
Energy-Efficient Bounded-diameter Tree Scatternet for Bluetooth PANs

Muralidhar Medidi Jonathan Campbell
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA 99164-2752�

mmedidi, jcampbel � @eecs.wsu.edu

Abstract

Bluetooth is a promising wireless technology that en-
ables devices to form short-range multihop wireless ad-
hoc networks, or personal area networks (PANs). However,
scatternet formation is one of the challenges that need to
be resolved since the performance of a Bluetooth network
depends largely on the scatternet topology used. We first
identify a particuar variant of a height-balanced binary
tree, termed ACB-tree for almost-complete-binary tree, that
allows two such trees to be combined to create a larger
ACB-tree while retaining the height-balance requirement.
We then present a distributed scatternet formation algo-
rithm for creation of ACB-trees. We further extend the al-
gorithm to produce an ACB-tree scatternet with energy ef-
ficient properties. We also present simulations, conducted
using Blueware simulator, to provide experiment results to
study and compare the performance of the resulting scatter-
nets.

1. Introduction

Bluetooth is a low-cost and low-power short-range ra-
dio technology, intended to replace cable(s), connecting
portable and/or fixed electronic devices. It operates in the
unlicensed 2.4 GHz ISM (Industrial, Scientific and Medi-
cal) band and uses frequency hopping scheme to avoid inter-
ference from other devices and wireless technologies (e.g.
802.11) operating in the same band.

When two Bluetooth devices establish a connection, one
of them is assigned the role of a master of the connection
and other becomes its slave. The resulting simple one-hop
network is called a piconet. There is no limit on the max-
imum number of slaves in a piconet; however, the number
of active slaves in a piconet is always limited to 7 (Blue-
tooth specification 1.1, [1]) and usually referred as k. If a
master has more than k slaves, extra slaves must be parked.

Piconets can be interconnected into a scatternet by sharing
slaves, termed gateway nodes or bridges.

Essentially, the scatternet formation problem is the as-
signment of roles to Bluetooth devices or nodes. This as-
signment, which determines whether a node plays role of
a master, slave or bridge, also determines structure of the
scatternet, and hence, greatly affects the overall throughput
[12].

Initially, Bluetooth devices have no knowledge of their
surroundings or other devices. Each device operates inde-
pendently of others and hence, a distributed scatternet for-
mation scheme must be used. Devices can be mobile, so
topology changes are expected frequently. The scatternet
topology should be dynamic, meaning that it should allow
for dynamic addition and deletion (leaving) of nodes. Also,
scatternet should be formed within a reasonable time.

In order to improve the performance of the scatternet,
following are some important criteria that must be consid-
ered: (1) the number of piconets in the scatternet should be
kept low, (2) low degree of a node, and (3) low network di-
ameter. It is also desirable to create a scatternet which is
mindful of energy efficiency during topology construction
to allow the network to exist for the longest period possi-
ble without re-organization. Though it has been shown that
the tree structure has a bottleneck at the root under uniform
traffic loads [23], this property creates a natural concept for
placement of nodes within the tree with respect to energy
efficiency.

In this paper, we study the problem of energy-efficient
scatternet formation for devices which are all within trans-
mission range of each other: we identify a height-balanced
binary tree structure, ACB-tree, that allows easier combi-
nation and then propose a distributed scatternet formation
technique to create these ACB-trees. The rest of the paper
is organized as follows. Section 2 gives a brief overview
of the Bluetooth specification as it relates to scatternet for-
mation. Related research on scatternet formation is summa-
rized in Section 3. We first present the ACB-tree and de-
scribe ATSF, the ACB-tree scatternet formation, algorithm

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

in Section 4. Then, we discuss an energy-efficient modifi-
cation to the standard ACB-tree scatternet formation algo-
rithm in Section 5. In Section 6, we present simulation re-
sults and compare them with those available for other scat-
ternet formation algorithms. We provide some concluding
remarks in Section 7.

2. Background

The basic building block of the Bluetooth network is a
piconet which is made up of a master node and a number of
slaves. All devices in one piconet share the same communi-
cation channel, using the frequency hopping sequence de-
termined by the master, and can communicate only through
the master node.

According to Bluetooth specifications, the link forma-
tion process consists of two major phases: inquiry and page.
A Bluetooth device can discover other neighboring devices
by the inquiry process. Nodes randomly choose to be in IN-
QUIRY or INQUIRY SCAN state: those in INQUIRY start
looking for neighbors which are in the INQUIRY SCAN
and nodes in INQUIRY SCAN are waiting to be contacted.
A full description of the link formation process can be found
in [1] or [6].

