
2006 Adobe Systems Incorporated. All Rights Reserved.
1

2006 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 3.0 and
AVM2:
Performance Tuning

Gary Grossman

Adobe Systems

2006 Adobe Systems Incorporated. All Rights Reserved.
2

2006 Adobe Systems Incorporated. All Rights Reserved.

Agenda

Two goals:
Cover some techniques that can help performance

Pop the hood and talk about how the new VM works

2006 Adobe Systems Incorporated. All Rights Reserved.
3

2006 Adobe Systems Incorporated. All Rights Reserved.

Classes and
Type Annotations

2006 Adobe Systems Incorporated. All Rights Reserved.
4

2006 Adobe Systems Incorporated. All Rights Reserved.

Runtime natively supports classes

class A
{

var a:Number = 3.14;
var b:String = “a string”;
var c:int = -1;
public function A()
{

trace(“Constructor”);
}
public function method()
{

trace(“A.method”);
}

}

2006 Adobe Systems Incorporated. All Rights Reserved.
5

2006 Adobe Systems Incorporated. All Rights Reserved.

What that compiles to in AS2...

_global.A = function ()
{

this.a = 3.14;
this.b = “a string”;
this.c = -1;
trace(“Constructor”);

}
_global.A.prototype.method = function ()
{

trace(“A.method”);
}

2006 Adobe Systems Incorporated. All Rights Reserved.
6

2006 Adobe Systems Incorporated. All Rights Reserved.

Atoms

Atoms are the most primitive value in the AS1/AS2 system – a single
dynamically typed value

Atoms still exist in AS3, but only when type is unknown

null

undefined

3.14159

“Hello, world”

true

null

undefined

number

string

boolean

object

2006 Adobe Systems Incorporated. All Rights Reserved.
7

2006 Adobe Systems Incorporated. All Rights Reserved.

AS3 Object Model: Traits

2006 Adobe Systems Incorporated. All Rights Reserved.
8

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits represent objects: a sample class

class Shape
{

var id:int;
var name:String;

}
class Circle extends Shape {

var radius:Number;
var color:uint;

public function Circle(radius:Number)
{

this.radius = radius;
}

public function area():Number
{

return Math.PI*radius*radius;
}

}

2006 Adobe Systems Incorporated. All Rights Reserved.
9

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

class Shape
{

var id:int;
var name:String;

}

class Circle extends Shape {
var radius:Number;
var color:uint;

public function Circle(radius:Number)
{

this.radius = radius;
}

public function area():Number
{

return Math.PI*radius*radius;
}

}
12intid

offsettypename

16Stringname

0

method id

(none)Voidfinal$construct

type paramsreturn typename

properties

methods

traits for class Shape
base class: Object final: false dynamic: false

2006 Adobe Systems Incorporated. All Rights Reserved.
10

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

class Shape
{

var id:int;
var name:String;

}

class Circle extends Shape {
var radius:Number;
var color:uint;

