
6. Theorem of Ceva, Menelaus and Van Aubel.

Theorem 1 (Menelaus). If A1, B1, C1 are points on the sides BC, CA
and AB of a triangle ABC, then the points are collinear if and only if

|A1B|
|A1C| .

|B1C|
|B1A| .

|C1A|
|C1B| = 1.

Figure 1:

Proof Assume points are collinear.

First drop perpendiculars AA′, BB′ and CC ′

from the vertices A,B, C to the line A1B1C1.
Then since AA′, BB′ and CC ′ are perpendic-
ular to A1B1, they are parallel (Figure 1).
Thus we get the following equalities of ratios

|A1B|
|A1C| =

|BB′|
|CC ′| ,

|B1C|
|B1A| =

|CC ′|
|AA′|

and
|C1A|
|C1B| =

|AA′|
|BB′| .

Multiplying these we get the required re-
sult.

Conversely, suppose
|A1B|
|A1C| .

|B1C|
|B1A| .

|C1A|
|C1B| = 1.

Now suppose lines BC and B1C1 meet at the point A′′. Then

|A′′B|
|A′′C| .

|B1C|
|B1A| .

|C1A|
|C1B| = 1.

Thus
|A1B|
|A1C| =

|A′′B|
|A′′C| ,
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and so we conclude that the point A′′ on the line BC coincides with the point
A1. Thus the points A1, B1 and C1 are collinear.

Definition 1 A line segment joining a vertex of a triangle to any
given point on the opposite side is called a Cevian.

Theorem 2 (Ceva) Three Cevians AA1, BB1 and CC1 of a triangle ABC
(Figure 2) are concurrent if and only if

|BA1|
|A1C| .

|CB1|
|B1A| .

|AC1|
|C1B| = 1.

Figure 2:

Proof First assume that the Cevians are con-
current at the point M.

Consider the triangle AA1C and apply Menelaus’ the-
orem. Since the points B1,M and B are collinear,

|B1C|
|B1A| .

|MA|
|MA1| .

|BA1|
|BC| = 1 . . . (a)

Now consider the triangle AA1B. The points C1,M,C
are collinear so

|C1A|
|C1B| .

|CB|
|CA1| .

|MA1|
|MA| = 1 . . . (b)

Multiply both sides of equations (a) and (b) to get re-
quired result.

Conversely, suppose the two Cevians AA1 and BB1 meet at P and that
the Cevian from the vertex C through P meets side AB at C ′. Then we have

|BA1|
|A1C| .

|CB1|
|B1A| .

|AC ′|
|C ′B| = 1.

By hypothesis,

|BA1|
|A1C| .

|CB1|
|B1A| .

|AC1|
|C1B| = 1.

Thus
|AC1|
|C1B| =

|AC ′|
|C ′B| ,

and so the two points C1 and C ′ on the line segment AB must coincide. The
required result follows.
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Theorem 3 (van Aubel) If A1, B1, C1 are interior points of the sides BC, CA
and AB of a triangle ABC and the corresponding Cevians AA1, BB1 and
CC1 are concurrent at a point M (Figure 3), then

|MA|
|MA1| =

|C1A|
|C1B| +

|B1A|
|B1C| .

Figure 3:

Proof Again, as in the proof of Ceva’s theo-
rem, we apply Menelaus’ theorem to the triangles AA1C
and AA1B.

In the case of AA1C, we have

|B1C|
|B1A| .

|MA|
|MA1| .

|BA1|
|BC| = 1,

and so
|B1A|
|B1C| =

|MA|
|MA1| .

|BA1|
|BC| . . . (c)

For the triangle AA1B, we have

|C1A|
|C1B| .

|CB|
|CA1

.
|MA1|
|MA| = 1,

and so
|C1A|
|C1B| =

|MA|
|MA1| .

|CA1|
|BC| . . . (d)

Adding (c) and (d) we get

|B1A|
|B1C| +

|C1A|
|C1B| =

|MA|
|MA1||BC|{|BA1|+ |A1C|} =

|MA|
|MA1| ,

as required.

