
Prospective Logic Agents

Lu ı́s Moniz Pereira*
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Gonçalo Lopes
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Abstract: As we face the actual possibility of modelling agent systems capable of non-
deterministic self-evolution, we are confronted with the problem of having several different pos-
sible futures for any single agent. This issue brings the challenge of how toallow such evolving
agents to be able tolook ahead, prospectively, into such hypothetical futures, in order to deter-
mine the best courses of evolution from their own present, and thence to prefer amongst them.
The concept of prospective logic programs is presented as a way to address such issues. We
start by building on previous theoretical background, on evolving programs and on abduction, to
construe a framework for prospection and describe an abstract procedure for its materialization.
We take on several examples of modelling prospective logic programs that illustrate the proposed
concepts and briefly discuss the ACORDA system, a working implementationof the previously
presented procedure. We conclude by elaborating about current limitations of the system and
examining future work scenaria.
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1 INTRODUCTION

Continuous developments in logic programming (LP) language
semantics which can account for evolving programs with up-
dates [Alferes et al., 2002, Alferes et al., 2000] have opened the
door to new perspectives and problems amidst the LP and agents
community. As it is now possible for a program to talk about
its own evolution, changing and adapting itself through non-
monotonic self-updates, one of the new looming challenges is
how to use such semantics to specify and model logic based
agents which are capable of anticipating their own possiblefu-
ture states and of preferring among them in order to further their
goals, prospectively maintaining truth and consistency inso do-
ing. Such predictions need to account not only for changes in
the perceived external environment, but need also to incorporate
available actions originating from the agent itself, and perhaps
even consider possible actions and hypothetical goals emerging
in the activity of other agents.

While being immersed in a world (virtual or real), every
proactive agent should be capable, to some degree, of conjur-
ing up hypotheticalwhat-if scenaria while attending to a given
set of integrity constraints, goals, and partial observations of the
environment. These scenaria can be about hypothetical obser-
vations (what-if this observation were true?), about hypothetical
actions (what-if this action were performed?) or hypothetical

goals (what-if this goal was pursued?). As we are dealing with
non-monotonic logics, where knowledge about the world is in-
complete and revisable, a way to represent predictions about
the future is to consider possible scenaria as tentative evolving
hypotheses whichmaybecome true, pending subsequent con-
firmation or disconfirmation on further observations, the latter
based on the expected consequences of assuming each of the
scenaria.

We intend to show how rules and methodologies for the syn-
thesis and maintenance of abductive hypotheses, extensively
studied by several authors in the field of Abductive Logic Pro-
gramming [Kakas et al., 1998, Kowalski, 2006b, Poole, 2000,
Poole, 1997], can be used for effective, yet defeasible, predic-
tion of an agent’s future. Note that we are considering in this
work a very broad notion of abduction, which can account for
any of the types of scenaria mentioned above. Abductive rea-
soning by such prospective agents also benefits greatly from
employing a notion of simulation allowing them to derive the
consequences for each available scenario, as the agents imag-
ine the possible evolution of their future states prior to actually
taking action towards selecting one of them.

It is to be expected that a multitude of possible scenaria be-
come available to choose from at any given time, and thus we
need efficient means to prune irrelevant possibilities, as well
as to enact preferences and relevancy preorders over the con-



sidered ones. Such preference specifications can be enforced
either a priori or a posteriori w.r.t hypotheses making. A pri-
ori preferences are embedded in the knowledge representation
theory itself and can be used to produce the most interesting
or relevant conjectures about possible future states. Active re-
search on the topic of preferences among abducibles is available
to help us fulfill this purpose [Dell’Acqua and Pereira, 2005,
Dell’Acqua and Pereira, 2007] and results from those works
have been incorporated in the presently proposed framework.

A posteriori preferences represent meta-reasoning over the
resulting scenaria themselves, allowing the agent to actually
make a choice based on the imagined consequences in each sce-
nario, possibly by attempting to confirm or disconfirm some of
the predicted consequences, by attributing a measure of interest
to each possible model, or simply by delaying the choice over
some models and pursuing further prospection on the most in-
teresting possibilities which remain open. At times, several hy-
potheses may be kept open simultaneously, constantly updated
by information from the environment, until a choice is some-
how forced during execution (e.g. by using escape conditions),
or until a single scenario is preferred, or until none are possible.

