
An Ontology for Secure Socio-Technical Systems

Fabio Massacci
Dep. of Information and Communication Technology
University of Trento

via Sommarive 14, 38050 Povo (TRENTO), Italy
massacci@dit.unitn.it

John Mylopoulos
Dep. of Information and Communication Technology
University of Trento

via Sommarive 14, 38050 Povo (TRENTO), Italy
jm@dit.unitn.it

Nicola Zannone
Dep. of Information and Communication Technology
University of Trento

via Sommarive 14, 38050 Povo (TRENTO), Italy
zannone@dit.unitn.it

mailto:massacci@dit.unitn.it
mailto:zannone@dit.unitn.it
mailto:zannone}@dit.unitn.it

 An Ontology for Secure Socio-Technical Systemsi

ABSTRACT

Security is often compromised by exploiting vulnerabilities in the interface between
the organization and the information systems that support it. This reveals the necessity
of modeling and analyzing information systems together with the organizational
setting where they will operate. In this chapter we address this problem by presenting
a modeling language tailored to analyze the problem of security at an organizational
level. This language proposes a set of concepts founded on the notions of permission,
delegation, and trust. The chapter also presents a semantics for these concepts, based
on Datalog. A case study from the bank domain is employed to illustrate the proposed
language.

INTRODUCTION

The last years have seen the emergence of standards for capturing security and
privacy aspects of information systems (Ashley et al., 2003; Cranor et al., 2002;
OASIS, 2005). Those standards provide language constructs but offer no
methodological tool for actually making design decisions. In this setting, the inclusion
of security features within the system design is usually done after the functional
design phase. This is a critical issue since security services and related protection
mechanisms have to be fitted into an existing design that might be not able to
accommodate them.

It is generally accepted in the Requirements Engineering (RE) research
community that system development requires models that represent the system-to-be
along with its intended operational environment. This is even more important when
the system has to meet security requirements, since security breaches often occur at an
organizational level, rather than a technical one (Anderson, 1994). Even though there
are mature methodologies for modeling and analyzing enterprises and their
organizational structure, their focus is mostly on process and marketing aspects, rather
than security (AMICE Consortium, 1993; Bryce and Associates, 2006; Dignum, 2004;
Yu, 1996; Hübner et al., 2002; Stader, 1996).

Socio-technical system analysis has been proposed to overcome this issue (Emery
et al., 1960). This approach aims at capturing the interactions between people and
technology in workplaces. In this setting, security is the ability of the system to
protect itself against deliberate misbehavior by actors of the organizations involved in
the application scenario while still providing expected services when requested by
benign actors. For instance, an actor may abuse his position within the organization to
gain personal advantages (House of Lords, 1999; Michaely et al., 1999). Therefore,
modeling and analyzing the organizational environment where the system will act is
crucial for building secure systems. This allows designers to identify security
mechanisms that can best protect the system, and their impacts on the system.

This chapter aims at analyzing the problem of modeling security at an
organizational level. Based on such an analysis, we identify and formally define basic
ontological primitives for modeling organizational and security concepts, paying
particular attention to the security relevant social interaction within organizations.

To allow for a systematic design of security in organization, we have developed an
agent-oriented requirements engineering methodology, Secure Tropos (Giorgini et al.,
2005; Giorgini et al., 2006), tailored to describe both the organizational environment
of a system and the system itself. The methodology provides a requirements analysis
process that drives system designers from the acquisition of the requirements model
up to its verification and validation. One of its main features is the prominent role
given to early requirements analysis phase that precedes a prescriptive requirements
specification. The main advantage in having such a phase is that one can capture not
only the “what” or the “how”, but also the “why” a software system is developed.
Secure Tropos was originally based on the i* modeling framework (Yu, 1996). This
framework has already been used to model and analyze security requirements (Liu
et al., 2003). In this work, security requirements are treated as non-functional
requirements. This approach supports the representation of design decisions that can
contribute to a security goal and the modeling of attackers (both internal and external)
who prevent the fulfillment of goals.

However, our work revealed early on that the i* ontology needs to be extended in
order to adequately model security, because it lacks fundamental concepts needed in
order to talk about security within an organization (Giorgini et al., 2006). To this end,
we have proposed an enhanced ontology with three main notions, namely ownership,
delegation and trust, which together form the very foundation of all security concerns
(Giorgini et al., 2005). Ownership is used to identify goals, tasks and resources that an
actor controls; delegation is used to model the transfer of entitlements and
responsibilities between actors; finally, trust represents the belief of actors about the
behavior of other actors (Mayer et al,. 1995; Rousseau et al., 1998). Once basic
ontological primitives have been identified, we develop a comprehensive ontology
tailored to model security at an organizational level. To this end, we provide an
axiomatic characterization of their intended semantics using Answer Set
Programming (Leone et al., 2006). The proposed ontology is intended to serve as the
basis for security-related domain ontologies. From an IT perspective, it can serve as a
basis for specifying together functional and security requirements.

The chapter is organized as follows. The next section reviews the current state-of-
the-art in ontologies for organization and security modeling by presenting the issues
in current proposals. Section 3 introduces a bank scenario used as a running example
to illustrate the application of the proposed ontology. Section 4 introduces a set of
primitive concepts for modeling security at organizational level. Section 5 presents an
axiomatic theory of the identified primitives. Section 6 shows how the introduced
concepts are enough to detect security vulnerabilities. Finally, Section 7 concludes the
paper with some directions for future work.

RELATED WORK

Several research communities have approached the problem of enterprise modeling
and analysis, and some of these have addressed issues of security. We discuss below
some of the more prominent approaches.

Enterprise Engineering. Organizational modeling of enterprises is often dealt with
by enterprise engineering methodologies (AMICE Consortium, 1993; Bernus and
Nemes, 1996; Bryce and Associates, 2006; Stader, 1996). Each methodology
includes an ontology for modeling organizations, usually supported by a modeling
environment and various analysis tools.

