
Using telerobotics for remote
kinematics laboratories

Samuel Rae

Supervisors: A/Prof. James Trevelyan
A/Prof. Karol Miller (Interim)

Final Year Project, 2004

Samuel Rae

PO Box 609

DONNYBROOK WA 6239

October 31st, 2004

The Dean

Faculty of Engineering, Computing and Mathematics

The University of Western Australia

35 Stirling Highway

CRAWLEY WA 6009

Dear Sir,

Please accept this thesis entitled ‘Using telerobotics for remote kinematics laboratories’

as part of the requirement for the degree of Bachelor of Engineering (Mechatronics) with

Honours.

Yours sincerely,

Samuel Rae

But because of his great love for us,

God, who is rich in mercy, made us

alive with Christ even when we

were dead in transgressions—

it is by grace you have

been saved.

Ephesians 2:4–5{

Abstract

For the first time, the University of Western Australia Telerobot can be used for remote

laboratories. These laboratories will give flexibility to the teaching curriculum in the the

School of Mechanical Engineering, and will allow students to learn in their own time

and at their own pace. Several interesting problems were solved to achieve control of the

robot’s joints. Additionally, the forward kinematics was solved, leading to a simulation

of the robot. This thesis shows the techniques used and the problems solved to allow the

robot to be used for remote kinematics laboratories.

i

Acknowledgements

There are a number of people I would like to thank for their help with this thesis:

A/Prof. James Trevelyan, my supervisor, for your encouragement when things were go-

ing well, your words of wisdom when things looked down, and your guidance when

I was lacking direction. It’s been great to work with you.

A/Prof. Karol Miller my interim supervisor, for getting me started at the beginning of

the year when James was away, and for your wise advice and good humour. Thanks

also for the chance to demonstrate laboratories and for your openness to the idea of

making a remote laboratory for your unit.

Sabbia Tilli, for putting up with my constant badgering about things I could have found

out for myself, and for being a friendly face in the lab.

Angus Stuart, from tech support, for your excellent service. Talking to final years from

other schools, you must be the most efficient and responsive tech support depart-

ment in the faculty.

Andrew Guzzomi, for being a great friend for the last seven years. Thanks for all the

good times and for proofreading my thesis many times over. I hope our friendship

remains strong into the future.

Daniel Bond, for the 2 a.m. visits down the hallway, great friendship and the chance to

put my mini cricket bat to good use.

Matt Harding, for your Godly mateship, encouragement and support. Thanks for your

wisdom when I needed it, and for the late-night hymn-singing in the lab.

Everyone at St. George’s College and the UWA Christian Unionfor making my time

at uni much more fun and worthwhile than just a degree.

Mum & Dad, for being more generous and encouraging to me during my education than

I ever could have asked for. Thanks for your love, support and continual encour-

agement in everything I do. This thesis is for you.

iii

CONTENTS

Contents

1 Introduction 1

1.1 Thesis overview .1

2 Background 2

2.1 Some definitions .2

2.2 The Telerobot .2

2.2.1 A brief history of the Telerobot 4

2.3 Telelabs .4

2.3.1 Telelabs control scheme .5

2.4 LabVIEW . 6

3 Current developments in the field 8

3.1 Online learning . 8

3.2 Remote laboratories .9

3.2.1 Multi-Laboratory systems .10

3.2.2 Single-Laboratory systems .10

3.2.3 Robotics .11

3.2.4 Issues with remote laboratories11

3.3 Simulation .12

3.4 Current use of LabVIEW .12

4 Experiences with laboratories 14

4.1 Personal Experiences .14

4.1.1 Telerobot laboratory .14

v

CONTENTS

5 Telerobot laboratory 16

5.1 Laboratory context & aims .16

5.2 Laboratory handout .17

5.2.1 Readability .18

5.2.2 Coordinate frames .18

5.2.3 Robot diagrams .19

5.2.4 Calculations .19

5.2.5 Inverse kinematics .19

6 Remote Joint Control 21

6.1 Communicating with the robot controller21

6.2 Difficulties with ActiveX . 22

6.3 Writing joint angles using a dummy data structure22

6.4 Reading the current joint angles .23

6.4.1 Problems reading the joint angles23

6.5 Changes to the LabVIEW program .26

6.5.1 Joint controls .26

6.5.2 Control cluster .27

6.5.3 Packaging the joint angles .28

6.5.4 Modularisation .28

6.6 Changes to the S4 program .28

6.6.1 Program structure .29

6.7 Extending control to further variables30

7 Robot kinematics 31

7.1 Homogeneous transformations .31

7.2 Denavit-Hartenburg transformations .33

7.2.1 DH parameters .34

7.3 Forward kinematics .34

vi

CONTENTS

7.4 Inverse kinematics .35

7.5 Implementation .35

7.5.1 Forward Kinematics .35

7.5.2 Plotting .35

8 Value checking 38

8.1 Implementation .39

8.1.1 Limit values .40

9 Results 42

9.1 Laboratory classes .43

9.2 Online exercise .43

10 Conclusions & Further work 44

10.1 Further work .44

10.1.1 Problems to be corrected .44

10.1.2 Advanced features .45

10.1.3 Remote laboratory .45

A Original MMS 319 Lab sheet (Pre-2004) 56

B New MMS 319 Laboratory Sheet (2004) 65

C Original S4 movement program (MOVE.PRG) 73

D New S4 movement program (MOVEII.PRG) 75

E MMS 319 Remote Exercise 79

F How-to: Using ActiveX objects within the Telerobot software 82

G Denavit-Hartenburg transformations: conventions 87

G.1 Introduction .87

vii

CONTENTS

G.2 Transformation order .87

G.3 Attaching axes to joints .88

G.4 A andT matrices .88

G.4.1 Subscripts and superscripts .89

G.5 Expanding the matrices .89

H Robot transformation matrices 91

H.1 The matrices .92

H.2 Mathematica code .93

viii

L IST OF FIGURES

List of Figures

2.1 The University of Western Australia Telerobot3

2.2 Workspace of the IRB 1400 robot (measurements inmm) [1] 3

2.3 Equipment currently integrated into Telelabs5

2.4 Remote Client Front Panel for the electric iron6

2.5 PlotRobot.vi Front Panel (a) and Block Diagram (b)7

5.1 Kinematic diagram for the robot for the MMS 319 forward kinematics

exercise .17

5.2 Base and User Coordinate Frames (BCF & UCF)18

5.3 Kinematic diagram showingθ5 changing in the original inverse kinemat-

ics exercise .20

5.4 Settingθ4 andθ5 to 90◦ points the gripper (highlighted) out of the x-z plane20

6.1 Changing robot position .22

6.2 Using a dummy data structure to package joint angles23

6.3 Changing the joint angles by using a dummy data structure23

6.4 Reading the current joint angles .24

6.5 Sequence diagram showing the first timing problem, which affected all

moves .25

6.6 Sequence diagram showing the second timing problem, which affected

long moves only .25

6.7 The Configuration Position .26

6.8 RunHardware.viBlock Diagram showing Instruction checking and data

packaging and writing .28

6.9 A section ofRunHardware.vipackaging and sending different types of

information to the robot .29

6.10 Structure of the new S4 programMOVEII.PRG 30

ix

L IST OF FIGURES

7.1 Multiplication of Homogeneous Transformations is associative32

7.2 Coordinate frames of the joints of the Telerobot32

7.3 TelerobotForwardKinematics.viBlock Diagram showing the input of the

DH parameters and using subVIs to solve for the HT at each joint36

7.4 DHTransform.viBlock Diagram showing the multiplication of the four

simple transformations that comprise a DH transformation36

7.5 PlotRobot.viFront Panel showing angle inputs and graphical output from

the forward kinematics .37

8.1 Value checking .38

8.2 The robot and broken table resulting from a bug in the programming . . .39

8.3 CheckInstructionSet.viBlock Diagram showing “table” move mode case .40

8.4 MMSCheck.vicoerces the joint angle value into specified ranges for the

“MMS” movement mode .40

9.1 Remote Client interface (adapted from original by Newell [57])42

x

L IST OF TABLES

List of Tables

7.1 Denavit-Hartenburg parameters for the Telerobot34

8.1 Physical limits of joint angles and imposed limits in the ‘MMS’ move-

ment mode .41

8.2 Imposed limits in ‘table’ mode (from Babbage [4])41

xi

GLOSSARY

Glossary

Where terms listed in the glossary are mentioned for the first time, they appear in a marginGlossary

termnote.

ABB

Asea Brown Boveri, a Swedish automation company with a robotics division. Mak-

ers of the IRB 1400 robot. Website: http://www.abb.com/

ActiveX

A Microsoft technology that specifies rules to govern how different programs inter-

act. ActiveX is used to provide the communications link between the S4 Controller

and the Hardware Master.

Adept

Large multinational automation systems manufacturer. Website: http://www.adept.com

Asea

Robotics company that later became ABB.

BCF

Base Coordinate Frame. The coordinate frame at the base of the robot.

Block Diagram

The ‘code’ of the LabVIEW VI. It shows all the wiring of inputs and outputs.

CGI

Common Gateway Interface. A set of rules that define how a web server commu-

nicates with another piece of software on the same computer. CGI scripts are often

used on the internet to do some task on the server and give a remote user some

information.

End-effector

The end part of a robot. This could be a gripper (as in the case of the Telerobot), or

any number of tools such as arc-welding rods.

xii

GLOSSARY

Forward kinematics

Calculating the position of the end-effector given the joint angles of the mehcanism.

Front Panel

The part of the LabVIEW program that the user interacts with. It can contain many

different sorts of inputs and displays.

Hardware Master

The local computer in the same physical room as the laboratory equipment that

constantly monitors and controls the state of the equipment.

Inverse kinematics

Calculating the joint angles of the mechanism given the end-effector position and

orientation.

IRB 1400

A model of robot made by ABB. This is what the UWA Telerobot is.

Java

A full-featured, modern, widely-used programming language developed by Sun Mi-

crosystems. Designed to be able to run one program on multiple different platforms

(Mac, Linux, Windows). Often used in remote laboratory contexts because of its

multi-platform ability and the capacity to be run in a web browser over the internet.

Website: http://www.sun.com/java/

Kinematics

Equations that describe how mechanisms move. In robotics, how the joint angles

and end-effector position are related.

LabVIEW

A powerful graphical dataflow programming language created by National Instru-

ments. It is particularly useful for data acquisition and analysis. The Telelabs sys-

tem is built with LabVIEW. Website: http://www.ni.com/labview/

LOL

Labs-On-Line, the software that powers the Telelabs remote laboratory system

xiii

GLOSSARY

NUWAR

New University of Western Australia Robot, a parallel pick-and-place robot created

by A/Prof. Miller, School of Mechanical Engineering, The University of Western

Australia

Object

In software engineering, an object represents a set of related pieces of information.

For example, arobtargetobject has pieces of information to specify thex, y andz

coordinates and the orientation.

RAPID

ABB programming language used to program the S4 Controller.

Remote Client

A remote interface to the laboratory equipment that allows a user to use the equip-

ment remotely. It communicates with the LOL server, sending commands and re-

ceiving feedback.

Remote laboratory

A laboratory using real, physical laboratory equipment controlled from a remote

location, often through the internet.

Repeatability

The ability of a robot to move back to a point within a certain error

RobComm

The Windows software from ABB that provides the ActiveX routines to allow com-

munication between the S4 Controller and the Hardware Master.

S4 Controller

The ABB proprietary, low-down robot controller. This is what figures out how fast

to move the motors and when to stop. The controller runs ABB’s operating system,

S4.

Singularity

A position in which the Jacobian matrix of a robot (which defines the relationship

between the end-effector position and the joint angles) becomes singular (that is, it

xiv

GLOSSARY

has no inverse). This corresponds to the robot losing a degree of freedom (it cannot

move in a certain direction).

SPICE

Widely-used circuit simulation software. Created by the University of California in

Berkeley. Website: http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

SubVI

A LabVIEW VI that has an input and an output, and is run by another VI. One

‘high-up’ VI may call many ‘lower-down’ VIs, each of which does a small task.

Teach pendant

The manual joystick and control box used to manually move (‘jog’) the robot.

Telerobotics

Controlling robots remotely.

TypeDef

A type of LabVIEW VI that defines what a certain type of variable contains.

UCF

User Coordinate Frame. A coordinate frame that specifies the position of a fixture

near the Telerobot. In the current setup, this is on the corner of the worktable.

VI

Virtual Instrument. This is a program in LabVIEW, with a Front Panel containing

inputs and displays, and a Block Diagram, showing the wiring and code.

WCF

World Coordinate Frame. A robot coordinate frame defining the reference to the

floor.

xv

INTRODUCTION

CHAPTER 1

Introduction

ENGINEERING students can benefit from remote laboratories. Recent literature has

shown that students learn just as effectively using real laboratory equipment oper-

ated remotely as they do using the equipment in the laboratory room. The University

of Western Australia Telerobot has now been online for ten years, but has not yet been

used remotely for teaching purposes. The aim of this project was to modify the Telerobot

software to allow kinematics laboratories to be performed remotely.

1.1 Thesis overview

This thesis can be broken down as follows:

• Chapters 2–5 provide the background to the project, some research into how remote

laboratories are currently being used, and show how this project fits in to the current

teaching programme at The University of Western Australia

• Chapters 6–8 detail the main three technical developments completed in the project

• Chapter 9 summarises the results from the project

• Chapter 10 provides some conclusions and outlines some areas of possible further

work

1

BACKGROUND

CHAPTER 2

Background

THE work completed for this project is a significant step in a series of developments

involving the University of Western Australia Telerobot. It is also part of a larger

project known as Telelabs. This section gives a brief background of the Telerobot, the

Telelabs system and the software used to power them.

2.1 Some definitions

Before there can be any discussion of the background to the project, the reader will need

to know simple definitions of some technical terms:

Remote laboratories: Laboratories using real, physical laboratory equipment con-

trolled from a remote location, often through the internet.

Telerobotics: Controlling robots remotely.

Kinematics: Equations that describe how mechanisms move. In robotics,

how the joint angles and end-effector position are related.

A full list of technical terms used in this thesis can be found in the Glossary. WhereGlossary

termterms listed in the glossary are mentioned for the first time, they appear in a margin note.

2.2 The Telerobot

The UWA Telerobot is located in the School of Mechanical Engineering at The University

of Western Australia. It has been online1 for ten years, and was the first robot of its kind

in the world to be operated through the internet. It has been used by many students and

third-parties to move building blocks on its work table (Figure 2.1). The Telerobot has

also been used in laboratory sessions, but only using manual control, not remote control.

1http://telerobot.mech.uwa.edu.au/

2

BACKGROUND

Figure 2.1: The University of Western Australia Telerobot

The Telerobot is a commercial ABB2 IRB 1400 robot. It is floor-mounted and hasABB

IRB 1400 six rotary joints actuated by AC electrical servo motors. It has a small footing (620mm×
450mm) and a large workspace (Figure 2.2), making it ideally suited to applications that

have restricted floor space yet require a large working range. It has a top speed of 2.1m/s

(moving the end-effector along a straight line), and has a repeatability of 0.05mm. ThisEnd-effector

Repeatability type of robot would typically be used in industry for tasks such as welding and materials

handling [1]. The Telerobot’s current end-effector is a gripper actuated by compressed-air,

which is used to manipulate the building blocks.

IRB 1400
Industrial Robot

SPECIFICATION
Robot Handling Reach of

capacity 5 th axis
5 kg 1.44 m

Supplementary load
on axis 3 18 kg
on axis 1 19 kg

Number of axes
Robot manipulator 6
External devices 6

Integrated signal supply 12 signals on upper arm

Integrated air supply Max. 8 bar on upper arm

PERFORMANCE
Position repeatability 0.05 mm (average result from ISO test)

Movements IRB 1400
Max. TCP velocity 2.1 m/s

Continuous rotation of axis 6

ELECTRICAL CONNECTIONS
Supply voltage 200–600 V, 50/60 Hz

Rated power,
Transformer rating 4 kVA/7.8 kVA with external axes

PHYSICAL
Robot mounting Floor

Dimensions
Robot base 620 x 450 mm

Weight
Robot 225 kg

ENVIRONMENT
Ambient temperature

Robot unit 5 - 45°C

Relative humidity Max. 95%

Degree of protection Class D (dry) for welding, machining etc.

