6. Theorem of Ceva, Menelaus and Van Aubel.

Theorem 1 (Menelaus). If A_{1}, B_{1}, C_{1} are points on the sides $B C, C A$ and $A B$ of a triangle $A B C$, then the points are collinear if and only if

$$
\frac{\left|A_{1} B\right|}{\left|A_{1} C\right|} \cdot \frac{\left|B_{1} C\right|}{\left|B_{1} A\right|} \cdot \frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=1 .
$$

Proof Assume points are collinear.

First drop perpendiculars $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ from the vertices A, B, C to the line $A_{1} B_{1} C_{1}$. Then since $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are perpendicular to $A_{1} B_{1}$, they are parallel (Figure 1). Thus we get the following equalities of ratios

$$
\begin{array}{r}
\frac{\left|A_{1} B\right|}{\left|A_{1} C\right|}=\frac{\left|B B^{\prime}\right|}{\left|C C^{\prime}\right|}, \quad \frac{\left|B_{1} C\right|}{\left|B_{1} A\right|}=\frac{\left|C C^{\prime}\right|}{\left|A A^{\prime}\right|} \\
\text { and } \frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=\frac{\left|A A^{\prime}\right|}{\left|B B^{\prime}\right|}
\end{array}
$$

Figure 1:

Multiplying these we get the required result.

Conversely, suppose $\frac{\left|A_{1} B\right|}{\left|A_{1} C\right|} \cdot \frac{\left|B_{1} C\right|}{\left|B_{1} A\right|} \cdot \frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=1$.
Now suppose lines $B C$ and $B_{1} C_{1}$ meet at the point $A^{\prime \prime}$. Then

$$
\begin{gathered}
\frac{\left|A^{\prime \prime} B\right|}{\left|A^{\prime \prime} C\right|} \cdot \frac{\left|B_{1} C\right|}{\left|B_{1} A\right|} \cdot \frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=1 . \\
\text { Thus } \quad \frac{\left|A_{1} B\right|}{\left|A_{1} C\right|}=\frac{\left|A^{\prime \prime} B\right|}{\left|A^{\prime \prime} C\right|},
\end{gathered}
$$

and so we conclude that the point $A^{\prime \prime}$ on the line $B C$ coincides with the point A_{1}. Thus the points A_{1}, B_{1} and C_{1} are collinear.
Definition $1 \quad A$ line segment joining a vertex of a triangle to any given point on the opposite side is called a Cevian.

Theorem 2 (Ceva) Three Cevians $A A_{1}, B B_{1}$ and $C C_{1}$ of a triangle $A B C$ (Figure 2) are concurrent if and only if

$$
\frac{\left|B A_{1}\right|}{\left|A_{1} C\right|} \cdot \frac{\left|C B_{1}\right|}{\left|B_{1} A\right|} \cdot \frac{\left|A C_{1}\right|}{\left|C_{1} B\right|}=1
$$

Proof First assume that the Cevians are concurrent at the point M.

Consider the triangle $A A_{1} C$ and apply Menelaus' theorem. Since the points B_{1}, M and B are collinear,

$$
\begin{equation*}
\frac{\left|B_{1} C\right|}{\left|B_{1} A\right|} \cdot \frac{|M A|}{\left|M A_{1}\right|} \cdot \frac{\left|B A_{1}\right|}{|B C|}=1 \tag{a}
\end{equation*}
$$

Now consider the triangle $A A_{1} B$. The points C_{1}, M, C are collinear so

$$
\begin{equation*}
\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|} \cdot \frac{|C B|}{\left|C A_{1}\right|} \cdot \frac{\left|M A_{1}\right|}{|M A|}=1 \tag{b}
\end{equation*}
$$

Figure 2:

Multiply both sides of equations (a) and (b) to get required result.

