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Abstract

Programming models for multicore and many-core sys-
tems are listed as one of the main challenges in the near
future for computing research. These programming mod-
els should be able to exploit the underlying platform, but
also should have good programmability to enable pro-
grammer productivity. With respect to the heterogeneity
and hierarchy of the underlying platforms, the programming
models should take them into account but they should also
enable the programmer to be unaware of the complexity of
the hardware. In this paper we present an extension of the
StarSs syntax to support task hierarchy. A motivation for
such a hierarchical approach is presented through experi-
mentation with CellSs. A prototype implementation of such
a hierarchical task-based programming model that com-
bines a first task level with SMPSs and a second task level
with CellSs is presented. The preliminary results obtained
when executing a matrix multiplication and a Cholesky fac-
torization show the viability and potential of the approach
and the current issues raised.

Key words: SMP Superscalar, programming models for
multicore, task scheduling, locality exploitation

1 Introduction

With the current trends in microprocessing fabrication
where it is forecasted that hundreds to thousands of proc-
essors will be integrated into a single chip in the near
future, there is no doubt about the need for programming
models that easily enable the exploitation of these plat-
forms. Furthermore, the future will bring heterogeneous
and hybrid platforms, with different levels of compute and
memory hierarchies, etc., that the programming models
will have to take into account.

In this paper we review previous work towards the defi-
nition of the current Star Superscalar (StarSs) program-
ming model by giving an overview of the two current
available implementations: Cell Superscalar (CellSs) and
SMP Superscalar (SMPSs). While CellSs tackles the spe-
cific Cell broadband engine (CBE) (CBEA 2, 2007) device,
SMPSs is more generic and can be used both with shared-
memory machines and in homogeneous multicore proc-
essors.

The CBE is a multicore chip that consists of a PowerPC
processor element (PPE; a 64-bit, two-way multi-threaded,
in-order PowerPC processor) and multiple synergistic proc-
essor elements (SPEs; in-order, 128-bit wide single instruc-
tion multiple data (SIMD) cores). All of them are
connected to an element interconnect bus (EIB), that also
couples main memory and input/output (I/O) devices.
The SPEs only access main memory via direct memory
access (DMA) transfers by programming their individ-
ual memory flow controllers (MFCs). For each SPE,
data and code reside in its 256 kB local store (LS).

The MariCel PRACE1 prototype at Barcelona Super-
computing Center (BSC) is an example of a hybrid compu-
ter, with 72 QS22 IBM Blade servers, each with two
PowerXCell (the high-performance double-precision float-
ing-point version of the Cell processor) at 3.2 GHz, and
12 GB of memory. In addition, the machine has 12 JS22
IBM Blade servers each with two Power6 processors and
8 GB of memory. The nodes are connected through a
InfiniBand (16 Gb) network and the peak performance is
14.4 TFlops in two rack units.

A better known hybrid supercomputer is a current mem-
ber of the TOP500: RoadRunner, also based in QS22 IBM
Blade centers, although in this case two QS22 blades and
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one IBM LS21 blade server are combined into a spe-
cialized “tri-blade” configuration for RoadRunner. The
approach proposed to program RoadRunner is a hybrid
and hierarchical approach where a process running in a
host processor creates an accelerator process on an acceler-
ator processor. This is implemented by means of the Data
Communication and Synchronization (DaCS) Library and
the Accelerated Library Framework (ALF) (Crawford
et al., 2008).

The original StarSs model is a flat model with only one
execution flow that generates one level of tasks. In this
paper we present an extension of StarSs motivated by hier-
archical architectures and by existing programming mod-
els with nested parallelism support. The current approach
is to integrate in a hierarchical way our previous SMPSs
and CellSs runtime implementations. A first demonstra-
tion of its utility is performed in a non-uniform memory
access (NUMA) architecture like the QS22 blades but is
not limited to them.

The structure of this paper is as follows: Section 2
presents the StarSs programming model. While Section 3
gives an overview of SMPSs and CellSs, Section 4
describes some experiments that motivate a hierarchical
approach for the programming model. Section 5 describes
the current hierarchical implementation of StarSs and
gives some preliminary results. Section 6 gives an over-
view of existing programming models and, finally, Sec-
tion 7 concludes the paper.

2 StarSs Programming Model

StarSs is a task-based programming model with two
main objectives: to enable the automatic exploitation of
the functional (task-level) parallelism and to keep appli-
cations unaware of the target execution platform. The
starting point in StarSs is an application written in a
sequential way in a traditional programming language
(i.e., C/C++ or Fortran) and the target execution platform

belongs to a range of parallel resources, such as a homo-
geneous/heterogeneous multicore chip, a shared-memory
based system, a cluster or even a computational Grid. A
first step is to identify in the sequential application the
tasks that compose the application and the direction of
the parameters. With this information, the StarSs envi-
ronment is able to build at runtime a data-dependence
graph of the tasks that compose the application. From this
graph, the inherent task-level concurrency is made obvious
and can be exploited. Furthermore, the environment is
able to schedule tasks in the different parallel resources
of the execution platform and perform other activities
such as data transfer when necessary and synchroniza-
tion. On task completion, the task graph is updated and
new scheduling decisions are made.