Noise level Max. 70 dB (A)

Emmission EMC/EMI-shielded

Clean room Class 100 US Federal Standard 209e

Data and dimensions may be changed without notice.

www.abb.com/robotics

TECHNICAL DATA, IRB 1400 INDUSTRIAL ROBOT

1793

1195

170 805

600

475
50

1444

933 50 100

150

100

50

5 kg

WORKING RANGE AND LOAD DIAGRAM

P
R

10
03

3E
N

_R
3

Ju
ne

 2
00

2.
 P

ro
du

ce
d

by
 A

B
B

 R
ob

ot
ic

s
A

B
 S

w
ed

en
.

IRB 1400 02-10-10 11.12 Sida 2

Figure 2.2: Workspace of the IRB 1400 robot (measurements inmm) [1]

2Asea Brown Boveri (http://www.abb.com/robotics)

3

BACKGROUND

2.2.1 A brief history of the Telerobot

The original Telerobot was an Asea IRB-6 Robot, which was initially put online by KenAsea

Talyor [2] in 1994. The web-control was powered by a set of CGI scripts. The IRB-6CGI

robot was replaced with the current ABB IRB 1400 robot in 1996. Various improvements

were made to the system software, and further cameras were added to give the user more

views of the work area.

In 1998, Dalton [3] rewrote the Telerobot code in Java3. The new software proved Java

very capable and popular. After Dalton left UWA in 2001, the Telerobot code was no

longer maintainable. In 2003 Babbage [4] rewrote the Telerobot code in LabVIEW and,LabVIEW

with the help of A/Prof. Trevelyan, integrated it into the Telelabs system.

There have been other more recent developments on the Telerobot. For example,

Palmer, Goh, Walker, and Chew [5] created an Augmented Reality interface to manipu-

late blocks on the table just by dragging them around on a web-cam image. This is not

currently integrated into the main Telerobot software.

For a more detailed history of the Telerobot, see Babbage [4].

2.3 Telelabs

The Telelabs system, created by ICON Technologies4 and UWA Mechatronics, is a plat-

form that facilitates the control of laboratory equipment remotely [6]. Any type of exper-

imental equipment may be integrated into the system. The system itself does not know

how to control any particular rig, but rather provides all the communications between the

hardware and the remote user, and handles all the accounts and administration. Equipment

currently available with the Telelabs system includes:

• Two-Degree-Of-Freedom (DOF) torsional vibration rig (Figure 2.3a)

• Position control rig (rotational) (Figure 2.3b)

• Electric iron—temperature control (Figure 2.3c)

• A liquid-to-liquid contactor—simulating part of the production process of Liquid

Natural Gas. To be added end-2004. (Figure 2.3d)

• The Telerobot

3JavaTMby Sun Microsystems (http://www.sun.com/java/)
4http://www.icon-tech.com.au/

4

BACKGROUND

(a) Two-DOF torsional vibration rig (b) Position control rig

(c) Electric iron (d) Liquid-to-Liquid Contacter

Figure 2.3: Equipment currently integrated into Telelabs

2.3.1 Telelabs control scheme

Each piece of laboratory equipment is controlled by a software controller written in Lab-

VIEW, which runs on a nearby computer in the laboratory room. This is called the “Hard-

ware Master”. The Hardware Master controls all the actual inputs sent to and outputsHardware

Master received from the equipment, and monitors the equipment so that it is always safe (for

example, monitoring the iron temperature to ensure it is within safe limits).

The Hardware Master communicates with the Labs-On-Line (LOL) server, which ac-LOL

cepts connections from “Remote Clients” and handles all the communication between theRemote

Client Remote Client and the Hardware Master. This is a form of “supervisory control”, which

allows a user to control the equipment remotely while the local controller ensures tasks

are performed within reasonable limits. The Hardware Master has built-in control and

limit schemes that may override a user’s commands to ensure the safety of the equipment.

Figure 2.4 shows an example of a Remote Client interface. It shows the graphs of tem-

perature and other variables on the electric iron. Client interfaces may also have streaming

(real-time) video of the rig if it involves physical movements.

5

BACKGROUND

Figure 2.4: Remote Client Front Panel for the electric iron, showing

two temperature curves (yellow and dark blue) and power (green) and

cool air (light blue) step functions

2.4 LabVIEW

The Telelabs and Telerobot software is made using the LabVIEW environment. Lab-

VIEW (Laboratory Virtual Instruments Engineering Workbench) is a graphical data-flow

programming language created by National Instruments5. It is very powerful and easy

to use, and is particularly useful for data acquisition and data processing applications. A

LabVIEW program is called a Virtual Instrument (VI), and has two parts: theFront Panel VI

Front Paneland theBlock Diagram:

Block

Diagram• The Front Panel shows a virtual instrument panel with various buttons, knobs, slid-

ers and indicators. This is how the user interacts with the program (Figure 2.5a).

• The Block Diagram is the graphical ‘code’, with the wires showing the flow of data

(Figure 2.5b).

LabVIEW was initially chosen as the software for Telelabs because of its attractive

price and licencing structure, but has since proved to be an excellent platform on which to

build the system.

5http://www.ni.com/labview/

6

BACKGROUND

(a)

(b)

Figure 2.5: PlotRobot.vi Front Panel (a) and Block Diagram (b)

7

CURRENT DEVELOPMENTS IN THE FIELD

CHAPTER 3

Current developments in the field

THERE is a growing interest from the academic community in the use of online meth-

ods for teaching, from primary school to University level. These methods can range

from online discussion forums to simulations and remotely controlled laboratories. This

section provides an overview of the current work in the fields of online learning, partic-

ularly remote laboratories and simulation, and also gives a brief summary of the various

current uses for LabVIEW, the software used in this project.

3.1 Online learning

One area of online learning is using the web for online assessment and revision exercises.

This type of system is currently used at The University of Western Australia in Elec-

trical & Electronic Engineering1 and the University has developed its own software for

Mechanical Engineering2 and Mathematics3 courses.

Other universities have also implemented and tested online homework systems. Bon-

ham, Deardorff, and Beichner [7] found that Physics students who completed assessed

exercises online performed just as well as those who completed traditional paper-based

exercises.

Similar results were found using online classrooms instead of traditional lectures.

Kekkonen-Moneta and Moneta [8] at the Hong Kong University of Science and Tech-

nology found that students taught from online resources were as capable as, and in some

cases outperformed, students taught from traditional lectures. The Faculty of Arts at UWA

uses an online lecture system, allowing students to listen to lectures in the computer labs,

at home or anywhere else, including the University’s country campus4.

1Mallard (http://www.cen.uiuc.edu/Mallard/)
2Jellyfish (http://www.mech.uwa.edu.au/login.html)
3Calmæth (http://CalMaeth.maths.uwa.edu.au/)
4iLectures (http://ilectures.uwa.edu.au/)

8

CURRENT DEVELOPMENTS IN THE FIELD

In some cases, online learning has been taken to extremes. The Hong Kong CyberU

is a new online wing of the Hong Kong Polytechnic University that has most of its classes

taken online. Some classes are still held at the University campus, giving a “blended”

approach to learning. Cheung [9] looked at Postgraduate students undertaking an MSc in

e-Commerce at the CyberU, and found that there was little difference between those who

studied the program traditionally and those who studied online.

One of the benefits of online learning is that students can work at any time and place

[10]. Wilkins and Barrett [11] report on the creation of an online database of construction

sites to replace site visits, which are difficult to timetable, and are highly dependent on

current construction sites and access permission. Goldberg et al. [12] similarly wanted to

retain the benefits of field trips without the practical difficulties of group travel. However,

while online facilities may offer greater convenience, one would begin to think that they

may defeat the entire purpose of gaining experience on real sites.

3.2 Remote laboratories

In the last few years, several universities have experimented with remotely operated lab-

oratory equipment. Motivations behind producing these remote laboratories include the

possibility to improve distance education, timetabling issues, accessibility and the cost of

running laboratories. Li, Wang, Lai, and Wu [13] also cite the scarcity of equipment and

supervisors as a reason for pursuing remote laboratories.

From an educational point of view, research shows that remote laboratories are as

good as several other forms of teaching. Wagner and Tuttas [14] and Esche, Chassapis,

Nazalewicz, and Hromin [15] found that students using remote laboratories learnt just as

much as those using traditional local laboratories.

Remotely operated laboratories are either created exclusively for one particular piece

of equipment, or are platforms to which any number of different pieces of equipment can

be added. The following sections provide current examples of both types of system.

9

CURRENT DEVELOPMENTS IN THE FIELD

3.2.1 Multi-Laboratory systems

Multi-Laboratory systems are platforms upon which any number of remote laboratories

can be built. They are not equipment-specific, but rather supply a standard architecture

upon which specific laboratories can be built. This is the type of system the UWA Teler-

obot is integrated into. Some of the current contributors to these systems are:

• Telelabs: The University of Western Australia [17]

• Cyberlab: Norwegian University of Science and Technology [16]

• ACT: The University of Siena [18]

• R-Lab: Eastern Mediterranean University [19]

• DIESEL: The University of Ulster [20]

• ReMLab: Politecnico di Milano [21]

• Lab-on-web: UniK—Center for Technology, Norway, Norwegian University of

Science and Technology & Rennselaer Polytechnic Institute [22]

• WAVES: University of Arizona [23]

3.2.2 Single-Laboratory systems

Single-Laboratory systems are developed as the need arises for a single piece of laboratory

equipment. There are numerous online laboratories in electronic engineering that observe

the behaviour of circuits, including basic electric circuits [24], integrated circuits [25] and

semiconductors [26].

Many online laboratories also involve control systems. These systems include com-

mon DC motor control [27, 28] and position control [29], and many other systems, from

controlling water levels in tanks [30] to controlling temperature and toy helicopters [31].

These remote laboratories often make equipment more accessible. In some cases, they

may offer students access to equipment that was previously unavailable. One interesting

example is allowing school students to operate a radio telescope [32], obviously a rare

piece of equipment.

10

CURRENT DEVELOPMENTS IN THE FIELD

3.2.3 Robotics

Remote control of robots is clearly of importance for this project. There have been several

recent experiments in controlling and programming robots remotely, similar to the Univer-

sity of Western Australia Telerobot. Marin, Sanz, Nebot, and Esteller [33] have set up two

educational and two industrial robots for remote use, and Lowe and Cambrell [34] have

made available an Adept robot and another 6-axis robot. In a slightly different applica-Adept

tion, Skrzypczynski [35] has enabled network-access to mobile robots, allowing students

to manipulate the robots via a web-browser interface.

3.2.4 Issues with remote laboratories

Laboratory demonstrators

One problem with remote laboratories is the obvious absence of a laboratory demonstra-

tor. This means students have little assistance or immediate feedback when performing

the laboratory. Research at the School of Mechanical Engineering at the University of

Western Australia has shown that students value highly good demonstrators, especially

how well the demonstrators are informed, how friendly they are, and their proficiency

with the English language [36].

Motuk, Erkmen, and Erkmen [37] propose an intelligent coaching program to help

students while they are performing the laboratory. Li et al. [13] likewise designed an

autonomous coaching program to help students when they are in “bad need of teachers’

guidance”.

Cost effectiveness

Despite some papers citing lower costs as a motivation for creating online laboratories

[21, 15], there appears to have been no detailed study of the cost-effectiveness of remote

laboratories compared to traditional laboratories. It is unclear whether the costs of devel-

oping and maintaining remote laboratories are lower than the costs of running traditional

laboratory classes in physical laboratories. Indeed, instead of spending time and money

creating coaching programs as mentioned previously, it may be more cost-effective and

helpful for students if the university were to simply pay a well-informed and friendly lab-

oratory demonstrator. These factors need to be weighed against the cost of purchasing

and maintaining more physical equipment.

11

CURRENT DEVELOPMENTS IN THE FIELD

3.3 Simulation

Simulation is an alternative to traditional and remote laboratories. Simulations are sim-

ply mathematical models of real systems. They can be used to enhance visualisation of

systems, make lectures more exciting, and allow students to explore projects at their own

pace [38].

Simulation has many uses. It can be used to learn about particular systems, from cel-

lular biology [39] to microcontrollers [40]. It can also be used for technical analysis of

systems. For example, the circuit simulation software SPICE5 is very widely used in Elec- SPICE

trical Engineering. Simulation can also be used for scenarios such as large management

projects, which are otherwise too difficult to create [41, 42]. While much of the cur-

rent simulation activity seems to be in electrical engineering applications such as circuits

[43, 44], it is also used in mechanical [45] and mechatronic [46] engineering.

Simulation is used side-by-side with Telerobotic laboratories: Chong et al. [47] use a

local simulation to compensate for time delay; Safaric, Hedrih, Klobucar, and Sorgo [48]

use simulation to enhance the visualisation of the robot and its workspace; Kuc, Jackson,

and Kuc [49] and Marin, Sanz, and Pobil [50] allow students to practise with a simulation

before sending their instructions to the real robot.

Compared to real laboratories, Foss et al. [16] argue that while simulations can be use-

ful in engineering education, there are aspects of physical systems that simulations cannot

replicate, including the obvious connection to the real world and the level of complexity in

their behaviour. Corradini et al. [31] cite the same disadvantage with simulations, saying

“the richness of physical realities is inevitably omitted”. Furthermore, it is expensive and

time-consuming to create accurate simulations [19].

3.4 Current use of LabVIEW

As mentioned in section 2.4, LabVIEW is a powerful and flexible graphical development

environment used for creating measurement and control applications. It is particularly

useful for data acquisition and control. LabVIEW is becoming more popular in both

academia and industry for rapidly developing control applications. Some examples of

simulations developed in LabVIEW include boilers [51], dynamic light scattering [52]

5Created by the University of California at Berkeley

(http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/)

12

CURRENT DEVELOPMENTS IN THE FIELD

and inter-chip connections in electronics [53].

Universities have used LabVIEW to control local and remote laboratories. Local ap-

plications include fault detection in hydraulics [54] and position control [55]. It has been

used to create remote laboratories for testing integrated circuits [25] and for controlling

telescopes [32], DC motors [27, 28] and even underwater vehicles [56]. Strandman et al.

[22] have also created a remote laboratory framework with LabVIEW as one of its main

components.

13

EXPERIENCES WITH LABORATORIES

CHAPTER 4

Experiences with laboratories

LABORATORY classes are taken by every engineering student at UWA. Having a knowl-

edge of students’ experiences with laboratory classes provides some understanding

of how an online laboratory should be set up and what problems it can fix. This chapter

looks at some of the author’s personal experiences of laboratory classes.

4.1 Personal Experiences

This section is written from a personal point of view, explaining some of the motivations

behind this project and outlining the various changes made to the laboratory session in-

volved. While focusing on the Telerobot laboratory in the third-year unit Mechanisms &

Multibody Systems 319 (MMS 319), the conclusions extend to other laboratories.

4.1.1 Telerobot laboratory

As a third-year student I studied MMS 319 in 2002. The unit contained several laborato-

ries involving unique equipment. Of these laboratories, one was on the New University of

Western Australia Robot (NUWAR, a very fast parallel robot developed by A/Prof. KarolNUWAR

Miller), the second was on the UWA Telerobot and the third was on gyroscopes.

The Telerobot laboratory aimed to teach us how a real robot behaved, and to demon-

strate a practical application of the kinematics theory shown in lectures. The robot was

controlled entirely from the teach pendant (the manual joystick). Control of the robot wasTeach

pendantdemonstrated by the laboratory supervisor, and we were each allowed a short turn con-

trolling the robot. During the laboratory we performed forward and inverse kinematics

calculations and checked our solutions by actually moving the robot.

14

EXPERIENCES WITH LABORATORIES

As the equipment was quite unique, the laboratory groups were large. The size of the

groups and the following factors meant the laboratory was of little assistance in gaining

an understanding of the robot:

1. The laboratory sheet was difficult to follow

2. The laboratory usually proceeded at the pace of the fastest student

3. Some time was spent waiting idly for others to complete parts of the laboratory

Laboratory sheet

On a purely aesthetic level, the laboratory handout (Appendix A) was difficult to read.