Multi-Agent Systems (MAS). Efforts towards modeling organizations have also
originated in the MAS community (Dignum, 2004; Hübner et al., 2002). These
approaches propose to model multi-agent systems as organizational structures.

Semantic Web. Ontologies constitute basic infrastructure for the Semantic Web. The
idea underling Semantic Web proposals is to use shared vocabularies for describing
entities of the domain and their inter-relationships (Masolo et al., 2004).

Security Engineering. One of main challenges of security is data protection.
Resources must be protected against unauthorized access and/or tampering. This
has spurred many researchers to define languages tailored to model privacy and
access control policies (OASIS, 2005; Ashley et al., 2003; Cranor et al., 2002).

Enterprise engineering approaches tackle the issues of organizational analysis and
modeling from an enterprise perspective. For instance, the Enterprise Project (Stader,
1996) aims to capture an enterprise-wide perspective of organizations. Such models
are intended to drive enterprises in making strategic, tactical and operational
decisions. To achieve a high degree of integration, the Enterprise Project proposed the
Enterprise Ontology (Uschold et al., 1998) which includes a set of terms often used to
describe enterprises. This ontology focuses on organizational structure, strategy,
activities and processes, as well as marketing aspects. The Enterprise Engineering
Methodology (Bryce and Associates, 2006) provides a framework that allows the
study of an organization and the development of an enterprise strategy synchronized
with organizational goals. The methodology includes an ontology for specifying
priorities within an organization, along with plans for implementing them.

The Computer-Integrated Manufacturing Open-System Architecture (CIMOSA)
(AMICE Consortium, 1993) aims at integrating enterprise operations by means of
efficient information exchange within the enterprise. CIMOSA models enterprises
using four perspectives: the function view describes the functional structure required
to satisfy the objectives of an enterprise and related control structures; the information
view describes the information required by each function; the resource view describes
the resources and their relations to functional and control structures; and the
organization view describes the responsibilities assigned to individuals for functional
and control structures. The Generalised Enterprise Reference Architecture and
Methodology (GERAM) (Bernus and Nemes, 1996) defines a set of concepts for
designing and maintaining enterprises during their entire life-history spanning from
products to enterprise integration and strategic enterprise management. This
framework identifies basic concepts used to describe the structure, content, and
behavior of enterprises. Such concepts enable the modeling of the human component
in an enterprise operation as well as the parts of business processes and their
supporting technologies.

Among proposals from the multi-agent systems domain, OperA (Dignum, 2004)
aims at designing models of organizations that support dynamic and autonomous
interactions by focusing on agent societies. This proposal uses the agent paradigm to
provide a natural way to view and characterize intelligent organizational systems. To
model different roles, goals and interactions within an organization, the framework
adopts a 3-layer approach: the organizational model describes the intended behavior
and overall structure of the society from the perspective of the organization in terms
of roles, interactions and social norms; the social model instantiates the organizational
model with specific agents mapped to roles through a social contract; finally, the
interaction model describes the society agents interactions by the means of interaction
contracts. The OperA framework is supported by a language based on deontic
temporal logic that provides a formal framework and integrated semantics at all three
levels of society specification. MOISE+ (Hübner et al., 2002) focuses on the structure
and functionalities of organizations, and the deontic relation between them to explain
how a MAS achieves its purpose. Accordingly, the organizational specification is
formed by a structural specification, a functional specification, and a deontic
specification. The structural specification adopts the concepts of role, role relation,
and groups to model the individual, social, and collective structural levels of
organizations. The functional specification is based on the concepts of missions and
global plans. The deontic specification then links the structural specification to
functional specification in terms of permissions and obligations.

The Tropos methodology (Bresciani et al., 2004) is an agent-oriented software
engineering methodology intended to support all analysis and design activities in the
software development process. The methodology consists of five phases, namely
Early Requirements, Late Requirements, Architectural Design, Detailed Design, and
Implementation. Early Requirements aims at understanding the domain with its
stakeholders and their individual and shared goals. Late Requirements focuses on the
elicitation of requirements for the system-to-be. Architectural Design specifies the
system architecture in terms of a set of interacting software agents. Detailed Design is
concerned with the specification of agent capabilities and interaction. Finally,
Implementation deals with the production of code from the detailed design
specification. Tropos adopts the i* modeling language (Yu, 1996), which allows
designers to model the organizational environment of a system and the system itself.
This language offers primitive concepts such as actor, goal, plan, resource, as well as
social dependency relationships between two actors. The modeling framework of i*
includes strategic dependency models for describing the network of inter-
dependencies among actors, as well as strategic rationale models for describing and
supporting the reasoning of each actor vis-a-vis other actors.

Among proposals for Semantic Web, we note the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) (Masolo et al., 2004). DOLCE aims
to capture ontological categories that underlie natural language and human common
sense. This ontology uses three main entities for modeling organizational settings:
organizations, norms and roles. Norms describe the structure and purposes of an
organization by identifying its main concerns and the behavior of its agents. The link
between agents and norms is represented in terms of roles.

In the realm of security and privacy modeling, we find sophisticated proposals
such as XACML (OASIS, 2005), EPAL (Ashley et al., 2003), and P3P (Cranor et al.,

2002). XACML is an OASIS standard supporting both an access control policy
language and an access control decision language. XACML defines schemes for the
specification of both a context and access control policies. An EPAL policy is a set of
privacy rules that includes a data user, an action, a data category, and a purpose with
conditions and obligations. On the other hand, P3P aims at formalizing privacy
statements that are published by an enterprise. Its goal is to define a machine-readable
equivalent for the human readable privacy promises that are published as a privacy
statement on a web page. Unlike XACML and EPAL, P3P defines a global
terminology that can be used to describe privacy policies for an enterprise. However,
these standards do not address issues of design: the system administrator must
manually decide which is the right policy to protect the information system he is
responsible for. Moreover, these proposals do not provide facilities for modeling the
structure of an organization together with organizational goals. Accordingly, it is not
possible to verify whether a given policy is consistent with the functionalities of the
system.