public function Circle(radius:Number)
{

this.radius = radius;
}

public function area():Number
{

return Math.PI*radius*radius;
}

}

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

2006 Adobe Systems Incorporated. All Rights Reserved.
11

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

2006 Adobe Systems Incorporated. All Rights Reserved.
12

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

2006 Adobe Systems Incorporated. All Rights Reserved.
13

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

2006 Adobe Systems Incorporated. All Rights Reserved.
14

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

2006 Adobe Systems Incorporated. All Rights Reserved.
15

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

2006 Adobe Systems Incorporated. All Rights Reserved.
16

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

2006 Adobe Systems Incorporated. All Rights Reserved.
17

2006 Adobe Systems Incorporated. All Rights Reserved.

How traits describe objects

16Stringname

12intid

offsettypename

20uintcolor

24Numberradius

1

0

method id

radius:NumberVoidfinal$construct

virtual

type paramsreturn typename

(none)Numberarea

properties

methods

traits for class Circle
base class: Shape final: false dynamic: false

name16

vtable0

radius24

color20

id12

__proto__

traits4

8

instance of class Circle

total 32 bytes / instance

2006 Adobe Systems Incorporated. All Rights Reserved.
18

2006 Adobe Systems Incorporated. All Rights Reserved.

Objects in AVM1

vtable0

...20

variables16

call12

flags

__proto__4

8

instance of class Circle

60

56

52

name48

44

40

36

32

28

24

0xFF000020

0

16

12

0

4

8

id

color

radius

2.7

name

MyCircle

000

000

001

010

2006 Adobe Systems Incorporated. All Rights Reserved.
19

2006 Adobe Systems Incorporated. All Rights Reserved.

Runtime natively supports strong types

In ActionScript 2.0:
Type annotations were a compiler hint

Type information did not reach all the way down to the runtime

All values were stored as dynamically typed atoms

Type annotations were a “best practice” for developer productivity

In ActionScript 3.0:
Type annotations are employed to efficiently store values as native machine
types

Type annotations improve performance and reduce memory consumption

Type annotations are essential to getting best performance and memory
characteristics

2006 Adobe Systems Incorporated. All Rights Reserved.
20

2006 Adobe Systems Incorporated. All Rights Reserved.

The Power of “int”

2006 Adobe Systems Incorporated. All Rights Reserved.
21

2006 Adobe Systems Incorporated. All Rights Reserved.

Numeric Types

int: 32-bit signed integer

uint: 32-bit unsigned integer

Number: 64-bit IEEE 754 double-precision floating-point number

2006 Adobe Systems Incorporated. All Rights Reserved.
22

2006 Adobe Systems Incorporated. All Rights Reserved.

Without Type Annotations

111111111111111111111 110

111

3.14159

int atom,
4 bytes

number atom,
4 bytes

number,
8 bytes

111

0xFFFFFFFF

number atom,
4 bytes

number,
8 bytes

var x = -1;

var y = 0xFFFFFFFF;

var z = 3.14159;

2006 Adobe Systems Incorporated. All Rights Reserved.
23

2006 Adobe Systems Incorporated. All Rights Reserved.

With Type Annotations

-1

0xFFFFFFFF

3.14159

4 bytes

4 bytes

8 bytes

var x:int = -1;

var y:uint = 0xFFFFFFFF;

var z:Number = 3.14159;

2006 Adobe Systems Incorporated. All Rights Reserved.
24

2006 Adobe Systems Incorporated. All Rights Reserved.

Promotion of
Numeric Types

2006 Adobe Systems Incorporated. All Rights Reserved.
25

2006 Adobe Systems Incorporated. All Rights Reserved.

Promotion of Numeric Types

The semantics of ECMAScript require that ints often be promoted to Number

var i:int = 1;

// i+1 here will be a straight
// integer addition
var j:int = i+1

// i+1 here will require
// promotion to Number
print(i+1)

2006 Adobe Systems Incorporated. All Rights Reserved.
26

2006 Adobe Systems Incorporated. All Rights Reserved.

Promotion of Numeric Types

Putting in a coerce to int/uint can help performance, if the compiler cannot
infer that int/uint is what you want

Array access has fast paths for int/uint, so coercion of index can help
performance

var i:int;
// i*2 gets promoted to Number
for (i=0; i<10000; i++) {
a[i*2] = 0;

}
// Goes through fast path
for (i=0; i<10000; i++) {
a[int(i*2+1)] = 1;

}

2006 Adobe Systems Incorporated. All Rights Reserved.
27

2006 Adobe Systems Incorporated. All Rights Reserved.

CSE

2006 Adobe Systems Incorporated. All Rights Reserved.
28

2006 Adobe Systems Incorporated. All Rights Reserved.

CSE

The VM does perform common subexpression elimination

However, language semantics sometimes get in the way:

Because “length” might be overridden and have side effects, the VM cannot
factor it out of the loop

for (var i:int=0; i<a.length; i++)
{

processRecord(a[i]);
}

2006 Adobe Systems Incorporated. All Rights Reserved.
29

2006 Adobe Systems Incorporated. All Rights Reserved.

CSE

The VM does perform common subexpression elimination

However, language semantics sometimes get in the way:

