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This paper reviews the key issues in hypermedia systems as artion systems. We also need to understand the shortcomings
overture to the proposal of a new semiotic paradigm for hyperme- of existing multimedia technologies to meet these require-

dia data and coding models. The hypertext concept permits USErShents. Then, to move beyond the existing technologies, we

to interact with and manage data as high-level conceptual objects hall step back and . lient i d iofi
rather than as symbol streams. Current hypermedia systems can>nall Stép back and review salient cognilive and semiotic

best be defined as an amalgamation of hypertext and multimedia.issues that are fundamental to hypermedia. Semiotics is the
While the hypertext data model enables this goal, that is not true study of the role of signs in communication and under-
for the data models of other media forms. A new semiotic paradigm standing. From this investigation, a new semiotic paradigm
that addresses these deficiencies and supports object-oriented in, | be proposed as the basis for the next generation of
teraction with compressed multimedia streams is proposed. Thist h di ¢ Last. thi i
paper initially presents an overview of the hypertext data model, rue hypermedia sys _ems._ ast, this pape_r prOp_oseS specinc
contrasting it with existing multimedia data and coding models. data models for multimedia data concurring with the new

The framework for the new paradigm is then presented in a paradigm and presents rudimentary coding schemes based
brief review of cognitive, psychological, and semiotic principles. on these models.

This analysis culminates in the proposal of semiotically based
data models and representations predisposed to the hypermedi

paradigm. 2A. Data Models, Coding, and Representations

Keywords—Audio coding, data models, hypermedia, hypertext The Cr_'tlcal component in, and I_dentlfylng feature of, an
systems, image coding, information retrieval, multimedia informa- information source or system is its data model. The data

tion systems, psychology, semiotics, signal representations, sourcamodel determines the capabilities of the system by defining
coding. the nature of its elemental components and defining or de-
limiting any relationships and interactions both among and
. INTRODUCTION with these components. For any given data model, various
distinct representations may be feasible. The representa-
finally on the verge of becoming a reality. This can be tion scheme determines the accessibility to the elemental

observed in the current popularity of multimedia-enhanced COMPONents, compaction, interactive manipulability, and
hypertext systems such as the World Wide Web. These the decoding complexny o_f encode_:d data. In this context,
enhanced hypertext systems do not correspond to truethe rolelof datg models in information §yst§ms gnd coding
hypermedia systems since the data models used for the mutmodels In coding schemes are essentlall_y identical. .

timedia data do not have the required characteristics. The 1he difference between a data or coding model and its

main problem is the reliance on stream-based, unstructured €Presentation is that the model specifiesat elements

representations. In this paper, a distinction is drawn between@'® In terms of which the data is to be encoded and
pure hypertext, multimedia-enhanced hypertext, and truethe|rorgan|zat|on. The representation determimes these

hypermedia. This paper investigates the issues central toelements are encoded. For example, given a data model

the development of true hypermedia and attempts to answercOnsisting of a collection of smooth curves, each curve

the question of how stream-based media can be converted@®y Pe represented as a list of polynomial coefficients,
to structured representations. a chain code, or a string of coordinates. Alternatively, in

To answer this question, we must first understand what the specific case of the coefficients, these may be stored

makes hypertext distinct from more conventional informa- as.scaled integers or normalized rational numbers, or even
written out textually.
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Table 1 contend with unfamiliar environments. This limits the use

Approaches Information Agents of unsuperwsed semantic methods as a genergl tool.
Statistical Statistically significant symbol or measure Information exists and can be defined at various levels.
Syntactical Relationships among structural elements In its most basic and raw form, a given data stream (such
Semantic Abstract human dependent meaning as from radio astronomy) can be analyzed statistically to

determine the existence of any significant components.
Assuming the absence of noise in the process, these compo-
nents are symbols that may occur according to predefined
relationships among themselves. The syntax exhibited by
these elements defines or infers a grammar that creates
a context for each symbol even in the absence of prior
knowledge. The appreciation of the symbols within their
grammatical contexts gives rise to meaning or semantic

problem remains of determining modality-specific map-
pings from the domain of each medium into this general
data model. Three distinct approaches to this problem
are possible: statistical, syntactical, or semantic (refer to
Table 1). Syntax concerns only the relationships among
symbols and the ways in which they can be manipulated,

while semantics concerns the relationships among sym-: ' T
. . - information. For example, in its simplest form, speech can
bols and their human-dependent meanings. The traditional ; ) - .
be described in terms of temporal variations in a spectral

engineering app_roach to audp and video d_ata procgssmgenergy distribution. The statistically significant components
has been statistical through signal processing techniques

: S that largely comprise formats may be identified. These
Since statistical methods alone are unable to generate the gely b Y

required maopinas. these have often been su Iemen,[eé:ombine to form phonemes, which in turn combine more
" PPINGS, X . ppiet or less syntactically to form semantically significant words,
with semantic processes. Little attention has been given to

h . phrases, and sentences.
use of syntactical methods for this purpose. . .
: . This paper advocates the proposition that syntax, not
Assuming that we could generate such mappings, we

then also need to specify 1) adequate representations tha emantics, is the key to converting stream-based media
allow direct and indpe endent ac?:ess o peach com Onent|nto hypermedia automatically. Unlike semantics, automatic
o per . np syntactic analysis does not require any external or prior
object in the representation and 2) encoding techniques to " . o
: ) knowledge. The versatility of syntax is that while it can
generate these representations automatically from the raW,. .t on its own. independent of anv human interoretation or
data. This would result in encoded data that is structured ' P y P

. . . intervention, the argument can also be made that semantic
and interactively manipulable.

Existing data models for multimedia information man- understanding can arise from syntactical analysis [94].

- . Using a syntactical approach, we can potentially generate
agement have evolved from traditional database, semantic N y bp P y9

modeling approaches [2], [3] for which automatic process- systems with semantic meaning automatically, although

ing may be impossible. In these, the data model is foreign the meaning itself is unknown to the syntactical process.
. ) ' . >~ One specific question this paper will attempt to answer is:
to the data itself. These models only treat multimedia P d pap P

" . . - What is the nature of the syntactic elements for formulatin
data as separate renditions of given semantic entities [4], y g

completely separating the layout and logical structures from appropriate hypermedia data models?

the conceptual structure [5]. In this paper, we consider data

models where the representation itself encapsulates botHC. Paper Outline

the logical and conceptual structures, eliminating the need To establish an appropriate context for the semiotic
for multiple structures. An early attempt at using structured paradigm, this paper surveys a number of areas. Section I
data representations was the Multos multimedia system [6]. commences with an introductory review of hypermedia,
This system was based on using object recognition to build its underlying data model, and the existing deficiencies in
separate conceptual structures of images. While the aimsits realization. Section Il discusses multimedia information
of the Multos system in attempting to handle both images systems, their access methods, and their implied data mod-
and text consistently were excellent, its use of semantic els. Section IV reviews the data models underlying current
methods limited it to the recognition of synthetic vector multimedia coding schemes. Section V leads up to the new
graphic images. paradigm by reviewing salient issues in cognition, psy-
chology, and semiotics. It explores the nature of structured
data representations in the early perceptual processes and
discusses the role of Gestalt phenomena in their generation.
Section VI summarizes the requirements for and presents
the new semiotic paradigm. Multimedia data models and
preliminary representations based on a semiotic articulation
are then proposed and discussed.

