andQ is 91 feet, and
that fromP toB is an exact number of feet, what is this distance?

60

60

91
?

A B

CD

P

Q

2. What is the least number of matches of equal lengths to make up
the following configuration?

3. What is the least number of matches of equal lengths to make up
the following configuration?

4. Do there exist Pythagorean triangles whose sides are Fibonacci
numbers?

5. Give an example of a primitive Pythagorean triangle in which the
hypotenuse is a square.

6. Give an example of a primitive Pythagorean triangle in which the
even leg is a square.
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7. Give an example of a primitive Pythagorean triangle in which the
odd leg is a square. triangle to be a square?

8. Find the shortest perimeter common to two different primitive Pythagorean
triangles.

9. Find an integer-sided right angled triangle with sidesx2−1, y2−1
z2 − 1, wherex, y, z are integers.

10. The number ofprimitive Pythagorean triangle with a fixed inradius
is always a power of 2.

11. Show that there are an infinite number of Pythagorean triangles
whose hypotenuse is an integer of the form3333 · · ·3.

12. For each natural numbern, how many Pythagorean triangles are
there such that the area isn times the perimeter ? How many of
these are primitive ?
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Project: Factorable x2 + px± q

Theorem 6.1.Let p and q be relatively prime integers. The polynomials
x2 + px ± q are both factorable (over integers) if and only if |p| and
|q| are respectively the hypotenuse and area of a primitive Pythagorean
triangle.
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Project: 64 primitive Pythagorean triangles with a common hypotenuse

A product ofn + 1 distint prime numbers of the form4k + 1 can be
written a sum of two squares in2n different ways, repeatedly by making
use of the identity

(x2
1 + y2

1)(x
2
2 + y2

2) = (x1x2 − y1y2)
2 + (x1y2 + x2y1)

2.

The first 7 primes of the form4k+1 are 5, 13, 17, 29, 37, 41, and 53.
Their product is 2576450045. What are the 64 triples?
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Project: Primitive Pythagorean triangles with equal perimeters

perimeter m + n 2m m n a b c

1716 33
39

14280 85
105
119

317460 407
429
481
555

1542684 899
957
1023
1131
1209

6240360 1785
1955
1995
2185
2261
2415

19399380 3135
3315
3553
3705
3927
4199
4389
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Project: Two pairs of primitive Pythagorean triples with almost
equal perimeters

In a class in Number Theory the professor gave four students the assign-
ment of finding a fairly large primitive Pythagorean triangle using the
well known formula for the legs:

A = 2mn, B = m2 − n2, C = m2 + n2,

wherem andn are coprime integers, not both odd. The four students
produced four entirely different primitive triangles, but on comparing
them it was found that two of them had the same perimeter, while the
other two also had the same perimeter, this perimeter differing from the
first one by 2. This interested the class greatly, and much time was spent
in an effort to find other such sets, only to discover that there were only
four such sets with perimeters less than 500,000. Can you find at least
one such set ?

perimeter m+ n 2m m n a b c
117390 273

301
117392 253

319

313038 459
527

313040 455
559

339150 425
475
525

339152 451
517

371448 469
603

371450 437
475
575
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Project: Cross number puzzle on primitive Pythagorean triples1

1 2 3 4 5 6

7 8 9

10 11 12 13

14 15 16 17 18 19

20 21 22

23 24 25 26

27 28 29 30 31 32

33 34 35

1B, 3D, 9B 29B, 7A, 21D 12B, 11U, 20U
2D, 6D, 5B 19U, 15D, 7D 22D, 18B, 15U
27A, 2D, 26D 20A, 8D, 8A 16A, 31A, 33A
5D, 3A, 25B 30D, 14A, 9A 16B, 24D, 23B
28D, 35A, 3U 30U, 9U, 13D 22A, 32U, 32D
4U, 21A, 21D 19U, 17D, 10A 32U, 34A, 33A

The answers are distinct 2- and 3-digit decimal numbers, none be-
ginning with zero. Each of the above sets of answers is a primitive
Pythagorean triple, in increasing size, so that the third member is the
hypotenuse.

A = across, B = back, D = down, U = up.
For example,1B has its tens and units digits in the squares labelled 2

and 1 respectively;11U is a 3-digit number with its tens and units digits
in squares 16 and 11 respectively.

1R. K. Guy, Problem 1153,Crux Math., 12 (1986) 139.
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Project
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7.1 The Chinese tangram

It is known that exactly 13convex polygons can be formed from the
tangram.1 Show them.2

A very interesting book on the Chinese tangram has recently ap-
peared: J. Slocum,The Tangram Book, Sterling, New York, 2003. I fi-
nally know what the mysterious Chinese character on p.45 of Dudeney’s
Amusements in Mathematics is. The undeciphered Chinese character is
zhuó, to drink. The Chinese inscription reads

Liǎng rén duı̀ zhuó (Two people having a drink together),
cı̌ qı̄ qiǎo zhı̄ huǎjı̌ng yě! (what a sublimity of the tangram!)

1F. T. Wang and C. C. Hsiung, A theorem on the tangram,American Math. Monthly, 49 (1942) 596–599.
2There are 1 triangle, 6 quadrilaterals, 2 pentagons, and 4 hexagons.
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7.2 A British tangram

The seven pieces of the puzzle can be fitted together as shown in the
figure to make a perfect square. All sloping lines are at45◦, and the lines
which intersect the outer square do so at the midpoints of the sides. Find
all ways of making a rectangle using all of these pieces.3

3Singmaster, Problem 267,Journal of Recreational Math., 6 (1973) 152–153.
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7.3 Another British tangram

Ten pieces of the puzzle can be fitted together as shown in the figure to
make4× 5 rectangle. All sloping lines are at45◦. 4

(1) Are there any solution with the green square in a corner or not
touching a side?

(2) Prove of disprove: any solution has the two gray trapezoids and
the green square in the above relative positions.

(3) Find all solutions.

4Singmaster, Problem 812,Journal of Recreational Math., 13 (1980–1981) 62–63.
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Project

Show how to dissect a 3-4-5 triangle into 4 pieces that may be rearranged
into a square.5

5S. Rabinowitz, Problem 1299,Journal Recreational Math., 16 (1983–1984) 139.
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Exercise



232 The classical triangle centers

The following triangle centers have been known since ancient times.
We shall adopt the following notations. LetABC be a given triangle.
The lengths of the sidesBC, CA, AB opposite toA, B, C are denoted
by a, b, c.

8.1 The centroid

The centroidG is the intersection of the three medians. It divides each
median in the ratio2 : 1.

C

A

B

D

EF

G

The triangleDEF is called themedial triangle ofABC. It is the
image ofABC under the homothetyh(G,− 1

2
).

The lengths of the medians are given by Apollonius’ theorem:

m2
a =

1

4
(2b2 + 2c2 − a2),

etc.

Exercise

Calculate the lengths of the medians of a triangle whose sidelengths are
136, 170, and 174.
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8.2 The circumcircle and the circumcircle

The perpendicular bisectors of the three sides of a triangle are concurrent
at thecircumcenter of the triangle. This is the center of the circumcircle,
the circle passing through the three vertices of the triangle.

O

C

A

B

D

EF O

C

A

B

D

Theorem 8.1 (The law of sines).Let R denote the circumradius of a
triangle ABC with sides a, b, c opposite to the angles A, B, C respec-
tively.

a

sinA
=

b

sinB
=

c

sinC
= 2R.

Since the area of a triangle is given by� = 1
2
bc sinA, the circumra-

dius can be written as

R =
abc

4� .
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8.3 The incenter and the incircle

The internal angle bisectors of a triangle are concurrent at theincenter
of the triangle. This is the center of theincircle, the circle tangent to the
three sides of the triangle.

If the incircle touches the sidesBC, CA andAB respectively atX,
Y , andZ,

AY = AZ = s− a, BX = BZ = s− b, CX = CY = s− c.

s − b

s − b

s − c

s − c

s − a

s − a

Z

X

Y

I

C

A

B

Denote byr the inradius of the triangleABC.

r =
2�

a+ b+ c
=
�
s
.
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8.4 The orthocenter and the Euler line

The orthocenterH is the intersection of the three altitudes of triangle
ABC. These altitudes can be seen as the perpendicular bisectors of the
antimedial triangleXY Z of ABC, which is bounded by the three lines
each passing throughA, B, C parallel to their respective opposite sides.

O

C

A

B

X

Z

Y

H G

XY Z is the image of triangleABC under the homothetyh(G,−2).
It follows that H is the image ofO under the same homothety. We
conclude thatO, G, andH are collinear, andOG : GH = 1 : 2.

The line containingO, G, H is the famous Euler line of triangle
ABC.



236 The classical triangle centers

8.5 The excenters and the excircles

The internal bisector of each angle and theexternal bisectors of the re-
maining two angles are concurrent at anexcenter of the triangle. An
excircle can be constructed with this as center, tangent to the lines con-
taining the three sides of the triangle.

Z

X

Y

Ic

Ib

Ia

C

A

B

The exradii of a triangle with sidesa, b, c are given by

ra =
�

s− a
, rb =

�
s− b

, rc =
�

s− c
.
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Exercise

1. Given a triangleABC, construct a triangle whose sides have the
same lengths as the medians ofABC.

2. Construct the incircle of triangleABC, and mark the points of con-
tactX onBC, Y onCA, andZ onAB. Are the linesAX, BY ,
CZ concurrent? If so, is their intersection the incenter of triangle
ABC?

3. Given a rectangleABCD, construct pointsP onBC andQ onCD
such that the triangleAPQ is equilateral.

4. Let D, E, F be the midpoints ofBC, CA, AB of triangleABC.
Construct the circumcircle ofDEF . This is called thenine-point
circle of triangle ABC. Construct also the incircle of triangle
ABC. What do you observe about the two circles? How would
you justify your observation?

5. Construct the circle through the excenters of triangleABC. How is
its center related to the circumcenter and incenter of triangleABC?

6. Given three non-collinear points as centers, construct three circles
mutually tangent to each other externally.
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14

1513 12
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9.1 Heron’s formula for the area of a triangle

Theorem 9.1.The area of a triangle of sidelengths a, b, c is given by

� =
√
s(s− a)(s− b)(s− c),

where s = 1
2
(a+ b+ c).

Ia

YY ′

I

A

B

C

r

ra

s − cs − b s − a

Proof. Consider the incircle and the excircle on the opposite side ofA.
From the similarity of trianglesAIZ andAI ′Z ′,

r

ra
=

s− a

s
.

From the similarity of trianglesCIY andI ′CY ′,

r · ra = (s− b)(s− c).

From these,

r =

√
(s− a)(s− b)(s− c)

s
,

and the area of the triangle is

� = rs =
√
s(s− a)(s− b)(s− c).
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9.2 Heron triangles

A Heron triangle is one whose sidelengths and area are both integers. It
can be constructed by joining two integer right triangles along a common
leg. For example, by joining the two Pythagorean triangles(9, 12, 15)
and(5, 12, 13), we obtain the Heron triangle(13, 14, 15) with area 84.

5

13 15

9

12

Some properties of Heron triangles

1. The semiperimeter is an integer.

2. The area is always a multiple of 6.

Exercise

1. Construct four Heron triangles by joining suitable multiples of (3,4,5)
and (5,12,13) along common legs. The Heron triangles you obtain
should be primitive,i.e., the sidelengths of each should be relatively
prime.

2. Can the Heron triangle (25,34,39,420) be obtained by joining two
Pythagorean triangles along a common leg?
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9.3 Heron triangles with consecutive sides

If (b− 1, b, b+ 1,�) is a Heron triangle, thenb must be an even integer.
We writeb = 2m. Thens = 3m, and�2 = 3m2(m − 1)(m+ 1). This
requiresm2− 1 = 3k2 for an integerk, and� = 3km. The solutions of
m2 − 3k2 = 1 can be arranged in a sequence(

mn+1

kn+1

)
=

(
2 3
1 2

)(
mn

kn

)
,

(
m1

k1

)
=

(
2
1

)
.

From these, we obtain the side lengths and the area.
The middle sides form a sequence(bn) given by

bn+2 = 4bn+1 − bn, b0 = 2, b1 = 4.

The areas of the triangles form a sequence

�n+2 = 14�n+1 −�n, T0 = 0, T1 = 6.

n bn Tn Heron triangle

0 2 0 (1, 2, 3, 0)
1 4 6 (3, 4, 5, 6)
2 14 84 (13, 14, 15, 84)
3
4
5

Exercise

1. There is a uniquely Heron triangle with sides(b − 1, b, b + 1) in
which b is an 8-digit number. What is the area of this Heron trian-
gle?
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Appendix: Heron triangles with sides< 100

(a, b, c,
) (a, b, c,
) (a, b, c,
) (a, b, c,
) (a, b, c,
)

(3, 4, 5, 6) (5, 5, 6, 12) (5, 5, 8, 12) (5, 12, 13, 30) (10, 13, 13, 60)
(4, 13, 15, 24) (13, 14, 15, 84) (9, 10, 17, 36) (8, 15, 17, 60) (16, 17, 17, 120)
(11, 13, 20, 66) (7, 15, 20, 42) (10, 17, 21, 84) (13, 20, 21, 126) (13, 13, 24, 60)
(12, 17, 25, 90) (7, 24, 25, 84) (14, 25, 25, 168) (3, 25, 26, 36) (17, 25, 26, 204)
(17, 25, 28, 210) (20, 21, 29, 210) (6, 25, 29, 60) (17, 17, 30, 120) (11, 25, 30, 132)
(5, 29, 30, 72) (8, 29, 35, 84) (15, 34, 35, 252) (25, 29, 36, 360) (19, 20, 37, 114)

(15, 26, 37, 156) (13, 30, 37, 180) (12, 35, 37, 210) (24, 37, 37, 420) (16, 25, 39, 120)
(17, 28, 39, 210) (25, 34, 39, 420) (10, 35, 39, 168) (29, 29, 40, 420) (13, 37, 40, 240)
(25, 39, 40, 468) (15, 28, 41, 126) (9, 40, 41, 180) (17, 40, 41, 336) (18, 41, 41, 360)
(29, 29, 42, 420) (15, 37, 44, 264) (17, 39, 44, 330) (13, 40, 45, 252) (25, 25, 48, 168)
(29, 35, 48, 504) (21, 41, 50, 420) (39, 41, 50, 780) (26, 35, 51, 420) (20, 37, 51, 306)
(25, 38, 51, 456) (13, 40, 51, 156) (27, 29, 52, 270) (25, 33, 52, 330) (37, 39, 52, 720)
(15, 41, 52, 234) (5, 51, 52, 126) (25, 51, 52, 624) (24, 35, 53, 336) (28, 45, 53, 630)
(4, 51, 53, 90) (51, 52, 53, 1170) (26, 51, 55, 660) (20, 53, 55, 528) (25, 39, 56, 420)

(53, 53, 56, 1260) (33, 41, 58, 660) (41, 51, 58, 1020) (17, 55, 60, 462) (15, 52, 61, 336)
(11, 60, 61, 330) (22, 61, 61, 660) (25, 52, 63, 630) (33, 34, 65, 264) (20, 51, 65, 408)
(12, 55, 65, 198) (33, 56, 65, 924) (14, 61, 65, 420) (36, 61, 65, 1080) (16, 63, 65, 504)
(32, 65, 65, 1008) (35, 53, 66, 924) (65, 65, 66, 1848) (21, 61, 68, 630) (43, 61, 68, 1290)
(7, 65, 68, 210) (29, 65, 68, 936) (57, 65, 68, 1710) (29, 52, 69, 690) (37, 37, 70, 420)
(9, 65, 70, 252) (41, 50, 73, 984) (26, 51, 73, 420) (35, 52, 73, 840) (48, 55, 73, 1320)
(19, 60, 73, 456) (50, 69, 73, 1656) (25, 51, 74, 300) (25, 63, 74, 756) (35, 44, 75, 462)
(29, 52, 75, 546) (32, 53, 75, 720) (34, 61, 75, 1020) (56, 61, 75, 1680) (13, 68, 75, 390)
(52, 73, 75, 1800) (40, 51, 77, 924) (25, 74, 77, 924) (68, 75, 77, 2310) (41, 41, 80, 360)
(17, 65, 80, 288) (9, 73, 80, 216) (39, 55, 82, 924) (35, 65, 82, 1092) (33, 58, 85, 660)
(29, 60, 85, 522) (39, 62, 85, 1116) (41, 66, 85, 1320) (36, 77, 85, 1386) (13, 84, 85, 546)
(41, 84, 85, 1680) (26, 85, 85, 1092) (72, 85, 85, 2772) (34, 55, 87, 396) (52, 61, 87, 1560)
(38, 65, 87, 1140) (44, 65, 87, 1386) (31, 68, 87, 930) (61, 74, 87, 2220) (65, 76, 87, 2394)
(53, 75, 88, 1980) (65, 87, 88, 2640) (41, 50, 89, 420) (28, 65, 89, 546) (39, 80, 89, 1560)
(21, 82, 89, 840) (57, 82, 89, 2280) (78, 89, 89, 3120) (53, 53, 90, 1260) (17, 89, 90, 756)
(37, 72, 91, 1260) (60, 73, 91, 2184) (26, 75, 91, 840) (22, 85, 91, 924) (48, 85, 91, 2016)
(29, 75, 92, 966) (39, 85, 92, 1656) (34, 65, 93, 744) (39, 58, 95, 456) (41, 60, 95, 798)
(68, 87, 95, 2850) (73, 73, 96, 2640) (37, 91, 96, 1680) (51, 52, 97, 840) (65, 72, 97, 2340)
(26, 73, 97, 420) (44, 75, 97, 1584) (35, 78, 97, 1260) (75, 86, 97, 3096) (11, 90, 97, 396)
(78, 95, 97, 3420)
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Appendix: A famous unsolved problem

Find a Heron triangle whose medians have integer lengths. This is a
famous unsolved problem. See [Guy, Problem D21]. The triangle with
sides 136, 170, 174 have medians 158, 131, 127. But it is not a Heron
triangle. It has an area .

Buchholz and Rathbun have found an infinite set of Heron triangles
with two integer medians. Here is the first one.

Let a = 52, b = 102, andc = 146.
Verify that this triangle is Heron and find the lengths of the medians.
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Project: Triangles whose sides and one altitude are in arithmetic
progression

This is an extension of Problem 29 of Isaac Newton’sLectures on Alge-
bra ([Whiteside, pp.234 – 237]).

(A) Newton considered a triangleABC with an altitudeDC. Clearly,
DC is shorter thanAC andBC. SettingAC = a, BC = x, DC =
2x− a, andAB = 2a− x, he obtained

16x4 − 80ax3 + 144a2x2 − 10a3x+ 25a4 = 0. (†)
“Divide this equation by2x− a and there will result8x3 − 36ax2 +

54a2x− 25a3 = 0”. Newton did not solve this equation nor did he give
any numerical example. Actually, (†) can be rewritten as

(2x− 3a)3 + 2a3 = 0,

so thatx = a
2
(3 − 3

√
2), the other two roots being complex. By taking

a = 2, we may assume the sides of the triangles to be

, , ,

and the altitude on the longest side to be .
The angles of the triangles are

, , .

(B) Recalling the Heron triangle with sides 13, 14, 15 with altitude
12 on the side 14, we realize that these lengths can be in A.P. in some
other order. Note that the altitude in question is either the first or the
second terms of the A.P. (in increasing order). Assuming unit length for
this altitude, andx > 0 for the common difference, we have either

1. the three sides of the triangles are1 + x, 1 + 2x, and1 + 3x, or

2. the sides of the triangles are1−x, 1+x, and1+2x, and the altitude
on the shortest side is 1.

In (1), the area of the triangle, by the Heron formula, is given by

�2 =
3

16
(1 + 2x)2(1 + 4x).

On the other hand,� = 1
2
· 1 · (1+ kx) for k = 1, 2, 3. These lead to the

equations
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• for k = 1: 48x3 + 56x2 + 16x− 1 = 0,

• for k = 2: 48x3 + 44x2 + 8x− 1 = 0,

• for k = 3: 48x3 + 24x− 1 = 0.

The casek = 3 has been dealt with in Newton’s solution.

For k = 2, the polynomial factors as
so that we havex = . This leads to the Heronian triangle
with sides 13, 14, 15, and altitude 12 on the side 14. The angles of the
triangles are

, , .

For k = 1, it is easy to see, using elementary calculus, that the poly-
nomial48x3+56x2+16x−1 has exactly one real root, which is positive.

This gives a similarity class of triangle with the three sides and the
altitude on the shortest side in A.P. More detailed calculation shows that
the angles of such triangles are

, , .

Now we consider (2), when the altitude in question is the second term
of the A.P. Instead of constructing an equation inx, we seek one such
triangle with sides 15,17 + 2z, 18 + 3z, and the altitude16 + z on the
shortest side. By considering the area of the triangle in two different
ways, we obtain the cubic equation

z3 − 120z + 16 = 0. (∗)
This can be solved by writingz = 4

√
10 sin θ for an angleθ. Using the

trigonometric identitysin 3θ = 3 sin θ − 4 sin3 θ, we reduce this to

sin 3θ =

so that the positive roots of (∗) are the two numbers

z = , .

We obtaintwo similarity classes of triangles, respectively with angles

, , ,

and

, , .

There are altogetherfive similarity classes of triangles whose three
sides and one altitude, in some order, are in arithmetic progression.
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The golden section

ϕ =

√
5 + 1

2
= 1.6180339887 · · ·

1 The golden triangle
2 Dissection of a square
3 Dissection of a rectangle
4 Characterizations of the golden triangle
5 What is the most non-isosceles triangle?

Appendix: Cutting a square into three similar parts
Exercise
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10.1 The golden sectionϕ

A segmentAB is said to be divided into the golden ratio by a pointP if
AP 2 = AB · PB.

BA

M

P

1

ϕ

AB

AP
= ϕ =

√
5 + 1

2
.

Some basic properties ofϕ

1. ϕ2 = 1 + ϕ; 1
ϕ
= ϕ− 1.

2. The diagonal and the side of a regular pentagon are in the golden
ratio.

3. The ratio of successive Fibonacci numbers tends toϕ.

4. The simple continued fraction expansion ofϕ is

1 +
1

1 +
1

1 +
1

1 +
1

. . .

.
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10.2 Dissection of a square

Show how the square should be dissected so that it can be reassembled
into a rectangle.

A B

CD

PQ

X

Y

Let AB = BC = a. We want to findx = AX = PC such that the
areas of the rectangle and the square are the same.
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Resolve the paradox: How can the area increase after reassembling?

A B

CD

PQ

X

Y

3 5

5

3

5 3

8

5

3

5

5 8

5

8 5
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10.3 Dissection of a rectangle

LetP andQ be points on the sidesAB andBC of rectangleABCD.
If the areas of trianglesAPD,BPQ andCDQ are equal, thenP and

Q divide the sides in the golden ratio.
If, in addition,DP = PQ, then the rectangle is golden, and∠DPQ

is a right angle.

A B

CD

P

Q

T1 T2

T3
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10.4 The golden right triangle

The golden right triangle is the one whose hypotenuse and one leg are in
the golden ratio.

B

C

A
1

ϕ

Characterizations of the golden triangle

1. If the sides of a right triangle are in geometric progression, then it
is the golden triangle.

2. If the altitude of a right triangle divides the hypotenuse in the golden
ratio, them the triangle is golden.

3. If one side of a right triangle is the geometric mean of the other two
sides, then this is a golden right triangle.

4. If the sides of a right triangle are respectively the harmonic, geo-
metric, and arithmetic means of two numbers, then the triangle is a
golden right triangle.
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Find the isosceles triangle of smallest perimeter that circumscribed a
given semicircle.

Suppose the semicircle has radius 1. Ifθ is the base angle, the perime-
ter is2(tan θ + cot θ + csc θ). We want to find theθ that minimizes this
perimeter.

B

C

A
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10.5 What is the most non-isosceles triangle?

Given a triangle, there are 6 ratios obtained by comparing the lengths
of a pair of sides. The one which is closest to 1 is called the ratio of
non-isoscelity of the triangle. Determine the range of the ratio of non-
isoscelity of triangles.

Theorem 10.1.A number η is the ratio of non-isoscelity of a triangle if
and only if it lies in the interval ( 1

ϕ
, 1].

Proof. First note that ifr < 1 is the ratio of the length of two sides of
a triangle, then so is1

r
. Since1

2
(r + 1

r
) > 1, r is closer to 1 than1

r
. It

follows that the ratio of non-isoscelityη ≤ 1.
If a ≤ b ≤ c are the side lengths, thenη = max( a

b
, b
c
). Sincea+ b >

c, we have

η + 1 ≥ a

b
+ 1 >

c

b
≥ 1

η
.

It follows thatη2 + η > 1. Since the roots ofx2 + x− 1 = 0 are 1
ϕ
> 0

and−ϕ < 0, we must haveη > ϕ− 1. This shows thatη ∈ ( 1
ϕ
, 1].

For each numbert in this range, the triangle with sidest, 1, 1
t

is one
with ratio of non-isoscelityt.

There is therefore no “most non-isosceles” triangle. Instead, the most
non-isosceles triangles almost degenerate to a segment divided in the
golden ratio.
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Project: Cutting a square into three similar parts

Cut a square into three similar parts, no two congruent.

x

1 x2

x2 − x + 1

x2 + 1

D C

BA
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Exercise

1. Show thatcos 36◦ = ϕ
2
.

2. Which of the two equilateral triangles inscribed in a regular pen-
tagon has larger area?

3. Which of the two squares inscribed in a regular pentagon has larger
area?
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If we assume the regular pentagon inscribed in a unit circle, the side-
lengths of these squares are respectively

√
10

8

(√
5 + 1

)
and √

5

2

(√
10− 2

√
5−

√
5 + 1

)
.

The first square exceeds the second one by

1

8

(
20 + 5

√
2 +

√
10− 4

√
5− 4

√
50− 10

√
5

)
≈ 0.0324786 · · · .

One of you [GC] suggested an “easy” construction of the square as
follows.

This indeed is not exact, but it gives an approximate rectangle with
base

1

2

√
5(2− 2

4
√
5 +

√
5),

which is smaller only by0.08%!