If the inquiry phase is successful, the INQUIRY node ac-
quires the information about the node in INQUIRY SCAN
and then, both nodes move into PAGE and PAGE SCAN
respectively. This starts the page process: the node in the
PAGE becomes the master and node performing PAGE
SCAN becomes its slave.

A single Bluetooth device is allowed to be a part of sev-
eral piconets acting as a gateway between them. Using these
gateways, we can interconnect independent piconets into a
single, larger multi-hop network or personal area network
(PAN); in Bluetooth terminology, such a network is termed
scatternet. Though Bluetooth specifications identify meth-
ods for device discovery and also allow a node to participate
in more than one piconet, scatternet topologies and their for-
mation is unspecified and left upto the developers.

3. Related Work

Scatternet formation for Bluetooth networks has been
an active area of research. The proposed algorithms can be
roughly divided into two classes: those that assume all de-
vices are within transmission range of each other and those
that aim to form a connected network when all devices are
not necessarily in range of each other. Our algorithm falls in
the first category as we assume all devices are in transmis-
sion range of each other. The algorithms suggested for out-
of-range devices include [15, 16, 19, 22]. Interested readers
are referred to [6] for a discussion about scatternet forma-
tion for out-of-range devices.

In the in-range category, initial attempts included a scat-
ternet formation algorithm given by Salonidis et al. [18]
called Bluetooth Topology Construction Algorithm (BTCP).
With the aim of complete connectivity, every piconet is con-
nected to every other piconet through a slave/slave gate-
way. The generated scatternet can support a maximum of
36 nodes and does not scale to a higher number of nodes.
Ramachandran et al. [17] redefined the problem of scatter-
net formation as a problem of clustering. However, the re-
sulting scatternet is not guaranteed to be connected since
the problem of determining gateways between two piconets
is not addressed.

Law and Siu [10] proposed a single phase decentralized
scatternet formation algorithm with a basic focus on min-
imizing the number of piconets and degree of a node in
the network. The resulting scatternet is a tree, with minimal
number of bridge nodes, reducing the synchronization de-
lay and hence overall end-to-end delay. Tan et al. [21] sug-
gested TSF, a self healing tree, accommodating topology
changes and reorganizing to retain the structure. Chong and
Chaing [8] created Bluering, a scatternet with ring struc-
ture. Zhang, Hou and Sha [23] proposed formation of loop
scatternets and also identified the node contention as a per-
formance metric for the scatternets. Helttunen, Mishra, and
Park [9] proposed a method for merging piconets to find
common bridge nodes. Baatz et al. [4] proposed a scatter-
net formation algorithm based on 1-factors.

Barriere et al. [5] suggested a distributed scatternet for-
mation algorithm for creation of so called projective scat-
ternets. Sunkavalli and Ramamurthy [20] proposed MTSF,
a mesh formation scheme which focuses on reducing scat-
ternet formation time and fast dynamic node acceptance
times. Medidi and Daptardar [11] suggested BlueMesh, a
distributed algorithm which produced a regular mesh scat-
ternet to reduce the number of piconets and the diameter.
Persson and Manivanan [14] proposed a distributed self-
healing protocol which was shown to be fault-tolerant and
allowed for multi-hop formation, but had no control over
the shape of the resulting scatternet. Chen et al. [7] pro-
posed a method for creating scatternets where the resulting
topology could be controlled by manipulating a set of con-
straints, such as the maximum number of loops or the max-
imum number of slaves. It should be noted that results were
only shown for a very small number of nodes (1-8) and the
algorithm is not a distributed one.

The only scatternet formation algorithm available which
targets energy efficency as a metric is SF-DeviL [13]. Each
device in the scenario has a device grade, which is derived
from the class of device and the battery level. This class
is defined by grouping together devices which have sim-
ilar energy capabilities. In addition to the device grade,
each device assigns a received signal strength grade for
each of its neighbors indicating the received signal as weak,

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

medium, strong or very strong. By using these two values,
a ‘best master’ is selected among a piconet. The scatter-
net is formed in a basic tree fashion and then reorganized
such that the ‘best master’ among each piconet is promoted
to be the master. For example, if a cellular phone is ini-
tially the master of a piconet and many or all slaves are lap-
tops, one of the laptops would be selected as the best mas-
ter to reduce the load on the cellular phone. At the end of
the formation process, the final topology consists of a sin-
gle spanning tree with the most energy capable device as
the root and the least capable devices as leaves. The sim-
ulations results presented indicated that this scheme has a
high formation delay in comparison to other scatternet for-
mation algorithms. However, none of the other algorithms
considered energy efficiency as a metric.

