
1

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Architecture Driven Modernization Tutorial
© Copyright 2005 Software Revolution Inc, Klocwork, & Tata Consultancy Services Ltd.

All Rights Reserved

Abstract Syntax Tree Metamodel Standard
ASTM Tutorial 1.0

Washington, DC
October, 2005

Philip Newcomb
Chief Executive Officer

The Software Revolution, Inc. (TSRI)
11410 NE 122nd Way

Kirkland, Washington 98034
Phone: 425-284-2770

philip.newcomb@softwarerevolution.com

www.softwarerevolution.com

2

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Instructor BIO & Contact Info

Philip H. Newcomb
Chief Executive Officer, Chief Technology Officer
The Software Revolution, Inc
11410 NE 122nd Way, Suite 304
Kirkland, WA 98034
Phone: 425 284 2770

Email: philip.newcomb@softwarerevolution.com
Corporate Web Site: www.softwarerevolution.com
Case Study Web Site: www.legacysystemmodernization.com
Value Proposition Web Site: www.automatedsoftwaremodernization.com

Philip Newcomb is CEO/CTO of The Software Revolution, Inc (TSRI), a company that has completed over
35 automated modernization projects for systems as diverse as satellite command and control, strategic
warfare planning, ballistic missile early warning, health care, logistics, engineering operational
sequencing, etc. Philip is a prominent contributor to the Object Management Group (OMG) ADM task
force that is defining industry-based modeling standards and best practices for Architecture Driven
Modernization (ADM) to support Model Driven Architecture (MDA). He leads the joint submission team of
ADM TF members that is defining the ASTM standard. Philip was a research scientist at Boeing Artificial
Intelligence Laboratory for 12 years before founding TSRI in 1994. He was co-Chair of the Working
Conference for Reverse Engineering (WCRE) in 1995. With over 30 technical publications and a wealth
of practical knowledge, Philip has contributed at the intersection of the fields of reverse-engineering,
automatic programming and formal methods for over 20 years.

The Software Revolution is building OMG ADM compliant services, products and technology under his
technical and executive leadership.

3

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Abstract

It has long been observed that although there are many differences
between the statements in many programming languages there is a very
large set of statements that are common across most languages. The
Object Management Group (OMG)Architecture Driven Modernization Task
Force has issued an RFP for the Abstract Syntax Tree Meta Modeling
standard. The ASTM seeks to establish a single comprehensive set of
modeling elements for capturing how many software languages represent
the same software language constructs and concepts. Software analysis
and transformation tools that use the ASTM will achieve broader
applicability through software language independence at the model level.
This tutorial will present the vision of the ASTM, its business significance,
its relationship to other OMG standards, including the Knowledge
Discovery Metamodel (KDM), the OMG Model Driven Architecture (MDA)
and Unified Modeling Language (UML). The perspectives of the ASTM
submission teams, and their progress towards a unified definition for the
ASTM standard will be presented

4

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is the ADM and its Mission?

• The OMG chartered the Architecture Driven
Modernization Task Force in 2003 to extend MDA
practices and standards to existing systems.

• The Task Force cochairs are
– Bill Ulrich (Tactical Strategy Group)
– Djenana Campara (Klocwork)

• The OMG Architecture Driven Modernization Task
Force (ADM TF) has defined the following 4 goals:

– The ultimate goal - Revitalization of Existing Applications
– Make existing applications more agile
– Leverage existing OMG modeling standards and the MDA

initiative
– Consolidate best practices leading to successful modernization

(http://adm.omg.org/)

5

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How does ADM support MDA?

MDA is a top-down model-driven process for new system
development.

– Architectural models provide portability, interoperability and reusability through architectural
separation of concerns

– Architectural models direct the course of understanding, design, construction, deployment,
operation, maintenance and modification.

ADM incorporates bottom-up extraction of architectural models
followed by top down reuse in MDA processes and scenarios for
legacy systems modernization.

THEN (before ADM) NOW (MDA + ADM)

6

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Why does MDA need ADM?

• ADM closes the gap between methodologies
tools available for new and old software

– “We are addressing a big gap between methodologies and
tools that are available for developing new software — for
example, the OMG MDA — and the total lack of tools and
methodologies that help you to be successful with your
existing code.”

(William Ulrich, 2003)

7

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How do ADM Tools fit into the MDA?

• ADM tools must adhere to the standards for
software modeling, as defined by the
Object Management Group (OMG).

– Technically no ADM tools exist yet … because the
OMG has not yet approved any ADM Task Force
Platform Committee standards.

– To be compliant with OMG MDA principles, ADM tools
must be compliant with the OMG MOF

MetaMeta
ObjectObject
FacilityFacility

Amen

8

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What Are Standards-Based Tools?
(and why should you prefer them?)

• Standard-Based Enterprise
– IT Artifacts (such as Data and Applications) are Managed In Repositories As Standards-

Based Models
– IT Artifact Management employs Standards-Based Service Providers, Standards-based

Tools, Standards-based Tool Chains, and Standards-Based Tool Chains
• Standard-Based Service Providers

– Offer Services Based Upon Standards-Based Tools, Tool Chains and Tool Suites
– Collaborate with Customers and Other Services Providers Via Interchange of Industry

Standard Models (e.g. Eclipse, MOF™, XMI™, UML™)
• Standards-Based Tools

– Store and Access Models in Industry Standard Formats (XMI™)
– Interoperate With Other Tools By Interchanging Standards-Based Models

• Standards-Based Tool Chains
– A Series of Tools that Cooperatively Produce A Work Product
– Cooperate By Interchanging Standards-Based Models.

• Standards-Based Tool Suites
– Collections of Tools that Interoperate Using Standards-based Models

9

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What are the ADM Scenarios?

MODERNIZATION GOAL:Pick One or More (Or Extend the List)

XI. Reusable Software Assets / Component Reuse

XII. Model-Driven Architecture Transformation

X. Application Package Selection & Deployment

IX. Data Warehouse Deployment

VIII. Application & Data Architecture Consolidation

VII. Data Architecture Migration

VI. Services Oriented Architecture Transformation

V. Non-Invasive Application Integration

IV. Platform Migration

III. Language-to-Language Conversion

II. Application Improvement

I. Application Portfolio Management

Check BoxModernization Scenario

See Handout Bill Ulrich, ADM Scenarios White Paper 04-09-04
.

10

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Why define ADM Scenarios?

• Helps envision all potential ADM applications.
• Helps a user determine the tasks, tools and use of

the ADM.
• Provides templates for crafting project objectives,

plans and related deliverables.
• Defines tasks necessary to complete a given

modernization initiative and omits unnecessary
tasks that would not apply to such a scenario.

• Allows a user to pinpoint the types of tools
necessary to perform these tasks.

• Identifies the universe of modernization scenarios
and tasks and provides a guide as to the role of
the ADM within modernization in general.

Bill Ulrich, ADM Scenarios White Paper 04-09-04

11

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How do you use Modernization Scenarios?

• Use Scenarios to define approach to various
application improvement, migration and redesign
initiatives that an organization may pursue.

• Use Scenarios to pinpoint the types of tools
necessary to perform these tasks.

• Mixed and Match Scenarios based upon the
organization’s Modernization goals.

• Language-to-language conversion might be
coupled with a platform migration for example.

• Other scenarios may be added to this list from
time to time…

Bill Ulrich, ADM Scenarios White Paper 04-09-04

12

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is the ADM Roadmap?

Data

Structure

Behavior

Action Semantics (OMG)

RFP 1

Abstract Syntax Trees (RFP 2)

Analysis (RFP 3)

Metrics (RFP 4)

Visualization (RFP 5)

Refactoring (RFP 6)
Target Mapping &
Transformation (RFP 7)

Knowledge Discovery (RFP 1)

User Interface

RFP 2

RFP 7
RFP 6
RFP5
RFP 4
RFP 3

To structure its work the ADM PTF platform task
force is defining seven interrelated standards,
starting with the KDM followed by the ASTM.

13

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ADM Roadmap Synopsis

•1. Knowledge Discovery Meta-Model Package (KDM) – (adopt ’05)
– establishes an initial meta-model
– allows modernization tools to exchange application meta-data across applications,

languages, platforms and environments
– provides a comprehensive (inventory) view of application structure and data, but does

not represent software below the procedure level
•2. Abstract Syntax Tree Meta-Model Package (ASTM) – (adopt ’06)

– adds representation of software below the procedural level
– allows full representation of applications and facilitates the exchange of granular meta-

data at the translation level across multiple languages
– Unifies all syntactical language models into a common abstract syntax meta model.