Requirements Engineering usually treats security as a non-functional requirement
(Chung et al., 2000). Non-functional requirements introduce quality characteristics,
but they also represent constraints under which the system must operate
(Sommerville, 2001). Although system designers have recognized the need to
integrate most of the non-functional requirements, such as reliability and
performance, into the software development process (Dardenne et al., 1993), security
requirements are identified after the definition of the functional design. This attitude
may lead to generating serious design challenges that usually translate into software
vulnerabilities or serious organizational blunders.

Security needs are generically expressed by organizational security policies. An
organization defines high-level policies about security with respect to its strategic
objectives and its organizational structure. Such policies have to be mapped to the
specific functionalities of their information systems. Without an explicit model of the
organization and the trust relationships among its components it can be result
particularly complex to find the reasons that have motivated their introduction
(Lampson, 2004). For instance, ignoring trust concerns seriously affects the
effectiveness of security measures imposed on a system. For instance, system
designers may not introduce security measures since they may implicitly assume trust
relationships among users that are in fact not there in the domain. Alternatively,
system designers may introduce expensive mechanisms for protecting a trusted
system that has not been perceived as such by designers.

The purpose of this chapter is to define a novel ontology supporting the
integration of security and requirements engineering during early phases of system
development. Such an ontology is intended to aid designers in understanding why
security mechanisms such as authentication, access control, or back ups are necessary,
and once they are selected, what are the trade-offs from the standpoint of corporate
missions. Although there have been several proposals for modeling security features,
what is still missing are models that focus on high-level security concerns without
forcing designers to immediately get down to security mechanisms. For instance,
Jürjens (2004) proposed UMLsec for modeling security related features, such as
confidentiality and access control. Basin et al. (2006) proposed an UML-based
modeling language, SecureUML. Their approach is focused on modeling access

control policies and integrating them into a model-driven software development
process. McDermott and Fox (1999) adapt use cases to capture and analyze security
requirements, and they call these abuse cases. An abuse case is an interaction between
a system and one or more actors, where the results of the interaction are harmful to
the system, or one of the stakeholders of the system. Guttorm and Opdahl (2005)
define misuse cases, the converse of UML use cases, which describe uses that the
system should not allow.

3 A Running Example

A major source of vulnerabilities is due to the presence of conflicts and loopholes at
the interface between an IT system and its operational environment. Only analyzing
the system from an organizational perspective designers can identify appropriate
security solutions.

An application domain where such issues are prominent is the banking domain.
Banks, by their very nature, have to enforce security in the context of distributed
control and responsibility, also evolving services and infrastructures. Protection
measures, such as access control policies, separation of duties, auditing, non-
repudiation action, digital signatures, all need to be considered and applied to comply
with security and legal requirements besides functional requirements for a system-to-
be.

In this chapter, we focus on a banking scenario and more specifically on loan
process in the context of which activities take place and assignment of rights, roles,
and tasks need to be carefully considered from a security perspective. In this scenario,
we are going to emphasize the necessity of preventing frauds, preserving data
integrity, and protecting customer privacy rights.

Si*: A LANGUAGE FOR SRE

The definition of a modeling language for designing secure socio-technical systems
includes the definition of primitive concepts for modeling organizational and security
concerns, as well as the logical formalization of such primitives. Our language, Si*
(Secure i*), is based on the i* ontology (Yu, 1996), where specifications employ basic
primitives such as “actor”, “role”, “goal”, “task”, “resource”, and “social relationships
between actors”.

Actors and their specializations

An actor is an active entity that has strategic goals and performs actions to achieve
them. Actors can be decomposed into sub-units for modeling the internal structure of
organizations. Complex social actors can be modeled using two types of sub-units:
agents and roles. An agent is an actor with concrete, physical manifestations. The
term agent can be used to refer to human as well as software agents and organizations.
A role is the abstract characterization of the behavior of a social actor within some
specialized context. Figure 1 shows the graphical representation of actors and their
specializations.

Figure 1 Si* graphical representation of agents and roles

An agent is said to play a role. The play relation is similar in the intuition to the
user-role assignment of the RBAC approach (Sandhu et al., 1996). According to such
an approach, an agent inherits the properties of the roles he plays. Agents and roles
can be further analyzed by decomposing them using the relation is part of. For
instance, this relation can be used to identify the member of an organization as well as
the sub-components of a software agent.

Si* provides support for modeling role hierarchies based on the concepts of
specialization and supervision. A role is a specialization of another if it refers to more
specialized activities. In this setting, all specialized sub-roles inherit all properties of
the generalized super-role. The basic idea underlying supervision is that, if a role
supervises another role, the first is responsible for the behavior of the latter and has
the capabilities to control and evaluate the latter’s work. This concept is used to build
the supervision hierarchy (Figure 3), whereas the specialization hierarchy is built
using the ISA relation (Figure 2).

Example 1 The director of a bank is responsible for the correct delivery of the
services offered by bank itself. The director cannot perform all such services by
himself, and so appoints managers and clerks (e.g., pre-processing clerks and post-
processing clerks) to perform some of the tasks he is responsible for. If services are
not provided in compliance with bank policies, he is personally liable. Thereby, the
director has good reasons to check and evaluate the behavior of subordinate roles.
Figures 2 and 3 represent the roles presented above and the relations between them.

Figure 2 Specialization Hierarchy

Figure 3 Supervision Hierarchy

Goals, tasks and resources

A goal represents a strategic interest of an actor. Si*, as well as i*, differentiates
between hard (only goals hereafter) and soft goals. The latter have no clear definition
or criteria for deciding whether they are satisfied or not, and are typically used to
model non-functional requirements. According to (Chung et al., 2000), the different
nature of fulfillment is underlined by saying that goals are satisfied, while softgoals
are satisficed.

Goals can be fulfilled by means of tasks or resources. A task represents a
particular course of actions that produces a desired effect. A task can be executed in
order to satisfy a goal or satisfice a softgoal. A resource represents a physical or an
informational entity without intentionality. A resource can be consumed or produced
by a task. Figure 4 depicts the graphical representation of goals, softgoals, tasks, and
resources.