As for the triangles, the first one has length

√
5
2

(
4 +

√
5−

√
15 + 6

√
5
)

,

and the second one has shorter length
√

10(
√

5+1)

(
√

5−1)
√

5−√
5+2

√
6
. The difference

between the two is approx0.0328 · · · .
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Chapter 11

Constructions with the golden
section

1 Construction of golden rectangle
2 Hofstetter’s compass-only construction of the golden section
3 Hofstetter’s 5-step division of a segment in the golden section
4 Construction of a regular pentagon
5 Ahlburg’s parsimonious construction of the regular pentagon
6 Construction of a regular 17-gon

Exercise
Project
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11.1 Construction of golden rectangle
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11.2 Hofstetter’s compass-only construction of the golden
section

Kurt Hofstetter has found the following construction of the golden sec-
tion by striking the compass only five times.1

We denote byP (Q) the circle withP as center andPQ as radius.
Figure 1 shows two circlesA(B) andB(A) intersecting atC andD.
The lineAB intersects the circles again atE andF . The circlesA(F )
andB(E) intersect at two pointsX andY . It is clear thatC, D, X,
Y are on a line. It is much more interesting to note thatD divides the
segmentCX in the golden ratio,i.e.,

CD

CX
=

√
5− 1

2
.

This is easy to verify. If we assumeAB of length 2, thenCD = 2
√
3

andCX =
√
15 +

√
3. From these,

CD

CX
=

2
√
3√

15 +
√
3
=

2√
5 + 1

=

√
5− 1

2
.

X

D

C

BA FE

Y

X

D

C

BA
FE

Y

This shows that to construct three collinear points in golden section,
we need four circles and one line. It is possible, however, to replace the
line AB by a circle, sayC(D). See Figure 2. Thus,the golden section
can be constructed with compass only, in 5 steps.

Here is a simple application: to divide a given segment into golden
section.2

Construction 11.1. Given a segmentAB, construct
1K. Hofstetter, A simple construction of the golden section,Forum Geometricorum, 2 (2002) 65–66.
2Communicated by K. Hofstetter on December 9, 2003.
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1. C1 = A(B),

2. C2 = B(A), intersectingC1 atC andD,

3. CD to intersectAB at (their common midpoint)M ,

4. C3 = A(M) to intersectC2 atE,

5. C4 = E(A) to intersectC3 atF andF ′, F closer toM thenG′,

6. EF and extend to intersectAB atG.

The pointG divides the segmentAB in the golden section.

A

B

C

D

M

E

F

F ′

G

C1 C2

C3

C4

Proof. By [1], F dividesF ′B in the golden section. SinceEF is parallel
toF ′A, G dividesAB in the golden section as well.

Remark. If the linesEF ′ andAB intersect atG′, thenA dividesG′B in
the golden section.
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11.3 Hofstetter’s 5-step division of a segment in the golden
section

K. Hofstetter has also found the following parsimonious division of a
given segment in the golden section.3

A B

C

D

E

F

G

H

G′

C1
C2

C3

C4

Construction 11.2. Given a segmentAB, construct

1. C1 = A(B),

2. C2 = B(A), intersectingC1 atC andD,

3. C3 = C(A), intersectingC1 again atE,

4. the segmentCD to intersectC3 atF ,

5. C4 = E(F ) to intersectAB atG.

The pointG divides the segmentAB in the golden section.

3K. Hofstetter, A 5-step division of a segment in the golden section,Forum Geom., 3 (2003) 205–206.
After the publication of this paper, it was found that the same construction has been given previously by
E. Lemoine,Géométrographie ou art des Constructions géométriques, C. Naud, Paris, 1902, p.51, and
J. Reusch, Planimetrische Konstruktionen in geometrographischer Ausfuhrung, (Teubner 1904), pg 37.
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Proof. SupposeAB has unit length. ThenCD =
√
3 andEG = EF =√

2. Let H be the orthogonal projection ofE on the lineAB. Since
HA = 1

2
, andHG2 = EG2 − EH2 = 2 − 3

4
= 5

4
, we haveAG =

HG−HA = 1
2
(
√
5 − 1). This shows thatG dividesAB in the golden

section.

Remark. The other intersectionG′ of C4 and the lineAB is such that
G′A : AB = 1

2
(
√
5 + 1) : 1.
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11.4 Construction of regular pentagon

LetOA andOY be two perpendicular radii of a circle, centerO.

1. Mark the midpointM of OY and bisect angleOMA to intersect
OA atP .

2. Construct the perpendicular toOA atP to intersect the circle atB
andE.

A

Y

M

P

B

E

O

C

D

ThenA, B, E are three adjacent vertices of a regular pentagon in-
scribed in the circle. The remaining two vertices can be easily con-
structed.
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11.5 Ahlburg’s parsimonious construction of the regu-
lar pentagon

Make use of a given right triangleAB ′C with AC = 2B ′C to construct
a regular pentagon in the fewest number of euclidean operations. (Eu-
clidean operations include (i) setting a compass, (ii) striking an arc, (iii)
drawing a line.

Between the sidea and the diagonald of a regular pentagon, there is
the relationa =

√
5−1
2

d. Here is Hayo Ahlburg’s construction.4

A

B′ C

PB

E

D

Construction 11.3. (1) Strike an arcB′(B′C), that is, with centerB ′

and radiusB′C, meetingAB ′ atP .
(2) Strike an arcA(AP ).
(3) Strike an arcC(AP ), meeting arcA(AP ) atB.
(4) Strike an arcB(CA), meeting arcsA(AP ) andC(AP ) atD and

E.

ThenABCDE is the required regular pentagon. The construction
requires 3 compass settings, striking 4 arcs, and drawing 5 lines for the
sides of the pentagon, 12 euclidean construction in all.

4Crux Math., 6 (1980) 50.
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11.6 Construction of a regular 17-gon

To construct two vertices of the regular 17-gon inscribed in a given circle
O(A).

1. On the radiusOB perpendicular toOA, mark a pointJ such that
OJ = 1

4
OA.

2. Mark a pointE on the segmentOA such that∠OJE = 1
4
∠OJA.

3. Mark a pointF on the diameter throughA such thatO is between
E andF and∠EJF = 45◦.

4. With AF as diameter, construct a circle intersecting the radiusOB
atK.

5. Mark the intersections of the circleE(K) with the diameter of
O(A) throughA. Label the one betweenO andA pointsP4, and
the other andP6.

6. Construct the perpendicular throughP4 andP6 to intersect the cir-
cleO(A) atA4 andA6. 5

ThenA4, A6 are two vertices of a regular 17-gon inscribed inO(A).
The polygon can be completed by successively laying off arcs equal to
A4A6, leading toA8, A10, . . . ,A16, A1 = A, A3, A5, . . . ,A15, A17, A2.

5Note thatP4 is not the midpoint ofAF .
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Exercise

1. LetABC be an equilateral triangle. The line joining the midpoints
D, E of two sides intersects the circumcircle atF . ThenE divides
DF in the golden section,i.e.,

DE

DF
=

√
5− 1

2
.

D

CB

A

F
E

2. M is the midpoint of the sideAB of a squareABCD. The line
DM intersects the circle with diameterAB at two points,P inside
andQ outside the square. Show that the rectangleAPBQ is a
golden rectangle,i.e., PB : PA = (

√
5 + 1) : 2.

A B

CD

M

P

Q
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Project

This is a classic problem you should know if you teach geometry. While
it is not difficult to guess what the answer is, it has been quite baffling to
most people to arrive at the answer logically.

ABC is an isosceles triangle with angleA = 20◦. E and
F are points onAC andAB such that∠EBC = 60◦ and
∠FCB = 50◦. Calculate∠BEF .

A

B C

E

F

60◦ 50◦

20◦
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Appendix: Another construction of regular pentagon6

Given a circle, centerO, let
(i) AXY be an isosceles triangle whose height is5

4
of the radius of the

circle,
(ii) X ′, Y ′ be points on the circumference such thatAX ′ = AY ′ =
radius,
(iii) P = AX ∩OB′ andQ = AY ∩OC ′,
(iv) the linePQ intersect the circumference atB andC.

ThenAB andAC are two sides of a regular pentagon inscribed in the
circle.

C′B′

YX

QP

CB

O

A

6D. Nelson, A regular pentagon construction,Math. Gazette, 61 (1977) 215–216.
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ABCDE is a pentagon inscribed in a circle such thatAB = CD =
AE = the radius of the circle.P andQ are the midpoints of the sides
BC andDE. Show that triagleAPQ is equilateral.

EB

DC

QP

A

O



334 Constructions with the golden section



Chapter 12

Cheney’s card trick

1 Principles
2 Examples

Exercise

A
♠

2
♣

3
♣

4
♠ ?

?
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12.1 Principles

You are the magician’s assistant. What he will do is to ask a spectator to
give you any 5 cards from a deck of 52. You show him 4 of the cards,
and in no time, he will tell everybody what the 5th card is. This of course
depends on you, and you have to do things properly by making use of
the following three basic principles.

1. The pigeonhole principle. Among 5 cards at least 2 must be of the
same suit. So you and the magician agree that the secret card has
the same suit as the first card.

2. The distance of two points on a 13-hour clock is no more than 6.

We decide which of the two cards to be shown as the first, and
which to be kept secret. For calculations, we treatA, J, Q, andK
are respectively 1, 11, 12, and 13 respectively.

Now you can determine the distance between these two cards. From
one of these, goingclockwise, you get to the other by travelling this
distance on the 13-hour clock. Keep the latter as the secret card.
Here are some examples.

hours distance clockwise
2 and7 5 2 to 7

3 and10 6 10 to 3
2 andJ 4 J to 2
A and8 6 8 to A

3. There are 6 arrangements of three objects.

The remaining three cards can be ordered assmall, medium, and
large. 1 Now rearrange them properly to tell the magician what
number he should add (clockwise) to the first card to get the number
on the secret card. Let’s agree on this:

arrangement distance
sml 1
slm 2
msl 3
mls 4
lsm 5
lms 6

1First by numerical order; for cards with the same number, order by suits:♣ <♦ < ♥ < ♠.
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12.2 Examples

If, for example, you, the assistant, want to tell the magician that he
should add 4 to the number (clockwise) on the first card, deal themedium
as the second card, thelarge as the third, and thesmall as the fourth
card. Here are two examples.

1. Suppose you have♠5, ♣7, ♦J, ♣4, and ♠Q, and you decide
to use the♣ cards for the first and the secret ones. The distance
between♣7 and ♣4 is of course 3, clockwise from♣4 to ♣7.
You therefore show♣4 as the first card, and arrange the other three
cards,♠5, ♦J, and♠Q, in the ordermedium, small, large. The
second card is♦J, the third ♠5, and the fourth♠Q.

4
♣ J

♦ 5
♠ Q

♠ ?
?

The secret card is♣7.

2. Now to the magician. Suppose your assistant show you these four
cards in order:

Q
♠ J

♦ 7
♣ 4

♣ ?
?

Then you know that the secret card is a♠, and you get the num-
ber by adding toQ the number determined by the orderlarge,
medium, small, which is 6. Going clockwise, this is 5. The secret
card is♠5.
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Exercise

1. For the assistant:

(a) ♠5, ♠7, ♦6, ♣5, ♣Q.

(b) ♥2, ♠J, ♥K, ♣2, ♠8.

2. For the magician: what is the secret card?

5
♠ 7

♠ 6
♦ 5

♣ ?
?

2
♥ J

♠ 2
♣ 8

♠ ?
?
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13.1 When can you cancel illegitimately and yet get the
correct answer?

Letab andbc be 2-digit numbers. When do such illegimate cancellations
as

ab

bc
=

a � b
� b c =

a

c

give correct results in lowest terms?

How about
a � b � c
� b � c d =

a

d
,

allowing perhaps further simplifications ofa
d
?
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13.2 A Multiplication problem

A multiplication of a three-digit number by 2-digit number has the form

p p p
× p p

p p p p
p p p p
p p p p p

in which all digits involved are prime numbers. Reconstruct the multi-
plication.
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13.3 A division problem

Reconstruct the division problem

∗ ∗ ∗ ∗ ∗
∗ ∗) ∗ ∗ ∗ ∗ 2 ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

Charles Twigg: If the digit 2 is replaced by 9, the answer is also
unique.

If the dividend is prefixed by another asterisk, then there are two so-
lutions.
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Another division problem: Problem E1 of the Monthly

x 7 x x x
x x x) x x x x x x x x

x x x x
x x x
x x x
x x x x

x x x
x x x x
x x x x

Clearly, the last second digit of the quotient is 0.
Let the divisor be the 3-digit numberd.
Consider the 3-digit number in the seventh line, which is a multiple of
d. Its difference from the 4-digit number in the sixth line is a 2-digit
number. This must be9xx.
This cannot be the same as the 3-digit number in the fifth line, since the
difference between the 3-digit numbers in the fourth and fifth lines is a
3-digit number.
Therefore, in the quotient, the digit after 7 is a larger one, which must be
smaller than the first and the last digits, since these give 4-digit multiples
of d.
It follows that the quotient is 97809.
Since8d is a 3-digit number9xx, the 4-digit number in the third and
bottom lines is9d = 10xx or 11xx.
From this8d must be99x, and therefore992 = 8× 124.

9 7 8 0 9
1 2 4) 1 2 1 2 8 3 1 6

1 1 1 6
9 6 8
8 6 8
1 0 0 3

9 9 2
1 1 1 6
1 1 1 6
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One more division problem: not even a single known digit

This is Problem E10 of theMonthly, by Fitch Cheney:

x x x x x x
x x x) x x x x x x x x

x x x
x x x x

x x x
x x x x

x x x
x x x x
x x x x
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13.4 The most popular Monthly problem

The following problem, E 1111, is said to be the most popular problem in
theAmerican Mathematical Monthly. It was proposed by P. L. Chessin
and appeared in the April issue of 1954.

Our good friend and eminent numerologist, Professor Euclide
Paracelso Bombasto Umbugio, has been busily engaged test-
ing on his desk calculator the81 · 109 possible solutions to the
problem of reconstructing the following exact long division
in which the digits indiscriminately were each replaced byx
save in the quotient where they were almost entirely omitted.

x x 8 x x
x x x) x x x x x x x x

x x x
x x x x

x x x
x x x x
x x x x

Deflate the Professor! That is, reduce the possibilities to(18 ·
109)0.

Martin Gardner’s remark: Because any number raised to the power
of zero is one, the reader’s task is to discover the unique reconstruction
of the problem. The 8 is in correct position above the line, making it
the third digit of a five-digit answer. The problem is easier than it looks,
yielding readily to a few elementary insights.
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13.5 The problem of 4n’s

1 = n+n
n+n

2 = n
n + n

n

3 = n+n+n
n

4 = n−.n
.n+.n

5 = n+.n
.n+.n

6 =
(
n+n+n

n

)
!

7 = n−.n−.n
.n

8 = n
.n − n

n

9 = n
.n · n

n

10 = n
.n + n

n

11 = n
.n + n

n

12 = n+.n+.n
.n

13 = n
.n +

√
n
.n

14 =

⌊√
n(n+n)
.n

⌋
15 = n

.n +
(√

n
.n

)
!

16 = n
.n +

(√
n
.n

)
!

17 = n+n−.n
.n

18 = n
.n
+ n

.n

19 = n
.n + n

.n

20 = n
.n + n

.n

21 = n+n+.n
.n

...

Theorem 13.1 (Hoggatt and Moser).Let n be any positive number
different from 1 and let p be any integer greater than 3. Every integer
may be expressed by using p n’s and a finite number of operator symbols
used in high school texts.

Proof. It is easily verified that for every positive integerk,

loglog√n n
log√√···√n n =k,

logn+n
n

log√√···√n n =k.

where the base of the second logarithms containsk square root signs.
These settle the cases of4 and 5 numbers. For higher values ofp, add an
appropriate numbers of(n− n) + · · ·+ (n− n).
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Appendix: Squares with 9 distinct nonzero digits

11826 139854276 12363 152843769 12543 157326849 14676 215384976

15681 245893761 15963 254817369 18072 326597184 19023 361874529

19377 375468129 19569 382945761 19629 385297641 20316 412739856

22887 523814769 23019 529874361 23178 537219684 23439 549386721

24237 587432169 24276 589324176 24441 597362481 24807 615387249

25059 627953481 25572 653927184 25941 672935481 26409 697435281

26733 714653289 27129 735982641 27273 743816529 29034 842973156

29106 847159236 30384 923187456

Appendix: Squares with 10 distinct digits

32043 1026753849 32286 1042385796 33144 1098524736 35172 1237069584
35337 1248703569 35757 1278563049 35853 1285437609 37176 1382054976
37905 1436789025 38772 1503267984 39147 1532487609 39336 1547320896
40545 1643897025 42744 1827049536 43902 1927385604 44016 1937408256
45567 2076351489 45624 2081549376 46587 2170348569 48852 2386517904
49314 2431870596 49353 2435718609 50706 2571098436 53976 2913408576
54918 3015986724 55446 3074258916 55524 3082914576 55581 3089247561
55626 3094251876 56532 3195867024 57321 3285697041 58413 3412078569
58455 3416987025 58554 3428570916 59403 3528716409 60984 3719048256
61575 3791480625 61866 3827401956 62679 3928657041 62961 3964087521
63051 3975428601 63129 3985270641 65634 4307821956 65637 4308215769
66105 4369871025 66276 4392508176 67677 4580176329 68763 4728350169
68781 4730825961 69513 4832057169 71433 5102673489 72621 5273809641
75759 5739426081 76047 5783146209 76182 5803697124 77346 5982403716
78072 6095237184 78453 6154873209 80361 6457890321 80445 6471398025
81222 6597013284 81945 6714983025 83919 7042398561 84648 7165283904
85353 7285134609 85743 7351862049 85803 7362154809 86073 7408561329
87639 7680594321 88623 7854036129 89079 7935068241 89145 7946831025
89355 7984316025 89523 8014367529 90144 8125940736 90153 8127563409
90198 8135679204 91248 8326197504 91605 8391476025 92214 8503421796
94695 8967143025 95154 9054283716 96702 9351276804 97779 9560732841
98055 9614783025 98802 9761835204 99066 9814072356
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Exercise

1. Lucky Larry, a mathematics student whose plausible mistakes in
computation always results in correct answers, once wrote an an-
swer in the form

abca = abca

whereabca represents a four-digit integer whose digitsa, b, c are
all different. What specific number did Lucky Larry write?

2. Find all natural numbers whose square (in base 10) is represented
by odd digits only.

3. Let N be the sum of the digits of a natural numberA, let B =
A + N , let A′ be the sum of the digits of the numberB, and let
C = B + A′. FindA if the digits ofC are those ofA in reverse
order.

Solution. If A hask digits, thenC cannot exceedA by more than
18k. On the other hand, ifC is the reverse ofA, thenC exceedsA
by at least9 · 10 k−2

2 is k is even, and by at least99 · 10 k−3
2 if k is

odd. This quickly impliesk ≤ 2. From this, we findA = 12 or 69.

4. Find the three 3-digit numbers each of which is equal to the product
of the sum of its digits by the sum of the squares of its digits.

5. Find all 4-digit numbersabcd such that 3
√
abcd = a+ b+ c+ d.

6. Use each digit 1, 2, 3, 4, 5, 6, 7, 8, 9 exactly once to form prime
numbers whose sum is smallest possible.

What if we also include the digit 0?

7. There are exactly four 3-digit numbers each equal to the sum of the
cubes of its own digits. Three of them are 153, 371, and 407. What
is the remaining one?

8. Find digitsm, a, b, c, d, e, f such that

abcdef

fedcba
=

9m

9m+ 1
.

9. Find a number of the formaaabbbccc, which when increased by 1,
gives a square.
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10. Here are seven consecutive squares for each of which its decimal
digits sum to a square:

81, 100, 121, 144, 169, 196, 225.

Find another set of seven consecutive squares with the same prop-
erty. 1

11. Find a perfect square of 12 digits formed from the juxtaposition of
two squares, one having 4 digits and the other 8 digits.

12. A pandigital number is one whose decimal representation contains
all digits 0, 1, . . . , 9. There are three pandigital perfect squares
whose square roots are palindromes. Find them.

13. Find the smallest 3-digit numberN such that the three numbers
obtained by cyclic permutations of its digits are in arithmetic pro-
gression.

14. Form a square of 8 digits which is transformed into a second square
when the second digit from the left is increased by 1.

15. The number(abbbb)2 − 1 has 10 digits, all different. Find the num-
ber.2

1 Thesevennumbersbeginningwith9999.

2

855552−1=7319658024;977772−1=9560341728.

These are the only possibilities even if we
consider more generally numbers consisting of two consecutive blocks of repeating digits, whose squares, to
within ±1, contain all ten digits without repetition.
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Charles Twigg’s square number trivia

What three-digit squares have the following characteristics?

1. are palindromes.

2. are permutations of consecutive digits.

3. form reversal pairs.

4. are three permutations of the same digit set.

5. three of its permutations are prime.

6. the sum of the digits is 19.

7. is also a cube.

8. the central digit is perfect.

9. are composed of even digits.

10. the central digit is a nonzero cube.
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Cross number puzzle

Place 13 three - digit square numbers in the spaces in the accompanying
grid. (The solution is unique).
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Project

Arrange the ten digits (0, 1,. . . , 9, norepetition) in a row

abcdefghij

so that the following 3-digit numbers in the table below are divisible by
the prime below them.

bcd cde def efg fgh ghi hij
2 3 5 7 11 13 17

Solution: 1460357289 or 4160357289

Sincedef is divisible by 5,f must be 0 or 5. Now, the numberfgh must
be divisible by 11. The only number that can be formed from the first
two digits of13m by appending a 0 or a 5 on theleft to form a multiple
of 11 are 286, 390, 728, and 832. Clearly,f = 5, andfghi is only one
of

5286, 5390, 5728, 5832.

Now we want to find a multiple of 17 beginning with the last two digits
of these. This eliminates the last case.

52867, 53901, 57289.

Since efg is a multiple of 7,mod(e, 7) must satisfy2 mod (e, 7) +
mod(10f + g, 7) ≡ 0 mod 7. Necessarily,e = 2, 1, 3. Now we must
haveefghij = 357289.

Now it remains to arrange 0, 1, 4, 6 asa, b, c, d such that the three
digit numbersbcd, cd3 are 3 digit numbers divisible by 2, 3 respectively.
In particular,c + d + 3 is divisible by 3. The only choice isc = 6 and
d = 0. We haveab60357289. a andb can be 1, 4 or 4, 1.



Chapter 14

Numbers with many repeating
digits

1 A quick multiplication
2 The repunits
3 Squares of repdigits
4 Sorted numbers with sorted squares

Appendix: Factorization of10n + 1 for n ≤ 50
Exercise



416 Numbers with many repeating digits

14.1 A quick multiplication

What is the smallest positive integer with the property that when the digit
1 is appended to both ends, the new number is 99 times the original?

Suppose the numberX hasn digits. We require10n+10X+1 = 99X
or89X = 10n+1. Note that 89 is prime. To find the smallestn we divide
89 into the number 1 followed by a string of zeros, extended if necessary,
until a remainder 80 occurs. Then add 1 and obtain an integer quotient
which is the smallest possibleX.

The first time this occurs is at the 22nd zero. Thus, the smallest pos-
sible value ofX is

1022 + 1

89
= 112359550561797752809.

For this value ofX we have

99× 112359550561797752809 = 11123595505617977528091.

See Appendix for the factorization of numbers of the form10n−11.
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14.2 The repunits

The repunitRn is the number whose decimal representation consists of
a string ofn ones. Thus,Rn = 1n.

Notations

A :=123456790,

B :=098765432,

1k :=1k−1,

2k :=12k,

mk :=12 · (m− 1)mk(m− 1) · · ·2, for 3 ≤ m ≤ 9.

Theorem 14.1.Let p = 9k +m, k ≥ 0, 1 ≤ m ≤ 9. For q ≥ p,

RpRq = Akmq−p+1Bk1.

In particular,
(Rp)

2 = AkmBk1.
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14.3 Squares of repdigits

In the decimal representations of integers, we writean for a string ofn
digits each equal toa.

Theorem 14.2.For n ≥ 2,

(3n)
2 =1n−108n−19,

(6n)
2 =4n−135n−16,

(9n)
2 =9n−189n−11.

Proof. The last one is easiest.

(9n)
2 =(10n − 1)2

=102n − 2 · 10n + 1

=10n(10n − 2) + 1

=9n−180n−11.

From this we obtain the square of3n by division by 9, then the square of
6n by multiplication by 4.

Theorem 14.3. Let n = 9k + m, k ≥ 0, 1 ≤ m ≤ 9. For a =
1, 2, 4, 5, 7, 8,

(aRn)
2 = AkmBkc,

whereA, B andc are given by

a A B c

1 123456790 098765432 1
2 493827160 395061728 4
4 197530864 580246913 5
5 308641975 469135802 6
7 604938271 839506172 9
8 790123456 320987654 4

andm is given by

a 1 2 3 4 5 6 7 8 9

1 12 1232 123432 12345432 1234565432 123456765432 12345678765432 1234567898765432
2 48 4928 493728 49381728 4938261728 493827061728 49382715061728 4938271595061728
4 1 193 19713 1974913 197526913 19753046913 1975308246913 197530860246913 19753086380246913
5 2 302 30802 3085802 308635802 30864135802 3086419135802 308641969135802 30864197469135802
7 4 592 60372 6048172 604926172 60493706172 6049381506172 604938259506172 60493827039506172
8 6 774 78854 7899654 790107654 79012187654 7901232987654 790123440987654 79012345520987654
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14.4 Sorted numbers with sorted squares

A number issorted if its digits are nondecreasing from left to right. It
is strongly sorted if its square is also sorted. It is known that the only
strongly sorted integers are given in the table below.1

• 1, 2, 3, 6, 12, 13, 15, 16, 38, 116, 117.

• 16n7.

• 3n4.

• 3n5.

• 3m6n7.

(3n51)
2 =(10 · 3n + 5)2

=100 · (3n)2 + 100 · (3n) + 25

=1n−108n−19102 + 3n25

=1n−112n−1225

=1n2n+15.