•3. Analysis Package (AP) – (initiate ‘05)
– facilitates the examination of structural meta-data with the intent of deriving detailed

behavioral and structural meta-data about systems
– may take the form of design patterns, business rules or other aspects of a system that

are not an apparent part of the structure of the system, but are rather semantic
derivations of that structure and the data

•4. Metrics Package (MP) – (initiate ‘06)
– derive numeric metrics that describes measurable technical, functional and

architectural properties from the structural and the behavioral aspects of the
applications of interest and its data.

– supports planning and estimating, ROI analysis and the ability of the enterprise to
maintain application and data quality

14

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

5. Visualization Package (VP) – (initiate ‘07)
– builds on KDM, ASTM, AP and MP
– focuses on ways to depict application meta-data stored within ADM models.
– May include any variety of views appropriate or useful for planning and managing

modernization initiatives
– Examples include the use of graphs or charts, metric summaries or standardized

development models

6. Refactoring Package – (initiate ‘08)
– builds on KDM, ASTM, AP, MP and VP
– defines ways in which the ADM models be used to re-architect applications
– Includes structuring, rationalizing, modularizing and in other ways improving existing

applications without redesigning those systems or otherwise deriving model-driven views
of those systems

7. Target Mapping & Transformation (TMT) Package – (initiate ‘09)
– builds on KDM, ASTM, AP, MP, VP and RP
– Defines mappings between the ADM models and target models to enable transformation
– Development paradigms may vary, but will include MDA as a target
– completes the ADM task force efforts in providing a transformational bridge between

existing systems and target architectures

ADM Roadmap Synopsis (cont.)

15

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Does the ADM Roadmap Support the
ADM Scenarios?

ADM Scenarios
I.

Application
Portfolio

Management

II.
Application

Improvement

III.
Language-to-Language

Conversion

IV.
Platform
Migration

IV.
Platform
Migration

V.
Non-Invasive
Application
Integration

VII. Data
Architecture

Migration

VIII. Application
& Data

Architecture
Consolidation

IX. Data
Warehouse
Deployment

X. Application
Package

Selection &
Deployment

XI. Reusable
Software
Assets /

Component
Reuse

XII. Model-Driven
Architecture

Transformation

ADM Roadmap

ASTM

KDM

AP MP VP RP TMTP

OMG Repository Common Facility
MOF UML XMI

ToolA ToolB ToolC ToolD ToolE

Standards-Based Services, Tools, Tool Chains, and Tool Suites

16

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Does the ADM Roadmap Support UML
2.0 and MDA?

ADM Roadmap

ASTM

KDM

AP MP VP RP TMTP

ToolA ToolB ToolC ToolD ToolE
MDA & UML Tools

OMG Object Services

OMG Repository Common Facility
MOF UML XMI

UML 2.0
I.

Activity Diagrams
II.

Class Diagrams
III.

Communication
Diagrams

IV.
Component
Diagrams

IV.
Deployment

Diagrams

V.
Composite
Structure
Diagrams

VII.
Interaction
Overview
Diagram

VIII.
Object

Diagram

IX.
Package
Diagram

X.
Sequence
Diagram

XI.
State

Machine
Diagram

XII.
Timing

Diagram

XII. Use
Case

Diagram

OMG Interchange Services

17

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is the Status of the ASTM RFP?

Duration Event or Activity Actual Date

Preparation of RFP by TF 3 February 2005

RFP placed on OMG document server 3 February 2005

Approval of RFP by Architecture Board
Review by TC

3 February 2005

0 TC votes to issue RFP 3 February 2005

60 LOI to submit to RFP due 3 April 2005

117 Initial Submissions due and placed on OMG document server
(“Three week rule”)

30 May 2005

133 Voter registration closes 15 June 2005

139 Initial Submission presentations 21 June 2005

Preliminary evaluation by TF 23 June 2005

225 September 15th ADM Task Force Voted To:
- Change Revised Submission To February 24th

- No Time Table Established For Final Submission
- No Time Table Established For Adoption

15 September, 2005

Jan 23rd Revised Submission on Server January 24, 2006

• Three ASTM Submissions were Received (30 May, 2005)
• Three ASTM Submissions were Joined (23rd June, 2005)
• ASTM Revised Submission will be Reviewed (February 15th ,2006)
• ASTM Adoption expected in 2006

141

355

Feb 15th ADM TG Review of Revised Submission February 15, 2006378

18

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Who’s Who on the ASTM?

• RFP II ASTM
– Submitters

•The Software Revolution (TSRI)
•Klocwork
•IBM
•EDS
•TCS America
•Interactive Objects Software GmbH
•ASG

– Supporters
• Kestrel Institute
• DSTG (Delta Software Technology GmbH)
• Blue Phoenix
• Northrop Grumman
• Tactical Strategy Group
• Adaptive Technologies
• SAIC
• Composable Logic
• 88 Solutions

• RFP II ASTM
– Voting List

•ASG
•Adaptive Technologies
•Alcatel
•Blue Phoenix
•DSTC
•Data Access
•EDS
•Ecubesystems
•Fujitsu
•Hewlitt Packard
•Interactive Objects Software
•IBM
•Klocwork
•Kestrel Institute
•Lockheed Martin
•Mentor Graphics
•Northrup Grumman
•NIST
•Raytheon
•Relativity
•Rockwell Collins
•SEEC
•TCS America
•Thales
•Unisys
•The Software Revolution

ASTM Joint Submission Team
• 7 Submitters
• 9 Supporters
• 26 Voting List
• Lead/Coordinator: TSRI (Philip Newcomb)

19

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Does the ASTM Complement The KDM?

The ASTM and KDM are complementary elements of
the ADM Roadmap

ASTM RFP #2
Abstract Syntax Tree Meta-model

Programming Language Constructs

ASTM is information source for KDM

Below Procedural Level

They are complementary but individually useful standalone standards.

KDM RFP #1
The Knowledge Discovery Meta-model

Comprehensive high-level view…
Behavior

Structure
Data

Above Procedural Level

20

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

• From ASTM perspective:

– The KDM as well as the ADM Roadmap
are several MDA MOF models the
ASTM populates from its highly detailed
and precise models of systems.

– The KDM is one source for information
about systems which can guide large-
grained analysis, metrics, visualization,
model mapping, transformations &
refactoring which the ASTM supports.

– The ASTM does not directly depend
upon or intersect with the KDM for any
part of its meta-model definition.

– Together the ASTM and the KDM
provide high fidelity support for ADM
scenarios when effectively combined.

• From KDM perspective:

– The ASTM is one means of
populating the KDM.

– The ASTM extends the KDM to
support comprehensive and
detailed modeling of systems.

How are the KDM and ASTM independent?

21

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How do KDM and ASTM Regard Transformation?

From KDM perspective:

• Transformation is an
augmentation strategy
that includes:

– Understanding application data,
structure and behavior and
architecture

– Making legacy systems more
reliable and adaptable

– Extracting and rationalizing
data definitions, data and
business rules

– Redesigning and reusing legacy
rules and data within the
context of strategic enterprise
architecture.

From ASTM Perspective:

• Transformation is a direct
strategy that includes:

– Model driven mapping of data, structure
and behavior between language feature sets
(language translation).

– Model driven restructuring of language
feature sets with replacement of
undesirable features with reliable and
adaptable features (application refactoring)

– Model driven rationalizing of data
definitions, data and business rules by
abstraction to MDA data views (models) that
support model-driven regeneration of
specific language features.

– Model driven rearchitecting of systems by
abstracting design patterns and applying
generation, transformation and refactoring
to regenerate redesigned and rearchitected
enterprise applications.

22

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Are The ASTM And KDM Models Connected?

S
equence of characters

Sequence of tokens

S
yntax tree

A
bstract S

yntax tree

A
bstract S

yntax tree

S
equence of characters

Source language Target language

KDM

AST

Scope, Def-Use, CFG, DFG

Implicit Elements

Transformations

Courtesy Nick Mansurov

Sequence of tokens
S

yntax treeExplicit language elements
that have meaning

Conceptual Elements

23

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is the ASTM Business Value?

Standardizing the format of AST structures, representation
and interchange of AST models will …

• Complement the KDM by completing a comprehensive model
for the exchange of application models between application
modernization tools.

• Enable vendors to develop specialized modernization tools.

• Insure that the aggregate of vendor tools provides a
comprehensive modernization capability.

A standard KDM complemented by a standard ASTM will
enable a user of the technology to bring together a variety of
best-of-breed products to analyze, visualize, re-factor and
transform legacy applications.

24

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How does ASTM improve MDA?

• It establishes a standard bottom-most language modeling level
for many MDA tools to generate to and derive from.

• It allows AST models to be sharable among multiple tools from
different vendors accurately support analysis, visualization, re-
factoring, target mapping and transformations.