Conversely, suppose the two Cevians $A A_{1}$ and $B B_{1}$ meet at P and that the Cevian from the vertex C through P meets side $A B$ at C^{\prime}. Then we have

$$
\frac{\left|B A_{1}\right|}{\left|A_{1} C\right|} \cdot \frac{\left|C B_{1}\right|}{\left|B_{1} A\right|} \cdot \frac{\left|A C^{\prime}\right|}{\left|C^{\prime} B\right|}=1
$$

By hypothesis,

$$
\begin{gathered}
\frac{\left|B A_{1}\right|}{\left|A_{1} C\right|} \cdot \frac{\left|C B_{1}\right|}{\left|B_{1} A\right|} \cdot \frac{\left|A C_{1}\right|}{\left|C_{1} B\right|}=1 . \\
\text { Thus } \quad \frac{\left|A C_{1}\right|}{\left|C_{1} B\right|}=\frac{\left|A C^{\prime}\right|}{\left|C^{\prime} B\right|},
\end{gathered}
$$

and so the two points C_{1} and C^{\prime} on the line segment $A B$ must coincide. The required result follows.

Theorem 3 (van Aubel) If A_{1}, B_{1}, C_{1} are interior points of the sides $B C, C A$ and $A B$ of a triangle $A B C$ and the corresponding Cevians $A A_{1}, B B_{1}$ and $C C_{1}$ are concurrent at a point M (Figure 3), then

$$
\frac{|M A|}{\left|M A_{1}\right|}=\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}+\frac{\left|B_{1} A\right|}{\left|B_{1} C\right|} .
$$

Proof Again, as in the proof of Ceva's theorem, we apply Menelaus' theorem to the triangles $A A_{1} C$ and $A A_{1} B$.

In the case of $A A_{1} C$, we have

$$
\frac{\left|B_{1} C\right|}{\left|B_{1} A\right|} \cdot \frac{|M A|}{\left|M A_{1}\right|} \cdot \frac{\left|B A_{1}\right|}{|B C|}=1,
$$

and so

$$
\begin{equation*}
\frac{\left|B_{1} A\right|}{\left|B_{1} C\right|}=\frac{|M A|}{\left|M A_{1}\right|} \cdot \frac{\left|B A_{1}\right|}{|B C|} \tag{c}
\end{equation*}
$$

Figure 3:

For the triangle $A A_{1} B$, we have

$$
\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|} \cdot \frac{|C B|}{\mid C A_{1}} \cdot \frac{\left|M A_{1}\right|}{|M A|}=1,
$$

and so

$$
\begin{equation*}
\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=\frac{|M A|}{\left|M A_{1}\right|} \cdot \frac{\left|C A_{1}\right|}{|B C|} \tag{d}
\end{equation*}
$$

Adding (c) and (d) we get

$$
\frac{\left|B_{1} A\right|}{\left|B_{1} C\right|}+\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=\frac{|M A|}{\left|M A_{1}\right||B C|}\left\{\left|B A_{1}\right|+\left|A_{1} C\right|\right\} \quad=\frac{|M A|}{\left|M A_{1}\right|},
$$

as required.

Examples

1. Medians $A A_{1}, B B_{1}$ and $C C_{1}$ intersect at the centroid G and then

$$
\frac{|G A|}{\left|G A_{1}\right|}=2
$$

since

$$
1=\frac{\left|A_{1} B\right|}{\left|A_{1} C\right|}=\frac{\left|B_{1} C\right|}{\left|B_{1} A\right|}=\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|} .
$$

2. The angle bisectors in a triangle are concurrent at the incentre I of the triangle. Furthermore, if A_{3}, B_{3} and C_{3} are the points on the sides $B C, C A$ and $A B$ where the bisectors intersect these sides (Figure 4), then

$$
\begin{aligned}
\frac{\left|A_{3} B\right|}{\left|A_{3} C\right|}=\frac{c}{b}, \frac{\left|B_{3} C\right|}{\left|B_{3} A\right|} & =\frac{a}{c} \text { and } \frac{\left|C_{3} A\right|}{\left|C_{3} B\right|}=\frac{b}{a} . \\
\frac{|I A|}{\left|I A_{3}\right|} & =\frac{\left|C_{3} A\right|}{\left|C_{3} B\right|}+\frac{\left|B_{3} A\right|}{\left|B_{3} C\right|} \\
& =\frac{b}{a}+\frac{c}{a}=\frac{b+c}{a} .
\end{aligned}
$$

Then

Figure 4:
3. Let $A A_{2}, B B_{2}$ and $C C_{2}$ be the altitudes of a triangle $A B C$. They are concurrent at H, the orthocentre of $A B C$ (Figure 5.)