The pages contained large blocks of unbroken text, with a mix of diagrams at the back of

the handout. It was difficult to follow exactly what the sheet required, as there were no

obvious steps to work through. The tasks were bulleted, but at a glance the points were

almost indiscernible from the rest of the text.

Pace

Students were, as always, keen to complete the laboratory as quickly as possible. This

meant that as soon as one student achieved a result, the remaining students ceased to try,

as they could get the result off the first student later (and leave the laboratory sooner). The

result of this was that the pace of the laboratory was always that of the fastest person or

sub-group of keen students. Hence, everyone except the fastest student (or fastest few)

were left behind.

The majority of the group did not finish the calculations and did not have time to un-

derstand the context or material of the laboratory. From observations during my demon-

strations of the laboratory in 2004, the group dynamics also begin to collapse when the

group breaks down into smaller groups of faster students explaining concepts to slower

students. The laboratory ceases to be a valuable team learning exercise and easily be-

comes frustrating for both the students and the demonstrator.

Waiting

Ironically, even though most of the laboratory moved at a fast pace, there were times when

the majority of the group had to wait for a student to finish a certain section. This was the

case when students were given the opportunity to operate the robot. Most benefits were

gained in operating the robot for yourself, and I was only able to learn a small amount

from observing a classmate operate the robot. Most of this time spent waiting was thus

unproductive.

15

TELEROBOT LABORATORY

CHAPTER 5

Telerobot laboratory

THIS project builds remote use of the robot into the existing traditional laboratory

mentioned in Chapter 4. A technical understanding of this laboratory is thus needed

to follow the direction of this project. Also, as established in Chapter 4, the laboratory

had various difficulties. The laboratory handout was thus rewritten to make it easier to

follow, and more helpful for the students. This chapter outlines the aims of the previous

(traditional) laboratory and the changes made to it.

5.1 Laboratory context & aims

The Telerobot laboratory is part of the third-year unit Mechanisms & Multibody Systems

319. This unit takes students through the dynamics and kinematics of mechanisms such as

planar linkages and gyroscopes. The laboratory session using the Telerobot was designed

to give students some hands-on experience with a real industrial robot, to manually ma-

nipulate it, and to practise some simple forward and inverse kinematics . Forward

kinematics

Inverse

kinematics

For the forward kinematics exercise, the robot was set to its zero position, and joints

2, 3 and 5 were moved to arbitrary angles. This effectively made the robot a 3-link ma-

nipulator in the x-z plane (Figure 5.1). Once the robot had finished moving, the joint

angles and end-effector position were recorded. For the laboratory write-up, the students

performed the forward kinematics calculations, and compared their calculated values for

the end-effector position to the actual position obtained during the laboratory.

The inverse kinematics exercise was made even easier. Only anglesθ2 andθ3 were

changed (θ5 was not used), creating a two-link manipulator in the x-z plane. Using the

teach-pendant, the students moved the end-effector of the robot straight along the z-axis.

The end-effectorx andzcoordinates and anglesθ2 andθ3 were recorded for two positions.

The students then performed the inverse kinematics calculations using the end-effector

positions and compared their theoretical angles with those found in the laboratory.

16

TELEROBOT LABORATORY

θ2

θ3

θ5

zo

xo

Figure 5.1: Kinematic diagram for the robot for the MMS 319 forward

kinematics exercise

The kinematics part of the laboratory is well suited to remote operation, considering

that it is primarily concerned with retrieving data and checking theoretical values against

the actual rig. The idea was obviously viable according to one student in a laboratory

class in Semester 2, 2004, who was overheard as saying “they should put this lab online”.

Making the laboratory available online allows students to perform more calculations of

their own and check them against the robot, and lets students do the kinematics part of the

laboratory whenever they want.

5.2 Laboratory handout

The laboratory handout for the MMS 319 ABB Industrial Robot laboratory was rewritten

to make it easier to follow and to correct some errors contained in the previous handout.

The revised handout can be found in Appendix B. The changes made fall under the

following headings.

17

TELEROBOT LABORATORY

5.2.1 Readability

As mentioned in Section 4.1.1, the previous laboratory handout was difficult to read be-

cause it was essentially one big block of text with occasional bullet points. It was difficult

to see the individual tasks and what actually had to be performed for the laboratory. The

new handout was rewritten to be more spaced out, to have obvious headings, and to pro-

vide places for students to write as the laboratory progressed. This made the laboratory

handout much easier to follow, and meant the students would have a complete record of

what the laboratory required and the results they obtained in one document.

5.2.2 Coordinate frames

One section of the laboratory involves the students finding the centre of the User Coor-

dinate Frame (UCF) in terms of the Base Coordinate Frame (BCF). The UCF is locatedUCF

BCFon a corner of the robot’s work table. The previous laboratory handout mistakenly called

the UCF the World Coordinate Frame (WCF). In fact, the WCF is coincident with theWCF

BCF because the robot is attached directly to the floor (the floor is the ‘world’). Also the

previous laboratory handout did not take into account that thex andy axes of the UCF

point in opposite directions to the BCF (Figure 5.2).

xB

yB

zB

zU

yU

xU

End-effector position

OB

OU

A

−−→OUA

−−→OBA

BCF

UCF

Robot base

Robot worktable

Figure 5.2: Base and User Coordinate Frames (BCF & UCF)

18

TELEROBOT LABORATORY

5.2.3 Robot diagrams

The dimensions of the robot were required to perform the kinematics calculations. The

previous laboratory handout had several diagrams of the robot, some of which were su-

perfluous. All but one of the diagrams were omitted. Further details were added to the

remaining diagram to show all the lengths of the robot in its zero position in the x-z plane.

The required lengths were calculated from the other diagrams. This saves several sheets

of unnecessary diagrams.

5.2.4 Calculations

The kinematics section of the laboratory requires students to perform the forward and

inverse kinematics exercises sometime after the laboratory in order to add them to the

laboratory report. The wording of the previous laboratory handout made it seem like

the calculations were meant to be performed during the laboratory session, although the

intention was for students to work through the calculations at a later date. The wording of

the handout was changed to make this clearer.

5.2.5 Inverse kinematics

For the inverse kinematics section of the laboratory, the students move the end-effector

straight up the z-axis. The intention is that moving the gripper straight up the z-axis

should change onlyθ2 andθ3. The previous laboratory handout advised to do this by

first settingθ1, θ4, θ5 andθ6 to zero, and then move the gripper straight up the z-axis.

However, when this is done the robot controller keeps the gripper at the same orientation

(relative to fixed global axes), resulting in a change inθ5 (Figure 5.3). The solution to this

was to move bothθ4 andθ5 to 90◦. This moves the gripper out of the x-z plane (Figure

5.4), eliminating any gripper length in the x-z plane, and therefore removing any reference

to θ5. The end point is taken as being straight through the end of link 3 (the horizontal

link when in the zero-position).

19

TELEROBOT LABORATORY

θ2

θ3

zo

xo

Position A

Position B
−θ5

Figure 5.3: Kinematic diagram showingθ5 changing in the original

inverse kinematics exercise

θ5 = 90◦

θ4 = 90◦

Side (x-z)

Front (y-z)

Top (x-y)

Figure 5.4: Settingθ4 andθ5 to 90◦ points the gripper (highlighted) out

of the x-z plane

20

REMOTE JOINT CONTROL

CHAPTER 6

Remote Joint Control

THE ability to move the Telerobot to a set of joint angles is essential for an online kine-

matics laboratory. Students must be able to move the robot to a specific configuration

to check their forward kinematics solutions. Likewise, it is essential to be able to read the

current joint angle values from the robot. This is important to see that the robot actually

ends up where it was expected to go, and also to check inverse kinematics solutions.

Moving the robot to a set of joint angles also allows the robot configuration to be def-

initely specified. Currently, if the robot is instructed to move its end-effector to a position

and orientation (in cartesian coordinates), there may be more than one configuration it can

be in to get there. That is, there are multiple solutions. There is currently no way to guar-

antee the robot will use the intended configuration to reach the end point. By specifying a

set of joint angles, the configuration of the robot links can be absolutely stated.

Moving the robot to a set of joint angles was previously thought to be impossible,

but has now been achieved by using a dummy data structure. This chapter explains how

sending and receiving joint angle data was done.

6.1 Communicating with the robot controller

Moving the robot to a set of joint angles requires the Hardware Master and the S4 con-

troller (the ABB proprietary robot controller) to communicate with each other and sendS4 controller

data back and forth. The Hardware Master packages a variable and sends it to the S4

controller, overwriting the variable in the S4 program’s memory. The S4 controller then

executes a program to move the robot, using the variables in the instructions.

ActiveX is used to package the objects and send them to the S4 controller. ABBActiveX

Object supplies a suite of ActiveX routines in their RobComm software to provide an interface

RobComm between LabVIEW and the S4 controller. This is how the position was sent to the robot

previously (Figure 6.1).

21

REMOTE JOINT CONTROL

Robot

ABB S4 Controller

Move to robot
target

Hardware Master

User input
RobTarget

object
ActiveX & RobComm

Figure 6.1: Changing robot position

6.2 Difficulties with ActiveX

For sending the position data, the position was packaged into arobtargetobject, which is

what the S4 position command requires, and sent to the S4 controller (Figure 6.1). How-

ever, to move the robot to a set of joint angles the required object is ajointtarget. Upon

investigating the different ActiveX routines, it was found that the RobComm software

does not provide a routine to package ajointtarget object. This made it impossible to

send joint data to the robot in the same simple way the position data was sent.

In addition to this, there was little information within the Telerobot documentation on

how to package an S4 variable in LabVIEW using ActiveX. There was some information

about what the subVIs did in general, but very little about how ActiveX was integrated orSubVI

how a future developer could use it to perform a new task. As a result, it was extremely

difficult to create a subVI to write any kind of variable to an S4 program.

6.3 Writing joint angles using a dummy data structure

To send joint data to the robot, a different method was created. Instead of attempting

to transport ajointtarget data structure to the S4 controller, the joint angle information

was put into arobtargetdata structure (the one previously used by Babbage [4] to send

position and orientation data) and then extracted on the S4 controller.

Babbage’s subVIs were altered to create subVIs to package the angle information into

a robtargetobject. The angle information was then sent to the S4 controller, where a new

program copied each element from therobtargetobject into ajointtarget object (Figure

6.2). Therobtargetobject is simply being used as a ‘dummy’ data structure to transport

the information from LabVIEW to the S4 controller (Figure 6.3).

In order to make this dummy data structure method possible, new code had to be added

to both the LabVIEW program and the S4 program.

22

REMOTE JOINT CONTROL

Angles (using
dummy data

structure)

θ1x:

θ2y:

θ3z:

θ4q1:

θ5q2:

θ6q3:

—q4:

robtarget
object

θ1 theta1
θ2 theta2
θ3 theta3
θ4 theta4
θ5 theta5
θ6 theta6

jointtarget
object

Position &
Orientation
(Babbage)

xx:

yy:

zz:

q1q1:

q2q2:

q3q3:

q4q4:

robtarget
object

Figure 6.2: Using a dummy data structure to package joint angles

Robot

ABB S4 Controller

Move to joint
target

RobTarget to
JointTarget

Hardware Master

User input
RobTarget

object
ActiveX & RobComm

Figure 6.3: Changing the joint angles by using a dummy data structure

6.4 Reading the current joint angles

Reading the current joint angles back from the robot was done in a similar way to writing

the angles. The joint angles were retrieved in the S4 program, put into individualnum

variables, and read one-by-one by the Hardware Master (Figure 6.4). Therobtargetob-

ject was not used, because the function to read the current robot position and orientation

generates therobtargetobject automatically—it cannot be made to return specific values.

6.4.1 Problems reading the joint angles

There were two similar, but unrelated, problems in reading back the joint angles. One

problem affected all moves; the other affected only long moves of the robot.

23

REMOTE JOINT CONTROL

Hardware Master

ABB S4 Controller

θ4

θ1
θ2
θ3

θ5
θ6

jointtarget num θ1

num θ2

num θ3

num θ4

num θ5

num θ6

Figure 6.4: Reading the current joint angles

Timing problem affecting all moves

The S4 controller returned values of the joint angles to the Hardware Master about half

a second before the robot had finished moving. This obviously meant that the position

reported on the software interface was not the position the robot finally reached. The

problem may have been because the instruction in the program to move the robot finishes

slightly before the robot stops physically moving, and thus the program continues straight

on before the robot has actually ceased moving (Figure 6.5).

This problem was solved by inserting a small time-delay between the robot movement

instruction and the instructions to send the joint angles back to the Hardware Master.

Timing problem affecting only long moves

On long moves, the angles were returned to the Hardware Master several seconds before

the end of the move. This was initially thought to be the same problem as before, simply

exacerbated by a longer move. However, it was found that the problem actually resulted

from an assumption in the Hardware Master code that any move would take no longer that

seven seconds (Figure 6.6). This assumption was inserted in the original code because the

software occasionally could not detect that the robot had finished moving. The time-limit

patched this problem so that the robot would be available to move after seven seconds

even if the Hardware Master had not been picked up that it had finished moving.

The delay of seven seconds was sensible for small moves around the table, which was

all the original code allowed, but was too limiting for joint-control, where complicated

moves from one extreme of the workspace to another could take a larger amount time. To

fix this problem, the time limit was increased to 20 seconds.

24

REMOTE JOINT CONTROL

Angles retrieved and displayed

S4 Controller reports move completed

Robot actually finishes moving

Move
Move(angles)

Finished Move

Display angles

Get Angles

Return Angles

RobotS4 Controller
Hardware

Master

tim
e

Figure 6.5: Sequence diagram showing the first timing problem, which

affected all moves

Move
Move(angles)

7 second limit

Display angles

Get Angles

Return Angles

Angles retrieved and displayed

RobotS4 Controller
Hardware

Master

Move assumed completed

Robot actually finishes moving

tim
e

Figure 6.6: Sequence diagram showing the second timing problem,

which affected long moves only

25

REMOTE JOINT CONTROL

6.5 Changes to the LabVIEW program

Various modifications were made to the Hardware Master to allow joint angles to be sent

to the robot. This section gives an overview of the changes made.

6.5.1 Joint controls

Controls were added to the Front Panel to allow a user to input the angles. In addi-

tion to this, a “Configuration Position” button was added to the Front Panel (Figure 2.4).

This moves the robot to a configuration of angle values(0,0,0,0,90,0), corresponding

to the gripper being directly above the table, pointing downward (Figure 6.7). This is a

‘safe’ position to which the robot can be returned to should it get into a strange configu-

ration. This configuration was chosen over the ‘zero-position’ (or ‘calibration-position’)

at (0,0,0,0,0,0) because the robot has a singularity at that position, making it difficult toSingularity

move. If the robot is in the Configuration Position it can be moved easily to the table or

another configuration.

Figure 6.7: The Configuration Position

26

REMOTE JOINT CONTROL

6.5.2 Control cluster

Redesign

The control cluster is an array containing all the moves awaiting execution by the Teler-

obot. The array is added to when a user sends a move command from either the Hardware

Master or the Remote Client. Each element of the array originally contained variables for

the position, orientation and gripper state. This had to be changed to allow joint angles to

be sent as well as the position and orientation.

As any change to the control cluster would break all the old Remote Clients, the num-

ber of times the control cluster had to be changed needed to be minimised. It was therefore

optimal to make all the required changes to the control cluster at once. Also, after consid-

eration of what would be required in the future, allowances were made for expansion of

the software.

Instead of limiting the types of movement by having unique variables for the position

and orientation and the joint angles, a generic “move” array was used. This array contains

either the joint angle values or the position and orientation, depending on the user’s com-

mand. Having a generic “move” variable allows new types of moves in the future to still

use the same structure. The code is thus quite extensible. In addition to this, variables for

speed and coordinate frame were added. Newell [57] implemented these changes, as well

as his own proposals, which included the priority and version number.

Definition

The Control cluster TypeDef, which defines what the Control cluster looks like, was de-TypeDef

fined as an array of an assortment of variables—there was no definition for a single move.

This was changed so that the Control cluster was made up of an array of “Instructions”,

where an instruction was a single move, and had its own TypeDef. This made it much

easier to deal with single movement instructions, instead of the entire array.