• Provides high levels of automation for tasks which are highly
manual today, such as application rehosting, platform
retargeting, legacy system replacement, database upgrade

• It provides a GAST with sufficient precision and generality and
fineness of granularity to allow its language modeling
elements to be used as a common basis for application
analysis, metrics, visualization translation, and refactoring.

25

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What’s the Relationship of ASTM to Other OMG Specs?

MOF 2.0 (ptc/04-10-15) Facilitates ASTM definition and exchange
formats (XMI, etc.)

Action Semantics as a part of UML 2.0 –
superstructure 2.0 finalization (ptc/2003-08-02)

The ASTM is concerned with syntax, while
action semantics is concerned with one form of
semantics.

IT Portfolio Management (ptc/04-11-03) IT Portfolio Mgmt. establishes the universe of
non-software aspects of the enterprise,
whereas the AST defines the software assets of
the enterprise.

UML (ptc/03-08-02; ptc/03-09-15; ptc/03-10-14) A subsequent ADM roadmap RFP will support
the derivation of UML models of software
artifacts from the ASTM.

CWM (formal/2003-03-02) The ASTM provides a language agnostic view
of syntactical data declarations while the CWM
data model does not.

EAI (includes detailed metamodels for
programming languages calls, including
COBOL) (ptc/02-02-02)

EAI is concerned with interfaces while the
ASTM defines the syntactic structure of the
software artifact.

Reusable Asset Specification (RAS) (ptc/04-06-
06)

Reusable Asset Specification provides a way to
define reusable asset packages for a domain of
interest. The software asset modeled by an
AST could be a RAS asset. ASTM could be
used to populate information in a RAS asset.

MOF/QVT model transformation (ad/2002-04-10) A subsequent ADM roadmap RFP will support
the utilization of MOF/QVT for transformation of
ASTM software artifacts.

26

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is an Abstract Syntax Tree?

AN AST IS…
• A formal representation of software syntactical structure of software
• More amenable to formal analysis than concrete syntax or surface syntax (the way

the code looks)
• A more precise formalism for detailed knowledge discovery than less formal

knowledge collectors (e.g. scanners, tokenizers, visual inspection)

AN AST MAY …
• Be an invertible representation that allows reconstruction of the “surface syntax” of

the legacy system from the “abstract syntax” (surface syntax ! abstract syntax)
• Be augmented with constraint analysis, data-flow analysis, control-flow analysis,

axiomatic analysis and denotational analysis and other views (conceptual,
scenario, interaction, collaboration, build, etc)

• Be used to derive software engineering metrics and documentation
• Be mapped or transformed into other abstract syntax models using rewrite rules.
• Be queried and manipulated using query and model manipulation languages

(such as OMG’s QVT™ and TSRI’s JTGEN™ and JRGen™)

An AST IS ALSO…
• A well-formed MOF Model, Meta-Model or Meta-Meta-Model

27

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What are Language Theory ASTs?

In programming language parsing theory the Abstract Syntax of a
programming language is distinct from the Abstract Syntax Tree
of an application.

• Abstract Syntax is a model consisting of the language constructs
from which a language is composed.

• Abstract Syntax Tree is a directed acyclic graph (DAG) consisting
of instances of Abstract Syntax language constructs.

• A well-formed BNF or EBNF (or grammar specification) is often
used to define the Abstract Syntax of a programming language.

• A parser generator is often used to generate a parser which
generates the Abstract Syntax Tree by parsing an application in the
language defined by the EBNF; but methods other than parsing can
be used to construct AST (such as generation from UML or BSBR
models).

28

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Is the AST Related To Other Source
Representations?

s

y

s

_

f

c

n

IDENTIFIER
sys_fcntl

(

int
IDENTIFIER

fd

,

Seq of char Seq of Tokens

…

…

Function_definition

Direct_declarator

Parameter_list

(Parameter_type_list

parameter

Direct_declarator)

IDENTIFIER
sys_fcntl

Compound_statement

Concrete Syntax
Tree

Func_decl
Sys_fcntl

Abstract Syntax Tree

Certain sequences of characters
are grouped into tokens

Hierarchical structure upon sequences
of tokens

Sequences
and
hierarchies
of elements
that have
meaning

Courtesy Nick Mansurov

29

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Can ASTs Cut Through Syntactic Variation?

struct s {..};
struct s a;
struct s b;
struct s c;

Core
Language

Extended Language

Preprocessor(s)

Program Generators

struct s {..} a,b,c;

Courtesy Nick Mansurov

• Many Languages Express The Exact Same Concepts
- But In Many Very Different Ways (Highly Varied Syntactical Renderings)
- Using Nested Languages and Composite Heterogeneous Languages

30

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ASTs Are A Commonly Used Intermediate
Representation (IR)

• For example, 3-address IR
• For example, Java bytecode
• For example, Microsoft CLR
• For example, DIANA
• For example, SUIF
• For example, RTL of GCC compiler
• GIMPLE of GCC compiler
• LAST of the McCAT compiler
• TSRI IOM™, JPGen™ and JTGEN™
• OMG Meta Object Facility MOF™

The difference is
in granularity and
amount of implicit
information – IRs
are further away from
the source which makes
them more suitable for
particular applications

Courtesy Nick Mansurov

31

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Why Do We Gain By an ASTM Standard?

Why Do We Need An
AST Meta-Meta-Model?
" Supports Application of Visitor
Pattern to ASTs expressed as
UML Class Diagrams.

" Facilitates Generation of APIs
For Front-End tools

" Faciliates Higher-Level Forms
of Reuse in tool development

" Facilitates Reasoning About
Multi-language systems

"Facilitates Analysis of GASTM
and SASTM models vs. GAST
and SAST models.

Why Do We Need A
Standard Generic
ASTM?
"Object Constraint Language
(OCL) can apply constraints to
standard ASTs for analysis of
code properties.
"Query View Transform (QVT)
can be applied to query, view
and transform ASTs in standard
formats.
"Code generators, such as
Eclipse and MDA tools can
generate to the generic ASTs,
and let code generators produce
target code to multiple target
ASTs (SASTs) platforms

Why Do We Need an
ASTM Standard?
" Makes the many tools that
generate ASTs from code more
useful.
"Interoperability can be
achieved between Tools that
produce and Tools that use
ASTs.
"Standard Tools can be used to
visualize the ASTs produced by
Various AST generators.
" QVT, MOF, XMI, OCL and
other OMG standards Can be
More Easily Extended to the
ASTs produced by AST
generators.

32

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

RFP1 + RFP2: KDM + ASTM
Multiple Dimensional Single Platform Independent View + Multiple Platform Specific Views

Structure

Composition

Behavior

Scenarios

Logical

Build

Container

Data ConceptualGASTM

Single
Platform

Independent
View

Multiple
Platform
Specific
Views

1

Structure

Composition

Behavior

Scenarios

Logical

Build

Container

Data ConceptualSASTM

Structure

Composition

Behavior

Scenarios

Logical

Build

Container

Data ConceptualSASTM

Structure

Composition

Behavior

Scenarios

Logical

Build

Container

Data ConceptualSASTM

Struct
ure

Composition

Behavior

Scenario
s

Logical

Build

Container

Data ConceptualSASTM

C++

COBOL
FORTRAN

PL/1

Structure

Composition

Behavior

Structure

Composition

Behavior

…

1

2GLs 3GLs 4GLs

Python

VisualBasic

Java/J2EE

Natural

SQL
BAL

UYK20

SNX360

C

BASIC

Pascal

…
…

33

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

MDA (PSM !!!! PIM !!!! PSM)
ASTM (GASTM !!!! SASTM)

Source (PSM)
Platform Specific Model

Neutral (PIM)
Platform Independent

Model

GASTM Target SASTMSource SASTM

Ada, C, COBOL,
FORTRAN,

Refine, Specware, DSL

Natural, Power Builder

BAL, YUK

C++, Java, VB, J#

Refine, Specware, DSL

MSIL, JBC

C

Generic Abstract Syntax Tree Specific Abstract Syntax TreeSpecific Abstract Syntax Tree

3GL

4GL

5GL

2GL

Target (PSM)
Platform Specific Model

34

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Integration of the ASTM & KDM

SASTM

ASTM

Program
Subroutine

Body

System

Statement
Identifier

Line
Column

File
Directory

Software

GASTM

Program
Subroutine

Body

System

Statement
Identifier

KDM CoreCoreCoreCore

SourceDataTypes

CodeDataActions

RunTime BuildUILogical

ScenarioConceptualSystem

ROADMAP

Analysis

Metrics

Visualization

Refactoring

Mapping &
Transformation

OTHER OMG
STANDARDS

UML

AS

CWM

ITPM

RAS

MOF/QVT

35

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What are Meta Object Facility (MOF) ASTs?

