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The Hunting Group 

ARTHUR WHITE and 
ROBIN WILSON 

The early composers of change ringing music for English church bells were not 
mathematicians, yet they developed 
intricate algebraic ideas more than a 
century before mathematicians 
independently discovered them. We 
introduce the mathematical concepts 
of permutation group and symmetry 
group by means of elementary change 
ringing compositions of the 17th and 
18th centuries. 

Introduction 
The mathematical concept of a 

group, arising out of work of Joseph 
Louis Lagrange in 1770, was made 

in the 19th centuq 
Evariste Galois and Augustin-Louis 
Cauch~'But in 1668 Tintinnalogia-
or the Art of Change Ringing had 
been published, followed in 1677 by 
Campanalogia (see Box 1 and 
Figure 1); Fabian Stedman was 
involved with both publications. In 
1715 the first peal of 'Plain Bob' was 
rung. All these events involve 
something called the hunting group, 
and although some bell ringers use 
the term group in a non-technical 
sense (Stedman used course), the 
technical and non-technical meanings 
coincide. 

The Elements of Change Ringing 

Cdnpnnn/ogin1nlproved: 
O K ,  T H E  

A RT of RI N GISG 
~ ~ A DE A S Y ,E 

By Plain and blethodical Rules and 
DireEtions, whereby the Ingenious 
PraAitioner may, wi th  a li t t lc l'rac-
ticc and Care, attain to the Know-
ledge of Ringing all Manncr of 
Doirble, Tripple, and atudruple 
Changes. 

With Variety of Xew Tcnls upon Five, 
Six, Seven, Eight, and Nine Bells. A s  
alfo the Method of c a l l ~ n gBobi fr)r any  
penlofFr;pp[erfrom 1 6 g  to zjro (bctng 
the ~ g i jP e a l .  ) Alfo for any Pe.11 of 
2radru,?ler, or Cdrori from 3 24 to I I 4s. 

Never before Publllhed. 

The T H IR D E D I T I O N ,Corrected. 

L O N D O N :  

Printed for A. E R ti and 

C. HITCH, Tarer-at the Red-Ljon, m 
Noper-&nu. M . ~ c c . x x x r ~ r .  

FIGURE1 

We denote the bells in a church tower by 1, 2, . . . , n, arranged in 
descending order of pitch from bell l(the treble) to bell n (the tenor); n usually 
lies between 3 and 10 (inclusive). A row is a ringing of these n bells, once each, 
in some order; a change is the transition from one row to the next. 
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BOX l 

Fabian Stedman (1641 - 1713) 
Fabian Stedman, the 'father of modem bell ringing', was a printer who 
lived, worked, composed, and rang, possibly in Cambridge and later in 
London. In 1668 Tintinnalogia - or the Art of Change Ringing was 
written by Richard Duckworth and printed for Stedman. In 1677 Stedman 
wrote Campanalogia, or the Art of Ringing Improved. Both books were 
dedicated to the Society of College Youths, the oldest society to promote 
bell ringing as an aristocratic pastime. In publishing them, Stedman's object 
was to formalize and set down for posterity the rules and compositions 
(many of them his own) that had evolved. In dedicating the Campanalogia, 
he wrote: 

The countenance you shew it will silence Detractors, 
and be h o u r  of proof against the fools bolts which 
may happen to be soon shot at the Author, who is 
Gentlemen, 

A constant Well-wisher to the 
Prosperity (though an unwor- 

thy member) of your So-
ciety 

F. S. 

Both books display striking mathematical insight. At the beginning of 
Campanalogia Stedman referred to "the Art of Changes, its Invention 
being Mathematical and produceth incredible effects, as hereafter will 
appear". 

The central problem in change ringing is to ring an extent on the n bells; this 
is a sequence of n! ( = 1 x 2 x ... x n ) changes connecting n! + 1 rows, in such a 
way that: 

(a) the first and last rows are both 1 2 3 . . . n (called rounds); 
(b) no other row appears more than once; 
(c) each change moves every bell by at most one position. 

Condition (c) is due to mechanical considerations arising from the mounting of 
each bell on a wheel (see Figure 2). 
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THE HUNTING GROUP 

A BELL I N  H E R  U S U A L  P O S I T I O N  

FIGURE 2 

Examples of extents are given below. Each extent has a name, part of which 
(Singles, Minimus, etc.) reveals the value of n, as indicated in Box 2. 

BOX 2 

number of name number of rows approximate 
bells (n)  (n! + 1) ringing time 

3 Singles 7 6 seconds 
4 Minimus 25 30 seconds 
5 Doubles 121 3 minutes 
6 Minor 721 22 minutes 
7 Triples 5041 3 hours 
8 Major 4032 1 24 hours 
9 Caters 362881 9 days 

10 Royal 3628801 3 months 

Singles Extents (3bells) 
Consider the seven rows: 	 1  2  3  

2 1 3  
2 3 1  
3 2 1  
3  1 2  
1 3 2  

1 2  3  



8 THE MATHEMATICAL GAZETTE 

You can easily check conditions (a) and (b) for an extent; for condition (c), note 
that, to get each successive row, either the first two bells or the last two bells of 
the previous row are exchanged. This extent is known informally as Slow Six. 
You may like to check that there is only one other Singles extent possible; it 
consists of the same seven rows, but in the reverse order, and is known as Quick 
Six. 