4. ACB-tree and Scatternet Formation

Our primary objective is to obtain a scatternet of
bounded diameter: binary trees, if height-balanced, pro-
vide a minimalist interconnection network with logarithmic
diameter and with a low degree at any node. Further, scat-
ternet formation which connects independent Bluetooth
devices has to be fundamentally distributed in nature to pro-
vide scalable operations. However, traditional trees (for ex-
ample: full or complete binary trees) with bounded heights
defy easy distributed formation.

Based on the characteristics of Bluetooth link discov-
ery and distributed formation objective, we identified a bi-
nary tree structure that serves these purposes. ACB-tree (for
almost-complete-binary tree) is a complete binary tree with
an additional node connected to the root, illustrated in Fig-
ure 1. Recall that a complete binary tree of depth � contains� � � �

-1 nodes. Merging two such complete binary trees into
a larger one requires an additional node to act as the new
root, at least, and cumbersome in designing a distributed
algorithm. On the other hand, an ACB-tree contains

� � � �

nodes. In particular, given two such ACB-trees, the combi-
nation to grow into a bigger ACB-tree does not require any
additional nodes. And, as shown in Figure 2, two ACB-trees
can be combined into a larger one by replacing one edge
(from a handle node to its root) with two new edges. In Fig-
ure 2, edge (x, y) is replaced with two edges: (a, y) and (a, x).
Note that (as opposed to the illustration in the Figure show-
ing the tree combination) even if two ACB-trees of different
heights are combined, the height of these trees is logarith-
mic as long as the difference in the heights of trees being
combined is bounded by a constant.

The device discovery process in Bluetooth is asymmet-
ric, with one of the devices becoming a master of the link
established and the other a slave. For symmetric and con-
trolled scatternet formation, and to minimize (maximize)
the number of piconet (the size of each piconet), we ori-

handleroot

Figure 1. ACB tree

ented the tree links from child nodes to parents (as opposed
to the convential downward pointing tree links). Since the
discovery process to grow the tree requires the availabil-
ity of one free link, and Bluetooth specifications restrict the
number of active slaves to seven, each piconet can at most
acquire five dedicated slaves. For ease of description later,
we term the root of any ACB-tree as the coordinator and
the handle node as the leader.

yyb b

a x

+

a x

Figure 2. ACB tree combination

Our scatternet formation algorithm ATSF, which gener-
ates an ACB-tree, consists of three conceptual phases. In
the first phase, all independent Bluetooth devices are con-
nected into piconets, each restricted to a maximum of
 -2
slaves. In phase 2, all such piconets are glued together to
create trees using recursive doubling technique. Due to the
distributed and controlled nature of the algorithm, to ensure
height balance in the tree, the second phase cannot guaran-
tee the generation of a single tree. As a result, in the final
phase, we enforce relaxed connections to force the genera-
tion of a single, connected tree. Phases 1 and 2 may over-
lap in time, in the sense that a device u may be in phase 1
while another device v may be in phase 2.
Phase 1 - Piconet Formation: Initially, we assume a set
of N isolated devices that are within transmission range
of each other: each device is a leader of a piconet con-
sisting of only itself. Every leader calls procedure SEEK
with probability p and procedure SCAN with probability (1
- p). When a leader executes procedure SEEK, it goes in
INQUIRY and tries to acquire one or more slaves. On the
other hand, a leader in procedure SCAN enters INQUIRY
SCAN and waits to be contacted by another leader. A suc-
cessful execution path, in the device discovery process, in-
cludes two leaders in opposite modes contacting each other
after which they enter PAGE (from INQUIRY) and PAGE

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

SCAN (from INQUIRY SCAN) to create a connection be-
tween them. The leaders may merge their piconets into one
if it still keeps the number of slaves in the resulting piconet
to � (k - 2).

A leader is forced to move to the next phase whenever
it has (k - 2) slaves in its piconet. However, this condition
solely is not enough to move all leaders into phase 2 since
it could take an inordinate amount of time for all the lead-
ers to acquire precisely (k - 2) slaves. Hence we force lead-
ers to move to phase 2 with a time-out for phase 1, even if
their piconets are sparse.