In the OMG Meta Object Facility (MOF) Abstract Syntaxes are nested
meta-modeling levels.

• M3 is the Abstract Syntax of M2 Abstract Syntax Trees

• M2 is the Abstract Syntax of M1 Abstract Syntax Trees

• M1 is the Abstract Syntax of M0 Abstract Syntax Trees.

MOF uses UML Class diagrams to define Abstract Syntax!

MOF platform independence comes from its use of generators that
produce software for managing models that conform to meta-
models.

– Many perfectly acceptable MOF Abstract Syntax models would be
considered malformed by many grammar specification constraint
checkers.

– Most well-formed Grammar specifications acceptable to compiler
or parser generators should be MOF compatible.

36

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ADM Relationship to MOF

• AST model instances
of source code of real
application
• KDM Data models
instance of data base
or data files.

Objects and data, I.e.
instances of M1 model
constructs

Instances
(examples)

M0

AS Model of COBOL
language.
KDM Data Model

Models consisting of
instances of M2 metamodel
constructs

Model

M1

KDM UML profiles
GASTM UML profile
SASMT UML profile

Metamodels, consisting of
instances of MOF constructs

Metamodel

M2

MOF Class, MOF
Attribute, MOF
Association, etc

MOF, I.e. the set of
constructs used to define
metamodels

Meta-metamodel

M3

ADM
Examples

DescriptionLayer

37

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Why Marry MOF and Parsing Technology ASTs

Combining MOF and the Language Parsing Approaches to Abstract
Syntax and ASTs is highly powerful!

Abstract Syntaxes defined for Language Parsers can usually be modeled as
MOF Models using MOF Tools.

Once the MOF Models for language models exist, MOF has generators to
create XML, Java, and CORBA API support for these models.

• This allows the model instances (ASTs) of software application to be
modeled and interchanged via MOF Repository technology.

• This allows the exchange of AS (metadata) and ASTs (I.e enterprise
applications treated as data) with full machine automation.

Without MOF, the manipulation of applications in Abstract Syntax form
will remain proprietary with limited penetration.

With MOF, the manipulation of programs as data (ASTs) will become
universal and many hard software problems will be solved
efficiently and economically.

38

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How does the ASTM support OMG standards?

The GAST will used to support other OMG modeling standards
by providing a generic set of language modeling elements as
the basis of OMG model (AST) derivation and as the basis for
OMG language generation.

The GASTM is effectively an Ultra Wide Spectrum Intermediate
Language Model which spans 2GLs, 3GLs, 4GLs and 5GL
languages.

– Existing OMG generators for MOF models are limited to Java or C++ for behavior support,
and XML Schema and DTDs for structure support.

– Retargeting OMG MOF generators into the GASTM will extend MDA support to a much
broader spectrum of target languages than is currently supported by MOF technology.

Application Models and Meta-Models (AST and AS) Will Be …

– sharable among multiple tools from different vendors with much more uniform support for
analysis, visualization, re-factoring, target mapping and transformations across multiple
languages.

39

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How is the ASTM Structured ?

It extends MOF modeling to encompass several existing families of
languages in a uniform way.

– A generic set of language modeling elements common across numerous
languages establishes a common core for language modeling, called the
Generic Abstract Syntax Trees (GAST)

– Language specific Specific Abstract Syntax Trees (SAST) for particular
languages such as Ada, C, Fortran, Java, etc must be modeled in MOF or MOF
compatible forms.

– SAST !!!! GAST must be demonstrated without loss of meaning even though
their abstract syntax model change during transformation between languages.

Separation of concerns dictates the SASTM ! GASTM separation.

– ASTM reduces the O (S * T) transformation problem to an O(S+T+G),
where S is the number of source languages (or models) and T is the
number of target languages (or models) + G the GASTM (G).

40

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What are the ASTM 10 Mandatory Requirements?

(1) Include a meta-model compatible current MOF.

(2) Use UML to represent ASTM diagrams

(3) Define a single unified terminology by complementing the
KDM with a low-level detailed discovery model

(4.1) Define a set of common concepts that exist in multiple
languages

(4.2) Define a set of language independent concepts, to be called
the generic abstract syntax tree meta-model (GASTM).

(5) Specify the means to specialize, differentiate or extend
GASTM language independent concepts to represent language
dependent constructs, to be called the specialized abstract
syntax tree meta-model (SASTM).

41

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What Are the ASTM Mandatory Requirements? (cont.)

(6) Provide a list of the languages and platforms that the
submitters ASTM proposal is claimed to support.

(7) Demonstrate that it is possible to construct a mapping
between languages and the ASTM.

(8) Represent the original language constructs with sufficient
precision to assure preservation of semantic equivalence.

(9) Include information on how the ASTM relates to other non-
OMG standards pertaining to abstract syntax trees.

(10) Define programming constructs used to construct abstract
syntax trees to a level of precision and with sufficient detail to
allow the regeneration of the code (or surface syntax) from the
model.

42

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What are the ASTM Evaluation Criteria?

(1) Demonstrate the capability to map the existing software
artifacts in a common implementation language, such as C,
or C++ or Java or Ada or COBOL into a MOF repository that
can be described by the proposed ASTM .

(2) Demonstrate the ability of the proposed ASTM to support
ASTs for programs in more than one implementation
language.

(3) Demonstrate the usability of the proposed ASTM for the
purpose of representing information about the existing
system.

(4) Demonstrate the capability of the ASTM to represent a
broad range of languages and language types including 2GL,
3GL, 4GL and 5GL languages such as Ada, Assembler, C, C#,
COBOL, FORTRAN, Java, Natural, Power Builder, Refine,
SQL, etc.

43

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What Is the Status of the Joint Submission?

• Three Submissions and Three Complementary
Perspectives
– 3 Views of GASTM & SASTM

• TSRI: Discrete Model
• TCS: Continuous Model
• Klocwork: Interface Module Model

– 2 Views of ASTM Meta Models
• TSRI & TCS : Plain UML without profiling.

– Simple Class, Associations and Class Members
• Klocwork : UML with Profiling

– Associations are Classes
– Types
– Sets
– Attribute Hierarchy

• The Three Teams are Working to Achieve A Joint
Revised Submission (due January 24th)

44

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Related Perspectives

• ASTM Modeling Framework (TSRI, TCS)
• ASTM Meta-Data Repository (TSRI, TCS)
• Task Complexity Descriptions (TSRI)
• AST Support for Road Map (TSRI)
• ASTM Support for Scenarios (TSRI)
• ASTM Partitioning into Logical groups (TCS)
• ASTM Hierarchy (TSRI & TCS)
• Explicit separation of GASTM, SASTM (TSRI & TCS)
• GASTM, SASTM Union models (TCS)
• ASTM Meta-Meta Model (KW)
• ASTM Language Transformation Combinatorics (TSRI)

45

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI Discrete View of GASTM and SASTMs

• The GASTM is a broad subset of lowest common
denominator language elements found in many languages.

• Each SASTM model is a distinct set of language elements
for a specific language for which it defines the abstract
syntax.

• There are many discrete SASTM models, one for each
language, or vendor defined SASTM.

• A SASTM !!!! GASTM mapping preserves functional
equivalence.

• A SASTM is considered a PSM and the GASTM is
considered a PIM ala MDA/MDD.

• Analysis is done entirely against the GASTM without
reference to the SASTM and without loss of meaning.

• Multi-language and language-neutral mapping, analysis and
transformation is supported by GASTM and SASTM !!!!
GASTM mapping.

