
Course notes for Data Compression - 2

Kolmogorov complexity

Fall 2005

Peter Bro Miltersen

September 29, 2005

Version 2.0

1 Kolmogorov Complexity

In this section, we present the concept of Kolmogorov Complexity that will
allow us to escape the paradox of data compression we presented previously.
Recall the “Encyclopedia Britannica code” that compresses the Encyclopedia
Britanica to one bit. So far, our answer to the paradox has been to only
consider optimality of compression relative to a data model, i.e., to postulate
some uncertainty about the data we want to compress. While this gives a very
elegant theory, it does not give us any answer to how much an individual file,
such as the Encyclopedia Britannica may “really” be compressed in absolute
terms.

It is interesting to compare x = Encylopedia Britanica with another string
of approximately the same length: Let y be string consisting of the first
10 million decimal digits of the number π. If we consider compressing y vs
compressing x from the point of view of statistical coding theory, nothing
suggests that y would be much more compressible than x. In fact, any
of the standard models we have looked at would assign to y a self-entropy
roughly equal to the entropy of 10 million digits chosen independently and
uniformly at random from {0, 1, 2, . . . , 9}. Yet intuitively, y seems much more
compressible than x, since the string “the first 10 million decimal digits of
π” in a sense contains all the information that y does.

We can explain the difference between x and y by pinpointing what it is that
bothers us with the Encyclopedia Britannica codec that compresses x to 1
bit: The decoder (and coder) must have the Encyclopedia Britannica built
in. Thus, if we must include the size of the decoder in our estimate of the
code length, we can no longer compress x to one bit. On the other hand, the
string y has a short representation even if we must include the size of the
decoder, if we let the decoder be a program that computes a given number
of digits of π.

To formalize the above considerations, we need to fix a programming lan-
guage in which to specify the decoder. We do this by the notion of a pro-
gramming system.

A programming system is a language L ⊆ {0, 1}∗. We demand that no string
in L is a prefix of another string in L. Each string in L is called a program.
There should be an effective algorithm deciding whether a given string p is
a valid program or not, i.e., whether p is in L or not.

The reader may think of a standard programming language such as java as
a programming system. The fact that we demand programs to be binary
strings is easily handled using a standard fixed length code for any desired

2

bigger alphabet, and the fact that no string in L is a prefix of another string
is true for most well structured programming languages anyway and if not,
it is easy to modify the language slightly so that it is true.

To fix the semantics of the programming languauge we need to specify how
the programs take inputs and produce outputs. For reasons that will become
clear, we want a program p ∈ L to take as input a (potentially infinite)
stream of input bits. If p halts, it can have read only a finite prefix of the
stream and this prefix is well-defined. Also, if p is given a different stream as
input starting with the same prefix, it will behave in exactly the same way.
As our program p is intended to model a decoder, it should output a string
over a finite alphabet if it halts1. Finally, we want our system to be Turing
equivalent, i.e., to have the same power as Turing machines.

Note that a natural Turing machine model directly fullfills our input/output
format requirements; we simply consider Turing Machines with an arbitrary
number of work tapes and two special tapes: an input tape and an output
tape. The input tape is semi-infinite and the head on the input tape is read-
only and move-right-only. Each cell of the tape contains a bit, 0 or 1. The
ouput tape is also semi-infinite and the head on the output tape is write-only
and move-right-only. There are no restrictions on the other tapes. When a
machine of this kind runs and halts, it will have read a well-defined finite
prefix of its input tape and produced some well-defined string on its ouput
tape.

To formalize the definition of the semantics of a programming system, we
directly relate it to the Turing machine model just specified:

A programming system L must have two associated algorithms (“cross-
compilers”) φ, τ so that φ(p) for p ∈ L outputs the index of a Turing machine
Mφ(p) of the above kind. The input/output behavior of this Turing machine
is the semantics of the program p. Formally, we define

p(x) := Mφ(p)(x),

where x is an infinite {0, 1}-string and Mφ(p)(x) is either

• ⊥, when Mφ(p) fails to halt when given x on its input tape, or

• a string y which is the string Mφ(p) has written on its output tape when
it halts on input x.

