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Abstract

The key motivation of this poster is to establish a quantitative methodology to model and
analyze in silico models incorporating the use of model checking approach. We propose a novel
method of modeling and simulating biological systems with the use of model checking approach
based on the hybrid functional Petri net with extension (HFPNe) as the framework dealing with
both discrete and continuous events. We considered two rules for the quantitative model of the
VPC fate specification from two viewpoints. We conducted 10,000 simulations for each of 48 sets of
different genetic conditions, and investigated their variations as well as validating the two rules by
comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo
experiments. In particular, an evaluation was successfully done by using our in silico model for
one target which is derived from the biological experiments involving hybrid lineage observations,
whereas such understandings are hard to make on a discrete model because these hybrid lineages
occur when a system comes close to certain threshold as discussed by Sternberg and Horvitz in
1986. Our simulation results suggest that the rule on the fate-sustaining capacity is more reasonable
than the other rule owing to the high coverage of predicted fate patterns (except for the lin-15ko;
lin-12ko genetic condition).
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1 Introduction

Model checking is a successful method for verifying system requirements. It is a high speed technique
for automatic verification of software and reactive systems [1]. The pioneering work of using the model
checking approach for validating biological systems with biological experiments was initiated by Fisher
et al. in 2007 [2]. They took a discrete and state-based approach to explore all possible states of the
system underlying vulval precursor cell (VPC) fate specification for the desired properties. However,
both discrete and continuous features appear to be an indispensable part of fundamental biological
processes, it is more appropriate to use quantitative models to capture the dynamics of biological
systems. Thus, it is crucial to establish a quantitative methodology to model and analyze in silico
models incorporating the use of model checking approach.

2 Method and Results

The mechanism of C. elegans vulval development involves multiple regulatory signaling pathways con-
sisting of EGFR/Ras/MAPK cascades, LIN-12/Notch-mediated lateral signaling events, and signaling
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Figure 1: The whole HFPNe model underlying the fate specification mechanisms involving six equiv-
alent VPCs.

pathways induced by the hypodermal syncytium hyp7. In order to quantitatively model this biological
systems, we use hybrid functional Petri net with extension (HFPNe) [4] that is an enhanced Petri net
architecture which best meets the features of biological processes. Figure 1 exhibits a whole HFPNe
model constructed by compiling and interpreting the information appeared in the literature.

In order to deal with the quantitative model, we define two rules of fate specification from the
following viewpoints: (i) The fate-sustaining capacity of the fate candidates, i.e., the cell fate satisfies
the condition that the fate can sustain the behaviors at a certain over-threshold state within a given
length of time; and (ii) the temporal order of the fate candidates, i.e., the cell fate will be priorly
adopted according to the temporal sequence of the events inducing an over-threshold state. Three
simulation targets of this model have been considered: The first one is the fate patterns obtained by
improving the qualitative method of Fisher et al. [2]; the second target is the fate patterns summarized
by Sternberg and Horvitz [3]; and the last one is derived from the biological experiments in [3] including
the hybrid lineage data.

We conduct 10,000 simulations for each of 48 sets of different genetic conditions which is the
combination of four mutants and the anchor cell, and we investigated their variations as well as
validating the two rules by comparing three simulation targets on Cell Illustrator. Our simulation
results suggest that the rule on the fate-sustaining capacity is more reasonable than the other rule owing
to the high coverage of predicted fate patterns (except for the lin-15ko; lin-12ko genetic condition),
(ii) for the lin-15ko; lin-12ko, the coverage will be considerably augmented, if the number of animal
population is increased in the in vivo experiments, and (iii) the fate patterns in the lin-15ko and the ac-;
lin-15ko genetic conditions not covered by prediction have a possibility to be examined with biological
experiments by enlarging the animal numbers. We consider that this computational experiment and
the biological evaluation could not be easily put into practice without the HFPNe modeling method
and the functions of Cell Illustrator, especially, the “High-Speed Simulation Module”.
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