Examples

1. Medians AA1, BB1 and CC1 intersect at the centroid G and then

|GA|
|GA1| = 2,

since

1 =
|A1B|
|A1C| =

|B1C|
|B1A| =

|C1A|
|C1B| .
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2. The angle bisectors in a triangle are concurrent at the incentre I of
the triangle. Furthermore, if A3, B3 and C3 are the points on the sides
BC, CA and AB where the bisectors intersect these sides (Figure 4),
then

|A3B|
|A3C| =

c

b
,
|B3C|
|B3A| =

a

c
and

|C3A|
|C3B| =

b

a
.

Then
|IA|
|IA3| =

|C3A|
|C3B| +

|B3A|
|B3C|

=
b

a
+

c

a
=

b + c

a
.

Figure 4:

3. Let AA2, BB2 and CC2 be the altitudes of a triangle ABC. They are
concurrent at H, the orthocentre of ABC (Figure 5.)

We have

|A2B|
|A2C| =

|AA2| cot(B̂)

|AA2| cot(Ĉ)

=
tan(Ĉ)

tan(B̂)

and similarly

|B2C|
|B2A| =

tan(Â)

tan(Ĉ)
,

|C2A|
|C2B| =

tan(B̂)

tan(Ĉ)
.
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Figure 5:

Multiplying the 3 ratios, we get concurrency of the altitudes. Further-
more,

|HA|
|HA2| =

|C2A|
|C2B| +

|B2A|
|B2C| =

tan(B̂)

tan(Â)
+

tan(Ĉ)

tan(Â)

=
tan(B̂) + tan(Ĉ)

tan(Â)

=
sin(B̂ + Ĉ). cos(Â)

cos(B̂) cos(Ĉ) sin(Â)

=
sin(180◦ − Â) cos(Â)

cos(B̂) cos(Ĉ) sin(Â)
=

cos(Â)

cos(B̂) cos(Ĉ)
.

Lemma 1 Let ABC be a triangle and A1 a point on the side BC so
that

|A1B|
|A1C| =

γ

β

Let X and Y be points on the sides AB and AC respectively and let M be
the point of intersection of the line segments XY and AA1 (Figure 6). Then

β(
|XB|
|XA| ) + γ(

|Y C|
|Y A| ) = (β + γ)(

|A1M |
|MA| ).

Figure 7:

Proof First suppose that
XY is parallel to the side BC. Then

|XB|
|XA| =

|Y C|
|Y A| =

|MA1|
|MA| ,
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Figure 6:

and so result is true for any β and
γ.

Now suppose the lines XY and BC in-
tersect at a point Z.

Consider the triangle AA1B (Figure
7). Since M, X and Z are collinear,

|Y C|
|Y A| .

|MA|
|MA1| .

|ZA1|
|ZC| = 1.

Then β(
|XB|
|XA| ) + γ(

|Y C|
|Y A| )

= β(
|MA1||ZB|
|MA||ZA1| ) + γ(

|MA1||ZC|
|MA||ZA1| )

=
|MA1|

|MA||ZA1|{β|ZB|+ γ|ZC|}

=
|MA1|

|MA||ZA1|{β|ZA1| − β|BA1|+ γ|ZA1|+ γ|A1C|}

= (β + γ)
|MA1|

|MA||ZA1| .|ZA1|,

since
|BA1|
|A1C| =

γ

β
,

= (β + γ)
|MA1|
|MA| , as required.
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Theorem 4 Let ABC be a triangle with three cevians AA1, BB1 and
CC1 intersecting at a point M (Figure 8).

Figure 8:

Furthermore suppose

|A1B|
|A1C| =

γ

β
,
|B1C|
|B1A| =

α

γ
and

|C1A|
|C1B| =

β

α
.

If X and Y are points on the sides AB and AC then the point M belongs to
the line segment XY if and only if

β(
|XB|
|XA| ) + γ(

|Y C|
|Y A| ) = α.