Figure 4 Si* graphical representation of goal, softgoal, task, and resource

Si* is based on the idea of building a model of the system that is incrementally
refined and extended. Goal modeling consists of refining goals and eliciting new
social relationships among actors. Goals are analyzed from the perspective of single
actors using three techniques, namely AND/OR decomposition, contribution analysis,
and means-end analysis. AND/OR decomposition combines AND and OR
refinements of a root goal into subgoals, modeling a finer goal structure. In essence,
AND-decomposition is used to define the process for achieving a goal, while OR-
decomposition defines alternatives for achieving a goal. Contribution analysis
identifies goals and tasks that contribute positively or negatively in the fulfillment of

the goal to be analyzed. Means-end analysis aims at identifying goals, softgoals, tasks,
and resources that provide means for achieving a goal.

Example 2 One of the services offered by the bank is to offer loans. The provisioning
of such a service contributes to increase bank profits. The bank AND-decomposes
offer loans into identify customers, manage the loan process, sell the loan.
These subgoals can be further decomposed until a plan to fulfill them is identified.
For instance, getting customer data can be achieved by executing tasks insert
customer identifier and retrieve customer data. Figure 5 shows the goal diagram
derived applying goal analysis to offer loans.

Figure 5 Goal diagram

Objectives, Entitlements, and Capabilities

The first intuition in modeling security aspects of information systems is to
distinguish between actors who want access to a resource, fulfillment of a goal or
execution of a task, from actors who have the capabilities to do any of the above, and
– last but not least – actors who are entitled to do any of the above. Essentially, every
actor is defined along with a set of objectives, capabilities, and entitlements.

Objectives, entitlements and capabilities of actors are modeled through relations
between actors and services, namely request, own, and provide.

Request indicates that an actor intends to achieve a goal, execute a task, or requires a
resource.

Own indicates that an actor is the legitimate “owner” of a goal, a task, or a resource.
The basic idea is that an owner has full authority concerning access and disposition
over his entitlements.

Provide indicates that the actor has the capability to achieve a goal, execute a task, or
deliver a resource.

The distinction between being entitled and providing allows us to model situations
where the actor that has the capabilities to fulfill a goal is different from the one that
has the permission to do it.

Example 3 According to data protection legislation, a customer is entitled to control
the use of his personal data. The pre-processing clerk is appointed to identify
customers. Thereby, he needs to access customer information to achieve his duties.
However, he does not directly interact with the customer, but he retrieves such data
from the bank IT system. Thus, the bank should seek the consent of the customer for
granting access to the customer’s data to all employees assigned to him.

Relations request, own, and provide are graphically represented as edges between
an actor and a service, labeled by R, O and P, respectively.

Trust and Delegation

Si* supports the notion of delegation in order to model the transfer of entitlements
and responsibilities from an actor to another. Thus, delegation is a ternary relation
among two actors (the delegator and the delegatee) and a goal, task or resource (the
delegatum).

Example 4 A pre-processing clerk is interested in gathering customer data, for which
he depends on the bank IT system. The customer delegates the permission to provide
his data to the bank IT system on condition that they are not disclosed to third parties.

Figure 6 Delegation

In this scenario (Figure 6), there is a difference of relationship between the pre-
processing clerk and the bank IT system and between the customer and the bank IT
system. This difference is based on the type of delegation used in the two
relationships. Thereby, we introduce a conceptual refinement of delegation, that
allows us to capture and model important security facets.

Delegation of execution indicates that one actor delegates to other actors the
responsibility to achieve a goal, execute a task, or deliver a resource. This would be
matched, for instance, by a call to an external procedure. As consequence, the
delegatee is responsible for the achievement of the goal, execution of the task, or
delivery of the resource.

Delegation of permission indicates that one actor delegates to other actors the
permission to achieve a goal, execute a task, or use a resource. This would be
matched by issuing a delegation certificate, such as digital credential or a letter. As
consequence, the delegatee is entitled to achieve the goal, execute the task, or use
the resource.

In the graphical representation of Figure 6 we represent these relationships as edges
respectively labeled De and Dp.

Example 5 The customer delegates the permission to the bank IT system to provide
only information relevant for the required service. On the other hand, the pre-
processing clerk, who wants customer data, delegates the execution of his goal to the
bank IT system. According to the pre-processing clerk, the bank IT system should
provide the required information. He is not interested in what the bank IT system does
with the customer consent, apart from getting his information. The clerk’s major
concern would be that tasks are delegated to people that can actually do them,
whereas the customer would be concerned that his data are given to people who will
not misuse the permissions they have acquired.

Further, we want to separate the concepts of trust and delegation, as we might
need to model systems where some actors must delegate permission or execution to
untrusted actors. Trust represents the willingness to accept vulnerability based on
positive expectations about the behavior of another actor (Mayer et al,. 1995;
Rousseau et al., 1998). It is related to belief in honesty, trustfulness, competence, and
reliability (Castelfranchi and Falcone, 1998) and it is used to build collaboration
between humans and organizations (Axelrod, 1984). Trust is an important aspect for
making decisions on security since it allows to economize on information processing
and protection mechanisms.

Similarly to delegation, we represent trust as a ternary relation among two actors
(the trustor and the trustee) and a goal, a task or a resource. The object around which
the trust relationship centers is called trustum. Also in this case it is convenient to
have a suitable distinction for trust in managing permission and trust in managing
execution.

Trust of execution indicates the belief of one actor that the trustee will achieve the
goal, perform the task, or furnish the resource.

Trust of permission indicates the belief of one actor that the trustee will not misuse
the goal, task, or resource.

These relationships are graphically represented as edges respectively labeled Te and
Tp.