We have

$$
\begin{aligned}
\frac{\left|A_{2} B\right|}{\left|A_{2} C\right|} & =\frac{\left|A A_{2}\right| \cot (\widehat{B})}{\left|A A_{2}\right| \cot (\widehat{C})} \\
& =\frac{\tan (\widehat{C})}{\tan (\widehat{B})}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \frac{\left|B_{2} C\right|}{\left|B_{2} A\right|}=\frac{\tan (\widehat{A})}{\tan (\widehat{C})}, \\
& \frac{\left|C_{2} A\right|}{\left|C_{2} B\right|}=\frac{\tan (\widehat{B})}{\tan (\widehat{C})} .
\end{aligned}
$$

Figure 5:

Multiplying the 3 ratios, we get concurrency of the altitudes. Furthermore,

$$
\begin{aligned}
\frac{|H A|}{\left|H A_{2}\right|} & =\frac{\left|C_{2} A\right|}{\left|C_{2} B\right|}+\frac{\left|B_{2} A\right|}{\left|B_{2} C\right|}=\frac{\tan (\widehat{B})}{\tan (\widehat{A})}+\frac{\tan (\widehat{C})}{\tan (\widehat{A})} \\
& =\frac{\tan (\widehat{B})+\tan (\widehat{C})}{\tan (\widehat{A})} \\
= & \frac{\sin (\widehat{B}+\widehat{C}) \cdot \cos (\widehat{A})}{\cos (\widehat{B}) \cos (\widehat{C}) \sin (\widehat{A})} \\
= & \frac{\sin \left(180^{\circ}-\widehat{A}\right) \cos (\widehat{A})}{\cos (\widehat{B}) \cos (\widehat{C}) \sin (\widehat{A})}=\frac{\cos (\widehat{A})}{\cos (\widehat{B}) \cos (\widehat{C})} .
\end{aligned}
$$

Lemma 1
 Let $A B C$ be a triangle and A_{1} a point on the side $B C$ so

 that$$
\frac{\left|A_{1} B\right|}{\left|A_{1} C\right|}=\frac{\gamma}{\beta}
$$

Let X and Y be points on the sides $A B$ and $A C$ respectively and let M be the point of intersection of the line segments $X Y$ and $A A_{1}$ (Figure 6). Then

$$
\beta\left(\frac{|X B|}{|X A|}\right)+\gamma\left(\frac{|Y C|}{|Y A|}\right)=(\beta+\gamma)\left(\frac{\left|A_{1} M\right|}{|M A|}\right) .
$$

Proof First suppose that $X Y$ is parallel to the side $B C$. Then

$$
\frac{|X B|}{|X A|}=\frac{|Y C|}{|Y A|}=\frac{\left|M A_{1}\right|}{|M A|},
$$

Figure 7:

Figure 6:
and so result is true for any β and γ.

Now suppose the lines $X Y$ and $B C$ intersect at a point Z.

Consider the triangle $A A_{1} B$ (Figure 7). Since M, X and Z are collinear,

$$
\frac{|Y C|}{|Y A|} \cdot \frac{|M A|}{\left|M A_{1}\right|} \cdot \frac{\left|Z A_{1}\right|}{|Z C|}=1 .
$$