1To avoid serious problems concerning the specification of which alphabet, a “finite

alphabet” means, in this section, the set {0, 1, . . . , s − 1} for some positive integer s

3

The legal inputs I(p) of p is the set of finite {0, 1}-strings that are the set
of tape prefixes actually having been read by p when halting on some input.
Formally,

I(p) := {x| On input xz where z ∈ {0, 1}∞, Mφ(p) reads exactly x and halts.}

Note that by definition, no string in I(p) is the prefix of another string in
I(p). For x ∈ I(p) we define

p(x) := p(xz)

where z is an arbitrary infinite {0, 1}-string. For x 6∈ I(p), we let p(x) =⊥.

The algorithm τ performs “cross-compilation” in the opposite direction from
φ. The existense of τ ensures that our programming system is Turing-
complete. The algorithm τ maps indices of Turing machines to programs
and must satisfy that τ(i) = p ⇒ p(x) = Mi(x) for all indices i and all
infinite {0, 1}-strings x. This completes the definition of a programming
system.

We are now ready for our main definition. The Kolmogorov decoder relative
to the programming system L is the partial map

dK(pz) := p(z).

Note that since no two strings of L are prefixes of one another dK is a well-
defined map on {0, 1}∗. Since I(p) has the same prefix-freeness property, the
the set of strings y in {0, 1}∗ for which dK(y) 6=⊥ also has the prefix-freeness
property. Finally note that dK is computable by the existence of the map
φ and the existence of a universal Turing machine (with a non-terminating
computation corresponding to the value ⊥).

We think of px as a code word representing p(x). Note however, that any
particular string has infinitely many code words representing it. The code
word of interest is the shortest one. Thus, we define the Kolmogorov code:

cK(x) := the shortest y so that dK(y) = x

where ties are broken in an arbitrary way (or not broken at all, i.e., we may
allow cK to be multiple-valued).

Finally, the length of the Kolmogorov code for a string x is called the Kol-
mogorov complexity K(x) of x, i.e.,

K(x) := |cK(x)|.

4

Intuitively, the Kolmogorov complexity of x is the absolute limit of the size
of a compressed representation of a given string if the size of the decoding
program is included in the size bound.

It is easy to see that our choice of programming system only matters up to
an additive constant:

Proposition 1 If L and L′ are two different programming systems and K

and K ′ the corresponding notions of Kolmogorov complexity, then there are
constants α, β so that for all x, K ′(x) ∈ [K(x) − α; K(x) + β].

Here α is the size of an interpreter for L′ written in the language L and β is
the size of an interpreter for L, written in the language L′.

Since the Kolmogorov code is a prefix code we have by Shannon’s theorem
that the average value of K(x) among all strings in {0, 1}n is at least n,
i.e., on the average, strings are incompressible. By the program reading the
Elias encoding of a number n followed by n bits which are copied to the
output tape, we also have for any x ∈ {0, 1}n the upper bound K(x) ≤
n + O(log n), i.e., a typical string of length n has Kolmogorov complexity
around n. A string of length n of Kolmogorov complexity at least n is called
an algorithmically random string. An algorithmically random string cannot
be compressed if the length of the decoder is taken into account. However,
if there is any way of compressing a string using a decoder described by a
short program the Kolmogorov complexity can be much smaller than n.

Let us return to our comparision between the strings x = the Encyclopedia
Britannica and y = the first 10,000,000 million digits of π. In general, if we
let πn be the first n digits of π, we have that there is a constant c so that
K(πn) ≤ c + `(n) where `(n) is the length of the Elias code for n and c is
the length of a program that outputs the first n digits of π on input cElias(n).
This program can be made quite small in natural programming languauges,
so relative to these the Kolmogorov complexity will be quite small. We
expect the Kolmogorov complexity of the Encyclopedia Britannica to be
bigger, but the Encyclopedia is clearly not an algorithmically random string.
In particular, we can compress it using the method of statistical coding and
some suitable model. Hence, the following proposition becomes relevant.

Proposition 2 For any programming system, there is a constant c so that
the following holds. Let M be a prediction model given by a program pM ,
including a specification of the message length. Then for any string x,

K(x) ≤ HM(x) + |pM | + c.