In prospective reasoning agents, exploration of the futureis
essentially an open-ended, non-deterministic and continuously
iterated process, distinct from the one-step, best-path-takes-all
planning procedures. First, the use of abduction can dynami-
cally extend the theory of the agent during the reasoning pro-
cess itself in a context-dependent way so that no definite set
of possible actions is implicitly defined. Second, the choice
process itself typically involves acting upon the environment to
narrow down the number of available options, which means that
the very process of selecting futures can drive an agent to au-
tonomous action. Unlike Rodin’s thinker, a prospective logic
agent is thus proactive in its look ahead of the future, acting
upon its environment in order to anticipate, pre-adapt and enact
informed choices efficiently. These two features imply thatthe
horizon of search is likely to change at every iteration and the
state of the agent itself can be altered during this search.

The study of this new LP outlook is essentially an innova-
tive combination of fruitful research in the area, providing a
testbed for experimentation in new theories of program evolu-
tion, simulation and self-updating, while launching the foun-
dational seeds for modeling rational self-evolving prospective
agents. Preliminary research results have proved themselves
useful for a variety of applications and have led to the devel-
opment of the ACORDA1 system, successfully used in mod-
elling diagnostic situations [Lopes and Pereira, 2006]. This pa-
per presents a more formal abstract description of the procedure
involved in the design and implementation of prospective logic
agents.Some examples are also presented as an illustrationof
the proposed system capabilities, and some broad sketches are
laid out concerning future research directions.

1ACORDA literally means “wake-up” in Portuguese. TheACORDAsystem
project page is temporarily set up at:http://articaserv.ath.cx/

2 LOGIC PROGRAMMING FRAMEWORK

2.1 Language

LetL be any first order language. A domain literal inL is a do-
main atomA or its default negationnot A, the latter expressing
that the atom is false by default (CWA). A domain rule inL is
a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

whereA is a domain atom andL1, . . . , Lt are domain literals.
An integrity constraint inL is a rule of the form:

⊥ ← L1, . . . , Lt (t > 0)

where⊥ is a domain atom denoting falsity, andL1, . . . , Lt are
domain literals.

A (logic) programP overL is a set of domain rules and in-
tegrity constraints, standing for all their ground instances. Ev-
ery programP is associated with a set ofabduciblesA ⊆ L,
consisting of literals which (without loss of generality) do not
appear in any rule head ofP. Abducibles may be thought of as
hypotheses that can be used to extend the current theory, in or-
der to provide hypothetical solutions or possible explanations
for given queries.

2.2 Preferring Abducibles

An abducible can be assumed only if it is a considered one,
i.e. it is expected in the given situation, and moreover there is
no expectation to the contrary [Dell’Acqua and Pereira, 2005,
Dell’Acqua and Pereira, 2007].

consider(A)← expect(A), not expect not(A).

The rules about expectations are domain-specific knowledge
contained in the theory of the agent, and effectively constrain
the hypotheses (and hence scenaria) which are available.

To express preference criteria among abducibles, we consider
an extended first order languageL∗. A preference atom inL∗

is one of the forma ⊳ b, wherea andb are abducibles.a ⊳ b
means that the abduciblea is preferred to the abducibleb. A
preference rule inL∗ is one of the form:

a ⊳ b← L1, . . . , Lt (t ≥ 0)

wherea ⊳ b is a preference atom and everyLi(1 ≤ i ≤ t) is a
domain or preference literal overL∗.

Although the program transformation previously detailed in
[Dell’Acqua and Pereira, 2005, Dell’Acqua and Pereira, 2007]
accounted only for the possibility of mutually exclusive ab-
ducibles, we have extended the definition to allow for sets
of abducibles, so we can generateabductive stable models
[Dell’Acqua and Pereira, 2005, Dell’Acqua and Pereira, 2007]
having more than a single abducible.

In fact, these preference rules can be compiled into the first
languageL. Basically, each preference rule of the above form
can be converted to the following defeating rule:

expect not(b)← L1, . . . , Lt,
consider(a), b, not a (t ≥ 0)



with the declarative reading that in all the models wherea is
considered, ifb is abduced, thena must also be abduced. If
the two abducibles are mutually exclusive, then the preference
will always defeat one in favor of the other. However if both
abducibles can coexist in the same model, then we at least guar-
antee that in all models whereb is present,a is also present.