Precision

Newell’s revised control cluster used low-precisionintegers(INTs) to store the movement

data. Integers (as the name suggests) can only be integer values. This low level of preci-

sion was deemed insufficient for accurate control of the robot, so the “move” array was

changed to the higher precisiondouble(DBL), which allows decimal values. This allows

a user to specify the joint angles to 0.01◦ (a greater number of decimal places can be used,

but the user is limited to 0.01◦ increments by the Front Panel).

27

REMOTE JOINT CONTROL

6.5.3 Packaging the joint angles

In order to send the joint information to the S4 Controller, the joint angles were packaged

in a robtargetobject. This was done by making a copy of Babbage’sS4Robtarget.viand

wiring the joint angles in instead of the position and orientation.

6.5.4 Modularisation

Extensive modifications were made to the Telerobot LabVIEW code in order to allow

control of the robot by both joint angles and position and orientation. A new variable

(mode) was created to specify the type of movement. This had the initial options of

“Cartesian” and “Joints”, which were later changed to the more specific names of “Table”

(for cartesian movements around the table) and “MMS” (for joint-control for MMS 319

students).

The Hardware Master and Remote Client Block Diagrams were modified to check

the mode of movement and to place the appropriate data (joint angles or position and

orientation) in the control cluster. Figure 6.8 shows the general structure of the subVI

RunHardware.vi, which handles the movement of the robot. Figures 6.9a and 6.9b show

a section ofRunHardware.vipackaging and sending “Table” and “MMS” movement, re-

spectively.

Check Instruction
Set Package

movement data
Write the

movement data

Run

Write the speed
and coord. frame

Figure 6.8: RunHardware.viBlock Diagram showing Instruction

checking and data packaging and writing

6.6 Changes to the S4 program

A new program had to be written for the S4 controller in order for it to know what to

do with the angles. This required learning the RAPID programming language (used toRAPID

program the robot controller), and modifying the movement programMOVE.PRG. A new

28

REMOTE JOINT CONTROL

(a) Position and orientation information

(b) Joint angle information

Figure 6.9: A section ofRunHardware.vipackaging and sending differ-

ent types of information to the robot

program,MOVEII.PRG, was created to determine the mode of movement and execute the

appropriate movement instruction.

6.6.1 Program structure

The S4 program is contained in one file with multiple subrountines. The main program,

MOVEII, is called by the Hardware Master. It then looks at the value of the variablemode

and executes either thejointsMV or tableMV subroutine. An alternative structure would

have been to have two completely separate programs that are called individually by the

Hardware Master depending on the movement mode. The advantage of the subroutine

structure is that it allows common code to be put before and after the movement-specific

subroutines, and means only one file needs to be modified when something such as a

variable name needs to be changed (Figure 6.10).

A full listing of the code for the originalMOVE.PRGprogram and the newMOVEII.PRG

can be found in Appendices C and D, respectively.

29

REMOTE JOINT CONTROL

Pre-move
instructions

TableMV

JointsMV

Post-move
instructions

Movement
Mode

0

1

Start Stop

n

…

Figure 6.10: Structure of the new S4 programMOVEII.PRG

Keeping track of the mode

The MOVEII.PRGprogram keeps track of the current and previous movement modes.

If the mode changes (for example, from “table” to “MMS”), the program first moves the

robot through the Configuration Position. This acts as a safety precaution, taking the robot

back to a default safe position before entering another mode and executing the move. This

prevents potentially dangerous moves (that is, moves that could make the robot collide

with the table, see Chapter 8) when changing from one type of movement to another.

6.7 Extending control to further variables

The method of using a dummy data structure can be used to transfer any type of data to

the S4 controller. If an ActiveX routine exists to package the required data, a dummy data

structure will, of course, not be required.

A quick inspection of the code forMOVEII.PRGin Appendix D reveals few fixed val-

ues, with the majority of the movement parameters set up to be easily changed from the

Hardware Master. To demonstrate the simplicity of changing these parameters, the Hard-

ware Master was set up to modify a further two variables: the speed and the coordinate

frame. The maximum linear speed of the end-effector can be specified and is written to

the S4 program byS4WriteSpeed. The coordinate frame defines the origin and orientation

of the coordinate frame relative to which the position of the robot will be measured. The

coordinate frame is written straight after the speed byS4WriteFrame(Figure 6.8). Chang-

ing other variables should likewise be relatively easy, requiring few modifications to the

S4 program, and simply replicating some of the LabVIEW subVIs.

A ‘How-to’ document was created to show how to use ActiveX in the Telerobot soft-

ware to modify S4 variables. This can be found in Appendix F.

30

ROBOT KINEMATICS

CHAPTER 7

Robot kinematics

K INEMATICS is used to determine where the gripper will end up given the input joint

angle values (forward kinematics), or to determine the values of the joint angles

needed to give a particular gripper position and orientation (inverse kinematics). The

kinematics of the Telerobot were solved so that a simulation of the robot could be created.

A local simulation allows students to check their commands quickly and safely before

they move the actual robot. This chapter explains the kinematics of the Telerobot and

how it was implemented in software.

7.1 Homogeneous transformations

A Homogeneous Transformations (HT) is a way of describing a coordinate frame. It

is a 4× 4 matrix (square, so several transformations can be multiplied together) with a

3×3 rotation matrix in the upper left, andx, y andz displacements in the fourth column

(Equation 7.1).

T =

r11 r12 r13 x

r21 r22 r23 y

r31 r32 r33 z

0 0 0 1

 (7.1)

Any number of HTs can be multiplied together to give the overall transformation from

the initial coordinate frame to the final coordinate frame (Figure 7.1). For a robot, the HTs

describing the transformations between each of the joints can be multiplied together to

give the resulting end-effector position relative to the base of the robot (the base coordinate

frame). A diagram of the Telerobot with all its coordinate frames can be seen in Figure 7.2.

31

ROBOT KINEMATICS

Coordinate frame

A
Transformation

Q

R
Coordinate frame

Coordinate frame

B
Transformation

A×B
Transformation

= Q×A×B
S

Figure 7.1: Multiplication of Homogeneous Transformations is as-

sociative. That is, the transformations can be multiplied together to

give the overall transformation. The overall transformation here is

S= (Q×A)×B = Q× (A×B).

Base (0)

1

2

3

5

4
6

Figure 7.2: Coordinate frames of the joints of the Telerobot

32

ROBOT KINEMATICS

7.2 Denavit-Hartenburg transformations

Denavit-Hartenburg (DH) transformations are a method of finding the HTs between the

coordinate frames of each joint on a robot1. They use four simple transformations to get

from one coordinate frame to the next:

1. a rotation about thez-axis—the axis of the joint—ofθi (joint angle)

2. a translation along thez-axis ofdi (offset)

3. a translation along thex-axis ofai (link length)

4. a rotation about thex-axis ofαi (twist)

The transformations are multiplied in order from left to right (Equation 7.2). This

equation can be written several ways. Appendix G contains a discussion of the different

conventions used in the literature.

T i
i−1 = Rot(zi ,θi) Trans(0,0,di) Trans(ai ,0,0) Rot(xi ,αi) (7.2)

These rotations and translations are simple HTs. Their forms are shown in Equations

7.3 to 7.5.

rot(x,θ) =

1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

 (7.3)

rot(z,θ) =

cos(θ) −sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1

 (7.4)

trans(x,y,z) =

1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

 (7.5)

1For a detailed explanation of DH transformations see Craig [58, Chapter 3]

33

ROBOT KINEMATICS

7.2.1 DH parameters

θi , di , ai andαi are known as the DH parameters. The transformation between any two

consecutive joints on a robot can be described by a DH transformation using these param-

eters. Therefore, it is possible to create a table containing all the DH parameters for each

transformation between links on a robot.

The DH parameters for the Telerobot were calculated, and are given in Table 7.1. The

values ofθ2 andθ3 are complicated becauseθ2 is measured from the vertical, andθ3 is

measured from the horizontal, not from the last link as is the convention.

Table 7.1: Denavit-Hartenburg parameters for the Telerobot

Joint Angle (θ) Offset (d) Length (a) Twist (α)

1 θ1 475 150 −90

2 θ2−90 0 600 0

3 θ3−θ2 0 120 −90

4 θ4 720 0 90

5 θ5 0 0 −90

6 θ6 310 0 0

7.3 Forward kinematics

By solving the forward kinematics it is possible to calculate where the end-effector will

end up given the joint angles. Implementing this in software effectively provides a simu-

lation of the robot.

Given the joint angles, the position and orientation of the coordinate frame at a joint

on the robot can be found by multiplying the DH transformations as given in Equation 7.6.

0
nT = 0

1T 1
2T . . .n−1

n T (7.6)

Using the DH parameters from Table 7.1, it is possible to find all the transformations

for the Telerobot. These are listed in Appendix H. To find the position and orientation

of the end-effector from the base,0
6T, the DH transformations are multiplied as given in

Equation 7.7.

0
6T = 0

1T 1
2T 2

3T 3
4T 4

5T 5
6T (7.7)

34

ROBOT KINEMATICS

0
6T gives the total transformation from the base coordinate frame of the robot to the

end-effector coordinate frame. That is, it describes the orientation and position of the

end-effector relative to the base. This is the solution to the forward kinematics problem.

7.4 Inverse kinematics

Due to time constraints, the inverse kinematics was not fully completed. A module was

created to solve the wrist angles using inverse Euler angles (see Craig [58, section 2.8]),

but this gave incorrect values, and was not tested thoroughly. Once inverse Euler angles

have been used to solve forθ4–θ6, anglesθ1–θ3 can be found by simple geometry.

7.5 Implementation

This section gives an overview of the code used to implement the solution to the forward

kinematics problem in LabVIEW.

7.5.1 Forward Kinematics

The implementation of the forward kinematics in LabVIEW follows the procedure out-

lined above to create the DH transformations and then multiply them together to give the

end-effector position. Figure 7.3 shows the Block Diagram of the top-level forward kine-

matics VI, which sends the DH parameters and the angles to a subVI that multiplies the

transformations together.

The transformations are created by a lower-down subVI (Figure 7.4). This calls

smaller subVIs to create the HT matrices for therotz, rotx andtranstransformations men-

tioned previously.

Additional subVIs have been created to perform other functions not directly needed

for the kinematics, but useful for general matrix manipulation.

7.5.2 Plotting

Once the forward kinematics is solved, the robot is plotted from three orthogonal views

and a three-dimensional view (Figure 7.5). This plotting VI is intended as a preview of

functionality that should be integrated into the Remote Clients.

35

ROBOT KINEMATICS

Figure 7.3: TelerobotForwardKinematics.viBlock Diagram showing

the input of the DH parameters and using subVIs to solve for the HT

at each joint

Figure 7.4: DHTransform.viBlock Diagram showing the multiplication

of the four simple transformations that comprise a DH transformation

36

ROBOT KINEMATICS

Figure 7.5: PlotRobot.viFront Panel showing angle inputs and graphi-

cal output from the forward kinematics

The plotting modules take the HTs describing the links and extract the x,y and z in-

formation to be used in the graphs. They also construct vectors to plot the coordinate

frame at each joint. Plotting the links and coordinate frames requires some complicated

LabVIEW wiring, as an inspection of the Block Diagrams will reveal.

By solving the forward kinematics and plotting the output, there is now a simulation

of the Telerobot. This can be used to allow users to check their movements before sending

them to the robot, or to implement advanced features such as obstacle avoidance.

37

VALUE CHECKING

CHAPTER 8

Value checking

PREVIOUSLY, any values sent to the robot (position and orientation, joint angles or any

other data) were not checked to see if they lay between safe limits. The only limits

were on the sliders used to change the values on the Front Panel (Figure 9.1). These are

what will be referred to as ‘soft’ limits; that is, they limit the the range of values a user

can choose, but if the value is changed some other way (for example, by a bug in the

program), the limits cannot do anything about it. This kind of ‘soft’ checking is shown in

Figure 8.1a.

RobotHardware
MasterUser request

Soft
limit

Robot controllerInvalid
data

Valid
data

(a) Soft limit

RobotHardware
MasterUser request

Soft
limit

Robot controllerInvalid
data

Program
error

Possible
collision

(b) Soft limit with error

Soft
limit

Invalid
data

Hard
limit

RobotHardware
MasterUser request Robot controllerValid

data

Program
error

(c) Hard limit

Figure 8.1: Value checking

A problem arises when an error in the program (or a malicious user) sends an out-of-

range value to the Hardware Master. This will go undetected by the soft checks, because

38

VALUE CHECKING

the value was not selected using the interface. This bad value then is sent to the Hardware

Master and on to the robot, which will execute the command without checking. This can

result in dangerous movements, possibly causing the robot to collide with something and

be damaged (Figure 8.1b). This scenario occurred earlier in the year when a mistake in

Babbage’s programming caused a large value for ‘tilt’ (a variable specifying the angle to

rotate the gripper about a certain axis) to be sent to the robot, causing the robot to collide

with and break the table (Figure 8.2).

Figure 8.2: The robot and broken table resulting from a bug in the pro-

gramming

To prevent similar problems in the future, value checking in the Hardware Master

was implemented. These modules check all values sent to the robot by either a Remote

Client or by the Hardware Master itself. The values are checked to see whether they are

within a certain allowable range and, if not, are coerced into that range. Limits have been

put in place for both the ‘MMS’ and ‘table’ modes, and should be created for any future

movement modes. Creation of additional checking VIs has been made easy due to the

modular nature of the code.

8.1 Implementation

Before a movement instruction is executed inRunHardware.vi, the instruction is passed

through the subVICheckInstructionSet.vi(Figure 6.8, blue). This subVI checks the move-

39

VALUE CHECKING

ment mode and passes the instruction to the correct subVI to check the values (Figure 8.3).

The values are checked against the limits for that mode, corrected if needs be, and the cor-

rected instruction is output ready for execution (Figure 8.4).

Figure 8.3: CheckInstructionSet.viBlock Diagram showing “table”

move mode case

Figure 8.4: MMSCheck.vicoerces the joint angle value into specified

ranges for the “MMS” movement mode

8.1.1 Limit values

Limit values were chosen for the different movement modes. The physical limits of the

joints and the imposed limits for the “MMS” mode are shown in Table 8.1. The limits

were chosen to make it impossible for a user to collide with anything in the workspace.

40

VALUE CHECKING

Table 8.1: Physical limits of joint angles and im-

posed limits in the ‘MMS’ movement mode

Physical limits Imposed limits

θi Lower Upper Lower Upper

θ1 −170 170 −90 45

θ2 −70 70 −65 20

θ3 −65−θ2 70+θ2 −90 0

θ4 −150 150 −90 90

θ5 −114.6 114.6 −90 90

θ6 −300 300 −180 180

Table 8.2: Imposed limits in ‘table’

mode (from Babbage [4])

Limits

Variable Lower Upper

X −50 550

Y −50 550

Z 7 450

Spin −90 90

Tilt −45 45

41

RESULTS

CHAPTER 9

Results

AS a result of the developments made from this project, the Telerobot has now been used

in undergraduate teaching programmes at The University of Western Australia. A

Remote Client (Figure 9.1) was built in conjunction with James Newell [57], and is now

available for use by students. Although the software was not sufficiently tested to allow it

to be relied upon for assessed remote laboratories, it was used in the physical laboratory

classes, and also for a revision exercise for the students.

Figure 9.1: Remote Client interface (adapted from original by Newell [57])

42

RESULTS

9.1 Laboratory classes

Computer joint-angle control of the robot was used in Semester 2, 2004, in the physical

laboratory classes for Mechanisms & Multibody Systems 319 at UWA. The new features

have reduced the duration of laboratory from over 2 hours to 1.5 hours, and has made the

laboratory tasks simpler for students to perform.

The computer interface was used for ‘simple’ tasks such as setting the robot back to

its zero position (a task that previously took several minutes to do manually, and to a poor

degree of accuracy). The computer control was also used for entering joint angles for

the forward kinematics section, allowing the students to choose easy values to work with

rather than the more complicated values read from the teach-pendant (which often had

decimal values). Also, when controlling the robot manually with the joystick, it can be

difficult to change one angle without changing others. Entering angles on the computer

interface effectively eliminated error from the accidental movement of the joystick in

more than one direction at once.

