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The model selection literature has been generally poor at reflecting the deep

foundations of AIC and at making appropriate comparisons to BIC. There is

both a clear philosophy, a sound criterion based in information theory, and a

rigorous statistical foundation for AIC.  AIC can be justified as Bayesian using a

“savvy" prior on models that is a function of sample size and the number of

model parameters  Furthermore, BIC can be derived as a non-Bayesian result.

Therefore, arguments about using AIC versus BIC for model selection cannot be

from a Bayes versus frequentist perspective. Deeper arguments must be explored

and this is one of our objectives here. The philosophical context of what is

assumed about reality, approximating models, and the intent of model-based



inference should determine whether AIC or BIC is used. Also, model selection

must be more than just a search for, and then inference from, a single best model

in a set: inference should reflect all models considered in the set. Various facets

of such multimodel inference are presented here, particularly methods of model

averaging.

1. INTRODUCTION

For a model selection context we assume there are data and a set of models and that

statistical inference is to be model-based. Classically it is assumed that there is a single correct

(or even true) or, at least, best model and that model suffices as the sole model for making

inferences from the data. Whereas, the identity (and parameter values) of that model is

unknown, it seems to be assumed that it can estimated, in fact well-estimated. Therefore,

classical inference often involves a data-based search, over the model set, for (i.e., selection

of) that single correct model (but with estimated parameters). Then inference is based on the

fitted selected model as if it were the only model considered. Model selection uncertainty is

ignored.  This is considered justified because, after all, the single best model has been found.

However, many selection methods used (e.g., classical stepwise selection) are not even based

on an explicit criterion of what is a best model.

One might think the first step to improved inference under model selection would be to

establish a selection criterion, such as AIC or BIC. However, we claim the first step is to

establish a philosophy about models and data analysis and then find a suitable model selection

criterion. The key issue of such a philosophy seems to center around one issue: are models

ever true, in the sense of is full reality represented exactly by a model we can conceive and fit

to the data; or are models merely approximations. Even minimally experienced practitioners of

data analysis would surely say models are only approximations to full reality. Given this latter

viewpoint, the issue is then really about whether the information (“truth") in the data, as

extractable by the models in the set, is simple (a few big effects only) or complex (many



tapering effects). Moreover, there is a fundamental issue of seeking parsimony in model

fitting: what “size" of fitted model can be justified given the size of the sample, especially in

the case of complex data (we believe most real data are complex).

Model selection should be based on a well-justified criterion of what is the “best"

model and that criterion should be based on a philosophy about models and model-based

statistical inference, including the fact that the data are finite and “noisy." The criterion must

be estimable from the data for each fitted model and the criterion must fit into a general

statistical inference framework. Basically, this means model selection is justified and operates

within either a likelihood or Bayesian framework, or within both frameworks. Moreover, this

criterion must reduce to a number for each fitted model, given the data, and it must allow

computation of model weights to quantify the uncertainty that each model is the target best

model. Such a framework and methodology allows us to go beyond inference based on only

the selected best model. Rather, we do inference based on the full set of models: multimodel

inference. Very little of the extensive model selection literature goes beyond the concept of a

single best model, often because it is assumed the model set contains the true model. This is

true even for major or recent publications, e.g., Linhart and Zucchini (1986), McQuarrie and

Tsai (1998), and Lahiri (2001).

Two well known approaches meet these conditions operationally: information-

theoretic selection based on Kullback-Leibler (K-L) information loss and Bayesian model

selection based on Bayes factors. Akaike's information criterion (AIC) represents the first

approach. We will let the BIC approximation to the Bayes factor represent the second

approach; exact Bayesian model selection (see e.g., Gelfand and Dey 1994) can be much more

complex than BIC too complex for our purposes here. The focus and message of our paper

is on the depth of foundation underlying K-L information and AIC. Many people using,

abusing or refusing AIC do not know its foundations, nor its current depth of development for

coping with model selection uncertainty (multimodel inference). Moreover, understanding

either AIC or BIC is enhanced by contrasting them; therefore, we will provide contrasts.



Another reason to include BIC here, despite AIC being our focus, is because using the BIC

approximation to the Bayes factor we can show that AIC has a Bayesian derivation.

We will not give the mathematical derivations of AIC or BIC. Neither will we say

much about the philosophy on deriving an a prior set of models. Mathematical and

philosophical background for our purposes is given in Burnham and Anderson (2002). There

is much other relevant literature that we could direct the reader to, for example, Akaike (1973,

1981) and deLeeuw (1992), about AIC, and Gelfand and Dey (1994), Gelman et al. (1995),

Raftery (1995), Kass and Raftery (1995), Key et al. (1999), and Hoeting et al. (1999) about

Bayesian model selection. For an extensive set of references we direct the reader to Burnham

and Anderson (2002) and Lahiri (2001). We do not assume the reader has read all, or much, of

this literature. However, we do assume the reader has a general familiarity with model

selection including having encountered AIC and BIC, and arguments pro and con about which

one to use (e.g., Weakliem 1999).

     Our paper is organized around 5 sections.  Section 2 is a careful review of K-L information,

parsimony, AIC as an asymptotically unbiased estimator of relative, expected K-L

information, AIC  and TIC, scaling criterion values ( ), the discrete likelihood of model ,c ?3 i

given the data, Akaike weights, the concept of evidence, and measures of precision that

incorporate model selection uncertainty.  Section 3 is a review of the basis and application of

BIC.  Issues surrounding the assumption of a true model, the role of sample size in model

selection when a true model is assumed, and real world issues such as the existence of

tapering effect sizes are reviewed.  Section 4 is a derivation of AIC as a Bayesian result; this

derivation hinges on the use of a “savvy" prior on models. Often, model priors attempt to be

noninformative; however, this practice has hidden and important implications (it is not

innocent).  Section 5 introduces several philosophical issues and comparisons between AIC

vs. BIC.  This section focuses additional attention on truth, approximating models of truth, and

the careless notion of true models (mathematical models that exactly express full reality).

Model selection philosophy should not be based simple Bayesian vs. non-Bayesian arguments.



Section 6 compares the performance of AIC versus BIC and notes that many Monte Carlo

simulations are aimed only at assessing the probability of finding the true model.  This

practice misses the point of statistical inference and has lead to widespread

misunderstandings.  Section 6 also makes the case for multimodel inference procedures, rather

than making inference from only the model estimated to be best.  Multimodel inference often

lessens the performance differences between AIC and BIC selection.  Finally, section 7

presents a discussion of the more important issues and concludes that model selection should

be viewed as a way to compute model weights (posterior model probabilities), often as a step

toward model averaging and other forms of multimodel inference.

2. AIC: AN ASYMPTOTICALLY UNBIASED ESTIMATOR

OF EXPECTED K-L INFORMATION

2.1 SCIENCE PHILOSOPHY AND THE INFORMATION-THEORETIC APPROACH

Information theorists do not believe in the notion of . Models, bytrue models

definition, are only approximations to unknown reality or truth; there are no  thattrue models

perfectly reflect full reality.  George Box made the famous statement “All models are wrong

but some are useful."  Further, a “best model," for analysis of data, depends on sample size;

smaller effects can often only be revealed as sample size increases.  The amount of

information in large data sets (e.g.,  = 3,500) greatly exceeds the information in small datan

sets (e.g.,  = 22).  Data sets in some fields are very large (terabytes) and good approximatingn

models for such applications are often highly structured and parameterized compared to more

typical applications where sample size is modest.  The information-theoretic paradigm rests on

the assumption that good data, relevant to the issue, are available and these have been

collected in an appropriate manner (Bayesians would want this also).  Three general principles

guide model-based inference in the sciences.



Simplicity and Parsimony – Occam's Razor suggests “shave away all but what is necessary."

Parsimony enjoys a featured place in scientific thinking in general and in modeling

specifically (see Forster and Sober 1994; Forster 2000, 2001) for a strictly science philosophy

perspective).  Model selection (variable selection in regression is a special case) is a bias

versus variance trade-off and this is the statistical principle of parsimony.  Inference under

models with too few parameters (variables) can be biased, while with models having too many

parameters (variables) there may be poor precision or identification of effects that are, in fact,

spurious. These considerations call for a balance between under- and over-fitted models – the

so-called “model selection problem" (see Forster 2000, 2001).

Multiple Working Hypotheses – Chamberlin (1890, 1965) advocated the concept of “multiple

working hypotheses."  Here, there is no null hypothesis, instead there are several well-

supported hypotheses (equivalently, “models") that are being entertained.  The a priori

“science" of the issue enters at this important stage.  Relevant empirical data are then

gathered, analyzed, and it is expected that the results tend to support one or more hypotheses,

while providing less support for other hypotheses.  Repetition of this general approach leads to

advances in the sciences.  New or more elaborate hypotheses are added, while hypotheses with

little empirical support are gradually dropped from consideration.  At any one point in time,

there are multiple hypotheses (models) still under consideration – the model set evolves.  An

important feature of this multiplicity is that the number of alternative models should be kept

small; the analysis of, say, hundreds or thousands of models is not justified except when

prediction is the only objective, or in the most exploratory phases of an investigation.  We

have seen applications where more than a million models were fitted even though sample size

was modest (60 to 200); we do not view such activities as reasonable.  Similarly, a proper

analysis must consider the science context and cannot successfully be based on “just the

numbers."