If x = 3m6n7, then3x = 10m−110n1, and it is easy to find its square.

(3m6n7)
2 =

{
1m3m4n−m+16m8n9, if n+ 1 ≥ m,

1m3n+15m−n−16n+18n9, if n+ 1 < m.

More generally, the product of any two numbers of the form3m6n7
is sorted.

1Problem 1234,Math. Mag., 59 (1986) 1, solution, 60 (1987)1. See also R. Blecksmith and C. Nicol,
Monotonic numbers,Math. Mag., 66 (1993) 257–262.



420 Numbers with many repeating digits

Appendix: Factorization of 10n + 1 for 1 ≤ n ≤ 50

n Factorization of 10n + 1
1 11
2 101
3 7 × 11 × 13
4 73 × 137
5 11 × 9091
6 101 × 9901
7 11 × 909091
8 17 × 5882353
9 7 × 11 × 13 × 19 × 52579
10 101 × 3541 × 27961
11 112 × 23 × 4093 × 8779
12 73 × 137 × 99990001
13 11 × 859 × 1058313049
14 29 × 101 × 281 × 121499449
15 7 × 11 × 13 × 211 × 241 × 2161 × 9091
16 353 × 449 × 641 × 1409 × 69857
17 11 × 103 × 4013 × 21993833369
18 101 × 9901 × 999999000001
19 11 × 909090909090909091
20 73 × 137 × 1676321 × 5964848081
21 72 × 11 × 13 × 127 × 2689 × 459691 × 909091
22 89 × 101 × 1052788969 × 1056689261
23 11 × 47 × 139 × 2531 × 549797184491917
24 17 × 5882353 × 9999999900000001
25 11 × 251 × 5051 × 9091 × 78875943472201
26 101 × 521 × 1900381976777332243781
27 7 × 11 × 13 × 19 × 52579 × 70541929 × 14175966169
28 73 × 137 × 7841 × 127522001020150503761
29 11 × 59 × 154083204930662557781201849
30 61 × 101 × 3541 × 9901 × 27961 × 4188901 × 39526741
31 11 × 909090909090909090909090909091
32 19841 × 976193 × 6187457 × 834427406578561
33 7 × 112 × 13 × 23 × 4093 × 8779 × 599144041 × 183411838171
34 101 × 28559389 × 1491383821 × 2324557465671829
35 11 × 9091 × 909091 × 4147571 × 265212793249617641
36 73 × 137 × 3169 × 98641 × 99990001 × 3199044596370769
37 11 × 7253 × 422650073734453 × 296557347313446299
38 101 × 722817036322379041 × 1369778187490592461
39 7 × 11 × 132 × 157 × 859 × 6397 × 216451 × 1058313049 × 388847808493
40 17 × 5070721 × 5882353 × 19721061166646717498359681
41 11 × 2670502781396266997 × 3404193829806058997303
42 29 × 101 × 281 × 9901 × 226549 × 121499449 × 4458192223320340849
43 11 × 57009401 × 2182600451 × 7306116556571817748755241
44 73 × 137 × 617 × 16205834846012967584927082656402106953
45 7 × 11 × 13 × 19 × 211 × 241 × 2161 × 9091 × 29611 × 52579

×3762091 × 8985695684401
46 101 × 1289 × 18371524594609 × 4181003300071669867932658901
47 11 × 6299 × 4855067598095567 × 297262705009139006771611927
48 97 × 353 × 449 × 641 × 1409 × 69857 × 206209 × 66554101249 × 75118313082913
49 11 × 197 × 909091 × 5076141624365532994918781726395939035533
50 101 × 3541 × 27961 × 60101 × 7019801 × 14103673319201 × 1680588011350901
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Exercise

1. Show that

16n
6n4

=
1

4
,

19n
9n5

=
1

5
,

26n
6n5

=
2

5
,

49n
9n8

=
4

8
.

2. Show that(16n7)2 = 27n8n+19.

3. (3n4)2 = 1n+15n6.

4. John shook its head. “Multiply that huge number by 8 in my head?
You’ve got to be kidding.”

“But it’s easy, Dad.” Mike told him. “You just shift its last digit to
the front.”

The boy was right, and it is the smallest number for which it works.

What was the number?

5. John looked over his son’s shoulder. “That must be an interesting
number,” he said. “Homework?”

“Just fun, Dad,” Doug replied. “It’s the serial number on that clock
you brought back from Kaloat, and I’ve just noticed something spe-
cial about it. If you take the last two digits and put them in front,
you get exactly four times the original number, and it’s the smallest
number that works that way.”

What was the serial number?

6. Given an integern. Show that an integer can always be found which
contains only digits 0 and 1 (in the decimal scale) and which is
divisible byn. 2

7. Determine ann-digit number such that the number formed by re-
versing the digits is nine times the original number. What other
numbers besides nine are possible ?

8. Write 529n−2893n−19 as a sum of three squares of natural numbers.

9. There are only two repdigitsan whose squares have digital sum 37.
What are these?3

2AMM Problem 4281.
3Answer:

24and74.



422 Numbers with many repeating digits



Chapter 15

Digital sum and digital root

1 Digital sum sequences
2 Digital root
3 Digital roots of the powers of 2
4 Digital root sequences

Exercise



424 Digital sum and digital root

15.1 Digital sum sequences

The digital sum of a positive integern is the sum of the digits ofn. We
denote this byd(n).

Given a positive integera, the digit sum sequenceS(a) = (an) is
defined recursively by

an+1 = an + d(an), a1 = a.

Here are the first few digit sum sequences:

S(1) 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, 107, . . .
S(3) 3, 6, 12, 15, 21, 24, 30, 33, 39, 51, 57, 69, 84, 96, 111, 114, . . .
S(5) 5, 10, 11, 13, 17, 25, 32, 37, 47, 58, 71, 79, 95, 109, 119, 130, . . .
S(7) 7, 14, 19, 29, 40, 44, 52, 59, 73, 83, 94, 107, 115, 122, 127, 137, . . .
S(9) 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 117, 126, 135, 144, 153, . . .

Note that they are quite similar to the digital root sequences.
Show thatS(3) = R(3) andR(9) = S(9).
What is the smallest number that does not appear in any of these digit

sum sequences?
Find the first 10 terms of the digital sum sequence beginning with this

number.
20,22,26,34,41,46,56,67,80,88,104,109,119,130,134,142, . . .
Find the next smallest number which is not in any of the 6 digit sum

sequences and generate a new digit sum sequence from it.
31,35,43,50,55,65,76,89,106,113,118,128,139,152,160,167, . . .
There are infinitely many digit sum sequences because there are in-

finitely many numbers which are not of the formn + d(n).
The number 101 isn + d(n) for n = 91 and100.
The number 101 traces back to 100, 86 which is a starter. It also

traces back to 91, and eventually 1.
Here are the numbers below 100 which are not of this form:

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97.

An infinite sequence of “starters”:10n122, n ≥ 1. Every number
n ≤ 10n114 hasn + d(n) ≤ 10n121; every numbern ≥ 10n115 has
d(n) ≥ 10n123.
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15.2 Digital root

Given a positive integern, let d(n) be the sum of the digits ofn. If the
operationd is repeated indefinitely, it stabilizes after a finite number of
steps and yield a number between 1 and 9, which we call the digital root
of n, denotedD(n). See [Dudeny,Amusements, p.157].

Theorem 15.1. 1.D(m+ n) = D(D(m) + D(n)).

2. D(mn) = D(D(m)D(n)).

3. D(mn) = D(D(m)n).

4. D(D(n)) = D(n).

5. D(n+ 9) = D(n).

6. D(9n) = 9.

Proof. (5) D(n+9) = D(D(n)+D(9)) = D(D(n)+9) = D(n) since
D(n) is a single-digit number.

(6) D(9n) = D(9D(n)) = 9 sinceD(n) has one single digit.
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15.3 The digital roots of the powers of 2

n 0 1 2 3 4 5 6
2n 1 2 4 8 16 32 64

D(2n) 1 2 4 8 7 5 1

It follows that the sequence of digital roots of2n is periodic with
period 6.

sequence of digital roots

2n 1, 2, 4, 8, 7, 5
3n 1, 3, 9
4n 1, 4, 7
5n 1, 5, 7, 8, 4, 2
6n 1, 6, 9
7n 1, 7, 4
8n 1, 8
9n 1, 9

The sequence of the digital roots of2n+1 is also periodic with period
6:

2, 3, 5, 9, 8, 6, . . . .

Digital roots of Fermat numbers

To find the digital root of the Fermat numberFk = 22k
+1, we need only

find 2k mod 6. Now, it is clear that2k ≡ 1 or 2 mod 3 according ask is
even or odd. Therefore,2k ≡ 4 or mod6 according ask is even or odd.
From this, we have

D(Fk) =

{
8 if k ≡ 0 mod 2,

5 if k ≡ 1 mod 2.

The digital roots of the Fibonacci numbers form a sequence of period
24:

1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, . . . .
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15.4 Digital root sequences

A digit root sequence(an) is defined recursively by

an+1 = an +D(an), a1 = a.

The digital root sequence beginning with 1 is

1, 2, 4, 8, 16, 23, 28, 29, 31, 35, 43, 50, 55, 56, 58, 62, 70, . . .

Obviously, the digital root sequence beginning with any of these terms is
a subsequence of this. By taking a term not in this sequence we generate
a new one. Here are five digital root sequences with initial terms 1, 3, 5,
7, 9.

R(1) 1, 2, 4, 8, 16, 23, 28, 29, 31, 35, 43, 50, 55, 56, 58, 62, 70, 77, 82, 83, 85, 89, 97, 104, . . .
R(3) 3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, 51, 57, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, . . .
R(5) 5, 10, 11, 13, 17, 25, 32, 37, 38, 40, 44, 52, 59, 64, 65, 67, 71, 79, 86, 91, 92, 94, 98, 106, . . .
R(7) 7, 14, 19, 20, 22, 26, 34, 41, 46, 47, 49, 53, 61, 68, 73, 74, 76, 80, 88, 95, 100, . . .
R(9) 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, . . .

Theorem 15.2 (Kumar). 1. The digital roots of these sequences are
periodic.

2. These five sequences partition the natural numbers.

The digital roots of these sequences are

R1 1, 2, 4, 8, 7, 5
R3 3, 6
R5 5, 1, 2, 4, 8, 7
R7 7, 5, 1, 2, 4, 8
R9 9
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Exercise

1. A Filzian number is one which is the product of its digits and digial
sum. For example,144 = 1 · 4 · 4(1 + 4 + 4). Find one more such
number.1

2. Find the digital root ofn!.

3. Find the digital root sequence ofn2.

4. The cubes.

5. The triangular numbers.

6. Find all integersn such that the sum of the digits ofn2 is equal to
n, i.e., d(n2) = n.

7. What is the digital root of a number of the form2n−1(2n − 1)?

1Answer: 135. It is known that there are only finitely many Filzian numbers. Apart from 1 and 144, the
other known one is 135.
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Project: Sum of squares of digits

Let f(n) be sum of the digits ofn. For example,f(1) = 1, f(2) = 4,
f(10) = 1, f(12) = 5, f(123) = 14 etc.

Study the iterations off .
For example, the iterations off beginning with 4 leads to the cycle

4→ 16→ 37→ 58→ 89→ 145→ 42→ 20→ 4.
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3-4-5 triangles in the square
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θ

tan θ =
1

ϕ
.
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Exercise

1. Show that the shaded triangle is a 3:4:5 triangle.

2. Find the ratio of the areas ofABY , BCXY , andAXD.

A B

CD X

Y
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Combinatorial games

1 Subtraction games
2 The nim sum
2 Nim
3 Northcott’s variation of nim
4 Wythoff’s game

Appendix: Beatty’s theorem
Exercise
Project: Another subtraction game
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17.1 Subtraction games

Starting with a given positive integerN , two players alternately subtract
a positive amount less than a given positive numberd < N . The one
who gets down to 0 wins.

Theorem 17.1.The player who secures a multiple of d has a winning
strategy.

An equivalent version: the battle of numbers

Starting with 0, two players alternately add positive integers less than a
given limit d. The one who gets to a specifiedN wins.

The winning positions are the terms of the arithmetic progression of
common differenced containingN . Specifically, the small numbermod
(N, d) is a winning position. Therefore, the first player has a winning
strategy if and only ifN is not divisible byd.
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17.1.1 The Sprague-Grundy sequence

Let G be a 2-person counter game in which two players alternately re-
move a positive amount of counters according to certain specified rules.
The Sprague-Grundy sequence ofG is the sequence(g(n)) of nonnega-
tive integers defined recursively as follows.

(1) g(n) = 0 for all n which have no legal move to another number.
In particular,g(0) = 0.

(2) Suppose from positionn it is possible to move to any of positions
m1, m2, . . . ,mk, (all < n), theng(n) is the smallest nonnegative integer
different fromg(m1), g(m2), . . . ,g(mk).

Theorem 17.2.The player who secures a position n with g(n) = 0 has
a winning strategy.

Example 1: the trivial counter game

If G is the game which the players may subtract anypositive amount, the
Sprague-Grundy sequence is the natural sequence

0, 1, 2, 3, . . . , n, . . . .

Example 2: removing not more thand counters

If G is the game which subtracts numbers< d, then the Sprague-Grundy
sequence is periodic0, 1, 2, . . . , d− 1. The values ofn for whichg(n) =
0 are precisely the multiples ofd.
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17.1.2 Subtraction of square numbers

Two players alternately subtract a positive square number. We calculate
the Sprague-Grundy sequence.

g(0) = 0
1→ 0 =⇒ g(1) = 1
g(2) = 0
3→ 2 =⇒ g(3) = 1
4→ 3, 0 =⇒ g(4) = 2
5→ 4, 1 =⇒ g(5) = 0
6→ 5, 2 =⇒ g(6) = 1
7→ 6, 3 =⇒ g(7) = 0
8→ 7, 4 =⇒ g(8) = 1
9→ 8, 5, 0 =⇒ g(9) = 2
10→ 9, 6, 1 =⇒ g(10) = 0

The values ofn ≤ 1000 for whichg(n) = 0 are as follows:1

Suppose we start with 74. Player A can subtract 64 to get 10, which
has value 0. This means no matter how B moves, A can always win.
This is clear if B moves to 9 or 1. But if B moves to 6, then A can move
to 5 which again has value 0, since now B can only move to 4 or 1.

Exercise

How would you win if the starting number is 200? or 500?

1[Smith, p.68] incorrectly asserts that this sequence is periodic, with period 5.
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17.1.3 Subtraction of square numbers

The first 100 terms of the Sprague-Grundy sequence are

1 2 3 4 5 6 7 8 9 10
1 0 1 2 0 1 0 1 2 0
1 0 1 2 0 1 0 1 2 0
1 0 1 2 3 2 3 4 5 3
2 3 4 0 1 2 3 2 0 1
2 3 2 0 1 2 3 2 3 4
5 0 1 3 4 5 0 1 3 4
5 0 1 3 0 1 0 1 2 4
3 0 1 5 6 2 3 4 5 6
2 3 4 5 0 1 6 3 2 4
2 6 4 5 0 1 6 4 2 4

The winning positions within 500 are as follows.

0 2 5 7 10 12 15 17 20 22 34 39 44 52 57
62 65 67 72 85 95 109 119 124 127 130 132 137 142 147

150 170 177 180 182 187 192 197 204 210 215 238 243 249 255
257 260 262 267 272 275 312 317 322 327 332 335 340 345 350
369 377 390 392 397 425 430 437 442 447 449 464
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Subtraction of aliquot parts

Two players start with a positive integer and alternately subtract any
aliquot part (divisor) with the exception of the number itself from the
number left by the opponent. Winner is the last player able to perform
such a subtraction.

By way of example, if the original number is 12, first player may
subtract either 1, 2, 3, 4, or 6 (but not 12). If he subtract 2, leaving 10,
second player may subtract either 1, 2, or 5.

The first 100 terms of the Sprague-Grundy sequence are

1 2 3 4 5 6 7 8 9 10
0 1 0 2 0 1 0 3 0 1
0 2 0 1 0 4 0 1 0 2
0 1 0 3 0 1 0 2 0 1
0 5 0 1 0 2 0 1 0 3
0 1 0 2 0 1 0 4 0 1
0 2 0 1 0 3 0 1 0 2
0 1 0 6 0 1 0 2 0 1
0 3 0 1 0 2 0 1 0 4
0 1 0 2 0 1 0 3 0 1
0 2 0 1 0 5 0 1 0 2

The winning positions within 500 are as follows.

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27
29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
59 61 63 65 67 69 71 73 75 77 79 81 83 85 87
89 91 93 95 97 99 101 103 105 107 109 111 113 115 117

119 121 123 125 127 129 131 133 135 137 139 141 143 145 147
149 151 153 155 157 159 161 163 165 167 169 171 173 175 177
179 181 183 185 187 189 191 193 195 197 199 201 203 205 207
209 211 213 215 217 219 221 223 225 227 229 231 233 235 237
239 241 243 245 247 249 251 253 255 257 259 261 263 265 267
269 271 273 275 277 279 281 283 285 287 289 291 293 295 297
299 301 303 305 307 309 311 313 315 317 319 321 323 325 327
329 331 333 335 337 339 341 343 345 347 349 351 353 355 357
359 361 363 365 367 369 371 373 375 377 379 381 383 385 387
389 391 393 395 397 399 401 403 405 407 409 411 413 415 417
419 421 423 425 427 429 431 433 435 437 439 441 443 445 447
449 451 453 455 457 459 461 463 465 467 469 471 473 475 477
479 481 483 485 487 489 491 493 495 497 499



17.1 Subtraction games 507

Subtraction of proper divisors

The rules are the same with the exception that onlyproper divisors may
be subtracted. Consider 1 an improper divisor.

The first 100 terms of the Sprague-Grundy sequence are

1 2 3 4 5 6 7 8 9 10
0 0 0 1 0 2 0 0 0 1
0 3 0 1 0 2 0 1 0 3
0 1 0 4 0 1 0 2 0 1
0 0 0 1 0 2 0 1 0 4
0 1 0 2 0 1 0 3 0 1
0 2 0 1 0 4 0 1 0 2
0 1 0 5 0 1 0 2 0 1
0 4 0 1 0 2 0 1 0 3
0 1 0 2 0 1 0 4 0 1
0 2 0 1 0 6 0 1 0 2

The winning positions within 500 are as follows.

0 1 2 3 5 7 8 9 11 13 15 17 19 21 23
25 27 29 31 32 33 35 37 39 41 43 45 47 49 51
53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
83 85 87 89 91 93 95 97 99 101 103 105 107 109 111

113 115 117 119 121 123 125 127 128 129 131 133 135 137 139
141 143 145 147 149 151 153 155 157 159 161 163 165 167 169
171 173 175 177 179 181 183 185 187 189 191 193 195 197 199
201 203 205 207 209 211 213 215 217 219 221 223 225 227 229
231 233 235 237 239 241 243 245 247 249 251 253 255 257 259
261 263 265 267 269 271 273 275 277 279 281 283 285 287 289
291 293 295 297 299 301 303 305 307 309 311 313 315 317 319
321 323 325 327 329 331 333 335 337 339 341 343 345 347 349
351 353 355 357 359 361 363 365 367 369 371 373 375 377 379
381 383 385 387 389 391 393 395 397 399 401 403 405 407 409
411 413 415 417 419 421 423 425 427 429 431 433 435 437 439
441 443 445 447 449 451 453 455 457 459 461 463 465 467 469
471 473 475 477 479 481 483 485 487 489 491 493 495 497 499
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Subtraction of primes

The first 100 terms of the Sprague-Grundy sequence

1 2 3 4 5 6 7 8 9 10
0 0 1 1 2 2 3 3 4 0
0 1 1 2 2 3 3 4 4 5
5 6 6 7 7 0 4 1 5 2
6 3 4 7 0 0 1 1 2 2
3 3 4 8 5 7 6 8 9 0
4 1 5 2 6 0 4 1 5 2
6 3 4 7 5 8 4 10 5 7
6 8 4 7 5 8 6 10 9 7
4 8 5 10 6 0 4 1 5 2
6 0 4 1 5 2 6 3 4 7

The winning positions within 500 are as follows.

0 1 2 10 11 26 35 36 50 56 86 92 101 116 122
126 134 146 156 170 176 188 196 206 218 236 248 254 260 266
290 296 302 310 311 320 326 336 344 356 362 376 386 392 396
404 416 426 446 452 470 476 482 486 494
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17.2 The nim sum of natural numbers

The nim sum of two nonnegative integers is the addition in their base 2
notationswithout carries. If we write

0 � 0 = 0, 0 � 1 = 1 � 0 = 1, 1 � 1 = 0,

then in terms of the base 2 expansions ofa andb,

a� b = (a1a2 · · ·an) � (b1b2 · · · bn) = (a1 � b1)(a2 � b2) · · · (an � bn).

The nim sum is associative, commutative, and has 0 as identity ele-
ment. In particular,a � a = 0 for every natural numbera.

Here are the nim sums of numbers≤ 15:

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Theorem 17.3.Suppose two players alternately play one of the counter
games G1, . . . , Gk which have Sprague-Grundy sequences (g1(n)), . . . ,
(gk(n)) respectively. The player who secures a position (n1, n2, . . . , nk)
with

g1(n1) � g2(n2) � · · ·� gk(nk) = 0

has a winning strategy.
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17.3 The gameNim

Given three piles of marbles, witha, b, c marbles respectively, players
A andB alternately remove a positive amount of marbles from any pile.
The player who makes the last move wins.

Theorem 17.4. In the game nim, the player who can balance the nim
sum equation has a winning strategy.

Therefore, provided that the initial position(a, b, c) does not satisfy
a � b � c = 0, the first player has a winning strategy. For example,
suppose the initial position is(12, 7, 9). Since12 � 9 = 5, the first
player can remove 2 marbles from the second pile to maintain a balance
of the nim sum equation,

12 � 5 � 9 = 0

thereby securing a winning position.

This theorem indeed generalizes to an arbitrary number of piles.
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17.4 Northcott’s variation of Nim

Two players alternately move their counters on one of the rows, the only
restriction being not moving onto or beyond the opponent’s counter. The
one who cannot move loses.

This is equivalent to nim if one considers a number of piles of coun-
ters corresponding to the number of spaces between the counters on the
rows. (If a player tries to increase the number of spaces, the other player
can force the same distance by pursueing the same number of spaces).
Therefore the player who can balance the nim sum equation has a win-
ning strategy.

For example, in the above arrangement, the numbers of spaces have
nim sum

3 � 2 � 4 � 2 � 2 = 5.

It can be made 0 by moving 3 spaces in row 3.
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17.5 Wythoff’s game

Wythoff’s game is a variant of Nim. Given two piles of marbles, a
player either removes an arbitrary positive amount of marbles from any
one pile, or an equal (positive) amount of marbles from both piles. The
player who makes the last move wins.

We describe the position of the game by the amounts of marbles in
the two piles.

If you can make(2, 1), then you will surely win no matter how your
opponent moves. Now, to forbid your opponent to get to this position,
you should occupy(3, 5).

The sequence of winning positions: starting with(a1, b1) = (1, 2),
construct(ak, bk) by setting

ak :=min{c : c > ai, bi, i < k},
bk :=ak + k.

Here are the 18 smallest winning positions for Wythoff’s game:

1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 25 27 29
2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 41 44 47

Theorem 17.5.The winning positions of Wythoff’s game are the pairs
(�nϕ�, �nϕ2�), where ϕ =

√
5+1
2

is the golden ratio.
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Appendix: Beatty’s Theorem

If α andβ are positive irrational numbers satisfying1
α
+ 1

β
= 1, then the

sequences
�α�, �2α�, �3α�, . . .

and
�β�, �2β�, �3β�, . . .

form a partition of the sequence of positive integers.
See Russian problem book, MG Problem 1300, solution, 62 (1989)

203.
If r ands are positive integers andn = r + s, then the union of the

two sequences ⌊n
r

⌋
,

⌊
2n

r

⌋
, . . . ,

⌊
(r − 1)n

r

⌋
,

and ⌊n
s

⌋
,

⌊
2n

s

⌋
, . . . ,

⌊
(s− 1)n

s

⌋
.

is the natural sequence1, 2, . . . , n−2 if and only if r ands are relatively
prime.
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Exercise

1. What are the winning positions in the battle of numbers withN =
100 andd = 7?

2. The golden ratioϕ has the property thatϕ2 andϕ have exactly the
same digits after the decimal point. Find all numbersθ which have
exactly the same digits asθ2 after the decimal point.

3. A announces a two digit number from 01 to 99. B reverses the
digits of this number and adds to it the sum of its digits and then
announces his result. A continues in the same pattern. All num-
bers are reduced modulo 100, so that only two digit numbers are
announced. What choices has A for the initial number in order to
insure that B will at some time announce 00 ?2

2 56,80or68.
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Project: Another subtraction game

Starting with a given positive integer, two players alternately subtract
numbers not more than the predecessor used. The one who gets down
to zero is the winner. Under what condition does the first player have a
winning strategy?
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Repunits

1 k-right-transposable integers
2 k-left-transposable integers
3 Sam Yates’ repunit riddles
4 Recurring decimals
5 The period length of a prime

Appendix: Factorizations of repunitsRn, n ≤ 50
Appendix: Primitive divisors of repunits
Appendix: Multiplicative digital root
Exercise
Project: Period lengths of primes< 100.
Project: A number whose cube root divides all numbers

obtained by cyclic permutations of its digits.
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18.1 k-right-transposable integers

Let k be a given positive integer. A positive integerX is k-transposable
if in moving the leftmost digit to the rightmost, the number is multiplied
by k.

Note thatX is a repdigit if and only ifk = 1. We shall assumek > 1.
Suppose the numberX hasn digits, with leftmost digita. We have

10(X − a · 10n−1) + a = kX.

From this,(10− k)X = a(10n − 1) = 9a · Rn.
If k �= 3, 10 − k can only have prime divisors 2, 3, 5. The equation

will reduce toX = a repdigit, which is clearly impossible.
For k = 3, we have7X = a(10n − 1). If a = 7, then againX is a

repdigit. Therefore, we must have7 dividing 10n − 1. This is possible
only if n is a multiple of 6. ThereforeX = a · 106m−1

7
and has first digit

a.
Now,

106m − 1

7
= (142857)m.