Phase 2 - ACB-tree Growing: The main aim here is to
combine independent piconets together to form trees. Ev-
ery leader can accommodate a minimum of one more slave
in its piconet. Due to the time-out in phase 1, however, ev-
ery connection between leaders (of single-piconet trees) in
phase 2 first tries to merge their piconets into a single pi-
conet as long as the restriction of a maximum of (k - 2)
slaves in each piconet is not violated.

Each piconet’s leader will start discovering other trees in
this phase to merge and grow bigger ACB trees. To speed
up the discovery process, two devices in any ACB-tree will
be actively participating in merging trees: the leader and the
coordinator. Coordinators enter INQUIRY to discover other
leaders, and leaders INQUIRY SCAN to be contacted by
other coordinators. When a coordinator and a leader dis-
cover and establish a link (from coordinator to leader, to
be precise, in this master-slave link), they first exchange in-
formation about the heights of their respective ACB-trees.
If the heights differ by more than one, the newly estab-
lished link is torn down and these two devices will con-
tinue searching for other trees. If the height difference is
within one, the additional link needed between the leaders
to complete the merger of these two ACB-trees into a larger
ACB-tree is established.

At the end of this merger, both coordinators (nodes � and
� in Figure 2) retire and become inactive for the purposes of
tree-growing. One of the leaders (node �) takes on the role
of the coordinator for the new and larger ACB-tree while
the other (node �) keeps its role as the leader. Note that the
connection establishment and subsequent tearing down be-
tween trees of too different heights is an overhead and in-
creases the scatternet formation time. To alleviate this over-
head, we relaxed the height differnce between combined
trees upto one. Thus the height of these relaxed ACB-trees
goes up, but still constrained to be logarithmic with the
number of nodes (piconets) in the tree. Thus, in phase 2,
we are using recursive doubling by allowing similar-sized
trees to connect to each other forming bigger trees in a con-
trolled fashion. However, this may not guarantee the forma-
tion of a single scatternet at the end of phase 2 and we may
end up with a forest of ACB-trees of differing heights.

Phase 3 - Combination into a Single Tree: A leader (and
its coordinator) in phase 2 is continuously in search of other
trees of appropriate height. However, if the device discov-
ery proves to be unsuccessful after a certain time-out pe-
riod, the leader declares the end of phase 2 and moves on
to phase 3. In this phase, we merge such trees into a single
scatternet by ignoring the height requirements. In the spe-
cial case when a tree must merge with a lone piconet (a pi-
conet which has not merged with any other piconet in phase
2), the lone piconet is ‘swallowed’ by being placed into the
tree as the child of a leaf node.

5. Energy Efficiency

It has been shown that under a uniform traffic model,
nodes which are closer to the root node of a tree will have a
higher load overall [23]. As a result, it is natural to con-
struct the tree such that the most energy capable nodes
serve as bridges and are located higher in the tree. These
bridge nodes carry a higher load due to the routing of pack-
ets, switching between multiple piconets and handling their
own traffic. The least energy capable nodes should be as-
signed the role of slave nodes, where they are only required
to handle their own traffic.

During phases one and two of the algorithm, merges are
conducted such that the most energy capable nodes ‘win’
the role of leading the resulting tree. Each device stores an
energy capability value, which is used to reflect available
battery power and the type of device. The following is a de-
scription of the modifications to the scatternet formation al-
gorithm to implement energy efficient ACB-Tree construc-
tion.

The algorithm is not dependant on any one method for
determining energy capability, and a variety of factors can
determine the energy capability of a given node. As such,
any method can be used, so long as a relative ranking among
nodes can be determined. One such ranking was discussed
by Pamuk and Karasan as a part of the SF-DeviL algorithm
[13]. The numbers associated with nodes in the ACB-trees
in subsequent figures are relative energy capability rankings
on a scale of 0-99, with 99 being the most energy capable
and 0 being the least.
Phase 1 - Piconet Formation: The standard phase one pro-
cedure is used, with one modification. Each time a merge
occurs, the two leaders compare their available energy val-
ues. The leader with the greater energy capability remains
the master of the new piconet. If the slave of the connec-
tion is more energy capable than the master, the link will
be reversed using the standard Bluetooth protocol. Other-
wise, the existing link will be used as is. As a result of this,
every piconet ends phase one with the leader as the most en-
ergy capable node in its piconet.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

u x

y v

60 90

8070

u x

y
70

60 90

v
80

uy

x

70 60

90
v

80

Figure 3. Energy Efficiency - General case of
MergeComponents. Existing link is usable.