For a more detailed explanation of the adapted transforma-
tion, please consult the ACORDA project page, mentioned in
the previous footnote.

3 PROSPECTIVE LOGIC AGENTS

We now present the abstract procedure driving evolution of a
prospective logic agent. Although it is still too early to present
a complete formal LP semantics to this combination of tech-
niques and methodologies, as the implemented system is under-
going constant evolution and revision, it is to be expected that
such a formalization will arise in the future, since the proposed
architecture is built on top of logically grounded and semanti-
cally well-defined LP components. The procedure is illustrated
in Figure 1, and is the basis for the implemented ACORDA sys-
tem, which we will detail in Section 5.

Each prospective logic agent has a knowledge base contain-
ing some initial program overL∗. The problem of prospection
is then one of finding abductive extensions to this initial theory
which are both:

• relevant under the agent’s current desires and goals

• preferred extensions w.r.t. the preference rules in the
knowledge base

We adopt the following definition for the relevant part of a pro-
gramP under a literalL:

Definition 1 Let L,B,C be literals inL∗. We sayL directly
depends onB iff B occurs in the body of some rule inP with
headL. We sayL depends onB iff L directly depends onB
or there is someC such thatL directly depends onC andC
depends onB. We say thatRelL(P ), the relevant part ofP , is
the logic program constituted by the set of all rules ofP with
headL or someB on whichL depends on.

Given the above definition, we say that an abductive exten-
sion∆ of P (i.e. ∆ ⊆ AP ) is relevant under some queryG
iff all the literals in∆ belong toRelG(P ∪ ∆). The first step
thus becomes to select the desires and goals that the agent will
possibly attend to during the prospective cycle.

3.1 Goals and Observations

Definition 2 An observation is a quaternary relation amongst
theobserver; the reporter; the observation name; and thetruth
valueassociated with it.

observe(Observer,Reporter,Observation, V alue)

Observationscan stand for actions, goals or perceptions. The
observe/4 literals are meant to represent observations reported
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Figure 1: Prospective agent cycle.

by the environment into the agent or from one agent to another,
which can also be itself (self-triggered goals). We also intro-
duce the correspondingon observe/4 literal, which we con-
sider as representing active goals or desires that, once triggered,
cause the agent to attempt their satisfaction by launching the
queries standing for the observations contained inside.

The prospection mechanism then polls foron observe/4 lit-
erals satisfied under the initial theory of the agent. In an abstract
representation, we are interested in thoseon observe/4 literals
which belong to the Well-Founded Model of the evolving logic
program at the current knowledge state.

Definition 3 The set of active goals of initial programP is:

Goals(P ) = {G : on observe(agent, agent,G, true)

∈WFM(P )}

By adopting the more skeptic Well-Founded Semantics at
this stage, we guarantee a unique model for the activation of
on observe/4 literals. It should be noted that there can be many
situations where more than one active goal is derived under the
current knowledge theory of the agent. Since we are dealing
with the combinatorial explosion of all possible abductiveex-
tensions, it is possible that, even if no combination of abducibles
satisfies the entire conjunction of active goals, that at least a sub-
set of those goals will be satisfied in some models. In order to
allow for the generation of all these possible scenaria, we actu-
ally transform active goals intotentative queries, encoded in
the following form:

try(G) ← G try(G) ← not try not(G)
try not(G) ← not try(G)

In this way, we guarantee that computed scenaria will pro-
vide all possible ways to satisfy the conjunction of desires, or
possible subsets of desires, allowing us then to apply selection
rules to qualitatively determine which abductive extensions to
adopt based on the relative importance or urgency of activated
goals. Integrity constraints are also considered, so as to ensure
the agent always performs transitions into valid evolutionstates.



These can also be triggered on the basis of possible abductive
scenaria, as the next example will demonstrate.

Example 1 Prospecting the future allows for taking action be-
fore some expected scenaria actually happen. This is vital in
taking proactive action, not only to achieve our goals, but also
to prevent, or at least account for, catastrophic futures.

Consider a scenario where weather forecasts have been trans-
mitted foretelling the possibility of a tornado. It is necessary to
deal with this emergency beforehand, and take preventive mea-
sures before the event actually takes place. A prospective logic
program that could deal with this scenario is encoded below.