46

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI ASTM Perspective

Submitted By: TSRI

Supported By: Kestrel Institute

Blue Phoenix

Northrop Grumman

Tactical Strategy Group

Adaptive Technologies

SAIC

Composable Logic

88 Solutions

Philip H. Newcomb Chief Executive Officer 425 284 2770 philip.newcomb@softwarerevolution.com

Peter Rivett Chief Technology Officer, Adaptive Inc. 441 202449419 pete.rivett@adaptive.com

William M. Ulrich President 831-464-5346 WMMULRICH@cs.com

Douglas Smith Assoc. Director 650 493 6871 smith@kestrel.edu
Cordell Green Director 650 493 6871 green@kestrel.edu

Chris Caputo Software Architect 919-380-5412 ccaputo@bphx.com

Roy E. Kimbrell Fellow, Technical Director 402 682 4330 roy.kimbrell@ngc.com

Jeff Smith President 603-566-0124. jesmith@ComposableLogic.com

George Hou Account Manager 703-824-5450 houg@saic.com

47

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI View of Meta-model and Metadata Repository

Source Code Repository

ASTM Meta-model Repository

Source
Language

Target
Language

Source
SAST

Intermediate
GAST

Target
SAST

Source
SASTM

Intermediate
GASTM

Target
SASTM

Intermediate
Language

ASTM Model Repository

48

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI SASTM/GASTM
Modular Packaging with Strong Separation of Concerns

• GASTM is the Complete Common Denominator of All
SASTMs

• Each SASTM is in a Separate Language Distinct Package.
• GASTM is in its Own Separate Package
• SASTM and GASTM Modeling Element Naming

Consistency Observed But Not Required.
• Model-Level Mapping Between SASTM and GASTM

Defines Relationships Between Elements
• Concrete Syntax Mappings Separately Defined For Each

SASTM

49

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI Product and Services Implementation
of GASTM / SASTM

TSRI Product and Services Strong Pragmatic Orientation Towards Fully Automated:
(1) Analysis, (2) Metrics, (3) Visualization, (4) Refactoring (5) Transformation & Mapping (6) Knowledge Discovery

50

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI GASTM/SASTM Framework Applications

TSRI GASTM / SASTM Framework Has Been Applied To 37 Architecture Driven
Modernization Projects For Our Nation’s Most Important Defense Systems

51

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ADM Modeling Framework
(proposed by TSRI, supported by TCS)

ADM Repository Common Facility

MOF UML XMI

ADM Interchange Services

ADM Object Services

ADM
Modernization

Tools
and

Repositories

ADM Repository and Object Services will Support AST Persistence,
Distribution, Interchange and Object Services.

52

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ASTM Meta-Data Repository
(proposed by TSRI, supported by TCS)

ADM Repository Services

AP MP VP RP TMTP

OMG Object Services

OMG Repository Common Facility
MOF UML XMI

UML 2.0
I.

Activity Diagrams
II.

Class Diagrams
III.

Communication
Diagrams

IV.
Component
Diagrams

IV.
Deployment

Diagrams

V.
Composite
Structure
Diagrams

VII.
Interaction
Overview
Diagram

VIII.
Object

Diagram

IX.
Package
Diagram

X.
Sequence
Diagram

XI.
State

Machine
Diagram

XII.
Timing

Diagram

XII. Use
Case

Diagram

OMG Interchange Services

KDM Modeling Framework

RunTime BuildUILogical

ScenarioConceptualSystem

ASTM Meta-model Repository

Source
SASTM

Intermediate
GASTM

Target
SASTM

53

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ASTM Support for Roadmap (TSRI)

KDM
Mapping

GASTM SASTM
Ada C Cobol Fortran JCL Jovial Java C++

System
Conceptual

Scenario
Logical
UI
Runtime
Actions
Data
Code
DataType
Source
Core

Matrix from submission describes how ASTM supports KDM Models

" KDM consists of the System, Conceptual, Logical, UI, Runtime, Actions, Data, Code, DataType,
Source, Core models.

" Perform a one-time mapping of Ada to the GASTM: Ada2GASTM.rul

54

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

• The KDM consists of a set of Models which can be partially derived from the GASTM.
i.e. KDM := System, Conceptual, Logical, UI, Runtime, Actions, Data, Code, DataType, Source, Core models.

• The Mapping from an SAST model to the KDM consists of a three step process:
1. A one-time mapping for each langauge to the GASTM:

Ada2GASTM, C2GASTM, Cobol2GASTM, Fortran2GASTM, JCL2GASTM, etc.
2. A one-time mapping from the GASTM to each KDM Model:

GASTM2Behavioral, GASTM2Conceptual, GASTM2Scenario, etc.
3. Specialized Mappings to the KDM to the extent the GASTM is not quasimorphic with the SASTM.

Ada2Behavioral, Ada2Conceptual, …, C2Behavioral, C2Conceptual, …

The key design principle of the GASTM is achieve a 100% mapping from the SASTMs into the GASTM so as
To eliminate the need for Step 3 above. The proliferation of language specific mappings (as shown below)
Is BAD and should be avioded.

ASTM Support for Roadmap (TSRI)

KDM
Mapping

GASTM SASTM
Ada C Cobol Fortran JCL Jovial Java C++

System Ada2System

Conceptual

Scenario

Logical

UI

Runtime

Actions

Data

Code

DataType

Source

Core

C2System Cobol2System Cobol2System JCLl2System Javal2ystemJoviall2ystem Cpp2ystemGASTM2
System

Ada2
Conceptual

C2
Conceptual

Cobol2
Concpetual

Cobol2
Conceptual

JCLl2
Conceptual

Javal2
Concpetual

Jovial2
Concpetual

Cpp2
Concpeutal

GASTM2
Conceptual

…

…2ystem

…2
Concpeutal

GASTM2
Scenario
GASTM2
Logical
GASTM2UI

GASTM2Runtime
GASTM2
Actions

GASTM2Code
GASTM2
DataType

GASTM2Source

GASTM2Core

GASTM2Data

… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …
… … … … … … … … …

55

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What Are Task Complexity Descriptions?

Task Complexity is a formula that describes the approximate task
complexity and effort associated with defining a mapping
between models.

This is the Task Complexity Statement for Mapping to the KDM
from the ASTM.

ASTM establishes a task complexity, O, for defining KDM support for a
set of languages S to be O(M(S) + KDM(G) + KDM(S)) where M(S) is
the effort to Map each language into the GASTM and KDM(G) is the
effort to provide a set of Reusable KDM functions based upon the
GASTM for the set of languages, and KDM(S) is the effort to provide
language specific KDM functionality for each SASTM, language
specific specializations.

56

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Here is a Task Complexity Statement for The
Automated Portfolio Management Scenario.

Task Complexity can be used to define the complexity of effort
associated with supporting ADM Scenarios.

This is the Task Complexity Statement for Supporting ADM
Automated Portfolio Management Scenarios Tool Support from
the ASTM.

This ASTM supports the ADM Automated Portfolio Management
(APM) scenario by providing a language neutral framework upon
which APM Tools can provide a uniform and high level of automated
support. The use of the ASTM establishes a task complexity, O, for
defining APM support for a set of languages S to be O(M(S) +
(APM(G) + APM(S)) where M(S) is the effort to Map each language
into the ASTM, APM(G) is the effort to provide a set of Reusable APM
functions based upon the GASTM for each language, and APM(S) is
the effort to provide language specific APM functionality for language
unique features for specific languages.

57

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

GASTM Language Transformation Combinatorics

Top Down Language To Language (L2L) Conversion Scenarios

5GL to 4GL

5GL to 4GL to 3GL 4GL to 3GL

5GL to 4GL to 3GL to 2GL 4GL to 3GL to 2GL 3GL to 2GL

Bottom Up Language To Language (L2L) Conversion Scenarios

2GL to 3GL

2GL to 3GL to 4GL 3GL to 4GL

2GL to 3GL to 4GL to 5GL 3GL to 4GL to 5GL 4GL to 5GL

• Conversion Between Language Families Entails Complex Mappings
(N to 1, and 1 to N, M to N) Between Modeling Elements.

58

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI GASTM Model Hierarchy
(a comprehensive set of language neutral modeling constructs)

59

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI GASTM Model Hierarchy
(a comprehensive set of language neutral modeling constructs)

60

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Five Examples of TSRI GASTM Model

• File Definition
• Function Definition and Function

Declaration
• Block, If Statement, While Statement
• For Statement, Switch Statement
• Try Statement, Catch Statement

61

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

FILE-DEFINITION

62

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

FUNCTION-DECLARATION
& FUNCTION-DEFINITION

63

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

BLOCK, IF-STATEMENT, WHILE-
STATEMENT

64

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

FOR-STATEMENT, SWITCH-STATEMENT

65

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TRY-STATEMENT, CATCH-CLAUSE

66

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TSRI GASTM Conventions

• TSRI Model Composition and Naming
Conventions
– Upper Case used for all CLASSES
– Hyphen separates words
– No Embedded Terms Abbreviations
– Mixed Case for all Attributes including Associations
– Multiplicity of all Associations
– Textual Literal only at leaf-most level

67

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS/IOS ASTM Perspective

Submitted By: TCS

Interactive Objects
Sharwan Kumar Scientist, Software R & D : Program Analysis 91 20 5608 6315 shrawan.kumar@tcs.com
Ravindra D. Naik Scientist, Software R & D : Re-engineering 91 20 5608 6336 rd.naik@tcs.com

Simon Helsen Software Architect "+49 761 400 73 0" simon.helsen@interactive-objects.com
Jens Rommel Software Architect "+49 761 400 73 0" jens.rommel@interactive-objects.com

68

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS Continuous View of GASTM and SASTMs

• The GASTM is a broad subset of lowest common
denominator language elements found in many languages.

• Each SASTM model is an extension or specialization of the
GASTM model.

