6. Theorem of Ceva, Menelaus and Van Aubel.

Theorem 1 (Menelaus). If Ay, By, Cy are points on the sides BC, C'A

and AB of a triangle ABC, then the points are collinear if and only if
|A1B| |B1C| |C1A] _
AL C| B Al |C1 B

1.

Proof Assume points are collinear.

First drop perpendiculars AA’, BB' and C'C’
from the vertices A, B, C to the line A;B;C}.
Then since AA’, BB’ and CC" are perpendic-
ular to A;Bj, they are parallel (Figure 1).
Thus we get the following equalities of ratios

|[AB| _ |BB'|  |BiC] _|CC]
[ACl|CC IBA] |AAY
|Ch Al o |AA| Figure 1:
Bl BB

and

Multiplying these we get the required re-
sult.

(A1 B| [BiC [CiA]

. . = 1.
|A.C| |BiA| |CB|

Conversely, suppose

Now suppose lines BC and B;C} meet at the point A”. Then

|A"B| |B.C| |C1A|

|A"C|"|B,A|"|C1B|
|AiB|  |A"B]
A C| - JAC)

1.

Thus

1



and so we conclude that the point A” on the line BC' coincides with the point
Aj. Thus the points Ay, B; and C are collinear.

Definition 1 A line segment joining a vertex of a triangle to any
given point on the opposite side is called a Cevian.

Theorem 2 (Ceva) Three Cevians AA;, BBy and CCy of a triangle ABC
(Figure 2) are concurrent if and only if
BA 0B 4G _ |
|A1C| | B1A] |CyB| '
Proof First assume that the Cevians are con-
current at the point M.

Consider the triangle AA;C' and apply Menelaus’ the-
orem. Since the points By, M and B are collinear,

|B1 Al |MA,|" |BC|
Now consider the triangle AA;B. The points Cy, M,C
are collinear so

|C1A] [CB| |MA —1 (b) Figure 2:

|C1B| |C A" [MA o
Multiply both sides of equations (a) and (b) to get re-
quired result.

Conversely, suppose the two Cevians AA; and BB; meet at P and that
the Cevian from the vertex C' through P meets side AB at C’. Then we have

BA) [CBy| [AC| _
A,CT1BAl Bl

By hypothesis,
|BAi| |OB:| |AC]

. . =1
|4:C B A] |1 B
[ACY| _ |ACY]
Thus = ,
[C1B|  |C"B|

and so the two points C; and C’ on the line segment AB must coincide. The
required result follows.



Theorem 3 (van Aubel) If A1, By, Cy are interior points of the sides BC, C'A
and AB of a triangle ABC' and the corresponding Cevians AA;, BBy and
CCy are concurrent at a point M (Figure 3), then
[MA| _ |CiA] | [BiA]
IMA;|  |CiB| * |BiC|
Proof Again, as in the proof of Ceva’s theo-

rem, we apply Menelaus’ theorem to the triangles AA;C'
and AAB.

In the case of AA;C, we have

BiC| [MA| |BAY|
|BiA| [MA | |BC]

and so
|B1A|  |[MA| |BA|

[B,C| ~ |MA| [BC] ()

Figure 3:
For the triangle AA; B, we have
CLA| [CB] [MA
|C1B| |CA; " |[MA| ’
and so
G A] _ [MA] |CA, ()
CiB| ~ [MA] [BC]
Adding (c) and (d) we get
|Bi4] | |CiA] |MA] |MA]
= BA| + |AC = —)
|B,C| " |CyB] |MA1||BC|{| i+ A} |M A
as required.
Examples
1. Medians AA;, BB; and C'C intersect at the centroid G and then
GAl
|G A, ’

since

_ABl _ [BiC] _ |GLA]

1= = = .
[AiCl (B4l |CiB




2. The angle bisectors in a triangle are concurrent at the incentre I of
the triangle. Furthermore, if A3, B3 and C3 are the points on the sides
BC,CA and AB where the bisectors intersect these sides (Figure 4),
then

|A3B| C |BgC| a |03A| b
= = —and =

|AsC| ~ b |BsA] ¢ |CsB|  a
[LA| |C3A] | |B3A|
Then —_— =
|1 As] |C3B| | BsC|
B é c_ b+c
T a a  a

Figure 4:

3. Let AA,y, BBy and C'Cy be the altitudes of a triangle ABC. They are
concurrent at H, the orthocentre of ABC' (Figure 5.)