5

Here, HM(x) is the self-entropy of x within the model M . The proposition
follows from the results we proved about arithmetic coding: The constant c is
essentially the length of a program implementing arithmetic decoding, taking
as inputs a program specifying the prediction model and the artihmetic code
word. Thus, the proposition nicely captures the fact that an arithmetic code
has as overhead the specification of the model used to do the compression.

The importance of the concept of Kolmogorov complexity for practical data
compression lies mainly in its putting a rigourous meaning to the intuitive
idea that there is a specific limit beyond which compression of an individ-
ual message is impossible, thus resolving the paradox from the beginning of
these notes. Just having in mind that the Kolmogorov complexity of any file
is a well-defined number can be useful. Using the notion, we can put for-
ward formally meaningful hypotheses stating that particular files cannot be
compressed beyond certain bounds using any means, rather than restricting
such hypotheses to compression using certain methods. Such a hypothesis
can be falsified by actually coming up with a program and input pair beating
the hypothesized bound. However, we shall see in the next session that it
is in general impossible to verify such hypotheses mathematically and thus,
even though they are mathematically well-defined, we have to treat them
similarly to scientific hypotheses which have the same property according to
the theory of science: By the scientific method they can be falsified but not
verified.

2 Uncomputability of the Kolmogorov code

As a consequence of the following theorem, the Kolmogorov code x → cK(x)
is uncomputable.

Theorem 3 The map x → K(x), x ∈ {0, 1}∗ is uncomputable.

Proof Suppose K can be computed by some program. Then consider the
program in Figure 1. We know that for every n, there is some binary string
x of length n so that K(x) ≥ n. Hence, for any Elias-coded input n, the
program will output a string of length n and Kolmogorov complexity at least
n and halt. But the program has some representation p in our programming
system, so a code word for its output on input n in the Kolmogorov code
would be pcElias(n). But |pcElias(n)| = O(log n), so for sufficiently large n, we
get a contradiction.

There are some interesting things to notice about the proof.

6

input EliasCode(n)
for x ∈ {0, 1}n do

if K(x) ≥ n then output x; halt fi

od

Figure 1: Program that would exist if K was computable.

input EliasCode(n)
Simulate method A until a statement “K(x) ≥ i” for some i ≥ n is produced.
output x.

Figure 2: A program that cannot exist.

• It is an uncomputability proof that is not a reduction from the un-
decidability of the halting problem H. It is possible to show the un-
computability of K by such a reduction (K and H are in fact Turing-
equivalent), but such a proofs are more gritty.

• It is arguably a bit simpler than the standard proof of the undecidability
of the halting problem. We don’t need the somewhat mind-boggling
idea of giving a program itself as an input in a direct way.

That the Kolmogorov code is uncomputable just means that we cannot com-
pute it on all inputs. May we compute it on many? We know that the
halting problem is easy on infinitely many (natural) instances and can by
automatically decided using verification methods on those. In contrast, we
can show the following theorem that states that any correct method yielding
statements “K(x) ≥ i” for strings x and numbers i can yield such statements
for only finitely many i.

Theorem 4 Let an algorithmic method A be given that produces (without
input) a stream of correct statements “K(x) ≥ i”. Then, there is a constant
c depending on the method, so that i ≤ c for all statements “K(x) ≥ i”
produced by the method.

Proof Suppose not. Then the method A produces statements “K(x) ≥ i”
for arbitrarily large i. Then consider the program in Figure 2. The same way
as in the previous proof, we get a contradiction: The program is guaranteed
to produce a string of Kolmogorov complexity at least n, yet our analysis
shows that its Kolmogorov complexity is O(log n).

7

Corollary 5 Let an algorithmic method A be given that produces (without
input) a stream of correct statements “K(x) = i”. Then, the method only
produces finitely many different statements.

Proof By theorem 4, there is a constant c, so that only statements “K(x) =
i” with i ≤ c are produced. But at most 2c different x’s have K(x) ≤ c.