• There are SASTM model extensions, one for each language.
If required, vendors can create their own vendor-specific
SASTM.

• The SASTM in combination with the GASTM completes the
AST model of each language.

• Analysis is done entirely against the GASTM + SASTM
without without loss of meaning.

• Multi-language and language-neutral mapping, Program
analysis and Transformation is supported by a UNION
model, which is a merge of GASTM and language specific
SASTMs.

69

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Analysis Information Repository

AST Model
Repository

TCS View of Meta-model and Metadata
Repository

ASTM Meta-model
Repository

SASTM
Lang-1

GASTM

SASTM
Lang-n

UNION ASTM

SASTM
…

SAST
Lang-1

GAST

SAST
Lang-n

UNION AST

SAST
…

Program
Analysis

Software
Abstractions

Source Code Repository

Language
L-1

Language
…

Language
L-n

70

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS GASTM Conventions

• Classes and Attributes use standard
abbreviations

• First letter of embedded terms in Upper Case;
subsequent letters of term in lowercase.

• Common Primitive Expressed with Class Member
Values of string, integer, float types rather than
associations to Class of that Designation

• Explicit expression of all associations
cardinalities.

71

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS GASTM Partitioning

Explicit Packaging Of Elements

GASTM-RDBMS-Symbol
GASTM-RDBMS-Expr
GASTM-RDBMS-Stmt
GASTM-Symbol
GASTM-Expr
GASTM-Stmt
GASTM-Core

Naming of GASTM Language
Specific Elements

TCS : 4GL-STATEMENTS
TSRI : ADA-STATEMENTS

FORTRAN-STATEMENTS
ETC.

72

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Five TCS Modeling Construct Examples

• Inheritance between Packages
• Core Package
• Statements
• Iterative, Conditional and Guarded Statements
• Symbol and Datatypes

73

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

• GASTM is partitioned into logical
packages

• Common objects and properties
are modelled in GASTM-Core

• Common elements of general
purpose Programming Languages
are modelled in GASTM-Symbol,
GASTM-Statement and GASTM-
Expression packages

• Relational Database Query
elements are modelled in the
respective GASTM packages

• SASTM packages are created by
inheritance from the related
package

TCS Inheritance Between Packages

GASTM-Core

GASTM-Statement
GASTM-Expression

GASTM-Preprocessor

GASTM-CompUnit

GASTM-Symbol

GASTM-RDBMS-StmtGASTM-RDBMS-Expr
GASTM-RDBMS-Symbol

74

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS Core Package

• GASTMObject is the base-
most object used to
capture common
properties, like source
code location

• SourceFile object
represents the source file
name of construct

• PreprocBase is the base-
most object for
preprocessing constructs

GASTMObject

-PathName : String
SourceFile

-StartLine : int
-StartCol : int
-EndLine : int
-EndCol : int

SourceLocation

0..*

-SourceFile1

0..*

-locinfo

0..1

PreprocBase

75

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS Statement Package

• StmtObj represents the
executable constructs

• Declaration represents
placeholder for syntactic
declaration of variables

• Iteration, Conditional,
Labelled, ExprStmt
(Assignments) are
examples of Statements

StmtObj

ExprStmt

JumpStmt

StmtBlock

ConditionalStmt

NoOpStmt

Declaration

IterativeStmt

ExpressionObj

-Body

1

-Parent0..1

-Parent 0..1

-Condition

1

-Parent 0..1

-Expr 1

-Decl0..1

-Def 1

CodeUnit

-Parent

1

-Statements

0..*

LabeledStmt
-Parent

0..1

-Stmt1

Symbol
-Labels

1..* 0..1

BlockScope

-block1

-scope1

GuardedStmt

4GLStmt

-Target

1

-Parent0..1

76

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS Iterative Statement

• Generic representation for
loops
– While …
– For …
– Perform … Until …
– Do …

IterativeStmt

-TestBefore : bool
-TestForTrue : bool

LoopGeneral

LoopTimes

ExpressionObj

StmtObj

-Parent

0..1

-InitBody

0..1

-Parent0..1

-IterEndBody0..1

-Parent

0..1

-Condition

1

-Parent0..1

-Times1

77

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS Conditional, Guarded Stmt

• Conditional Statements
represent If-Then-Else,
Switch-Case, Evaluate

• Guarded Statement
represents Exceptional
handling constructs
– On Exception
– Try … Catch …

ConditionalStmt

IfThenElse

-fallthrough : bool
SwitchStmt

StmtObj

ExpressionObj

CaseDefault

DefaultLabel CaseLabel

-Parent0..1

-ThenBody

1

-Parent

0..1

-ElseBody0..1

-Parent1

-Cases0..*

-Body

1

-Parent

0..1

-LabelExprs1..*

-Parent0..1

GuardedStmt

StmtObj

Guard

ExceptionType

-parent

1

-guards

1..*

0..*

-exceptions

1..*

-parent

0..1

-stmt1 -base 1

-parent0..1

-parent0..1

-atlast 0..1

78

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

TCS Symbol Package

• Variable Names
• Types of Variables
• Scope of Variables
• Subroutine Names
• Subroutine parameters
• Enumeration literals

Symbol

NonScalarSym

ScalarSym

-StorageSpec : char
-TypeMod : char

Variable

-PassBy : char
FormalParam

Member

-TypeMod : char
CallableSym Entry

DataType

LabelSym

-ScalarSym1

-Type0..1

CallableType

1

-Type

0..1

CallableSymScope

-OpenedBy

1

-Opens 1

-Value : String
EnumLit

MemberFunction

ExpressionObj

0..1

-InitExpr

0..1

79

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

• Primitive Types
• Aggregate (Structure,

Record, Union)
• Modifier Types

– Pointer, Sequence (Array),
Range

• Enumeration Type
• UserDefined types

(TypeDefs)

-StorageSpec : char
DataType

CallableType

EnumType

TypeDef

-Value : String
EnumLit

1

-Literals 1..*

0..*

-Body

1

PrimitiveType LabelType

ModifierType

0..1
-ElemType1

-DimNum : int
Sequence AddressOf

ExpressionObj

0..1

-LowBound

1

0..1

-HighBound

1

Aggregate

0..*

-ReturnType 1

0..*

-ParamType

0..*

Structure

TypeScope

1

-Opens

1

RangeType

MemberFunction

-BelongsTo 1

-Member 0..*

TCS Datatype Package

80

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Courtesy Nick Mansurov

Submitted By: klocwork

EDS

IBM
Barbara Errickson Portfolio Manager, Application Modernization Service972-605-6122 barbara.errickson@eds.com

Sara Porat, Ph.D. Mgr, Software Assets Management Group (972) 4-829-6309 porat@il.ibm.com

Djenana Campara CTO, Klocwork (613) 224-2277 djenana@klocwork.com

Klocwork, EDS, IBM
ASTM Submission Perspective

81

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Design of the ASTM Specification

• Architecture similar to CWM and KDM
– Three level specification

• Core package describes ASTM
• Generic package describes common AST nodes

– Explicit elements
» Scope package
» Statement package
» Expression package
» Identifier package

– Implicit elements
» Def-use
» Control flow
» Data flow

• Light-weight extension for language-specific definitions

• Alignment with KDM on CodeUnit, Module and Action
• Tokens are explicit part of the metamodel
• Preprocessor is part of the metamodel

82

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Do We Address Proprietary ASTs?

• Multitude of “AST” tools in industry.
• Each with proprietary AST definitions.
• Many of these “AST” tools generate

– the physical codebrepresentation,
– APIs
– large number of useful utility functions.

• The “AST” tool
– Code generation patterns are proprietary and closed.
– Implementation language is “hardcoded”, and can not be

changed.
– New utility functions can not be added.

• Tools are often part of a larger Compiler Construction
toolkit,
– the generated API is used by other tools of the toolkit (for

example, the AST builder module of the parser).

83

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Do We Address Proprietary ASTs?

• Standardizing a meta-meta-model for ASTs will enable interoperability
between various AST tools.

– Export AST definitions from one proprietary tool to the standard representation,
– use open MOF-based code generation tools to extend functionality of the

proprietary code generator
– Achieve standardization of AST utility functions, e.g. factories, visitors, copy, match,

etc.
– Achieve standardized “reflectivity” mechanism for AST navigation and traversal .

• Several Issues Still Remain:
– No Way To Standardize on a specific AST for a given language.
– No Way To Reuse Proprietary AST Implementations for Multi-Language Static

Analysis tools.

84

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Can We Achieve Reusable Analysis?