In addition to using the computer control interface in the laboratory next to the robot,

some students have used it remotely to complete their laboratory when they lost their

laboratory sheets, or recorded erroneous readings. Obtaining new readings was very quick

and easy, required no supervision, and allowed students to gather as much data as they

wanted.

9.2 Online exercise

An exercise has now been put online to demonstrate the new capabilities of the Telerobot,

and to provide students with some revision practise (Appendix E). The exercise is a sim-

ple calculation involving the Jacobian of a two-bar mechanism (which the Telerobot can

behave as). The students perform the calculation themselves, then log-on to the Telerobot

and check their solution by actually moving the robot.

43

CONCLUSIONS& FURTHER WORK

CHAPTER 10

Conclusions & Further work

FOR the first time in its ten-year history, the UWA Telerobot can be used for remote

laboratories at The University of Western Australia. The work completed in this

project opens the door for many new and exciting possibilities for the Telerobot, and

provides a firm foundation upon which many high-powered features can be built. Results

so far have been encouraging; the new developments have improved traditional laboratory

classes and have provided students with alternative ways to complete their work.

Next year it is expected that the new features will be used to provide a fully-online

laboratory for third-year Mechanical and Mechatronics Engineering students. This will

allow students to work in their own time, at their own pace, and will provide staff with a

new and convenient resource to use. This project improves accuracy and accessibility for

future laboratories, and provides a solid basis for further work.

10.1 Further work

This project has created many new possibilities for further work. This section outlines

some of the possibilities for future students.

10.1.1 Problems to be corrected

Joint-limit feedback

Currently the user is not alerted when a joint goes beyond its limits. This usually occurs

when certain values ofθ2 andθ3 send the robot past the limit of its ‘elbow’. When this

happens, the robot stops, and the current joint angles and position are returned. The joint

angles returned will obviously not be the same as those entered, because the robot could

not get there. It would be helpful for the user to have an indication that the robot could

not complete their requested move, and that they need to enter some different angles.

44

CONCLUSIONS& FURTHER WORK

10.1.2 Advanced features

The Telerobot can now be simulated and controlled by joint angles, which opens up new

possibilities for advanced features.

Inverse kinematics

The inverse kinematics was started during this project, but not finished due to time con-

straints. Finishing the inverse kinematics would give the Telerobot a complete set of

kinematics modules. As mentioned previously, a subVI was created to solve for the wrist

joints using inverse Euler angles. However, this did not give the correct values, and was

not tested thoroughly. More thought will need to go into how the Telerobot wrist actually

works, and if the inverse Euler angles technique is the best option. Once the wrist angles

are found, the remaining angles can be solved using simple trigonometry.

Curve-following

Once the inverse kinematics is solved, the robot could be made to follow curves using

Jacobian Motion Rate Control (JMRC). To complete this task effectively, it would be

necessary to investigate the effect of any lag from the Hardware Master to the robot (as

JMRC relies on small, fast instructions). Another option would be to implement the JMRC

code in RAPID, and allow parameters to be changed from the Hardware Master.

Obstacle Avoidance

From the robot simulation, it is now possible to accurately predict where the robot will

move when given a set of joint angles. This could be used to provide obstacle avoidance

features by ruling out moves that would make the robot collide with a fixture. Currently,

the range of angles available to the remote user is very limited to make sure there are no

collisions. Obstacle avoidance would allow a far greater range of movement, whilst still

protecting the robot. For use with cartesian moves, the inverse kinematics also needs to

be solved.

10.1.3 Remote laboratory

Simulation

The simulation using the forward kinematics needs to be integrated to the Remote Client.

Thought should be put into how it should be used (for example, as a practise tool or as a

stand-alone simulation), and how best to integrate it with the Remote Client.

45

CONCLUSIONS& FURTHER WORK

Additional movements

In order to fully replicate the traditional laboratory, the user should be able to move the

robot straight along cartesian axes. This would allow the user to put the robot in any

position, then choose to move it along a certain axis. This is different to the table-based

control, which specifies a position: the user should not specify a position, but rather a

move of a certain length along an axis. This is used in the inverse kinematics part of

the laboratory, and would be a useful feature in general. The development would simply

require reading the current position from the robot and sending it a new position that was

translated along a certain axis.

46

REFERENCES

References

[1] ABB Robotics. IRB 1400 Industrial Robot, 2002. URLhttp://www.abb.com/

robotics.

[2] K Taylor and J Trevelyan. Australia’s telerobot on the web. In26th International

Symposium of Industrial Robotics, pages 39–44, Singapore, 1995.

[3] Barnaby Dalton.Techniques for Web Telerobotics. PhD thesis, School of Mechanical

Engineering, University of Western Australia, 2001.

[4] A. Babbage. Software system for controlling web-based laboratory robots. Honours

dissertation, School of Mechanical Engineering, The University of Western Aus-

tralia, 2003.

[5] Rowe Palmer, Vincent Goh, Joel Walker, and Jee Loong Chew. Augmented reality

control of the telerobot. Project report for Mechatronics Design 310, School of

Mechanical Engineering, The University of Western Australia, 2003.

[6] James Trevelyan and Alexander C. Le Dain. Telelabs specifications. Technical

report, 2003.

[7] Scott W. Bonham, Duane L. Deardorff, and Robert J. Beichner. Comparison of

student performance using web and paper-based homework in college-level physics.

Journal of Research in Science Teaching, 40(10):1050–1071, 2003. ISSN 0022-

4308.

[8] S. Kekkonen-Moneta and G. B. Moneta. E-learning in Hong Kong: comparing learn-

ing outcomes in online multimedia and lecture versions of an introductory comput-

ing course.British Journal of Educational Technology, 33(4):423–33, Sept. 2002.

ISSN 0007-1013.

[9] R.C.T. Cheung. Innovative teaching through the cyber university. InAdvances in

Web-Based Learning, First International Conference, ICWL 2002. Proceedings, 17-

19 Aug. 2002, pages 287–99, Dept. of Comput., Hong Kong Polytech. Univ., China,

2002. Springer-Verlag. ISBN 3 540 44041 0.

47

REFERENCES

[10] B.L. Kurtz, D. Parks, and E. Nicholson. Effective internet education: strategies

and tools. InProceedings of Conference on Frontiers in Education, 6-9 Nov. 2002,

volume vol.2, pages 2–14, Appalachian State Univ., Boone, NC, USA;, 2002. IEEE.

ISBN 0 7803 7444 4.

[11] B. Wilkins and J. Barrett. The virtual construction site: a web-based teach-

ing/learning environment in construction technology.Automation in Construction,

10(1):169–79, Nov 2000. ISSN 0926-5805.

[12] K. Goldberg, D. Song, Y. Khor, D. Pescovitz, A. Levandowski, J. Himmelstein,

J. Shih, A. Ho, E. Paulos, and J. Donath. Collaborative online teleoperation with

spatial dynamic voting and a human ’tele-actor’. In2002 IEEE International Con-

ference on Robotics and Automation, May 11-15 2002, volume 2, pages 1179–1184,

UC Berkeley, Berkeley, CA, United States, 2002. Institute of Electrical and Elec-

tronics Engineers Inc.

[13] L. Li, F.-Y. Wang, G. Lai, and F. Wu. Online autonomous guidance system for

remote experiments in control engineering. InSystem Security and Assurance, Oct 5-

8 2003, volume 3, pages 2444–2449, Systems and Industrial Eng. Dept., University

of Arizona, Tucson, AZ, United States, 2003. Institute of Electrical and Electronics

Engineers Inc.

[14] B. Wagner and J. Tuttas. Team learning in an online lab. In31st Annual Frontiers in

Education Conference. Impact on Engineering and Science Education. Conference

Proceedings, 10-13 Oct. 2001, volume vol.1, pages 18–22. IEEE, 2001. ISBN 0

7803 6669 7.

[15] S.K. Esche, C. Chassapis, J.W. Nazalewicz, and D.J. Hromin. A scalable system

architecture for remote experimentation.Frontiers in Education, 2002. FIE 2002.

32nd Annual, 1:T2E–1–T2E–6 vol.1, 2002. ISSN 0190-5848.

[16] Bjarne A. Foss, Tor I. Eikaas, and Morten Hovd. Merging physical experiments back

into the learning arena. In2000 American Control Conference, Jun 28-Jun 30 2000,

volume 4, pages 2944–2948. Institute of Electrical and Electronics Engineers Inc.,

Piscataway, NJ, USA, 2000.

[17] James Trevelyan. Lessons learned from 10 years experience with remote laborato-

ries. In Progress Through Partnership—International Conference on Engineering

Education and Research, 2004.

48

REFERENCES

[18] M. Casini, D. Prattichizzo, and A. Vicino. The automatic control telelab.Control

Systems Magazine, IEEE, 24(3):36–44, 2004. ISSN 0272-1708.

[19] D.Z. Deniz, A. Bulancak, and G. Ozcan. A novel approach to remote laborato-

ries.Frontiers in Education, 2003. FIE 2003. 33rd Annual, 1:T3E–8–T3E–12 Vol.1,

2003. ISSN 0190-5848.

[20] M.J. Callaghan, J. Harkin, G. Prasad, T.M. McGinnity, and L.P. Maguire. Integrated

architecture for remote experimentation.Systems, Man and Cybernetics, 2003. IEEE

International Conference on, 5:4822–4827, 2003. ISSN 1062-922X.

[21] A. Ferrero, S. Salicone, C. Bonora, and M. Parmigiani. Remlab: a java-based re-

mote, didactic measurement laboratory.Instrumentation and Measurement, IEEE

Transactions on, 52(3):710–715, 2003. ISSN 0018-9456.

[22] J.O. Strandman, R. Berntzen, T.A. Fjeldly, T. Ytterdal, and M.S. Shur. Lab-on-

web: performing device characterization via internet using modern web technology.

In Proceedings of the Fourth IEEE International Caracas Conference on Devices,

Circuits and Systems, 17-19 April 2002, pages 022–1. IEEE, 2002. ISBN 0 7803

7380 4.

[23] Mo Fu, Christopher Yeo, Yuetong Lin, and Fei-Yue Wang. WAVES: Towards real

time laboratory experiments in cyberspace. In2001 IEEE International Conference

on Systems, Man and Cybernetics, Oct 7-10 2001, volume 5, pages 3470–3474.

Institute of Electrical and Electronics Engineers Inc., 2001.

[24] I. Gustavsson. Remote laboratory experiments in electrical engineering education.

In Proceedings of the Fourth IEEE International Caracas Conference on Devices,

Circuits and Systems, 17-19 April 2002, pages 025–1, Dept. of Telecommun. &

Signal Process., Blekinge Inst. of Technol., Ronneby, Sweden, 2002. IEEE. ISBN 0

7803 7380 4.

[25] E.C. Chung and A.H. Titus. Development of a remotely accessible integrated circuit

test facility based on telepresence. In17th IEEE Instrumentation and Measurement

Technology Conference, 1-4 May 2000, volume vol.3, pages 1591–5, Dept. of Electr.

Eng., Rochester Inst. of Technol., NY, USA, 2000. IEEE. ISBN 0 7803 5890 2.

[26] Hong Shen, M.S. Shur, T.A. Fjeldly, and K. Smith. Low-cost modules for remote en-

gineering education: performing laboratory experiments over the internet.Frontiers

in Education Conference, 2000. FIE 2000. 30th Annual, 1:T1D/7 vol.1, 2000.

49

REFERENCES

[27] K.K. Tan, T.H. Lee, and F.M. Leu. Development of a distant laboratory using lab-

view. International Journal of Engineering Education, 16(3):273–82, 2000. ISSN

0949-149X.

[28] Kin Yeung and Jie Huang. Development of a remote-access laboratory: A dc motor

control experiment.Computers in Industry, 52(3):305–311, 2003. ISSN 0166-3615.

[29] R.M. Parkin, C.A. Czarnecki, R. Safaric, and D.W. Calkin. A pid servo control

system experiment conducted remotely via internet.Mechatronics, 12(6):833–43,

Jul 2002. ISSN 0957-4158.

[30] A. Bauchspiess, B. Guimaraes, and H.L. Gosmann. Remote experimentation on a

three coupled water reservoirs.Industrial Electronics, 2003. ISIE ’03. 2003 IEEE

International Symposium on, 1:572–577 vol. 1, 2003.

[31] M.L. Corradini, G. Ippoliti, T. Leo, and S. Longhi. An internet based laboratory for

control education. InProceedings of 40th Conference on Decision and Control, 4-7

Dec. 2001, volume vol.3, pages 2833–8, Dipt. di Ingegneria dell’Innovazione, Lecce

Univ., Italy;, 2001. IEEE. ISBN 0 7803 7061 9.

[32] D. Hinkson, C. Marshall, and S. Robinson. Design and development of a user in-

terface to remotely control a radio telescope using virtual instruments. InProceed-

ings IEEE SoutheastCon 2002, 5-7 April 2002, pages 279–82, South Carolina State

Univ., Orangeburg, SC, USA, 2002. IEEE. ISBN 0 7803 7252 2. Also available on

CD-ROM in PDF format.

[33] R. Marin, P.J. Sanz, P. Nebot, and R. Esteller. Multirobot internet-based architecture

for telemanipulation: experimental validation. InSMC ’03 Conference Proceedings.

2003 IEEE International Conference on Systems, Man and Cybernetics, 5-8 Oct.

2003, volume vol.4, pages 3565–70. IEEE, 2003. ISBN 0 7803 7952 7.

[34] G. Lowe and A. Cambrell. Web system for control of mechatronic devices. InICARV

2002: The Seventh International Conference on Control, Automation, Robotics and

Vision, 2-5 Dec. 2002, volume vol.3, pages 1464–9. Nanyang Technological Univ,

2002. ISBN 981 04 8364 3.

[35] P. Skrzypczynski. A Java based system for navigation and tele-operation of a mo-

bile robot. InFirst IFAC-Conference on Telematics Applications in Automation and

Robotics TA 2001, 24-26 July 2001, pages 309–14, Dept. of Control, Robotics, &

Comput. Sci., Tech. Univ. Poznan, Poland, 2001. Elsevier Sci. ISBN 0 08 043856 3.

50

REFERENCES

[36] Alicia Webb. Design of a thermofluids pump laboratory. Honours dissertation,

School of Mechanical Engineering, The University of Western Australia, 2003.

[37] H.E. Motuk, A.M. Erkmen, and I. Erkmen. Student performance evaluation in web

based access to robot supported laboratories. In2003 IEEE International Conference

on Robotics and Automation, Sep 14-19 2003, volume 3, pages 4408–4413, Mid-

dle East Technical University, Department of Electrical Engineering, 06531 Ankara,

Turkey, 2003. Institute of Electrical and Electronics Engineers Inc.

[38] R. Morgan and K.O. Jones. The use of simulation software to enhance student un-

derstanding. InIEE International Symposium Engineering Education: Innovations

in Teaching, Learning and Assessment, 4-5 Jan. 2001, volume 2, pages 33–1, Sch.

of Eng., Liverpool John Moores Univ., UK, 2001. IEE.

[39] Semahat S. Demir. Icell: An interactive web resource for simulation-based teaching

and learning in electrophysiology training. InA New Beginning for Human Health:

Proceedings of the 25th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, Sep 17-21 2003, volume 4, pages 3501–3504,

Joint Biomedical Engineering Program, Univ. of Memphis/Univ. of Tennessee, 330

Engineering Technology Building, Memphis, TN 38152-3210, United States, 2003.

Institute of Electrical and Electronics Engineers Inc.

[40] Alfredo del Rio and Juan Jose Rodriguez Andina. UVI51: A simulation tool for

teaching/learning the 8051 microcontroller. In30th Annual Frontiers in Education

Conference—Building on a Century of Progress in Engineering Education, Oct 18-

Oct 21 2000, volume 2, pages 4–11–4–16, Univ of Vigo, Vigo, Spain, 2000. Institute

of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA.

[41] Saad Al-Jibouri and Michael Mawdesley. A simulation game for teaching project

control in construction. InProceedings of the 10th ISPE International Conference

on Concurrent Engineers: Research and Applications, Enhanced Interporable Sys-

tems, Jul 26-30 2003, pages 1229–1234, Construction Process Management, Uni-

versity of Twente, Enschede, Netherlands, 2003. A.A. Balkema Publishers. ISBN

905809622X.