Then

$$
\beta\left(\frac{|X B|}{|X A|}\right)+\gamma\left(\frac{|Y C|}{|Y A|}\right)
$$

$$
=\quad \beta\left(\frac{\left|M A_{1}\right||Z B|}{|M A|\left|Z A_{1}\right|}\right)+\gamma\left(\frac{\left|M A_{1}\right||Z C|}{|M A|\left|Z A_{1}\right|}\right)
$$

$$
=\quad \frac{\left|M A_{1}\right|}{|M A|\left|Z A_{1}\right|}\{\beta|Z B|+\gamma|Z C|\}
$$

$$
=\frac{\left|M A_{1}\right|}{|M A|\left|Z A_{1}\right|}\left\{\beta\left|Z A_{1}\right|-\beta\left|B A_{1}\right|+\gamma\left|Z A_{1}\right|+\gamma\left|A_{1} C\right|\right\}
$$

$$
=\quad(\beta+\gamma) \frac{\left|M A_{1}\right|}{|M A|\left|Z A_{1}\right|} \cdot\left|Z A_{1}\right|
$$

$$
\text { since } \frac{\left|B A_{1}\right|}{\left|A_{1} C\right|}=\frac{\gamma}{\beta}
$$

$$
=(\beta+\gamma) \frac{\left|M A_{1}\right|}{|M A|},
$$ as required.

Theorem 4 Let $A B C$ be a triangle with three cevians $A A_{1}, B B_{1}$ and $C C_{1}$ intersecting at a point M (Figure 8).

Figure 8:
Furthermore suppose

$$
\frac{\left|A_{1} B\right|}{\left|A_{1} C\right|}=\frac{\gamma}{\beta}, \frac{\left|B_{1} C\right|}{\left|B_{1} A\right|}=\frac{\alpha}{\gamma} \text { and } \frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}=\frac{\beta}{\alpha} .
$$

If X and Y are points on the sides $A B$ and $A C$ then the point M belongs to the line segment $X Y$ if and only if

$$
\beta\left(\frac{|X B|}{|X A|}\right)+\gamma\left(\frac{|Y C|}{|Y A|}\right)=\alpha .
$$

Proof By van Aubel's theorem:

$$
\begin{aligned}
\frac{|A M|}{\left|A_{1} M\right|} & =\frac{\left|C_{1} A\right|}{\left|C_{1} B\right|}+\frac{\left|B_{1} A\right|}{\left|B_{1} C\right|} \\
& =\frac{\beta}{\alpha}+\frac{\gamma}{\alpha}=\frac{\beta+\gamma}{\alpha} .
\end{aligned}
$$

Now suppose M belongs to the line segment $X Y$. Then by the previous lemma

$$
\begin{aligned}
\beta\left(\frac{|X B|}{|X A|}\right)+\gamma\left(\frac{|Y C|}{|Y A|}\right) & =(\beta+\gamma) \frac{\left|A_{1} M\right|}{|M A|} \\
= & (\beta+\gamma)\left(\frac{\alpha}{\beta+\gamma}\right)=\alpha, \quad \text { as required. }
\end{aligned}
$$

For converse, suppose $X Y$ and $A A_{1}$ intersect in point M^{\prime}. We will show that M^{\prime} coincides M.

By the lemma,

$$
\beta\left(\frac{|X B|}{|X A|}\right)+\gamma\left(\frac{|Y C|}{|Y A|}\right)=(\beta+\gamma)\left(\frac{\left|A_{1} M^{\prime}\right|}{\left|M^{\prime} A\right|}\right) .
$$

By hypothesis, we have

$$
\beta\left(\frac{|X B|}{|X A|}\right)+\gamma\left(\frac{|Y C|}{|Y A|}\right)=\alpha .
$$

Thus

$$
\frac{\left|A_{1} M\right|}{|A M|}=\frac{\alpha}{\beta+\gamma},
$$

and so M and M^{\prime} coincide. Thus M must lie on the line segment $X Y$.
Corollary 1 If G is the centroid of the triangle $A B C$ and so $\alpha=\beta=$ $\gamma=1$, then G belongs to the line segment $X Y$ if and only if

$$
\frac{|X B|}{|X A|}+\frac{|Y C|}{|Y A|}=1
$$

Corollary 2 If I is the incentre of the triangle $A B C$ then the values of α, β and γ are given in terms of the sidelengths of the triangle as

$$
\alpha=a, \quad \beta=b \quad \text { and } \quad \gamma=c .
$$

Thus I belongs to XY if and only if

$$
b\left(\frac{|X B|}{|X A|}\right)+c\left(\frac{|Y C|}{|Y A|}\right)=a .
$$

Corollary 3 If H is the orthocentre of the triangle $A B C$ then the ratios on the sides are given by

$$
\alpha=\tan (\widehat{A}), \quad \beta=\tan (\widehat{B}) \quad \text { and } \quad \gamma=\tan (\widehat{C} .)
$$