• We Need A Reusable AST Implementation To Support Tools That
Can Work with Multiple Languages:
– Analysis
– Metrics
– Flowcharting
– Defect detection
– Visualization

• This proposal includes two mechanisms:
– Generic Interfaces to Specific ASTs
– Visitor Pattern

In modernization of legacy
it is the problem that is a constant
and the language is a variable

Courtesy Nick Mansurov

85

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is A Generic Interface?

• What is a Generic Interface?
– Proprietary or Language Specific ASTs should implement generic

interfaces, like “Definition”, “Declaration”, “Statement”, “Condition”, etc.
– Generic interfaces:

• accessible either through “reflexive” traversal
– query a certain base AST node, if it implements a certain generic interface
– If so, through the visitor pattern (set a handler of a certain generic node), or it should

be possible to do generic navigation entirely on generic nodes
• Specific ASTs are still the main physical structure,
• generic interfaces are a sort of “virtual” nodes, an API.
• The physical structure of the proprietary AST does not need to be changed to

support generic interfaces

86

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

What is the Status of Generic Interfaces To
ASTs?

– Static analysis tool are only now coming of age;
• industry is becoming aware on the need for static analysis,
• Few tools work on multiple languages;
• static analysis were point solutions
• Lack of motivation between tool vendors and researchers to agree on common APIs

– Static analysis technology is still rooted in complier construction,
• Which deals with a single language at a time.
• Is highly complexity for defining the API to one language, let alone many.
• Only recently have implementation technologies, generative approaches and

metamodeling approaches begun to mature.
– Generic language-independent concepts are obscured by language-specific details

• e.g. multiple variations on types, condition, assignment
• AST traversals complicated by intricacies of AST

– (in order to get to a condition one needs to traverse a very language-specific path).
• Visitor pattern can mitigate this.

• Why KDM is immune to this problem (which faces the ASTM)?
– KDM is language-independent partly because it does not involve the notion of a

traversal, rather one simply selects necessary entities by performing queries

Courtesy Nick Mansurov

87

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

How Can We Address Language and Tool
Specific AST Variation?

• Normalization
– How to deal with “syntactic sugar” in a given language?
– How fine-grained is AST for core language constructs ?

• Need to preserve high-level user defined information
– information about declarations, types, type casting
– Array and structure references
– Templates

• Preprocessor and program generators
• Generation of source from AST

– Optical image?
– Whitespace ?
– Comments ?
– Normalization ?

• How to represent semantics of AST elements
– None ?
– Is a 3-address IR an AST ?
– Is Java bytecode an AST for Java ?
– UML action semantics ?

• Error handling policy

Courtesy Nick Mansurov

88

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ASTM Core Package: Nodes

ModelElement
name : String
description : String

AstSpecific
ation

AstChild

AstAttribute

AstModu
le

1..*
+modules

1..*

Token

0..*0..*

AstType
Shared : Boolean

1

0..*

+supertype

1+subtypes
0..*

0..*

+chi ldren

0..*
+type

0..*

+attributes

0..*

1..*
+types

1..*

0..*0..*

Courtesy Nick Mansurov

89

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ASTM Core Package: Attributes

ModelElement
name : String
descript ion : String

Predefined
Type

Value Id

AstModule

AstEnum
internal : Boolean

+values +ids

0..*+enums 0..*

AttributeType

AstAttribute

+type

Courtesy Nick Mansurov

90

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Generic Interface Module Opens Access to
Proprietary AST Representations

MethodDeclar
ation

constructor
modifiers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="util
"

name="java"

SimpleName
na me

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDemand

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
name

PrimitiveType

name="args"SimpleName
na me

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

modifiers

+name

+type

package example;
import java.uti l .*;
public class HelloWorld {

publi c stat ic vo id main(Stri ng [] args) {
System.out.print ln("Hello" + " world");

}
}

SimpleName
name

name="out"

SimpleName
name

name="System"

QualifiedName +name

+qualifier
name="println"

SimpleName
name

value="Hello"
StringLiteral
value

PLUS

VOID

value="world"StringLiteral
value

InfixExpress
ion

operator

+leftOperand

+rightOperand

ExpressionStat
ement

MethodInvoc
ation

+expression

+name

+arguments

Block

+statements

TypeDeclara
tion

modifiers
interface

+types

+name

+name

+returnType

+parameters+body

+bodyDeclarations

MethodDeclar
ation

constructor
modi fiers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="util
"

name="java"

SimpleName
name

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDemand

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
name

PrimitiveType

name="args"SimpleName
name

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

modi fiers

+name

+type

package example;
import java.util .*;
public class HelloWorld {

publ ic static vo id main(String [] args) {
System.out. print ln("Hel lo" + " world");

}
}

SimpleName
name

name="out"

SimpleName
name

name="System"

QualifiedName +name

+qualifier
name="println"

SimpleName
name

value="Hello"
StringLiteral
value

PLUS

VOID

value="world"StringLiteral
value

InfixExpress
ion

operator

+leftOperand

+rightOperand

Ex pressionStat
ement

MethodInvoc
ation

+expression

+name

+arguments

Block

+s tatements

TypeDeclara
tion

modi fiers
interface

+types

+name

+name
+returnType

+parameters+body

+bodyDeclarations

AST language1
AST tool 1

Open code generatorAST in ASTM

export

output

output

input

input

proprietary
codegenerator

Courtesy Nick Mansurov

Each AST vendor develops Interface Module that maps to ASTM

91

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Use Visitor Pattern For AST Access

•Traversal using generic nodes
•Generic attributes
•Visitor (generic nodes are hooks
on specific AST nodes)

MethodDeclar
ation

constructor
modifiers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="util
"

name="java"

SimpleName
na me

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDemand

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
name

PrimitiveType

name="args"SimpleName
na me

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

modifiers

+name

+type

package example;
import java.uti l .*;
publ ic class Hel loWorld {

publ i c stat ic vo id main(S tri ng [] args) {
System.out.pr int ln("Hel lo" + " world");

}
}

SimpleName
name

name="out"

SimpleName
name

name="System"

QualifiedName +name

+qualifier
name="println"

SimpleName
name

value="Hello"
StringLiteral
value

PLUS

VOID

value="world"StringLiteral
value

InfixExpress
ion

operator

+left Operand

+rightOperand

Express ionStat
ement

MethodInvoc
ation

+expression

+name

+arguments

Bloc k

+statements

TypeDeclara
tion

modifiers
interface

+types

+name

+name

+returnType

+parameters+body

+bodyDeclarations

MethodDeclar
ation

constructor
modifiers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="util
"

name="java"

SimpleName
name

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDemand

+name

Compi lation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
name

PrimitiveType

name="args"SimpleName
name

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

modifiers

+name

+type

package example;
import java.u ti l.*;
pub lic class Hel loWorld {

publ i c stat ic vo id main(Stri ng [] args) {
System.out. pr int ln("Hel lo" + " world");

}
}

SimpleName
name

name="out"

SimpleName
name

name="System"

QualifiedName +name

+qualifier
name="println"

SimpleName
name

value="Hello"
StringLiteral
value

PLUS

VOID

value="world"StringLiteral
value

InfixExpress
ion

operator

+leftOperand

+rightOperand

Ex press ionStat
ement

MethodInvoc
ation

+expression

+name

+arguments

Block

+statements

TypeDeclara
tion

modifiers
in terface

+types

+name

+name

+returnType

+parameters+body

+bodyDeclarations

AST language2

AST language1 Generic AST interface

Multi-language application

Language1 adaptor

Language2 adaptor

Met hodDeclar
ation

co nstru ctor
modi fi ers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="ut il
"

name="java"

SimpleName
na me

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDe mand

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
na me

PrimitiveType

name="args"
SimpleName
na me

name="String"
ArrayType

SimpleType

SimpleName
n ame

SingleVariableDe
clarat ion

mo di fi ers

+name

+type

packa ge exampl e;
imp ort ja va .u ti l .*;
pub li c cl ass Hel lo World {

publ i c stat i c vo id main (S tri ng [] args) {
Sy ste m.o ut.pri nt ln("He ll o" + " w orl d");

}
}

SimpleName
na me

name="out "

SimpleName
name

name="Syst em"

QualifiedName +name

+qualifier
name="println"

SimpleName
na me

value="Hello"
StringLiteral
val ue

PLUS

VOID

value="world"StringLiteral
val ue

InfixExpress
ion

o perator

+ left Ope ra nd

+rightOperand

Express ionStat
ement

MethodInvoc
ation

+expression

+name

+a rguments

Bloc k

+statement s

Ty peDecl ara
tion

mod if ie rs
i nterface

+ types

+name

+name

+ret urnType

+paramet ers+body

+bodyDeclarations

Core ASTextends

extends

uses

uses

usesuses

uses

uses

Courtesy Nick Mansurov

Each Vendor’s ASTs use the Generic AST Interface (meta-meta-
mode) and Extends a Minimal CORE AST.