Because “length” might be overridden and have side effects, the VM cannot
factor it out of the loop

for (var i:int=0; i<a.length; i++)
{

processRecord(a[i]);
}

2006 Adobe Systems Incorporated. All Rights Reserved.
30

2006 Adobe Systems Incorporated. All Rights Reserved.

CSE

So, some hand CSE is still needed:

var n:int = a.length;
for (var i:int=0; i<n; i++)
{

processRecord(a[i]);
}

2006 Adobe Systems Incorporated. All Rights Reserved.
31

2006 Adobe Systems Incorporated. All Rights Reserved.

Method Closures

2006 Adobe Systems Incorporated. All Rights Reserved.
32

2006 Adobe Systems Incorporated. All Rights Reserved.

Method Closures

Often, developers write event handling code with anonymous function
closures:

class Form
{

function setupEvents()
{

var f = function(event:Event) {
trace(“my handler”);

}
grid.addEventListener(“click”, f);

}
}

2006 Adobe Systems Incorporated. All Rights Reserved.
33

2006 Adobe Systems Incorporated. All Rights Reserved.

Method Closures

Nested functions cause the outer function to create an activation object.

This has some performance and memory impact.

class Form
{

function setupEvents()
{

var f = function(event:Event) {
trace(“my handler”);

}
grid.addEventListener(“click”, f);

}
}

2006 Adobe Systems Incorporated. All Rights Reserved.
34

2006 Adobe Systems Incorporated. All Rights Reserved.

Method Closures

Method closures solve the age-old AS2 problem of “this” changing

Eliminates need for mx.utils.Delegate class from Flex 1.x

import mx.utils.Delegate;
class Form
{
function setupEvents()
{
grid.addEventListener(“click”,
Delegate.create(this, f)); // No more!

}
function f(e)
{
trace(“my handler”);

}
}

2006 Adobe Systems Incorporated. All Rights Reserved.
35

2006 Adobe Systems Incorporated. All Rights Reserved.

Method Closures

Method closures are convenient to use, and more efficient, because there
won’t be an activation object created.

class Form
{

function setupEvents()
{

grid.addEventListener(“click”, f);
}
function f(event:Event)
{

trace(“my handler”);
}

}

2006 Adobe Systems Incorporated. All Rights Reserved.
36

2006 Adobe Systems Incorporated. All Rights Reserved.

Activation Objects

f:
newactivation
setlocal1
getlocal1
pushbyte 0
setslot 0

g:
pushbyte 0
setlocal1

function f()
{

var x:int = 0;
…

}

2006 Adobe Systems Incorporated. All Rights Reserved.
37

2006 Adobe Systems Incorporated. All Rights Reserved.

Compound Strings

2006 Adobe Systems Incorporated. All Rights Reserved.
38

2006 Adobe Systems Incorporated. All Rights Reserved.

Compound Strings

For awhile, we had a class flash.utils.StringBuilder for fast string
concatenation

What happened?

A: We made the + operator super-fast by implementing compound strings
(cords), so StringBuilder was unneeded and removed

2006 Adobe Systems Incorporated. All Rights Reserved.
39

2006 Adobe Systems Incorporated. All Rights Reserved.

Compound Strings

var s:String = “Hello, ”;
s += “world, ”;
s += “from AS3!”;

2006 Adobe Systems Incorporated. All Rights Reserved.
40

2006 Adobe Systems Incorporated. All Rights Reserved.

Compound Strings

var s:String = “Hello, ”;
s += “world, ”;
s += “from AS3!”;

2006 Adobe Systems Incorporated. All Rights Reserved.
41

2006 Adobe Systems Incorporated. All Rights Reserved.

Compound Strings

var s:String = “Hello, ”;
s += “world, ”;
s += “from AS3!”;