[42] M. Brian Blake. A student-enacted simulation approach to software engineering

education. IEEE Transactions on Education, 46(1):124–132, 2003. ISSN 0018-

9359.

51

REFERENCES

[43] C. Fernandez, O. Garcia, J.A. Cobos, and J. Uceda. Self-learning laboratory set-

up for teaching power electronics combining simulations and measurements. In

2002 IEEE 33rd Annual Power Electronics Specialists Conference (PESC), Jun 23-

27 2002, volume 2, pages 449–454, UPM, DIE, 28006 Madrid, Spain, 2002. Institute

of Electrical and Electronics Engineers Inc.

[44] A. Luchetta, S. Manetti, and A. Reatti. SAPWIN - a symbolic simulator as a support

in electrical engineering education.IEEE Transactions on Education, 44(2):9 pp.,

May 2001. ISSN 0018-9359.

[45] M. Hoorfar, H. Najjaran, and W.L. Cleghorn. Simulation and animation of mechan-

ical systems to enhance student learning.Computers in Education Journal, 13(1):

39–44, Jan 2003. ISSN 1069-3769.

[46] T. Kenjo, T. Kikuchi, and M. Kubo. Developing educational software for mecha-

tronics simulation.IEEE Transactions on Education, 44(2):29 pp., May 2001. ISSN

0018-9359.

[47] N.Y. Chong, T. Kotoku, K. Ohba, K. Komoriya, F. Ozaki, H. Hashimoto, J. Oaki,

K. Maeda, N. Matsuhira, and K. Tanie. Development of a multi-telerobot system

for remote collaboration. In2000 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Oct 31-Nov 5 2000, volume 2, pages 1002–1007. Institute of

Electrical and Electronics Engineers Inc., 2000.

[48] R. Safaric, I. Hedrih, R. Klobucar, and B. Sorgo. Remote controlled robot arm.

Industrial Technology, 2003 IEEE International Conference on, 2:1202–1207 Vol.2,

2003.

[49] Roman Kuc, Edward W. Jackson, and Alexander Kuc. Teaching introductory au-

tonomous robotics with JavaScript simulations and actual robots.IEEE Transactions

on Education, 47(1):74–82, 2004. ISSN 0018-9359.

[50] Raul Marin, Pedro J. Sanz, and Angel P. Del Pobil. The UJI online robot: An

education and training experience.Autonomous Robots, 15(3):283–297, 2003. ISSN

0929-5593.

[51] P. Da Silva and G. Knabe. Labhouse: System simulation and emulation within boiler

development.Building Services Engineering Research and Technology, 24(4):281–

287, 2004. ISSN 0143-6244.

52

REFERENCES

[52] Jin Shen, Gang Zheng, Guo-Qiang Sun, and Song-Lin Zhuang. Computer sim-

ulation of nanometer particle dynamic light scattering by labview.Guangdian

Gongcheng/Opto-Electronic Engineering, 29(SUPPL):43–45, 2002. ISSN 1003-

501X.

[53] R. Bockstaele and R. Baets. Simulation of interchip interconnections based on reso-

nant cavity leds, plastic optical fibres and cmos interface circuits. In2000 Digest of

the LEOS Summer Topical Meetings. Electronic-Enhanced Optics. Optical Sensing

in Semiconductor Manufacturing. Electro-Optics in Space. Broadband Optical Net-

works, 24-28 July 2000, pages 39–40, Dept. of Inf. Technol., Ghent Univ., Belgium,

2000. IEEE. ISBN 0 7803 6252 7.

[54] Alfred C.H. Tan, Patrick S.K. Chua, and G.H. Lim. Fault diagnosis of water hy-

draulic actuators under some simulated faults.Journal of Materials Processing

Technology, 138(1-3):123–130, 2003. ISSN 0924-0136.

[55] Kelvin R. Aaron, Noreen L. Foster, Dannielle P. Hazel, and A. M. Hasanul Basher.

Closed-loop position control system using labview. InIEEE SoutheastCon 2002,

Apr 5-7 2002, pages 283–286, South Carolina State University, Orangeburg, SC

29117, United States, 2002. Institute of Electrical and Electronics Engineers Inc.

[56] Xunzhang Wang, G.G.L. Seet, M.W.S. Lau, E. Low, and K.C. Tan. Exploiting force

feedback in pilot training and control of an underwater robotics vehicle: an im-

plementation in labview. InOCEANS 2000 MTS/IEEE Conference and Exhibition.

Conference Proceedings, 11-14 Sept. 2000, volume vol.3, pages 2037–42. IEEE,

2000. ISBN 0 7803 6551 8.

[57] James Newell. Implementing a remote laboratory for the Telerobot. Honours dis-

sertation, School of Mechanical Engineering, The University of Western Australia,

2004.

[58] John J. Craig.Introduction to Robotics: Mechanics and Control. Pearson Education,

2005.

[59] Henry W. Stone.Kinematic Modeling, Identification, and Control of Robotic Ma-

nipulators. Kluwer Academic Publishers, 1987.

[60] A J Koivo. Control of robotic manipulators. John Wiley & Sons, Inc, 1989.

[61] Richard D. Klafter, Thomas A. Chmielewski, and Michael Negin.Robotic Engi-

neering: An Integrated Approach. Prentice Hall, 1989.

53

Appendices

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

APPENDIX A

Original MMS 319 Lab sheet (Pre-2004)

 The University of Western Australia
Department of Mechanical and Materials Engineering

 1

 Mechanisms and Multibody Systems 319
A/Prof Karol Miller

Laboratory Exercise

ABB Industrial Robot
(your report is worth 6% of the total mark)

The objective of this laboratory exercise is to meet a real, industrial robot, learn, how it

can be operated in off-line mode using a teach pendant and practice simple forward and
inverse kinematics calculations.

Introduction
The robot we will be playing with is IRB 1400 M94A six axes machine made by ABB

Flexible Automation, Figures 1 and 2. It has been designed specifically for manufacturing
industries that use flexible robot-based automation. The robot is made up of two main

parts: a manipulator and a controller. The power consumption of the robot is 4 kVA. The
robot serves as a Telerobot (http://telerobot.mech.uwa.edu.au/) – in automatic mode it

can be controlled from remote sites via internet!

All operations and programming can be carried out using a portable teach pendant

(Figure 3) and the operators panel. Using a joystick, the robot can be manually jogged.

The user determines the speed of these movements; large deflections of the joystick will
result in faster motions.

56

 The University of Western Australia
Department of Mechanical and Materials Engineering

 2

Even though the manipulator weights 225 kg it can move payloads of only up to 5kg.

This is common to serial manipulators, which have to carry not only the payload but also

motors, gears and other components required to move each joint.

Figures 4 and 5 provide information on robot dimensions. The floor mounted robot
differs from the suspended one only in the length of the second link (450mm for

suspended robot, Figure 5). However the length of the second link of the floor mounted

robot can be easily worked out by noting that the total height of the floor mounted
version is 1310 mm (Fig. 4) and that of suspended one – 1160 mm (Fig. 5). So that the

length of link two R2=(1310-1160)+450=600 [mm]. The length of a gripper attached to
the robot is 225 mm.

Figure 6 shows robot’s workspace

In order to program and execute robot motion the user has to use appropriate coordinate

systems. Figure 7 shows six coordinate systems used by ABB robot controller:

The world coordinate system defines the reference to the floor
The base coordinate system is referenced to the base mounting surface of the robot

The tool coordinate system specifies the tool’s centre point and orientation
The user coordinate system specifies the position of a fixture

The object coordinate system specifies how a workpiece is positioned in a fixture

In off-line mode the robot can be moved in a variety of ways using the teach pendant

(Figure 3). Each axis (actuated joint) can be moved separately. Alternatively, the tip of
the robot can be moved along x, y or z axis of the “world” coordinate frame. It is also

possible to rotate the robot around “world” coordinate frame axes having the tip of the

robot as a fixed point of the motion.

Laboratory work
 What conventions are used to measure joint angles and which direction of rotation is

positive?

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

57

 The University of Western Australia
Department of Mechanical and Materials Engineering

 3

To answer this question you need to investigate the motion of the robot in joint space.

Start with moving all joints to their respective zero positions. Record the x,y,z

coordinates of the robot tip – you will need this information later. Beginning with joint
one, move each motorised joint separately by about 20 degrees in both directions. Read

joint angles from the teach pendant. This will allow you to find out, which direction of
rotation is positive. Pay special attention to whether the motion in one joint affects other

joint angles. Record carefully with respect to which axes the angles are measured and

positive directions of rotations. You will need this information to conduct kinematics
calculations.

 The position of the tip is given in “world” coordinate frame. Investigate how the axes
are oriented and where the origin of this frame is.

To answer this question you need to investigate the motion of the robot in task space. The

end effector can be moved in straight lines along axes of world coordinate frame. This
mode can be used to verify what the axes’ directions are. We expect the “world”

coordinate frame to have axes x and y in horizontal plane and axis z vertical. Moreover,

we expect axis x to correspond to angle in the first joint equal to zero degrees. To confirm
this set all joint angles to zero and move joint #2. If this results in no change of y

coordinate you can safely confirm your expectation. The directions of axes y and z can be
confirmed by visual inspection by moving a tip along those axes.

At this stage we are not sure where the centre of the “world” coordinate frame is. To

investigate that set all joint angles to zero and read the position of the tip. Knowing the
dimensions of the robot (Figures 4, 5) the centre of the “world” coordinate system can be

easily calculated.
 Direct kinematics of three-link planar robot.

By setting joint angles 1,4 and 6 to zero we end up with three link planar manipulator

working in x-z plane. Collect measurements of robot tip positions and corresponding
joint 2,3 and 5 angles. Using forward kinematics equations for a planar robot (x,y,z as

functions of theta2,theta3, theta4) and measured joint angles compute tip positions.
Compare them to the ones read from the teaching pendant. Repeat the procedure for three

points.

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

58

 The University of Western Australia
Department of Mechanical and Materials Engineering

 4

 Inverse kinematics of two-link planar robot.

By setting joint angles 1,4,5 and 6 to zero we end up with two-link planar manipulator

working in x-z plane. Perform a straight line motion along z axis. Record x,z coordinates
and theta2, theta3 angles of start and end point of this trajectory. Using inverse

kinematics equations and robot dimensions compute angles theta2 and theta3 for these
two points. Compare the results to what you have recorded from the teach pendant.

 It is also possible to rotate the robot around x, y or z axis having robot’s tip as a fixed

point of the motion. Perform these rotations and pay attention to quite complicated
motions of the robot.

Report:
One report per group is required. High standard of submission is expected.

Your report should contain the following information:

- kinematic diagram of the robot with indication in which directions joint angles are
measured and with respect to which axes

- calculation of the position of the centre of the “world” coordinate frame and the
resulting diagram of the robot together with the “world” coordinate frame

- equations for forward kinematics for three-link, planar manipulator, calculation of tip
position from known joint angles and the comparison to the values recorded during
the exercise

- equations for inverse kinematics for two-link planar manipulator, calculation of joint
angles from known tip positions (beginning and end of a vertical trajectory) and the

comparison to the values recorded during the exercise

- conclusions

Reference:
ABB Robotics Products, Product Specification IRB 1400, Issue M94A

J J Craig, “Introduction to Robotics, Mechanics and Control”, Addison Wesley, 1989.

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

59

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

60

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

61

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

62

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

63

ORIGINAL MMS 319 LAB SHEET (PRE-2004)

64

NEW MMS 319 LABORATORY SHEET (2004)

APPENDIX B

New MMS 319 Laboratory Sheet (2004)

1

School of Mechanical and Materials Engineering

Mechanisms and Multibody Systems 319

Laboratory Exercise
 Lecturer: A/Prof Karol Miller

 Demonstrator: Samuel Rae

ABB Industrial Robot
(your report is worth 6% of the total mark)

The objective of this laboratory exercise is to meet a real industrial robot, learn how it can be

operated in off-line mode using a teach-pendant and practice simple forward and inverse

kinematics calculations.

Introduction
The robot we will be playing with is an IRB 1400 M94A six-axis machine, manufactured by

ABB Industrial Automation (http://www.abb.com/). It has been designed specifically for

manufacturing industries that use flexible robot-based automation, and is often used for tasks

such as welding. The robot is highly accurate (to approx. 0.5mm) and can move its gripper

along a straight line at speeds up to 2.5 m/s. The power consumption of the robot is 4 kVA.

All operations and programming can be carried out using a portable teach-pendant and the

operator’s panel. Using a joystick, the robot can be manually ‘jogged’. The user determines

the speed of these movements; large deflections of the joystick will result in faster motions.

65

Mechanisms and Multibody Systems 319 ABB Robot Lab

2

Even though the manipulator weighs 225 kg it can move payloads of only up to 5kg. This is

common to serial manipulators, which have to carry not only the payload but also motors,

gears and other components required to move each joint.

The robot serves as a telerobot (http://telerobot.mech.uwa.edu.au/), and can be controlled over

the internet. It has been used extensively by people around the world, and was the first robot

of its kind to be controlled over the internet.

The Teach-Pendant
The device used to program and control the robot is called the Teach-Pendant (Figure 1).

Figure 1—The teach-pendant

The robot can be moved by the teach-pendant in a number of ways. The gripper can be

translated linearly along the axes of a coordinate frame or reoriented (ie. rotated) about the

axes of a coordinate frame, and the joints (axes 1–6) can be moved individually (Figure 2).

Figure 2—Teach-pendant movement modes

The robot is made to move in these modes by the joystick on the teach-pendant. The joystick

can be moved in three ways: vertically, horizontally and rotated about its axis (Figure 3).

NEW MMS 319 LABORATORY SHEET (2004)

66

Mechanisms and Multibody Systems 319 ABB Robot Lab

3

Figure 3—Motions of the teach-pendant joystick

Dimensions
Figure 4 shows the dimensions you will require for this lab. The length of the gripper attached

to the robot is 225 mm.

Figure 4—Robot with dimensions

Coordinate Frames
In order to program and execute robot motion the user has to use appropriate coordinate

frames. Figure 5 shows the five coordinate frames used by ABB robot controller:

1. The Base Coordinate Frame is the reference from the surface on which the

robot base is mounted

2. The World Coordinate Frame defines the reference to the floor (in our case this

is coincident with the Base Coordinate Frame)

3. The Tool Coordinate Frame specifies the tool’s centre point and orientation

4. The User Coordinate Frame specifies the position of a fixture

5. The Object Coordinate Frame specifies how a workpiece is positioned on a

fixture

NEW MMS 319 LABORATORY SHEET (2004)

67

Mechanisms and Multibody Systems 319 ABB Robot Lab

4

Figure 5—Robot coordinate frames

NEW MMS 319 LABORATORY SHEET (2004)

68

Mechanisms and Multibody Systems 319 ABB Robot Lab

5

Laboratory work
1) Teach-Pendant

 By using the teach-pendant’s joystick and display, find out how the joystick controls

linear and joint motion.

 Linear Reorientation

 Joints 1–3 Joints 4–6

2) Joint angles
 Using the teach-pendant, find where each joint angle is measured from and which

direction of rotation is positive:

o Start at the zero position and rotate each joint in turn.

o Take notice of whether changing one joint angle changes other joint angles.

o Record where each angle is measured from and which direction is positive—

these will be needed for kinematics calculations.

(Use this space for drawing diagrams of the robot joints)

NEW MMS 319 LABORATORY SHEET (2004)

69

Mechanisms and Multibody Systems 319 ABB Robot Lab

6

3) Coordinate frames
By default the teach-pendant gives the position of the robot in the User Coordinate Frame

(UCF). We want to how this frame is positioned and oriented relative to the Base Coordinate

Frame (BCF). The BCF is at floor-level with the z-axis along the axis of joint 1, and the x-

axis pointing straight forwards.

 Find the origin of the UCF and the directions of its axes relative to the BCF:

o Put the robot into its zero position.

o Record the position of the tip in UCF (from the teach-pendant).

 X Y Z

Tip position

in UCF

o Calculate the position of the tip in BCF (from the dimensions of the robot).

(Report)

o You should now be able to calculate the position of the origin of the UCF in

terms of the BCF. (Report)

 Find the direction of the axes of the UCF (use the teach-pendant joystick and

display).