⊥ ← consider(tornado),
not deal with emergency(tornado)

expect(tornado)← weather forecast(tornado)
deal with emergency(tornado)←

consider(decide board up house)

expect(decide board up house)← consider(tornado)
⊥ ← decide board up house, not boards at home,

not go buy boards

The first sentence expresses that, in case a tornado scenario
is considered, the program should deal with the emergency. A
possible way to deal with this emergency is deciding to board
up the house. This hypothesis is only made available in the
event of a tornado, since we do not want in this case to account
for this decision in any other situation (we could change the
correspondingexpect/1 rule to state otherwise). The weather
forecast brings about that a tornado is expected, and there be-
ing no contrary expectation to this scenario, the above program
presents two possible predictions about the future. In one of the
scenaria, the tornado is absent, but in the scenario where itis
actually confirmed, the decision to board up the house follows
as a necessity.

If we commit to the decision of boarding up the house, by
assuming the tornado scenario is more relevant, and we do not
have boards at home, it is necessary that we go and buy the
boards. This is reflected by the second integrity constraint,
which in fact would launch a subgoal for buying boards. As
such, even if no goals were active, the possibility of consider-
ing certain scenaria can trigger integrity constraints, and also
contextual abducibles which may in turn be used, once they are
confirmed, to support activation of other goals.

3.2 Generating Scenaria

Once the set of active goals for the current state is known, the
next step is to find out which are the relevant abductive exten-
sions which are considered in the situation. They can be found
by reasoning backwards from the goals into abducibles which
come up underconsider/1 literals. Each abducible represents
a choice: the agent can either assume it true, or assume it false,
meaning that it may potentially face a number of interpretations
equal to all possible combinations of relevant abducibles.In
practice, the combinatorial explosion of possible interpretations
is contained and made tractable by a number of factors.

To begin with, the simple fact that all abducibles are con-
strained to the relevant part of the program under the ac-
tive goals already leaves all the irrelevant abducibles outof
the generation of scenaria. Secondly, the context-dependent
rules presented in Section 2.2 for considering abducibles fur-
ther excludes those abducibles which are not relevant to the
actual situation of the agent. Furthermore, it is often the case
that available abducibles are contradictory, i.e. considering an
abducible actually precludes considering another one, forin-
stance, when choosing between drinking coffee or drinking tea
[Dell’Acqua and Pereira, 2005, Dell’Acqua and Pereira, 2007].
Finally, this step includes the application of a priori preferences
in the form of contextual preference rules among the available
abducibles.

In each possible interpretation, or scenario, thus generated,
we also reason forwards from abducibles to obtain the relevant
consequences of actually committing to each of them. Each ab-
ductive stable model is characterized by the abducible choices
contained in it, but is in fact a whole model of the program sent
to it. Information about each of the models will then be used
to enact preferences over the scenariosa posteriori, taking into
account the consequences in each scenario

3.3 Inspection Points

Consider a situation where an agent is thirsty and is deciding be-
tween having coffee and tea for a drink. In the scenario where
the agent chooses to have tea, it can also consider the possibil-
ity of having scones. We say that the abduciblescones is con-
strained to scenarios where the abducibletea is present, but it
cannot determine by itself the abduction oftea. The reasoning
is that having tea is not a subgoal to solving scones, but rather
having scones is a possibility which is open to consideration
after we actually commit to drinking tea.

This semantics is not reducible to any of the previously pre-
sented constructs, so we introduce a new predicate,inspect(X)
for any domain literalX ∈ L, intuitively meaning: solveX but
do not allow any abductions to be triggered in any subgoals of
X. X and its subgoals can merely consume abductions per-
formed elsewhere. This predicate can be used to extract side-
effects over generated models, but without interfering in model
generation itself.

We present below the tea and scones example codified using
the newinspect/1 predicate:



drink ← tea
drink ← coffee

expect(tea)
expect(coffee)
expect not(coffee)← blood pressure high
expect(scones)← inspect(tea)

coffee ⊳ tea← sleepy

tea← consider(tea)
coffee← consider(coffee)
scones← consider(scones)

⊥ ← thirsty, not drink

As described, the abduciblescones is only expected in sce-
naria wheretea is a side-effect, but does not by itself provoke
the abduction oftea.