It is easy to see thata can only be 1 or 2.
Therefore, the onlyk-transposable numbers are(142857)m and(285714)m

with k = 3.
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18.2 k-left-transposable integers

Letk be a given positive integer. A positive integerX isk-left-transposable
if in moving the rightmost digit to the leftmost, the number is multiplied
by k. Note thatX is a repdigit if and only ifk = 1. We shall assume
k > 1. Suppose the numberX hasn digits, and its rightmost digit isb.
We have

b · 10n−1 +
X − b

10
= kX.

From this,b · 10n +X − b = 10kX, and

(10k − 1)X = b(10n − 1).

SinceX is hasn digits,b(10n−1) > (10k−1)10n−1, andb > 10n−1(10k−1)
10n−1

=

k − 1
10

. This shows thatb ≥ k.

k n

2 19X = b(10n − 1) 18m
3 29X = b(10n − 1) 28m
4 39X = b(10n − 1) 12m
5 49X = b(10n − 1) 42m
6 59X = b(10n − 1) 58m
7 69X = b(10n − 1) 22m
8 79X = b(10n − 1) 13m
9 89X = b(10n − 1) 44m

These lead to the following numbers:

X2 =105263157894736842,

X3 =1034482758620689655172413793,

X4 =102564102564,

X5 =102040816326530612244897959183673469387755,

X6 =1016949152542372881355932203389830508474576271186440677966,

X7 =1014492753623188405797,

X8 =1012658227848,

X9 =10112359550561797752808988764044943820224719.

Each of theseXk can be replaced byb
k
·Xk for k = b, . . . , 9. Every

k-left-transposable number is of the form(Xk)m for Xk given above and
m ≥ 1.
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18.3 Sam Yates’ repunit riddles

1. What digits should be substituted for the letters so that the sum of
the nine identical addends will be a repunit?1

R E P U N I T S
R E P U N I T S
R E P U N I T S
R E P U N I T S
R E P U N I T S
R E P U N I T S
R E P U N I T S
R E P U N I T S

+ R E P U N I T S

2. Are two repunits with consecutive even numbers as their subscripts
relatively prime?2

3. Are two repunits with consecutive numbers as their subscripts rel-
atively prime?3

4. Are two repunits with consecutive odd numbers as their subscripts
relatively prime?4

5. Aside from 3, what primep dividesRp? 5

6. What digit does each letter of this multiplication represent?6

R R R R R R R
× R R R R R R R

R E P U N I T I N U P E R

7. An old car dealer’s record in the 1960’s shows that the total receipts
for the sale of new cars in one year came to 1,111,111.00 dollars.
If each car had eight cylinders and was sold for the same price as
each other car, how many cars did he sell?

1REPUNITS=12345679 and the sum isR9.
2No. Repunits with even subscripts are divisible by 11.
3Yes. Consecutive numbers are relatively prime, andgcd(Rm, Rn) = Rgcd(m,n).
4Yes. Consecutive odd numbers are relatively prime.
5 None

.
6R7 ×R7 = R13.
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8. Find a pair of repunits whose product is a 100-digit palindrome.7

9. If a Mersenne numberMp = 2p − 1 is prime, is the corresponding
repunitRp also prime?8

10. What is the smallest repunit divisible by the square of 11? What is
the smallest repunit divisible by the square ofR11?

In general, the smallest repunit divisible by the square ofRn isRN ,
whereN = nRn.

7If Rp · Rq has 100 digits,p + q = 101. Supposep ≤ q andp = 9k +m for 1 ≤ m ≤ 9. Since the
product is a palindrome, it cannot containA andB. We must havek = 0 andp ≤ 9. For anyp = 2, . . . , 9,
the productRp ·Rq is the palindromep102−2p1, where

p =

{
12k if p = 2,

12 · · · (p − 1)(p − 1)32 if 3 ≤ p ≤ 9.
.

8M3 = 23 − 1 = 7 is prime butR3 = 111 = 3 × 37.
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18.4 Recurring decimals

The decimal expansion of a rational number is eventually periodic. It is
finite if and only if the denominator has no prime divisors other than 2
and 5.

The decimal expansion of1
n

is purely periodic if and only ifn is a
prime. Forp = 3, this is the most well known recurring decimal

1

3
= 0.333 · · · = 0.3.

with period length 1. Here are the periods of the reciprocals of the first
few primes, together with their period lengths.

p period λ(p)
3 3 1
7 142857 6
11 09 2
13 076923 6
17 0588235294117647 16
19 052631578947368421 18
23 0434782608695652173913 22
29 0344827586206896551724137931 28
31 032258064516129 15
37 027 3
41 0243902439 10
43 023255813953488372093 21
47 0212765957446808510638297872340425531914893617 46
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18.5 The period length of a prime

The period length of a prime numberp means the length of the shortest
repeating block of digits in the decimal expansion of1

p
.

Suppose1
p

has period lengthλ:

1

p
= 0.a1 · · ·aλ.

Then moving the decimal placesn places to the right, we have

10λ

p
= a1 · · ·aλ.a1 · · ·aλ,

and
10λ

p
− 1

p
= a1 · · ·aλ

is an integer. This means thatp divides10λ − 1. Clearly,p cannot be 2
or 5. It is known that ifp �= 2, 5, then10p−1 − 1 is divisible byp, and
any numberλ for which10λ − 1 is divisible byp dividesp− 1.

Theorem 18.1.If p �= 2, 5, the period length of p is the smallestdivisor
λ of p− 1 such that p divides 10λ − 1.

Theorem 18.2. Let p > 5 be a prime. The period length of p is the
smallest divisor n of p− 1 such that p divides Rn.

Proof. Note that10n − 1 = 9n = 9 × Rn. If p �= 3, thenp divides
Rn.

We say thatp is a primitive prime divisor the repunitn. Thus, for
a primep > 5, the period length ofp is the numbern for which p is
primitive prime divisor. A table of primitive prime divisors of repunits
is given in an Appendix.
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Appendix: Factorizations of repunits Rn for n ≤ 50

n Rn

2 11.
3 3 × 37.
4 11 × 101.
5 41 × 271.
6 3 × 7 × 11 × 13 × 37.
7 239 × 4649.
8 11 × 73 × 101 × 137.
9 32 × 37 × 333667.

10 11 × 41 × 271 × 9091.
11 21649 × 513239.
12 3 × 7 × 11 × 13 × 37 × 101 × 9901.
13 53 × 79 × 265371653.
14 11 × 239 × 4649 × 909091.
15 3 × 31 × 37 × 41 × 271 × 2906161.
16 11 × 17 × 73 × 101 × 137 × 5882353.
17 2071723 × 5363222357.
18 32 × 7 × 11 × 13 × 19 × 37 × 52579 × 333667.
19 prime
20 11 × 41 × 101 × 271 × 3541 × 9091 × 27961.
21 3 × 37 × 43 × 239 × 1933 × 4649 × 10838689.
22 112 × 23 × 4093 × 8779 × 21649 × 513239.
23 prime
24 3 × 7 × 11 × 13 × 37 × 73 × 101 × 137 × 9901 × 99990001.
25 41 × 271 × 21401 × 25601 × 182521213001.
26 11 × 53 × 79 × 859 × 265371653 × 1058313049.
27 33 × 37 × 757 × 333667 × 440334654777631.
28 11 × 29 × 101 × 239 × 281 × 4649 × 909091 × 121499449.
29 3191 × 16763 × 43037 × 62003 × 77843839397.
30 3 × 7 × 11 × 13 × 31 × 37 × 41 × 211 × 241 × 271 × 2161 × 9091 × 2906161.
31 2791 × 6943319 × 57336415063790604359.
32 11 × 17 × 73 × 101 × 137 × 353 × 449 × 641 × 1409 × 69857 × 5882353.
33 3 × 37 × 67 × 21649 × 513239 × 1344628210313298373.
34 11 × 103 × 4013 × 2071723 × 5363222357 × 21993833369.
35 41 × 71 × 239 × 271 × 4649 × 123551 × 102598800232111471.
36 32 × 7 × 11 × 13 × 19 × 37 × 101 × 9901 × 52579 × 333667 × 999999000001.
37 2028119 × 247629013 × 2212394296770203368013.
38 11 × 909090909090909091 ×R19.
39 3 × 37 × 53 × 79 × 265371653 × 900900900900990990990991.
40 11 × 41 × 73 × 101 × 137 × 271 × 3541 × 9091 × 27961 × 1676321 × 5964848081.
41 83 × 1231 × 538987 × 201763709900322803748657942361.
42 3 × 72 × 11 × 13 × 37 × 43 × 127 × 239 × 1933 × 2689 × 4649 × 459691 × 909091 × 10838689.
43 173 × 1527791 × 1963506722254397 × 2140992015395526641.
44 112 × 23 × 89 × 101 × 4093 × 8779 × 21649 × 513239 × 1052788969 × 1056689261.
45 32 × 31 × 37 × 41 × 271 × 238681 × 333667 × 2906161 × 4185502830133110721.
46 11 × 47 × 139 × 2531 × 549797184491917 × R23.
47 35121409 × 316362908763458525001406154038726382279.
48 3 × 7 × 11 × 13 × 17 × 37 × 73 × 101 × 137 × 9901 × 5882353 × 99990001 × 9999999900000001.
49 239 × 4649 × 505885997 × 1976730144598190963568023014679333.
50 11 × 41 × 251 × 271 × 5051 × 9091 × 21401 × 25601 × 182521213001 × 78875943472201.
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Appendix: Primitive prime divisors of repunits
n Primitive prime divisors of Rn
2 11.
3 3, 37.
4 101.
5 41, 271.
6 7, 13.
7 239, 4649.
8 73, 137.
9 333667.

10 9091.
11 21649, 513239.
12 9901.
13 53, 79, 265371653.
14 909091.
15 31, 2906161.
16 17, 5882353.
17 2071723, 5363222357.
18 19, 52579.
19 1111111111111111111.
20 3541, 27961.
21 43, 1933, 10838689.
22 23, 4093, 8779.
23 11111111111111111111111.
24 99990001.
25 21401, 25601, 182521213001.
26 859, 1058313049.
27 757, 440334654777631.
28 29, 281, 121499449.
29 3191, 16763, 43037, 62003, 77843839397.
30 211, 241, 2161.
31 2791, 6943319, 57336415063790604359.
32 353, 449, 641, 1409, 69857.
33 67, 1344628210313298373.
34 103, 4013, 21993833369.
35 71, 123551, 102598800232111471.
36 999999000001.
37 2028119, 247629013, 2212394296770203368013.
38 909090909090909091.
39 900900900900990990990991.
40 1676321, 5964848081.
41 83, 1231, 538987, 201763709900322803748657942361.
42 127, 2689, 459691.
43 173, 1527791, 1963506722254397, 2140992015395526641.
44 89, 1052788969, 1056689261.
45 238681, 4185502830133110721.
46 47, 139, 2531, 549797184491917.
47 35121409, 316362908763458525001406154038726382279.
48 9999999900000001.
49 505885997, 1976730144598190963568023014679333.
50 251, 5051, 78875943472201.

Exercise

Find all prime numbersp for which 1
p

has period length 11.9

9Problem 2207,J. Recreational Math., 27 (1995) 59.



526 Repunits

Appendix: The multiplicative digital root

The multiplicative digital root of a number is the single digit number
obtained by iterating the digital product operation. Thus,

6244→ 6 · 2 · 4 · 4 = 192→ 1 · 9 · 2 = 18→ 1 cdot8 = 8.

Theorem 18.3 (Kuczma).The multiplicative digital root of n is 1 if and
only if n is a repunit.

Proof. The digital product of a number is 1 if and only if it is a repunit.
We claim that no number can have a repunitRn, n ≥ 2, for digital
product. If so, this would mean thatRn factors into one digit numbers,
and its prime divisors can only be 3 and 7. In other words,Rn = 3h · 7k
for some integersh, k ≥ 0.

The powers of 7 modulo 100 are 1, 7, 49, 43. Those of 3 modulo 100
are given in the first row of the table below. Their product cannot be 11
modulo 100.

1 3 9 27 81 43 29 87 61 83 49 47 41 23 69 7 21 63 89 67
7 21 63 89 67 1 3 9 27 81 43 29 87 61 83 49 47 41 23 69
49 47 41 23 69 7 21 63 89 67 1 3 9 27 81 43 29 87 61 83
43 29 87 61 83 49 47 41 23 69 7 21 63 89 67 1 3 9 27 813
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Exercise

1. What are the decimal expansions of1
2k , 1

5k , and 1
2h·5k ?

2. Calculate the period ofp = 67.

3. If p is any odd prime, show that the decimal expansion of the frac-
tion 1

p
will repeat in p−1

2
digits or some factor thereof it and only if

p ≡ ±3k (mod 40).

4. What is the smallest integer of2n identical digits which is the prod-
uct of twon-digit numbers?

Clearlyn ≥ 2. Since1111 = 11 × 101, we seek 6 digit numbers.
Now,

R6 = 3× 7× 11× 13× 37.

There are four ways of rearranging it as a product of two 3-digit
numbers:

143× 777 = 231× 481 = 259× 429 = 273× 407.

5. Let N be an integer ofp digits. If the last digit is removed and
placed before the remainingp−1 digits, a new number ofp digits is
formed which is1

n
th of the original number. Find the most general

such numberN .

6. (a) Find the smallest integerN such that, if the units digits is trans-
posed from right to left, a numberM is obtained whereM = 5N . 10

7. A certain 3-digit number yields a quotient of 26 when divided by
the sum of its digits. If the digits are reversed, the quotient is 48.
What is the smallest 3-digit number for which this is possible ?

8. Without the use of tables, find the smallest integer whose cube ter-
minates in seven sevens.11

10 N=142857;M=714285=5N.

11

96607533=901639512372747777777.
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Project: Period lengths of primes< 100

Find the period lengths of the primes< 100 by using the factorization
of repunits given above. Note that 59, 61, and 97 are the only primes
< 100 that cannot be found in the table above.

Prime Period lengths Prime Period lengths

7 11
13 17
19 23
29 31
37 41
43 47
53 59
61 67
71 73
79 83
89 97
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Project

It is known that the number

N = 19000458461599776807277716631

is a perfect cube. Find its cube rootM . Verify thatN = N0 the twenty-
eight numbersNi, 1 ≤ i ≤ 28 which are formed by cyclic permutations
of its digits are all divisible by the cube root ofN .

i Ni Ni ÷ M

0 19000458461599776807277716631

1 90004584615997768072777166311

2 45846159977680727771663119

3 458461599776807277716631190

4 4584615997768072777166311900

5 45846159977680727771663119000

6 58461599776807277716631190004

7 84615997768072777166311900045

8 46159977680727771663119000458

9 61599776807277716631190004584

10 15997768072777166311900045846

11 59977680727771663119000458461

12 99776807277716631190004584615

13 97768072777166311900045846159

14 77680727771663119000458461599

15 76807277716631190004584615997

16 68072777166311900045846159977

17 80727771663119000458461599776

18 7277716631190004584615997768

19 72777166311900045846159977680

20 27771663119000458461599776807

21 77716631190004584615997768072

22 77166311900045846159977680727

23 71663119000458461599776807277

24 16631190004584615997768072777

25 66311900045846159977680727771

26 63119000458461599776807277716

27 31190004584615997768072777166

28 11900045846159977680727771663
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More digital trivia

1. Larry, Curly, and Moe had an unusual combination of ages. The
sum of any two of the three ages was the reverse of the third age
(e.g., 16 + 52 = 68, the reverse of 86). All were under 100 years
old.

(a) What was the sum of the ages?

(b) If Larry was older than either of the others, what was the youngest
he could be?

2. Let n be a nonnegative integer. The number formed by placing2n

and2n+1 side by side in any order is divisible by 3.1

3. Find positive integersx, y, z (less than 100), such thatx2 + y2 =
z2 andX2 + Y 2 = Z2 whereX, Y, Z are derived fromx, y, z by
inserting an extra digit (the same for all) on the left.

4. (a) Find the smallest positive integerN having the property that the
sum of its digits does not divide the sum of the cubes of its digits.

(b) Find the two consecutive positive integers each of which equals
the sum of the cubes of its digits.2

5. Find two perfect cubes which, considered jointly, contain the digits
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 each once. Is the solution unique ?3

6. Show that there is but one five-digit integer whose last three digits
are alike and whose square contains no duplicate digits.4

1Suppose2n hask digits. Putting2n+1 on the left hand side of2n gives the number2n+1 · 10k + 2n.
Modulo 3, this is(−1)n+1 + (−1)n ≡ 0.

2 (a)N=112;(b)370and371.

3Unique solution:

213=9261and933=804357.

4

812222=6597013284.
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7. Determine the largest and smallest perfect squares which can be
written with the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, used once each
in both cases.

8. Find two perfect squares, of five digits each, which together contain
all the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. How many solutions are there
?

9. Let k ≥ 3. Determine all numbers of the form1k + 2k + · · ·+ nk

whose decimal expansions consist of the ten digits 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 without repetition.

10. Determine all binomial coefficients whose decimal expansions con-
sist of the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 without repetition.
5

11. Find a number whose cube and fourth power together contain the
ten digits, once each. (See E116 and Problem following E602).6

12. Find a multiple of 7 whose square has eight digits of the form
ababbbcc. 7

13. What is the largest prime whose square contains no duplicate digits
? 8

14. Find a four-digit square which remains a square when two zeros are
intercalated between the thousands digit and the hundreds digit.9

15. Find a number and its fourth power, which together have nine dig-
its, all different. 10

16. Find a perfect square whose digits form one of the permutations of
five consecutive digits. (See also E538, 578).11

17. Find a perfect square of 7 digits with all digits even and positive.
12

5 (5954)=5169738420and(2535)=8301429675.

6

18istheonlypossiblenumber: 183=5832and184=104976.

In fact, 2, 18 and 69 are the only num-
bers with two distinct powers which together contain the ten digits, once each.

7

75882=57577744

, even without restriction to multiples of 7.
8

213972=457831609.

9

522=2704,200704=4482and872=7569,700569=8372.

10

n=32,andn4=1048576.

11

1522=23104and1792=32041.

12

16922=2862864,28782=8282884,29782=8868484.
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18. Find a number of the formab0cd whose square contains the nine
digits 1, 2, 3, 4, 5, 6, 7, 8, 9.13

19. Find a perfect cube whose digits form a permutation of consecutive
digits. (See also E538).14

20. Find a square of ten digits such that the two numbers formed by the
first five and last five digits are consecutive.15

21. Find the smallest four-digit number such that the sum of products
of pairs of digits is equal to the sum of products of sets of three.

22. Find three three-digit numbers in geometrical progression which
can be derived from one another by cyclic permutation of digits.
(See also E714).

13The squares:

326597184,361874529,529874361,576432081,627953481,842973156.

14

2033=8365427.

The only higher powers satisfying the same condition are the fifth powers of 32 and
243.

15

363652=1322413225;636362=4049540496.
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3 More Archimedean circles
Exercise
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20.1 Archimedes’ twin circles

Let P be a point on a segmentAB. The region bounded by the three
semicircles (on the same side ofAB) with diametersAB,AP andPB is
called a shoemaker’s knife. Suppose the smaller semicircles have radiia
andb respectively. LetQ be the intersection of the largest semicircle with
the perpendicular throughP to AB. This perpendicular is an internal
common tangent of the smaller semicircles.

A BOO1 O2P A BOO1 O2P

Q

U

V

H

K

R

Theorem 20.1 (Archimedes).The two circles each tangent to CP , the
largest semicircle AB and one of the smaller semicircles have equal
radii t, given by

t =
ab

a + b
.

A BOO1 O2P A BOO1 O2P

Q
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20.2 Incircle of the shoemaker’s knife

20.2.1 Archimedes’ construction

Theorem 20.2 (Archimedes).The circle tangent to each of the three
semicircles has radius given by

ρ =
ab(a + b)

a2 + ab+ b2
.

A BOO1 O2P

C

X

Y

Construction

G

H

H′G′A BC

Z

Y X
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20.2.2 Bankoff’s constructions

Theorem 20.3 (Leon Bankoff).If the incircle C(ρ) of the shoemaker’s
knife touches the smaller semicircles at X and Y , then the circle through
the points P , X , Y has the same radius as the Archimedean circles.

A BOO1 O2P

C

Z

X

Y

Proof. The circle throughP , X, Y is clearly the incircle of the triangle
CO1O2, since

CX = CY = ρ, O1X = O1P = a, O2Y = O2P = b.

The semiperimeter of the triangleCO1O2 is

a+ b+ ρ = (a + b) +
ab(a + b)

a2 + ab+ b2
=

(a+ b)3

a2 + ab+ b2
.

The inradius of the triangle is given by√
abρ

a + b+ ρ
=

√
ab · ab(a + b)

(a + b)3
=

ab

a + b
.

This is the same ast, the common radius of Archimedes’ twin circles.

First construction

A BOO1 O2P

C

X

YC3

Q1

Q2

Z
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Second construction

Z

Y X

A BC

Q

P

20.2.3 Woo’s three constructions

Z

Y
X

A BC

Q

S
P

Z

Y X
A B

C

M

Z

Y
X

A BC
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20.3 More Archimedean circles

Let UV be the external common tangent of the semicirclesO1(a) and
O2(b), which extends to a chordHK of the semicircleO(a+ b). LetC4

be the intersection ofO1V andO2U . Since

O1U = a, O2V = b, and O1P : PO2 = a : b,

C4P = ab
a+b

= t. This means that the circleC4(t) passes throughP and
touches the common tangentHK of the semicircles atN .

A BOO1 O2P

N

U

V

H

K

C4

M

C5

Let M be the midpoint of the chordHK. SinceO andP are sym-
metric (isotomic conjugates) with respect toO1O2,

OM + PN = O1U +O2V = a+ b.

it follows that(a+b)−QM = PN = 2t. From this, the circle tangent to
HK and the minor arcHK of O(a+ b) has radiust. This circle touches
the minor arc at the pointQ.

Theorem 20.4 (Thomas Schoch).The incircle of the curvilinear trian-
gle bounded by the semicircle O(a+ b) and the circles A(2a) and B(2b)
has radius t = ab

a+b
.

A BOO1 O2P

S

Proof. Denote this circle byS(x). Note thatSO is a median of the
triangleSO1O2. By Apollonius theorem,

(2a + x)2 + (2b+ x)2 = 2[(a+ b)2 + (a+ b− x)2].

From this,x = ab
a+b

= t.
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Exercise

1. The circles(C1) and(C ′
1) are each tangent to the outer semicircle

of the shoemaker’s knife, and toOQ1 atQ1; similarly for the circles
(C2) and(C ′

2). Show that they have equal radiit = ab
a+b

.

C1

C2

C′
1

C′
2

A BOO1 O2P

Q1

Q2

2. We call the semicircle with diameterO1O2 themidway semicircle
of the shoemaker’s knife.

Show that the circle tangent to the linePQ and with center at the
intersection of(O1) and the midway semicircle has radiust = ab

a+b
.

C

C′

A BO PO1 O2

Q

3. Show that the radius of the circle tangent to the midway semicircle,
the outer semicircle, and with center on the linePQ has radius
t = ab

a+b
.

C

A BO PO1 O2

Q
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21.1 Proofs by construction of sequence of relatively
prime numbers

Fibonacci numbers1

Sincegcd(Fm, Fn) = Fgcd(m,n), if there are only finitely many primesp1,
. . . ,pk, then the primes inFp1 , . . . ,Fpk

are distinct, and each one of them
has only one prime divisors. This contradictsF19 = 4181 = 37× 113.

Fermat numbers

The Fermat numbers areFn := 22n
+ 1. It is well known that Fermat’s

conjecture of the primality ofFn is wrong. While

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537

are all primes, Euler found that

F5 = 232 + 1 = 4294967297 = 641× 6700417.

Note that

Fn − 2 = 22n − 1 =
(
22n−1

+ 1
)(

22n−1 − 1
)
= Fn−1(Fn−1 − 2).

By induction,

Fn = Fn−1Fn−2 · · ·F1 · F0 + 2, n ≥ 1.

From this, we see thatFn does not contain any factor ofF0, F1, . . . ,
Fn−1. Hence, the Fermat numbers are pairwise relatively prime. From
this, it follows that there are infinitely primes.

1M. Wunderlich, Another proof of the infinite primes theorem,American Math. Monthly, 72 (1965) 305.
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21.2 Somos sequences

Define two sequences(an) and(bn) with initial values

a0 = a1 = 1, b0 = 0, b1 = 1,

and forn ≥ 2 recursively by

an =an−2bn−1,

bn =an−1 + an.

Here are the first few terms
n 0 1 2 3 4 5 6 7 8 9 · · ·
an 1 1 1 2 3 10 39 490 20631 10349290 · · ·
bn 0 1 2 3 5 13 49 529 21121 10369921 · · ·

Theorem 21.1. The terms of the sequence (bn), n ≥ 1 are relatively
prime.

Proof. If we calculate the first few terms

a2 =a0b1 = b1,

a3 =a1b2 = b2,

a4 =a2b3 = b1b3,

a5 =a3b4 = b2b4,

a6 =a4b5 = b1b3b5,

a7 =a5b6 = b2b4b6,

...

we see a pattern, namely,

a2n =b1b3 · · · b2n−1,

a2n+1 =b2b4 · · · b2n.
Suppose, inductively, thatb1, b2, . . . ,b2n−1 are relatively prime. Then,

b2n = a2n−1 + a2n = b2b4 · · · b2n−2 + b1b3 · · · b2n−1

does not contain any divisor ofb1, b2, . . . ,b2n−1; nor does

b2n+1 = a2n + a2n+1 = b1b3 · · · b2n−1 + b2b4 · · · b2n
contain any divisor ofb1, b2, . . . ,b2n. It follows by induction that no two
of the termsb1, b2, . . . ,bn, . . . contain a common divisor.
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21.3 Fürstenberg’s topological proof made easy

There is a famous proof of the infinitude of primes using topology. It
can be found in many books. Apart from an introductory sentence, here
is the entire article of [F¨urstenberg]:

We introduce a topology into the space of integersS, by using the arithmetic pro-
gressions (from−∞ to +∞) as a basis. It is not difficult to verify that this actually
yields a topological space. In fact, under this topology,S may be shown to be nor-
mal and hence metrizable. Each arithmetic progression is closed as well as open,
since its complement is the union of other arithmetic progressions (having the same
difference). As a result, the union of any finite number of arithmetic progression
is closed. Consider now the setA =

⋃
Ap, whereAp consists of all multiples of

p, andp runs through the set of primes≥ 2. The only numbers not belonging to
A are−1 and 1, and since the set{−1, 1} is clearly not an open set,A cannot be
closed. HenceA is not a finite union of closed sets which proves that there are an
infinity of primes.