Then we get that H belongs to the line segment $X Y$ if and only if

$$
(\tan (\widehat{B}))\left(\frac{|X B|}{|X A|}\right)+(\tan (\widehat{C}))\left(\frac{|Y C|}{|Y A|}\right)=\tan (\widehat{A})
$$

We also get the following result which was a question on the 2006 Irish Invervarsity Mathematics Competition.

Theorem 5 Let $A B C$ is a triangle and let X and Y be points on the sides $A B$ and $A C$ respectively such that the line segment $X Y$ bisects the area of $A B C$ and the points X and Y bisects the perimeter (Figure 9). Then the incentre I belongs to the line segment $X Y$.

Proof \quad Let $x=|A X|$ and $y=|A Y|$.
Then

$$
\begin{equation*}
x+y=\frac{a+b+c}{2} \tag{a}
\end{equation*}
$$

where a, b and c are lengths of sides.

Furthermore,
Figure 9:

$$
\frac{1}{2}=\frac{\operatorname{area}(A X Y)}{\operatorname{area}(A B C)}=\frac{x y \sin (\widehat{A})}{b c \sin (\widehat{A})}
$$

so

$$
\begin{equation*}
x y=\frac{b c}{2} \tag{b}
\end{equation*}
$$

$$
\text { Consider } \begin{aligned}
& b\left(\frac{|X B|}{|X A|}\right)+c\left(\frac{|Y C|}{|Y A|}\right) \\
= & b\left(\frac{c-x}{x}\right)+c\left(\frac{b-y}{y}\right) \\
= & b\left(\frac{1}{x}+\frac{1}{y}\right)-b-c \\
= & b c\left(\frac{a+b+c}{2} \cdot \frac{2}{b c}\right)-b-c
\end{aligned}
$$

Thus by Corollary 2, incentre I belongs to the line $X Y$.
Theorem $6 \quad$ Let $A B C$ be an equilateral triangle and X, Y and Z points on the sides $B C, C A$ and $A B$ respectively (Figure 10). Then the minimum value of

$$
|Z X|^{2}+|X Y|^{2}+|Y Z|^{2}
$$

is attained when X, Y, Z are the midpoints of the sides.

Figure 10:
Proof Consider $\frac{1}{3}\left\{|Z X|^{2}+|X Y|^{2}+|Y Z|^{2}\right\}$

$$
\begin{aligned}
\text { We have } & \frac{1}{3}\left\{|Z X|^{2}+|X Y|^{2}+|Y Z|^{2}\right\} \\
& \geq\left(\frac{|Z X|+|X Y|+|Y Z|}{2}\right)^{2}
\end{aligned}
$$

by Cauchy - Schwarz inequality,

$$
\geq\left(\frac{\left|A_{1} B_{1}\right|+\left|B_{1} C_{1}\right|+\left|C_{1} A_{1}\right|}{3}\right)^{2}
$$

where $A_{1} B_{1} C_{1}$ is the orthic triangle of $A B C$. (This result was proved in chapter 5 on orthic triangles.)

If l is the common value of the sides of $A B C$ then the orthic triangle $A_{1} B_{1} C_{1}$ is also equilateral and sidelengths are $\frac{l}{2}$. Thus

$$
\begin{gathered}
\left(\frac{\left|A_{1} B_{1}\right|+\left|B_{1} C_{1}\right|+\left|C_{1} A_{1}\right|}{3}\right)^{2}=\left|A_{1} B_{1}\right|^{2} \\
=\frac{\left|A_{1} B_{1}\right|^{2}+\left|B_{1} C_{1}\right|^{2}+\left|C_{1} A_{1}\right|^{2}}{3} .
\end{gathered}
$$

The required result follows.