Strength of Evidence – Providing quantitative information to judge the “strength of evidence"

is central to science.  Null hypothesis testing only provides arbitrary dichotomies (e.g.,



significant vs. nonsignificant) and in the all-to-often-seen case where the null hypothesis is

false on a priori grounds the test result is superfluous. Hypothesis testing is particularly

limited in model selection and this is well documented in the statistical literature. Royall

(1997) provides an interesting discussion of the likelihood-based strength of evidence

approach in simple statistical situations.

2.2 KULLBACK-LEIBLER INFORMATION

     In 1951 S. Kullback and R. A. Leibler published a now-famous paper (Kullback and

Leibler 1951) that quantified the meaning of “information" as related to R. A. Fisher's concept

of sufficient statistics.  Their celebrated result, called , is aKullback-Leibler information

fundamental quantity in the sciences and has earlier roots back to Boltzmann's concept of

entropy (Boltzmann 1877).  Boltzmann's entropy and the associated Second Law of

Thermodynamics represents one of the most outstanding achievements of 19th century

science.

We begin with the concept that  denotes full reality or truth;  has no parametersf f

(parameters are a human concept).  We use  to denote an approximating model, a probabilityg

distribution.  Kullback-Leibler information ( , ) is the information lost when model  is usedI f  g g

to approximate ; this is defined for continuousf

functions as the integral

  I f g f x dx( , ) ( ) log  . œ '  f x
g x

( )
( )±)

Clearly the best model loses the least information relative to other models in the set; this is

equivalent to minimizing ( , ), over .  Alternatively, K-L information can be conceptualizedI f  g g

as a “distance" between full reality and a model.



     Full reality  is considered to be fixed and only  varies over a space of models indexed byf g

).  Of course, full reality is not a function of sample size ; truth does not change as n n

changes.  No concept of a true model is implied here and no assumption is made that the

models must be nested.

     The criterion ( , ) cannot be used directly in model selection because it requiresI f  g

knowledge of full truth, or reality, and the parameters  in the approximating models,  (or,) g3

more explicitly, ( )).  In data analysis the model parameters must be estimated and thereg x3 ± )

is often substantial uncertainty in this estimation.  Models based on estimated parameters

represent a major distinction from the case where model parameters are known.  This

distinction affects how K-L information must be used as a basis for model selection and

ranking and requires a change in the model selection criterion to that of minimizing expected

estimated K-L information rather than minimizing known K-L information (over the set of R

models considered).

K-L information can be expressed as

  I f g f x f x dx f x g x dx( , ) ( )log( ( )) ( )log( ( )) œ '  ±' )

or

  I f g f x g x( , ) E [log( ( ))] E [log( ( ))] , œ 0 0 ± )

where the expectations are taken with respect to truth.  The quantity E [log( ( ))] is a0 f x

constant (say, ) across models. Hence,C

  I f g C g x( , ) E [log( ( ))] , œ  0 ± )

where

  C f x f x dxœ ' ( )log( ( ))



does not depend on the data or the model. Thus, only relative expected K-L information,

E [log( ( ))], needs to be estimated for each model in the set.0 g x ± )

2.3 AKAIKE'S INFORMATION CRITERION, AIC

Akaike (1973, 1974, 1985, 1994) showed that the critical issue for getting a

rigorous model selection criterion based on K-L information was to estimate

  E E [log( ( ( )))]^
y x g x y± )

where the inner part is just E [log( ( ))] with  replaced by the maximum likelihood0 g x ± ) )

estimator of  based on the assumed model  and data . Whereas only  denotes data, it is) g y y

convenient to conceptualize both and  as independent random samples from the samex y

distribution. Both statistical expectations are taken with respect to truth ( ).  This doublef

expectation is the target of all model selection approaches based on K-L information (e.g.,

AIC, AIC  and TIC).-

Akaike (1973, 1974) found a formal relationship between K-L information (a

dominant paradigm in information and coding theory) and likelihood theory (the dominant

paradigm in statistics) (see deLeeuw 1992).  He found that the maximized log-likelihood value

was a biased estimate of E E [log( ( ( )))], but this bias was approximately equal to ,^
y x g x y K± )

the number of estimable parameters in the approximating model,  (see Burnham andg

Anderson 2002, chapter 7 for details).  This is an asymptotic result of fundamental

importance.  Thus, an approximately unbiased estimator of E E [log( ( ( )))] for large^
y x g x y± )

samples and “good" models, is

log ( )) This result is equivalent to^(_ ) ± data K.  

  log ( )) E [ ( , )] ,^ ^(_ ) ±  data K C I f ĝœ
)̂

 



where  = ( ).^ ^g g † ± )

This finding makes it possible to combine estimation (i.e., maximum likelihood or

least squares) and model selection under a unified optimization framework.  Akaike found an

estimator of expected, relative K-L information based on the maximized log-likelihood

function, corrected for asymptotic bias,

                  relative E(K-L) log( ( ))  .^ ^œ ± _ ) data K

K is the asymptotic bias correction term and is in no way arbitrary (as is sometimes

erroneously stated in the literature).  Akaike (1973, 1974) multiplied this simple but profound

result by –2 (for “historical reasons") and this became “Akaike's information

criterion" (AIC),

                             AIC –2log( ( )) 2  .^œ ± _ ) data K

In the special case of least squares (LS) estimation with normally distributed

errors AIC can be expressed as

  AIC log( 2 ,^œ n K5
2

) 

where

  ,5̂
2
œ

!( )%̂3 2

n

and the  are the estimated residuals from the fitted model.  In this case  must be the total%̂3 K

number of parameters in the model, including the intercept and .  Thus, AIC is easy to52

compute from the results of LS estimation in the case of linear models or from the results of a

likelihood-based analysis in general (Edwards 1992; Azzalini 1996).



Akaike's procedures are now called  because they are based on K-information-theoretic

L information (see Akaike 1983, 1992, 1994; Parzen et al. 1998).   It is common to find

literature that seems to deal only with AIC as one of many types of criteria, without any

apparent understanding that AIC is an estimate of something much more fundamental: K-L

information.

Assuming a set of a priori candidate models has been defined and is well supported by

the underlying science, then AIC is computed for each of the approximating models in the set

(i.e., , 1, 2, , ).  Using AIC the models are then easily ranked from best to worstg i R3 œ á

based on the empirical data at hand.  This is a simple, compelling concept, based on deep

theoretical foundations (i.e., entropy, K-L information, and likelihood theory).  Assuming

independence of the sample variates, AIC model selection has certain cross validation

properties (Stone 1974, 1977).

     It seems worth noting here the large sample approximate expected value of AIC (for a

“good" model), in as much as this result is not given in Burnham and Anderson (2002). The

MLE ( ) converges, as  gets large, to the  that minimizes K-L information loss for model)̂ )y n o

g.  Large sample expected AIC converges to

  E(AIC) 2 2 ( , ( )) .œ   † ± C I f g K )o

2.4 IMPORTANT REFINEMENTS: EXTENDED CRITERIA

Akaike's approach allowed model selection to be firmly based on a fundamental theory

and allowed further theoretical work.  When  is large relative to sample size  (whichK n

includes when  is small, for any ) there is a small sample (second order biasn K

correction) version called AIC ,-

  AIC 2log( ( )) 2^
- œ  _ ) K  2 ( 1)

1
K K
n K


 



(see Sugiura 1978; Hurvich and Tsai 1989, 1995), and this should be used unless

n/K K about 40 for the model with the largest value of . A pervasive mistake in the model

selection literature is the use of AIC when AIC  really should be used. Because AICc -

converges to AIC, as  gets large, in practice AIC  should be used. People often conclude thatn -

AIC overfits because they failed to use the second order criterion, AIC .-

     Takeuchi (1976) derived an asymptotically unbiased estimator of relative, expected

Kullback-Leibler information that applies in general without assuming that model  is trueg

(i.e., without the special conditions underlying Akaike's derivation of AIC).  His method (TIC

for Takeuchi's Information Criterion) requires quite large sample sizes to reliably estimate the

bias adjustment term, which is the trace of the product of two  by  matrices (i.e.,K K

tr[ ( ) ( ) ], details in Burnham and Anderson 2002, pp. 65-66, 362-374). TIC represents anJ I) )o o
-"

important conceptual advance and further justifies AIC. In many cases, the complicated bias

adjustment term is approximately equal to  and this result gives further credence to usingK

AIC and AIC  in practice. In a sense, AIC is a parsimonious approach to TIC.  The large-

sample expected value of TIC is E(TIC) 2 2 ( , ( )) tr[ ( ) ( ) ].œ   † ± C I f g J I) ) )o o o
-"

Investigators working in applied data analysis have several powerful methods for

ranking models and making inferences from empirical data to the population or process of

interest. In practice, one need not assume that the “true model" is in the set of candidates

(although this is sometimes mistakenly stated in the technical literature on AIC).  These

information criteria are estimates of relative, expected K-L information and are an extension

of Fisher's likelihood theory (Akaike 1992).  AIC and AIC  are easy to compute and quite-

effective in very wide variety of applications.



2.5  VALUES?3

The individual AIC values are not interpretable as they contain arbitrary constants and

are much affected by sample size (we have seen AIC values ranging from –600 to 340,000).

Here it is imperative to rescale AIC or AIC  to-

                                        AIC AIC?3 3œ  min 

where AIC  is the minimum of the different AIC values (i.e., the minimum is at ).min iR i min œ

This transformation forces the best model to have 0, while the rest of the models have? œ

positive values.  The constant representing E [log( ( ))] is eliminated from these  values.0 3f x ?