The most recent issue of Mathematics Magazine2 contains a para-
phrase of this proof, avoiding the language of topology.

Let Z be the set of integers. We say that a subsetA ⊂ Z is periodic
if there is an integerk such that for every integern ∈ Z, n ∈ A if and
only if n + k ∈ A. In other words, a period set is a (finite) union of
doubly infinite arithmetic progressions of the same common difference.
The following are clear.

1. If A is periodic, then so is its complementZ \ A.

2. If A andB are periodic sets, so is their union, the period of the
union being the lcm of the periods of the sets. For example, if
A3 := {3n : n ∈ Z} andA5 := {5n : n ∈ Z}, thenA3 ∪ A5 is
the union of the arithmetic progressions of common difference 15,
containing the terms 0, 3, 5, 6, 9, 10.

3. (2) extends to finite unions.

For each prime numberp, let Ap := {np : n ∈ Z} consists of the
multiples ofp. This is clearly periodic. Suppose there are only finitely
many primes. Then, the (finite) unionA :=

⋃
p prime Ap is periodic, and

so is its complement. This complement is clearly the set{−1, 1}, which,
being finite, cannot be periodic. This contradiction shows that there are
indeed infinitely many primes.

2Math. Mag., 76 (2003) number 3.
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Appendix: Euclid’s proof 3

The prime numbers or primes are the numbers

(A) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

which cannot be resolved into smaller factors.. . . We have to provethat
there are infinitely many primes,i.e., that the series(A) never comes to
an end.

Let us suppose that it does, and that

2, 3, 5, . . . , P

is the complete series (so thatP is the largest prime); and let us, on this
hypothesis, consider the numberQ defined by the formula

Q = (2 · 3 · 5 · · ·P ) + 1.

It is plain thatQ is not divisible by any of 2, 3, 5,. . . , P ; for it leaves
the remainder 1 when divided by any one of these numbers. But, if
not itself prime, it is divisible bysome prime, and therefore there is a
prime (which may beQ itself) greater than any of them. This contradicts
our hypothesis, that there is no prime greater thanP ; and therefore this
hypothesis is false.

The proof is byreductio ad absurdum, andreductio ad absurdum,
which Euclid loved so much, is one of a mathematician’s finest weapon.
It is a far finer gambit than any chess gambit: a chess player may offer
the sacrifice of a pawn or even a prize, but a mathematician offersthe
game.

3G. H. Hardy’s paraphrase. [Hardy, pp.95–96].
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Appendix: The prime numbers below 20000
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Exercise

1. Let pn denote then-th prime number. Find the smallest value ofn
for whichp1p2 · · · pn + 1 is not a prime number.

2. Find the smallest value ofn for whichp1p2 · · · pn−1 is not a prime
number.

3. Find the smallest value ofn > 3 for whichn!+1 is a prime number.

4. Find the smallest value ofn > 7 for whichn!−1 is a prime number.

5. Find a shortest sequence of prime numbersp1 < p2 < · · · < pn
satisfying the following conditions.
(i) p1 = 2,
(ii) pk+1 < 2pk for k = 1, . . . , n− 1,
(iii) pn > 10000.
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Project: Prime links

A prime link of lengthn is a permutation of 1, 2, . . .n beginning with
1 and ending withn such that the sum of each pair of adjacent terms is
prime. This was proposed and solved by Morris Wald [157]. Forn ≤ 6,
the link is unique. Forn = 7 there are two links:1, 4, 3, 2, 5, 6, 7 and
and1, 6, 5, 2, 3, 4, 7. Wald suggested working backwards. Start withn
and precede it with the greatest remaining member of the set whose sum
with n is a prime, and repeat in like fashion. Here are the first 10 links:

1.
1, 2.
1, 2, 3.
1, 2, 3, 4.
1, 4, 3, 2, 5.
1, 4, 3, 2, 5, 6.
1, 4, 3, 2, 5, 6, 7.
1, 2, 3, 4, 7, 6, 5, 8.
1, 2, 3, 4, 7, 6, 5, 8, 9.
1, 2, 3, 4, 7, 6, 5, 8, 9, 10.

Continue with larger values ofn.
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Project: Tuncatable primes

Consider the prime number 73939133. The numbers obtained by trun-
cations from the right are all primes:

73939133, 7393913, 739391, 73939, 7393, 739, 73, 7.

More generally, we call a numberN a right-truncatable prime if every
number obtained from truncatingN from the right is a prime or 1.

A complete list of right-truncatable primes can be found in [Waltrom
and Berg].

Write a computer program to find all right-truncatable primes.
Similarly, define left-truncatable primes, and bi-truncatable primes as

those which are both left- and right-truncatable primes.

53 3797 73331 7393931
7331 373393 7393933

317 23333 593993 23399339
599 23339 719333 29399999
797 31193 739397 37337999

2393 31379 739399 59393339
3793 37397 2399333 73939133

Here are all the bi-truncatable primes:

1 2 3 5 7
11 13 17 23 31
37 53 71 73 113
131 137 173 311 313
317 373 1373 3137
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Chapter 22

Strings of prime numbers

1 The prime number spiral
2 The prime number spiral beginning with 17
3 The prime number spiral beginning with 41

Appendix: The number spiral
Appendix: Long chains of primes
Appendix: Consecutive primes with consecutive prime digital sums
Projects
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22.1 The prime number spiral

The first 1000 prime numbers arranged in a spiral.
= prime of the form4n+ 1;
= prime of the form4n+ 3.
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22.2 The prime number spiral beginning with 17
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17

The numbers on the 45 degree line aren2 + n + 17.
Let f(n) = n2 + n + 17. The numbersf(0), f(1), . . .f(15) are all

prime.

n f(n) n f(n) n f(n) n f(n)
0 17 1 19 2 23 3 29
4 37 5 47 6 59 7 73
8 89 9 107 10 127 11 149
12 173 13 199 14 227 15 257
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22.3 The prime number spiral beginning with 41
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41

The numbers on the 45 degree line aref(n) = n2 + n+ 41.
f(n) = n2 + n + 41 is prime for0 ≤ n ≤ 39.

n f(n) n f(n) n f(n) n f(n) n f(n)
0 41 1 43 2 47 3 53 4 61
5 71 6 83 7 97 8 113 9 131
10 151 11 173 12 197 13 223 14 251
15 281 16 313 17 347 18 383 19 421
20 461 21 503 22 547 23 593 24 641
25 691 26 743 27 797 28 853 29 911
30 971 31 1033 32 1097 33 1163 34 1231
35 1301 36 1373 37 1447 38 1523 39 1601
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Prime number spiral beginning with 41: A closer look
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Appendix: The number spiral

Beginning with the origin, we trace out a spiral clockwise through the
lattice points. Along with this, we label the lattice points 0, 1, 2,. . . consecutively.

b b

bbb

b

b b b b

b

b

bbbbb

b

b

b

b b b b b b

b

b

b

b

b

0 1

2
4

6
9

12
16

20 25

30

Given a positive integerN , let (2m − 1)2 be the largestodd square
≤ N , and write

N = (2m− 1)2 + q, 0 ≤ q < 8m.

Then the numberN appears at the lattice point

(m,−m+ q + 1) if q ≤ 2m− 1,

(3m− q − 1, m) if 2m− 1 ≤ q ≤ 4m− 1,

(−m, 5m− q − 1) if 4m− 1 ≤ q ≤ 6m− 1,

(−7m+ q + 1,−m) if 6m− 1 ≤ q ≤ 8m− 1.

Denote byf(m,n) the number at the lattice point(m,n).
It is clear that along the 45-degree line,f(n, n) = 2n(2n− 1). Also,

f(−n, n) = 4n2 if n ≥ 0,

and
f(n,−(n− 1)) = (2n− 1)2 if n > 0.

More generally,

f(m,n) =



4m2 − 3m+ n if m > |n|,
4m2 −m− n if −m = |m| > |n|,
4n2 − n−m if n > |m|,
4n2 − 3n+m if − n = |n| > |m|.
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Exercise

1. Label the vertices of a cube with the numbers 1 through 8 in such a
way that thesum of the endpoints of each edge is prime.
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Appendix: Long chains of primes

Beiler [p.220] also considers the cubic functionf(n) = n3 + n2 + 17,
and noted that forn = −14,−13, · · · , 10, the string of 25 values are all
primes. This is true only when we take−1 as a prime, sincef(−3) =
−1. Even if we break the string into two, we still get two long chains of
primes:

f(−14), f(−13), . . . ,f(−4) a chain of 11 primes.
f(−2), f(−1), f(0), . . . , f(10). But f(0) = f(−1) = 17, we only

have 12 distinct primes.
Beyond these, the longest strings of primes have 6 members. The first

of these begin withn = 717.
Note that on the negative side, there is a string of 10 consecutive

primes from−183 to−174. Replacingn by−n we considern3−n−17
for n = 174, . . . ,183:

n n3 + n2 + 17 factorization
173 5147771 683× 7537
174 5237731 prime
175 5328733 prime
176 5420783 prime
177 5513887 prime
178 5608051 prime
179 5703281 prime
180 5799583 prime
181 5896963 prime
182 5995427 prime
183 6094981 prime
184 6195631 13× 476587
185 6297383 prime

Higgins: 40 primes fromg(x) = 9x2 − 231x+ 1523, x = 0, . . . , 39.
or h(x) = 9x2 − 471x+ 6203 give the same primes in reverse order.
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Appendix: Consecutive primes with consecutive prime digital sums

Charles Twigg asked, inCrux Math., Problem 228, for four consecutive
primes having digital sums that, in some order, are consecutive primes.
And then five.

The beginning of the prime number sequence provides an easy an-
swer: just consider the primes 2, 3, 5, 7, or 3, 5, 7, 11. Beyond these, the
first quadruple is 191, 193, 197, and 199, with digit sums 11, 13, 17, 19.

The five consecutive primes 311, 313, 317, 331, 337 all have prime
digital sums, though these are the same for 313 and 331.

The first sequence of five consecutive primes who digital sums form
another sequence of 5 consecutive primes is

(1291, 13), (1297, 19), (1301, 5), (1303, 7), (1307, 11).

Twigg listed such quadruples and quintuples up to primes around 5
million (about 350000 primes). But within this range he had overlooked
the better records

(102251, 11), (102253, 13), (102259, 19), (102293, 17), (102299, 23), (102301, 7)

and
3511973, 29 3511993, 31 3511999, 37 3512011, 13
3512051, 17 3512053, 19 3512057, 23

A little bit beyond these we find the best record for eight up to the first 1
million primes:

5919931, 37 5919937, 43 5919959, 47 5919971, 41
5920003, 19 5920043, 23 5920049, 29 5920069, 31

Within the same range, there are also 15 consecutive primes whose
digital sums are primes, though only with 5 different values:

2442113, 17 2442133, 19 2442151, 19 2442173, 23 2442179, 29
2442191, 23 2442197, 29 2442199, 31 2442227, 23 2442263, 23
2442287, 29 2442289, 31 2442311, 17 2442353, 23 2442359, 29

Another “long” chain of 9 consecutive primes with 5 different con-
secutive prime digital sums can be found among “small” primes:

14293, 19 14303, 11 14321, 11 14323, 13 14327, 17
14341, 13 14347, 19 14369, 23 14387, 23
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Project

Find the coordinates of then-th point of the path, beginning with the
origin.

What is the position of the lattice point(a, b) in the sequence?



Chapter 23

Strings of composites

1 Strings of consecutive composite numbers
2 Strings of consecutive composite values ofn2 + 1
3 Strings of consecutive composite values ofn2 + n+ 41

Appendix: 50 consecutive composite values ofx2 + x+ 41
Project
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23.1 Strings of consecutive composite numbers

It is well known that there are strings of consecutive composite numbers
of arbitrary lengths. For example, then numbers

(n+ 1)! + 2, (n+ 1)! + 3, · · · , (n+ 1)! + (n+ 1)

are all composites. These numbers are, however, very large.
In the table below, we give the first string ofn consecutive composite

numbers.

n first string of n composite numbers
3 8 · · ·10
5 24 · · ·28
7 90 · · ·96
13 114 · · ·126
17 524 · · ·540
19 888 · · ·906
21 1130 · · ·1150
33 1328 · · ·1360
35 9552 · · ·9586
43 15684 · · ·15726
51 19610 · · ·19660
71 31398 · · ·31468
85 155922 · · ·156006
95 360654 · · ·360748
111 370262 · · ·370372
113 492114 · · ·492226
117 1349534 · · ·1349650
131 1357202 · · ·1357332
147 2010734 · · ·2010880
153 4652354 · · ·4652506
179 17051708 · · ·17051886
209 20831324 · · ·20831532

The first string of 100 consecutive composite numbers begins with
370262.1 These are significantly less than 101!.

1It actually extends to 370372, with 111 composite numbers. The string beginning with 396734 just
misses by 1; it gives 99 consecutive composites.
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23.2 Strings of consecutive composite values ofn2 + 1

m n · · ·n+m− 1
3 7 · · ·9
9 27 · · ·35
13 41 · · ·53
15 95 · · ·109
19 185 · · ·203
33 351 · · ·383
39 497 · · ·535
45 3391 · · ·3435
87 3537 · · ·3623
99 45371 · · ·45469
111 82735 · · ·82845
129 99065 · · ·99193
151 357165 · · ·357315
211 840905 · · ·841115
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23.3 Consecutive composite values ofx2 + x+ 41

Problem 142 ofCrux Mathematicorum asks for 40 consecutive positive
integer values ofx for which f(x) = x2 + x + 41 are all composites.
Several solutions were published. Unfortunately these numbers were
quite large, being constructed by a method similar to the one above. For
example, here is one. Since forn = 0, . . . , 39,f(n) ≤ f(39) = 1601, if
we setxn = 1601! + n, then

f(xn) = x2
n + xn + 41 = (1601!) · (1601! + 2b+ 1) + f(n)

is a multiple off(n) which is greater thanf(n). These numbers are
therefore composite. These numbers are quite large since 1601! has
4437 digits. TheCrux editor wrote that “[i]t would be interesting if
some computer nut were to make a search and discover the smallest set
of 40 consecutive integersx for whichf(x) is composite”.

A near miss is 176955. The string of 38 consecutive numbers begin-
ning with this all give compositef(x). H. L. Nelson, then (and now) ed-
itor of Journal of Recreational Mathematics, found this smallest string,
with factorization of the correspondingf(x). It begins with1081296.

There are longer strings.2 Up to 5,000,000, the longest string of
composites has 50 numbers. There are three such strings, beginning
with 2561526, 3033715, and 3100535 respectively. See Appendix 2 for
the first of these strings.

How about long strings of primes? They are relatively few. The only
strings of≥ 10 consecutive primes begin with 66, 191, 219, 534, and
179856, and no more up to 5,000,000. Each of these strings contains 10
primes, except the one beginning with 219, which contains 13 primes.

2For example, beginning with 1204431, we have a string of 45 composites.
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Appendix: 50 consecutive composite values ofx2 + x+ 41

x x2 + x+ 41 Factorization
2561525 6561412887191 prime
2561526 6561418010243 1693357 × 3874799
2561527 6561423133297 1097 × 5981242601
2561528 6561428256353 167 × 971 × 40463429
2561529 6561433379411 499 × 13149165089
2561530 6561438502471 167 × 797 × 853 × 57793
2561531 6561443625533 773 × 8488284121
2561532 6561448748597 71 × 133261 × 693487
2561533 6561453871663 379 × 7591 × 2280667
2561534 6561458994731 1512947 × 4336873
2561535 6561464117801 39233 × 167243497
2561536 6561469240873 347 × 2339 × 8084281
2561537 6561474363947 367 × 17878676741
2561538 6561479487023 3049 × 2152010327
2561539 6561484610101 53 × 83 × 661 × 2256559
2561540 6561489733181 3947 × 1662399223
2561541 6561494856263 10501 × 624844763
2561542 6561499979347 3557 × 1844672471
2561543 6561505102433 71 × 92415564823
2561544 6561510225521 47 × 139606600543
2561545 6561515348611 722317 × 9083983
2561546 6561520471703 53 × 4973 × 24894887
2561547 6561525594797 2927 × 2241723811
2561548 6561530717893 419 × 15659977847
2561549 6561535840991 472 × 2970364799
2561550 6561540964091 2003 × 3275856697
2561551 6561546087193 43 × 919 × 1039 × 159811
2561552 6561551210297 83 × 12577 × 6285667
2561553 6561556333403 151 × 43454015453
2561554 6561561456511 43 × 152594452477
2561555 6561566579621 653 × 10048340857
2561556 6561571702733 41 × 160038334213
2561557 6561576825847 41 × 160038459167
2561558 6561581948963 2053 × 3196094471
2561559 6561587072081 9049 × 725117369
2561560 6561592195201 1601 × 8933 × 458797
2561561 6561597318323 1994669 × 3289567
2561562 6561602441447 691 × 23689 × 400853
2561563 6561607564573 4111 × 1596109843
2561564 6561612687701 131 × 419 × 1259 × 94951
2561565 6561617810831 238363 × 27527837
2561566 6561622933963 4783 × 1371863461
2561567 6561628057097 2039 × 3218061823
2561568 6561633180233 61 × 97 × 1108945949
2561569 6561638303371 694367 × 9449813
2561570 6561643426511 5417 × 6529 × 185527
2561571 6561648549653 347 × 18909649999
2561572 6561653672797 4933 × 1330154809
2561573 6561658795943 5839 × 1123764137
2561574 6561663919091 151 × 397 × 109457753
2561575 6561669042241 313 × 1999 × 10487143
2561576 6561674165393 prime
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Project: Strings of consecutive composite values ofn2 + n + 1

Find the first strings of consecutive composite values ofn2 + n+ 1.

m n · · ·n+m− 1
3 9 · · ·11
5 28 · · ·32

Project

The first string of 99 consecutive composite values ofn2+1 begins with
n = 45371. The string with more than 100 composite values ofn2 + 1
has 111 members beginning with 82735. What is the longest of such a
string you can find?
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24.1 Perfect numbers

A number is perfect is the sum of its proper divisors (including 1) is
equal to the number itself.

Theorem 24.1 (Euclid). If 1 + 2 + 22 + · · ·+ 2k−1 = 2k − 1 is a prime
number, then 2k−1(2k − 1) is a perfect number.

Note:2k−1 is usually called thek-th Mersenne number and denoted
byMk. If Mk is prime, thenk must be prime.

Theorem 24.2 (Euler). Every even perfect number is of the form given
by Euclid.

Open problem

Does there exist anodd perfect number?

Theorem-joke 24.1 (Hendrik Lenstra). Perfect squares do not exist. 1

Proof. Supposen is a perfect square. Look at the odd divisors ofn.
They all divide the largest of them, which is itself a square, sayd2. This
shows that the odd divisors ofn come in pairsa, b wherea ·b = d2. Only
d is paired to itself. Therefore the number of odd divisors ofn is also
odd. In particular, it is not2n. Hencen is not perfect, a contradiction:
perfect squares don’t exist.

1Math. Intelligencer, 13 (1991) 40.
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24.2 Charles Twigg on the first 10 perfect numbers

There are only 39 known Mersenne primes, and therefore 39 known per-
fect numbers. See Appendix. LetPn be then-th perfect number.

n k Mk Pn = 2k−1Mk
1 2 3 6
2 3 7 28
3 5 31 496
4 7 127 8128
5 13 8191 33550336
6 17 131071 8589869056
7 19 524287 137438691328
8 31 2147483647 2305843008139952128
9 61 2305843009213693951 2658455991569831744654692615953842176
10 89 618970019642690137449562111 191561942608236107294793378084303638130997321548169216

• P1 is the difference of the digits ofP2. In P2, the units digit is the
cube of the of tens digit.

• P3 andP4 are the first two perfect numbers prefaced by squares.
The first two digits ofP3 are consecutive squares. The first and last
digits ofP4 are like cubes. The sums of the digits ofP3 andP4 are
the same, namely, the prime 19.

• P4 terminates bothP11 andP14. 2

• Three repdigits are imbedded inP5.

• P7 contains each of the ten decimal digits except 0 and 5.

• P9 is the smallest perfect number to contain each of the nine nonzero
digits at least once. It is zerofree.

• P10 is the smallest perfect number to contain each of the ten decimal
digits at least once.

2These contain respectively 65 and 366 digits.
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24.3 Abundant and deficient numbers

A numbern is abundant, perfect, or deficient if the sum of its proper
divisors (including 1 but excludingn itself) is greater than, equal to, or
less thann. If we denote byσ(n) the sum ofall divisors ofn, including
1 andn itself, thenn is abundant, perfect, or deficient according asσ(n)
is greater than, equal to, or less than2n. The advantage of usingσ(n) is
that it can be easily computed if we know hown factors into primes:

Abundant numbers up to 200:

12 18 20 24 30 36 40 42 48 54 56 60 66 70 72
78 80 84 88 90 96 100 102 104 108 112 114 120 126 132
138 140 144 150 156 160 162 168 174 176 180 186 192 196 198
200

Deficienteven numbers up to 200:
2 4 8 10 14 16 22 26 32 34 38 44 46 50 52
58 62 64 68 74 76 82 86 92 94 98 106 110 116 118
122 124 128 130 134 136 142 146 148 152 154 158 164 166 170
172 178 182 184 188 190 194

All multiples of 6 are abundant. But not conversely. 20 is abundant.
945 is the first odd abundant number.
5775 and 5776 are the first pair of abundant numbers.
Pairs of consecutive abundant numbers up to 10,000:

5775, 5776 5984, 5985 7424, 7425 11024, 11025
21735, 21736 21944, 21945 26144, 26145 27404, 27405
39375, 39376 43064, 43065 49664, 49665 56924, 56925
58695, 58696 61424, 61425 69615, 69616 70784, 70785
76544, 76545 77175, 77176 79695, 79696 81080, 81081
81675, 81676 82004, 82005 84524, 84525 84644, 84645
89775, 89776 91664, 91665 98175, 98176 . . .

The first triple of abundant numbers3

n factorization σ(n) σ(n)− 2n
171078830 2 · 5 · 13 · 23 · 29 · 1973 358162560 16004900
171078831 33 · 7 · 11 · 19 · 61 · 71 342835200 677538
171078832 24 · 31 · 344917 342158656 992

3Discovered in 1975 by Laurent Hodges and Reid, [Pickover, p.364].
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Appendix: Mersenne primes

Primes of the formMk = 2k − 1 are called Mersenne prime. The only
known Mersenne primes are listed below.

k Year Discoverer k Year Discoverer

17 1588 P.A.Cataldi 19 1588 P.A.Cataldi
31 1750 L.Euler 61 1883 I.M.Pervushin
89 1911 R.E.Powers 107 1913 E.Fauquembergue
127 1876 E.Lucas 521 1952 R.M.Robinson
607 1952 R.M.Robinson 1279 1952 R.M.Robinson
2203 1952 R.M.Robinson 2281 1952 R.M.Robinson
3217 1957 H.Riesel 4253 1961 A.Hurwitz
4423 1961 A.Hurwitz 9689 1963 D.B.Gillies
9941 1963 D.B.Gillies 11213 1963 D.B.Gillies
19937 1971 B.Tuckerman 21701 1978 C.Noll, L.Nickel
23209 1979 C.Noll 44497 1979 H.Nelson, D.Slowinski
86243 1982 D.Slowinski 110503 1988 W.N.Colquitt, L.Welsch
132049 1983 D.Slowinski 216091 1985 D.Slowinski
756839 1992 D.Slowinski,P.Gage 859433 1993 D.Slowinski
1257787 1996 Slowinski and Gage 1398269 1996 Armengaud, Woltman et al.
2976221 1997 Spence, Woltman, et.al. 3021377 1998 Clarkson, Woltman,

Kurowski et. al.
6972593 1999 Hajratwala, Woltman, 13466917 2001 Cameron, Woltman,

Kurowski et. al. Kurowski et. al.

M13466917 has 4053946 digits and is the largest known prime.



632 Perfect numbers

Appendix: Three important number theoretic functions

Let n be a positive integer with prime factorization

n =
k∏
i=1

pai
i

There are several important numbers associated withn.

1. The number of divisors ofn is

d(n) =

k∏
i=1

(1 + ai).

2. The sum of divisors ofn, including 1 andn itself, is

σ(n) =

k∏
i=1

pai+1
i

pi − 1
.

3. The number of positive integers< n which are relatively prime to
n is given by

φ(n) = n

k∏
i=1

(
1− 1

pi

)
.

These functions are all multiplicative in the sense that

f(mn) = f(m)f(n) whenever gcd(m,n) = 1.
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24.3.1 Appendix: Two enumerations of the rational numbers in
(0,1)

Consider two enumerations of the rational numbers in (0,1).
E1 lists them by increasing denominator, and for equal denominators,

by increasing numerator. Thus,

E1 :
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
, . . . .

E2, on the other hand, lists them by increasing sum of numerator
and denominator, and for equal sums of terms, by increasing numerator.
Thus,

E2 :
1

2
,
1

3
,
1

4
,
2

3
,
1

5
,
1

6
,
2

5
,
3

4
,
1

7
,
3

5
,
1

8
, . . . .

The fractions1
2
, 1

3
, and 2

5
occupy the same positions in both se-

quences. More generally, the rational numberm
n

(with m < n and
gcd(m,n) = 1) occupies position

n−1∑
k=2

φ(k) +
m∑
k=1

χ(k, n)

in enumerationE1 and position

1

2

m+n−1∑
k=3

φ(k) +

m∑
k=1

χ(k,m+ n− k)

in enumerationE2. Here,

χ(m,n) =

{
1 if gcd(m,n) = 1,

0 otherwise.