2.1 StarSs Syntax

The StarSs approach is to declare, by means of pragmas,
functions that are suitable for execution as tasks (see Fig-
ure 1a). For the arguments of these functions, the clause-
list allows us to declare their use (see Figure 1b). The
data references in those lists are used to dynamically com-
pute, at runtime, dependencies among tasks. If the target
architecture requires it, these clauses also specify data
movement for the arguments in the function call, defini-
tion or header. Conceptually, Input will move variables
in data-reference-list from the address space of
the processing unit generating the task to the address
space of the processing unit executing the task. Output
will move back variables in data-reference-list.
Inout combines the two effects. Once the task is ready
for execution, the runtime system will move input varia-
bles. Once the task finishes execution, the runtime will
move output variables, if necessary. The actual data
movement can be avoided in a specific implementation if
appropriated hardware support is available (i.e., symmet-
ric multiprocessor (SMP)).

Fig. 1 StarSs syntax: (a) task definition; (b) task clauses; (c) target platform definition; (d) target clauses.
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The former pragmas have been proposed before and
are those implemented in CellSs and SMPSs. The exten-
sion to this syntax, proposed in this paper, is described in
the following. To enable a task hierarchy, the program-
ming model is extended to allow the instantiation of tasks
within tasks. This is not a syntactical change, but a semanti-
cal change where each task makes up a private context for
its subtasks. Data dependencies, as well as synchroniza-
tion, are only considered between tasks in the same con-
text. A given task waits for the end of its children tasks
before finishing. These extensions enable the use of sev-
eral task generators increasing the possibilities for con-
currency exploitation.

The other new extension proposed in this paper is pre-
sented in Figures 1c and 1d. In heterogeneous architectures,
the hierarchical approach can also consider heterogeneity.
In order to target different architectures, the program-
ming model includes an additional pragma that may
precede a pragma task or the invocation of a function
that is declared as a task (Figure 1c). The target pragma
specifies that this implementation of the task is specific
for the given target architecture, and that can be fed into
the specific compiler (i.e., a synergistic processing unit
(SPU) specific compiler in the case of the CBE, or a
CUDA (Compute Unified Device Architecture) compiler
in the case of graphics processing units (GPUs)). Some
additional clauses can be used with this pragma target
(Figure 1d). Clause device specifies the possible target
architectures, specified in device-name-ordered-
list, of where to offload the task. It is an ordered list
that the runtime may use to decide where to execute the
task. Clause implements is used to specify an alterna-
tive implementation for a function (Ayguade et al.,
2009). There is a need for efficient implementations for
each target architecture and for this reason the StarSs
compiler should invoke the specific backend compiler
for each case.

Two predefined combinations are already supported in
the specification of StarSs, giving rise to what we call
SMPSs (shared-memory multicore/SMP/ccNUMA archi-
tectures) and CellSs (for the CBE architecture).

StarSs also includes two additional pragmas for syn-
chronization: barrier and wait on. Pragma bar-
rier is used to wait for all tasks generated up to that
point to be finished. Pragma wait on is used to wait for
all of those tasks that generate variables in the data-
reference-list2.

2.2 Examples

Figure 2 shows the annotations that are needed to specify
the parallelism in a simple application that implements a
block matrix multiplication. The matrices are organized
in a block data layout, where a double blocking level is

applied, organizing the matrices into NBB × NBB big
blocks, where each of them is composed of NSB × NSB
smaller blocks of BS × BS elements.

The main program implements the matrix multipli-
cation algorithm at the level of big blocks, calling to
sgemm2 tasks. The sgemm2 tasks implement the matrix
multiplication algorithm at the level of small blocks, call-
ing to sgemm1 tasks. Finally, sgemm1 tasks implement
the matrix multiplication algorithm at the level of the ele-
ments of the matrices (in this case, floats).

The pragma annotations identify functions sgemm1
and sgemm2 as tasks, with a block from C being read
and written and blocks from A and B being read by the
task. The task hierarchy is identified by the invocation
order, being invocations to sgemm2 first-level tasks and
invocations to sgemm1 second-level tasks. As denoted
by the target pragma, these second-level tasks can be
offloaded to Cell SPUs.

This code is in plain C and works correctly when
compiling it with a regular C compiler and executing it
sequentially. When compiled and executed within a StarSs
environment, the runtime generates a hierarchical task
dependence graph where tasks with no data dependen-
cies between them can be executed concurrently.

Figures 3 and 4 show a Cholesky factorization imple-
mented with the hierarchical StarSs proposed in this
paper. The example is again based on matrices organized
in a block data layout with a double blocking level as the
matrix multiply example just described above. The main
program (Figure 4) implements a possible algorithm to
solve the Cholesky factorization at the level of big
blocks, calling to tasks sgemm2, strsm2, ssyrk2
and spotrf2. The spotrf2 shown in Figure 4 also
implements the same factorization algorithm but at the
level of small blocks, calling this time to tasks sgemm1,
strsm1, ssyrk1 and spotrf1. The sgemm2 task
follows the same schema as the sgemm2 task of the
matrix multiply example, although the operation this time
is slightly different (the sgemm1 function accumulates in
the C element by subtracting the product of A and B). The
code of the strsm2 and ssyrk2 tasks is not shown in
this paper. The strsm2 is implemented without hierarchy
(no further calls to second-level tasks) and the ssyrk2
implements a similar schema to sgemm2 with calls to the
sgemm1 task. Figure 3 shows the corresponding pragmas
for the second-level tasks of this example. The target
pragmas denote that these tasks can be offloaded to Cell
SPUs.