A FORMAL ONTOLOGY

To define a formal semantics for the new primitives, we use the Answer Set
Programming (ASP) paradigm (Leone et al., 2006). The ASP paradigm is based on
the concepts of facts and rules expressed as Horn clauses and evaluated using the
stable model semantics.ii Facts are atomic statements representing the extensional
description of the system. Rules can be axioms or properties: axioms are used to
complete the extensional description of the system, whereas properties correspond to
integrity constraints and are used to verify requirements consistency.

Predicates

Our setting distinguishes two types of predicates: intensional and extensional.
Extensional predicates (Table 1) correspond to the edges and circles drawn by the
requirements engineer during the modeling phase and are used to formalize the
intuitive description of the system. Intensional predicates (Table 2) are determined
with the help of rules by the reasoning system.

Extensional Predicates

For an automatic and precise analysis of requirements, graphical diagrams need to be
translated in formal specifications. This has spurred us to define an extensional
predicate for each primitive concept. Next, this set of predicates is presented and a
summary is given in Table 1.

Type Predicates
service(Service:s)
goal(Goal:g)
task(Task:t)
resource(Resource:r)
actor(Actor:x)
agent(Agent:a)
role(Role:p)
Goal Analysis
AND_decomp(Service:s,Service:s1,Service:s2)
OR_decomp(Service:s,Service:s1,Service:s2)
pos_contribution(Service:s1,Service:s2)
neg_contribution(Service:s1,Service:s2)
means_end(Service:s1,Service:s2)
Association Relations
play(Agent:a,Role:p)
is_a(Role:p,Role:q)
supervise(Role:p,Role:q)
is_part_of(Actor:x,Actor:y)
Actor Properties
request(Actor:x,Service:s)
own(Actor:x,Service:s)
provide(Actor:x,Service:s)
Delegation and Trust
delegate(perm,x,y,s)
delegate(exec,x,y,s)

trust(perm,x,y,s)
trust(exec,x,y,s)

Table 1 Extensional predicates

• Type Predicates: The unary predicates goal, task and resource are used
respectively for identifying goals, tasks, and resources. For sake of
compactness, we will use the unary predicate service when it is not necessary
to distinguish among goals, tasks, and resources. We shall use letters S, G, T
and R possibly with indexes as variables ranging over services, goals, tasks
and resources, respectively. The unary predicates agent and role are used
respectively for identifying agents, and roles. For sake of compactness, we
introduce the unary predicate actor when is not necessary to distinguish
among them. We shall use letters X, Y and Z as variable to indicate generic
actor, A, B and C as variables to indicate agents, and P, Q and V as variables to
indicate roles.

• Goal Analysis: Predicates AND_decomp and OR_decomp are used to model
AND- and OR-decomposition, respectively. Predicates pos_contribution and
neg_contribution are used to model positive and negative contribution,
respectively. Finally, means_end states that a service provides means for
achieving a goal with respect to the perspective of an actor.

• Association Relations: Predicate play identifies the roles played by an agent.
Predicate is_a is used to build specialization hierarchies, whereas supervise is
used to build supervision hierarchies. Finally, is_part_of identifies the sub-
components of an actor.

• Actor Properties: Predicate request identifies the objectives of actors, provide
the capabilities of actors, and own the legitimate owner of services.

• Delegation and Trust: Predicates delegate(perm,x,y,s) and delegate(exec,x,y,s)
correspond to delegation of permission and delegation of execution,
respectively. Predicates trust(perm,x,y,s) and trust(exec,x,y,s) correspond to
trust of permission and trust of execution, respectively.

Intensional Predicates

The intuitive description of the system is not sufficient for an accurate verification of
the system (Giorgini et al., 2006). To derive the right conclusions, such a description
is completed using rules. To distinguish the relations drawn by the requirements
engineer from the ones derived by the system, we introduce a set of intensional
predicates (Table 2). Next, we present such predicates.

Goal Analysis
subservice(Service:s1,Service:s2)
AND_subservice(Service:s1,Service:s2)
OR_subservice(Service:s1,Service:s2)
Actor Properties
aim(Actor:x,Service:s)
has_perm(Actor:x,Service:s)
Trust
trustChain(perm,Actor:x,Actor:y,Service:s)
trustChain(exec,Actor:x,Actor:y,Service:s)
Confidence and Need-to-Know
in_charge(Actor:x,Service:s)

fulfill(Actor:x,Service:s)
can_satisfy(Actor:x,Service:s)
can_execute(Actor:x,Service:s)
confident(satisfy,Actor:x,Service:s)
confident(execute,Actor:x,Service:s)
confident(owner,Actor:x,Service:s)
need_to_have_perm(Actor:x,Service:s)

Table 2: Intensional Predicates

• Goal Analysis: These predicates identify the relations among services in terms
of subparts. Predicates subservice, OR_subservice and AND_subservice
respectively identifies a subservice, OR-subservice and AND-subservice of a
service. More specific predicates should be introduced for goal, task and
resource decomposition.

• Actor Properties: Predicate aim identifies direct and indirect objectives of
actors and has_perm identifies direct and indirect entitlements of actors.

• Trust: Trust relations can be combined to build trust chains. In particular,
trustChain(perm,x,y,s) and trustChain(perm,x,y,s) chains of trust of permission
and trust of execution, respectively.

• In charge and fulfill: Predicate in_charge identifies actors who take care of the
final delivery of a service and fulfill identifies actors who are actually willing
to deliver a service.

• Confidence of execution: This set of predicates is used to capture the notion of
confidence from the requester's perspective. Predicate can_satisfy identifies
actors who delegate their objectives to actors who have the capabilities to
fulfill them. Predicate can_execute identifies actors who delegate their
objectives to actors who will fulfill them. confident(satisfy,x,s) identifies
actors confident that a service can be satisfied. confident(execute,x,s) identifies
actors confident that a service will be fulfilled. This is the case if an actor
knows that all delegations have been done to trusted actors and that the actor,
who will ultimately deliver the service, has permission to do so.