B. Proposed Approach

Semantic methods have played a dominant role in mul-
timedia information systems in the form of either direct
human intervention or constrained automatic object recog-
nition. Semantic methods require knowledge of what an
entity is before any action can be taken toward or with it.
More than just a matching process, recognition involves
the unambiguous interpretation of data to identify and !l HYPERMEDIA SYSTEMS
associate objects with appropriate attributes in a given This section introduces hypertext and hypermedia sys-
knowledge base. A constant need for knowledge about thetems. Section II-A outlines their historical development.
definition of new objects and their properties is required to Section 1I-B discusses the underlying cognitive issues and
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objectives. Section II-C describes the general data model. [
Sections II-D and II-E explore multimedia extensions and |'|':'&|'¢'.3'E,q1-'.-,=.—.:.‘uﬁm I. USER
their deficiencies, respectively. Section II-F discusses what : e i
is outstanding from Vannevar Bush’s original vision.

A. Historical Context IL LMK LAYER

The concept of hypertext and hypermedia is not a recent L el I T Hygerlinks
development. In 1945, Bush proposed a machine for stor-
ing, browsing, and annotating information on an extensive
on-line graphical system supporting both text and pictures
[7]. The purpose of this system was to manage the ever
growing amount of information and scientific literature that
was becoming unmanageable even then. He called this
machine the “memex.”

One essential feature of this system was its ability to link Accordingly, hypertext assists its reader in the process
together items within and between multimedia documents in of transforming knowledge from the primitive form of a
a manner Bush called “trail building.” This linking process symbol stream into the network- or graph-style structure
is the central mechanism for supporting associative index- used in the latter stages of cognition.
ing as a supplement to conventional indexing schemes. This
reflects the associative recall and random access of thec Hypertext Data Model
human mind. Bush realized that many technological break-
throughs were required to make the “memex” a reality.

Almost 20 years later, in 1963, inspired by Bush’s ideas,
Engelbart [8] also anticipated a system for augmenting
the capabilities of the human mind. This system was to .
support high-resolution three-dimensional (3-D) graphics into a set of nodes, also known as frames or cards. These

display and the visual manipulation of concepts and ideas are self-_contained units of infgrmat_ion, each encompassing
as symbols. Since machines capable of delivering and @ specific concept. The relationships may then be formed

manipulating multimedia information were not available at by connecting the nodes with hyperlinks. The origin of a

the time, the concepts espoused by Bush and Engelbart Wer@yperllnk IS some anF:hor point, typically a key Wofd or
first applied to text. The term hypertext was coined in 1965 expression within a given reference node. The destination

by Ted Nelson [9] to describe these text-only systems. of a hyperlink is generally another node but may also
be another anchor point within a node. Various attributes,

such as its type, may be attached to a link specifying

B. Hypertext Concepts and Aim the nature of the relationship it defines, its directionality,

The hypertext concept is based on a cognitive model of or any activation conditions. The total set of these links
the communication process. This model defines a proces-forms what is known as a web or hypergraph. By activating
sion of distinct stages in cognition that transform a linear individual links, users can navigate through the information
message into a nonlinear network of ideas in the mind. network or cognitive space defined by the hypergraph. In
Simplistically, in the case of reading comprehension, it addition to link traversal, nodes also may be retrieved
starts by recognizing the constituent symbols (signs) in individually through structured browsing or query-based
a text string. The relationships between these signs aresearching, depending on the system.
evaluated, isolating the concepts presented. These concepts This simple node- and link-based data model is central to
are structured hierarchically and absorbed into long-term hypertext. This model is devoid of any information on how
memory as a network of ideas. The two predominant the datais to be presented or rendered, such as font selection
characteristics of this process are the grouping of symbolsand text layout. These details must be considered and
into conceptual units and the formation of relationships encapsulated separately, although each node is generally
between them. presented within a separate view window. This creates the

Modeling and representing a text according to semantic basic three-layer structure of hypertext system architectures
or conceptual units rather than lexical units in this way depicted in Fig. 1. The presentation or user-interface layer
allows it to be manipulated and accessed as a collectioncontrols the presentation of the data and supplies an in-
of related ideas and not just as a string of letters. This terface to perform the navigation. The link layer contains
abstraction is a powerful tool for information management and manages the relationships between nodes, and the node
because it allows interaction with a given body of text at layer contains various appropriately structured documents.
a much higher level. The interaction can revolve around A hypermedia engine typically manages all three layers
what message is being conveyed and not how it is being simultaneously.
conveyed. It allows the manipulation of the information = The Dexter reference model [10] refers to these three
structure without needing to deal with the information itself. layers as the run-time, within-component, and storage lay-

i HOGE LAYER
L

| Mhsporeel 5

Moahis

Fig. 1. Hypermedia system architecture.

Hypertext abstracts textual data into a set of nodes and
links representing, respectively, conceptual units and the
relationships between them. To create a hypertext, a given
body of text first must be manually partitioned or chunked
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ers, respectively. Accordingly, the creation of hypertext are supported by specifying the location of hot regions at
systems involves three distinct phases that are not alwaysstart and end frames to be linearly interpolated over the
decoupled in practice. The initial node-authoring phase is interval.

the process of segmenting or chunking the raw data into

a structured collection of nodes. Next is the design of the E- Multimedia Deficiencies

data presentation or rendition. Last, the link-authoring phase The CCITT/ISO standard techniques for encoding mul-

involves defining the relationships between the nodes by timedia data used in most hypermedia systems include the

defining anchor points and creating links. Joint Photographic Experts Group (JPEG) algorithm for
. . _ still images and the related Motion Pictures Experts Group
D. Multimedia Extensions (MPEG)-1 algorithm for video. The MPEG requirement

Early efforts to incorporate multimedia information into ~ specification stated that it should provide functionality
existing hypertext systems were initially restricted to treat- Similar to that “normally associated with VCR's.” This
ing pictures as single destination nodes not containing anyobjective is far from the kind of functionality that hyper-
anchor points. Similar support for audio and video data media demands. While limited interaction with partially
was later added, permitting only sequential access anddecoded MPEG and JPEG data streams can occur, this
limiting interaction to playing, stopping, or pausing. This is confined to the frequency domain. With current coding
limitation was due to the unstructured data models used fortechniques, unrestricted data access is possible only after
the continuous media. Being only bit streams, these modelsfully decoding the compressed stream. This is because
do not provide any referenceable components within the compression has been the only objective in the development
streams that may serve as anchor points or link destinations 0f multimedia data representations, without consideration
This situation is contrary to the primary goal of hypertext, of information-management issues. Even after decoding
which is to provide nonsequential access. enables access, further processing is required to actually