Hence,  is the information loss experienced if we using fitted model  rather than the best?3 3g

model, , for inference.  These  allow meaningful interpretation without the unknowngmin i?

scaling constants and sample size issues that enter into AIC values.

The  are easy to interpret and allow a quick “strength of evidence" comparison and?3

ranking of candidate hypotheses or models.  The larger the , the less plausible is fitted?3

model  as being the best approximating model in the candidate set.  It is generally importanti

to know which model (hypothesis) is second best (the ranking) as well as some measure of its

standing with respect to the best model.  Some simple rules of thumb are often useful in

assessing the relative merits of models in the set: models having 2 have substantial?3 Ÿ

support (evidence), those where 4 7 have considerably less support, while modelsŸ Ÿ?3

having 10 have essentially no support.  These rough guidelines have similar?3 

counterparts in the Bayesian literature (Raftery 1996).

Naive users often question the importance of a 10 when the two AIC values?i œ

might be, for example, 280,000 and 280,010. The difference of 10 here might seem trivial. In

fact, large AIC values contain large scaling constants, while the are free of such constants.?i 

Only these differences in AIC are interpretable as to strength of evidence.



2.6 LIKELIHOOD OF A MODEL GIVEN THE DATA

The simple transformation exp( 2 ), for 1, 2, , , provides the likelihood œ á?i / i R

of the model (Akaike 1981) given the data: ( ).  [Recall, Akaike defined his AIC_ g data3 ±

after multiplying through by –2; otherwise, ( ) = exp( ) would have been the case,_ ?g data3 ± i

with  redefined in the obvious way]. This is a likelihood function over the model set in the?

sense that ( , ) is the likelihood over the parameter space (for model ) of the_ ) ± data g g3 i

parameter  given the data ( ) and the model ( ).) x g3

     The relative likelihood of model  versus model  is ( )/ ( ); this is termedi j g data g data_ _3 ± j ±

the evidence ratio and it does not depend on any of the other models under consideration.

Without loss of generality we may assume model  is more likely than .  Then if thisg gi j

evidence ratio is large (e.g., 150 is quite large), model  is a poor model  to model gj relative

gi, based on the data.

2.7 AKAIKE WEIGHTS, w3

It is convenient to normalize the model likelihoods such that they sum to 1 and

treat them as probabilities, hence we use

  wi œ
exp( 2)

exp( 2)





?

?

i

r

R
/

/!
=1

<

 .

The , called , are useful as the “weight of evidence" in favor of modelwi Akaike weights

g gi( ) as being the actual K-L best model in the set (in this context a model, , is† ± )

considered as a “parameter").  The ratios /  are identical to the original likelihood ratios,w wi j

_ _( )/ ( ), so are invariant to the model set, but the values depend on the fullg data g data w3 ± j i±  

model set because the sum to 1.  However, , 1 , ,  are useful in additional ways.w i Ri œ á

For example, the are interpreted as the probability that model  is, in fact, the K-L bestw ii 



model for the data (strictly under K-L information theory this is an heuristic interpretation, but

it is justified by a Bayesian interpretation of AIC – see below).  This latter inference about

model selection uncertainty is conditional on both the data and the full set of a priori models

considered.

2.8 UNCONDITIONAL ESTIMATES OF PRECISION, A TYPE OF

     MULTIMODEL INFERENCE

Typically, estimates of sampling variance are conditional on a given model as if there

was no uncertainty about which model to use (Breiman called this a “quiet scandal," Breiman

1992).  When model selection has been done, there is a variance component due to model

selection uncertainty that should be incorporated into estimates of precision.  That is, one

needs estimates that are “unconditional" on the selected model.  A simple estimator of the

unconditional variance for the maximum

likelihood estimator  from the selected (best) model is,)̂

                        var( )  var( ) ( )  (1)^ ^^ ^ ^ ^) ) )œ ” •! ’ “
i

R

i i i i
=1

2
1/2

w g±  )
-

2

where,

                              -̂) œ !
i

R

i i
=1

w )̂

and  represents a form of “model averaging."  The notation here means the parameter  is-̂ ^) ) )i 

estimated based on model , but  is a parameter in common to all  models (even if its valueg Ri )

is 0 in model , so that then we use 0).  This estimator, from Buckland et al. (1997),^k )k œ

includes a term for the conditional sampling variance, given model  (denoted as var( )^ ^g g3 3 3) ±

here) and a variance component for model selection uncertainty, ( ) .  These variance^ -̂
) )3

#



components are multiplied by the Akaike weights, which reflect the relative support, or

evidence, for model .  Burnham and Anderson (2002, pp. 206-243) provide a number ofi

Monte Carlo results on achieved confidence interval coverage when information-theoretic

approaches are used in some moderately challenging data sets.  For the most part, achieved

confidence interval coverage is near the nominal level.  Model averaging arises naturally when

the unconditional variance is derived.

2.9 OTHER FORMS OF MULTIMODEL INFERENCE

Rather than base inferences on a single, selected best model from an a priori set of

models, inference can be based on the entire set of models.  Such inferences can be made if a

parameter, say , is in common over all models (as  in model ), or if the goal is prediction.) )i ig

Then by using the weighted average for that parameter across models (i.e., ) we-̂ ^) )œ !wi i

are basing point inference on the entire set of models.  This approach has both practical and

philosophical advantages.  Where a model averaged estimator can be used it often has a more

honest measure of precision and reduced bias compared to the estimator from just the selected

best model (Burnham and Anderson 2002, chapters 4–6).  In all-subsets regression we can

consider the regression coefficient (parameter) for predictor is in all the models, but for"p p  x

some models 0 (  is not in those models). In this situation if model averaging is done"p pœ x

over all the models the resultant estimator  has less model selection bias than taken from~ ^" "p p 

the selected best model (Burnham and Anderson 2002, pp. 151-153, 248-255; Lukacs, in

review).

Assessment of the relative importance of variables has often been based only on the

best model (e.g., often selected using a stepwise testing procedure).  Variables in that best

model are considered “important" while excluded variables are considered not important.

This is too simplistic.  Importance of a variable can be refined by making inference from all

the models in the candidate set (see Burnham and Anderson 2002, chapters 4–6).  Akaike

weights are summed for all models containing predictor variable , 1, , ; denotex j R4 œ á



these sums as ( ).  The predictor variable with the largest predictor weight, ( ), isw j w j+ +

estimated to be the most important; the variable with the smallest sum is estimated to be the

least important predictor.  This procedure is superior to making inferences concerning the

relative importance of variables based only on the best model.  This is particularly important

when the second or third best model is nearly as well supported as the best model, or when all

models have nearly equal support.  (There are “design" considerations about the set of models

to consider when a goal is assessing variable importance, we do not discuss these

considerations here the key issue is one of balance of models with and without each

variable).

2.10 SUMMARY

At a conceptual level, reasonable data and a good model allow a separation of

“information" and “noise."  Here, information relates to the structure of relationships,

estimates of model parameters and components of variance.  Noise then refers to the residuals:

variation left unexplained.  We want an approximating model that minimizes information loss,

I f g( , ), and properly separates noise (non-information or entropy) from structural information.

In a very important sense, we are not trying to model the data; instead, we are trying to model

the information in the data.

     Information-theoretic methods are relatively simple to understand and practical to employ

across a very large class of empirical situations and scientific disciplines.  The methods are

easy to compute by hand if necessary, assuming one has the parameter estimates, the

conditional variances var( ), and the maximized log-likelihood values for each of the ^ )̂3 3± g R

candidate models from standard statistical software.  Researchers can easily understand the

heuristics and application of the information-theoretic methods; we believe it is  importantvery

that people understand the methods they employ.  Information-theoretic approaches should not

be used unthinkingly; a good set of a priori models is essential and this involves professional

judgment and integration of the science of the issue into the model set.



3. UNDERSTANDING BIC

Schwarz (1978) derived the Bayesian information criterion as

  BIC 2ln( ) log( ) .œ  _ K n

As usually used one computes BIC for each model and selects the model with the smallest

criterion value. BIC is a misnomer as it is not related to information theory. As with AIC? i

we define BIC as the difference of BIC for model  and the minimum? i gi

BIC value. More complete usage entails computing posterior model probabilities, , aspi

  p g datai iœ ±Pr{ }  œ exp( BIC )

exp( BIC )




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(Raftery 1995). The above posterior model probabilities are based on assuming prior model

probabilities are all 1/  Most applications of BIC use it in a frequentist spirit, hence ignoreR.

issues of prior and posterior model probabilities.

The model selection literature, as a whole, is confusing as regards the following issues

about BIC (and about Bayesian model selection in general):

1) Does the derivation of BIC assume the existence of a true model; or more narrowly,

    is the true model assumed to be in the model set when using BIC? (Schwarz's

    derivation specified these conditions.)

2) What do the “model probabilities" mean; that is, how should we interpret them

vis-a-vis a “true" model?