3.4 Preferring a posteriori

Once each possible scenario is actually obtained, there area
number of different strategies which can be used to choose
which of the scenaria leads to more favorable consequences.A
possible way to achieve this was first presented in [Poole, 1997],
using numeric functions to generate a quantitative measureof
utility for each possible action. We allow for the application of
a similar strategy, by making a priori assignments of probability
values to uncertain literals and utilities to relevant consequences
of abducibles. We can then obtain a posteriori the overall utility
of a model by weighing the utility of its consequences by the
probability of its uncertain literals. It is then possible to use this
numerical assessment to establish a preorder among remaining
models.

Although such numerical treatment of a posteriori prefer-
ences can be effective in some situations, there are occasions
where we do not want to rely on probability and utility alone,
especially if we are to attribute tasks of responsibility tosuch
autonomous agents. In particular, it may become necessary to
endow such agents with a set of behaviour precepts which are
to be obeyed at all times, no matter what the quantitative assess-
ments may say. This is the role of the moral theory presented
in the figure. Although being clearly outside the scope of the
presented work, we regard it as a growing concern which must
be weighed as more intelligent and autonomous agents are built
and put to use. A more detailed analysis of this moral perspec-
tive can be found in [Pereira and Saptawijaya, 2007].

Both qualitative and quantitative evaluations of the scenarios
can be greatly improved by merely acquiring additional infor-
mation to make a final decision.We next consider the mecha-
nism that our agents use to question external systems, be they
other agents, actuators, sensors or other procedures. Eachof
these serves the purpose of anoracle, which the agent can probe
through observations of its own, of the form

observe(agent, oracle name, query, V alue)←

oracle, L1, . . . , Lt (t ≥ 0)

representing that the agent is performing the observationquery
on the oracle identified byoracle name, whenever oracle ob-
servations are allowed (governed by the reserved toggle literal
oracle) and given that domain literalsL1, . . . , Lt hold in the
current knowledge state. Following the principle of parsimony,
it is not desirable that the oracles be consulted ahead of time
in any situation. Hence, the procedure starts by using its avail-
able local knowledge to generate the preferred abductive sce-
naria (i.e. the toggle is turned off), and then extends the search
to include available oracles, by togglingoracle on. Each ora-
cle mechanism may in turn have certain conditions specifying
whether it is available for questioning. At the next iteration, this
toggle is turned off, as more consequences will be computed us-
ing the additional information.

Whenever the agent acquires additional information to deal
with a problem at hand, it is possible, and even likely, that en-
suing side-effects may affect its original search. Some consid-
ered abducibles may now be disconfirmed, but it is also possible
that some new abducibles which were previously unavailable
are now triggered by the information obtained by the oracle ob-
servations. To ensure all possible side-effects are accounted for,
a second round of prospection takes place, by relaunching the
whole conjunctive query. Information returned from the oracle
may change the preferred scenaria previously computed, which
can in turn trigger new questions to oracles, and so on, in an
iterated process of refinement, which stops if no changes to the
models have been enacted, and there are no new oracle ques-
tions to perform, or user updates to execute.

Even after extending the search to allow for experiments, it
may still be the case that some abducibles are tied in compe-
tition to explain the active goals, e.g. if some available oracle
was unable to provide a crucial deciding experiment. In this
case, the only remaining possible action is to branch the sim-
ulation into two or more possible update sequences, each one
representing an hypothetical world where the agent simulates
commitment to the respective abducible. This means delaying
the choice, and keeping in mind the evolution of the remaining
scenaria until they are gradually defeated by future updates, or
somehow a choice is enforced. Exactly how these branches are
kept updated and eventually eliminated is not trivial, and this is
why we purposefully leave undefined the procedure controlling
the evolution of these branching prospective sequences. An-
other interesting possibility would be to consider those abduc-
tions common to all the models and commit to them, in order to
prune some irrelevant models while waiting for future updates
to settle the matter.

3.5 Prospective procedure

We conclude this section by presenting the full abstract proce-
dure defining the cycle of a prospective logic agent.

Definition 4 Let P be an evolving logic program, representing
the knowledge theory of an agent at state S. Letoracle be the
propositional atom used as a toggle to restrict access to addi-
tional external observations. A prospective evolution of Pis a
set of updates onto P computed by the following procedure:



1. Let O be the (possibly empty) set of all onobserve/4 atoms
which hold at S.

2. Compute the set of stable models of the residual pro-
gram derived by the evaluation of the conjunctionQ =
{G1, . . . , Gn, not⊥}, n ≥ 0, where eachGi represents the
goal contained in a distinct observe/4 literal obtained from
the corresponding onobserve/4 in O.