3 Current Implementations

An instantiation of the hierarchical StarSs as described in
the previous section may consider as its target a hierar-
chical hardware platform with a first level with SMP
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Fig. 2 Sample matrix multiply code in hierarchical StarSs.

Fig. 3 Sample matrix multiply code in hierarchical StarSs.

#pragma css task input(A, B)  inout(C)
#pragma css target device(cell)
void sgemm1 (float C[BS][BS], float A[BS][BS], float B[BS][BS])
{
int i, j, k;
for (i=0; i < BS; i++)
   for (j=0; j < BS; j++)
      for (k=0; k < BS; k++)
          C[i][j] += A[i][k] * B[k][j];
}
#pragma css task input(A, B) inout(C)
void sgemm2 (float C[NSB][NSB][BS][BS], float A[NSB][NSB][BS][BS],
      float B[NSB][NSB][BS][BS])
{
int i, j, k;
for (i=0; i < NSB; i++)
   for (j=0; j < NSB; j++)
      for (k=0; k < NSB; k++)
         sgemm1(&C[i][j][0][0], &A[i][k][0][0], &B[k][j][0][0]);
}
int main  (int argc, char **argv) {
int i, j, k;

float A[NBB][NBB][NSB][NSB][BS][BS], B[NBB][NBB][NSB][NSB][BS][BS],
    C[NBB][NBB][NSB][NSB][BS][BS];

for (i =0; i < NBB; i++)
   for (j =0; j < NBB; j++)
       for (k=0; k < NBB; k++)
           sgemm2(&C[i][j][0][0][0][0], &A[i][k][0][0][0][0], &B[k][j][0][0][0][0]);
}

#pragma css task input(A) inout(C)
#pragma css target device(cell)
void ssyrk1(float A[BS][BS], float C[BS][BS]);

#pragma css task inout(A)
#pragma css target device(cell)
void spotrf1(float A[BS][BS]);

#pragma css task input(T) inout(B)
#pragma css target device(cell)
void strsm1(float T[BS][BS], float B[BS][BS]);

#pragma css task input(A, B) inout(C)
#pragma css target device(cell)
void sgemm1 (float A[BS][BS], float B[BS][BS], float C[BS][BS]);
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Fig. 4 Sample matrix multiply code in hierarchical StarSs.

#pragma css task input(NSB, A, B) inout(C)
void sgemm2(int NSB, float A[NSB][NSB][BS][BS], float B[NSB][NSB][BS][BS], 
    float C[NSB][NSB][BS][BS]);

#pragma css task input(NSB, T) inout(B)
void strsm2(int NSB,float T[NSB][NSB][BS][BS], float B[NSB][NSB][BS][BS]);

#pragma css task input(NSB, A) inout(C)
void ssyrk2(int NSB, float A[NSB][NSB][BS][BS], float C[NSB][NSB][BS][BS]);

#pragma css task input (NSB) inout(A)
void spotrf2(int NSB, float A[NSB][NSB][BS][BS]){
int i, j, k;

 for (j = 0; j < NSB; j++) {
    for (k= 0; k< j; k++)
      for (i = j+1; i < NSB; i++)
        sgemm1(&A[i][k][0][0], &A[j][k][0][0], &A[i][j][0][0]);

    for (i = 0; i < j; i++)
         ssyrk1(&A[j][i][0][0], &A[j][j][0][0]);

    spotrf1(&A[j][j][0][0]);

    for (i = j+1; i < NSB; i++)
      strsm1(&A[j][j][0][0], &A[i][j][0][0]);

  }
}

int main  (int argc, char **argv) {
int i, j, k;

float A[NBB][NBB][NSB][NSB][BS][BS];

for (j = 0; j < NBB; j++) {
    for (k= 0; k< j; k++)
      for (i = j+1; i < NBB; i++)
        sgemm2(NSB,  &A[i][k][0][0][0][0], &A[j][k][0][0][0][0], &A[i][j][0][0][0][0]);
    for (i = 0; i < j; i++)
      ssyrk2(NSB, &A[j][i][0][0][0][0], &A[j][j][0][0][0][0]);

    spotrf2(NSB, &A[j][j][0][0][0][0]);

    for (i = j+1; i < NBB; i++)
      strsm2(NSB, &A[j][j][0][0], &A[i][j][0][0]);
  }
}
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multicore nodes and a second level with accelerators
with local storage. Such an implementation is described
in Section 5 considering QS22 blades as the target plat-
form and SMPSs and CellSs as the building blocks for
the runtime system. This section gives an overview of the
CellSs and SMPSs implementations, outlining the com-
monalities and differences.

3.1 Compiler Overview

CellSs and SMPSs share the same pragma syntax and
therefore the same annotated code applications can be
run on both environments without portability problems
(unless specific platform extensions are used, such as
SPE intrinsics in the case of the CBE). The compiler infra-
structure based on the Mercurium compiler (Gonzalez et
al., 2004) is also shared by both systems, and it is com-
posed of a C99 source-to-source compiler, a Fortran-95
source-to-source compiler and a common driver.

The driver, depending on each source filename suffix,
invokes transparently the C compiler or the Fortran-95
compiler. The driver behaves similarly to a native com-
piler: it can compile individual files one at a time, several
of which link several objects into an executable or perform
all operations in a single step. The compilation process
consists of processing the StarSs pragmas, transforming
the code according to them, compiling these files with
the corresponding native compiler and packing the object
and additional information required for linking into a sin-
gle object. In the case of the CBE, the compiler separates
the code of the tasks that will be run in the SPEs from the
other code and it is compiled with the specific SPE com-
piler.