A higher level of interactivity in the form of clickable  extract salient information. While flexible access can be
pictures was eventually fulfilled through the use of image manually supported through separate index files, this should
maps. These are manually generated overlays specifying hobe intrinsic to the encoded data and fully automatic.
regions serving as anchor points. Through the mediation of It would be unfortunate to think of hypermedia as an
an image map, the semblance of structured representatiormalgamation of old technologies. Rather, its interdisci-
can be projected onto the unstructured data. The informa-plinary nature places new and challenging demands on
tion contained by the overlays is separate from the picture existing technologies, provoking the development of new
itself, with the demarcation of nodes in overlay-based technologies where the old are incapable of meeting them.
systems falling within the presentation layer rather than the Existing multimedia data representations are clearly inade-
node layer. This violates the Dexter model, which specifies quate in this sense. The recognition of these deficiencies is
a structured representation where the node demarcation igvidenced in the fundamental goal of the upcoming MPEG-
inherent to the data itself. 4 standard [13], which is “[t]o efficiently code interactive

A similar approach has been taken to a certain extent2D and 3D environments consisting of real-time audio,
with video and audio data. An example of this level video, and synthetic objects” supporting interaction for
of integration between multimedia and hypertext is the “individual objects rather than at the level of the composited
Amsterdam model [11], which has stream-based supportvideo frame.”
for unstructured multimedia data. Another is the Hy-Time  Of the various recent developments in the area of
(ISO/IEC 10744) standard, which is largely based on multimedia-enhanced hypertext, only virtual reality mark-
presentation-level integration through mapping the multi- up language (VRML), which is a graphical counterpart
media data at run time into a 3-D spatio-temporal pre- to hypertext mark-up language (HTML), makes any real
sentation space. Since annotating continuous media in thisprogress in the support for navigable nontextual media. It
manner is extremely tedious, large-scale deployment of provides a highly interactive structured data representation
these approaches is less prevalent. Generally, only time-based on an object-oriented data model. VRML exhibits
based indexing is used for continuous media, limiting qualities essential for true hypermedia, such as individually
access to the frame level in video. referenceable components and intrinsic support for flexible

The evolution of this approach for integrating support for access and intramedia navigation. It is, however, essentially
continuous media in the World Wide Web system is suitably limited to synthetic 3-D graphics.
represented by the Vosaic system [12]. Two specific goals of ) )

Vosaic were to address the lack of efficient 1) flexible access F+ Trail Blazing

in the form of browsing, hierarchical access, and searching In his seminal paper “As We May Think” [7], Bush
and 2) reuse of continuous media. The support for flexible called for the creation of a new profession of what he
access is provided by manually generated index files con-called trail blazers. He defined this vocation as “the task of
taining semantic information about the media stream. This establishing useful trails through the enormous mass of the
textual annotation contains attributes specific to media andcommon record.” Rather than binding users of his machine
encoding schemes as well as frame-number-based structuraio an onerous and mundane task in order to incorporate
information and indexing keywords. Intraframe hyperlinks new material into his hypermedia system, new material
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simply was supposed to “drop into place.” Trail blazers information management principles. Sections III-B, C, and
were then to form link trails relatively effortlessly in the D discuss the data models as well as structuring mecha-
data space. According to Bush, “the users of it are free to nisms for image, video, and audio databases, respectively.
use their brains for something more than repetitive detailed Section III-E critically evaluates the relevance of these
transformations in accordance with established rules.” methods for hypermedia data modeling.

It is noteworthy to observe here that these statements do
not .actually. reflect the current process of.hypermedia au- A Information Management
thoring. While systems capable of automatically generating . . . L
hypertext with some success have emerged, this does not. Hypermedia systems are specialized multimedia informa-
extend to multimedia data. Rather than spending their time tion management systems (MIMS) and hence share many

creating links and trails, hypermedia authors typically spend fundamental prqblem_s. One is that of defmmg appropriate
a large amount of time in laborious manipulation of the un- access mechanisms into data streams [14]. It is often better

derlying data, either restructuring it into nodes to permit the to atccesti Iart%]e data streharlns as a set ?rf] |nd|V|duaItctqmpof—
creation of links between them or generating intermediary nents rather than as a wholé, requinng the segmentation o

overlay or metainformation files. A large component of this ]Ehe_lc_zltattaalhe manag_ertnelntl O; tlhese cgr_nr()jongntstr(]:an tf}&;‘n be
effort in demarcating node boundaries is highly repetitive aciitated by appropriately labeling and indexing them. the

and could be partially automated. Information management princip_le differepce betwe_en hypermedia gnd conyentional
of the node database in large systems is another part of thig\/”'vIS IS that' with MIMS.’ mst.ead of modeling the mtgrnal
problem. information in _the multimedia qlata, the data is typlcally
The discrepancy between Bush's vision about hyperme- used as a rendition of some entity of an externally |r_np(_)se_d
dia authoring and the current situation is largely due to the fChtf]maH Conve(rj;el;(/j, :he_tdal':ca modetlh_shouldtbe '”F“t”S'f
inadequacy of compression technologies in the context of o the hypermedia dala Isefl since this must consist o
hypermedia information management. Bush makes a critical uniquely referengeable nodes to serve as link anchor points.
observation in his paper regarding the required develop-t Otdhgr llnformr?tlon-madr!agemfnt proble;lms are encoudn-
ments in information systems that has been overlooked by ered in large hypermedia systems, Such as resource dis-

many. While he agrees that “[clompression is important, céovery_ and conten;c]-basl_ed retnevatl .Of ?;'U|t'med'.3 ((jjatta.
however when it comes to costs,” he further states that, rowsing or queéry-handling support 1S oiten provided 1o

“[m]ere compression, of course, is not enough; one needs®Vercome these p.roblems. Que_ry_-based access requires
not only to store a record but also to be able to consult with searching through indexes containing keys or labels con-

it, and this aspect of the matter comes later.” This statementSiSting of some salient semantic, syntactic, or statistical

cuts right to the essence of the problem. The emphasis hereattrlbute of each node. Alternatively, browsing requires the

is on compact manipulable data representations Supportingclassmc:atlon of the data within some given hierarchical

direct access and information management rather than justorganization. This organization may naturally exist within

on compression alone or information management alone. the data itself as a manifestation of some structural property