We can represent this extent by a picture, known as a Cayley diagram 
(named after the 19th-century English algebraist Arthur Cayley). The vertices 
are labelled with the rows, and the connecting lines are labelled with the 
changes; solid lines correspond to interchanging the first two bells, and dashed 
lines correspond to interchanging the last two bells (see Figure 3). Traversing 
the lines in a clockwise direction gives Slow Six; for Quick Six, proceed anti- 
clockwise. 

\ 
FIGURE 3 

Note the path of bell 1, the treble, in Slow Six; it 'hunts up from position 1 
to position 3, 'makes third place', and 'hunts back' to position 1. This process is 
known as plain hunting, and the block of six rows (three positions for bell 1 
going up, and three more coming down) is called the hunting group. The 
concept of a hunting group can be traced back to the 17th century. 

1,2 3 
2 1,3 
2 3 1 

I 
3 2,l 
3,l 2 
1 3 2+ - - 

1 2 3  

Using Permutations 
We now investigate alternative interpretations of the rows of Slow Six. In 

Box 3 we describe the properties of permutations, which are relevant to change 
ringing since we can regard each change as a permutation of the n positions. For 
example, we can denote the change between the first two rows as (12), since we 
exchange the bells in positions 1 and 2. ignoring the bell in position 3; similarly. 



9 THE HUNTING GROUP 

we write (23) (and not (13)) for the change between the second and third rows, 
since we exchange the bells in positions 2 and 3, ignoring the bell in position 1. 

BOX 3 

Permutations 
Aperrnutation of a set S is a one-to-one function from S to itself. 
For example, if S = { 1, 2, 3 1, then one permutation of S is the function 
which maps 1 to 2, 2 to 3, and 3 to 1; we denote this by (123), with each 
number mapped to its successor. 

l 2 1 2 3 
Thus (1 2 3) means 1Vor :  1. 3 

Similarly, the permutation which maps 1 to 2, 2 to 1, and 3 to 3 is denoted 
by (12)(3), often abbreviated to (12). If S has n elements, then there are 
exactly n! permutations; for example, there are 3! permutations of ( 1,2, 3 )  
-namely, e (the identity permutation), (123), (132), (12), (13) and (23). 
We combine permutations by function composition, reading from right to 
left. Thus, to form the 'product' (123) . (12), we note that the right-hand 
bracket maps 1 to 2, and the left-hand bracket then maps 2 to 3 - so the 
product maps 1 to 3. Similarly, the product maps 2 (via 1) to 2, and 3 (via 
3) to 1. Thus, 

(123).(12) = (13). 
You may like to check similarly that (1 3).(23) = (1 32). 

Alternating these two changes gives us the rows of the extent: 

row change permutation 
1 2  3 e 

(12) 
(12) 

(23) 
(123) 

(12) 
(13) 

(23) 
(132) 

(12) 
(23) 

(23) 

In the last column of this table, we associate a permutation with each row of the 
extent. For example, row three 2 3 1 yields the permutation (123), since bell 2 is 
in position 1, bell 3 is in position 2, and bell 1is in position 3. 
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position permutation bell 

Similarly, row four 3 2 1yields the permutation (13), since bell 3 is in position 
1, bell 1 is in position 3, and in bell 2 stays in its original position. 

position permutation bell 

Note that the change (12) links these rows, as can be seen by combining the 
corresponding permutations: 

(123) . (12) = (13). 
(Remember to multiply from right to left.) Similarly, we get from row 4 with 
permutation (13) to row 5 with permutation (132) by using the change (23): 

(13) . (23) = (132). 
We can also consider these permutations geometrically as the symmetries 

(rotations and reflections) of an equilateral triangle with vertices 1, 2, 3. For 
example, the permutation (123), which maps 1 to 2, 2 to 3, and 3 to 1, 
corresponds to a clockwise rotation through 120°, whereas the permutation (12), 
which interchanges 1 and 2 and fixes 3, corresponds to a reflection. The six 
symmetries of the triangle, together with their permutations, are shown below. 
We call this set of symmetries S(A), the symmetry group of the triangle; the 
term group is explained in Box 4. 

FIGURE 4 Symmetries of a triangle 
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BOX 4 

Groups 
A group G consists of a set of elements, and a way of combining them, 
called a binary operation (denoted by . ), satisfying the following four 
conditions: 
(a) CLOSURE: if x and y are any elements of G, then so is x.y; 
(b) ASSOCIATIVITY: if x, y and z are any elements of G, then 

(x.y) .z = x. (y.z); 
(c) IDENTITY: G has an element e such that, for each x in G, 

e.x 	= x.e = x; 
(d) INVERSES: if x is any element of G, then there is an element 

y of G such thatx.y = y.x = e. 