3. If the set contains a single model, update the abductive
choices characterizing the model onto P as facts, toggle
theoracle off and stop.

4. Otherwise, iforacle currently holds and no new informa-
tion from the oracles or from the scenaria is derived, for
each abductive stable modelMi create a new branching
evolution sequencePi and update the abductive choices in
Mi ontoPi. Execute the procedure starting from step 1 on
each branching sequencePi.

5. Otherwise, toggle theoracle on and return to 2.

4 MODELLING PROSPECTIVE LOGIC AGENTS

4.1 Accounting for Emergencies

Example 2 Consider the emergency scenario in the London
underground [Kowalski, 2006b], where smoke is observed, and
we want to be able to provide an explanation for this observa-
tion. Smoke can be caused by fire, in which case we should
also consider the presence of flames, but smoke could also be
caused by tear gas, in case of police intervention. Thetu literal
in observation values stands for true or undefined.

smoke← consider(fire)
smoke← consider(tear gas)
flames← consider(fire)
eyes cringing ← consider(tear gas)

expect(fire)
expect(tear gas)
fire ⊳ tear gas

⊥ ← observation(smoke), not smoke
observation(smoke)

⊥ ← flames, not observe(program, user, flames, tu)
⊥ ← eyes cringing,

not observe(program, user, eyes cringing, tu)

This example illustrates how an experiment can be derived in
lieu of the consequences of an abduction. In order for fire to be
abduced, we need to be able to confirm the presence of flames,
which is a necessary consequence, and hence we trigger the ob-
servation to confirm flames, expressed in the second integrity
constraint. Only in case this observation does not disconfirm
flames are we allowed to abduce fire.

4.2 Automated Diagnosis

Prospective logic programming has a direct application in
automated diagnosis scenaria, as was previously shown in
[Lopes and Pereira, 2006]. Another illustration is that of ause
case in ongoing research on diagnosis of self-organizing indus-
trial manufacturing systems [Barata et al., 2007].

Example 3 Consider a robotic gripper immersed in a collab-
orative assembly-line environment. Commands issued to the
gripper from its controller are updated to its evolving knowl-
edge base, as well as regular readings from the sensor. After
expected execution of its commands, diagnosis requests by the
system are issued to the gripper’s prospecting controller,in or-
der to check for abnormal behaviour. When the system is con-
fronted with multiple possible diagnosis, requests for experi-
ments can be asked of the controller. The gripper can have three
possible logical states: open, closed or something intermediate.
The available gripper commands are simplyopen and close.
This scenario can be encoded as the initial prospective program
below.

open← request open, not consider(abnormal(gripper))
open← sensor(open), not consider(abnormal(sensor))

intermediate← request close,manipulating part,
not consider(abnormal(gripper)),
not consider(lost part)

intermediate← sensor(intermediate),
not consider(abnormal(sensor))

closed← request close, not manipulating part,
not consider(abnormal(gripper))

closed← sensor(closed)
not consider(abnormal(sensor))

⊥ ← open, intermediate ⊥ ← open, closed
⊥ ← closed, intermediate

expect(abnormal(gripper))
expect(abnormal(sensor))
expect(lost part)← manipulating part
expect not(abnormal(sensor))←

manipulating part,
observe(system, gripper, ok(sensor), true)

observe(system, gripper,Experiment,Result)←
oracle, test sensor(Experiment,Result)

abnormal(gripper) ⊳ abnormal(sensor)←
request open, not sensor(open),
not sensor(closed)

lost part ⊳ abnormal(gripper)←
observe(system, gripper, ok(sensor), true),
sensor(closed)

abnormal(gripper) ⊳ lost part←
not (lost part ⊳ abnormal(gripper))

For each possible logical state, we encode rules predicting



that state from requested actions and from provided sensor read-
ings. We consider that execution of actions may fail, or that
the sensor readings may be abnormal. There are also situations
where mechanical failure did not occur and sensor readings are
also correct, but there was some other failure, like losing the
part the robot was manipulating, by dropping it.

In this case, there is an available experiment to test whether
the sensor is malfunctioning, but resorting to it should be
avoided as much as possible, as it will imply occupying addi-
tional resources from the assembly-line coalition. As expected,
evaluation is context-dependent on the situation. Consider this
illustrative update set:

U = {manipulating part, request close, sensor(closed)}.