• Confidence of entitlements: From the viewpoint of the owner, confidence
means that the owner is confident that the permission that he has delegated
will not be misused. Thereby, confident(owner,x,s) holds if an actor is
confident that the permission on his entitlements is granted only to trusted
actors.

• Need-to-Know: Current privacy and data protection legislation requires that
information is unavailable to actors except those who need legitimately to
know (need-to-know principle). Essentially, this corresponds to the desire of
owners to delegate permissions to providers only if the latter actually do need
the permission. Predicate need_to_have_perm is used to capture this idea.

Axioms

This section describes the axioms that define the semantics underlying Si*. They are
used to complete the extensional description of the system.iii

Trust

Table 3 presents the axioms for propagating trust relations along chains and service
refinement.

Trust

T1 trustChain(exec,X,Y,S)←trust(exec,X,Y,S)

T2 trustChain(exec,X,Y,S)←trust(exec,X,Z,S) trustChain(exec,Z,Y,S)∧
T3 trustChain(exec,X,Y,S1)←subservice(S,S1) trustChain(exec,X,Y,S)∧
T4 trustChain(perm,X,Y,S)←trust(perm,X,Y,S)

T5 trustChain(perm,X,Y,S)←trust(perm,X,Z,S) trustChain(perm,Z,Y,S)∧
T6 trustChain(perm,X,Y,S)←subservice(S,S1) trustChain(perm,X,Y,S1)∧

Table 3: Trust Propagation

• Trust (T1-6) T1-2 are used to build trust chains for execution. T3 propagates
trust relationships from a service to its parts. T4-5 are used to build trust
chains for permission. T6 propagates trust along service refinements. If an
actor trusts that another will not overstep the set of actions required to fulfill a
part of a service, then the first can trust the last will not overstep the set of
actions required to fulfill the service. Thereby, trust of permission flows
bottom-up with respect to goal refinements.

Fulfillment, Confidence, and Need-to-Know

Tables 4 and 5 present the set of axioms for identifying entitlements and
responsibilities of actors; also, actors who will fulfill services and actors who are
confident that their objectives will be fulfilled and their entitlements will not misused.

Aims

AP1 aim(X,S)←request(X,S)

AP2 aim(X,S) ←delegate(exec,Y,X,S)∧aim(Y,S)

AP3 aim(X,S)←subservice(S1,S)∧aim(Y,S)

Has permission

AP4 has_perm(X,S)←own(X,S)

AP5 has_perm(X,S) ←delegate(perm,Y,X,S) has_perm∧ (Y,S)

AP6 has_perm(X,S)←subservice(S1,S) has_perm∧ (Y,S)

In charge

AP7 in_charge(X,S)←aim(X,S)∧provide(X,S)

Fulfill

AP8 fulfill(X,S)←in_charge(X,S)∧has_perm(X,S)

Can satisfy

AP9 can_satisfy(X,S)←in_charge(X,S)

AP10 can_satisfy(X,S)←delegate(exec,X,Y,S)∧can_satisfy(Y,S)

AP11 can_satisfy(X,S)←OR_subservice(S1,S)∧can_satisfy(X,S1)

AP12 can_satisfy(X,S)←AND_decomp(S,S1,S2)∧can_satisfy(X,S1)∧can_satisfy(X,S2)
Can execute

AP13 can_execute(X,S)←fulfill(X,S)

AP14 can_execute(X,S)←delegate(exec,X,Y,S)∧can_execute(Y,S)

AP15 can_execute(X,S)←OR_subservice(S1,S)∧can_execute(X,S1)

AP16 can_execute(X,S)←AND_decomp(S,S1,S2)∧can_execute(X,S1)∧can_execute(X,S2
)
Table 4: Entitlements and Objectives Transfer and Fulfillment

• Aim (AP1-3) AP1 states that if an actor requests a service fulfilled, he aims its
fulfillment. AP2 states that if an actor requires a service delivered and
delegates its execution to another actor, the service becomes an objective of
the delegatee. Finally, AP3 propagates objectives through service refinement.

• Has permission (AP4-6) The owner of a service has full authority concerning
access and disposition of it. Thus, AP4 states that if an actor owns a service, he
is entitled to deliver it. AP5 states that if an actor is entitled to deliver a service
and delegates the permission to another actor, the delegatee is entitled to
deliver the service. Finally, AP6 propagates entitlements through service
refinement.

• In charge (AP7) An actor will take charge of the fulfillment of a service if he
has the capabilities to fulfill it and it belongs to his objectives.

• Fulfill (AP8) An actor will fulfill a service if he has taken charge of its
fulfillment and has the permission to fulfill it.

• Can satisfy (AP9-12) An actor can satisfy his objectives if either he has taken
charge of them (AP9) or has delegated them to someone who can satisfy them
(AP10). Service decompositions are accounted for through axioms AP11-12. If
an actor can satisfy at least one of the OR-subservices of a service, then he can
satisfy the root service. Dual axiom holds for AND-decompositions.

• Can execute (AP13-16) These axioms is used to identify actors that actually
can deliver a service by combining execution with permission. An actor can
fulfill his objectives if either he will fulfill them directly (AP13) or has
delegated its execution to someone who can execute them (AP14). Service
decompositions are accounted for through axioms AP15-16. If an actor can
execute at least one of the OR-subservices of a service, then he can execute
the root service. Dual axiom holds for AND-decompositions.