This was Computer Challenge 511 ofJournal of Recreational Math-
ematics. The solution lists 10 of these.4

Fraction 1
2

1
3

2
5

9
23

30
73

59
143

67
163

97
235

197
477

513
1238

Position 1 2 7 158 1617 6211 8058 16765 69093 465988

What is the next match? Form+ n ≤ 20000, I found four more:
Fraction 1729

4175
1922
4641

3239
7820

4646
11217

Position 5297983 6546724 18588348 38244610

4Journal of Recreational Math., 10 (1977–78) 122–123.
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Exercise

1. The isle of Pythagora, while very sparsely populated, is capable
of supporting a population of thirty million. On the 6th day of
the 28th anniversary of his accession to the throne, the king of the
island called a meeting of his 496 advisors to decide how to cel-
ebrate the auspicious occasion. They decided to divide the regal
jewels among the people of the land. All the people, including the
king the advisors, were lined up in a single file, and the jewels were
distributed as follows.
Starting with the second in line, each person was given one jewel.
Starting with the 4th in line, each second person was given two
jewels.
Starting with the 6th in line, each third person was given three jew-
els.
Starting with the 8th in line, each fourth person was given four jew-
els, and so on.
The man at the extreme end of the line noticed that the number of
jewels he received corresponded to his position in line.
How many people were there in Pythagora ?

2. A minimum security prison contains 100 cells with one prisoner
in each. The athletic young warden was ordered to free a certain
number of these prisoners at his discretion, and this is how he did
it.

First he walked along the row of cells opening every door. Starting
at the beginning again, he shuts every second door. During his
third walk, starting at the beginning, he stopped at every third door:
if it was open he shut it, if it was shut he opened it. On his fourth
walk he did the same, opening closed doors and closing open doors,
except he did it for every fourth door. On his fifth walk he stopped
at every fifth door, closing it if it was open and opening it if it was
shut. And so on, until at last he had completed the full hundred
walks.

The prisoners in cells whose doors were still open were freed.

Which were the lucky cells?

3. For a positive integern, show that ifσ(n) is prime, then so isd(n).
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25.1 Routh theorem: an example

Given a triangleABC, X, Y , Z are points on the side lines specified by
the ratios of divisions

BX : XC = 2 : 1, CY : Y A = 5 : 3, AZ : ZB = 3 : 2.

The linesAX, BY , CZ bound a trianglePQR. Suppose triangleABC
has area�. Find the area of trianglePQR.

2 1

5

3

3

2

A

B CX

Z

Y

P Q

R

We make use ofhomogeneous barycentric coordinates with respect
toABC.

X = (0 : 1 : 2), Y = (5 : 0 : 3), Z = (2 : 3 : 0).

Those ofP , Q, R can be worked out easily:

P = BY ∩ CZ Q = CZ ∩AX R = AX ∩ BY

Y = (5 : 0 : 3) Z = (2 : 3 : 0) X = (0 : 1 : 2)
Z = (2 : 3 : 0) X = (0 : 1 : 2) Y = (5 : 0 : 3)
P = (10 : 15 : 6) Q = (2 : 3 : 6) R = (10 : 3 : 6)

This means that theabsolute barycentric coordinates of X, Y , Z are

P =
1

31
(10A + 15B + 6C), Q =

1

11
(2A + 3B + 6C), R =

1

19
(10A + 3B + 6C).

The area of trianglePQR

=
1

31 · 11 · 19

∣∣∣∣∣∣
10 15 6
2 3 6
10 3 6

∣∣∣∣∣∣ · � =
576

6479
�.



25.2 Routh theorem 703

25.2 Routh theorem

λ 1

µ

1
ν

1

A

B CX

Z

Y

P Q

R

We make use ofhomogeneous barycentric coordinates with respect
toABC.

X = (0 : 1 : λ), Y = (µ : 0 : 1), Z = (1 : ν : 0).

Those ofP , Q, R can be worked out easily:

P = BY ∩ CZ Q = CZ ∩AX R = AX ∩ BY

Y = (µ : 0 : 1) Z = (1 : ν : 0) X = (0 : 1 : λ)
Z = (1 : ν : 0) X = (0 : 1 : λ) Y = (µ : 0 : 1)
P = (µ : µν : 1) Q = (1 : ν : νλ) R = (λµ : 1 : λ)

This means that theabsolute barycentric coordinates of X, Y , Z are

P =
1

µν + µ+ 1
(µA+ µνB + C),

Q =
1

νλ+ ν + 1
(A+ νB + νλC),

R =
1

λµ+ λ+ 1
(λµA+B + λC).

From these,

Area(PQR) =

∣∣∣∣∣∣
µ µν 1
1 ν νλ
λµ 1 λ

∣∣∣∣∣∣
(µν + µ+ 1)(νλ+ ν + 1)(λµ+ λ+ 1)

· �

=
(λµν − 1)2

(µν + µ+ 1)(νλ+ ν + 1)(λµ+ λ+ 1)
· �.
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25.3 Ceva Theorem

Theorem 25.1 (Ceva).Let X , Y , Z be points on the lines BC, CA, AB
respectively. The lines AX , BY , CZ are concurrent if and only if

BX

XC
· CY

Y A
· AZ
ZB

= 1.

If this condition is satisfied, the homogeneous barycentric coordi-
nates of the common point ofAX, BY , CZ can be written down by
combining the coordinates ofX, Y , Z.

Example: centroid

If AX, BY , CZ are the medians, the intersection is the centroidG:

1 1

1

1
1

1

A

B C

G

Z

X

Y

X = (0 : 1 : 1)
Y = (1 : 0 : 1)
Z = (1 : 1 : 0)
G = (1 : 1 : 1)
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Example: incenter

If AX, BY , CZ are the angle bisectors, the intersection is the incenter
I:

c b

a

c

b

a

A

B C

I

Z

X

Y

X = (0 : b : c)
Y = (a : 0 : c)
Z = (a : b : 0)
I = (a : b : c)
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Example: Gergonne point

If X, Y , Z are the points of tangency of the incircle with the sidelines,
the linesAX, BY , CZ intersect at the Gergonne point.

s− b s− c

s− c

s− a

s− a

s− b

A

B C

P

Z

X

Y

X = (0 : s− c : s− b) =
(
0 : 1

s−b :
1
s−c
)

Y = (s− c : 0 : s− a) =
(

1
s−a : 0 : 1

s−c
)

Z = (s− b : s− a : 0) =
(

1
s−a : 1

s−b : 0
)

P = =
(

1
s−a : 1

s−b :
1
s−c
)
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Example: Nagel point

If X, Y , Z are the points of tangency of the excircles with the respective
sidelines, the linesAX, BY , CZ intersect at the Nagel point.

A

B C

Z

X

Y

s− c s− b

s− a

s− cs− b

s− a Q

X = (0 : s− b : s− c)
Y = (s− a : 0 : s− c)
Z = (s− a : s− b : 0)
Q = (s− a : s− b : s− c)
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Exercise

1. Calculate the area of trianglePQR given

(a) λ = µ = ν = 2.

(b) λ = 1, µ = 7, ν = 4;

(c) λ = 3, µ = 7, ν = 6.

2. Calculate the homogeneous barycentric coordinates of the ortho-
center of triangleABC.

Project

In the Routh formula, how should one choose integer values forλ, µ,
andν so that the area of trianglePQR is 1

n
of that of triangleABC for

an integern?
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Appendix

We give those values ofλ, µ, ν with numerators and denominators< 10
for which the area of trianglePQR is k times that ofABC with the
numerator and denominator ofk less than 10.

λ µ ν k λ µ ν k λ µ ν k λ µ ν k
1
9

4
5

9
8

1
9

1
8

1
3

8
5

1
7

1
8

3
8

1
2

1
3

1
8

9
5

4
9

1
9

1
7

1
3

1
6

1
2

1
7

2
5

7
6

1
6

1
7

1 1
4

1
4

1
6

1
7

1
3

1
2

1
6

1
5

6
5

2
9

1
6

1
2

3
4

1
5

1
6

7
8

6
7

1
9

1
6

1 2
3

1
8

1
6

7
5

2
7

1
6

1
5

6
7

1
2

1
6

1
5

6
5

1
6

2
9

1
4

1
7

1 1
4

1
4

1
4

1
4

3
7

1
4

1
3

4
3

1
8

1
4

5
8

2
5

2
9

1
4

1 4
7

1
9

2
7

1
6

7
5

1
6

1
3

1
6

1
7

1
2

1
3

1
2

3
5

1
6

1
3

8
7

3
8

1
9

1
3

4
3

1
4

1
8

1
3

8
5

1
8

1
7

3
8

1
3

8
7

1
9

3
8

1
2

1
8

1
3

3
8

5
6

1
2

1
9

2
5

1
4

5
8

2
9

2
5

7
6

1
7

1
6

3
7

2
3

1
2

1
8

4
9

1
8

9
5

1
9

1
2

1
8

3
8

1
3

1
2

1
5

6
7

1
6

1
2

3
8

5
6

1
9

1
2

3
7

2
3

1
8

1
2

1
2

1
2

1
7

1
2

3
5

1
3

1
6

1
2

3
4

1
6

1
5

5
9

8 9
4

1
9

4
7

1
4

1 1
9

3
5

1
3

1
2

1
6

5
8

2
5

1
4

2
9

5
8

3 8 1
7

2
3

1
6

1 1
8

2
3

1
2

3
7

1
8

5
7

6 7
2

1
6

3
4

1
6

1
2

1
5

3
4

3 4 1
8

4
5

9
8

1
9

1
9

5
6

1
2

3
8

1
9

5
6

5 6 2
9

6
7

1
6

7
8

1
9

6
7

1
2

1
5

1
6

6
7

5
2

7 1
6

7
8

6
7

1
6

1
9

7
8

3 8
3

1
9

8
9

5
4

9 1
9

1 1
4

1
7

1
4

1 4
7

1
4

1
9

1 2
3

1
6

1
8

1 4 7
4

1
9

1 6 3
2

1
8

1 7 4 1
4

9
8

1
9

4
5

1
9

8
7

3
8

1
3

1
9

8
7

6 7
6

1
9

7
6

1
7

2
5

1
6

7
6

8
7

6 1
9

7
6

5 2 1
6

6
5

1
6

1
5

2
9

6
5

8
3

2 1
9

5
4

9 8
9

1
9

4
3

1
4

1
3

1
8

4
3

2 6 1
5

7
5

2
7

1
6

1
6

3
2

1 6 1
8

3
2

7
3

2 1
8

8
5

1
8

1
3

1
7

8
5

4 5
2

2
9

5
3

2 3 1
6

7
4

1 4 1
9

9
5

4
9

1
8

1
9

2 7
6

5 1
6

2 6
5

8
3

1
9

2 3
2

7
3

1
8

2 2 2 1
7

2 8
3

8 1
3

2 3 5
3

1
6

2 6 4
3

1
5

9
4

5
9

8 1
9

7
3

2 3
2

1
8

5
2

8
5

4 2
9

5
2

7 6
7

1
6

8
3

7
8

3 1
9

8
3

2 6
5

1
9

8
3

8 2 1
3

3 5
3

2 1
6

3 8
3

7
8

1
9

3 4 3
4

1
8

3 7 6 1
2

3 8 5
8

1
7

7
2

5
7

6 1
6

4 3
4

3 1
8

4 1 7 1
4

4 7
4

1 1
9

4 5
2

8
5

2
9

4 4 4 3
7

5 2 7
6

1
6

5 6 5
6

2
9

6 5
6

5 2
9

6 7
6

8
7

1
9

6 4
3

2 1
5

6 3
2

1 1
8

6 3 7 1
2

6 7
2

5
7

1
6

7 6
7

5
2

1
6

7 4 1 1
4

7 6 3 1
2

8 5
8

3 1
7

8 2 8
3

1
3

8 9
4

5
9

1
9

9 8
9

5
4

1
9
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4 The radical circle of the excircles
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Appendix: Three mutually orthogonal circles with given centers
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26.1 Feuerbach theorem

The nine-point circle is tangent internally to the incircle and externally
to each of the excircles.

A

B C

Fc

Fa

Fb

I

N

F
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26.2 A relation among the radii

ra + rb + rc = 4R+ r.

ra

r

rc

rb

D

I

A

B C

Ic

Ia

Ib

O

M

M′

ra − r =2DM ′,
rb + rc =2MD = 2(2R−DM ′);

ra + rb + rc − r =4R.
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26.3 The circumcircle of the excentral triangle

The circle through the excenters has center at the reflection of the incen-
ter in the circumcenter, and radius twice the circumradius.

A

B C

Ic

Ia

Ib

O O′

X′D

I

O′Ia =ra +O′X ′

=ra + 2OD − r

=ra + 2(R−DM ′)− r (from previous page)

=ra + 2R− (ra − r)− r

=2R.

Similarly,O′Ib = O′Ic = 2R.



26.4 The radical circle of the excircles 715

26.4 The radical circle of the excircles

The circle orthogonal to each of the excircles has center at the Spieker
point, the incenter of the medial triangle. Its radius is1

2

√
r2 + s2.

A

B C

I′
I
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26.5 Apollonius circle: the circular hull of the excircles

I′

A

B C

Fc

Fa

Fb

F ′
a

f′b

F ′
c

N
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Appendix: Three mutually orthogonal circles with given centers

Given three pointsA, B, C that form an acute-angled triangle, construct
three circles with these points as centers that are mutually orthogonal to
each other.

A

B C

Y

X

Z

H
F

D

E

Solution

LetBC = a, CA = b, andAB = c. If these circles have radiira, rb, rc
respectively, then

r2
b + r2

c = a2, r2
c + r2

a = b2, r2
a + r2

b = c2.

From these,

r2
a =

1

2
(b2+c2−a2), r2

b =
1

2
(c2+a2−b2), r2

c =
1

2
(a2+b2−c2).

These are all positive sinceABC is an acute triangle. Consider the
perpendicular footE of B on AC. Note thatAE = c cosA, so that
r2
a =

1
2
(b2+ c2−a2) = bc cosA = AC ·AE. It follows if we extendBE

to intersect atY the semicircle constructed externally on the sideAC as
diameter, then,AY 2 = AC · AE = r2

a. Therefore we have the follow-
ing simple construction of these circles. (1) With each side as diameter,
construct a semicircle externally of the triangle. (2) Extend the altitudes
of the triangle to intersect the semicircles on the same side. Label these
X, Y , Z on the semicircles onBC, CA, AB respectively. These satify
AY = AZ, BZ = BX, andCX = CY . (3) The circlesA(Y ), B(Z)
andC(X) are mutually orthogonal to each other.
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Figurate numbers

27.1 Triangular numbers

Thenth triangular number is

Tn = 1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1).

The first few of these are1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . . .

27.2 Special triangular numbers

Triangular numbers which are squares

Then-th triangular numberTn = 1
2
n(n + 1) is a square, say,m2 if and

only if
(2n+ 1)2 − 2(2m)2 = 1.

(
nk+1

mk+1

)
=

(
3 4
2 3

)(
nk
mk

)
+

(
1
1

)
,

(
n1

m1

)
=

(
1
1

)
.
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Find the first few triangular numbers which are squares:

k 1 2 3 4 5 6 7
nk 1 8 49
mk 1 6 35
Tn 1 36 1225

Palindromic triangular numbers

n Tn n Tn n Tn
1 1 109 5995 3185 5073705
2 3 132 8778 3369 5676765
3 6 173 15051 3548 6295926
10 55 363 66066 8382 35133153
11 66 1111 617716 11088 61477416
18 171 1287 828828 18906 178727871
34 595 1593 1269621 57166 1634004361
36 666 1833 1680861 102849 5289009825
77 3003 2662 3544453 111111 6172882716

T11111111 = 61728399382716.



27.3 Pentagonal numbers 721

27.3 Pentagonal numbers

The pentagonal numbers are the sums of the arithmetic progression

1 + 4 + 7 + · · ·+ (3n− 2) + · · ·
Thenth pentagonal number isPn = 1

2
n(3n− 1).

Palindromic pentagonal numbers

n Pn n Pn n Pn
1 1 101 12521 6010 54177145
2 5 693 720027 26466 1050660501
4 22 2173 7081807 26906 1085885801
26 1001 2229 7451547 31926 1528888251
44 2882 4228 26811862 44059 2911771192
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27.4 The polygonal numbersPn,k

More generally, for a fixedk, thek-gonal numbers are the sums of the
arithmetic progression

1 + (k − 1) + (2k − 3) + · · · .
Thenth k-gonal number isPk,n = 1

2
n((k − 2)n− (k − 4)).
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27.4.1 Appendix: Solution of Pell’s equation

(1) Letd be a positive integer which is not a square. The positive integer
solutions of the equationx2 − dy2 = 1 can be arranged in a sequence as
follows. If (x, y) = (a, b) is the smallest positive solution, then(

xn+1

yn+1

)
=

(
a db
b a

)(
xn
yn

)
,

(
x1

y1

)
=

(
a
b

)
.

(2) If the equationx2 − dy2 = −1 has a solution in nonzero integers,
its integer solutions can be arranged in the form a sequence satisfying the
same recurrence relation above (with(a, b) the smallest positive solution
of x2−dy2 = 1) but with(x1, y1) given by its smallest positive solution.
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Exercise

1. Prove that every hexagonal number is a triangular number.

2. Find two triangular numbers (apart from 1) that are squares.

3. Find a pentagonal numbers (apart from 1) that is also a square.

4. It is known that there is only one value ofn for which

12 + 22 + 32 + · · ·+ n2

is a square. What is this value?

5. Ramanujan’s house number.

6. An unidentified country has 7-digit population – and everyone has
been given a National ID Number, sequentially from one, allocated
by no identifiable logic.

The Censure Minister has chosen three names at random, and is
finding their ID number on the computer. When the first number
appears on the screen, the Government’s mathematical whiz-kid
informs the Minister that there is precisely a 50-50 chance that the
other two numbers will both be less than the one just displayed.

What is the population, and what is the first number?1

1Problem 2585,JRM, 31 (2002–2003) 71.
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Polygonal triples

We consider polygonal numbers of a fixed shape. For a given positive
integerk, the sequence ofk-gonal numbers consists of the integers

Pk,n :=
1

2

(
(k − 2)n2 − (k − 4)n

)
. (28.1)

By a k-gonal triple, we mean a triple of positive integers(a, b, c) satis-
fying

Pk,a + Pk,b = Pk,c. (28.2)

A 4-gonal triple is simply a Pythagorean triple satisfyinga2 + b2 = c2.
We shall assume that k �= 4. By completing squares, we rewrite (28.2)
as

(2(k − 2)a− (k − 4))2 + (2(k − 2)b− (k − 4))2

= (2(k − 2)c− (k − 4))2 + (k − 4)2, (28.3)

and note, by dividing throughout by(k − 4)2, that this determines a
rational point on the surfaceS:

x2 + y2 = z2 + 1, (28.4)

namely,
P (k; a, b, c) := (ga− 1, gb− 1, gc− 1), (28.5)

whereg = 2(k−2)
k−4

. This is always an integer point fork = 3, 5, 6, 8, with
correspondingg = −2, 6, 4, 3. Fork = 3 (triangular numbers), we shall
change signs, and consider instead the point

P ′(3; a, b, c) := (2a+ 1, 2b+ 1, 2c+ 1). (28.6)

The coordinates ofP ′(3; a, b, c) are all odd integers exceeding 1.
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28.1 Double ruling ofS

The surfaceS, being the surface of revolution of a rectangular hyperbola
about its conjugate axis, is a rectangular hyperboloid of one sheet. It
has a double ruling,i.e., through each point on the surface, there are two
straight lines lying entirely on the surface.

Figure 28.1:

LetP (x0, y0, z0) be a point on the surfaceS. A line * throughP with
direction numbersp : q : r has parametrization

* : x = x0 + pt, y = y0 + qt, z = z0 + rt.

Substitution of these expressions into (28.4) shows that the line* is en-
tirely contained in the surfaceS if and only if

px0 + qy0 = rz0, (28.7)

p2 + q2 = r2. (28.8)

It follows that

r2 = r2(x2
0 + y2

0 − z2
0)

= r2(x2
0 + y2

0)− (px0 + qy0)
2

= (p2 + q2)(x2
0 + y2

0)− (px0 + qy0)
2

= (qx0 − py0)
2.

This means
qx0 − py0 = εr, ε = ±1. (28.9)

Solving equations (28.7) and (28.9), we determine the direction numbers
of the line. We summarize this in the following proposition.



28.2 Primitive Pythagorean triple associated with ak-gonal triple 727

Proposition 28.1. The two lines lying entirely on the hyperboloid S :
x2 + y2 = z2 +1 and passing through P (x0, y0, z0) have direction num-
bers

x0z0 − εy0 : y0z0 + εx0 : x2
0 + y2

0

for ε = ±1.

In particular, ifP is a rational point, these direction numbers are ra-
tional.

28.2 Primitive Pythagorean triple associated with ak-
gonal triple

Let P be the rational point determined by ak-gonal triple(a, b, c), as
given by (28.5), fork ≥ 5 and (28.6) fork = 3 (triangular numbers).
We first note that the coordinates ofP all exceed 1. This is clear for
k = 3, and fork ≥ 5, it follows from the fact thatg = 2(k−2)

k−4
> 2.

The direction numbers of the ruling lines onS through the pointP , as
given in Proposition 1, are all positive. In view of (28.8), we may there-
fore choose aprimitive Pythagorean triple (p, q, r) for these direction
numbers. As is well known, every such triple is given by

p = m2 − n2, q = 2mn, r = m2 + n2 (28.10)

for relatively prime integersm > n of different parity.
We study the converse question of determiningk-gonal triples from

(primitive) Pythagorean triples.

28.3 Triples of triangular numbers

Given a primitive Pythagorean triple(p, q, r) as in (28.10), we want to
determine a triangular triple(a, b, c) corresponding to it. Given anodd
integerz0 > 1, we obtain, from (28.7) and (28.9),

x0 =
pz0 + εq

r
, y0 =

qz0 − εp

r
. (28.11)

We claim that it is possible to choosez0 > 1 so thatx0 andy0 are
also odd integers> 1.

By the euclidean algorithm, there areodd integersu andv such that
qu+ rv = 1. (Note thatv must be odd, sinceq is even. Ifu is even, we
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replace(u, v) by (u− r, v + q), in which both entries are odd). Clearly,
the integerz0 = εpu is such thatqz0 − εp = εp(qu − 1) is divisible by
r. This makesy0 an integer. The correspondingx0 is also an integer.
Replacingz0 by z0 + rt for a positive integert if necessary, the integers
z0, x0, andy0 can be chosen greater than 1. From (28.11), the integers
x0 andy0 are both odd, sincep andq are of different parity andz0 is odd.

We summarize this in the following theorem.

Theorem 28.2. Let (p, q, r) be a primitive Pythagorean triple. There
are two infinite families of triangular triples (aε(t), bε(t), cε(t)), ε = ±1,
such that one of the lines *ε(P ), P = P ′(3; aε(t), bε(t), cε(t)), has direc-
tion numbers p : q : r.

Triangular triples from primitive Pythagorean triples

(m, n) (p, q, r) (a+(0), b+(0), c+(0)) (a−(0), b−(0), c−(0))

(2, 1) (3, 4, 5) (2, 2, 3) (3, 5, 6)
(4, 1) (15, 8, 17) (9, 4, 10) (5, 3, 6)
(3, 2) (5, 12, 13) (4, 9, 10) (5, 14, 15)
(6, 1) (35, 12, 37) (20, 6, 21) (14, 5, 15)
(5, 2) (21, 20, 29) (6, 5, 8) (14, 14, 20)
(4, 3) (7, 24, 25) (6, 20, 21) (7, 27, 28)
(8, 1) (63, 16, 65) (35, 8, 36) (27, 7, 28)
(7, 2) (45, 28, 53) (35, 21, 41) (9, 6, 11)
(5, 4) (9, 40, 41) (8, 35, 36) (9, 44, 45)

28.4 k-gonal triples determined by a Pythagorean triple

Now, we considerk ≥ 5. We shall adopt the notation

h′ :=
{

h if h is odd,
h
2

if h is even,

for an integerh.

Theorem 28.3.Let k ≥ 5 and g = 2(k−4)
k−2

. The primitive Pythagorean
triple (p, q, r) defined in (28.10) by relatively prime integers m > n with
different parity corresponds to a k-gonal triple if and only if one of 2n

g

and 2(m−n)
g

is an integer.

Sincem andn are relatively prime, the integer(k − 2)′ > 1 cannot
divide bothn andm−n. This means that a primitive Pythagorean triple
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(p, q, r) corresponds toat most one line on S associated withk-gonal
triples (fork ≥ 5).

Indeed, ifk = 4h + 2, (k − 2)′ is the even number2h, and cannot
divide the odd integerm−n. It follows that only those pairs(m,n), with
n a multiple of2h give (4h + 2)-gonal pairs. For example, by choosing
m = 2h+ 1, n = 2h, we have

p = 4h+ 1, q = 8h2 + 4h, r = 8h2 + 4h+ 1,
a0 = 4h+ 1, b0 = 8h2 + 2h+ 1, c0 = 8h2 + 2h+ 2.

These give an infinite family of(4h+ 2)-gonal triples:

at = (4h+ 1)(t+ 1),
bt = 8h2 + 2h+ 1 + (8h2 + 4h)t,
ct = 8h2 + 2h+ 2 + (8h2 + 4h+ 1)t.