Clearly, Bush envisioned that apart from being compact, Qf the medium or it may arise in a set of (_j|_screte, synta_c_-
tically unrelated elements through categorizing the specific

data should also be manageable, permitting random and tribut f h el L C tional MIMS I
content-based (associative) interaction. This includes intrin- attrioutes of each element. L.onventiona generally
utilize separate index files or metafiles to support this type

sic support for arbitrary intramedia navigation rather than . . ) L e
PP y g of functionality, often relying on implicit and/or incidental

just intermedia navigation. This requires the existence of ; del d thereb iding the i ¢ structured
referenceable components in the data representation and th ata models and thereby avoiding the 1ssues ot structure
representations. The following sections briefly review the

ability to label any nodes individually in any medium as a .
link source or destination. Both textual and nontextual data data models used for each modality.
should be handled homogeneously, providing the ability to
cut and paste objects between multimedia documents, asB. Image Databases
with text-based systems. Accordingly, it should be possible  Traditional pictorial data management is based on manu-
to restructure the data arbitrarily by adding, moving, or ally annotating images as indivisible objects. These seman-
deleting nodes. This currently cannot be achieved with the tic textual annotations are highly dependent on both the
data models used for multimedia data and their respectiveannotator’s choice of vocabulary and immediate context.
unstructured data representations. To achieve these goalshis limits the scope of retrieval and impedes reuse in a
in a multimedia data representation, each node should begifferent context. These annotations may also arise in a
indexible, randomly accessible, and individually decodable. variety of indirect forms such as a preexisting file name, a
The node and link structure must also be independent of caption [15], or the anchor text in HTML as used by the
presentation/application issues. Harvest resource discovery system [16].
Automatic object recognition has also been used for la-
beling by extracting semantic descriptions from the images.
1l MULTIMEDIA INFORMATION SYSTEMS This attempts to classify the interpretation of geometric
This section surveys existing data models for multime- structure from the image data into predefined semantic
dia information systems. Section Ill-A presents multimedia groups. Recognition typically is restricted to simple, pre-
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individual objects is ponderous.

More recently, simpler statistical labeling techniques per-
mitting inexact matching have been used. This precludes
semantic-based queries but first- or second-order statistical
labels can be generated quickly and automatically for
unconstrained images without the need for prior knowledge.
Labels are formed by extracting a number of attributes
from images using a variety of statistical feature analysis
routines. Typical attributes include the average global color, Track
local variance or texture [17], or algebraic moments of the
image. Searching can be performed by evaluating statistical
similarity.

Hybrid approaches [18] combine semantic features from
graphical annotations with statistical features such as color _
and texture. The manual graphical annotations are used tg ‘9 4 Camera work.
define the outlines of semantically consistent image regions. ) _ )
Labels may then be generated for individual objects in an item. Template matching, however, is too constrained for

image. The closed contour shape descriptions are often use@eneral use. o .
for additional labeling information. In spite of their semantic origins, scene boundaries may

be detected automatically using statistical methods. The
] common techniques are based on frame difference anal-
C. Video Computing ysis, pair-wise pixel comparison, or temporal variation of
The predominant feature in video is its temporal structure. color composition [22]. Alternatively, the similarity of low-
While individual frames provide the simplest and most frequency images can be compared [23]. Nonlinear access
common access mechanism, the importance of higher levelto video is often supported in the form of temporally
mechanisms can be appreciated when one considers thatompressed browsing [24], where each individual scene
a two-hour video typically consists of over half a million is either represented as a micon (moving icon) or salient
individual frames. Cognitively, people perceive episodes, video still [25]. Scene labels may be generated from the
scenes, and moving objects, as depicted in Fig. 2, but notattributes of a representative image of each scene or from
individual frames. A scene in a video is a sequence of the temporal properties of the scene. Scene aggregation and
frames that are considered to be semantically consistent.clustering may also be used to extract attributes regarding
Scene changes therefore demarcate changes in semantite relationships between scenes.
context. Segmenting a video into its constituent scenes Within any scene, changes in global motion may be used
permits it to be accessed in terms of meaningful units. to perform further segmentation, while the motion itself can
As with still images, the initial indexing attempts were be used as a generic labeling attribute. Shot classification
based on semantic methods [19]. Since manual annotationis used for this dual purpose and involves determining the
is clearly unsuitable for volume work, attention focused global motion induced by camera work and may include
on template-based scene-recognition techniques. Subjecpanning, tilting, zooming, tracking, booming, or dollying
to stringent spatio-temporal structural constraints, these (Fig. 4). This can be performed by analyzing the structure
methods can automatically perform both segmentation andof the flow field defined by motion vectors in motion-
labeling (Fig. 3). They are typically restricted to news compensated video [26], optical flow analysis, or feature
broadcasts, which exhibit a high amount of regularity. correspondence methods [27], among others [28].
In these cases, the demarcation between each different Local motion can also be exploited for further segmenta-
news item can be detected by the alternation betweention and labeling. Since it is difficult to perform deformable
the regular spatial structure of the news room and the object tracking under translation, rotation, and scaling, as
news footage [20], [21]. Character recognition is used to well as occlusion, lighting, and background changes, many
generate annotation text from the subtitles for each newsattempts have been limited to simple translational motion

Fig. 3. Structure of a news broadcast.

Dby Baoom
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with limited rotation [29]. These schemes often rely on into the data stream and embedding the application as well
an operator's tracing around the outline of each object [38]. In any case, the actual multimedia data representation
to be tracked in the initial image, followed by a simple remains unchanged and, therefore, unstructured.

search to find matching areas in the succeeding frames. This indexing information, however, constitutes a po-
Simple regions generated automatically using edge, texture tentially large amount of storage overhead. Consider the
histogram-splitting, or motion-based image-segmentation amount of data required to index just one hour of video. A
techniques [30] may also be tracked. current method is based on storing binary image masks for
each object in the video [18]. Assuming that for each frame
only a single binary mask was used, the storage overhead
would be 5% of the total video. This is quite a significant
most of the_work in th@s area has focuggd on recorded ZBmooiml’ E/pffg%a: :ngsi'/z Sgg%rols?h;). f élt()jri?).réls.gi.;\gige
speech. While automatic speech recognition [31] would indexing data is only a partial solution since this would be

P € an ideal S,(,) I.utlon for transforming linear speech |.nto offset by the increased query processing required to access
hyperspeech,” it unfort_u_nately only works across a falr_ly the compressed index data.

narrow range of condlt_lons. He“‘:‘?' m_anual_ annotation Ideally, the source media representation itself should
in the form of synchromzed transcnpts: |s.ty.p|ca||y used intrinsically support information management based on
to support nons&_aquen'ual access. While it is usefgl fo_r its data model without requiring a separate index. Such
component labeling, speaker-dependent word spotting IShypermedia data-representation schemes would encode the

alg)t;oo ﬁonstramefl fpr g(gjenter? ! tynslutperr\]/|§ed use|[32]. . tdata in terms of a structure where the salient characteristics
er, less constrained stalistical techniques also eXiStyg o alements are explicit and directly accessible. This

in speech processing su_ch as dgtecting pauses, Chzi_nge&oliterates the overhead of storing persistent indexes sepa-
of speaker [33], gender identification, and possibly voic-