The linking process consists of unpacking the object
files, generating additional glue code required to join all
object files into a single executable, compiling it, and
finally linking all objects together with the SMPSs runtime
to generate the final executable. In the CellSs case, spe-
cific glue code for the SPE side is generated and all of the
SPE objects are linked and embedded together to meet
the CBE binary format requirements.

3.2 Runtime Overview: Data-Dependence 
Analysis and Renaming

Another common specific feature of the current CellSs/
SMPSs implementations is the automatic detection of data
dependencies between tasks. When detecting dependen-
cies, the CellSs/SMPSs runtimes are capable of classifying
the type of data dependency: read after write (RaW), write
after write (WaW) and write after read (WaR). While the
first type is unavoidable and that is why those are also
called true dependencies, the other type can be elimi-
nated with the use of data renaming, inspired in the tech-

nique applied in superscalar processors (Smith and Sohi,
1995) or in optimizing compilers (Kuck et al., 1981). This
renaming technique is provided transparently, although it
has some overhead in terms of additional used memory
and additional processing time, both to allocate the mem-
ory for the renamed copies and for memory synchroniza-
tion of the last copy. Also, it can be argued that the data
renaming is not an advantage in cases when there is enough
parallelism, for example. However, there are cases when
the use of renaming allows an application to run faster
than counterparts of other programming users, thanks to
the fact that the renaming technique allocates local cop-
ies of data (Perez et al., 2008).

The use of renaming memory can be controlled by the
user by means of a configuration file and the authors are
currently performing research into new techniques to
reduce the overhead of data renaming and to reduce the
number of renamings when they are not necessary.

3.3 Cellss Runtime Specifics

The CellSs runtime (Bellens et al., 2006; Perez et al., 2007)
has been designed by taking into account the CBE specific
architecture. It takes the benefit of the symmetric multi-
threaded nature of the PPE by throwing two threads into it:
the main and helper thread. The main thread runs sequen-
tial code of the user application, performs an asynchronous
call to the CellSs application programming interface (API)
whenever a task is invoked and takes care of the synchro-
nization between the sequential and parallel parts of the
application. The call to the CellSs API on task invocation
makes it possible to build the task graph. The helper
thread is responsible for the scheduling tasks to the SPE
threads (also called the worker threads), and the communi-
cation and synchronization with those threads. The SPE
threads execute a three-step loop: waiting for notification of
the scheduling decision from the helper thread, execution
of a set of tasks and notification of completion. The execu-
tion of a set of tasks involves reading the task description
(which includes information about the data involved in the
computation), staging in the task input data, execution of
the task and staging out of the task output data. Since
tasks are scheduled in sets or bundles, the worker threads
implement a double buffering scheme in order to overlap
data transfers with computation. The default behavior of
CellSs is to implement the double buffering scheme, but it
is able to dynamically detect bursts of tasks where there is
no memory space left and to switch to a single buffer
scheme. The user can also configure application execu-
tion to disable all of the double buffering.

The worker thread also maintains a cache in the SPE
local store. The basic idea is to keep those task arguments
that have been used before in the SPE local store and to try
to reuse them. Other features implemented in the worker
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thread are early callback, to notify the end of critical
tasks or to minimize the stage out’s, which reduces the
number of copies from the local storage to main mem-
ory.

The task scheduling alternative considered so far for
CellSs takes into account the structure of the task directed
acyclic graph (DAG), scheduling together in the same SPE
groups of tasks with a high connectivity level, to favor the
exploitation of data locality. More details about the CellSs
runtime can be found in Bellens et al. (2006, 2009) and
Perez et al. (2007).

3.4 SMPSs Runtime Specifics

With regards to the thread organization, in SMPSs there
is a main thread that is responsible for running the sequen-
tial code of the application, building the task DAG and for
synchronizing the sequential and parallel parts of the
application. The main worker is also able to execute tasks
while it is idle. In SMPSs the task scheduling is distrib-
uted to the different SMPSs threads (worker threads).
Each worker maintains its own ready list to favor data
locality but workers share tasks between them to enable
load balancing.

Since SMPSs assumes a shared-memory space, there
is no need for data transfers3. In this case, the input,
output, inout clauses are used to calculate the task data
dependencies in order to build the task DAG. However,
this does not mean that accessing data locally in NUMA
systems is not important, as is shown by Badia et al. (2009)
for the SMPSs case when used in an SGI Altix.

4 Examples and Motivation for a 
Hierarchical Model

In this section we describe some practical experimenta-
tion with CellSs to motivate and explain the reasons for a
hierarchical approach in our programming model.

The performance of CellSs has been evolving signifi-
cantly in recent years, and now provides a good perform-
ance. For example, while the matrix multiply example can
almost reach the peak performance of the system when
programmed directly with the IBM SDK, CellSs is able to
obtain around 75% of the peak performance with mini-
mum effort required from the programmer (for this exam-
ple, we use a highly optimized 64 × 64 tile kernel, either
from the IBM SDK or from http://www.tu-dresden.de/
zih/cell/matmul). Figure 5 shows a comparison of differ-
ent versions of a CellSs application that performs the
matrix multiplication of size 2048 × 2048 floats. On the
Y-axis we show performance in megaflops (average of
10 executions) and on the X-axis we show the number
of SPEs used when running the benchmark. We first
focus on the CellSs version 2.1, which scales linearly up

to eight SPEs, with a large decrease in performance for a
higher number of SPEs. However, from the very begin-
ning (one SPE) is does not deliver peak performance.

