AUDITORY AND VISUAL DYNAMIC PROCESSING: SEPARATE INFLUENCES IN READING?

Caroline Witton, Joel B. Talcott, Peter.C. Hansen, Catherine J. Stoodley & John F. Stein.
University Lab of Physiology, Parks Road, Oxford OX1 3PT, UK. E-mail: cw@physiol.ox.ac.uk

INTRODUCTION

- Developmental dyslexia is often associated with deficits in detecting dynamic auditory and visual stimuli.
- In normal-reading children, auditory and visual dynamic sensitivity, respectively, might help constrain the phonological and orthographic skills, important for skilled reading¹.
- It is not known how visual and auditory processing skills could combine to determine patterns of reading disability in dyslexics

AIM

To determine how auditory and visual dynamic processing relate to component reading skills in developmental dyslexics and normal readers.

METHODS

- Thirty nine adult subjects, 18 of whom had been diagnosed as dyslexic, participated in the experiment.
- All subjects completed a battery of psychometric tests of cognitive and literacy skills (see Table 1).
- The groups did not differ significantly on measures of non-verbal cognitive skib, but the dyslexics scored lower on measures of verbal cognitive and literacy skills.

TABLE 1: PSYCHOMETRICS

Measure	Controls	Dyslexics	t-test Sig.
Similarities†	12.3 (2.1)	11.1 (2.1)	n.s.
Vocabulary †	13.5 (2.4)	11.0 (2.6)	p = 0.005
Picture Arr. †	12.3 (3.1)	11.3 (2.7)	n.s.
Block Des. †	14.0 (3.0)	13.6 (4.1)	n.s.
Digit Span †	12.9 (2.5)	9.0 (2.0)	p < 0.001
Reading [‡]	13.6 (1.2)	9.0 (3.2)	p < 0.001
Spelling ‡	13.4 (1.5)	6.8 (2.8)	p < 0.001
Orth.	96.7 (0.03)	86.5 (0.2)	p < 0.001
Phon. *	92.0 (0.04)	73.4 (0.1)	p < 0.001
			•

Performance (mean and SD) of the dyslexic and control groups on psychometric measures. **Cognitive skills measures are sub-tests of the WAIS-R. **Teading and spelling are from the WRAT-R. **Orth.*, a measure of orthographic skills is % correct on a word-pseudohomophone discrimination task and **Phon.*, a measure of phonological skills, is % correct on a pseudo-word reading measure.

AUDITORY DYNAMIC PROCESSING

- Auditory sensitivity to four types of sinusoidal acoustic modulation was measured:
- 2 Hz FM previously shown to covary with phonological skills^{1,2}
 2 Hz AM reflects the syllabic rate of processing important in speech
- 20 Hz AM sensitivity previously shown to be reduced in dyslexia³
 240 Hz FM a control task which is not processed dynamically
- Thresholds were measured using a standard 2 interval, 2 alternative forced-choice method, adjusting modulation depth by a weighted 1-up, 1down staircase procedure⁴.
- All sounds were 1 second in duration, with an inter-stimulus interval of 500 ms. The carrier frequency was 1 kHz.
- Subjects reported which sound, first or second, was the modulated target tone.

VISUAL DYNAMIC PROCESSING

- Fifteen of the same dyslexics and 12 of the controls completed the measures of visual processing.
- · Visual sensitivity to two types of stimulus was measured
- Coherent motion sensitivity previously shown to covary with orthographic skills¹.
- Coherent form a control task which does not involve dynamic processing and does not correlate with motion thresholds⁵.
- Thresholds were measured using a standard 2 alternative forced choice method, adjusting motion or form coherence with a weighted 1-up, 1-down procedure⁴.
- Subjects indicated which of two patches, left or right, contained the coherent signal.

RESULTS - PART 1 GROUP DIFFERENCES

AUDITORY (See Figure 1, below)

- $\bullet\,$ The dyslexics were significantly less sensitive than the controls to 2 Hz FM and 20 Hz AM.
- · No group differences were found for 2 Hz AM or 240 Hz FM detection.