) d dic feat 341, Th woicall | rately and removes the need to decode and process the data
N9 Iant' prosodic features [34]. These .yplcaty re yton before it can be manipulated. Such representations should
evalualing energy measures, zero crossing rates, autocors necessarily offer less compression than current coding
relation, and/or linear predictive coder (LPC) coefficients

. . . o technologies.
[35]. Similarly, simpler generic statistical methods may be Except in highly constrained environments [39], syntac-
used for arbitrary audio data. These are based on extracting[i '

feat h ‘anal troid (bright itch cal methods have been largely overlooked as the basis
catures such as signal power, centrol (brig : ness), PICN, o information management. The use of suitably abstracted
bandwidth, and harmonicity from the short-time Fourier

L syntactical over statistical information is cognitively more
spectrum (STFT) of the audio signal [36]. Y g y

In th ii f ic itis al ible t loit appropriate for similarity matching [40]. It is also more
h the Specilic case of MUSIC, 1 1S alS0 possIbie 1o eXplolt a6 and less constrained than semantic methods. A large
the inherent organization contained in the music itself.

o . . component of the primary information required for this
A|gra|q etal. [37] propose a representation .Of musmlbe}sed type of analysis in the visual domain is available through
on a hierarchy of objects that are automatically delimited. low-level vision techniques [41], [42]

This representation is composedstfokes, patternswhich ' '

are collections of up to 100 strokes, asdctions which

are delimited by silence and/or scansions. The strokes arelV. MULTIMEDIA CODING MODELS

roughly equivalent to chords or notes. The continuity of the AND REPRESENTATIONS

fundamentals can be used to delimit harmonic groupings. This section reviews existing multimedia coding mod-

Individual notes may be detected as the local minima in g5 and representation schemes. Section IV-A introduces

the smoothed amplitude signal. the principles of multimedia coding and representations.
Section 1V-B discusses computer graphics models and rep-

E. Intrinsic Information Management resentations. Sections IV-C, D, and E, respectively, review

Current MIMS try to organize data according to semantic ¢0mmon audio-, image-, and video-coding schemes from
or statistical criteria, often implicitly forming incidental ~the perspective of their assumed data models.
data models. All support for information management is
totally external to the data itself and based on antecedently
generated indexes. The entities in these indexes form theA- Coding Principles
basis of the data models so that the data itself as a rendition Traditionally, the sole objective in audio, image, and
of an entity is only peripheral to the data model. Since the video coding has been to compress the data. Multimedia
indexes and data are normally separate, support for infor-coding methodologies have accordingly approached the
mation management is not intrinsic to the actual data but problem by regularizing or conditioning the data to make
instead specific to the system application layer (or DBMS). it well behaved in light of the selected coding technique.
This creates a problem with portability and reusability of Most of the techniques used to achieve high compression do
the data, requiring the generation of new indexes wheneverso at the expense of information-management interests by
the data is reused in a new environment or system. This canobfuscating the salient perceptual and structural information
only be overcome by appending or interleaving the index in the underlying data.

D. Audio Computing
Little support exists for nonspeech audio data since
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Table 2

Shading Shape Representation Colour Format Interactive  Structure
Video Preserved Ignored Complex - Raster  Separate Component No Obfuscated
Graphics | Approximatc  Prescrved  Mctafilc-Primitive Composite Yes Explicit
Operators A
ANB AUB ALB
()
) A
A AU(BLC)
c c
Intersection Union Difference Model Expression  Operator Tree

Primitive Shapes

Fig. 6. CSG surface generation.

A0 N =
@ Data Model Intraframe Coding Schemes
Block Cylinder Cone Sphere Pyramid Pixels PCM / Statistical / Predictive
Vectors Simple Run length Encoding, WBS
. . . Polygons 2D RLE / Quadtrees / Polygonisation
Fig. 5. Constructive solid geometry. Smooth shaded regions Contour-Texture / V.Q. / Transform
3D Objects Model Based Coding

Typical examples are the standard JPEG and MPEG cod-

ing techniques, which uniformly segment images into small o responds to a node while each operator corresponds to a

blocks that are transformed into the frequency domain. The yyneq hyperlink. The operator tree encapsulates syntactical
coefficients in each block are then reordered according t0 ,ormation regarding the composition of an object. The

a “zig-zag” pattern and run-length encoded using variable- 4y erall semantic interpretation of the object is a function of
length codes. The mapping from the initial spatial domain {he semantics of each component primitive in conjunction
into thIS final representation is extremely cqm_plex. Th_|s with the syntactic information of the operator tree.
enchmg process occ_ludes mos.t of.the spatial mformatlon Using this basic model, complex objects can be generated
that is present in the image, which is then unavailable for ,o,,9h deformations of simple primitives or by using more
interactive manipulation or information managementin any complex primitives, such as superquadrics [45]. Alterna-
form. , _ , o ~_ tively, as in the case of quadtrees [46] and octrees [47],
In image cod_mg, the intensity or shading |nformat|0n_ IS 3 single primitive may be used to tessellate a complex
of the utmost importance and accurately encoded. Litlle ya15 space hierarchically. Conversely, instead using solid
attention is given to the spatial information, and most pimitives, boundary models rely on two-dimensional (2-
techniques typically segment images into small uniform py primitives to model a 3-D object. These representations
blocks without consideration of the underlying image data. §efine a 3-D wire frame or polygon mesh as a list of

Also, elements in encoded images typically are neither ran- o composite flat-shaded 2-D polygons or smooth-shaded
domly accessible nor individually decodable. Conversely, g face patches in 3-D space.

the encoding of computer graphics has pursued the objec-
tive of supporting interactive manipulation. Hence, graphic

images are stored as a list of explicit and readily accessible . _ :
unrendered graphic primitives in metafiles [43]. The shapes The classical approach to image coding has been to

of primitives are accurately encoded while the color is only Modeél the statistical distribution of the interpixel lumi-
approximated. Each primitive is randomly accessible and N@Nce variations across the 2-D image plane. It is possible
individually decodable. Table 2 contrasts these approaches.to classify the existing coding schemes ac_cordmg to the
data models suggested by the spatial relationships of the
) interpixel variations. This approach presents five common
B. Computer Graphics data models that are consistent with the evolution of image
The basic data model in 3-D graphics normally consists coding first identified in [126]. These models consist of
of a small set of parametized graphic primitives. Techniques elements that are given in Table 3.
such as constructive solid geometry (CSG) permit the cre- The earliest image-coding techniques, like pulse-code
ation of compound objects by merging primitives through modulation (PCM), attempt to encode the data as an ordered
the use of set theoretic operators (Fig. 5). This uses a tree-set of statistically independent pixels. Schemes falling
structure representation (Fig. 6) where the nodes contain theinto this category include predictive [48] and statistical
operations and the leaves contain the geometric primitivesor entropy-based encoding, which normally encode each
[44]. There is a strong correlation between this representa-element as an independent symbol. This model cannot
tion and the hypertext data model. In CSG, each primitive convey any significant information about the data since the