Confident of satisfaction

AP17 confident(satisfy,X,S)←in_charge(X,S)

AP18 confident(satisfy,X,S)←delegate(exec,X,Y,S)∧trustChain(exec,X,Y,S)∧
 confident(satisfy,X,S)

AP19 confident(satisfy,X,S)←OR_subservice(S1,S)∧confident(satisfy,X,S1)

AP20 confident(satisfy,X,S)←AND_decomp(S,S1,S2)∧confident(satisfy,X,S1)∧
 confident(satisfy,X,S1)

Confident of execution

AP21 confident(execute,X,S)←fulfill(X,S)

AP22 confident(execute,X,S)←delegate(exec,X,Y,S)∧trustChain(exec,X,Y,S)∧
 confident(execute,X,S)

AP23 confident(execute,X,S)←OR_subservice(S1,S)∧confident(execute,X,S1)

AP24 confident(execute,X,S)←AND_decomp(S,S1,S2)∧confident(execute,X,S1)∧
 confident(execute,X,S1)

Confident of entitlements

AP24 confident(owner,X,S)←owns(X,S)∧not diffident(X,S)

AP26 diffident(X,S)←delegate(exec,X,Y,S)∧not trustChain(perm,X,Y,S)

AP27 diffident(X,S)←delegate(exec,X,Y,S)∧diffident(X,S)

AP28 diffident(X,S)←subservice(S1,S)∧diffident(X,S)

Need to know

AP29 need_to_have_perm(X,S)←in_charge(X,S)

AP30 need_to_have_perm(X,S)←delegate(perm,X,Y,S)∧not other_delegater(X,Y,S)∧
 need_to_have_perm(Y,S)

AP31 other_delegater(X,Y,S)←delegate(perm,X,Y,S)∧delegate(perm,Z,Y,S)∧
 need_to_have_perm(Z,S)∧X≠Z

Table 5: Confidence and Need-to-Know

• Confidence of satisfaction (AP17-20) An actor is confident that its objectives
will be satisfied if he takes care of them (AP17) or he has delegated their
execution to trusted actors (AP18). Axioms AP19-20 specify how confidence
of satisfaction is propagated upwards along service decomposition.

• Confidence of execution (AP21-24) An actor is confident to fulfill his
objectives if he fulfills them by himself (AP21) or he has delegated their
execution to trusted actors (AP22). Axioms AP23-24 propagate confidence of
execution upwards along service decomposition.

• Confidence of entitlements (AP25-28) An owner is confident, if there is no
likely misuse of his permission. It can be seen that there is an intrinsic double
negation in the statement. We model it using a predicate diffident. A delegating
agent is diffident, if the delegation is being done to an untrusted agent (AP26)
or if the delegatee could be diffident himself (AP27). AP28 propagates
diffidence upwards along service decomposition.

• Need to Know (AP29-31) These axioms defines the semantics of intensional
predicates that are necessary to analyze need-to-know properties. These
axioms also capture the possibility of having alternate paths of permission
delegations through predicate other_delegater. In this case the formal analysis
will not yield one model but multiple models in which only one path of
delegation is labeled by the need-to-have property and the others are not.
Essentially, AP30-31 introduce non-determinism, so they make search and
verification harder.

ANALYSIS AND VERIFICATION

The suggested primitives were sufficient to deal with most of the security
organizational requirements we encountered. For instance, it has been shown that Si*
is able to cope with the complexity of a real ISO-17799-like case study (Massacci
et al., 2005). Security requirements are verified using properties. Such properties are
defined in form of patterns that have to be checked. In ASP, they are represented as
constraints that a good design should satisfy. If these features are not consistent,
vulnerabilities may occur in the implementation of the system-to-be. Table 6 presents
the basic set of properties.

Authorization

Pro1 ←delegate(perm,X,Y,S)∧not trustChain(perm,X,Y,S)

Pro2 ←delegate(perm,X,Y,S)∧not has_perm(X,S)

Pro3 ←own(X,S)∧not confident(owner,X,S)

Availability

Pro4 ←delegate(exec,X,Y,S)∧not trustChain(exec,X,Y,S)

Pro5 ←request(X,S)∧not can_satisfy(X,S)

Pro6 ←request(X,S)∧not can_execute(X,S)

Pro7 ←request(X,S)∧not confident(satisfy,X,S)

Pro8 ←request(X,S)∧not confident(execute,X,S)

Pro9 ←need_to_have_perm(X,S)∧not has_perm(X,S)

Privacy

Pro10 ←has_perm(X,S)∧not need_to_have_perm(X,S)
Table 6: Security Properties

• Authorization (Pro1-3) Pro1 is used to detect untrusted delegations of
permission. Pro2 verifies whether an actor who delegates the permission to
deliver a service is entitled to do it. Pro3 verifies that the owner of the service
has to be confident to give the service only to trusted actors.

• Availability (Pro4-9) Pro4 is used to detect untrusted delegations of execution.
Pro5-6 check if actors can satisfy and execute the required services. Pro7-8
verify whether requesters are confident to satisfy and execute required
services, respectively. Pro9 verifies if actors have the permission necessary to
perform their duties.

• Privacy (Pro10) Pro10 verifies that actors, who have the permission on a
service, actually need such permission.

CONCLUSION

This chapter has proposed an ontology intended to model security at an organizational
level. The proposed concepts proved up to the challenge, and revealed a number of
pitfalls, especially when formal analysis techniques were applied (Massacci and
Zannone, 2006).

We are currently extending the ontology to capture behavioral aspects of the
system. This extension has two implications. On one hand, it allows system designers
to capture more sophisticated security properties. On the other hand, such concepts
support the (semi-)automatic derivation of business processes from the requirements
model.

Another direction under investigation involves the enrichment of the Si* ontology
with concepts necessary for capturing privacy concerns. According to existing privacy
legislations in many countries (e.g., the US Privacy Act and the EU Privacy
Directive), privacy is mainly maintained by controlling the usage of information. This
requires that information be linked to the functional requirements of the original
application. Following this trend, researchers have recently proposed frameworks for
specifying and enforcing privacy policies. However, they do not support policy
writers in the analysis of organizational requirements and leave them to manually
define privacy policies. Our objective is to bridge the gap between the requirements
analysis and policy specification by deriving privacy policies directly from the
requirements model.

ACKNOWLEDGMENTS

We thank Nicola Guarino and ISTC-CNR Laboratory for Applied Ontology in Trento
for many useful discussions. This work was partly supported by the projects FIRB-
TOCAI, IST-FP6-FET-IP-SENSORIA, IST-FP6-IP-SERENITY, and PAT-MOSTRO.