2006 Adobe Systems Incorporated. All Rights Reserved.
42

2006 Adobe Systems Incorporated. All Rights Reserved.

Interpret vs. JIT

2006 Adobe Systems Incorporated. All Rights Reserved.
43

2006 Adobe Systems Incorporated. All Rights Reserved.

Interpret vs. JIT

We make a simple “hotspot”-like decision about whether to interpret or JIT

Initialization functions ($init, $cinit) are interpreted

Everything else is JIT

Upshot: Don’t put performance-intensive code in class initialization:

class Sieve
{

var n:int, sieve:Array=[], c:int, i:int, inc:int;
set_bit(0, 0, sieve);
set_bit(1, 0, sieve);
set_bit(2, 1, sieve);
for (i = 3; i <= n; i++) set_bit(i, i & 1, sieve);
c = 3;
do { i = c * c, inc = c + c; while (i <= n) { set_bit(i, 0, sieve); i += inc; } c += 2;
while (!get_bit(c, sieve)) c++; } while (c * c <= n); }
…

2006 Adobe Systems Incorporated. All Rights Reserved.
44

2006 Adobe Systems Incorporated. All Rights Reserved.

Garbage Collection

2006 Adobe Systems Incorporated. All Rights Reserved.
45

2006 Adobe Systems Incorporated. All Rights Reserved.

MMgc Garbage Collector: Overview

Reusable C/C++ library

Used by AVM1, AVM2 and Player’s display list

Not specific to Flash Player

new/delete (unmanaged memory)

new w/ optional delete (garbage collection)

memory debugging aids

profiling

2006 Adobe Systems Incorporated. All Rights Reserved.
46

2006 Adobe Systems Incorporated. All Rights Reserved.

Garbage Collection

Old school tech mainstreamed by Java

Key to VM performance

Our algorithm
Deferred Reference Counting (DRC)

Backed by incremental conservative mark/sweep collector

A = new Object();
B = new Object();
A.next = B;
B.prev = A;

2006 Adobe Systems Incorporated. All Rights Reserved.
47

2006 Adobe Systems Incorporated. All Rights Reserved.

Deferred Reference Counting

All about speed, 20% speedup from 7 to 8

Only maintain RC for heap to heap references

Ignore stack and registers (scratch memory)

Put Zero count items in Zero Count Table (ZCT)

Scan stack when ZCT is full

Delete objects in ZCT not found on stack

Wash and repeat

2006 Adobe Systems Incorporated. All Rights Reserved.
48

2006 Adobe Systems Incorporated. All Rights Reserved.

Incremental Collection

Marking limited to 30 ms time slices

Stop start marking

Smart pointers for minimal dev impact

Lazy Sweeping

DRC tied into write barriers (heap to heap)