When analyzing the reasons for the reduction in per-
formance, we examine first the case when one SPE is
used. For this case, the highly optimized kernel provides
25.2 GFlops for each 64 × 64 block, while CellSs with
one SPE is delivering 20 GFlops. There are several possi-
ble reasons for this decrease of around 20% in perform-
ance: handling of the task DAG and synchronization in the
PPE or DMA data handling in the SPE. For the case of one
SPE, the PPE is introducing a very small initial overhead
for generating the task graph (0.17% of the total time).
From this moment, the SPE is busy all of the time, there-
fore the PPE does not add any extra overhead to the SPE
computation. From the SPE side, while it is performing
productive computation almost all of the time, a signifi-
cant amount of time is invested in the management of the
software cache (this time includes the time invested in
synchronous writes to memory when replacements in the
software cache are required) and data stage in program-
ming, and also small periods of time are invested in wait-
ing for DMA to finish and programming the DMA outs
(the main part of the transfers are overlapped thanks to
the double buffering). Figure 6 shows this decomposition
of the SPE time in CellSs for this example (when one
SPE is used).

This situation remains the same up to four or five SPEs,
with a small incremental increase in the overhead for the
software cache management noticeable from six SPEs
although still small enough with up to eight SPEs. How-
ever, when running this benchmark with more than nine
SPEs the situation is much worse. There are several aspects
to consider at this point:

Fig. 5 Matrix multiply performance with CellSs.
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• From one to eight SPEs, the command line call to the
NUMA API (numactl) has been used to allocate all
SPEs in the same node. Also, the matrices are allocated
in the memory module bound to the computational
node.

• From nine SPEs, the SPE threads are allocated to two
nodes, and with the default CellSs behavior, the data
will be allocated to the memory node bound to the
node where the main thread is running.

Taking this into account, there are two possible rea-
sons for the reduction in performance when increasing
the number of SPEs above eight: overheads in the main
and helper thread (for DAG creation, scheduling, etc.) or

reduction in the effective bandwidth with memory, due to
the increase in the number of threads accessing it and due
to the reduction in locality (threads allocated in different
nodes to the data).

In Figure 7a we show the decomposition of the SPE
time when the number of SPEs is increased (this figure is
derived from analysis of Paraver tracefiles). The figure
tries to capture the time invested in the SPE in the execu-
tion of the tasks but it is not showing the time that those
SPEs are idling due to bottlenecks in the PPE threads.
The figure shows that with up to eight SPEs, the decom-
position of the time looks almost the same. From eight
SPEs onwards, the time invested in software cache man-
agement and in waiting for the staged data increases sig-
nificantly. To understand this fact, we performed some
more experiments.

In the case of the IBM SDK matrix multiply example,
several optimizations are applied to enable the perfect
scaling of the example:

• The use of huge page allocations (16 MB pages) for
reduced page table and translation lookaside buffer
(TLB) thrashing.

• Replication of input matrices in the different NUMA
nodes. It is not a very scalable trick, but demonstrates
the importance of being able to exploit the available
memory bandwidth in NUMA architectures.

• Padding the leading dimension of row- or column-
order matrices so that improved distribution of mem-
ory accesses across all memory banks.

There are two different aspects that we wanted to meas-
ure: the increase of memory bandwidth due to the repli-

Fig. 6 SPE overheads decomposition in one SPE.

Fig. 7 SPE overheads decomposition.



9HIERARCHICAL TASK-BASED PROGRAMMING

cation of the data (requests to the same memory module
are reduced) and the increase of memory bandwidth due
to the increase in locality of the requests. A first attempt
to explain this idea has been performed with the SDK
example. We measured the performance of the example
in the initial implementation and in a slightly modified
implementation, where each thread was accessing the
remote memory node (SPEs in node zero access replicas
in memory node one and vice versa). The results are
shown in Figure 8 where we can see that the performance
of the example is the same up to 14 SPEs, with a reduc-
tion in the performance when crossing the data buffers
with 15 and 16 SPEs. According to this, the impact of rep-
lication is very important. The figure also shows the per-
formance when no replication is used.

We have applied the optimizations described in the list
above to the CellSs matrix multiply example. The first
optimization we tried is the use of huge pages. No signi-
ficative difference was observed for this example (in fact,
the authors did not measure any significative difference
in the SDK example either when using large pages). The
next step was to try exploit all of the memory bandwidth
offered by the NUMA architecture of the system memory
modules. In the SDK example, the input matrices A and
B are replicated in the two memory nodes. Also, the SPE
thread allocation forces the use of the copies allocated in
the local node, to increase locality and bandwidth.

We have also applied the same idea in the CellSs exam-
ple, replicating the input matrices in the two memory
nodes. Although from the user program we cannot bind
tasks to the physical SPEs, since this is done automatically
by the runtime, we tried three different approaches to meas-
ure the impact of this strategy: a random approach, where

the tasks were randomly called using one replica or another
of the input matrices; distributing replicas along columns,
that is, tasks accessing even columns of C were assigned
one replica and odd columns were assigned the other; and
distributing by a blocked C matrix, adding an additional
level of blocking to matrix C, and contiguous blocks were
assigned different replicas.