Phase 2 - ACB-tree Growing: Similar to phase one, the
same basic procedure is used for phase two, with the addi-
tion of the energy efficiency checking. The same cases exist,
but some additional sub-cases are required due to the possi-
ble energy ordering of nodes. At the end of phase two, there
will be a forest of ACB-Trees, where each tree has the most
energy capable node as the leader and less capable nodes
will be located further down in the tree from the coordina-
tor node.

The general merge case is illustrated in Figures 3 and 4.
The energy levels of node � ’s leader (node �) and node �

are compared. The node with the higher energy capability is
selected to be the leader, while the other node is selected as
the coordinator. If � has a greater or equal energy capability
than � , the merge process occurs identically to the general
case which was described earlier. In the case where � has a
greater energy capability than � , the existing � - � link must
be disconnected. Before this occurs, � asks its coordinator
(node �) to go into PAGE looking for node � , while node �

asks node � to go into PAGE SCAN.
If � is successful in paging node � , then the merge pro-

cess described in the non-energy efficient general case is
utilized. Should paging fail, each tree goes back to their re-
spective tasks of searching for other trees.

The result of either sub-case is the same: an ACB-Tree
which combines the two smaller trees. The leader of the new
ACB-Tree is the most energy capable of the leaderss of the
two smaller trees, while the coordinator node is the lesser
of the two.

There are two special cases which exist due to the possi-
ble energy ordering of the nodes. These cases have straight-
forward implementations which ensure the proper ordering
with respect to energy capability.
Phase 3 - Combination into a Single Tree: The most im-
portant goal of phase three is to obtain a connected scat-
ternet. As was the case in phase three of the standard algo-
rithm, the height restrictions are relaxed and lone piconets
are swallowed by ACB-Trees. The energy efficient proce-
dure used in phase two is used in phase three, while the
‘swallowing’ technique remains unchanged from the stan-
dard algorithm. This provides a good balance between ob-
taining a connected scatternet in a short period of time while
using a best effort technique to unify all remaining trees.

v

u x

y v

60

70 90

80
u x

y v

60

70 90

80

uy 70 60

9080
vxu

70
y

80
x

60

90

Figure 4. Energy Efficiency - General case of
MergeComponents. Existing link is not us-
able.

At the end of phase three, we will have a single ACB-
Tree with the property that, in general, the most energy ca-
pable nodes will serve as bridge nodes closer to the coordi-
nator and leader. Those nodes which are less energy capable
will be located closer to the leaf nodes or serve as slaves.

6. Simulations

We used Blueware 1.0 [3] for our simulations. Blue-
ware is a Bluetooth extension for NS and closely fol-
lows Bluetooth specifications 1.1. It is available from
http://nms.lcs.mit.edu/projects/blueware. Blueware 1.0 is
built on top of the well known network simulator ns-2 [2],
which is a discrete-event simulator targeted at network-
ing research and provides substantial support for simulating
TCP, routing and multicast protocols for various network-
ing experiments. Blueware simulator implements most
aspects of the Bluetooth protocol stack according to Blue-
tooth specifications 1.1, provides an extensible architec-
ture for various scatternet formation and link scheduling
schemes, and to evaluate their performance. The Baseband
module implements the pseudo-random frequency hop-
ping technique and several operations as specified in the
Bluetooth Baseband. Various implementation challenges
have been handled such as the use of sessions at the Base-
band module. Unlike Bluehoc, another basic Bluetooth
simulator, Blueware supports creation of scatternet allow-
ing both master/slave and slave/slave bridges. Although the
Bluetooth specification provides the necessary HCI com-
mands to carry out inquiry and page phases and to activate
or hold a communication link, it does not specify schedul-
ing. A separate module called Task Scheduler is provided
in Blueware which implements task scheduling frame-
work.

However, there are a few limitations to the Blueware
simulator. Blueware currently does not support synchronous
connections (SCO). Further, it does not support SNIFF and

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

PARK modes for a Bluetooth link, yet. Even though the
availability of SCO links and low power modes such as
PARK would help Blueware more closely follow the Blue-
tooth specifications and provide even more realistic imple-
mentation of Bluetooth specifications, the simulation results
obtained are representative of real or prototype implementa-
tions. In particular, availability of these additional features
would speed up the formation time in our algorithm be-
cause we can exploit SCO links to communicate faster dur-
ing scatternet formation. Similarly, ability to park a few of
the slaves will allow each piconet in our phase 1 to collect
six slaves instead of the current limit of five and help us fur-
ther reduce the number of piconets in the scatternet.