It represents the robot in the process of manipulating some part,
receiving an order to close the gripper in order to grab it, but the
sensor reporting the gripper is completely closed. This violates
an integrity constraint, as the gripper should be in an interme-
diate state, taking hold of the part. At the start of a diagnosis,
three abductive hypotheses are expected and considered,

AP = {lost part, abnormal(gripper), abnormal(sensor)}.

Without further information, abducibleabnormal(gripper)is
preferred tolost part, but still no single scenario has been de-
termined. Activating oracle queries, the system finds the ex-
periment to test the sensor. If it corroborates closed, not only
the abducibleabnormal(sensor)is defeated, but alsoabnor-
mal(gripper), sincelost part is preferred. However, failure to
confirm the sensor reading would result in no single scenario
being abduced for this situation, and other measures would have
to be taken.

4.3 Encoding Actions

Another interesting possibility in future prospection is to con-
sider the dynamics of actions. To perform an action, a prospec-
tive agent needs not just to consider the necessary preconditions
for executing it in the present, but also to look ahead at the con-
sequences it will entail in a future state. These two verifications
take place on different reasoning moments. While the precondi-
tions of an action can be evaluated immediately when collecting
the relevant abducibles for a given knowledge state, its post-
conditions can only be taken into consideration after the model
generation, when the consequences of hypothetically executing
an action are known.

The execution of an action can be encoded in EVOLP by
means ofassert/1rules, of the form:

assert(A)← L1, . . . , Lt (t ≥ 0)

whereA is a domain atom representing the name of the action
andL1, . . . , Lt are domain literals representing the precondi-
tions for the action. The preconditions can themselves contain
otherassert/1 literals in their bodies, allowing lookahead into
future updates. The postconditions of a given action can be en-
coded as integrity constraints on the name of the action and will
be triggered during generation of the stable models.

Example 4 Consider an agent choosing an activity in the
afternoon. It can either go to the beach, or to the movies,
but not both, and it can only go see a movie after buy-
ing tickets to it. The abducibles in this case areAP =
{go to beach, go to movies}. There is a single integrity con-
straint stating that tickets cannot be bought without money. In
ACORDA syntax:

afternoon activity ← assert(beach)
afternoon activity ← assert(movies)

assert(beach)← consider(go to beach)
assert(movies)← tickets
assert(tickets)← consider(go to movies)

expect(go to beach)
expect(go to movies)
⊥ ← tickets, not money

The abduction of eithergo to beach or go to movies ful-
fills, respectively, the preconditions for the actionbeach and
the actiontickets. The consequence of buying the tickets is
that the precondition for going to the movies is fulfilled. How-
ever, that consequence may also trigger the integrity constraint
if the agent does not have money. Fortunately, by simulatingthe
consequences of actions in the next state, the agent can effec-
tively anticipate that the constraint will be violated, andproceed
to choose the only viable course of action, that is going to the
beach.

5 IMPLEMENTING THE ACORDA SYSTEM

The basis for the developed ACORDA system is an EVOLP
meta-interpreter on which we can evaluate literals for truth ac-
cording to three- and two-valued semantics. Both this meta-
interpreter and the remaining components were developed on
top of XSB Prolog, an extensively used and stable LP inference
engine implementation, following the Well-Founded Semantics
(WFS) for normal logic programs.

The tabling mechanism [Swift, 1999] used by XSB not only
provides a significant improvement in the time complexity of
logic program evaluation, but also allows for extending WFS
to other non-monotonic semantics. An example of this is
the XASP interface (standing for XSB Answer Set Program-
ming), which extends computation of the WFM, using Smod-
els [Niemel̈a and Simons, 1997] to compute two-valued models
from theresidual programresulting from querying the knowl-
edge base [Castro et al., ]. This residual program is represented
by delay lists, that is, the set of undefined literals for which the
program could not find a complete proof, due to mutual depen-
dencies or loops over default negation for that set of literals,
detected by the XSB tabling mechanism. It is also possible to
access Smodels by building up a clause store in which a nor-
mal logic program is composed, parsed and evaluated, with the
computed stable models sent back to the XSB system.