(4h+ 2)− gonal triples

(h, k, g) (m, n) (p, q, r) (a, b, c)

(1, 6, 4) (3, 2) (5, 12, 13) (5, 11, 12)

(5, 2) (21, 20, 29) (14, 13, 19)

(5, 4) (9, 40, 41) (9, 38, 39)

(7, 2) (45, 28, 53) (18, 11, 21)

(7, 4) (33, 56, 65) (11, 18, 21)

(7, 6) (13, 84, 85) (13, 81, 82)

(9, 2) (77, 36, 85) (11, 5, 12)

(9, 4) (65, 72, 97) (13, 14, 19)

(9, 8) (17, 144, 145) (17, 140, 141)

(11, 2) (117, 44, 125) (104, 39, 111)

(11, 4) (105, 88, 137) (60, 50, 78)

(11, 6) (85, 132, 157) (68, 105, 125)

(11, 8) (57, 176, 185) (38, 116, 122)

(11, 10) (21, 220, 221) (21, 215, 216)

(2, 10, 8
3
) (5, 4) (9, 40, 41) (9, 37, 38)

(7, 4) (33, 56, 65) (33, 55, 64)

(9, 4) (65, 72, 97) (52, 57, 77)

(9, 8) (17, 144, 145) (17, 138, 139)

(11, 4) (105, 88, 137) (90, 75, 117)

(11, 8) (57, 176, 185) (57, 174, 183)

(3, 14, 12
5

) (7, 6) (13, 84, 85) (13, 79, 80)

(11, 6) (85, 132, 157) (85, 131, 156)
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28.5 Correspondence between(2h + 1)-gonal and 4h-
gonal triples

Let k1 < k2 be two positive integers≥ 5. Theorem 2 suggests that there
is a one-to-one correspondence betweenk1-gonal triples andk2-gonal
triples, provided(k1 − 2)′ = (k2 − 2)′. This is the case if and only if

k1 = 2h+ 1, k2 = 4h, for some h ≥ 2. (28.12)

In this case,(k1 − 2)′ = (k2 − 2)′ = 2h− 1, while (k1 − 4)′ = 2h− 3,
and(k2−4)′ = 2h−2. The(2h+1)-gonal triple(a, b, c) and a4h-gonal
triple (a′, b′, c′) are related by

(m− n)(c− c′) ≡ n

2h− 1
(mod m2 + n2).

(2h+ 1)− gonal and 4h− gonal triples

(2h+ 1) − gonal 4h− gonal
(h, 2h+ 1, 4h) (m,n) (p, q, r) (a, b, c) (a′, b′, c′)

(2, 5, 8) (4, 1) (15, 8, 17) (7, 4, 8) (14, 8, 16)
(4, 3) (7, 24, 25) (7, 23, 24) (7, 22, 23)
(5, 2) (21, 20, 29) (5, 5, 7) (10, 10, 14)
(7, 4) (33, 56, 65) (4, 7, 8) (8, 14, 16)
(7, 6) (13, 84, 85) (13, 82, 83) (13, 80, 81)
(8, 3) (55, 48, 73) (22, 19, 29) (44, 38, 58)
(8, 5) (39, 80, 89) (35, 72, 80) (31, 64, 71)
(10, 1) (99, 20, 101) (48, 10, 49) (96, 20, 98)
(10, 3) (91, 60, 109) (26, 17, 31) (52, 34, 62)
(10, 7) (51, 140, 149) (40, 110, 117) (29, 80, 85)
(10, 9) (19, 180, 181) (19, 177, 178) (19, 174, 175)

(3, 7, 12) (6, 1) (35, 12, 37) (16, 6, 17) (33, 12, 35)
(6, 5) (11, 60, 61) (11, 57, 58) (11, 56, 57)
(7, 2) (45, 28, 53) (33, 21, 39) (44, 28, 52)
(8, 3) (55, 48, 73) (27, 24, 36) (36, 32, 48)
(8, 5) (39, 80, 89) (39, 79, 88) (26, 52, 58)
(9, 4) (65, 72, 97) (24, 27, 36) (32, 36, 48)

(4, 9, 16) (8, 1) (63, 16, 65) (29, 8, 30) (60, 16, 62)
(8, 7) (15, 112, 113) (15, 107, 108) (15, 106, 107)
(9, 2) (77, 36, 85) (18, 9, 20) (37, 18, 41)
(10, 3) (91, 60, 109) (75, 50, 90) (90, 60, 108)
(10, 7) (51, 140, 149) (17, 45, 48) (51, 138, 147)

(5, 11, 20) (10, 1) (99, 20, 101) (46, 10, 47) (95, 20, 97)
(10, 9) (19, 180, 181) (19, 173, 174) (19, 172, 173)
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Sums of consecutive squares

1 Sum of squares of natural numbers
2 Sums of consecutive squares: odd number case
3 Sums of consecutive squares: even number case
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29.1 Sum of squares of natural numbers

Theorem 29.1.

12 + 22 + 32 + · · ·+ n2 =
1

6
n(n + 1)(2n+ 1).

Proof. Let Tn = 1 + 2 + 3 · · ·+ n = 1
2
n(n+ 1) and

Sn = 12 + 22 + 32 + · · ·+ n2.

23 = 13 + 3 · 12 + 3 · 1 + 1
33 = 23 + 3 · 22 + 3 · 2 + 1
43 = 33 + 3 · 32 + 3 · 3 + 1

...
n3 = (n− 1)3 + 3(n− 1)2 + 3(n− 1) + 1

(n + 1)3 = n3 + 3 · n2 + 3 · n + 1

Combining these equations, we have

(n+ 1)3 = 13 + 3Sn + 3Tn + n.

SinceTn is known, we have

Sn =
1

3

(
(n + 1)3 − n− 1− 3

2
n(n+ 1)

)
=

1

6
n(n + 1)(2n+ 1).

Exercise

1. Find12 + 32 + 52 + · · ·+ (2n− 1)2.

2. Findn so thatn2 + (n+ 1)2 is a square.
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29.2 Sums of consecutive squares: odd number case

Suppose the sum of the squares of2k + 1 consecutivepositive integers
is a square. If the integers areb, b± 1, . . . , b± k. We require

(2k + 1)b2 +
1

3
k(k + 1)(2k + 1) = a2

for an integera. From this we obtain the equation

a2 − (2k + 1)b2 =
1

3
k(k + 1)(2k + 1). (Ek)

1. Suppose2k+1 is a square. Show that(Ek) has solution only when
k = 6m(m + ε) for some integersm > 1, andε = ±1. In each
case, the number of solutions isfinite.

Number of solutions of(Ek) when 2k + 1 is a square

2k + 1 25 49 121 169 289 361 529 625 841 961 . . .
0 1 1 2 7 3 5 3 3 10 . . .

2. Find theunique sequence of 49 (respectively 121) consecutive pos-
itive integers whose squares sum to a square.

3. Find the two sequences of 169 consecutive squares whose sums are
squares.

4. Suppose2k + 1 is not a square. Ifk + 1 is divisible 9 = 32 or
by any prime of the form4k + 3 ≥ 7, then the equation(Ek) has
no solution. Verify that for the following values ofk < 50, the
equation(Ek) has no solution:
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k = 6, 8, 10, 13, 17, 18, 20, 21, 22, 26, 27, 30, 32,
34, 35, 37, 40, 41, 42, 44, 45, 46, 48, . . .

5. Supposep = 2k+1 is a prime. If the Legendre symbol
(− 1

3
k(k+1)

p

)
=

−1, then the equation(Ek) hasno solution. Verify that for the fol-
lowing values ofk < 50, the equation(Ek) has no solution:

1, 2, 3, 8, 9, 14, 15, 20, 21, 26, 33, 39, 44.

6. Fork ≤ 50, it remains to consider(Ek) for the following values of
k:

5, 7, 11, 16, 19, 23, 25, 28, 29, 31, 36, 38, 43, 47, 49.

Among these, only fork = 5, 11, 16, 23, 29 are the equations(Ek)
solvable.

7. Work out 5 sequences of 23 consecutive integers whose squares
add up to a square in each case.

Answer:

72 + 82 + · · ·+ 292 = 922;
8812 + 8822 + · · ·+ 9032 = 42782;

427872 + 427882 + · · ·+ 428092 = 2052522;
20534012 + 20534022 + · · ·+ 20534232 = 98478182;

· · · · · · · · ·

8. Consider the equation(E36) : u
2−73v2 = 12·37·73. This equation

does in fact have solutions(u, v) = (4088, 478), (23360, 2734).
The fundamental solution of the Pell equationx2− 73y2 = 1 being
(a, b) = (2281249, 267000), we obtain two sequences of solutions
of (E73):
Answer:

(4088, 478), (18642443912, 2181933022), (85056113063608088, 9955065049008478), . . .
(23360, 2734), (106578370640, 12474054766), (486263602888235360, 56912849921762734), . . .

This means, for example, the sum of the squares of the 73 numbers
with center 478 (respectively 2734) is equal to the square of 4088
(respectively 23360).
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29.3 Sums of consecutive squares: even number case

Suppose the sum of the squares of the2k consecutive numbers

b− k + 1, b− k + 2, . . . , b, . . . , b+ k − 1, b+ k,

is equal toa2. This means

(2a)2 − 2k(2b+ 1)2 =
2k

3
(4k2 − 1). (E ′

k)

Note that the numbers2k, 4k2 − 1 are relatively prime.

1. Show that the equation(E ′
k) has no solution if2k is a square.

2. Suppose2k is not a square. Show that if2k + 1 is divisible by 9,
or by any prime of the form4k + 1, then the equation(E ′

k) has no
solution.

3. For k ≤ 50, the equation(E ′
k) has no solution for the following

values ofk:

k = 3, 4, 5, 9, 11, 13, 15, 17, 21, 23, 24, 27, 29, 31, 33,
35, 38, 39, 40, 41, 45, 47, 49.

4. Let k be a prime. The equation(E ′
k) can be written as

(2b+ 1)2 − 2ky2 = −4k2 − 1

3
.

By considering Legendre symbols, the equation(E ′
k) has no solu-

tion for the following values ofk ≤ 50:

k = 5, 7, 17, 19, 29, 31, 41, 43.

5. Excluding square values of2k < 100, the equation(E ′
k) has solu-

tions only fork = 1, 12, 37, 44.

6. Show that (34, 0), (38, 3), (50, 7) are solutions of(E”12). Construct
from them three infinite sequences of expressions of the sum of 24
consecutive squares as a square.
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7. The equation(E ′
37) has solutions (185, 2), (2257,261), and (2849,

330). From these we construct three infinite sequences of expres-
sions of the sum of 74 consecutive squares as a square.

Answer:

2252 + 2262 + · · ·+ 2982 = 22572;
2942 + 2952 + · · ·+ 3672 = 28492;

130962 + 130972 + · · ·+ 131792 = 7638652.

8. The equation(E ′
44) has solutions (242, 4) and (2222,235). From

these we obtain two infinite sequences of expressions of the sum of
88 consecutive squares as a square.

1922 + 1932 + · · ·+ 2792 = 22222;
59252 + 59262 + · · ·60122 = 559902.
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Sums of powers of natural
numbers

Notation

Sk(n) := 1k + 2k + · · ·+ nk.

Theorem 30.1 (Bernoulli). Sk(n) is a polynomial in n of degree k + 1
without constant term. It can be obtained recursively as

Sk+1(n) =

∫
(k + 1)Sk(n)dn+ cn,

where c is determined by the condition that the sum of the coefficients is
1.

Examples

(1) S3(n) = 13 + 23 + · · ·+ n3 = 1
4
n2(n + 1)2.

(2) Since4S3(n) = n4 + 2n3 + n2, we have

S4(n) =
1

5
n5 +

1

2
n4 +

1

3
n3 + cn,

wherec = 1− (1
5
+ 1

2
+ 1

3

)
= −1

30
. Therefore,

14 + 24 + · · ·+ n4 =
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n.
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Exercise

1. Find the sum of the firstn odd numbers.

2. Find the sum of the cubes of the firstn odd numbers.

3. FindS5(n) andS6(n).

4. Find the sum of the series

1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · ·+ n(n+ 1)(n+ 2).

5. Find the sum of the firstn triangular numbers.



Chapter 31

A high school mathematics
contest

Christopher Newport University Regional High School Mathemat-
ics Contest, November, 20021

1. Randy and Hannah are eating at a restaurant. The items ordered by
Randy cost twice as much as the items ordered by Hannah. Randy
leaves a tip of 15% of the price of what he has ordered. Hannah
leaves a tip of 20% of her items. The total, including tips, paid by
the pair is exactly 70 dollars. How much was the cost of the items
Hannah ordered?

1Crux Math., 29 (2003) 193–195.
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2. Solve the equation
x2 − |x| − 1 = 0.

3. Let (an) be an arithmetic sequence. Ifap = q andaq = p, find
ap+q.

4. A five-digit number is called a mountain number if the first three
digits are increasing and the last three are decreasing. For exam-
ple, 34541 is a mountain number, but 34534 is not. How many
mountain numbers are greater than 70000?
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5. Each day, Hai and Wai separately play a video game and compare
scores. Hai’s score on Tuesday was 10% less than his score on
Monday, while Wai’s score on Tuesday was 20 points higher than
on Monday. However, on Wednesday, Hai’s score was 10 points
higher than on Tuesday, while Wai’s score on Wednesday was 20%
less than his score on Tuesday. Strangely, Hai’s score plus Wai’s
score turned out to be the same on all three days. What were their
scores on Wednesday?
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6. A pointP is given in the interior of a rectangleABCD with AB =
CD = 24 andAD = BD = 5. What is the total area of the two
trianglesPAD andPBC (shaded in the figure)?

A B

CD

P

7. Samantha bought a stock for 1000 dollars whose price then doubled
every year for the nextn years. In the year after that, the stock
price fell by 99%. Nevertheless, the stock was still worth than 1000
dollars. What is the smallest whole number of years for which this
is possible?
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8. In triangleABC, cos(A − B) + sin(A + B) = 2. Determine the
shape of the triangle.

9. Four small circles of radius 1 are tangent to each other and to a
larger circle containing them, as shown in the diagram. What is the
area of the region inside the larger circle, but outside all the smaller
circles?
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10. Two circles of radii 9 and 17 centimeters are enclosed in a rectan-
gle with one side of length 50 centimeters. The two circles touch
each other, and each touches two adjacent sides of the rectangle, as
indicated. Find the area of the rectangle.
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11. Find three different prime numbersa, b, c so that their suma+b+c
and their productabc both end in the digit 7.

12. Karen ran a 42 kilometer marathon in 3 hours, 49 minutes. She did
this by running for 10 minutes, walking for 2 minutes, then running
for 10 minutes, walking for 2 minutes, and so on until she crossed
the finish line. She runs twice as fast as she walks. What is her
average speed, in kilometers per hour, while running?
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Chapter 32

Mathematical entertainments

1 David Wells’ survey of Beauty in Mathematics
2 T. M. Apostol’s mathematical acrostic
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32.1 Beauty in mathematics: David Wells’ survey1

Give each of the following theorems a score for beauty between 0 (the
least) and 10 (the most beautiful).

A B C D E
F G H I J
K L M N O
P Q R S T
U V W X

A Euler’s formula for a polyhedron:V − E + F = 2.

B Any square matrix satisfies its own characteristic equation.

C If p(n) is the number of partitions ofn, then

5((1− x2)(1− x10)(1− x15) · · · )5
((1− x)(1− x2)(1− x3)(1− x4) · · · )6

=p(4) + p(9)x+ p(14)x2 + · · ·
.

D The number of primes is infinite.

E There is no rational number whose square is 2.

F Every prime of the form4n + 1 is the sum of two integral squares in
exactly one way.

G 1 + 1
22 + 1

32 + · · ·+ 1
n2 + · · · = π2

6
.

H 1
2×3×4

− 1
4×5×6

+ 1
6×7×8

− · · · = π−3
4

.

I π is transcendental.

J Every number greater than 77 is the sum of integers, the sum of whose
reciprocal is 1.

K The maximum area of a quadrilateral with sidesa, b, c, d is√
(s− a)(s− b)(s− c)(s− d),

wheres is half the perimeter.
1Math. Intelligencer, 10:4 (1988) 31.
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L There is no equilateral triangle whose vertices are plane lattice points.

M At any party, there is a pair of people who have the same number of
friends present.

N The number of partitions of an integer into odd integers is equal to the
number of partitions into distinct integers.

O If the points of the plane are each colored red, yellow, or blue, there
is a pair of points of the same color of mutual distance unity.

P Every plane map can be colored with 4 colors.

Q A continuous mapping of the closed unit disk into itself has a fixed
point.

R Write down the multiples of
√
2, igonoring fractional parts, and un-

derneath the number missing from the first sequence:

1 2 4 5 7 8 9 11 12 . . .
3 6 10 13 17 20 23 27 30 . . .

The difference is2n in then-th place.

S A regular icosahedron inscribed in a regular octahedron divides the
edges in the golden ratio.

T The number of representations of an odd number as the sum of 4
squares is 8 times the sum of its divisors; of an even number, 24
times the sum of its odd divisors.

U The word problem for groups is unsolvable.

V The order of a subgroup divides the order the group.

W eiπ = −1.

X There are 5 regular polyhedra.
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32.2 T. M. Apostol’s mathematical acrostic2

Guess as many WORDS as you can, then write each letter in the cor-
respondingly numbered square in the diagram. When completely filled
in, the diagram contains a passage from a published work concerning
mathematics. The initial letters of the WORDS spell out the author and
title of the work. All the WORDS are related to mathematics or mathe-
maticians.

2Math. Intelligencer, 10:3 (1988) 43.
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A Unit of speed
131 9 153 62

B The second cervical
vertebra 87 4 177 20

C In opposition
160 2 84 28 145 171 104

D Countless
61 49 110 93 63 163 42 183 115 24

E Pallet of an escapement
180 3 137 90 170

F Successive volumes
(2 words) 30 159 41 86 119 75 185

G Pupil of Gauss, last name
followed by initials 184 45 155 27 125 70 150 43

H One way to describe
Pythagoras 15 144 121 82 33 55

I Exact opposite
52 133 12 142 25 101 76 64

J Make a mosaic of
148 14 21 102 32 141 85 1 182

K First to provee
transcendental 114 67 122 10 18 139 158

L Logical and sophistical
reasoning 108 31 176 58 100 109 34 111

M A type of polynomial
46 81 59 138 149

N Providing pleasure or
delight 22 17 35 127 147 29 50 69 97 66

O Added
154 26 7 71 164 53

P Contour connecting points
of equal depth below 5 92 48 60 179 89 146
a water surface

Q One of the first to use the
method of successive 74 11 124 103 156
approximations

R Equal to the end proposed
129 169 39 136 132 120 162 72 151 143

S Three-digit code
98 44 38 130

T M2 = 0 (two words)
80 106 174 168 77 56 91 167 113 116

U Distribution
157 23 95 57 79 126 173 88

V French mathematician
(1765–1843) 172 112 19 40 135 96 68

W Directed
36 51 134 78 161 123 165

X Lowness in pitch
83 65 140 107 54 118 173

Y One of Cayley’s
hyperdeterminants 8 152 105 16 94 166 117 73 181

Z German geometer
(1833–1872) 47 99 128 37 6 178 13
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0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95 96 97 98

99 100 101 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130

131 132 133 134 135 136 137 138 139 140 141

142 143 144 145 146 147 148 149 150 151 152

153 154 155 156 157 158 159 160 161 162 163

164 165 166 167 168 169 170 171 172 173

174 175 176 177 178 179 180 181 182 183 184 185

J C E B P Z O Y A

K Q I Z J H Y N K V B J

N U D I O G C N F L J

H L N W Z S R V F D

G S G M Z P D N W I O

X H T U L M P D A D I

X N K V N G O R Y Q F

I T W U T M H X C J F

B U P E T P D Y U V N S

Z L I J Q C Y T X L

L D L V T K D T Y X F R

H K W Q G U N Z R S

A R I W V R E M K X J

I R H C P N J M G R Y

A O G Q U K F C W R D

O W Y T T R E C V X

T U L B Z P E Y J D G F



902 Mathematical entertainments



Chapter 33

Maxima and minima without
calculus

1. We have 1000 feet of fencing and wish to make with it a rectangular
pen, at one side of a long wall. How can we arrange to surround
the maximum area?

x

1000− 2x

x



904 Maxima and minima without calculus

2. A Norman window has a fixed perimetera. Find the largest possi-
ble area.

r

h

2r

3. A right pyramid has a square base and a given surface areaA. What
is the largest possible volume?

h
l

2b
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4. A tray is constructed from a square metal sheet by dimensiona ×
a by cutting squares of the same size from the four corners and
folding up the sides. What is the largest possible capacity of the
tray?

5. The perimeter of a triangle is a constant2s. What is the largest
possible area of the triangle?
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6. The volume of a cylindrical can is given byV = πr2l and the
surface area byA = 2πr(l + r). If the volume is a constantV ,
what is the least possible surface area?

7. Inscribe in a given cone a cylinder whose volume is largest possi-
ble.

2r

h

r
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8. Find the largest cylinder contained in a sphere of radiusR.

r

R

h
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9. Find the largest right circular cone contained in a sphere of radius
R.

r

R

h
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10. Two corridors of widthsa andb meet at a right-angled corner. What
is the length of the longest ladder which may be carried round the
corner? Assume the workman sufficiently unimaginative to keep
the ladder horizontal).

b

v

a u
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Chapter 34

A British test of teachers’
mathematical background

Samples from a test on the mathematical background of (British) teach-
ers in training in the late 1960’s.1

1. A necessary condition for the truth of a statementP is thatβ ≥ 7.

Which one of the following statement must be true?

A If β ≥ 7, P is true.

B If β ≥ 7, P is false.

C If β < 7, P is true.

D If β < 7, P is false.

E None of these.

Answer:

2. A sufficient condition for the truth a statementQ is thatβ < 0.

Which one of the following statements must be true?

A If Q is true,β ≥ 0.

B If Q is false,β ≥ 0.

C If Q is true,β < 0.

D If Q is false,β < 0.

E None of these.

Answer:
1Math. Gazette, 53 (1969) 357–362.
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3. “The condition for aquadrilateral to becyclic is that the opposite
angles must besupplementary”.

Which of the words inboldfont should be altered?

A The

B quadrilateral

C cyclic

D supplementary

E None of them

Answer:

4. What is the value ofx
2−9
x−3

whenx = 3?

A 0

B 1

C 6

D ∞
E Do not know

Answer:

5. A certain theorem in Euclidean geometry has been proved.

Which of the following statements is necessarily true?

A The converse is true and does not require proof.

B The converse is true but requires proof.

C The converse is false and does not require dis-proof.

D The converse is false but requires dis-proof.

E None of the above.

Answer:
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6. It has been proved that an infinite number of triangles possess a
propertyQ.

StatementS: All triangles possess propertyQ.

Which of the following is necessarily correct?

A S is true, and no further proof is required.

B S is true, but proof is required.

C S is more likely to be true than false.

D S is more likely to be false than true.

E None of the above.

Answer:

7. Consider the following calculation (all logarithms to basee):∫ −3

−5

dx

x+ 1
= [log(x+ 1)]−3

−5 (I)

[log(x+ 1)]−3
−5 = log(−2)− log(−4) (II)

log(−2)− log(−4) = log

(−2
−4
)

(III)

log

(−2
−4
)

=− log 2 (IV)

In which line, if any, does thefirst mistake in the calculation occur?

A (I)

B (II)

C (III)

D (IV)

E None of these: it is correct.

Answer:
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8. An algebraic problem involvesa, b, c, and we have to write the sum
of the products, two at a time.

With which of the following statements do you agree?

A The best order isab+ ac+ bc.

B The best order isac+ ba + cb.

C The best order isbc+ ca + ab.

D The best order iscb+ ab+ ac.

E There is no “best” order.

Answer:

9. We wish to letter the points 1, 2, 3 in the diagram with the letterL,
M , N in some order.

A

B C

1

2

3

With which of the following statements do you agree¿

A The best order is 1L, 2M , 3N .

B The best order is 1M , 2N , 3L.

C The best order is 1N , 2L, 3M .

D The best order is 1L, 2N , 3M .

E There is no “best” order.

Answer:
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A mathematical contest

2001 Canadian Invitational Mathematics Challenge1

1 Thirty years ago, the ages of Xaviere, Yolanda, and Zo¨e were in the
ratio 1:2:5. Today, the ratio of Xavior’s age to Yolanda’s age is 6:7.
What is Zoë’s present age?

1Grades 10 and 11;Crux Math., 29 (2003) 129–132.
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2 Solve the system of equations

x+ y + z =2,

x2 − y2 + z2 =2,

x− 3y2 + z =0.
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3(a) A flat mirror is perpendicular to thexy-plane and stands on the
line y = x + 4. A laser beam from the origin strikes the mirror at
P (−1, 3) and is reflected to the pointQ on thex-axis. Determine
the coordinates of the pointQ.

3(b) A flat mirror is perpendicular to thexy-plane and stands on a line
L. A laser beam from the origin strikes the mirror atP (−1, 5) and
is reflected to the pointQ(24, 0). Determine the equation of the line
L.
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4 Determine all pairs of nonnegative integers(m,n) which are solu-
tions to the equation3(2m) + 1 = n2.

5 Letf(n) = n4 + 2n3 − n2 + 2n+ 1.

(a) Show thatf(n) can be written as the product of two quadratic
polynomials with integer coefficients.

(b) Determine all integersn for which |f(n)| is a prime number.



Chapter 36

Some geometry problems from
recent journals

1 Crux Mathematicorum
Jim Totten
Department of Mathematics and Statistics
University College of the Cariboo
Kamloops, BC, Canada, V2C 4Z9

2 Mathematics Magazine
Elgin Johnston, Problem Editor
Department of Mathematics
Iowa State University
Ames, IA 50011

3 American Mathematical Monthly
Doug Hensley, Monthly Problems
Department of Mathematics
Texas A&M University
3368 TAMU
College Station, TX 77843-3368

4 Pi Mu Epsilon Journal
Michael McConnell
840 Wood Street
Mathematics Department
Clarion University
Clarion, PA 16214
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Crux 2813, proposed by Barry Monson, University of New Brunswick,
Fredericton, NB and J. Chris Fisher, University of Regina, Regina,
SK, Canada

Suppose thatM is the midpoint of sideAB of the squareABCD. Let
P andQ be the points of intersections of the lineMD with the circle,
centerM , radiusMA(= MB), whereP is inside the square andQ is
outside. Prove that the rectangleAPBQ is a golden rectangle, that is,

PB : PA = (
√
5 + 1) : 2.
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Crux 2822, proposed by Peter Woo, Biola University, La Mirada,
CA

Suppose thatΠ is a parallelogram with sides of lengths2a and2b and
with acute angleα, and thatF andF ′ are the foci of the ellipseΛ that is
tangent to the four sides ofΠ at their midpoints.