Mathematically (we emphasize “mathematical" here), for an  sample and a fixed set ofiid

models, there is a model, say model , with posterior probability  such that as  then g p n pt t tp_

p 1 and all other 0. In this sense there is a clear target model that BIC “seeks" to select.pr p

3) Does the above result mean model  must be the true model?gt



     The answers to questions 1 and 3 are simple: No. That is, BIC (as the basis for an

approximation to a certain Bayesian integral) can be derived without assuming the model

underlying the derivation is true (see e.g., Cavanaugh and Neath 1999; Burnham and

Anderson 2002, pp. 293-295). Certainly in applying BIC the model set need not contain the

(nonexistent) true model representing full reality. Moreover, the convergence in probability of

the BIC selected model to a target model (under the idealization of an  sample) does notiid

logically mean that that target model must be the true data generating distribution.

The answer to question 2 involves characterizing the target model to which the BIC-

selected model converges. That model can be characterized in terms of the values of the

Kullback-Leibler discrepancy and for the set of models. For model  the Kullback-LeiblerK gr

“distance" of the model from truth is denoted ( , ). Often, ( ) would denote aI f  g g g xr r r´ ± )

parametric family of models for ,  being a  dimensional space. However, we take ) @ @− K gr r

generally to denote the specific family member for the unique  which makes , in the) @o − gr

family of models, closest to truth in K-L distance. For the family of models ( ), , asg xr ± ) ) @−

np_ (with  data) the MLE and Bayesian point estimator of  converge to . Thusiid ) )o

asymptotically we can characterize the particular model that  represents: ( ) (forg g g xr r r´ ± )o

details see Burnham and Anderson 2002 and references cited therein). Also, we have the set of

corresponding minimized K-L distances: { ( , ), 1, , }. For an  sample we canI f  g r Rr œ á iid

represent these distances as ( , ) ( , ) where the ( , ) do not depend on sample sizeI f  g nI f  g I f  gr r rœ 1 1

(they are for 1). The point of this representation is to emphasize than the effect ofn œ

increasing sample size is to scale-up these distances.

We may assume, without loss of generality, that these models are indexed worst ( ) tog1

best ( ) in terms of their K-L distance and dimension , henceg KR r

I f  g I f  g I f  g( , ) ( , ) ( , ). Figures 1-3 show three hypothetical scenarios of how these1 2    â   R

ordered distances might appear for 12 models, for unspecified  (since  serves merely toR n nœ

scale the -axis). Let be the tail-end subset, of the so-ordered models, defined byy Q 

{ , , 1 ( , ) ( , ) ( , )}. Set  exists because  (andg r t t R I f  g I f  g I f  g Q t Rr t t R  Ÿ ± â œ œŸ  œ-1



t Rœ 1) is allowed, in which case the K-L best model (of the  models) is unique. For the case

when subset  contains more than one model (i.e., 1 ) then all of the models in thisQ t RŸ 

subset have the same K-L distance. Therefore, we further assume that models to  areg gt R 

ordered such that  (in principle  could occur).K K K K Kt t R t t œ+1 +1Ÿ â Ÿ

Thus, model  is the most parsimonious model of the subset of models that are tied forgt

K-L best model. In this scenario (  sample, fixed model set, ) the BIC-selected modeliid np_

converges with probability 1 to model  and  converges to 1. However, unless ( , ) 0g p I f  gt t t œ

model  is not identical to  (nominally considered as truth), so we call it a quasi-true model.g ft

The only truth here is that in this model set, models  to  provide no improvement overg gt+1 R

model they are unnecessarily general (independent of sample size). The quasi-true modelgt 

in the set of  models is the most parsimonious model that is closest to truth in K-LR

information loss (model 12 in Figures 1 and 3, model 4 in Figure 2).

Thus, the Bayesian posterior model probability  is the inferred probability that modelpr

g  g  r tis the quasi-true model in the model set. For a “very large" sample size model is the best

model to use for inference. However, for small or moderate sample sizes obtained in practice

the model selected by BIC may be much more parsimonious than model , especially if thegt

quasi-true model is the most general model,  as in Figure 1. The concern for realistic samplegR

sizes then is that the BIC-selected model may be underfit at the given . The model selectedn

by BIC approaches the BIC target model from below, as  increases, in terms of the orderingn

we imposed on the model set. This selected model can be quite far from the BIC theoretical

target model at sample sizes seen in practice when tapering effects are present (Figure 1). The

situation where BIC performs well is that of Figure 2 with suitably large ).n

                                    figures 1 and 2 about here   

Moreover, the BIC target model does not depend on sample size . However, we known

that the number of parameters we can expect to reliably estimate from finite data does depend

on . In particular, if the set of ordered (large to small) K-L distances show tapering effectsn

(Figure 1) then a best model for making inference from the data may well be a more



parsimonious model than the BIC target model ( in Figure 1), such as the best expectedg12 

estimated K-L model, which is the AIC target model. As noted above the target model for AIC

is the model that minimizes E [ ( , ( ))], 1, ,  This target model is specific for^
f rI f  g r R.† ± á) œ

the sample size at hand, hence AIC seeks a best model as its target, where best is heuristically

a bias-variance trade-off (not a quasi-true model).

In reality one can only assert that BIC model selection is asymptotically consistent for

the (generally) unique quasi-true model in the set of models. But that BIC-selected model can

be quite biased at not-large  as an estimator of its target model. Also, from an inference pointn

of view observing is nearly 1 does not justify an inference that model is truth (such ap gt t  

statistical inference requires an a-prior certainty that the true model is in the model set). This

issue is intimately related to the fact that only differences such as ( , ) ( , ) areI f  g I f  gr t

estimable from data (these K-L differences are closely related to AIC AIC differences,r t  

hence to the ). Hence, with model selection the effect is that sometimes people are?

erroneously lulled into thinking (assuming) ( , ) is 0 and hence thinking they have foundI f  gt

(the model for) full reality. These fitted models sometimes have 7 or fewer parameters; surely

full reality cannot be so simple in the life sciences, economics, medicine and the social

sciences.

4. AIC AS A BAYESIAN RESULT

BIC model selection arises in the context of a large sample approximation to the Bayes

factor conjoined with assuming equal priors on models. The BIC statistic can be used more

generally with any set of model priors. Let  be the prior probability placedqi

on model . Then the Bayesian posterior model probability is approximated asgi

  Pr{ }g datai ± œ exp( BIC )

exp( BIC )





1
2

1
2

?

?

i i

r

R
r r

q

q!
=1

 



(this posterior actually depends on not just the data but also upon the model set and the prior

distribution on those models). Akaike weights can be easily obtained by using

the model prior as proportional toqi 

  exp( BIC ) exp( AIC ) .1 1
2 2? ?i i† 

Clearly,

  exp( BIC ) exp( BIC ) exp( AIC ) exp( AIC ) ;  1 1 1 1
2 2 2 2? ? ? ?i i i i† † œ

hence, with the implied prior probability distribution on models we get

  p g data wi i iœ ± œPr{ } ,œ œexp( BIC )

exp( BIC )
exp( AIC )

exp( AIC )


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which is the Akaike weight for model gi.

This prior probability on models can be expressed in a simple form as

  q C K n Ki i iœ † exp( log( ) ) (3a)1
2 

where

  C œ 1

exp( log( ) )!
r

R

r r
=1

1
2K n K

 . (3b)

Thus, formally, the Akaike weights from AIC are (for large samples) Bayesian posterior

model probabilities for this model prior (more details are in Burnham and Anderson 2002, pp.

302-305).

Given a model ( ) the prior distribution on  will not, should not, depend ong x ± ) )

sample size. This is very reasonable. Probably following from this line of reasoning,

traditional Bayesian thinking about the prior distribution on models has been that , 1  q  rr œ ß



á , , would also not depend on or This approach is neither necessary, nor reasonable.R n K . r

There is limited information in a sample so the more parameters one estimates, the poorer the

average precision becomes for these estimates.  Hence, in considering the prior distribution q

on models we must consider the context of what we are assuming about the information in the

data, as regards parameter estimation, and the models as approximations to some conceptual

underlying “full truth" generating distribution.  While 1/  seems reasonable andq Rr œ

innocent, it is not always reasonable and is never innocent: i.e., it implies the target model is

truth rather than a best approximating model given parameters are to be estimated. This is an

important and unexpected result.

It is useful to think in terms of effects, for individual parameters, as /se( ). The^± ±) )

standard error depends on sample size, hence effect-size depends on sample size. We would

assume for such effects that few or none are truly zero in the context of analysis of real data

from complex observational, quasi-experimental or experimental studies (i.e., Figure 1

applies). In the information-theoretic spirit we assume meaningful, informative data and

thoughtfully selected predictors and models (not all studies meet these ideals). We assume

tapering effects: some may be big (values like 10 or 5), but some are only 2, 1 or 0.5, or less.

We assume we can only estimate  parameters reliably;  might be 20 or as small as 10n/m m

(but surely 1 and 100). (In contrast, the scenario where BIC performs better thanm m¦ ¥

AIC is one where it is assumed there are a few big effects defining the quasi-true model which

is itself nested in several, or many, overly general models, i.e. Figure 2 applies).

These concepts imply that the size (i.e., ) of the appropriate model to fit to dataK

should logically depend on . This idea is not foreign to the statistical literature. For example,n

Lehman (1990, p. 160) attributes to R. A. Fisher the quote “More or less elaborate forms will

be suitable according to the volume of the data." Using the notation  for the optimal ,k K0

Lehman (1990, p. 162) goes on the say “The value of  will tend to increase as the number ofk0

observations increases and its determination thus constitutes implementation of Fisher's



suggestion  ." From a recent book (Williams 2001, p. 235), and quoted exactly, “  á á we

CANNOT ignore the degree of resolution of the experiment when choosing our prior."