Simulation Parameters

We used Blueware 1.0 to create an ad-hoc network of
Bluetooth devices, varying the number of nodes as 20, 30,
40, 50, 60, 80, 100, 120, 150, and 200. Each data point re-
ported is an average of results obtained through 10 differ-
ent simulation runs with varying seeds. The power class 3
Bluetooth (BT) nodes (i.e. nodes with a maximum transmis-
sion radius of 10 meters) are assumed to be randomly dis-
tributed in an area of 7.07 x 7.07 meters, ensuring that all
nodes would be within range of each other.

Simulation Results

We implemented our distributed algorithm to form
ACB-tree scatternets, referred as ATSF in the fig-
ures to distinguish it from others, using Blueware 1.0.
The energy efficient modification to ATSF is labeled
as ATSF-EE. Three other scatternet formation algo-
rithms were used to compare performance characteris-
tics: TSF, BlueMesh, and BlueCube. These algorithms
were chosen to provide a breadth of formation shapes (a to-
tal of two tree schemes, a mesh scheme, and a cube scheme)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

F
or

m
at

io
n

T
im

e
(s

ec
)

Number of Hosts

ATSF-EE
ATSF

SF-DeViL

Figure 5. Formation Time vs. Number of
Nodes. ATSF-EE vs. ATSF, SF-DeviL.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

F
or

m
at

io
n

T
im

e
(s

ec
)

Number of Hosts

ATSF
TSF

BlueMesh
BlueCube
ATSF-EE

Figure 6. Formation Time vs. Number of
Nodes.

and each had a readily-available implementations on Blue-
ware for a fair and direct comparison. Results for SF-DeviL
were taken directly from results presented in [13] be-
cause an implementation was not available for testing.
ATSF-EE produced trees with the same basic proper-
ties of the standard ATSF algorithm.

We plotted the scatternet formation times obtained for
ATSF, ATSF-EE and SF-DeviL in Figure 5 as the number
of nodes or hosts are varied. The results show that the for-
mation time for SF-DeviL increases almost exponentially
with respect to the number of hosts. Specifically, a network
of only 60 nodes takes two minutes to form. In contrast,
ATSF-EE takes less than 40 seconds for the same 60 nodes.
In comparison to ATSF, ATSF-EE takes less than 20 addi-
tional seconds to form a connected scatternet, with the aver-
age cost for obtaining energy efficiency being roughly 7 ex-
tra seconds. Note that, as expected, the formation time for
ATSF and ATSF-EE increases logarithmically with respect
to the number of hosts.

These results correlate with our expectations for ATSF-
EE. During the merge process, roughly half of the time the
existing links can be used to create a new energy efficient
component. In the situation where those links are unusable,
only one additional link must be established. This is in sharp
contrast to SF-DeviL, which has no bound on the number of
links which must be rearranged to obtain energy efficiency.

Figure 6 shows ATSF-EE in comparison to all other
tested algorithms. This illustrates that obtaining energy ef-
ficiency using ATSF-EE has a low cost when compared to
ATSF and the other algorithms. BlueMesh and BlueCube
have structures which do not provide a natural energy ef-
ficient process for bridge selection. TSF, as expected, re-
quires the least time in scatternet formation, yielding scat-
ternet formation in roughly 12 seconds on average. This
is due to the design of TSF, in that it solely focuses on

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200

H
ei

gh
t

Number of Hosts

ATSF, ATSF-EE
TSF

Figure 7. Height vs. Number of Hosts

forming a loop-free connected scatternet. Unlike other al-
gorithms, TSF has no control over scatternet characteristics
such as height, diameter, energy efficiency, or the number
of piconets.

Figure 7 shows the height of the tree produced by ATSF
in comparison to TSF. ATSF-EE produces trees which have
almost identical height to those created in ATSF because the
energy efficient modifications allow the same merges to oc-
cur, only the ordering of the nodes is changed. TSF has the
ability to have a maximum fanout of 7, equal to the number
of slave nodes, which should produce trees which are much
shorter than those produced by ATSF. However, the lack of
control over the merge process causes TSF to produce trees
that are generally taller than those produced by ATSF. In ad-
dition to producing shorter trees, ATSF also produces trees
with a diameter which is much more consistent, while the
height of the trees produced with TSF varies wildly.