4) Direct kinematics of a three-link planar robot
Direct (or forward) kinematics involves finding the position of the gripper (or end-effector) of

the robot given the joint angles.

 Collect joint angle and position data:

o Set joint angles 1, 4 and 6 to zero (by doing this we end up with three-link

planar manipulator working in the x-z plane).

o Move joints 2, 3 and 5 to arbitrary angles, and record the angles and the robot

tip position. Do this for three points.

NEW MMS 319 LABORATORY SHEET (2004)

70

Mechanisms and Multibody Systems 319 ABB Robot Lab

7

θ2 θ3 θ5 X Z

 Using forward kinematics equations for a planar robot (x, y and z as functions of θ2,

θ3 and θ4) and the measured joint angles, calculate the theoretical tip positions.

(Report)

 Compare the calculated positions to those read from the teach-pendant. (Report)

5) Inverse kinematics of a two-link planar robot
Inverse kinematics involves finding the joints angles required to achieve a given end-effector

position.

 Collect joint angle and position data:

o Set joint angles 1, 4, 5 and 6 to zero (by doing this we end up with two-link

planar manipulator working in the x-z plane).

o Using the teach-pendant, move the gripper straight up the z-axis. Record the

x- and z-coordinates and the angles θ2 and θ3 at the start and end points of

this trajectory.

θ2 θ3 X Z

 Using inverse kinematics equations and the robot dimensions calculate the theoretical

angles θ2 and θ3 for these two points. (Report)

 Compare the calculated angles to those read from the teach-pendant. (Report)

NEW MMS 319 LABORATORY SHEET (2004)

71

Mechanisms and Multibody Systems 319 ABB Robot Lab

8

Report
One report per group is required. A high standard of submission is expected.

Your report should contain the following information:

- Kinematic diagram(s) of the robot showing in which directions joint angles are measured

and with respect to which axes

- Calculation of the position of the centre of the User Coordinate Frame, and the resulting

diagram of the robot in terms of the UCF

- Equations for the forward kinematics of the three-link planar manipulator; calculation of

the tip position from known joint angles; and the comparison with the values recorded

during the exercise

- Equations for the inverse kinematics of the two-link planar manipulator; calculation of the

joint angles from known tip positions (beginning and end of a vertical trajectory); and the

comparison with the values recorded during the exercise

- Conclusions

References
ABB Robotics Products, Product Specification IRB 1400, Issue M94A.

J. J. Craig, “Introduction to Robotics, Mechanics and Control”, Addison Wesley, 1989.

NEW MMS 319 LABORATORY SHEET (2004)

72

ORIGINAL S4 MOVEMENT PROGRAM (MOVE.PRG)

APPENDIX C

Original S4 movement program

(MOVE.PRG)

Begin MOVE.PRG

1 %%%

2 VERSION:1

3 LANGUAGE:ENGLISH

4 %%%

5

6 MODULE MOVE

7 CONST speeddata v160:=[150,150,150,1000];

8 CONST speeddata vslowrotate:=[150,40,150,1000];

9 CONST dionum OldGrip:=0;

10 PERS speeddata vsearch:=[150,40,150,1000];

11 PERS num dorapid:=0;

12 PERS num usedigtool:=0;

13 PERS dionum grippos:=0;

14 PERS robtarget p10:=[[1092.27,249.549,503.473],[0.0683157,0.286426,-0.881994,-0.367939],[0,0,0,0],[0,0,0,0,0,0]];

15 VAR pos currpos;

16 VAR robtarget waypoint;

17 VAR robtarget cpoint;

18 VAR jointtarget joints;

19

20 PROC main()

21 ConfL\Off;

22 joints:=CJointT();

23 IF joints.robax.rax_6>180 THEN

24 joints.robax.rax_6:=0;

25 MoveAbsJ joints,v160,z60,tool1\WObj:=table;

26 ENDIF

27 IF joints.robax.rax_6<-180 THEN

28 joints.robax.rax_6:=0;

29 MoveAbsJ joints,v160,z60,tool1\WObj:=table;

73

ORIGINAL S4 MOVEMENT PROGRAM (MOVE.PRG)

30 ENDIF

31 !try to get arm up off the table and get joint 5 out of trouble

32 IF joints.robax.rax_5>110 THEN

33 joints.robax.rax_2:=joints.robax.rax_2-5;

34 joints.robax.rax_3:=joints.robax.rax_3-5;

35 joints.robax.rax_5:=110;

36 MoveAbsJ joints,v160,z200,tool1\WObj:=table;

37 joints.robax.rax_5:=90;

38 MoveAbsJ joints,v160,z60,tool1\WObj:=table;

39 ENDIF

40 IF grippos<>DOutput(Gripper) THEN

41 SetDO Gripper,grippos;

42 WaitTime 0.7;

43 ENDIF

44 currpos:=CPos();

45 IF dorapid=1 THEN

46 IF currpos.z<p10.trans.z THEN

47 waypoint:=Offs(CRobT(),0,0,p10.trans.z-currpos.z);

48 MoveL waypoint,vslowrotate,z10,tool1\WObj:=table;

49 MoveL p10,vslowrotate,fine,tool1\WObj:=table;

50 ELSE

51 waypoint:=Offs(p10,0,0,currpos.z-p10.trans.z);

52 MoveL waypoint,vslowrotate,z10,tool1\WObj:=table;

53 MoveL p10,vslowrotate,fine,tool1\WObj:=table;

54 ENDIF

55 ELSE

56 MoveL p10,v160,fine,tool1\WObj:=table;

57 ENDIF

58 ConfL\On;

59 ENDPROC

60 ENDMODULE
End MOVE.PRG

74

NEW S4 MOVEMENT PROGRAM (MOVEII.PRG)

APPENDIX D

New S4 movement program

(MOVEII.PRG)

Begin MOVEII.PRG

1 %%%

2 VERSION:1

3 LANGUAGE:ENGLISH

4 %%%

5

6 MODULE MOVEII

7 CONST speeddata v160:=[150,150,150,1000];

8 VAR jointtarget currentAngles;

9 VAR jointtarget joints;

10 VAR jointtarget myJointAnglesJT;

11 PERS num dorapid:=0;

12 PERS num usedigtool:=0;

13 CONST dionum OldGrip:=0;

14 PERS dionum grippos:=1;

15 VAR pos currpos;

16 VAR robtarget waypoint;

17 VAR robtarget cpoint;

18 VAR num compare;

19

20 PERS num prevMode:=0;

21

22 CONST speeddata vslowrotate:=[150,40,150,1000];

23 PERS speeddata vsearch:=[150,40,150,1000];

24

25 PERS jointtarget configPos:=[[0,0,0,0,90,0],[0,0,0,0,0,0]];

26

27 PERS robtarget myPosition:=[[480,0,7],[0,0.942641,-0.333807,0],[0,0,0,0],[0,0,0,0,0,0]];

28 PERS robtarget myJointAngles:=[[0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0,0,0]];

29 PERS num mySpeed:=160;

75

NEW S4 MOVEMENT PROGRAM (MOVEII.PRG)

30 PERS speeddata mySpeedData:=[160,500,5000,1000];

31 PERS zonedata myZone:=[FALSE,60,90,90,9,90,9];

32 PERS tooldata myTool:=[TRUE,[[0,0,255],[1,0,0,0]],[1.5,[0,0,110],[1,0,0,0],0,0,0]];

33 PERS wobjdata myCoordFrame:= [FALSE,TRUE,"",[[1153.96,244.808,507.182],[0.020587,-0.004764,-0.001071,0.999776]],[[0.019789,0.850707,0.07236],[1,0,0,0]]];

34 PERS string myFrame:="";

35 PERS num myMode:=0;

36

37 PERS num joint1:=0;

38 PERS num joint2:=0;

39 PERS num joint3:=0;

40 PERS num joint4:=0;

41 PERS num joint5:=0;

42 PERS num joint6:=0;

43

44 PROC tableMV()

45 !If joint angle 6 is greater than +-180, set to 0

46 joints:=CJointT();

47 IF joints.robax.rax_6>180 THEN

48 joints.robax.rax_6:=0;

49 MoveAbsJ joints,mySpeedData,myZone,myTool\WObj:=table;

50 ENDIF

51 IF joints.robax.rax_6<-180 THEN

52 joints.robax.rax_6:=0;

53 MoveAbsJ joints,mySpeedData,myZone,myTool\WObj:=table;

54 ENDIF

55

56 !Try to get arm up off the table and get joint 5 out of trouble

57 IF joints.robax.rax_5>95 THEN

58 joints.robax.rax_2:=joints.robax.rax_2-5;

59 joints.robax.rax_3:=joints.robax.rax_3-5;

60 joints.robax.rax_5:=95;

61 MoveAbsJ joints,mySpeedData,z200,myTool\WObj:=table;

62 joints.robax.rax_5:=110;

63 MoveAbsJ joints,mySpeedData,myZone,myTool\WObj:=table;

64 ENDIF

65

66 IF grippos<>DOutput(Gripper) THEN

67 SetDO Gripper,grippos;

68 WaitTime 0.7;

69 ENDIF

70

71 currpos:=CPos();

72 IF dorapid=1 THEN

76

NEW S4 MOVEMENT PROGRAM (MOVEII.PRG)

73 IF currpos.z<myPosition.trans.z THEN

74 waypoint:=Offs(CRobT(),0,0,myPosition.trans.z-currpos.z);

75 MoveL waypoint,vslowrotate,z10,myTool\WObj:=table;

76 MoveL myPosition,vslowrotate,fine,myTool\WObj:=myCoordFrame;

77 ELSE

78 waypoint:=Offs(myPosition,0,0,currpos.z-myPosition.trans.z);

79 MoveL waypoint,vslowrotate,z10,myTool\WObj:=table;

80 MoveL myPosition,vslowrotate,fine,myTool\WObj:=myCoordFrame;

81 ENDIF

82 ELSE

83 MoveL myPosition,mySpeedData,fine,myTool\WObj:=myCoordFrame;

84 ENDIF

85

86 RETURN;

87 ENDPROC

88

89

90 PROC jointsMV()

91 IF grippos<>DOutput(Gripper) THEN

92 SetDO Gripper,grippos;

93 WaitTime 0.7;

94 ENDIF

95

96 !Put joint angles into JointTarget data structure

97 myJointAnglesJT.robax.rax_1:= myJointAngles.trans.x;

98 myJointAnglesJT.robax.rax_2:= myJointAngles.trans.y;

99 myJointAnglesJT.robax.rax_3:= myJointAngles.trans.z;

100 myJointAnglesJT.robax.rax_4:= myJointAngles.rot.q1;

101 myJointAnglesJT.robax.rax_5:= myJointAngles.rot.q2;

102 myJointAnglesJT.robax.rax_6:= myJointAngles.rot.q3;

103

104 MoveAbsJ myJointAnglesJT,mySpeedData,myZone,myTool\WObj:=myCoordFrame;

105 RETURN;

106 ENDPROC

107

108

109 PROC main()

110 ConfL\Off;

111

112 !Set required coordinate frame

113 IF myFrame="base" THEN

114 myCoordFrame:=WObj0;

115 ELSE

77

NEW S4 MOVEMENT PROGRAM (MOVEII.PRG)

116 myCoordFrame:=table;

117 ENDIF

118

119 !Set tool to be the gripper. This could be changed in later versions.

120 myTool:=tool1;

121

122 !Put linear speed value into SpeedData object

123 mySpeedData.v_tcp:=mySpeed;

124

125 !Check if the movement mode has changed.

126 !If so, take the robot through the configuration position

127 !before executing the move.

128 compare:=prevMode-myMode;

129 IF compare<>0 THEN

130 MoveAbsJ configPos,v160,myZone,myTool\WObj:=myCoordFrame;

131 ENDIF

132

133 !Determine which mode to move in

134 IF myMode=1 THEN

135 jointsMV;

136 ELSE

137 tableMV;

138 ENDIF

139

140 !Keep track of the previous mode

141 prevMode:=myMode;

142

143 WaitTime 1.5;

144

145 !Put current angles into NUMs

146 currentAngles := CJointT();

147

148 joint1 := currentAngles.robax.rax_1;

149 joint2 := currentAngles.robax.rax_2;

150 joint3 := currentAngles.robax.rax_3;

151 joint4 := currentAngles.robax.rax_4;

152 joint5 := currentAngles.robax.rax_5;

153 joint6 := currentAngles.robax.rax_6;

154

155 ConfL\On;

156 ENDPROC

157 ENDMODULE
End MOVEII.PRG

78

MMS 319 REMOTE EXERCISE

APPENDIX E

MMS 319 Remote Exercise

MMS 319 Telerobot Remote Exercise

2nd Semester, 2004

The aim of this task is to give you some practise at solving the kinematics of a simple
two-bar linkage, and to test the remote control of the Telerobot. This will be good planar
kinematics revision.

The Telerobot’s links 2 & 3 can be represented as a two-bar mechanism:

P= (Px,Pz)
l′3

l 2
=
60
0m
m

l′3 =
√
1202+7202 ≈ 729.93mm

α= tan−1
(
120
720

)
≈ 9.462◦

θ3−α
α

θ3

θ3−α

720mm12
0m
m

x

z

θ2

Figure 1: Side view of the Telerobot links 2 & 3

A change in the value of a joint angle causes the end-effector to move in an arc about
that joint.

!"2 !"3

Figure 2: Changes in θ2 and θ3 cause the end-effector to move in an arc

Prepared by: Samuel Rae 1

79

For a small change, this arc can be approximated by a straight line. Thus, for small
changes in the angles (∆θ2 and ∆θ3) we can approximate the change in the end-effector
position (∆Px,∆Py). We can do this by solving:

δΦ
δq

∆q = 0

where δΦ
δq is the Jacobian, and ∆q is a small change in the inputs. For this two-bar mech-

anism, q =

[
θ2
θ3
Px
Pz

]
. (See your lecture notes for more information).

x

z

θ2

A

B

l2

θ3−α
l′3

Δθ2

Δθ3
ΔP= (ΔPx,ΔPy)

Figure 3: Small angle changes ∆θ2 and ∆θ3

Procedure

1. Write down the vector closure equation for the linkage. Split this into equations for
the x and z directions.

2. Write down Φ and q for the mechanism.

Φ =
[
x-direction components
z-direction components

]
= 0̃

3. Find δΦ
δq , the derivative of Φ with respect to q (in this case it should be a 2 × 4

matrix).

4. Using ∆q =
[
∆θ2 ∆θ3 ∆Px ∆Pz

]
, write out the matrix δΦ

δq ∆q = 0 (in this case
it is a 2× 1 matrix). Then write the two rows in ∆Px = . . . and ∆Py = . . . form.

5. Choose arbitrary values for θ2, θ3, ∆θ2 and ∆θ3 (∆θ2 and ∆θ3 should be < 3◦), and
calculate ∆Px and ∆Py. (Make sure you convert ∆θ2 and ∆θ3 to radians)

6. Log into the Telerobot (see instructions below).

7. Set the angles to (0, θ2, θ3, 90, 90, 0), move the robot and record the x and z
coordinates.

8. Set the angles to (0, θ2 +∆θ2, θ3 +∆θ3, 90, 90, 0), move the robot and compare the
position to what you calculated before.

9. Choose some larger values for ∆θ2 and ∆θ3 and find out at what values the approx-
imation starts to break down.

Prepared by: Samuel Rae 2

MMS 319 REMOTE EXERCISE

80

Logging into the Telerobot

1. Go to Start menu > Programs > LabVIEW > LOL Login

2. Log in with your student number as your username and password.

3. Click the “Verify System tab”, and click the “Update My System” button to down-
load the Telerobot client.

4. Go back to the “Choose Task” tab. From the Task list, choose “mms319 (Robot
control)”. Click “Join queue”.

5. In the dialogue that comes up, select your time and click “OK”.

6. When the lab is ready, click “Enter lab”. You can now move the robot around and
read the current position and joint angles. Remember to wait for the position and
angle values to update after the robot moves!