These ideas lead to a model prior wherein conceptually  should depend on  and .q n Kr r

Such a prior (class of priors, actually) we call a “savvy prior." A savvy (definition: shrewdly

informed) prior is logical under the information-theoretic model

selection paradigm. We will call the savvy prior on models given by

  q C K n Ki i iœ † exp( log( ) ) 1
2 

(formula 3b gives ) the K-L model prior. It is unique in terms of producing AIC asC

approximately a Bayesian procedure (approximate only because BIC is an approximation).

Alternative savvy priors might be based on distributions such as a modified Poisson

(i.e., applied to only , 1 , , ) with expected  set to be /10. We looked at this ideaK r R K nr œ á

in an all subsets selection context and found that the K-L model prior produces a more spread-

out (higher entropy) prior as compared to such a Poisson-based savvy prior when both

produced the same E( ). We are not wanting to start a cottage industry of seeking a best savvyK

prior because model averaged inference seems very robust to model weights when those

weights are well founded (as is the case for Akaike weights).

The full implications of being able to interpret AIC as a Bayesian result have not been

determined and is an issue outside the scope of this paper. It is, however, worth mentioning

that the model-averaged Bayesian posterior is a mixture distribution of each model-specific

posterior distribution, with weights being the posterior model probabilities. Therefore, for any

model averaged parameter estimator, and in particular

for model averaged prediction, alternative variance and covariance formulae are

  var( )  var( ) ( ) , (4)^ ^^ ^ ^) ) )


œ !
i

R

i i i i
=1

2w g” •± 
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  cov( , )  cov( , ) ( )( )  . (5)^ ^^ ^ ^ ^^ ^) 7 ) 7 ) 7
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The formula given in Burnham and Anderson (2002, pp 163-164) for such an unconditional

covariance is ad hoc; hence we now recommend the above covariance formula. We have re-

run many simulations and examples from Burnham and Anderson (1998) using variance

formula (4) and found its performance is almost identical to that of the original unconditional

variance formula (1) (see also Burnham and Anderson 2002, pp. 344-345). Our pragmatic

thought is that it may well be desirable to use formula (4) rather than (1), but it is not

necessary, except when covariances (formula 5) are also computed.

5. RATIONAL CHOICE OF AIC OR BIC

5.1 FREQUENTIST VERSUS BAYESIAN IS NOT THE ISSUE

The model selection literature contains, defacto, a long running debate about using

AIC or BIC. Much of the purely mathematical or Bayesian literature recommends BIC. We

maintain that almost all the arguments for use of BIC rather than AIC, with real data, are

flawed and hence they contribute more to confusion than to understanding. This assertion by

itself is not an argument for AIC or against BIC because there are clearly defined contexts

where each method out performs the other (Figures 1 or 2 for AIC or BIC, respectively).

For some people BIC is strongly preferred because it is a Bayesian procedure, and they

think AIC is non-Bayesian. However, AIC model selection is just as much a Bayesian

procedure as is BIC selection. The difference is in the prior distribution placed on the model

set. Hence, for a Bayesian the argument about BIC versus AIC must reduce to one about

priors on the models.

Alternatively, both AIC and BIC can be argued for, or derived, under a non-Bayesian

approach. We have given above the arguments for AIC. When BIC is so derived it is usually

motivated by the mathematical context of nested models including a true model simpler than



the most general model in the set. This corresponds to the context of Figure 2, except with the

added (but not needed) assumption that ( , ) 0. Moreover, the goal is taken to beI f  gt œ

selection of this true model with probability 1 as  (asymptotic consistency; ornp_

sometimes dimension consistency).

    Given that AIC and BIC model selection can both be derived as either frequentist or

Bayesian procedures one cannot argue for or against either of them on the basis that it is, or is

not, Bayesian or non-Bayesian. What fundamentally distinguishes AIC versus BIC model

selection is their different philosophies, including the exact nature of their target models, and

the conditions under which one outperforms the other for performance measures such as

predictive mean square error. Thus we maintain that comparison, hence selection for use, of

AIC versus BIC must be based on comparing measures of their performance under conditions

realistic of applications. (A, now rare, version of Bayesian philosophy would deny the validity

of such hypothetical frequentist comparisons as a basis for justifying inference methodology.

We regard such nihilism as being outside of the evidential spirit of science; we demand

evidence).

5.2 DIFFERENT PHILOSOPHIES AND TARGET MODELS.

We have given the different philosophies and contexts in which the AIC or BIC

model-selection criteria arise and can be expected to perform well. Here we explicitly contrast

these underpinnings in terms of K-L distances for the model set { ( ), 1, , } withg x r Rr ± œ á)o

reference to Figures 1, 2, and 3, which represent ( , ) ( , ). Sample size  is leftI f  g nI f  g nr rœ 1

unspecified except it is large relative to , the largest value of , yet of a practical sizeK KR r

(e.g., 15 and 200).K nR œ œ

Given that the model parameters must be estimated so that parsimony is an important

consideration then just by looking at Figure 1 we cannot say what is the best model to use for

inference as a model fitted to the data. Model 12, as ( ) (i.e., at  being the K-L-g x12 o± ) )

distance minimizing parameter value in  for this class of models) is the best theoretical@



model, but ( ) may not be the best model for inference. Model 12 is the target model for^g x12 ± )

BIC, but not for AIC. The target model for AIC will depend on  and could be, for example,n

model 7 (there would be an  for which this would be true).n

Despite that the target of BIC is a more general model than the target model for AIC,

the model most often selected here by BIC will be less general than model 7 unless  is veryn

large. It might be model 5 or 6. It is known (numerous papers and simulations in the literature)

that in the tapering effects context (Figure 1) AIC performs better than BIC. If this is the

context of one's real data analysis, they should use AIC.

A very different scenario is given by Figure 2, wherein there are a few big effects, all

captured by model 4 (i.e., ( )), and models 5 to 12 do not improve at all on model 4.g x4 o± )

This scenario generally corresponds model 4 being nested in models 5 to 12, often as part of a

full sequence of nested models, . The obvious target model for selection is model 4;g gi § i+1

models 1 to 3 are too restrictive and models in the class of models 5 to 12 contain unneeded

parameters (such parameters are actually 0). Scenarios like that of Figure 2 are often used in

simulation evaluations of model selection, despite that they seem unrealistic for most real

data, so conclusions do not logically extend to the Figure 1 (or Figure 3) scenario.

Under the Figure 2 scenario and for sufficiently large , BIC often selects model 4 andn

does not select more general models (but may select less general models). AIC will select

model 4 much of the time, will tend not to select less general models, but will sometimes

select more general models and do so even if  is large. It is this scenario that motivates then

model selection literature to conclude BIC is consistent and AIC is not consistent. We

maintain that this conclusion is for an unrealistic scenario with respect to a lot of real data as

regards the pattern of the K-L distances. Also ignored in this conclusion is the issue that for

real data the model set itself should change as sample size increases by orders of magnitude.

Also, inferentially such “consistency" can only imply a quasi-true model, not truth as such.

That reality could be as depicted in Figure 2 seems strained, but it could be as depicted

in Figure 3 (as well as Figure 1). The latter scenario might occur and presents a problematic



case for theoretical analysis. Simulation seems needed there, and in general to evaluate model

selection performance under realistic scenarios. For Figure 3 the target model for BIC is also

model 12, but model 5 would likely be a better choice at moderate to even large sample sizes.

                                       figure 3 about here     

5.3 FULL REALITY AND TAPERING EFFECTS

Often the context of data analysis with a focus on model selection is one of many

covariates and predictive factors ( ). The conceptual truth underlying the data is about what isx

the marginal truth just for this context and these measured factors. If this truth, conceptually as

f y x y x( ), implies E( ) has tapering effects then any fitted good model will need tapering± ±

effects. In the context of a linear model, and for an unknown (to us) ordering of the predictors,

then for E( ) our models will havey x x x± œ â" " "0 1 1 p p  

± ±  ± ±  â  ± ± " " " " " " "1 21 2/se( ) /se( ) /se( ) 0 (  here is the K-L best parameter^ ^ ^
p p

value given truth  and model ). It is possible that /se( )  would be^f g ± ±" "p p



very small (almost 0) relative to /se( ) . For nested models, appropriately ordered, such^± ±" "1 1

tapering effects would lead to graphs like Figures 1 or 3 for either the K-L values or the actual

± ±" "r r/se( ) .^

Whereas tapering effects for full reality are expected to require tapering effects in

models and hence a context where AIC selection is called for, in principle full reality could be

simple, in some sense, and yet our model set might require tapering effects. The effects

(tapering or not) that matter as regards whether AIC (Figure 1) or BIC (Figure 2) model

selection is the method of choice are the K-L values ( , ( )), 1 , , , not what isI f g r Rr † ± œ á"o

implicit in truth itself. Thus, if the type of models  in our model set are a poor approximationg

to truth , we can expect tapering effects for the corresponding K-L values. For example,f

consider the target model E( ) 17 (0.3( ) exp( 0.5( ( ) )). However, if oury x x x x x± œ   1 2 3 4
0.5 2)

candidate models are all linear in the predictors (with main effects, interactions, quadratic

effects, and so forth) we will have tapering effects in the model set and AIC is the method of

choice.  Our conclusion is that we nearly always face some tapering effect sizes; these are

revealed as sample size increases.