Figure 8 shows the number of battery level violations
which exist in the final scatternet. We define a battery level
violation as the situation where a node has a higher energy
capability than its parent, or when an unshared slave has a
higher energy capability than its piconet master.

The number of violations which occur in ATSF increases
linearly with respect to the number of hosts in the scatter-
net. Because the connections are made without regard to
energy capability and the energy levels are uniformly dis-
tributed, it is reasonable that roughly half of the time the
more energy capable node would exceed the less energy ca-
pable node. This trend was observed in the experimental
data.

ATSF-EE yielded a violation trend which was nearly flat,
with only 11 violations occurring with 200 nodes in the
scatternet. In comparison, ATSF had 70 violations for the
same number of nodes. One cause for these violations is
when a lone piconet is swallowed and placed into a hole
where the parent has a lower energy capability than the
swallowed piconet. The other situation which can create an

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

B
at

te
ry

 L
ev

el
 V

io
la

tio
ns

Number of Hosts

ATSF
ATSF-EE

Figure 8. Number of Battery Level Violations
vs. Number of Nodes.

xu

y v

9080

60 70

u x

y v

90

7060

80
uy

x
90

v

60

70

80

Figure 9. Battery level violation in the general
merge case.

battery level violation is illustrated in Figure 9, which is
characterized by the leader (node �) of a tree has a lower en-
ergy capability than the both the coordinator (node �) and
leader (node �) of the other tree. In both of these situations,
one battery level violation will result.

While having zero violations would be ideal, a low num-
ber of violations could be considered acceptable if the cost
for fixing them was too high in terms of the overall scatter-
net formation delay. At 200 nodes, the scatternet had a 5.5%
battery violation rate (the number of violations divided by
the total number of nodes). These violations indicate that a
more energy efficient structure could be produced, at the ex-
pense of increasing the scatternet formation delay.

ATSF-EE maintains all of the properties of the standard
ATSF algorithm. The piconet count for ATSF is consistently
the lowest among TSF, BlueMesh, and BlueCube. The pi-
conet density is relatively high, with the average piconet
having 4.7 nodes. The number of roles for nodes in ATSF
is low and fixed, while TSF has no control over the num-
ber of roles per node. While ATSF has only a portion of
bridge nodes serving multiple roles, TSF requires any node
which is not a leaf to serve at least two roles.

Overall, the results for ATSF-EE show that it is feasi-
ble to obtain a scatternet with energy efficient properties
in a short period of time. The addition of the energy effi-
cient consideration does not invalidate any of the standard

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

properties of the ATSF algorithm. ATSF-EE is able to pro-
duce tree scatternets with bounded diameter, a fixed num-
ber of roles per device and fast formation time while adding
the additional benefit of energy efficiency.

7. Conclusion and Future Work

We proposed an energy efficient modification for a
height-balanced tree, termed ACB-tree, which is suit-
able for Bluetooth scatternets, and presented a distributed
scatternet algorithm to form these trees. Simulation re-
sults showed that the ACB-tree scatternets provide fast for-
mation time, and that adding energy efficiency as a
metric incurs only a moderate delay increase. In addi-
tion, ATSF-EE ensures that the node with the most energy
in any piconet serves as the master. The final tree main-
tains the properties of the standard ATSF algorithm, in-
cluding a bounded diameter, low number of piconets, and a
fixed number of roles per node. The tree maintains the en-
ergy efficient structure with few violations.

For future work, our initial efforts for improvement of
the ATSF-EE algorithm would be to reduce the number of
battery level violations. The amount of time in SEEK or
SCAN during phase one could be modified to take the en-
ergy capability into account, such that higher-energy capa-
bility nodes on the overall will end up as the master of con-
nections.

Bluetooth scatternets are expected to efficiently handle
dynamic situations by facilitating node leaves and joins.
Notice that nodes from the ACB-tree’s leaf nodes can leave
the scatternet without affecting the structure or the perfor-
mance. Nodes, which happen to be masters in the piconets
which are internal nodes in the ACB-tree, need to be han-
dled as their leaving could leave the scatternet disconnected.
Node joins can be handled elegantly with ACB-tree scatter-
nets: note that each node has at least one empty slot for new
devices and can easily absorb new nodes. We are currently
investigating how to efficiently accommodate new nodes
joining and their incremental cost.