Proof By van Aubel’s theorem:

|AM |
|A1M | =

|C1A|
|C1B| +

|B1A|
|B1C|

=
β

α
+

γ

α
=

β + γ

α
.

Now suppose M belongs to the line segment XY. Then by the previous lemma

β(
|XB|
|XA| ) + γ(

|Y C|
|Y A| ) = (β + γ)

|A1M |
|MA|

= (β + γ)(
α

β + γ
) = α, as required.

For converse, suppose XY and AA1 intersect in point M ′. We will show that
M ′ coincides M.

By the lemma,
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β(
|XB|
|XA| ) + γ(

|Y C|
|Y A| ) = (β + γ)(

|A1M
′|

|M ′A| ).

By hypothesis, we have

β(
|XB|
|XA| ) + γ(

|Y C|
|Y A| ) = α.

Thus |A1M |
|AM | =

α

β + γ
,

and so M and M ′ coincide. Thus M must lie on the line segment XY.

Corollary 1 If G is the centroid of the triangle ABC and so α = β =
γ = 1, then G belongs to the line segment XY if and only if

|XB|
|XA| +

|Y C|
|Y A| = 1.

Corollary 2 If I is the incentre of the triangle ABC then the values
of α, β and γ are given in terms of the sidelengths of the triangle as

α = a, β = b and γ = c.

Thus I belongs to XY if and only if

b(
|XB|
|XA| ) + c(

|Y C|
|Y A| ) = a.

Corollary 3 If H is the orthocentre of the triangle ABC then the
ratios on the sides are given by

α = tan(Â), β = tan(B̂) and γ = tan(Ĉ.)

Then we get that H belongs to the line segment XY if and only if

(tan(B̂))(
|XB|
|XA| ) + (tan(Ĉ))(

|Y C|
|Y A| ) = tan(Â).

We also get the following result which was a question on the 2006 Irish
Invervarsity Mathematics Competition.

Theorem 5 Let ABC is a triangle and let X and Y be points on the
sides AB and AC respectively such that the line segment XY bisects the area
of ABC and the points X and Y bisects the perimeter (Figure 9). Then the
incentre I belongs to the line segment XY .
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Figure 9:

Proof Let x = |AX| and y = |AY |.

Then

x + y =
a + b + c

2
. . . (a)

where a, b and c are lengths of sides.

Furthermore,

1

2
=

area(AXY )

area(ABC)
=

xy sin(Â)

bc sin(Â)
,

so

xy =
bc

2
. . . (b).

Consider b(
|XB|
|XA| ) + c(

|Y C|
|Y A| )

= b(
c− x

x
) + c(

b− y

y
)

= b(
1

x
+

1

y
)− b− c

= bc(
a + b + c

2
.
2

bc
)− b− c

= a.

Thus by Corollary 2, incentre I belongs to the line XY.

Theorem 6 Let ABC be an equilateral triangle and X, Y and Z points
on the sides BC,CA and AB respectively (Figure 10). Then the minimum
value of

|ZX|2 + |XY |2 + |Y Z|2

is attained when X, Y, Z are the midpoints of the sides.
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Figure 10:

Proof Consider
1

3
{|ZX|2 + |XY |2 + |Y Z|2}

We have
1

3
{|ZX|2 + |XY |2 + |Y Z|2}

≥ (
|ZX|+ |XY |+ |Y Z|

2
)2,

by Cauchy − Schwarz inequality,

≥ (
|A1B1|+ |B1C1|+ |C1A1|

3
)2,

where A1B1C1 is the orthic triangle of ABC. (This result was proved in
chapter 5 on orthic triangles.)

If l is the common value of the sides of ABC then the orthic triangle A1B1C1

is also equilateral and sidelengths are
l

2
. Thus

(
|A1B1|+ |B1C1|+ |C1A1|

3
)2 = |A1B1|2

=
|A1B1|2 + |B1C1|2 + |C1A1|2

3
.

The required result follows.
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