C. Image-Coding Models
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Table 4

Dimensionality Temporal Domain Primitives Interframe Coding Model
oD Still Images None
1D Stationary Change Conditional Replenishment
2D Planar Motion Motion Compensation
2% D Layered Motion Object-Background Schemes
3D Full 3D Motion 3D Model Based Coding

granularity of the elements is too small and the relationships texture coding, heavily regularize the data. This is due
between elements are fixed to the raster scan order. to the simplistic descriptions typically used for the region
Vector-based schemes such as run-length encoding (RLE)shapes [60], using either small rectangles [61] or very low
and white-block skipping exploit correlation between adja- order polynomial approximations. The severe constrains on
cent pixels in one dimension. These model the data as athe shape and locality of each surface and the complex
sequence of fixed color, horizontal, variable-length vectors representations typical of implementations of this data
[49]. One advantage of RLE is that some information is model limit their usefulness.
directly accessible in the compressed representation from Ultimately, it is possible to model the image data as a 3-
the distribution of run lengths. Since the granularity is not D environment. Model or analysis-synthesis-based coding
as fine, the elements may convey some limited information. [62], [63] relies on updating a predefined 3-D geomet-
The orientation and order of the vectors is fixed, however, ric model of an image. These schemes assume a lot of
limiting the possible structural information conveyed. knowledgea priori regarding the scene, relying heavily
Polygon-based schemes model images as a set of regionsn object recognition [64], [65]. The types of scenes they
where the pixel values are stationary in two dimensions. Ex- can cope with are accordingly restricted. One result of
amples of this model include tree-based schemes, 2-D RLE,this dependence on recognition is that much semantic and
and polygonization techniques. The 2-D RLE schemes [50] structural knowledge is encapsulated by the representations.
typically produce huge numbers of minute irregular regions ldentifying an object as a face or the relationship between
for continuous tone images. Polygonization schemes [51], the eyebrows and the eyes conveys much meaning. These
[52], which attempt to fit large, simple flat-shaded polygons techniques cannot handle arbitrary environments containing
to the image data, must introduce substantial loss to form unknown or deformable objects, although some work is
the polygons. Alternatively, tree-structured representations addressing this problem [66], [67].
[53] like quad and binary trees [54] hierarchically decom- It should be noted that in the cases of JPEG and MPEG,
pose images into many flat-shaded rectangular regions withthe final data representation is a compound generated
both size and location constraints. While the granularity of by successively applying various encoding methods. A
this model is better, the stringent regularizing constraints different data model is used for each stage. First, an image
needed obscure any inherent important information in the is modeled as an array of smoothly varying blocks. After
image. transformation and quantization, the data within each block
Most schemes model the data as an array of nonover-is modeled as a sequence of vectors and accordingly run-
lapping surface patches, regions where the pixel valueslength encoded. Last, the resulting data is modeled and
vary smoothly in two dimensions. This model permits a encoded as a set of statistically independent variables.
significantly higher level of information to be encapsulated
by each element, such as perspective or depth informationD. Video Interframe Coding Models
from the surface shading. Examples of this model include Interframe coding schemes are distinguished by the man-
contour-texture coding, vector quantization, fractals, and ner in which they attempt to model data changes between
transform-based coding. These are distinguished by theconsecutive frames. Typically, interframe differences are
representation used to describe the surface-intensity vari-all assumed to have been generated by some form of
ations. In the simplest case, vector quantization schemesmotion. This motion can be described according to its
often directly specify the pixel values for each surface dimensionality [126], as in Table 4. At the lowest level,
[55]. Transform coding [56] represents surfaces as weightedno motion in any dimension yields still images.
sums of transform coefficients. Contour-texture coding typ- The stationary-change model includes simple predictive
ically represents the surface intensity as a low-degree 2-D[68] and conditional replenishment techniques [69], [70]. It
polynomial approximation [57]. Fractal coding schemes assumes the absence of any image flow so that any changes
[58] represent images as a set of surfaces, each defined aare due only to an “in-place” change of pixel values. The
a 3-D contractive affine transformation of a given attractor. motion is purely orthogonal to the image plane, which is
Fractal schemes are related to grammatical image modelghe color domain. This model can only indicate that change
that interpret a regular language as an image [59]. has occurred and its location. It is not very robust, failing
Most of the surface-based schemes uniformly segmentin the presence of global image motion or even just a large
each image into small blocks to best exploit local stationar- amount of object motion.
ity. Even the methods that explicitly attempt to preserve Planar motion models assume that motion is purely
the shapes of natural image regions, such as contour-translatory and confined to a single plane. These seg-
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Table 5 The simplest schemes model the audio signal as a se-
quence of unit-length amplitude samples. The frequency

Data Models Coding Scheme L. . L . :
Amplitude Variations FCM, Tomporal Predictive composition of the signal is disregarded. Coding schemes in

Spectral lines / Frequency Bands ATC, DCT, spectral VQ this category include PCM, differential PCM, and temporal-
Frequency tracks Sinusoidal Transform domain vector quantization, which represents the data as
Harmonic groups DHC, Vocoders discrete segments of waveform samples. This model cannot

provide much significant information about the audio data.
Next are schemes that model the signal as a set of
spectral lines or frequency bands, which are permitted to
vary in amplitude. Again, each element is of unit length
but this time localized in frequency. This permits each
model element to convey information regarding its pitch
and intensity. Typical examples include subband coding
[81], which encodes the signal as a relatively small number
of independent frequency bands, and adaptive transform
coding (ATC) [82], which generates spectrogram-like rep-
resentations with homogeneously treated high-resolution
frequency bands.
A signal may also be modeled as a set of sinusoidal

ments frame spatially into two parts, the unchanged back-
ground and the displaced regions, providing motion vectors
for each displaced region. Effective structural information

can be conveyed by the relationships between the motion
vectors. Uniform patterns may be indicative of certain

forms of global motion, while nonconforming vectors indi-

cate the presence of independent object motion. Motion-
compensation schemes [71] fall into this category and
operate either at a pixel level, such as the differential
methods and pel-recursive schemes [72], or at a block level.
Second-order geometric or affine transformations [73] may

be used additionally to model rotation, skew, and zooming frequency tracks. These may vary across both amplitude

as well as to compensate for global motion [74]. and frequency in time. Each track additionally conveys
Layered (2 1/2-D) schemes model planar motion assumed. q y ’ y y

X . . ._information about the time evolution of pitch contours and
to occur in multiple coexistent parallel planes and consist

of a background image and an ordered set of planar objectsthe presence of frequency modulation. The temporal and

. . . requency relationships between these tracks also provide
undergoing motion. These schemes are used to implemen X X
. - ) . ..~ cues for stream segregation [83]. An example of this model
background-preserving prediction algorithms, which elimi-