References

[1] Bluetooth Special Interest Group, http://www.bluetooth.com

[2] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns

[3] Blueware Simulator, http://nms.lcs.mit.edu/software/blueware

[4] S. Baatz, C. Bieschke, M. Frank, P. Martini, C. Scholz and
C. Kühl, Building Effi cient Bluetooth Scatternet Topologies
from 1-factors, In Proc. of IASTED Intl. Conf. on Wireless
and Optical Communications, WOC 2002.

[5] L. Barriere, P. Fraigniaud, L.Narayanan and J. Opatrny, Dy-
namic Construction of Bluetooth Scatternets of Fixed Degree
and Low Diameter, In Proc. of 14

� �

Annual ACM-SIAM
Symposium on Discrete Algorithms, 2003.

[6] J. Campbell, Energy-Effi cient Bounded-Diameter Tree Scat-
ternets for Bluetooth Networks, M. S. Thesis, Washington
State University, 2005.

[7] H. Chen, T. Sivakumar, L. Huang and T. Kashima, Topology-
Controllable Scatternet Formation Method and Its Imple-
mentation, Intl. Workshop on Wireless Ad-Hoc Networks,
2004.

[8] F. C. Chong, C. K. Chaing, Bluerings - Bluetooth Scatternets
with the ring structure, In Proc. of WOC, 2002.

[9] J. Helttunen, A. Mishra, and S. Park, Improved Bluetooth
Network Formation (IBNF), In Proc. of 27

� �

Annual IEEE
Conf. on Local Computer Networks, pp. 304-314, 2002.

[10] C. Law and K. Siu, A Bluetooth Scatternet Formation Al-
gorithm, In Proc. of IEEE Symposium on Ad Hoc Wireless
Networks, 2001.

[11] M. Medidi and A. Daptardar, A Distributed Algorithm for
Mesh Scatternet Formation in Bluetooth Networks, In Proc.
of Intl. Conf. on Wireless Networks (ICWN), pp. 295-301,
2004.

[12] O. Miklos, A. Rácz, Z. Turányi, A. Valkó and P.Johanson,
Performance Aspects of Bluetooth Scatternet Formation,
First Annual Workshop on Mobile and ad-Hoc Networking
and Computing(MobiHoc), 2000.

[13] C. Pamuk and E. Karasan, SF-devil : Distributed Bluetooth
Scatternet Formation Algorithm based on Device and Link
Characteristics, In Proc. of 8

� �

IEEE Intl. Symposium on
Computers and Communication, 2003.

[14] K. Persson and D. Manivannan. Distributed Self-Healing
Bluetooth Scatternet Formation, In Proc. of ICWN, pp. 325-
334, 2004.

[15] C. Petrioli, S. Basagni and I. Chlamtac, Confi guring Blues-
tars: Multihop Scatternet Formation for Bluetooth Networks
IEEE Trans. on Computers, vol. 52, pp. 779-790, 2003.

[16] C. Petrioli and S. Basagni, BlueMesh: Degree-Constrained
Multihop Scatternet Formation for Bluetooth Networks, Mo-
bile Networks and Applications, vol. 9, no. 1, 2004.

[17] L. Ramachandran, M. Kapoor, A. Sarkar and A. Aggar-
wal, Clustering Algorithms for Wireless Ad-Hoc Networks,
In Proc. of 4

� �

Intl. Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, 2000.

[18] T. Salonidis, P. Bhagwat, L. Tassiulas and R. LaMaire, Dis-
tributed Topology Construction of Bluetooth Personal Area
Networks, In Proc. of IEEE INFOCOM, 2001.

[19] I. Stojmenovic, Dominating Set Based Bluetooth Scatter-
net Formation with Localized Maintenance, Intl. Parallel and
Distributed Processing Symposium, 2002.

[20] S. Sunkavalli and B. Ramamurthy. MTSF: A Fast Mesh Scat-
ternet Formation Algorithm for Bluetooth Networks, Globe-
com, 2004.

[21] G. Tan and J. Guttag, An Effi cient Scatternet Formation Al-
gorithm for Dynamic Environments, IASTED Intl. Conf. on
Communications and Computer Networks, 2001.

[22] G. Zaruba, S. Basagni and I. Chlamtac, Bluetrees- Scatter-
net Formation to Enable Bluetooth-based Ad Hoc Networks,
IEEE Intl. Conf. on Communications (ICC), 2001.

[23] H. Zhang, C. Hou and L. Sha, Design and Analysis of a Blue-
tooth Loop Scatternet Formation Algorithm, ICC, 2003.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Boise State University. Downloaded on May 7, 2009 at 12:32 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