(a) Find the major and minor semi-axes ofΠ in terms ofa, b andα.
(b) Find a straight-edge and compass construction forF andF ′.
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Crux 2823, proposed by Christopher J. Bradley, Clifton COllege,
Britol, UK

Suppose thatL, M , N are points onBC, CA, AB respectively, and are
distinct fromA, B, C. Suppose further that

BL

LC
=

1− λ

λ
,

CM

MA
=

1− µ

µ
,

AN

NB
=

1− ν

ν
,

and that the circlesAMN , BNL, andCLM meet at the Miquel pointP .
Find [BCP ] : [CAP ] : [ABP ] in terms ofλ, µ, ν and the side lengths
of triangleABC.
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Crux 2830, proposed by D. J. Smeenk, Zaltbommel, the Netherlands

Suppose thatΓ(O,R) is the circumcircle of triangleABC. Suppose that
sideAB is fixed and thatC varies onΓ (always on the same side ofAB).

Suppose thatIa, Ib, Ic are the centers of the excircles of triangleABC
oppositeA, B, C respectively. IfΩ is the center of the circumcircle of
triangleIaIbIc, determine the locus ofΩ asC varies.
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Crux 2836, proposed by G. Tsintsifas, Thessaloniki, Greece

Suppose that triangleABC is equilateral and thatP is an interior point.
The linesAP , BP , CP intersect the opposite sides atD, E, F respec-
tively. Suppose thatPD = PE = PF . Determine the locus ofP .

Suppose P has homogeneous barycentric coordinates (x : y :
z) with respect to triangle ABC. Then, D divides BC in the ratio
BP : PC = z : y, and PD = x

x+y+z
· AD. By Stewart’s theorem,

AD2 =
z

y + z
a2 +

y

y + z
a2 − yz

(y + z)2
a2 =

y2 + yz + z2

(y + z)2
· a2.

Therefore,

PD2 =
x2(y2 + yz + z2)

(x+ y + z)2(y + z)2
· a2.

Similarly, we obtain

PE2 =
y2(z2 + zx+ x2)

(x+ y + z)2(z + x)2
· a2,

PF 2 =
z2(x2 + xy + y2)

(x+ y + z)2(x+ y)2
· a2.

Therefore, PE = PF if and only if

(x+ y)2y2(z2 + zx+ x2) = (z + x)2z2(x2 + xy + y2),

or

(y−z)(x+y+z)(x3(y+z)+x2(y2+yz+z2)+xyz(y+z)+y2z2) = 0.

Since P is an interior point, x, y, z are positive. We conclude that
y = z. Similarly, PF = PD if and only if z = x.

The point P has coordinates x : y : z = 1 : 1 : 1; it is the center
of the equilateral triangle.
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Crux 2840, proposed by Juan-Bosco Romero Ḿarquez, University
of Valladolid, Valldolid, Spain

LetA′ be an interior point of the line segmentBC in triangleABC. The
interior bisectors of∠BA′A and∠CA′A intersectAB andCA atD and
E respectively. Prove thatAA′, BE, andCD are concurrent.
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Crux 2847, proposed by G. Tsintsifas, Thessaloniki, Greece

The inscircle inscribed in a tetrahedron is a circle of maximum radius
inscribed in the tetrahedron, considering every possible orientations in
E

3.
Find the radius of theinscircle of a regular tetrahedron.
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Crux 2849, proposed by Toshio Seimiya, Kawasaki, Japan

In a convex quadrilateralABCD, we have∠ABC = ∠BCD = 120◦.
Suppose thatAB2 + BC2 + CD2 = AD2. Prove thatABCD has an
inscribed circle.
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Mathematics Magazine, Problem 1669, proposed by A. N. Duman,
Bilkent University, Turkey

LetABC be a triangle and letE be the midpoint ofBC. A circle passing
throughA andC intersectsBA andBC in pointsG andE respectively.
Let D be the midpoint ofEC. A line throughD and perpendicular to
BC intersectsAC atF , with 3AF = FC. Prove that triangleFDG is
similar to triangleABC.
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Mathematics Magazine, Problem 1671, proposed by M. N. Desh-
pande, Institute of Science, Nagpur, India

Let T be the set of trianglesABC for which there is a pointD onBC
such that segmentsAB, BD, AD, DC, andAC have integral lengths
and∠ACD = 1

2
∠ABC = 1

3
∠ADB.

(a) Characterize the sets{a, b, c} that are sets of side lengths of trian-
gles inT.

(b) Find the triangle of minimum area inT.
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American Mathematical Monthly, Problem 11006, proposed by B. Suceavă,
California State University, Fullerton, CA

Let ABC be an acute triangle,T the midpoint of arcBC of the circle
circumscribingABC. Let G andK be the projections ofA andT re-
spectively onBC, let H andL be the projections ofB andC on AT ,
and letE be the midpoint ofAB. Prove that

(a) KH//AC, GL//BT , GH//TC, andLK//AB.

(b) G, H, K andL are concyclic.

(c) The center of the circle throughG, H, andK lies on the Euler
circle (nine-point circle) of triangleABC.
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Pi Mu Epsilon Journal, Problem 1058, proposed by P. A. Lindstrom,
Batavia, NY

Suppose that triangleABC has an interior pointP . Let D, E, F be
points on sidesAB, BC, CA respectively, so thatPD ⊥ AB, PE ⊥
BC, PF ⊥ CA. Let |AB| = x, |BC| = y, |CA| = z, |AB| = a,
|BE| = b, and|CF | = c.

1. Show that(x− a)2 + (y − b)2 + (z − c)2 = a2 + b2 + c2.

2. Show that if�ABC is an equilateral triangle, thena + b + c =
1
2
(perimeter) of triangleABC.
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Pi Mu Epsilon Journal, Problem 1060, proposed by A. B. Ayoub,
Pennsylvania State University, Abington, College, Abington, PA

Suppose�ABC is an equilateral triangle. The pointsD, E, andF are
onAB, BC, CA respectively such that|AD| = |BE = |CF |. Show
that the circumcircles of trianglesABC andDEF are concentric.



Chapter 37

The Josephus problem and its
generalization

37.1 The Josephus problem

n prisoners are arranged in a circle. In succession, everysecond one is
removed from the circle and executed, and the last one is set free. Who
is the survivor?

Examples

1. n = 10:

1

2

34

5

6

7

8 9

10

8

1

62

*

3

7

4 9

5

2. n = 21. After the removal of the 10 even numbered ones and then
the first, there are the 10 odd numbers 3, 5,. . . , 19, 21. Thesurvivor
is the 5-th of this list, which is 11.
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Theorem 37.1.Let f(n) be the survivor in the Josephus problem of n
prisoners.

f(2n) =2f(n)− 1,

f(2n+ 1) =2f(n) + 1.

Example

f(100) =2f(50)− 1

=2(2f(25)− 1)− 1 = 4f(25)− 3

=4(2f(12) + 1)− 3 = 8f(12) + 1

=8(2f(6)− 1) + 1 = 16f(6)− 7

=16(2f(3)− 1)− 7 = 32f(3)− 23

=32(2f(1) + 1)− 23 = 64f(1) + 9

=73.

There is an almost explicit expression forf(n): if 2m is the largest
power of 2≤ n, then

f(n) = 2(n− 2m) + 1.

Corollary 37.2. The binary expansion of f(n) is obtained by transfer-
ring the leftmost digit 1 of n to the rightmost.

f(100) = f(11001002) = 10010012 = 64 + 8 + 1 = 73.
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37.2 Generalized Josephus problemJ(n, k)

J(10, 3):

1

2

34

5

6

7

8 9

10

6

4

1*

8

2

5

7 3

9

J(10, k) for various values ofk

Forn = 10, here are the sequences of execution depending on the values
of k. The last column gives the survivors.

k ∗
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 3 7 1 9 5
3 3 6 9 2 7 1 8 5 10 4
4 4 8 2 7 3 10 9 1 6 5
5 5 10 6 2 9 8 1 4 7 3
6 6 2 9 7 5 8 1 10 4 3
7 7 4 2 1 3 6 10 5 8 9
8 8 6 5 7 10 3 2 9 4 1
9 9 8 10 2 5 3 4 1 6 7
10 10 1 3 6 2 9 5 7 4 8

Positions 2 and 6 aredeadly positions for the Josephus problem of 10
prisoners and random choice ofk.
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Exercise

1. For what values ofn is f(n) = n?

2. For what values ofn is f(n) = n− 1?

3. Make a list of the deadly positions of the Josephus problem for
n = 4, 5, . . . , 9.

4. Forn = 7, there is only one deadly position 1. This means that one
other position is most likely to survive? Which one is it?

5. Find out the survivor in the Josephus problemJ(24, 11).

2

3

4
5

678
9

10

11

12

13

14

15

16
17

18 19 20
21

22

23

24

1

1

2

3

4

6. The deadly positions forJ(24, k), k = 1, . . . , 24 are 5, 12, 13, 16,
18, 19, 22. What is the one with the best chance of survival?
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Permutations

38.1 The universal sequence of permutations

For convenient programming we seek an enumeration of the permuta-
tions. Regard each permutation of 1, 2, . . .n as a bijectionπ : N → N

which is “eventually” constant,i.e., f(m) = m for m > n. The enu-
meration begins with the identity permutation. The permutations of 1,
2, . . .n are among the firstn! of them, and each of the first(n − 1)!
permutations ends withn.

Given an integerm, we write

m− 1 = r2 × 1! + r3 × 2! + · · ·+ rk × (k − 1)!

for 0 ≤ ri < i. These can be calculated recursively as follows. Begin-
ning with (q1, r1) = (m− 1, 0), we set, for eachi ≥ 2,

qi−1 = i× qi + ri.

In other words,

(qi, ri) =
(⌊qi−1

i

⌋
, mod(qi−1, i)

)
.

Along with these, we construct a sequence of lists which ends at the
desired permutation. LetL1 = (1). For i ≥ 2, form Li by insertingi
intoLi−1 so that there are exactlyri members smaller thani on its right
hand side. ThenLk is the permutation corresponding tom.
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Example

To find the 12345th permutation, we write

12344 = 0× 1! + 1× 2! + 1× 3! + 4× 4! + 0× 5! + 3× 6! + 2× 7!.

The corresponding sequences are

k Lk
1 (1)
2 (1, 2)
3 (1, 3, 2)
4 (1, 3, 4, 2)
5 (5, 1, 3, 4, 2)
6 (5, 1, 3, 4, 2, 6)
7 (5, 1, 3, 7, 4, 2, 6)
8 (5, 1, 3, 7, 4, 8, 2, 6)

The permutation is (5,1,3,7,4,8,2,6).



38.2 The position of a permutation in the universal sequence 1007

38.2 The position of a permutation in the universal se-
quence

Given a permutationLn, we want to determine its position in the enu-
meration scheme above. Forj = n, n− 1, . . . ,2, let
(i) rj be the number of elements inLj on the right hand side ofj,
(ii) Lj−1 be the sequenceLj with j deleted.
Then, the position number of the permutationLn is

1 + r2 × 1! + r3 × 2! + · · ·+ rn × (n− 1)!.

This number can be computed recursively as follows.

sn =rn,

sn−1 =sn × (n− 1) + rk−1,

...

sj−1 =sj × (j − 1) + rj−1,

...

s2 =s2 × 2 + r2,

s1 =s2 × 1 + 1.

Example

Consider the permutationL = (1, 4, 6, 2, 3, 7, 9, 8, 5).

j Lj rj sj
9 (1, 4, 6, 2, 3, 7, 9, 8, 5) 2 2
8 (1, 4, 6, 2, 3, 7, 8, 5) 1 17
7 (1, 4, 6, 2, 3, 7, 5) 1 120
6 (1, 4, 6, 2, 3, 5) 3 723
5 (1, 4, 2, 3, 5) 0 3615
4 (1, 4, 2, 3) 2 14462
3 (1, 2, 3) 0 43386
2 (1, 2) 0 86772
1 (1) 1 86773

This permutation appears as the 86773-th in the universal sequence.
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Exercise

1. Find the one-billionth permutation in the universal sequence.

2. The inverse permutation of (5,1,3,7,4,8,2,6) is (2,7,3,5,1,8,4,6). What
is its position number in the universal sequence?

3. Let (a1, . . . , 1n) be a permutation of(1, 2, . . . , n).

(i)
∑

cyclic |ai − ai+1| ≥ 2n− 2.

(ii) For how many distinct permutations of(1, 2, . . . , n) does equal-
ity hold? Answer:n · 2n.

Project: Nice odd integers

An odd integern is said to be nice if and only if there is a permutation
(a1, a2, . . . , an) of (1, 2, . . . , n) such that the sums

a1 − a2 + · · · − an−1 + an,
a2 − a3 + · · · − an + a1,
...
an − a1 + · · · − an−2 + an−1

are all positive. Find all nice integers.
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Cycle decompositions

39.1 The disjoint cycle decomposition of a permutation

Theorem 39.1.Every permutation can be decomposed into a product of
disjoint cycles.

For example, the permutation(
1 2 3 4 5 6 7 8 9 X J Q K
6 9 8 3 4 2 K 7 Q 5 1 J X

)

decomposes into the two disjoint cycles(1629QJ)(387KX54).

Theorem 39.2.Every cycle decomposes into a product of transpositions.

Theorem 39.3. A permutation can be decomposed into a product of
transpositions. The parity (of the number of transpositions) of the per-
mutation is independent of the decomposition.

Thus, permutations are classified into even and odd permutations.
Even (respectively odd) permutations are said to have parity+1 (respec-
tively−1).

Corollary 39.4. A cycle of length k has parity (−1)k−1. More generally,
a permutation of n objects has parity

(−1)n− number of disjoint cycles in a decomposition.

In using this formula, the fixed points are counted as 1-cycles, though
we usually do not write them in the cycle decomposition of a permuta-
tion.
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39.2 Dudeney’s puzzle1

Take nine counters numbered 1 to 9, and place them in a row
in the natural order. It is required in as few exchanges of pairs
as possible to convert this into a square number. As an ex-
ample in six moves we give the following: (7846932), which
give the number 139854276, which is the square of 11826.
But it can be done in much fewer moves.

The square of 12543 can be found in four moves, as follows.

1 2 3 4 5 6 7 8 9
(25) 1 5 3 4 2 6 7 8 9
(37) 1 5 7 4 2 6 3 8 9
(38) 1 5 7 4 2 6 8 3 9
(34) 1 5 7 3 2 6 8 4 9

The squares of 25572, 26733, and 27273 can always be obtained in
four moves.

•
1 2 3 4 5 6 7 8 9

6 5 3 9 2 7 1 8 4

•
1 2 3 4 5 6 7 8 9

7 1 4 6 5 3 2 8 9

•
1 2 3 4 5 6 7 8 9

7 4 3 8 1 6 5 2 9

1Puzzle 128 of [Dudeney]
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However, there is one which can be made inthree moves. Can you
find it?

1 2 3 4 5 6 7 8 9
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The pandigital case of Dudeney’s puzzle

In the pandigital case, there are 4 ways to move

1 2 3 4 5 6 7 8 9 0
(37) 1 2 7 4 5 6 3 8 9 0
(48) 1 2 7 8 5 6 3 4 9 0
(4X) 1 2 7 8 5 6 3 0 9 4
(49) 1 2 7 8 5 6 3 0 4 9

This gives the 1278563049, the square of 35757.
There are three other ways of making 4 moves to make a pandigital

square. These are the squares of 35853, 38772, and 39147.

•
1 2 3 4 5 6 7 8 9 0

1 2 8 5 4 3 7 6 0 9

•
1 2 3 4 5 6 7 8 9 0

1 2 7 8 5 6 3 0 4 9

•
1 2 3 4 5 6 7 8 9 0

1 5 3 2 4 8 7 6 0 9
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39.3 Dudeney’s Canterbury puzzle 3

7 × 2 8 = 1 9 6 = 3 4 × 5 .

While 7 × 28 = 196, it is not true that34 × 5 = 196. Move as few
counters as possible to make the equations valid.2

2 (27)(495)to2×78=156=39×4.
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Project

The multiplication

1 2 × 3 4 5 = 6 7 8 9

is clearly not valid. Move as few counters as possible to make the equa-
tion valid. 3

How about

1 2 × 3 4 5 = 6 7 8 9 0 ?

3 (348965)to12×483=5796.
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39.4 The game of ropes and rungs

Each of the seven players starts by sliding down his own vertical rope,
and makes a turn every time he encounters a rung. Who wins the prize

* ?
A B C D E F G

*

Suppose you are at positionA, and are permitted to add any number
of rungs in any positions, (provided that no two rungs are at the same

horizontal level). How would you add rungs to claim the prize* ?
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Chapter 40

Graph labelling

40.1 Edge-magic triangle

Label the vertices and edges of a triangle with the numbers 1, 2,. . . , 6
without repitition so that the sum of the three number along each edge is
constant.
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40.2 Face-magic tetrahedron

The vertices and edges of a tetrahedron with consecutive integers 1, 2,
. . . , 10 sothat the four faces all have the same sum 32.

1 2

6

9

10

5

7

8

3
4

Can you label them with a smaller common face sum?
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40.3 Magic cube

Label the vertices of a cube by the numbers 1, 2,. . . , 8without repetition
such that the sum of the numbers at the four vertices of each face is a
constant.

5 4

63

2 7

18

3 6

45

2 7

18

2 7

45

3 6

18



1020 Graph labelling

40.4 Edge-magic heptagon

Label the vertices and edges with the fourteen numbers 1, 2,. . . , 14
(without repetition) so that the sum of the three numbers along each
edge is constant.
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40.5 Edge-magic pentagram

It is known that the pentagram cannot be labelled with the numbers 1, 2,
. . . , 10without repetition such that the sum of the four numbers along
each line is constant.

However, given the labelling of the five inner vertices below, it is
possible to label the five outer vertices such that the sum of the four
vertices along each of the five edges is constant. Find such a labelling
with minimum edge sum.

1

3

52

4
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40.6 A perfect magic circle

12

61
27

68
18

70
16

63
25

74
12

67
21

65
23

72
14

13
75

20
66

22
64

15
73

26
60

19
69

17
71

24
62

29
59

36
50

38
48

31
57

42
44

35
53

33
55

40
46

45
43

52
34

54
32

47
41

58
28

51
37

49
39

56
30
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Card tricks from permutations

Considermn cards arranged in order, from left to right, and from top to
bottom. We call this the standard order.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Rearrangements with simple cycle structure lead to interesting card
puzzles. For example, the magician asks an audience to note the card at
a specific spot, rearranges the cards according to some simple rule, then
asks the audience to tell the new card at the spot. The magician is able
to tell the card that originally occupies this position.
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The rearrangementω = ωm,n

Pick up the cards along the columns, from top to bottom, and from left
to right. Then rearrange them in the standard order.

Form = n, this rearrangement is the reflection in the main diagonal.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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The rearrangementρ = ρm,n

Pick up the cards along the columns,from bottom to top , and from left
to right. Then rearrange them in the standard order.

Form = n = 4, this rearrangement is the cyclic permutation of the
vertices of 4 squares:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

The cycle structure is simpler after one more application: it is simply
rotation through180◦ about the center of the square.
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The repeated diagonal rearrangement

Pick up the cards along thediagonals, from from bottom to top , and
from left to right. Then rearrange them in the standard order.

Form = n = 4, this is the permutationδ = δm,n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 2 9 6 3 13 10 7 4 14 11 8 15 12 16

with cycle structure

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

The cycle structure is simpler after one more application:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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The repeated snake rearrangement

Pick up the card along the columns, first from top to bottom, then from
bottom to top, and alternately. Rearrange in the standard order. This is
the permutationσ = σm,n

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

The cycle structure after one more application:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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Chapter 42

Tetrahedra

42.1 The isosceles tetrahedron

An isosceles tetrehedron is one whose four faces are congruent trian-
gles. Given a triangleABC, construct its anticomplimentary triangle
A′B′C ′ by drawing lines through the vertices parallel to their opposite
sides. Fold along the sides of the given triangle to bring the verticesA ′,
B′, C ′ into a pointD, forming an isosceles tetrahedronABCD. Every
isosceles tetrahedron arises from any one of its faces in this way. We
may therefore ask for the volume of the isosceles tetrahedronABCD in
terms of the side lengths of triangleABC.

A

B C

B′ = D

A′ = D

C′ = D A

B C

D

L

To compute the volume of a tetrahedron, we would drop the perpen-
dicular from a vertex to its opposite face (of area∆) to determine the
heighth on this face. The volume of the tetrahedron is thenV = 1

3
∆h.

For an isosceles tetrahedron, the position of this perpendicular foot is
clearly the same for the four faces.
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42.2 The volume of an isosceles tetrahedron

Let L be the pedal of the vertexD on the faceABC.1 Consider the
plane throughD perpendicular to the facesABC andDBC. This is the
plane containingD, L, and the common pedalX of these points on the
line BC. Upon unfolding the faceDAB into triangleABC ′, triangle
DZL becomes the segmentC ′L intersectingAB at Z. SinceC ′Z is
perpendicular toAB, C ′L is perpendicular toA′B′. The same reasoning
applied to the other two facesDBC andDCA shows thatA′L, B′L,
C ′L are perpendicular toB′C ′, C ′A′, A′B′ respectively. It follows that
L is the orthocenter of triangleA′B′C ′.

A

B C

D

C′

L

Z

A

B C

D
C′

LZ

B′

A′

OH

G

Proposition 42.1.The point L is the reflection of H in O.

The pointL is called the de Longchamps point of triangleABC.

Proposition 42.2.

OL2 = OH2 = R2(1− 8 cosα cos β cos γ).

Theorem 42.3.The volume of the isosceles tetrahedron on triangleABC
is given by

Viso =

√
1

72
(b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2).

1We use the wordpedal for perpendicular foot or orthogonal projection.
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42.3 Volume of a tetrahedron

LetABCD be a tetrahedron with

BC = a, CA = b, AB = C,
AD = a′, BD = b′, CD = c′.

The volumeV of the tetrahedron is given by

V 2 =
1

288

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 a′2 b′2 c′2

1 a′2 0 c2 b2

1 b′2 c2 0 a2

1 c′2 b2 a2 0

∣∣∣∣∣∣∣∣∣∣
=

1

144

((∑
edges

a2

)(∑
a2a′2

)
− 2

∑
a2a′2(a2 + a′2)−

∑
faces

a2b2c2

)
.
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42.4 Charles Twigg’s envelope model of the tetrahedron
2

Take an sealed envelope which is two copies of a rectangleABCD glued
along the perimeter. AssumeAB < BC.

A

B C

D

E = E′

F

1. Fold the diagonalsAC andBD. Their intersection is the double
pointE andE ′.

2. Cut along two half diagonalsAE andDE to remove the sector
containing one long side and the flap of the envelope.

3. Fold along the remaining portions of the half diagonals (BE and
CE) and crease firmly. Fold back along the same lines and crease
firmly again.

4. FoldAB intoDC to form the creaseEF . Here,F is the midpoint
of the sideBC. UnderneathE is the pointE ′

5. SeparateE andE′ until EFE ′ is a straight line. Fold up around
EFE ′ until D meetsA, thus forming a hexahedron.

6. TuckD underAB (orA underDC) and press up onB andC until
DC andBA coincide.

A = C

B = D E

E′
F

2C. W. Trigg, Tetrahedral models from envelopes,Math. Mag., 51 (1978) 66–67.
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Exercise

1. Find the volumes of the isosceles tetrahedra with face given below:

a b c V

11 20 21
33 65 72
69 91 100
21 99 100

2. Find the volumes of the following tetrahedra:

a b c a′ b′ c′ V

32 33 35 76 70 44
21 32 47 58 76 56

3. What is the shape of the envelope in Twigg’s model for which the
resulting tetrahedron is regular?

4. In Twigg’s envelope model, supposeAB = 2a andBC = 2b.
What is the volume of the resulting tetrahedron?3

3This is an isosceles tetrahedron with face2a,
√
a2 + b2, and

√
a2 + b2. Its volume is4

9
a2

√
b2 − a2 .
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Chapter 43

Lewis Carroll’s unused
geometry pillow problem

According to [Rowe], one of the pillow problems Lewis Carroll had at-
tempted but did not include in his collection of pillow problems was the
following.

Given a triangleABC, to find, by paper folding, a line* which
intersectsAC andAB at Y andZ respectively) such that if
A′ is the reflection ofA in * , then the reflections ofB in A′Z
and ofC in A′Y coincide.

W

'

C

A

B

A′

Z

Y

The pointW is both the reflection ofB in A′Y , and that ofC in
A′Z. It follows thatA′B = A′W = A′C, andA′ is on the perpendicular
bisector ofBC.
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Consider thedirected angle∠BA′C. This is

∠BA′C =∠BA′W + ∠WA′C
=2∠Y A′W + 2∠WA′Z
=2∠Y A′Z
=− 2∠Y AZ

sinceA′Y AZ is a rhombus. This means that∠BA′C = −2∠BAC. The
reflection ofA′ in the sideBC is therefore the pointQ on the perpen-
dicular bisector such that∠BQC = 2∠BAC, which is necessarily the
circumcenterO of triangleABC. We therefore conclude thatA′ is the
reflection of the circumcenterO in the sideBC, and the reflection line*
is the perpendicular bisector of the lineAA′.

O

D

H

C

A

B

N

A′

Let D be the midpointBC andH the orthocenter of triangleABC.
In a standard proof of the Euler line theorem, it is established thatAH =
2OD, 1 and that the midpoint ofOH is the nine-point center of triangle
ABC. This means thatAH = OA′, andAOA′H is a parallelogram. It
follows that the midpoint ofAA′ is the same as that ofOH, the nine-
point centerN of triangleABC. The Lewis Carroll paper-folding line
is the perpendicular to AN at N .

1AH = 2 · OD = 2R cosA, whereR is the circumradius of triangleABC.
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Japanese Temple Geometry
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