. is sinusoidal transform coding [84], which encodes a signal
nate the need to retransmit background segments when the : o )
. . s a polynomial description of the amplitude and phase
are revealed after having been occluded. Implementations ! )
. . : evolution of the frequency tracks to be reconstructed in
of this model may operate at either the pixel [75] or block
. . . " each frame of an STFT.
level with simple translational motion, although perspective . . ' .
. ) ; A harmonic group is defined as a set of simultaneous
and affine transformations may also be supported with small

image regions [76]. This coding model directly provides frequency tracks having similar time evolution but being
Image reg . X g ma y B displaced in frequency. Direct harmonic coding (DHC) [85]
information regarding motion velocity, depth order, and

. A : L is an example of this class attempting to identify harmonics
motion continuity in the event of object collisions. . ; . . S
. : . . in a signal based on its STFT and pitch estimation. A
Three-dimensional motion models are expressed in

. X . . ., special case of this model is vocoding, which models
analysis-synthesis-based coding techniques [77], which ! o
. g . . speech as a set of formants together with other voicing
rely on object recognition and mainly perform tracking

. ; ' . _parameters. A formant is defined as a set of adjacent
tasks. They accordingly require a predefined geometric . o A
. . frequency tracks forming specific frequency distributions
scene structure. Thia priori knowledge about the scene . . ;
: : . ) . that remain approximately constant over time. The most
permits high-level interpretation of the scene motion. A : .
. . . common form of vocoder is the LPC, which extracts
wide variety of techniques have been used to perform . . L
. . . . the formants directly from the predictor coefficients that
this type of analysis [78]. Alternatively, modeling and . . )
- : ; . .~ _represent an optimal estimate to a spectrum for a given
parametizing the unconstrained 3-D motion that is occurring
; X e number of poles.
in an unknown scene [79] is a difficult task.

E. Audio Coding Models F. Coding Models for Hypermedia

Traditionally, audio coding has been based on either time- The sole objective in coding and representation schemes
or frequency-domain representations. Many of the coding for multimedia data has been compression for bandwidth
techniques can be applied to either domain. Audio signals reduction. This has been pursued without consideration
can be defined by their frequency, intensity, and time, and of information management issues, resulting in unstruc-
most coding schemes can be classified according to thetured stream-based data representations. Accordingly, the
degrees of freedom that the individual elements of their datacompressed data can only be accessed sequentially, and
models have in this 3-D framework (Table 5). Time-domain interactive manipulation is impossible. While existing cod-
representations can be considered to be based on collapsinqng schemes make use of a variety of data models, their
the frequency dimension into a single channel. A few 4-D convoluted representations and regularizations obfuscate
representations also exist, which use the periodicity of the the structural information of the underlying data, making
signal in terms of its frequency decomposition as the other them unsuitable for hypermedia. Hence, nonlinear access
dimension, such as correlograms and wefts [80]. can only be supported after extensive processing to generate
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separate index files. While these may permit some random
access, the data are still not interactively manipulable.

Only the model-based (recognition) coding schemes seem Sensory
to provide suitable support for hypermedia. The require- Recall
ment of precisely knowing what an object is prior to being
able to access or interact with it, however, is an unnatural ng‘\ydaﬁiiggg Displacement Interference

imposition. It is the process of interaction (if only in the
form of exposure) with an unknown object that leads to its Fig- 7. Memory model.
classification (at a late stage in cognition) within a semantic
network in the mind based on the nature and outcome of detectors. From a formal |anguage theory perspective, the
the interaction. lexical word-formation process is followed by sentence
Accordingly, semantic methods are inappropriate as formation through syntactical analysis. The semantics are
generic techniques for generating structured data representhen evaluated and the meaning is integrated with past
tations. Instead of attempting to recognize specific objects experience in the mind through pragmatic processes. The
or first understand the data Semantically, the problem contextual theory of meaning Speciﬁes that the mean-
should be approached through abstraction. In this case,ing of a symbol is a syntactic function of its relation
a subsumption-style architecture [86] is more appropriate. to other symbols. Thus, the reading process utilizes at
The architecture consists of simple layers, each building |east five distinct representations composed of features,
on and utilizing the functionality of the preceding layer to |etters, words, sentences, and semantic structures. This
perform increasingly more complex tasks. This alleviates description is somewhat simplistic, for in reality, there are
the lower levels from being overburdened with knowledge various feed-forward and feedback systems that mediate
that is irrelevant to their function. Instead of a System that in the processes and influence them based on contex-
can recognize and identify a limited number of specific tuyal factors and expectations. A similar process occurs
objects, a system is required that can identify the presencewhen speaking with a new representation formed in a
of objects and their characteristics without necessarily different region of memory as it proceeds from seman-
recognizing what they are. Object recognition can be tic through syntactic, morphologic, and phonological sys-
delegated to some later stage of processing if it is SO tems.
desired. Rather than semantic information, syntactical or According to the memory-spatial metaphor often used to
structural information should be exploited as the basis for help explain this principle, memories are treated as objects

these coding models, as in cognition. stored in specific locations in the mind. The common mul-

tistore memory model (Fig. 7) specifies three main types
V. COGNITION, SEMIOTICS, AND of memory, each with very different data representations.
PERCEPTUAL PSYCHOLOGY These are 1) a predominantly feature-analytic, modality-

specific, brief sensory store, 2) the working memory [88],
which seems to contain about seven pointers [89] to pre-
viously stored memories, much like address registers in a

This section surveys pertinent cognitive, psychological,
and semiotic issues for multimedia data models. Section V-

A reviews general cognitive principles and data models. . S

Section V-B examines the mental representations in the compqter (90}, af‘d 3) the Iong-term _store W'Fh unlimited
early perceptual processes. Section V-C surveys semioticsCAPACIY. Agcqrdlng to a long tra(j|t|9n arguing that all
and its relation to hypermedia systems. Section V-D re- knowledge is in the form of assguatlons [91], th-e long-
views semiotic articulation in multimedia data streams. (€M memory stores knowledge in the form of either an

Section V-E discusses Gestalt theory in relation to the assomatlv_e, semantic, or d_eclaratlve network. )
creation of structured data representations. Semantic networks consist of nodes, each representing a

single concept, connected by links of various types and
activation strengths. The constitution of the nodes may
A. Cognitive Data Models be explained in part by the attribute theory of concepts,
Since hypermedia is meant to imitate the cognitive which states that semantics are captured by conjunctive
process, it would not be inappropriate to base any lists of attributes. These attributes may be one of two types:
hypermedia data models on the mental representationsdefining or characteristic. This theory also specifies that the
that underlie cognition. However, cognition is a complex concepts themselves are hierarchically organized, probably
process composed of different tasks proceeding in variousthrough link-based inferences. Coding theory attempts to
stages concurrently, for each of which a new representationdescribe the analogical or propositional representations of
is used. While our understanding of cognition is still very concepts as syntactically based primitive codes in the
primitive, some basic principles may be exploited in the mind composed of imagens or logogens [92]. Kosslyn
formulation of suitable data models for hypermedia. [93] proposed a computational model of imagery stating
The study of eye movements during reading [87] reveals that in long-term memory, analogical information is stored
much about the early cognitive processes. In essence, worcabout the spatial representation of images and is linked to
recognition relies on a feature-analytic approach operating propositional information about the parts of visual objects
at three levels with feature-, letter-, and word-specific and how these are related to each other.
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Essentially, cognition revolves around the formation and Frequency
manipulation of a hierarchical network of mental represen- 1.
tations. At the bottom are the simple features detected by
the early perceptual processes, which are somehow trans-
formed into meaningful conceptual units at the top. How
the semantic understanding actually takes place probably
can best be understood in the context of the fundamental
principle of understanding, which states that to understand
something is either to understand it in terms of something
else (a recognition task) or to get used to it [94].