REFERENCES

AMICE Consortium (1993). Open System Architecture for CIM. Springer-Verlag.

Anderson, R. (1994). Why cryptosystems fail. Communication of the ACM,
37(11):32–40.

Ashley, P., Hada, S., Karjoth, G., Powers, C., & Schunter, M. (2003). Enterprise
Privacy Authorization Language (EPAL 1.2). W3C Recommendation.

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model Driven Security: from UML
Models to Access Control Infrastructures. ACM Transactions on Software
Engineering and Methodology, 15(1):39–91.

Bernus, P., & Nemes, L. (1996). A Framework to Define a Generic Enterprise
Reference Architecture and Methodology. Computer Integrated Manufacturing
Systems, 9(3):179–191.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004).
TROPOS: An Agent-Oriented Software Development Methodology.
Autonomous Agents and Multi-Agent Systems, 8(3):203–236.

Bryce, M., & Associates (2006). PRIDE-EEM Enterprise Engineering Methodology.
From http://www.phmainstreet.com/mba/pride/eemeth.htm.

Castelfranchi, C., & Falcone, R. (1998). Principles of trust for MAS: Cognitive
anatomy, social importance and quantification. In International Conference on
Multi-Agent Systems, pages 72–79. IEEE Press.

Chung, L. K., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-Functional
Requirements in Software Engineering. Kluwer Publishing.

Cranor, L., Langheinrich, M., Marchiori, M., & Reagle, J. (2002). The Platform for
Privacy Preferences 1.0 (P3P1.0) Specification. W3C Recommendation.

Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed Requirements
Acquisition. Science of Computer Programming, 20:3–50.

Dignum, V. (2004). A model for organizational interaction: based on agents, founded
in logic. PhD thesis, Universiteit Utrecht.

Emery, F. E., & Trist E. L. (1960). Socio-technical systems. In Management Sciences:
Models and Techniques, volume 2, (pp 83–97). Pergamon Press

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2006). Requirements
Engineering for Trust Management: Model, Methodology, and Reasoning.
International Journal of Information Security, 5(4):257–274.

Giorgini, P., Massacci, F., & Zannone, N. (2005). Security and Trust Requirements
Engineering. In FOSAD III, LNCS 3655, (pp. 237–272). Springer.

House of Lords (1999). Prince Jefri Bolkiah vs KPMG. 1 All ER 517. From
www.parliament.the-stationeryoffice.co.uk.

Hübner, J. F., Sichman, J. S., & Boissier, O. (2002). A Model for the Structural,
Functional, and Deontic Specification of Organizations in Multiagent Systems.
In Brazilian Symposium on Artificial Intelligence, pages 118–128. Springer.

Jürjens, J. (2004). Secure Systems Development with UML. Springer-Verlag.

Lampson, B. W. (2004). Computer Security in the Real World. Computer, 37(6):37–
46.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F.
(2006). The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic, 7(3):499–562.

Liu, L., Yu, E. S. K., & Mylopoulos, J. (2003). Security and Privacy Requirements
Analysis within a Social Setting. In IEEE International Requirements
Engineering Conference, pages 151–161. IEEE Press.

Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., , &
Guarino, N. (2004). Social roles and their descriptions. In Conference on the
Principles of Knowledge Representation and Reasoning, pages 267–277. AAAI
Press.

Massacci, F., Prest, M., & Zannone, N. (2005). Using a Security Requirements
Engineering Methodology in Practice: The compliance with the Italian Data
Protection Legislation. Computer Standards & Interfaces, 27(5):445–455.

Massacci, F., & Zannone, N. (2006). Detecting Conflicts between Functional and
Security Requirements with Secure Tropos: John Rusnak and the Allied Irish
Bank (Technical Report DIT-06-002). University of Trento.

Mayer, R. C., Davis, J. H. , & Schoorman, F. D.. 1995. An integrative model of
organizational trust. Acad. Management Rev, 20(3):709-734.

McDermott, J., & Fox, C. (1999). Using Abuse Case Models for Security
Requirements Analysis. In Annual Computer Security Applications Conference,
pages 55–66. IEEE Press.

Michaely, R., & Womack, K. L. (1999). Conflict of interest and the credibility of
underwriter analyst recommendations. Review of Financial Studies, 12(4):653–
686.

OASIS (2005). eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS Standard. From http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf.

Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. 1998. Not so different after
all: A cross-discipline view of trust. Acad. Management Rev. 23(3) 393-404.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E. (1996). Role-based
access control models. Computer, 29(2):38–47.

Sindre, G., & Opdahl, A. L. (2005). Eliciting security requirements with misuse cases.
Requirements Engineering Journal, 10(1):34–44.

Sommerville, I. (2001). Software Engineering. Addison-Wesley.

Stader, J. (1996). Results of the Enterprise Project (Technical Report AIAI-TR-209).
University of Edinburgh.

Uschold, M., King, M., Moralee, S., & Zorgios, Y. (1998). The Enterprise Ontology.
Knowledge Engineering Review, 13(1):31–89.

Yu, E. (1996). Modelling strategic relationships for process reengineering. PhD
thesis, University of Toronto.

i Methodological aspects of this research have been addressed in (Giorgini et al., 2005; Giorgini
et al., 2006).
ii We assume that the reader is familiar with such concepts. Otherwise see (Leone et al., 2006) for a
tutorial.
iii We do not present here the axiomatization for the user-role assignment and goal analysis. We refer
to (Giorgini et al., 2005) for it.

	An Ontology for Secure Socio-Technical Systems
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	3 A Running Example
	Si*: A LANGUAGE FOR SRE
	Actors and their specializations
	Goals, tasks and resources
	Objectives, Entitlements, and Capabilities
	Trust and Delegation

	A FORMAL ONTOLOGY
	Predicates
	Extensional Predicates
	Intensional Predicates

	Axioms
	Trust
	Fulfillment, Confidence, and Need-to-Know

	ANALYSIS AND VERIFICATION
	CONCLUSION
	ACKNOWLEDGMENTS