In all three cases the performance increases, especially
when blocking the memory (in fact, this approach tries to
favor the assignment of tasks accessing the local memory
module), since CellSs follows a first in first out (FIFO)
scheduling cycle when there is enough parallelism).

Figure 7b shows the decomposition of the SPE time
when huge pages and replication are used (the blocking
approach). The difference when compared with Figure 7a
is quite impressive: while when using up to eight SPEs
the figures are identical, the reduction in time that the
SPEs invest in the management of the software cache in
the local store (now with more bandwidth with memory
for the synchronous writes due to replacements) and
when waiting for staged data is quite large. If CellSs was
able to guarantee that all tasks accessed the replica in the
local memory module, these times should be the same as
when using up to eight SPEs. However, this is not possi-
ble with the current CellSs implementation. Furthermore,
keeping replicas of all of the input data does not look to
be an efficient and scalable strategy unless done in a con-
trolled way.

Another source of inefficiency in CellSs is the bottle-
necks in the main and helper thread for creating and man-
aging the tasks graph when using a large number of SPEs.
While in a CellSs application we can use up to 16 SPEs,
only two of the Power threads are used and the other two
are left idling. The hierarchical approach proposed in this
paper has the potential to solve these problems, and also
opens new possibilities for expressing applications with a
hierarchy of tasks.

5 Hierarchical Implementation

A prototype StarSs hierarchical implementation based on
the syntax proposed in Section 2.1 that composes SMPSs
and CellSs runtimes together has been implemented. The
implementation is currently targeted to IBM QS22 blades,
as those described in Section 1. In this platform, we con-
sider a main program running on one of the two Power
processors. This main program calls to coarse-grain tasks
that are executed in the Power processors (SMPSs tasks).
The SMPSs tasks themselves call to fine-grain tasks,
which are executed in the SPEs (CellSs tasks).

The runtime of this hierarchical implementation is
based on the SMPSs and CellSs, with the necessary modi-
fications to allow them to run together (basically, the defi-
nition of new data structures that isolate the double tasking

Fig. 8 Performance of IBM SDK matrix multiply when
using replication.
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level). Currently, no other modification have been imple-
mented in this version.

Taking into account the target platform, applications
can be composed of up to two SMPSs threads. One of these
SMPSs threads acts as global main thread, main thread for
SMPSs tasks and main thread for CellSs tasks called in this
thread. The other SMPSs thread, acts as worker SMPSs
thread, but also as a main thread for CellSs. Each SMPSs
thread has associated a helper thread (CellSs level) and a
variable number of SPE threads. Currently, a symmetric
configuration is assumed, with an identical number of
SPE threads for each SMPSs thread. In this way, memory
locality is exploited, since all threads bind to a SMPSs
thread run in the same chip and can access the corre-
sponding memory module, but forthcoming implementa-
tions can consider a variable number of SPE threads per
SMPSs thread to consider different profile tasks and ena-
ble load balancing.

The data-dependency analysis is performed by consid-
ering each SMPSs task as an independent context. There-
fore, the runtime seeks data dependencies between SMPSs
tasks and inside the SMPSs looks for data dependencies
between the CellSs tasks called in that task. Each SMPSs
task is considered as a context, and therefore the data
dependencies between CellSs tasks running in different
SMPSs tasks are respected thanks to the data dependen-
cies between the SMPSs tasks. Each SMPSs tasks waits
for its child CellSs tasks to finish before completing the
SMPSs-level task. Current implementation does not sup-
port nesting at the same level (i.e., SMPSs tasks inside

SMPSs tasks or CellSs tasks inside CellSs tasks), but
future implementations will.

The example shown in figure 2 has been implemented in
the current prototype implementation, being the first level
dgemm2 tasks, SMPSs tasks and the second level dgemm1
tasks, CellSs tasks (running inside SMPSs tasks). Figure 9
shows the thread organization of this application in the
current implementation. A first level of dgem tasks is
created in the application context. This first level of tasks
are executed by SMPSs threads (the reasonable number
in a QS22 blade would be two SMPSs threads) and these
tasks access to a submatrices of the original ones of NSB
× NSB blocks of BS × BS elements. Each of the SMPSs
tasks (dgemm2) has its own SMPSs context, which cre-
ates a second level of CellSs tasks (dgemm1 tasks). In
each SMPSs context, we find a main thread, a helper
thread (executed in the Power processor) and a variable
number of SPE threads (four in the picture). The CellSs
tasks operate in submatrices of BS × BS elements. Figure
10 shows the task DAG generated for this matrix multi-
ply example when NBB = 3 and NSB = 2. Each large
node in the figure represents the execution of a dgemm2
task and each small node represents the execution of a
dgemm1 task.

Figure 11 shows results obtained with the matrix mul-
tiply example. The matrices are of 2048 × 2048 floats,
organized in the first case in 4 × 4 big blocks (NBB)
and 8 × 8 small blocks (NSB). The figures show two lines:
one using one SMPSs thread (one CPU thread) and another
with two SMPSs threads (in some cases these lines are

Fig. 9 Thread organization in hierarchical StarSs.
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overlapped and difficult to differentiate). We have exe-
cuted the examples with number of SPU varying from
one to eight for each SMPSs thread, but the figure shows
the speed increase against the total number of SPUs
(therefore, with two CPUs, the number of SPU threads
goes from 2 to 16 threads). For this problem the figures
show good results, scaling perfectly up to 16 SPUs.