92

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

ASTM

MethodDeclar
ation

constructor
modifiers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="util
"

name="java"

SimpleName
na me

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDemand

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
name

PrimitiveType

name="args"SimpleName
na me

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

modifiers

+name

+type

package example;
import java.uti l .*;
public class HelloWorld {

publi c stat ic vo id main(S tri ng [] args) {
System.out.print ln("Hello" + " world");

}
}

SimpleName
name

name="out"

SimpleName
name

name="System"

QualifiedName +name

+qualifier
name="println"

SimpleName
name

value="Hello"
StringLiteral
value

PLUS

VOID

value="world"StringLiteral
value

InfixExpress
ion

operator

+leftOperand

+rightOperand

Express ionStat
ement

MethodInvoc
ation

+expression

+name

+arguments

Block

+statements

TypeDeclara
tion

modifiers
interface

+types

+name

+name

+returnType

+parameters+body

+bodyDeclarations

MethodDeclar
ation

constructor
modif iers

SimpleName
name

PackageDecla
ration

+name

name="Example"

name="util
"

name="java"

SimpleName
na me

SimpleName
name

QualifiedName

+qualifier

+name
ImportDeclarat

ion
onDemand

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWorld"

SimpleName
name

SimpleName
name

PrimitiveType

name="args"SimpleName
na me

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

modi fiers

+name

+type

package example;
import java.util.*;
public class HelloWorld {

publi c stat ic vo id main(Stri ng[] args) {
System.out.print ln("Hello" + " world");

}
}

SimpleName
name

name="out"

SimpleName
name

name="System"

QualifiedName +name

+qualifier
name="println"

SimpleName
name

value="Hello"
StringLiteral
value

PLUS

VOID

value="world"StringLiteral
value

InfixExpress
ion

operator

+leftOperand

+rightOperand

ExpressionStat
ement

MethodInvoc
ation

+expression

+name

+arguments

Block

+s tatements

Ty peDecl ara
tion

modifiers
interface

+types

+name

+name

+returnType

+parameters+body

+bodyDeclarations

Generic AST interface

Language1 AS

Language2 AS

instance of

instance of

instance of

MethodDeclar
ation

con structor
mod if iers

SimpleName
na me

PackageDecla
ration

+name

name="Example"

name="ut il
"

name="java"

SimpleName
na me

SimpleName
na me

QualifiedName

+qualifier

+name
ImportDeclarat

ion
o nDe man d

+name

Compilation
Unit

+package

+imports

name="main"

name="HelloWor ld"

SimpleN ame
name

SimpleName
name

PrimitiveType

name="args"SimpleName
na me

name="String"
ArrayType

SimpleType

SimpleName
name

SingleVariableDe
claration

mod if iers

+name

+type

package example;
import j ava.ut il .* ;
publ ic cl ass Hel lo Worl d {

pu bli c stat ic voi d mai n(S tri ng [] args) {
Syste m.out.pri nt l n("He ll o" + " w orl d");

}
}

SimpleName
name

name="out"

SimpleName
name

name="Syst em"

QualifiedName +name

+qualifier
name="pr intln"

SimpleName
name

value="Hello"
StringLiteral
valu e

PLUS

VOID

value="world"StringLiteral
val ue

InfixExpress
ion

o pera tor

+left Operand

+rightOperand

Ex pressio nSt at
ement

MethodInvoc
ation

+expression

+name

+arguments

Block

+ sta tements

TypeDeclara
tion

mo dif i ers
interfa ce

+types

+ name

+name

+returnType

+paramet ers+body

+ bodyDeclarations

Core AST

instance of

Courtesy Nick Mansurov

Proprietary ASTs Become instances of Extended
Core AST

93

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Interface Module Implementation via the
Dynamic Visitor Pattern

• Vendors can achieve compatibilty with ASTM
– By Defining Proprietary AST models as a SASTM extensions

of the GASTM meta-meta-model.
• To achieve interchangeability and interoperability

– the SASTM model and objects must be expressed in a
language which can use the DVP (e.g. Java or C++)

• DVP Services From Implementers of the Standard
– will provide operations for visiting, describing, copying,

mapping, etc. elements of the proprietary ASTs.

94

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Generic AST

• Explicit elements
– Structure

• Translation Unit
– CodeUnit
– Action

• Statement
• Expression
• Identifier

• Implicit elements
– Scope
– Binding
– Control flow
– Data flow

• CodeUnit
– CallableUnit
– ClassUnit
– MethodUnit
– MemberUnit
– DeclarationUnit
– DataTypeUnit
– GlobalData
– LocalData
– ParameterData
– MacroUnit

Courtesy Nick Mansurov

95

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Key GASTM Modeling Elements

• Lists (types or untyped)
• Binding and binding resolution
• Compilation unit
• Declarations (nested)
• Types and instances, instant types
• Block
• Statement
• Expression
• name
• exceptions

Courtesy Nick Mansurov

96

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

GASTM Statement Package

Expression

LoopState
ment

JumpState
ment

ReturnState
ment

Expression

DeclareState
ment

1..*

+define

1..*

IfStatement

AnyControlStat
ement

1..*
+control

1..*

Expression
BlockState

ment

SwitchState
ment

BranchState
ment

0..*

+branches
0..*

Statement
1..*

+statements
1..*

0..*
+eval

0..*

0..*
+other

0..*
0..*

+statements

0..*
0..*

+statements

0..*

0..*

+exceptions

0..*

EndingStat
ement

ControlState
ment

RegularState
ment

Expression

IOKind
IOOpen
IOClose
IORead
IOWrite
IOUpdate
IODelete

IOStatement
0..* +data0..*

Courtesy Nick Mansurov

97

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

GASTM Expression Package

ArrayAccess
FieldAccess

Name

Literal

ApplEx

CallEx

CondEx

OperatorEx AccessEx

CreateEx

Assignment

ParenExExpression

0..*0..*
+args 11

+callee

1
+control
1 1..*

+branches
1..*

+object

+selector

1
+write

1
+eval

11 +eval11

Courtesy Nick Mansurov

98

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

GASTM CodeUnit Package

ParameterDef

Statement

CallableUnit

0..*0..*

+parameters

0..*+statements 0..*

Expression
+type

Courtesy Nick Mansurov

99

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

GASTM Binding Package

Scope

+parent

UseNode

ASTNode 1

+node

1

DefNode
name

0..*1 0..*
+def

11
+node

0..*0..*
+type

1+self 1

0..*0..*

+use
0..1

0..*

0..1
+binding

0..*

0..1

0..*

+type

0..*

0..1

1

Courtesy Nick Mansurov

100

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Gaps and Issues to be Addressed

• GAPS BETWEEN RFP REQUIREMENTS AND SUBMISSIONS
– Absence of support for 5GL and 2GL In The Three Submissions.
– Basic Semantic Not Required In the RFP, But Needed In The Standard.
– Demonstration Needed Of How the ASTM Supports the KDM.
– A Common Glossary of Terms Is Needed To Commence Reconciliation Of

GAST classes, associations, attributes In the Three Core Models.
– A List of References Is Needed to Other non-OMG standards
– The Standard Should include an Agreed Upon Method for Reconstituting

Source Code from the AST Models.
– The Three Models should be Reconciled with Respect to Subgrouping

GASTM Elements for Various Languages and Language Families.
– Demonstration Needed Of Mappings Between ASTM And KDM
– Demonstration Needed Of Mappings Between ASTM And OMG models.
– Demonstration Of How Unusual Constructs be Captured Within the CORE

GASTM.

101

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Additional RFP Evaluation Criteria For The
Demonstration.

• A mapping of the GASTM and SASTM models into a MOF
repository (I.e. eclipse or .xmi) is required.
– Eclipse regards CVS or SOURCE as repository
– No MOF repository is known adequate for storing ASTs

• A Demonstration is required to Show How Each Of The
Three Perspectives Support Operations On Multiple
Languages. (analysis,metrics, visualization, mapping, etc)

• A Demonstration is required using the GASTM to
represent information about the existing system using all
three perspectives.

• A Demonstration is required showing applicability of the
perspective to many languages.

102

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

Time Table For Joint Submission Team

• Sept 30th

– Complete ASTM Tutorial 1.0

• Dec 5th Address all gaps and issues
– Agreed upon GASTM model
– Capture each perspective in written specification
– Initial Interface Module defined

• Jan 23rd Revised Submission on Server.

103

© Copyright 2005 Architecture Driven Modernization Tutorial The Software Revolution Inc, Klocwork and TCS Consulting, All Rights Reserved

OMG ADM Task Force Industry Participation

http://adm.omg.org/