This integration allows one to maintain the relevance prop-
erty [Dix, 1995] for queries over our programs, something that



the Stable Models semantics does not originally enjoy. In Stable
Models, by the very definition of the semantics, it is necessary
to compute all the models for the whole program. Furthermore,
since computation of all the models is NP-complete, it would
be unwise to attempt it in practice for the whole knowledge
base in a logic program, which can contain literally thousands
of rules and facts and unlimited abducibles. In our system, we
sidestep this issue, using XASP to compute the relevant residual
program on demand, usually after some degree of transforma-
tion. Only the resulting program is then sent to Smodels for
computation of possible futures. The XSB side of the compu-
tation also plays the role of an efficient grounder for rules sent
to Smodels, that otherwise resorts to Herbrand base expansion,
which can be considerably hastened if we can provide a priori
the grounding of domain literals. Also, the stable models se-
mantics is not cumulative [Dix, 1995], which is a prohibitive
restriction when considering self-evolving logic programs, in
which it is extremely useful to store previously deduced con-
clusions as lemmas to be reused.

6 CONCLUSIONS AND FUTURE WORK

As far as we know, the only other authors taking a similar LP
approach to the derivation of the consequences of candidate
abductive hypotheses are [Kowalski, 2006b, Kowalski, 2006a],
and [Poole, 1997, Poole, 2000]. Both represent candidate ac-
tions by abducibles and use logic programs to derive their pos-
sible consequences, to help in deciding between them. How-
ever, they do not derive consequences of abducibles that arenot
actions, such as observations for example. Nor do they consider
the possibility of determining the value of unknown conditions
by consulting an oracle or by some other process.

Poole uses abduction, restricted to acyclic programs, to pro-
vide explanations for positive and negative goals. An explana-
tion represents a set of independent choices, each of which is
assigned a probability value. The probability of a goal can be
found by considering the set of abductively generated possible
worlds containing an abductive explanation for the goal. His
main concern is to compute goal uncertainty, with a view to de-
cision making, taking into account both the probabilities of the
abductive assumptions and the utilities of their outcomes.

Kowalski argues that an agent can be more intelligent if it
is able to reason pre-actively - that is to say, to reason forward
from candidate actions to derive their possible consequences.
These consequences, he recognizes, may also depend upon
other conditions over which the agent has no control, such as
the actions of other agents or unknown states of the environ-
ment. He considers the use of Decision Theory, like Poole, to
choose actions that maximise expected utility. But he has not
explored ways of obtaining information about conditions over
which the agent does not have control, nor the use of prefer-
ences to make choices [Kowalski, 2007].

Compared with Poole and Kowalski, one of the most interest-
ing features of our approach is the use of Smodels to perform
a kind of forward reasoning to derive the consequences of can-
didate hypotheses, which may then lead to a further cycle of

abductive exploration, intertwined with preferences for pruning
and for directing search.

With branching update sequences we have begun to address
the problem of how to arbitrarily extend the future lookahead
within simulations. Independent threads can evolve on their
own by commiting to surviving assumptions and possibly trig-
gering new side-effects which will only take place after such
commitment.Nevertheless, some issues in the management of
these branching sequences must still be tackled, namely envolv-
ing coordination and articulation of information shared among
threads belonging to a common trunk, as well as the control of
the lifetime of each individual thread.

Preferences over observations are also desirable, since not
every observation costs the same for the agent. For example,in
the industrial manufacture example, the experiment for testing
the sensor was costly, but additional and cheaper experiments
could eventually be developed, and they should be preferredto
the more expensive one whenever possible. Furthermore, ab-
ductive reasoning can be used to generate hypotheses of obser-
vations of events possibly occurring in the future along thelines
of [Alberti et al., 2005].

Prospective LP accounts for abducing the possible means to
reach an end, but the converse problem is also of great interest,
that is, given the observations of a set of actions, abduce the
goal that led to the selection of those actions. This would be
invaluable in abducing the intentions of other agents from the
sequence of actions they exhibit.

Although we are currently dealing only with prospection of
the future, prospective simulations of the past can also be of in-
terest to account for some learning capabilities based on coun-
terfactual thought experiments. This means that we can go back
to a choice point faced in the past and relaunch the question
in the form ”‘What would happen if I knew then what I know
now?”’, incorporating new elements on reevaluating past dilem-
mas. This could allow for debugging of prospective strategies,
identifying experiments that could have been done as well as
alternative scenarios that could have been pursued so that in the
future the same errors are not repeated.
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