In summary, the notion of Kolmogorov complexity allows us to use specific
fixed files (such as the Canterbury Corpus) as benchmarks for data compres-
sion without having to worry about running into a cheating “Encyclopedia
Britannica code”. For any such benchmark file, we can keep track of the
current compression record in a meaningful way by fixing a programming
system and insisting that the size of the decoder is taking into account (For
real world systems such as Microsoft Windows, we could insist that the com-
pressed file is a “self-extracting archive”). But by Corollary 5, we will not be
able to prove that any given record will never be broken, no matter which
method we try to use to prove such an optimality result.

A natural example of a “method” to which Theorem 4 applies is generating
true statements from a particular set of logical axioms and using particu-
lar rules of inference. Thus, we may take a logical system powerful enough
to encode all of mathematics such as set theory, i.e., ZFC. The system can
also express statements “K(x) ≥ i” or more precisely, for each statement
“K(x) ≥ i” there is a corresponding well-defined ZFC statement that can be
algorithmically recognized as the equivalent of “K(x) ≥ i”. We can there-
fore take ZFC and make a program that generates an infinite stream of all
theorems provable in ZFC and outputs those that correspond to statements
“K(x) ≥ i”. Theorem 4 now implies that (unless ZFC is inconsistent), we
never get a statement of the form “K(x) ≥ c” where c is, essentially, the size
of our dovetailing program. In other words, ZFC can only prove a statement
of the form “K(x) ≥ i” for finitely many i. More concretely, if we fix the
programming system to an idealized version of Java with only the most nec-
essary built-in classes, the constant c is surely (much) less than 3 Mb. Thus
we have shown that ZFC (which is generally recognized as being powerful
enough to formalize all of mathematics) cannot prove that the 3 Gb string
containing a MPEG2 representation of the movie “The Matrix” that is on
the DVD I just bought cannot be compressed losslessly to 3 Mb as a rep-
resentation as a Java program with an associated data file. Of course, this
could be because the file actually can be compressed losslessly to 3 Mb, but
this is hardly likely.

We can replace ZFC with Peano Arithmetic at the cost of going through
more pain when representing “K(x) ≥ i”. We thus have a version of Gödel’s

8

incompleteness theorem. This way of proving the incompleteness theorem
brings up an interesting issue. We have seen that a deterministic algorithmic
procedure has no way of coming up with true statements of the form “K(x) ≥
i” for large values of i. However, there is a randomized procedure that can: If
we pick x ∈ {0, 1}n uniformly at random, the probability that “K(x) ≥ n−k”
is a false statement is less than 2−k, simply because there are only 2n−k − 1
binary strings of length less than n− k, so at most this many strings among
the 2n strings of length n can have Kolmogorov complexity less than n − k.
Thus, given some “security parameter” k (say, k=100), consider the following
way of enhancing a system such as Peano Arithmetic. We keep the axioms
and inference rules of PA but add a way of generating additional axioms:
We keep a counter c, initially c = k. At any point in time we are allowed to
generate as an axiom “K(x) ≥ n − c” (or, more precisely, the formalization
of this statement within Peano arithmetic) for an x we generate uniformly
at random among all x ∈ {0, 1}n for any n we may choose. After having
generated such an axiom, we must increment c. This system has the following
interesting properties.

• The probability that we ever, throught the infinite lifetime of the sys-
tem, generate an axiom that is a false statement about the integers is
at most

∑
∞

c=k 2−c = 2−k+1. If k = 100, this is completely negligible.

• Thus, as our rules of inference are sound we will, with probability
at least 1 − 2−k+1, only generate true statements about the integers
throughout the infinite lifetime of our system.

• Our system is not recursively enumerable; it cannot be simulated by any
deterministic algorithmic procedure. However, it may be implemented
if we have access to a source of randomness.

As the system is not recursively enumerable, Gödels theorem does not apply
to the system, and we may ask if, with non-negligible probability, the sys-
tem is powerful enough to generate all true statements of number theory?
That this is not the case is a deep theorem proved by Leonid Levin. Never-
theless, the system provides an intriguing counterexample to the thesis that
mathematical knowledge is always attained (or in principle attainable) by
recursively enumerable computation on a recursive set of axioms.

9