6. ON PERFORMANCE COMPARISONS OF AIC AND BIC

There is now ample and diverse of theory for AIC and BIC based model selection and

multimodel inference, such as model averaging (as opposed to the traditional “use only the

selected best model for inference"). Also, it is clear that there are different conditions under

which AIC or BIC should outperform the other one in measures such as estimated mean

square error. Moreover, performance evaluations and comparisons should be for actual sample

sizes seen in practice, not just asymptotically; partly this is because if sample size increased

substantially we should then consider revising the model set.



There are many simulation studies in the statistical literature on either AIC, or BIC

alone, or often comparing them and making recommendations on which one to use. Overall,

these studies have lead to confusion because either they often failed to be clear on the

conditions and objectives of the simulations, or they generalized (extrapolated, actually) their

conclusions beyond the specific conditions of the study. For example, were the study

conditions only Figure 2 scenarios (all too often, yes) so BIC was favored? Were Figures 1, 2

and 3 scenarios all used but the author's objective was to select the true model, which was

placed in the model set (and usually was a simple model), hence results were confusing and

often disappointing. We submit that many reported studies are not appropriate as a basis for

inference about which criterion should be used for model selection with real data.

Also, many studies, even now, only examine operating properties (e.g., confidence

interval coverage and mean square error) of inference based on the use of just the selected best

model (e.g., Meyer and Laud 2002). There is a strong need to evaluate operating properties of

multimodel inference in scenarios realistic of real data analysis. Authors need to be very clear

about the simulation scenarios used vis-a-vis the generating model; is it simple or complex, is

it in the model set, and are there tapering effects. One must also be careful to note if the

objective of the study was to select the true model or if it was to select a best model, as for

prediction. These factors and considerations affect the conclusions from simulation

evaluations of model selection. Authors should avoid sweeping conclusions based on limited,

perhaps unrealistic, simulation scenarios; this error is common in the literature. Finally, to

have realistic objectives the inference goal ought to be that of obtaining best predictive

inference or best inference about a parameter in common to all models, rather than “select the

true model."

6.1 MODEL AVERAGED VERSUS BEST MODEL INFERENCE

When prediction is the goal one can use model averaged inference rather than

prediction based on a single selected best model (hereafter referred to as “best").



It is clear from the literature that has evaluated, or even considered, model averaged inferences

compared to the best model strategy that model averaging is superior (e.g., Buckland et al.

1997; Hoeting et al. 1999; Wasserman 2000; Breiman 2001; Burnham and Anderson 2002;

Hansen and Kooperberg 2002; Lukacs et al. in review). The method known as boosting is a

type of model averaging (Hand and Vinviotti 2003, p. 130; this paper is also useful reading for

its comments on truth and models). However, model averaged inference is not common, nor

has there been much effort to evaluate it even in major publications on model selection nor in

simulation studies on model selection; such studies all too often look only at the best model

strategy. Model averaging and multimodel inference in general are deserving of more

research.

As an example of predictive performance we report here some results of simulation

based on the real data used in Johnson (1996). These data were originally taken to explore

multiple regression to predict percent body fat based on 13 predictors (body measurements)

that are easily measured. We choose these data as a focus because they were used by Hoeting

et al. (1999) in illustrating BIC and Bayesian model averaging (see also Burnham and

Anderson 2002, pp. 268-284). The data are from a sample of 252 males, ages 21 to 81 and are

available on the web in conjunction with Johnson (1996). The web site states “The data were

generously supplied by Dr. A. Garth Fisher, Human Performance Research Center, Brigham

Young University, Provo, Utah 84602, who gave permission to freely distribute the data and

use them for non-commercial purposes."

We take the response variable as 1/ ;  is measured body density (observedy D Dœ

minimum and maximum are 0.9950 and 1.1089). The correlations among the 13 predictors are

strong, but not extreme, almost entirely positive, and range from -0.245 (age & height) to

0.941 (weight & hip circumference). The design matrix is full rank. The literature (e.g.,

Hoeting et al. 1999) supports that the measurements  and ( , , )  on a subject cany x x x œ 1 13á w

be suitably modeled as multivariate normal. Hence, we base simulation on a joint multivariate

model mimicking these 14 variables by using the observed variance-covariance matrix as



truth. From that full 14 14 observed variance-covariance matrix for  and , and theory of‚ y x
multivariate normal distributions, we computed for the full linear model of  regressed on y x
the theoretical regression coefficients and their standard errors. The resultant theoretical effect

sizes /se( ) taken as underlying the simulation are given in Table 1, ordered from largest to^" "i i

smallest by their absolute values. Also shown is the index ( ) of the actual predictor variable asj

ordered in Johnson (1996).

                                       Table 1 about here  

We generated data from 13 models that range from having only one huge effect-size

(generating model 1) to the full tapering effects model (#13). This was done by first

generating a value of  from its assumed 13 dimensional “marginal" multivariate distribution.x
Then we generate E( )  (  was independent of ) for 13 specific models ofy y x xœ  ±  % %

E ( ) with normal(0, ), 1 , , 13. Given the generating structural model oni iy x i± µ œ á % 52

expected , was specified so that the total expected variation (structural plus residual) in y y5i 

was always the same and was equal to the total variation of  in the original data. Thus, , y 51 á

,  are monotonically decreasing.513

For the structural data generating models we used E ( )  (generating1 0 66y x x± œ "  "

model 1), E ( ) (generating model 2), and so forth. Without loss of2 0 6 13 136y x x x± œ " " "  

generality we used 0. Thus from Table 1, one can perceive the structure of each"0 œ

generating model reported on in Table 2. Theory asserts that under generating model 1 BIC is

relatively more preferred (leads to better predictions) but as the sequence of generating models

progresses K-L based model selection becomes increasingly more preferred.

Independently from each generating model we generated 10,000 samples of  and ,x y

each of size 252. For each such sample all possible 8,192 models were fit, i.e., all subsetsn œ

model selection was used based on all 13 predictor variables (regardless of the data generating

model). Model selection was then applied to this set of models using both AIC  and BIC toc

find the corresponding sets of model weights (posterior model probabilities), hence also the

best model (with 252 and maximum being 15 AIC  rather than AIC should be used).n K œ c



The full set of simulations took about two months of CPU time on a 1.9 GHz Pentium 4

computer.

The inference goal in this simulation was prediction. Therefore, after model fitting for

each sample we generated, from the same generating model , one additional statisticallyi

independent value of  and then of E( ) E ( ). Based on the fitted models from thex y y x ±´ i

generated sample data and this new , E( ) was predicted (hence, E( )), either from the^x y x y ±

selected best model, or as the model averaged prediction. The measure of prediction

performance used was predictive mean square error (PMSE) as given by the estimated (from

10,000 trials) expected value of (E( ) E ( ))^ y y x i ±
2.

Thus, we obtained four PMSE values from each set of 10,000 trials: PMSE for both the

“best" and “model averaged" strategies for both AIC  and BIC. Denote these as PMSE(AIC ,c c

best), PMSE(AIC , ma), PMSE(BIC, best), PMSE(BIC, ma), respectively. Absolute values ofc

these PMSEs are not of interest here because our goal is comparison of methods; hence, in

Table 2 we report only ratios of these PMSEs. The first two columns of Table 2 compare

results for AIC  to those for BIC based on thec

ratios

    ,    column 1, Table 2PMSE(AIC , best)
PMSE(BIC, best)

c

    ,      column 2, Table 2.PMSE(AIC , ma)
PMSE(BIC, ma)

c

Thus if AIC produced better prediction results for generating model  the value in that row forc i

columns 1 or 2 is 1, otherwise BIC was better.

                                    table 2 about here  

The results are as qualitatively expected: under a Figure 2 scenario with only a few big

effects (or no effects), such as for generating models 1 or 2, BIC outperforms AIC . But as wec

move more into a tapering effects scenario (Figure 1) AIC  is better. We also see from Tablec



2, by comparing columns 1 and 2, that the performance difference of AIC  versus BIC isc

reduced under model averaging: column 2 values are generally closer to 1 than are column 1

values, under the same generating model.

Columns 3 and 4 of Table 2 compare the model averaged to best model strategy

within AIC  or BIC methods:c

    ,    column 3, Table 2PMSE(AIC , ma)
PMSE(AIC , best)

c

c

    ,      column 4, Table 2.PMSE(BIC, ma)
PMSE(BIC, best)

Thus if model averaged prediction is more accurate than best model prediction the value in

columns 3 or 4 is 1, which it always is. It is clear that here, for prediction, model averaging

is always better than the best model strategy. The literature and our own other research on this

issue suggests that such a conclusion will hold generally. A final comment about information

in Table 2, columns 3 and 4: the smaller the ratio, the more beneficial was the model

averaging strategy compared to the best model strategy.

In summary, we maintain that the proper way to compare AIC- and BIC-based model

selection is in terms of achieved performance, especially prediction but also confidence

interval coverage. In so doing it must be realized that these two criteria for computing model

weights have their optimal performance under different conditions: AIC for tapering effects,

BIC for when there are either no effects at all, or there are a few big effects and all others are

zero effects (no intermediate effects, no tapering effects). Moreover, the extant evidence

strongly supports that model averaging (where applicable) produces better performance for

either AIC or BIC under all circumstances.