We have also run the Cholesky example presented in
Section 2.2 in the same QS22-based platform. The task
DAG that is generated for NBB = 5 and NSB = 3 is
shown in Figure 12. As in the case of the matrix multiply
example, large nodes represent first-level tasks, executed
in the SMPSs threads (spotrf2, strsm2, ssyrk2
and sgemm2). The figure has been split into two parts
for clarity. Each of the nodes of Figure 12(a) has the
internal structure represented in Figure 12(b). The small
nodes represent second-level tasks, executed in the Cell
SPUs (spotrf1, strsm1, ssyrk1 and sgemm1).

The implementation of the Cholesky factorization is
given in this paper as an example of programmability of
the hierarchical StarSs approach. The hierarchical approach
allows us to program applications in an incremental and
modular way. For example, in this first implementation of
the Cholesky the implementation of the strsm2 task
is sequential. After execution and analysis of the bot-
tlenecks of the application, the programmer can decide
which tasks to optimize or not, to derive specific imple-
mentations for given platforms, etc. Execution results
for the Cholesky example are shown in Figure 13, as
expected not so good as with the previous matrix multi-
ply example.

6 Related Work

In the literature we can find several programming models
that tackle the parallelization of applications from sequen-

Fig. 10 Task DAG for the hierarchical implementation of the matrix multiply example (NBB = 3, NSB = 2).

Fig. 11 Matrix multiply example, size 2048 × 2048 floats: (a) NBB = 4, NSB = 8; (b) NBB = 2, NSB = 16.
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tial codes. Between them, OpenMP4 is a high exponent of
them. OpenMP is based on a shared-memory model and
on pragma annotations that are inserted into the code to
give hints to the compiler about the existence of parallel-
ism. The standard has been extended in its version 3.0
with a tasking model that allows us to address this other
level of parallelism. Although this version of the standard
does not support the detection of tasks’ data dependen-
cies there have been proposal to define tasks’ precedence
(Gonzalez et al., 2003) and task dependencies (Duran et
al., 2009). Comparisons between SMPSs performance
and OpenMP are shown in Perez et al. (2008) and Duran
et al. (2009).

Another task-based programming model is Cilk (Frigo et
al., 1998) which is a general-purpose programming lan-
guage for multi-threaded parallel programming. In Cilk, the
programmer identifies tasks with the spawn keyword and
the sync keyword is used to wait for spawned tasks. Both
OpenMP and Cilk consider nested tasks (tasks that generate
new tasks) but the inter-task data-dependence detection is
not supported and therefore the programmer has to consider
this in the development of the application. Cilk scheduler is
based on a work-stealing approach in such a way that is able
to naturally exploit the data locality. While Cilk only sup-
ported parallel tasks, Cilk++ also supports parallel loops.
Perez et al. (2008) also compared SMPSs with Cilk.

Fig. 12 Task DAG for the hierarchical implementation of the Cholesky factorization example (NBB = 5, NSB = 3): (a)
first-level DAG; (b) first-level nodes’ structure.
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The Parallel Linear Algebra for Scalable Multicore
Architectures (PLASMA)5 (Buttari et al., 2009) project is
also addressing the problems that the linear algebra and
high-performance computing community are facing due to
the introduction of multicore architectures. PLASMA’s
goal is to create software frameworks that enable program-
mers to simplify the process of developing applications that
can achieve both high performance and portability across a
range of new architectures. With this objective, the project
aims to develop programming models that enforce asyn-
chronous, out-of-order scheduling of operations as the
basis for the definition of a scalable and highly efficient
software framework for computational linear algebra
applications. Kurzak et al. (2009) presented a compari-
son between Cilk, SMPSs and an static scheduling mech-
anism currently used in PLASMA, showing results for
Cholesky and QR factorizations. Although the static
approach was giving the best results, SMPSs was very
close, and taking into account the complexity of the task
graphs that some applications can generate, a static (man-
ual) approach is not possible.

SuperMatrix (Chan et al., 2007) is another program-
ming paradigm that focuses on automatic parallelization
although its application is limited to linear algebra matrix
operations. SuperMatrix provides a library with a set of
linear algebra routines that generates tasks internally and
an API to build algorithms composed of those routines. A
similarity of SuperMatrix with StarSs is that it is able to
detect data dependencies between tasks, although it does
not implement data renaming.

CAPS Hybrid Multicore Parallel Programming (HMPP)
(Dolbeau et al., 2007) aims to simplify the use of hard-

ware acceleration in conventional general-purpose appli-
cations while keeping the application code portable. The
approach supports accelerator functions, written in the
accelerator’s own language. The main source code is
written in a traditional programming language (C, For-
tran) and makes calls to the accelerator functions. The
framework provides specific compiler, library and other
tools that help in generating the binaries. The approach
makes use of directives. The main directives are code-
let that allows the declaration of a codelet (a codelet is
an accelerator function, with no side effects and no I/O)
and callsite that allows codelets to be called from
the main program code. HMPP itself does not exploit
the concurrency of the code, but it is compatible with
OpenMP and MPI and therefore the parallelism of the
application is exploited by these other programming
models.