FIGURE 1: AUDITORY THRESHOLDS

Performance of the dyslexic and control groups on the four measures of auditory processing skills.

VISUAL (See Figure 2, above right)

- The dyslexics were significantly less sensitive than the controls to coherent motion.
- As found previously, there was no significant group difference for coherent form detection and thresholds on the two visual tasks did not correlate.

FIGURE 2 - VISUAL THRESHOLDS

Performance of the dyslexic and control groups on two tasks of visual processing.

RESULTS - PART 2 MULTIPLE REGRESSION ANALYSES

PATIONAL

- Bivariate correlations indicated that variables such as general cognitive abilities modify interrelationships between sensory skills and reading subskills.
- Stepwise multiple regression analysis was used to delineate the contributions of sensory skills to variance in reading sub-skills, by controlling for variance in cognitive ability.

FINDINGS

1) Phonological Skills (Table 2)

TABLE 2: MULTIPLE REGRESSION -AUDITORY

DEPENDENT VARIABLE: PHONOLOGICAL SKILLS

Predictors	Multiple R ²	R ² Chang
Cognitive Skills	0.210	
2 Hz FM	0.455	0.244
20 Hz AM	0.658	0.113

Non-contributing variables: 2 Hz AM, 240 Hz FM

- When entered first, cognitive skills (the sum of the sub-tests of the WAIS-R) accounted for 21% of the variance in pseudo-word reading.
- · Sensitivity to 2 Hz FM accounted for a further 24.5% of the variance.
- $\bullet\,$ Thresholds for 20 Hz AM explained a further, independent, 11.3% of the variance.
- Neither 2 Hz AM nor 240 Hz FM thresholds accounted for significant variance.
- No visual threshold accounted for significant variance in phonological skills.

- 2) Orthographic Skills
- The cognitive skills measure did not predict significant variance in performance on the word-pseudohomophone choice task.
- The only significant predictor of orthographic skills was performance on the visual coherent motion task, accounting for 20.7% of the variance.
- Coherent form thresholds did not account for significant variance, nor did any auditory thresholds.

CONCLUSIONS

- Adult developmental dyslexics are less sensitive than controls to certain types of dynamic auditory and visual stimuli.
- Dyslexics and controls appear to perform equally well on psychophysical tasks which do not require dynamic processing.
- Auditory thresholds for detecting 2 Hz FM and 20 Hz AM predict significant, independent variance in phonological skills, after accounting for the effects of general countilive ability.
- Visual coherent motion detection thresholds predict variance in orthographic skills.
- These predictive relationships might reflect causal relationships between sensory processing and the acquisition of reading subskills in dyslexic and normal readers.

REFERENCES

- 1) Talcott, J.B., Witton, C., McLean, M.F., Hansen, P.C., Rees, A., Green, G.G.R. & Stein, J.F. (2000). *Proceedings of the National Academy of Sciences (USA)*, 97, 2952-2957
- 2) Witton, C., Talcott, J.B., Hansen, P.C., Richardson, A.J., Griffiths, T.D., Rees, A., Stein, J.F. & Green, G.G.R. (1998). Current Biology, 8, 791-797
- 3) McAnally, K. & Stein, John F. (1996). Auditory temporal coding in dyslexia. *Proceedings of the Royal Society of London (B)*, 263, 961-965
- 4) Kaernbach, C (1991). Perception and Psychophysics, 49, 227-229.
- 5) Hansen, P.C, Stein, J.F., Orde, S.R., Winter, J.L., & Talcot, J.B. Are dyslexics' visual deficits limited to measures of dorsal stream function? NeuroReport In press.

ACKNOWLEDGEMENTS

Supported by Rodin Remediation and Children in Need (CW) and the Wellcome Trust and Esmee Fairbairn Trust (JBT).