2006 Adobe Systems Incorporated. All Rights Reserved.
49

2006 Adobe Systems Incorporated. All Rights Reserved.

Conservative Collection

One mark routine for all memory

False positives are possible but manageable:
Clean stack

Keep ‘em separated

No need to write marking routines

2006 Adobe Systems Incorporated. All Rights Reserved.
50

2006 Adobe Systems Incorporated. All Rights Reserved.

A peek inside the
JIT

2006 Adobe Systems Incorporated. All Rights Reserved.
51

2006 Adobe Systems Incorporated. All Rights Reserved.

AVM2 Architecture

2006 Adobe Systems Incorporated. All Rights Reserved.
52

2006 Adobe Systems Incorporated. All Rights Reserved.

.abc Bytecode: Code Compression

Constant Data
Strings, Numbers, etc

Multinames = {ns set}::name

RTTI
Method Descriptors

Type Descriptors, a.k.a Traits

Bytecode
Stack Machine notation

2006 Adobe Systems Incorporated. All Rights Reserved.
53

2006 Adobe Systems Incorporated. All Rights Reserved.

Bytecode Verifier

Structural Integrity
Branches must land on valid instructions

Can’t fall off end of code

Constant references valid

Type Safety
Dataflow Analysis to track types

Early Binding

MIR Code Generation (optional)
Generate IR while verifying

Single pass to verify + generate IR

2006 Adobe Systems Incorporated. All Rights Reserved.
54

2006 Adobe Systems Incorporated. All Rights Reserved.

Interpreter

Stack Machine, no surprises
for (;;) {

switch (*pc) {
case OP_pushstring: …
case OP_pop: …
case OP_callproperty: …

}

All values are boxed, 32-bit atoms

Code executes from verified .abc data in SWF

2006 Adobe Systems Incorporated. All Rights Reserved.
55

2006 Adobe Systems Incorporated. All Rights Reserved.

Used in JIT compiler to abstract commonalities between CPU’s

MIR: Macromedia Intermediate Representation

2006 Adobe Systems Incorporated. All Rights Reserved.
56

2006 Adobe Systems Incorporated. All Rights Reserved.

Just In Time Code Generation

MIR Code Generation
Concurrent with Verifier

Early Binding

Constant Folding

Copy & Constant Propagation

Common Subexpression Elimination (CSE)

Dead Code Elimination (DCE)

MD Code Generation
Instruction Selection

Register Allocation

Dead Code Elimination (DCE)

2006 Adobe Systems Incorporated. All Rights Reserved.
57

2006 Adobe Systems Incorporated. All Rights Reserved.

A Tale of Three Notations

AS3
function (x:int):int {
return x+10

}

.abc
getlocal 1
pushint 10
add
returnvalue

MIR
@1 arg +8// argv
@2 load [@1+4]
@3 imm 10
@4 add (@2,@3)
@5 ret @4 // @4:eax

x86
mov eax,(eap+8)
mov eax,(eax+4)
add eax,10
ret

2006 Adobe Systems Incorporated. All Rights Reserved.
58

2006 Adobe Systems Incorporated. All Rights Reserved.

JIT Overview

Conventional: Write program, compile to platform and then execute.

Program bound to hardware early raises a number of issues, mainly
portability and size.

JIT idea: write program, but don’t ‘compile’ until code is actually on the
target platform.

2006 Adobe Systems Incorporated. All Rights Reserved.
59

2006 Adobe Systems Incorporated. All Rights Reserved.

Balance

The question - compile or execute?

First generation
JIT spent quite a bit of time compiling.

Paid the price in start-up performance.

Next generation
2 JITs for two environments; ‘client’ and ‘server’

Client - better start-up performance for programs like dynamic GUI apps

Server – best for apps that can tolerate higher start-up hit

2006 Adobe Systems Incorporated. All Rights Reserved.
60

2006 Adobe Systems Incorporated. All Rights Reserved.

Balance

Our objectives
Fast compile times

Limited passes

Cautious with memory

All this and we kept an eye on portability from the onset.

2006 Adobe Systems Incorporated. All Rights Reserved.
61

2006 Adobe Systems Incorporated. All Rights Reserved.

Architecture

Hybrid execution model – allows us to interpret .abc directly or invoke JIT compiler

JIT compiler translates bytecodes into native machine code in 2 passes

Only the back-end of JIT compiler is platform-dependent; needs retargeting for each
CPU

Support for x86, PowerPC, ARM …

2006 Adobe Systems Incorporated. All Rights Reserved.
62

2006 Adobe Systems Incorporated. All Rights Reserved.

MIR

What?
Internal representation of the program that bridges .abc and target instruction set

3-tuple; operation + 2 operands

Why?
Allows us to perform optimizations that otherwise would be quite difficult using a stack
based notation

Easier to map to underlying hardware

2006 Adobe Systems Incorporated. All Rights Reserved.
63

2006 Adobe Systems Incorporated. All Rights Reserved.

Translation from .abc
Stack manipulation and local moves become no-ops

Common sub-expression elimination

Optimizations

1

1

Instruction not generated.
Instead we place ref ‘@3’

@3 add @1 @2
@4 …
@8 add @1 @2

a = x + y
…
b = x + y

push
dup

2006 Adobe Systems Incorporated. All Rights Reserved.
64

2006 Adobe Systems Incorporated. All Rights Reserved.

Early Binding

Can take advantage of running state of system.