6.2 GOODNESS-OF-FIT AFTER MODEL SELECTION



Goodness-of-fit theory about the selected best model is a subject that has been almost

totally ignored in the model selection literature. In particular, if the global model fits the data

does the selected model also fit? This appears to be a virtually unexplored question; we have

not seen it rigorously addressed in the statistical literature. Post model-selection fit is an issue

deserving of attention; we present here some ideas and results on the issue.  Full-blown

simulation evaluation would require a specific context of a data type and a class of models,

data generation, model fitting, selection, and then application of an appropriate goodness-of-fit

test (either absolute, or at least relative to the global model). This would be both time

consuming and one might wonder if the inferences would generalize to other contexts.

A simple, informative shortcut can be employed to gain insights into the relative fit of

the selected best model compared to a global model assumed to fit the data. The key to this

shortcut is to deal with a single sequence of nested models, . Itg g g g1 +1§ â § § â §i i R§

suffices that each model increments by one parameter, i.e., 1, and  is arbitrary;K K Ki i+1 1œ 

K K i1 œ œ1 is convenient as then . In this contexti

  AIC AIC ( ) 2 i i iœ +1
2
1 ; -

and

  BIC BIC ( ) log( ) ,i i iœ +1
2
1 ; - n

where ( ) is a noncentral chi-square random variable on 1 degree of freedom with; -2
1 i

noncentrality parameter . In fact, ( ) is the likelihood ratio test statistic between models- ; -i i
2
1

g gi i and  (a type of relative, not absolute, goodness-of-fit test). Moreover, we can use+1

- - -i i iœ n-1 1 where nominally  is for sample size 1. These  are the parameter effect sizes and

there is an analogy between them and the K-L distances here: the differences ( , ) ( , )I f g I f gi i +1

are analogous to and behave like these -i.

Building on these ideas (cf., Burnham and Anderson 2002, pp. 412-414) we get



               AIC AIC ( ( ) 2 ) ,i R j
j i

œ  !V-1

=

2
1 1; n-

for for AICc

  AIC AIC ( ) 2  ,ci cR j
j i

œ    !’ “V-1

=

2
1 1; n- 2 ( 1) 2( 1)( 2)

1 2
K K K K
n K n K

i i i i

i i

  
  

and

  BIC BIC ( ( ) log( )) .i R j
j i

œ  !V-1

=

2
1 1; n n-

To generate these sequences of model selection criteria in a coherent manner from the

underlying “data" it suffices to, for example, generate the AIC  based on the above andi

then use

  AIC AIC  , ci iœ  2 ( 1)
1

K K
n K

i i

i




and

  BIC AIC 2 log( ) i i i iœ  K K n

to get the AIC  and BIC Because only differences in AIC  or BIC values matter it suffices toci i. -

set AIC to a constant. Thus for specified , ,  and  we generate the needed 1R i R K n R1 1- 

independent noncentral chi-square random variables. Then we compute a realization of the

sequences of AIC and BIC values for the underlying nested model sequence. We can then

determine the best model under each model selection criterion.

If model  is selected as best under a criterion, for , then the usualg h Rh 

goodness-of-fit test statistic (for fit relative to the global model ) isgR

  ( ) ,; ;2 2
-1

=
1 1@ œ !V

j h
jn-



with degrees of freedom  (  when ). Hence, we can simulate having@ œ œ œK K R h K iR h i 

one set of data, doing both AIC, or AIC , and BIC model selection for that data and then checkc

the goodness-of-fit of each selected best model, relative to the baseline global model . ThegR

results apply to discrete or continuous data, but do assume “large" .n

These simulations generate a lot tabular information, so we present below only a

typical example. In general, we recommend the interested reader run their own simulations

(they are easy to do and run quickly; SAS  code for doing this is available from KPB). We©

have done a lot of such simulation to explore primarily one question: after model selection

with AIC or BIC does the selected model always fit, as judged by the usual likelihood ratio

statistic -value that tests  versus the selected model (this test ignores that a selectionP gR

process was done)? Also, do the results differ for AIC versus BIC? We found that for large

enough , so that AIC and AIC are nearly the same, then for a Figure 1 scenario (i.e. realisticn c 

data), (1) the AIC selected model always fits relative to the global model, and (2), the BIC

selected model too often (relative to the -level of the test) fails to fit the data. Under a!

scenario such as in Figure 2 the BIC selected model generally fits the data; GOF results for

AIC model selection are about the same for all three scenarios.

To be more precise let 0.05 so we say the selected model fits if the (relative)! œ

goodness-of-fit test -value 0.05. Then for the AIC selected model we almost always findP 

P  0.05. However, for the BIC selected model, under tapering effects, the probability that

P R œ œ0.05 occurs can be much higher than the nominal 0.05. For example, let 10,!

K ii œ , and (1) to (10) be 0.3, 0.2, 0.15, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001, 0.0003,- -1 1

respectively (mimics Figure 1). Table 3 gives some of these goodness-of-fit results for AICc

and BIC under this scenario for a few values of .n

                                     table 3 about here   

In Table 3 the key column is column three. It is the relative frequency at which the

selected best model  did not fit relative to model 10 (the global model here), in the sensegh

that its GOF -value was 0.05. In calculating this statistic if the selected model was modelP Ÿ



10 we assumed the model fit. Hence, the lack of fit statistic in Table 10 column three would be

larger if it were only for when the selected best model was model 1 through 9. Column four of

Table 3 gives the frequency, out of 10,000 trials, wherein the best model was one of models 1

to 9. These GOF results are striking. The model selected as best by AIC (which is not reallyc 

different here from AIC at 200) rarely leads to a GOF -value 0.05 for 100.n P n   œ  !

The best BIC model often fails to fit, relative to model 10, in terms of its GOF -valueP

being 0.05 (e.g, GOF failure rate of 0.217 at 200 here). Columns 5 to 9 of Table 3Ÿ œn

provide further summaries of these GOF -values when the selected best model was 1 throughP

9.

These results are not atypical under tapering effects. For the Figure 2 scenario that

favors BIC, GOF for the BIC selected model comes much closer to nominal levels. Thus

again, operating characteristics of AIC and BIC depend on the underlying scenario about

reality versus the model set. What should we make of such results for the tapering effects

case? Is it bad that the AIC-best model always fits: is it overfitting? Is it bad that the BIC-best

model fails to fit at a much higher rate than the -level: is it underfitting? We do not know!

because to have evidence about the matter we need to have a context and actual parameters

estimated and look at mean square errors and confidence interval coverage (see Burnham and

Anderson 2002, pp. 207-223).

We make four comments on the issues. First, as regards a perception of “overfit" by

AIC, surely when one deliberately seeks a good model for analysis of data one is seeking a

good fit. Thus if the global model fits, we think one would expect the best model, under a

selection criterion, to also fit. Heuristically, it is a strange model selection criterion that often

selects a best model that fits poorly; AIC does not do this. However, we also claim the best

model often allows some bias in estimates, which could be analogous to some lack of fit.

Therefore, second, with regard to BIC the degree of lack of fit may not matter we do not

know so do not claim it matters. Third, model averaged inference further renders the GOF

issue somewhat moot because all the models are being considered, not just the best model.



Forth, these observations and issues about fit reinforce to us that model selection procedures

should be judged on their inferential operating characteristics, such as predictive mean square

error and interval coverage under realistic scenarios for generation of data.

7. DISCUSSION AND CONCLUSIONS

The context of classical model selection proceeds in 4 steps:

(1) the goal is model-based inference from data, and

(2) there is a set of  relevant models, but no certainty about which model shouldR

be used; hence,

(3) a data-based choice is made among these (perceived as) competing models, and

(4) then inference is made from this one selected model as if it were a priori the only

model fit to the data.

Steps 1 and 2 are almost universal in model-based inference. Step 3 begins a flawed inference

scenario, in particular the implicit assumption that inference must be based on a single model

is not justified by any philosophy or mathematics.

To avoid the pitfalls inherent in step 4 we must conceptualize model selection to mean,

and be, multimodel inference. The new step 3 should be

(3) there is a data-based assignment of model weights that sum to 1.0; the weight

for model  reflects the evidence or information concerning model (uncertainty ofg gi i 

model in the set of models).g R i 

The old step 3 is subsumed in this new step 3 because the model with the highest weight is the

model that would be selected as the single best model. But now we avoid many of the

problems that stem from old step 4 by using a new step 4.

(4) Based on the model weights, and the results and information from the  fitted,R

models we use multimodel inference, in some or all of its myriad forms and methods.

Model selection should be viewed as the way to obtain model weights, not just a way to select

only one model (and then ignore that selection occurred).



Among other benefits of this approach it effectively rules out null hypothesis testing as

a basis for model selection, because multimodel inference forces a deeper approach to model

selection. It means we must have an optimality criterion and selection (weight assignment)

theory underlying the approach. Potential users should not reject or ignore multimodel

inference just because it is relatively new, especially when based on AIC. There is a sound

philosophical basis and likelihood framework for AIC, based on on Kullback-Leibler

information theory, which itself has a deep foundation.

An important issue about model selection based on K-L information is that AIC as

such is a large sample approximation (relative to the maximum  for the model set) to theK

needed criterion. A second order bias adjustment is needed when  is too small, say 40.n/K Ÿ

While AIC is not unique as providing the needed small-sample version of AIC, wec 

recommend it for general use, and indeed the evidence is that it performs well. Much

confusion and misinformation has resulted in the model selection literature when investigators

have done simulation evaluations using AIC when they should have used AIC  (Anderson andc

Burnham 2002, pp. 287-293).