We have

|AsB|  |AA,|cot(B)

[A2C | AAs| cot(C)
~ tan(C)
 tan(B)

and similarly

| B2C| tan(A)

|B2Al tan(C)’

|CLA|  tan(B)

|C2B| tan(C)



Figure 5:

Multiplying the 3 ratios, we get concurrency of the altitudes. Further-
more,

[HA|  _ |GA|  [BA|  _ tan(B) N tan(C)
| H Ay |CoB|  [B:C| tan(A) tan(ﬁ)
B tan(B) + tan(C)
- tan(A)
sin(B + C). cos(A)
B COS(E) Cos(a) sin(;l\)
_ sin(180° — A) cos(A) B cos(A)
a cos(B) cos(C) sin(A) - cos(B) cos(C)’
Lemma 1 Let ABC' be a triangle and Ay a point on the side BC' so
that
AB|l v
ACl p

Let X and'Y be points on the sides AB and AC' respectively and let M be
the point of intersection of the line segments XY and AA, (Figure 6). Then

| X B Yl | A1 M|

Proof First suppose that
XY is parallel to the side BC. Then A
XB| _|YC|  [MA|
| XAl |YVA| IMA|’ Y
X,
5
VA b A

Figure 7:



Y
X
B A C
Figure 6:
and so result is true for any 3 and
7.
Now suppose the lines XY and BC' in-
tersect at a point Z.
Consider the triangle AA;B (Figure
7). Since M, X and Z are collinear,
YC| |[MA| |ZA] _1
YA |MA |ZzCOl
| X B| Y C|
Th —_— —_—
|MA||ZB (M A||ZC]
= Bl + Y (Gt
|MAJ|Z A |MAJ|ZA,|
| M A,
= ——A{B|ZB|+~|ZC
| M A
= ———{(|ZA:| - G|BA ZA A
| MA|
s . ZA
since |BA| _ 1
Al B
| M A, .
(B+7) A as required.



Theorem 4 Let ABC' be a triangle with three cevians AA,, BB; and
CCYy intersecting at a point M (Figure 8).

Figure 8:

Furthermore suppose

|AIB| 7 |BIC| _ d |CIA| . B

=, =— an =—.
Al 5 B4~y " 6B T a
If X andY are points on the sides AB and AC' then the point M belongs to
the line segment XY if and only if
| XB| yel,
Proof By van Aubel’s theorem:

[AM]_ |CiA] | [Bi4]
| A M| |C1B|  |BiC
g v B+y

:——I——:
(0% (07 (67

Now suppose M belongs to the line segment X'Y. Then by the previous lemma

| X B Y C| B A M|
5(@) ”Y(—’YA‘) =(B+7) A
a :
= (B+ 7)(5—4—7) = «, as required.

For converse, suppose XY and AA; intersect in point M’'. We will show that
M’ coincides M.

By the lemma,



| X B Yo, | A M|
By hypothesis, we have

A(

| X B| Yel,
Thus
‘A1M| . «
|AM| B+~
and so M and M’ coincide. Thus M must lie on the line segment XY.
Corollary 1 If G s the centroid of the triangle ABC' and so o = 3 =
v =1, then G belongs to the line segment XY if and only if
[ XB| |, YC| _
XAl |[YA]
Corollary 2 If I is the incentre of the triangle ABC' then the values

of a, B and v are given in terms of the sidelengths of the triangle as
a=a, B=b and y=c.
Thus I belongs to XY if and only if

| X B| Y C|
b =a.
HXM) dwm) a
Corollary 3 If H is the orthocentre of the triangle ABC then the

ratios on the sides are given by

-~ ~

a =tan(A), B =tan(B) and ~=tan(C.)
Then we get that H belongs to the line segment XY if and only if

<tan<§>><%> " <tan<6>><%> ~ tan(A).

We also get the following result which was a question on the 2006 Irish
Invervarsity Mathematics Competition.

Theorem 5 Let ABC' is a triangle and let X and Y be points on the
sides AB and AC respectively such that the line segment XY bisects the area
of ABC and the points X and Y bisects the perimeter (Figure 9). Then the
incentre I belongs to the line segment XY .



Proof Let z = |[AX]| and y = |AY|.

Then

a+b+c
:c—l—y:T ... (a)

where a,b and c are lengths of sides.

Furthermore, Figure 9:
1 area(AXY) axysin(A)
2 area(ABC) be sin( A)

SO b
C

= (b,

Ty =3 ()

X8l vl
XA v Al
C— X

—5 =+

1 1
— (=4 )—b—
(Z+-) ¢

Consider b(

Thus by Corollary 2, incentre I belongs to the line XY.

Theorem 6 Let ABC' be an equilateral triangle and X,Y and Z points
on the sides BC,CA and AB respectively (Figure 10). Then the minimum
value of

ZX|?+ | XY |2+ Y Z)?

is attained when XY, Z are the midpoints of the sides.



Z Y
Figure 10:
1
Proof Consider g{\ZXP +|XY P2+ |YZ]*}

1
We have g{]ZX|2+|XY|2+|YZ|2}
. (X1 1XYIe v,
by Cauchy — Schwarz inequality,

> <|A131| + \31301| + |01A1\)27

where A;B;C is the orthic triangle of ABC. (This result was proved in
chapter 5 on orthic triangles.)

If [ is the common value of the sides of ABC then the orthic triangle A, B;C}

l
is also equilateral and sidelengths are —. Thus

| A1 By| + | B1Cy| + |C1 A4

( 3 )? = |A1B]?
_ |AlBll2 + |B1C'1|2 + |C'1A1|2

3

The required result follows.
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