What to submit

1. Your calculations

2. A screenshot of the Telerobot remote client with your values

3. How long it took you to do the calculations

4. How long it took you to check your calculations with the Telerobot

5. What you learnt from the exercise

Prepared by: Samuel Rae 3

MMS 319 REMOTE EXERCISE

81

HOW-TO: USING ACTIVEX OBJECTS WITHIN THETELEROBOT SOFTWARE

APPENDIX F

How-to: Using ActiveX objects within the

Telerobot software

How-to: Using ActiveX objects within the Telerobot software

Samuel Rae

September 4, 2004

This document shows the process to go through when using an ActiveX method in the Teler-

obot software.

1 Classes & methods

Before looking at the specifics of the Telerobot software, some background is needed on ActiveX

classes and methods. The following steps can be done in a blank VI to get familiar with ActiveX

in LabVIEW.

To do anything with ActiveX in LabVIEW, you first need a reference to an ActiveX control.

This is created by going toControls Palette>Refnum>Automation Refnum(figure 1). This creates

a control reference without a class.

Figure 1: Placing an Automation Refnum (ActiveX object reference)

To select a class, right-click on the control and go toSelect AvtiveX Class>Browse. . .. You

will be presented with a dialog showing all the available ActiveX controls. To see the controls that

allow interaction with the robot, click the “Type Library” menu and select “ABB RobComm OLE

Custom Control module Version 1.0” (figure 2).

1

82

Figure 2: Selecting the ActiveX object

You must now select an object from the bottom list. The names are mainly based on the types

of variables in the RAPID language used on the S4 controller. Work out which one you need,

then select the appropriate object. For many tasks, the “Helper” object will have an appropriate

method.

Once you have selected a class, go to the block diagram of the VI. Now that you have the

object reference, you need to get it to do something. Right-click to get the controls palette, and

navigate toApplication Control>Invoke node. An Invoke node is used for getting ActiveX to do

something, while a Property node (from the same palette) is used for reading some property of the

object—usually you will want to use an Invoke node. Wire the ActiveX object reference to the top

left terminal of the Invoke node. You will notice that the Invoke node takes on the last part of the

name of the object.

You can now select the method you want the invoke node to perform. Right-click the Invoke

node and navigate to “Methods”. This will show all the methods that can be invoked for that

object. Select the appropriate method (if you don’t know what you want, look at the names and

figure out what you need before you start hacking away).

Figure 3: An Invoke node to write anum variable

The invoke node will now have all its inputs and outputs. You will need to wire all the required

terminals (figure 3). If you don’t know what the value for an input should be, set it to zero. The

important inputs are usually the name of the thing you want to change, and the new value for that

2

HOW-TO: USING ACTIVEX OBJECTS WITHIN THETELEROBOT SOFTWARE

83

thing. In the case of reading a variable from the robot, you will need to input the name of the

variable to read, some zeros for the numerical arguments, and an empty container of the type of

the variable (eg. and empty string, or a 0 integer) for ActiveX to put the retrieved value in.

2 Telerobot code

Now that you know how classes and methods work, we can get stuck into the specific Telerobot

code. This section will go through what you need to do to insert a new ActiveX method.

2.1 S4ActiveXControls.vi

As mentioned before, all ActiveX commands require a reference to an ActiveX control in order to

function. These references MUST be on the front panel of the main VI (Telerobot Hardware Mas-

ter) to work (though they can be made invisible). To save the code looking like spaghetti, the refer-

ences to the four ActiveX controls currently in use are stored in a subVI calledS4ActiveXControls

(figure 4). The references can be extracted at any location just by placing the subVI and running

the appropriate wires out from it. The subVI itself is essentially just a loop with shift-registers in

it, effectively making the controls global variables (figure 5).

Figure 4: Initialising the ActiveX controls

3

HOW-TO: USING ACTIVEX OBJECTS WITHIN THETELEROBOT SOFTWARE

84

Figure 5: TheS4ActiveXControls subVI

3 Procedure for adding a new ActiveX method

1. To use a new ActiveX method, first see if it can be invoked from any of the references in the

S4ActiveXControls subVI.

(a) If it can, then you need not modifyS4ActiveXControls.

(b) If not, you will need to create a new reference of the appropriate type on the front

panel, and add the connectors and wiring to theS4ActiveXControls subVI.

2. The subVI RunHardware has all the code for controlling the robot. Open it and go to the

case “Start up” (figure 6). In this case the ActiveX controls are retrieved and put into shift

registers.

(a) If you made no modifications toS4ActiveXControls, you do not need to change

anything here.

(b) If you created a new object reference inS4ActiveXControls, you will need to get it

out of theS4ActiveXControls subVI here and wire it to a new shift register.

Figure 6: RunHardware in “Start up” case

3. Go to the case “Default”, where the code to move the robot is. You will see that the dark

green wires of the ActiveX controls branch off into various sections of the code to perform

4

HOW-TO: USING ACTIVEX OBJECTS WITHIN THETELEROBOT SOFTWARE

85

different functions. For your function, simply run a wire off the appropriate reference to

your subVI to perform whatever function you want.

Figure 7: RunHardware in “Default” case

4 Done!

Assuming that you’ve done all that properly, and selected the right class and method, that should

be all there is to it. Make sure you wire up the error cluster to pass through any modules you make,

so that you can see where things go wrong.

5

HOW-TO: USING ACTIVEX OBJECTS WITHIN THETELEROBOT SOFTWARE

86

DENAVIT-HARTENBURG TRANSFORMATIONS: CONVENTIONS

APPENDIX G

Denavit-Hartenburg transformations:

conventions

G.1 Introduction

The term Denavit-Hartenburg can refer to a number of similar transformations. Different

textbooks use different conventions. This appendix explains some of the differences, and

why the convention used in this thesis was chosen.

G.2 Transformation order

As shown in Chapter 7, Denavit-Hartenburg transformations are a method of describing

robot links using four parameters (θ, d, a, andα) and the equation:

Ai
i−1 = Rot(zi−1,θi) Trans(0,0,di) Trans(ai ,0,0) Rot(xi ,αi) (G.1)

For simplicity’s sake, Equation G.1 is written in this appendix as:

A = Rot(z,θ) Trans(0,0,d) Trans(a,0,0) Rot(x,α) (G.2)

whereA is the transformation from the coordinate frame at the base of a link to the frame

at the base of the next link.

Equation G.2 could be written in a number of ways. Firstly, it is obvious that thez-axis

does not change in the first two transforms, so they are commutative:

Rot(z,θ) Trans(0,0,d) = Trans(0,0,d) Rot(z,θ)

The same is true of thex-axis in the last two transforms, so:

Trans(a,0,0) Rot(x,α) = Rot(x,α) Trans(a,0,0)

87

DENAVIT-HARTENBURG TRANSFORMATIONS: CONVENTIONS

Thus the full Denavit-Hartenburg equation could be written as any of the following:

A = Rot(z,θ) Trans(0,0,d) Trans(a,0,0) Rot(x,α) (G.3)

A = Rot(z,θ) Trans(0,0,d) Rot(x,α) Trans(a,0,0) (G.4)

A = Trans(0,0,d) Rot(z,θ) Rot(x,α) Trans(a,0,0) (G.5)

A = Trans(0,0,d) Rot(z,θ) Trans(a,0,0) Rot(x,α) (G.6)

Stone [59] uses the form in Equation G.3, Koivo [60] uses that in Equation G.5,

Klafter, Chmielewski, and Negin [61] use that in G.3 but multiplies right-to-left, Craig

[58] uses that in Equation G.6 but multiples right-to-left also.

I chose the form in Equation G.3 because I believe it is the most intuitive and easiest

to follow when thinking of a real robot.

G.3 Attaching axes to joints

You may in certain textbooks see thez-axis rotation part of Equation G.1 written as:

rot(zi ,θi) (G.7)

or

rot(zi−1,θi) (G.8)

The reason for this discrepancy is that the books use different conventions to attach

coordinate frames to links. Craig, for instance, attaches theith frame to theith joint,

while Stone attaches thei − 1th coordinate frame to theith joint. Thus depending on

which convention you use, you would use Equation G.7 or G.8 respectively.

The choice of which convention to use is fairly arbitrary, and does not affect the DH

parameters. I chose to use Stone’s (Equation G.7) because I was familiar with it.

G.4 A andT matrices

In some textbooks the Equation G.1 may begin withAi
i−1 = . . ., while others readT i

i−1 =

. . . and still others readi−1
iA = . . . or some similar variation.

88

DENAVIT-HARTENBURG TRANSFORMATIONS: CONVENTIONS

The generally accepted convention seems to be that the matrix formed by Equation G.1

is an ‘A’ matrix (ie. Ai
i−1). The matrixT refers only to the coordinate frame describing

the position and orientation of the robot end-effector (final link) relative to the coordinate

frame at the base of the robot. That is,

Tn
0 = An

0 = A1
0 . . .An

n−1 (G.9)

wheren is the number of joints.

It could be argued (as Craig seems to do), that becauseTn
0 refers to coordinate frame

n in terms of coordinate frame 0, any matrixTb
a refers to coordinate frameb in terms of

coordinate framea, thus Equation G.9 could be rewritten as

Tn
0 = T1

0 . . .Tn
n−1 (G.10)

Koivo, however, shows that the matrixTn
0 , while equal toAn

0, is derived from an entirely

different method that works only for the final coordinate frame, and that a general matrix

Tb
a does not exist. This would suggest that Equation G.10 is not strictly true.

This thesis uses the generally accepted form of Equation G.9.

G.4.1 Subscripts and superscripts

The different books place the subscripts and superscripts of the A and T matrices at dif-

ferent places, eg:

Ai
i−1 Ai−1

i Ai
i−1 i−1

iA Ai−1,i Ai . . .

Although there are many different forms, they are usually self-explanatory.

G.5 Expanding the matrices

When looking at specific examples of real robots, some textbooks fully expand the matri-

ces given by Equation G.1, eg:

A3
2 =

cosθ3 −sinθ3 0 0

sinθ3 cosθ3 0 0

0 0 1 l2

0 0 0 1

89

DENAVIT-HARTENBURG TRANSFORMATIONS: CONVENTIONS

Once this has been done, it is no longer necessary to do all the rotations and transla-

tions of G.1 for every link—the matrices can be found by simply substituting in the DH

parameters for that link. However, while this may be a quick method to use manually,

it is quite pointless in a program such as the LabVIEW controller for the telerobot. In a

program it is much easier to create sub-programs to do each of the translations and rota-

tions (eg. rotz, trans androtx) and then simply multiply them together. This is a trivial

operation for a computer, and allows a much better understanding for the programmer,

and also gives additional expandability and portability (eg. to other robots).

90

ROBOT TRANSFORMATION MATRICES

91

ROBOT TRANSFORMATION MATRICES

APPENDIX H

Robot transformation matrices

H.1 The matrices

0
1T =

cosθ1 0 −sinθ1 150cosθ1

sinθ1 0 cosθ1 150sinθ1

0 −1 0 475

0 0 0 1

1
2T =

cos(90−θ2) sin(90−θ2) 0 600cos(90−θ2)

−sin(90−θ2) cos(90−θ2) 0 −600sin(90−θ2)

0 0 1 0

0 0 0 1

2
3T =

cos(θ2−θ3) 0 sin(θ2−θ3) 120cos(θ2−θ3)

−sin(θ2−θ3) 0 cos(θ2−θ3) −120sin(θ2−θ3)

0 −1 0 0

0 0 0 1

3
4T =

cosθ4 0 sinθ4 0

sinθ4 0 −cosθ4 0

0 1 0 720

0 0 0 1

4
5T =

cosθ5 0 −sinθ5 0

sinθ5 0 cosθ5 0

0 −1 0 0

0 0 0 1

5
6T =

cosθ6 −sinθ6 0 0

sinθ6 cosθ6 0 0

0 0 1 310

0 0 0 1

92

ROBOT TRANSFORMATION MATRICES

H.2 Mathematica code

Derivation of DH Transformation

Matrices

Define simple transformations

trans@x_, y_, z_D :=

i
k
jjjjjjjjj
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

y
{
zzzzzzzzz;

rotx@θ_D :=

i
k
jjjjjjjjj
1 0 0 0
0 Cos@θD −Sin@θD 0
0 Sin@θD Cos@θD 0
0 0 0 1

y
{
zzzzzzzzz;

rotz@θ_D :=

i
k
jjjjjjjjj
Cos@θD −Sin@θD 0 0
Sin@θD Cos@θD 0 0

0 0 1 0
0 0 0 1

y
{
zzzzzzzzz;

deg2rad@θ_D := θ ∗
π

���������
180

;

DH Parameters

d1 = 475; a1 = 150; α1 = −90;
d2 = 0; a2 = 600; α2 = 0;
d3 = 0; a3 = 120; α3 = −90;
d4 = 720; a4 = 0; α4 = 90;
d5 = 0; a5 = 0; α5 = −90;
d6 = 310; a6 = 0; α6 = 0;

DH Transformation

DHTrans@θ_, d_, a_, α_D :=

rotz@deg2rad@θDD.trans@0, 0, dD.trans@a, 0, 0D.rotx@deg2rad@αDD
Robot transformations

DHTrans@θ1, d1, a1, α1D
99CosA π θ1

�����������
180

E, 0, −SinA π θ1
�����������
180

E, 150 CosA π θ1
�����������
180

E=,
9SinA π θ1

�����������
180

E, 0, CosA π θ1
�����������
180

E, 150 SinA π θ1
�����������
180

E=, 80, −1, 0, 475<, 80, 0, 0, 1<=

93

DHTrans@θ2 − 90, d2, a2, α2D
99CosA 1

���������
180

π H−90 + θ2LE, −SinA 1
���������
180

π H−90 + θ2LE, 0, 600 CosA 1
���������
180

π H−90 + θ2LE=,
9SinA 1

���������
180

π H−90 + θ2LE, CosA 1
���������
180

π H−90 + θ2LE, 0, 600 SinA 1
���������
180

π H−90+ θ2LE=,80, 0, 1, 0<, 80, 0, 0, 1<=
DHTrans@θ3 − θ2, d3, a3, α3D
99CosA 1

���������
180

π H−θ2 + θ3LE, 0, −SinA 1
���������
180

π H−θ2 + θ3LE, 120 CosA 1
���������
180

π H−θ2 + θ3LE=,
9SinA 1

���������
180

π H−θ2 + θ3LE, 0, CosA 1
���������
180

π H−θ2+ θ3LE, 120 SinA 1
���������
180

π H−θ2+ θ3LE=,80, −1, 0, 0<, 80, 0, 0, 1<=
DHTrans@θ4, d4, a4, α4D
99CosA π θ4

�����������
180

E, 0, SinA π θ4
�����������
180

E, 0=,
9SinA π θ4

�����������
180

E, 0, −CosA π θ4
�����������
180

E, 0=, 80, 1, 0, 720<, 80, 0, 0, 1<=
DHTrans@θ5, d5, a5, α5D
99CosA π θ5

�����������
180

E, 0, −SinA π θ5
�����������
180

E, 0=,
9SinA π θ5

�����������
180

E, 0, CosA π θ5
�����������
180

E, 0=, 80, −1, 0, 0<, 80, 0, 0, 1<=
DHTrans@θ6, d6, a6, α6D
99CosA π θ6

�����������
180

E, −SinA π θ6
�����������
180

E, 0, 0=,
9SinA π θ6

�����������
180

E, CosA π θ6
�����������
180

E, 0, 0=, 80, 0, 1, 310<, 80, 0, 0, 1<=
Full transformation

T06@θ1_, θ2_, θ3_, θ4_, θ5_, θ6_D :=

DHTrans@θ1, d1, a1, α1D.DHTrans@θ2 − 90, d2, a2, α2D.
DHTrans@θ3 − θ2, d3, a3, α3D.DHTrans@θ4, d4, a4, α4D.
DHTrans@θ5, d5, a5, α5D.DHTrans@θ6, d6, a6, α6D;

T06@0, 0, 0, 0, 0, 0D880, 0, 1, 1180<, 80, −1, 0, 0<, 81, 0, 0, 1195<, 80, 0, 0, 1<<
ü Check point with matlab simulation

N@T06@10, 20, 30, 40, 50, 60DD880.324866, −0.929662, 0.173754, 1076.83<,8−0.82614, −0.189515, 0.530637, 344.875<,8−0.460385, −0.315931, −0.829598, 525.563<, 80., 0., 0., 1.<<

ROBOT TRANSFORMATION MATRICES

94