A compatible, alternative view of AIC is that it arises from a Bayesian derivation

based on the BIC statistic and a savvy prior probability distribution on the  models. ThatR

prior depends on both  and ( 1, , ) in a manner consistent with the information-n K i Ri œ á

theoretic viewpoint that the data at hand surely reflect a range of tapering effects based on a

complex reality, rather than arising from a simple true model, with no tapering effects, that is

in the model set.

The model selection literature often errors by considering that AIC and BIC selection

are directly comparable, as if they had the same objective target model. Their target models

are different (Reschenhofer 1996). The target model of AIC is one that is specific for the

sample size at hand: it is the fitted model that minimizes expected estimated Kullback-Leibler

information loss when fitted model is used to approximate full reality, . This target modelg fr 



changes which sample size. Moreover, in this overall philosophy, even the set of models is

expected to be changed if there are large changes in n.

The classical derivation of BIC assumed there was a true model, independent of , thatn

generated the data, it was a model in the model set, and this true model was the target model

for selection by BIC. However, selection of this true model with probability 1 only occurs in

the limit as  gets very large and in taking that limit the model set is kept fixed. The originaln

derivation of BIC has been relaxed, wherein we realize that such convergence only justifies an

inference of a quasi-true model (the most parsimonious model closest in K-L information to

truth, ). Even within the Bayesian framework not all practitioners subscribe to BIC for modelf

selection (some Bayesians do not believe in model selection at all). In particular, we note the

recent development of the deviance information criterion (DIC) by Spiegelhalter et al. (2002).

As these authors note, DIC behaves like AIC, not like BIC which is one reason they prefer

DIC (it avoids the defects of BIC model selection).

Given that AIC can be derived from the BIC approximation to the Bayes factor

the distinction between AIC vs. BIC model selection becomes one about the prior on models:

q R i œ 1/ for BIC, or for AIC the K-L prior of section 4 (formulae 3a, 3b). This latter prior is a

savvy prior, by which we mean that the expected number of parameters that can be estimated

with useful precision depends on and (which are known a priori).  Thus for a savvy prior,n K 

in general, becomes a function of  and , say ( , ), and we think in terms of priorq n K q K  ni i i i

E( ) , for some , perhaps in the 10 or 15 range.  Fitting a model with too fewK n/m mœ

parameters wastes information. With too many parameters in a model some or all (with typical

correlated observational data) of the estimated parameters are too imprecise to be inferentially

useful.

Objective Bayesian analysis with a single model uses an uninformative (vague) prior

such as U(0, 1) on a parameter  if 0 1. This turns out to be quite safe, sort of) ) 

“innocent" one might say (no lurking unexpected consequences). So presumably it seemed

natural, objective, and innocent when extending Bayesian methods to model selection to



assume a uniform prior on models. However, we now know that this assumption has

unexpected consequences (it is not innocent), as regards to the properties of the resultant

model selection procedure. Conversely, there is a rationale for considering that the prior on

models ought to depend on  and , and so doing produces some quite different properties ofn K

the selection method as compared to use of 1/ The choice of the prior on models can beR. 

important in model selection and we maintain  should usually be a function of and .q n Ki

Whereas the best model selected by either BIC or AIC can be distinctly different and

hence suggest partially conflicting inferences, model averaged inference diminishes the

perceived conflicts between AIC and BIC. In general, we have seen robustness of inference to

variations in the model weights for rational choices of these weights. For this reason we think

there is little need to seek alternative savvy priors to the K-L prior.

Several lines of thinking motivate us to say the comparison of AIC and BIC model

selection ought to be based on their performance properties such as mean square error for

parameter estimation (includes prediction) and confidence interval coverage: tapering effects

or not, goodness-of-fit issues, derivation of theory is irrelevant as it can be frequentist or

Bayes. When any such comparisons are done the context must be spelled out explicitly

because results (i.e., which method “wins") depend on context (e.g, Figures 1-3). Simulation

evaluations should generate realistically complex data, should use AIC , and should usec

multimodel inference, hence go well beyond the traditional single best model approach.

We believe that data analysis should routinely be considered in the context of

multimodel inference.  Formal inference from more than one (estimated best) model arises

naturally from both a science context (multiple working hypotheses) and a statistical context

(robust inference, while making minimal assumptions).  The information-theoretic procedures

allowing multimodel inference are simple, both in terms of understanding and computation,

and, when used properly, provide inferences with good properties, e.g., as regards predictive

mean squared error and achieved confidence interval coverage.  Multimodel inference goes

beyond the concepts and methods noted here; we give a richer account in Burnham and



Anderson (2002).  Model selection bias and model selection uncertainty are important issues

that deserve further understanding.  Multimodel inference is an new field where additional,

innovative research and understanding is needed and we expect a variety of important

advances to appear in the years ahead.
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Table 1.  Effects, as /se( ), in the models used for Monte Carlo simulation based on the body^" "

fat data to get predictive mean square error results by model selection method (AIC  or BIC)c

and prediction strategy (best model or model averaged); model  has the effects listed on linesi

1 to  and it's remaining  are 0. i "

                         /se(^)        Variable i j" "
    1    11.245     6
    2   - 3.408    13
    3     2.307    12
    4   - 2.052     4
    5     1.787     8
    6   - 1.731     2
    7     1.691     1
    8   - 1.487     7
    9     1.422    11
   10     1.277    10
   11   - 0.510     5
   12   - 0.454     3
   13     0.048     9



Table 2. Ratios of predictive mean square error (PMSE) based on Monte Carlo simulation

patterned after the body fat data, 10,000 independent trials for each generating model; margin

of error for each ratio is 3%; generating model  has exactly  effects, ordered largest toi i

smallest for models 1 to 13 (see Table 1 and text for details).

                                   PMSE ratios of                   PMSE Ratios for
                                            AIC BIC           model averaged bestc ƒ ƒ
Generating                Best             Model
 model                   model           averaged                  AIC           BICi c 
    1        2.53     1.97       0.73    0.94
   2        1.83     1.51       0.80    0.97
   3        1.18     1.15       0.83    0.85
   4        1.01     1.05       0.84    0.81
   5        0.87     0.95       0.84    0.77
   6        0.78     0.88       0.87    0.77
   7        0.77     0.86       0.86    0.77
   8        0.80     0.87       0.85    0.78
   9        0.80     0.87       0.85    0.78
  10        0.72     0.81       0.85    0.75
  11        0.74     0.82       0.84    0.76
  12        0.74     0.81       0.84    0.76
  13        0.74     0.82       0.83    0.75



Table 3. Simulation of goodness-of-fit (GOF) results after model selection (see text for

details) for 10 nested models, , effects (1) to (10) as 0.3, 0.2, 0.15, 0.1, 0.05,R K iœ i œ - -1 1

0.025, 0.01, 0.005, 0.001, 0.0003, respectively; 10,000 trials at each , 0.05; model n g! œ 10

was consider to always fit so results on GOF relate only to models , 10.g ii 

   Sample      Selection    Rel. freq.   Freq. of     Mean of                 Percentiles of -valueP
     size        method      not fitting    10       GOF  1             5               10n i P           
25
    50   AIC  0.026  9961   0.470  0.030  0.073  0.118  0.246c 

    BIC   0.115  9995   0.352  0.006  0.022  0.044  0.117
   100   AIC  0.004  9809   0.511  0.063  0.120  0.171  0.296c 

    BIC   0.159  9995   0.470  0.003  0.014  0.030  0.087
   200   AIC  0.004  9569   0.531  0.096  0.155  0.202  0.328c 

    BIC   0.217  9997   0.273  0.002  0.009  0.019  0.062
   500   AIC  0.000  9178   0.546  0.127  0.178  0.224  0.345c 
         BIC   0.281  9992   0.236  0.001  0.005  0.011  0.041
  1000   AIC  0.000  8662   0.537  0.136  0.176  0.218  0.339c 

    BIC   0.320  9978   0.227  0.001  0.004  0.009  0.035
 10000   AIC  0.000  3761   0.448  0.159  0.171  0.187  0.244c 
         BIC   0.509  9295   0.135  0.000  0.001  0.002  0.009



Figure 1. Values of Kullback-Leibler information loss, ( , ( )) ( , ( )),I f  g nI f  gr r† ± ´ † ±) )o 1 o

illustrated under tapering effects for 12 models ordered by decreasing K-L information;

sample size , hence the y-axis, is left unspecified; this scenario favors AIC-based modeln

selection.

Figure 2. Values of Kullback-Leibler information loss, ( , ( )) ( , ( )),I f  g nI f  gr r† ± ´ † ±) )o 1 o

illustrated when models 1 (simplest) to 12 (most general) are nested with only a few big

effects; model 4 is a quasi-true model, models 5 to 12 are too general; sample size , hence then

y-axis, is left unspecified; this scenario favors BIC-based model selection.

Figure 3. Values of Kullback-Leibler information loss, ( , ( )) ( , ( )),I f  g nI f  gr r† ± ´ † ±) )o 1 o

illustrated when models 1 (simplest) to 12 (most general) are nested with a few big effects (in

model 4), then much smaller tapering effects (models 5 to 12); whether BIC or AIC is favored

depends on sample size.
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