Examples of groups are: 


(i) 	 the set of positive real numbers with binary operation x: the identity 
element is 1 and the inverse of x is l/x; 

(ii) the set of integers with binary operation + : the identity element is 0 
and the inverse of x is -x; 

(iii) the set of all permutations of 	{ 1, 2, . . . ,n } with the binary operation 
of product as described in Box 3: this group is denoted by S,; 

(iv) the set of all symmetries of the equilateral triangle, combined in the 
obvious way: this group is the same as the group S3. 

Minimus Extents (4 bells) 
In extending the above ideas to four bells, we first consider the rows of the 

hunting group: 
1,234 
21 ,43  
241,3  
4 2 3 1  

I 
4 3 2/1 
3 4/12 
3/14 2 
1 3 2 4$ - - -
1 2 3 4  

To obtain this list, we exchange either the first pair and last pair of bells, or the 
middle pair of bells. The corresponding Cayley diagram is shown in Figure 5; 
solid lines correspond to exchanging the outer pairs of bells, and dashed lines 
correspond to exchanging the middle two bells. 
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2 4 1 3  

FIGURE 5 

We can represent this hunting group using permutations, as above. We get the 
following table: 

row change permutation 
1 2 3 4  e 

2 1 4 3  
(12)(34) 

(12)(34) 

2 4 1 3  
(23) 

(1243) 

4 2 3 1  
(12x34) 

(14) 

4 3 2 1  
(23) 

(14)(23) 

3 4 1 2  
(12)(34) 

(1 3)(24) 

3 1 4 2  
(23) 

(1342) 

1 3 2 4  
(1 2)(34) 

(23).-------
(23)
1 2 3 4  

The hunting group permutations on the right also have a geometrical 
interpretation - as the symmetries of a square with vertices 1, 2, 4, 3 (in that 
order). The eight symmetries of the square, together with their permutations, are 
shown in Figure 6. We call this set of symmetries S(O), the symmetry group of 
the square. 

(1 2)(3 4) (1 4)(2 3) (1 3 )  (2 4)  

FIGURE 6 Symmetries of d square 
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Unfortunately, this gives us only eight of the 24 possible rows. In order to 
complete the extent, we replace the last change (23) by a new change (34) which 
exchanges only the last two bells. Repeating the earlier changes gives eight 
more rows, and using (34) again gives the final eight rows. Finally, using (34) a 
third time brings us back to rounds. The result is as follows: 

row change 
1 2 3 4  

(12)(34) 

(23) 

(12)(34) 

(23) 

(12)(34) 

(23) 

(12)(34) 

(34) 

(12)(34) 

(23) 

(12)(34) 

(23) 

(1 2x341 

(23) 

(12)(34) 

(34) 

(12x34) 

(23) 

(12x341 

(23) 

(12)(34) 

(23) 

(12x34) 

(34) 

permutation 
e 

(12x34) 

(1 243) 

(14) 

(14)(23) 

(13)(24) 

(1 342) 

(23) 

(234) 


(132) 


(13) 


(1 234) 


(124) 
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The rows on the left give the extent known as 'Plain Bob Minimus'. The 
permutations on the right are all the possible permutations of 1, 2, 3,4, and form 
a group called the symmetric group S4. This also has a geometrical 
interpretation, as the symmetries of a regular tetrahedron. For example, the 
permutation (14)(23) is a rotation about a line joining midpoints of opposite 
edges, and the permutation (14) is a reflection about the plane through the line 
joining the vertices 2 and 3 (see Figure 7). 

tetrahedron (14)(23) 
FIGURE 7 

There is an interesting connection between the three sets of eight permutations 
on page 13. If we combine the permutation (234) at the top of the second set 
with each permutation in the first set, we get the corresponding permutations in 
the second set; for example, 

(234) . (12)(34) = (132). 
Similarly, if we combine the permutation (243) at the top of the third set with 
each permutation in the first set, we get the corresponding permutation in the 
third set; for example, 

(243) . (1243) = (1423). 
These sets are called cosets. The first coset is the hunting group S(U). The 
second coset is obtained by combining each element of S(O) with (234), and is 
written (234)S(U). The third coset is obtained by combining each element of 
S(O) with (243), and is written (243)S(O). Between them, these cosets give all 
24 elements of the symmetric group S4. (YOU might like to investigate what you 
get if you form cosets from other permutations; try, for example, (132)S(O), 
(1324)S(O), and (14)S(O).) This decomposition of S4 into cosets was known to 
bell ringers more than a century before mathematicians discovered it. 

We conclude by drawing the Cayley diagram for Plain Bob Minimus. Here, 
in Figure 8, solid lines correspond, as before, to the change (12)(34), dotted 
lines correspond to the change (23), and dashed lines correspond to the change 
(34). The shaded octagons correspond to the three cosets. To simplify the 
picture, we have used half-edges, joined as indicated by the Greek letters. You 
might like to trace the extent in this picture. 
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