An approach that somehow resembles StarSs is Mentat
(Grimshaw, 1993), the basic idea of which is to let pro-
grammers only express what should be executed in paral-
lel. Based in C++ and deeply object-oriented, in Mentat
programmers indicate which classes have methods that
are coarse grained enough to let them execute in paral-
lel. Mentat supports the asynchronous execution of these
operations using a macro dataflow model, where an
operation can start as soon as all of its inputs are availa-
ble. In addition to offering a high-level programming
model, the runtime system takes over the communica-
tion, synchronization and load balancing of the applica-
tions.

With regards to programming models for the CBE,
O’Brien et al. (2008) presented the support of OpenMP

Fig. 13 Results for the Cholesky factorization example: (a) NBB = 16, NSB = 4, matrix size 4096 × 4096 floats; (b)
NBB = 16, NSB = 8, matrix size 8192 × 8192 floats
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on the Cell processor, integrated in the XL compiler. The
approach solves specific issues of the Cell processor:
synchronization of the heterogeneous threads and spe-
cific code generation for the PPE and SPE sides, for exam-
ple, support for the latter coming from the partitioning of
the SPE code into multiple overlaid binary sections.
Another specific feature of this approach is the memory
management, where a software cache mechanism is part
of the runtime library and it is used to access global vari-
ables. However, this implementation supports OpenMP
version 2.5 but not OpenMP 3.0, therefore tasking is not
supported.

Another approach to support the heterogeneity of the
Cell is the ALF (IBM Corporation, 2007), that provides a
programming environment for data and task parallel
libraries and applications. ALF simplifies the task of
development of computational libraries that encapsulate
accelerated kernels. The framework then enables offload-
ing of the computationally intensive kernels to the hard-
ware accelerators.

ALF supports parallelism by means of multiple pro-
gram multiple data (MPMD) paradigm. ALF supports
also the data transfers, double buffering and load balanc-
ing for parallel tasks. These parallel tasks do not have any
direct or indirect dependency between them, but ALF sup-
port the explicit definition of task execution order by
means of the function alf_task_depends_on.

ALF can be combined with the DaCS (IBM Corpora-
tion, 2008) library that provides a set of services which
ease the development of applications and application
frameworks in a heterogeneous multi-tiered system. DaCS
establishes a hierarchical topology of processing ele-
ments (DaCS elements (DEs)). In a hierarchy, a DE can
be either a general-purpose processing element that acts
as supervisor (host element (HE)) or as a processing
element that executes the computing tasks designated
by the HE (accelerator element (AE)). DaCS provides
services for initializing, offloading computation to AEs,
synchronization, and HE–AE communication. RoadRu-
nner software development has been performed by
means of combining ALF and DaCS (Crawford et al.,
2008).

SP@CE is a programming model for streaming appli-
cations (Varbanescu et al., 2006), built as a component-
based extension of the series–parallel contention (SPC)
model of computation. In SP@CE, an streaming appli-
cation is designed by providing a graph of computation
kernels connected by data streams. The intermediate repre-
sentation translates this graph into an expanded version of
the application-dependency graph, which is then opti-
mized and dynamically scheduled (using a job queue) on
the hardware platform by the runtime system. To accom-
modate the CBE back-end, a new component type has
been added to embed the SPE computation. Each SPE

runs a tiny runtime system, based on a task state automa-
ton, and follows the kernel execution step by step.

Sequoia (Fatahalian et al., 2006) is a programming lan-
guage based on C++. Similarly to CellSs, it decomposes
programs into tasks. In this case, one of the differences is
that in Sequoia, tasks can call themselves recursively.
While the top level (inner task implementation) recur-
sively decomposes the problem into smaller tasks, the
lower level (leaf task implementation) implements the
SPE code itself. Whether a task call is bound to the
inner task or the leaf task is determined by the runtime
according to the user-specified task-mapping specifica-
tion.

RapidMind6 is another programming model for the
CBE processor. It is based on a C++ template library and
a runtime library that performs dynamic code generation.
The template library allows writing and invoking of SPE
code from within the PPE code. All SPE code is written
using the template library.

7 Conclusions and Future Work

StarSs is a task-based programming model which aims to
bring a efficient solution in forthcoming multicore archi-
tectures, both in terms of programmability and perform-
ance. CellSs and SMPSs are the two implementations
targeted to different systems currently available. In this
paper we have motivated and presented a hierarchical
approach that combines both SMPSs and CellSs, with
different levels of granularity, with CellSs tasks being
children of SMPSs tasks. The results presented in this
paper show that the approach is promising.

The current version of the hierarchical approach
presents only modifications to enable the interoperation
of SMPSs and CellSs. While the current solution stati-
cally assigns a given number of SPUs to each SMP tasks,
we want to explore a dynamic approach, where each
SMP task is given a different number of resources,
depending on its needs. The next steps will look towards
enabling the hierarchical approach through several
nodes. Research towards bringing a solution for accelera-
tor-based machines such as RoadRunner that do not
require the whole duplication of data in the memory of
the different levels of the hierarchy is also foreseen.
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Notes
1 See http://www.prace-project.eu/.

2 See http://www.bsc.es/media/1652.pdf.

3 Although this copying can be performed to increase memory
bandwidth

4 See the OpenMP 3.0 Specification at http://www.openmp.org/.

5 See http://icl.cs.utk.edu/plasma/index.html.

6 See http://www.rapidmind.net/case-cell.php
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