Some objects and properties already resolved and bound.

During verification stage, type information is propagated.

Allows support for native types.

2006 Adobe Systems Incorporated. All Rights Reserved.
65

2006 Adobe Systems Incorporated. All Rights Reserved.

30:pushbyte 46
@90 imm 46

stack: C?@89 int@90
32:setproperty {public,bind$1}::f

@93 st 16(@89) <- @90

Field Binding

public final class C {
public var f:int;

}
var o:C = new C();
o.f = 46;

2006 Adobe Systems Incorporated. All Rights Reserved.
66

2006 Adobe Systems Incorporated. All Rights Reserved.

30:pushbyte 46
@90 imm 46

stack: C?@89 int@90
32:setproperty {public,bind$1}::f

@93 st 16(@89) <- @90

Field Binding

public final class C {
public var f:int;

}
var o:C = new C();
o.f = 46;

o is of
type C

2006 Adobe Systems Incorporated. All Rights Reserved.
67

2006 Adobe Systems Incorporated. All Rights Reserved.

30:pushbyte 46
@90 imm 46

stack: C?@89 int@90
32:setproperty {public,bind$1}::f

@93 st 16(@89) <- @90

Field Binding

public final class C {
public var f:int;

}
var o:C = new C();
o.f = 46;

46 is an
int

2006 Adobe Systems Incorporated. All Rights Reserved.
68

2006 Adobe Systems Incorporated. All Rights Reserved.

30:pushbyte 46
@90 imm 46

stack: C?@89 int@90
32:setproperty {public,bind$1}::f

@93 st 16(@89) <- @90

Field Binding

public final class C {
public var f:int;

}
var o:C = new C();
o.f = 46;

o has field
named f that

can be resolved

2006 Adobe Systems Incorporated. All Rights Reserved.
69

2006 Adobe Systems Incorporated. All Rights Reserved.

30:pushbyte 46
@90 imm 46

stack: C?@89 int@90
32:setproperty {public,bind$1}::f

@93 st 16(@89) <- @90

Field Binding

public final class C {
public var f:int;

}
var o:C = new C();
o.f = 46;

Location of f
resolves to offset

on object and type
is int so no

coerce needed

2006 Adobe Systems Incorporated. All Rights Reserved.
70

2006 Adobe Systems Incorporated. All Rights Reserved.

Machine Code (MD) Generation

In the next and final pass we translate MIR into platform specific instructions.

Instruction selection (IS)

Register allocation (RA)

Register / stack management

2006 Adobe Systems Incorporated. All Rights Reserved.
71

2006 Adobe Systems Incorporated. All Rights Reserved.

Machine Code (MD) Generation

In the next and final pass we translate MIR into platform specific instructions.

Instruction selection (IS)

Register allocation (RA)

Register / stack management

@90 imm 46
active: ecx(89-93)

@93 st 16(@89) <- @90
03A20153 mov 16(ecx), 46

2006 Adobe Systems Incorporated. All Rights Reserved.
72

2006 Adobe Systems Incorporated. All Rights Reserved.

Machine Code (MD) Generation

In the next and final pass we translate MIR into platform specific instructions.

Instruction selection (IA)

Register allocation (RA)

Register / stack management

@90 imm 46
active: ecx(89-93)

@93 st 16(@89) <- @90
03A20153 mov 16(ecx), 46

ecx contains o pointer
and IA32 mov instruction
allows immediate (46) as

an operand.

2006 Adobe Systems Incorporated. All Rights Reserved.
73

2006 Adobe Systems Incorporated. All Rights Reserved.

Other IS / RA notables

A variant of Linear Scan Register Allocation (LSRA)
Size/speed requirements made this allocator a good fit

Register hinting support

Location of operands feeds instruction selector
Supports optimal use of stack and registers

Constants fold directly into instruction

2006 Adobe Systems Incorporated. All Rights Reserved.
74

2006 Adobe Systems Incorporated. All Rights Reserved.