In the first case, understanding is externally relative
since it concerns correspondence between two domains: af perceptually important features such as luminance edges
previously understood semantic domain and the new one[98], [99]. Color is encoded according to an opponent color
providing only syntactic information. While the syntactic model [100] providing lower spatio-temporal resolution to
domain is understood in terms of the semantic domain, atthe chromatic detail. In fact, the perception of color is
some previous time the semantic domain must also haveoften extrapolated from luminance edges via a filling-in
been understood in this way in terms of another, so that mechanism [101].
understanding is recursive in this manner. This is known as It has been shown that there are two main pathways
the correspondence continuum [95], which affirms that an operating in parallel in the visual cortex. It is known that
element may be either syntactic or semantic depending onstructure and motion are processed separately from color,
the point of view. This dual role of cognitive objects may form, and texture [102]. The color pathway mainly performs
be partly appreciated through the overlap between syntaxrecognition tasks, while the other is dedicated to structure
and semantics, since both are concerned with the relationsand motion analysis. This distinction is interesting from a
that exist among symbols. cognitive viewpoint because it implies that structural un-

In the second case, understanding can only be internallyderstanding is to a certain extent separate from recognition.
relative and therefore can only concern syntax. In absenceThis suggests that semantic understanding is intrinsically
of external relations, semantic understanding is reducedrelated to, yet separate from, syntactic understanding in the
to syntactic understanding. Without any correspondencesmind.
with which to define the meaning of any given symbols,  The first data representation in the visual cortex [103]
they must be understood in terms of themselves. Therefore,is defined by the incipient neurones, which have center-
the syntactic domain becomes its own semantic domain. surround, circularly symmetric receptive fields. These feed
This base case, the last semantic domain in a corresponinto “simple” cells, which respond to specifically oriented
dence continuum, can only be understood syntactically. line segments. Next, temporally modulated, specifically
The cognitive process of transforming sensory data to oriented line segments are detected by “complex” cells.
perceptual features and finally into a semantic network Corners and ends of line segments are next detected by
representation is reduced to a purely syntactical processorientation-specific “hypercomplex” or end-stopped cells
in this instance. Given that these transformations rely on [104]. Each higher level is less dependent on spatial lo-

syntactical processes, two questions remain: What are thecalization, and cells that respond to hand images and faces
syntactical units at each level and what is the nature of have even been found.

, o No1$e ];3urst

Freduency Sweeps .

Fig. 8. Mental audio representation.

these syntactical transformations? The initial data representation in audition is a tonotopi-
cally organized frequency decomposition of the acoustic
B. Perceptual Data Models signal performed by the basilar membrane in the cochlea

Some insight into the modality-specific representations [105]. Signal masking arising in the cochlea has the ef-
and transformations found in the sensory store is provided fect of accentuating dominant frequencies. The frequency
by psychophysical evidence. While containing many both separation is logarithmic due to the placement of the
inhibitory and excitory feedback and feed-forward paths, innervating nerve fibers. Below about 4-5 kHz, they also
the neurological organization tends to be predominantly encode timing information of the stimulus waveform [106].
hierarchical. This structure consists of increasingly more Beyond the cochlea, temporal and intensity information are
complex receptive fields in succeeding levels, forming separately processed in two parallel pathways [107]. At
specifically tuned pathways. The receptive fields at each these higher levels in the cortex, neurones detect three main
level are composed of simple configurations of its sub- types of features: tone bursts, noise bursts, and frequency-
ordinate elements and detect increasingly more abstractor intensity-modulated components [108] (Fig. 8). Some
features. neurones detect specific frequency or intensity modulation

In the case of vision, we know that while the spatial rates while others respond to the direction or speed of
layout is preserved, the representation generated by thefrequency sweeps. Others detect repetition rates or the
retina is heavily distorted due to the physical limitations onsets or offsets of stimuli, or are stimuli-duration selective.
of the eye and the properties of the retina [96], [97]. A The characteristic of isolating dominant frequencies to-
number of processes also specifically enhance the visibility gether with directional sweep and modulation detectors in-
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Interpretant which are syntax, semantics, and pragmatics. The syntacti-
cal dimension of semiotics defines the formal relationships
between individual signs and how these may be combined
to form compound signs. Semantics defines the meaning of
the signs themselves through the relationship between each
sign and its designatum. Pragmatics is the integration of the
meaning with the interpretant’'s past experience. It defines
Fig. 9. Dimensions of semiosis. the relationships between signs and their interpreters and
is based on the origin, uses, and effects of the signs. The
dicates that some type of frequency and amplitude tracking domain of semiotics also embraces the classical engineering
is performed by the auditory system. One could hypothesize realm of information theory. In semiotic terms, Shannon’s
the existence of a mental auditory representation composednformation theory deals with efficient sign vehicle trans-
of tracks in frequency-time-intensity space. In reality, there mission where a sign vehicle is a sign independent of its
are many interconnected representations in the cortex butsignificance.
we have very little information about what these are. It  Semiotics traditionally has been applied to the external
is known that the higher level representations are basedrepresentational systems used for explicit communication.
on the lower level features but little is known about how These representations correspond to lower levels in the
the latter are combined into higher level representations. cognitive-communicative process that are predominated by
There is, however, clear evidence that the grouping of syntactical considerations. A distinguishing feature of hu-
these primitive features underlies the phenomenon of streamman communication is the fundamental principle of dou-
segregation [109]. ble articulation, which specifies a two-level structure for
There are a number of factors that influence the gradual communication [112]. Classical semiotics accordingly has
segregation of auditory stimuli into acoustic objects. Each focused on the analysis of signs (monemes) and their
factor competes for supremacy in determining groupings, composition in areas such as text and speech. The signs
forming various segregation propositions that are evaluated(which are defined as the smallest units of meaning) are
in parallel, of which the most probable is chosen. Some constituted by subsigns, which are meaningless but dis-
of these factors include the synchrony and harmonicity of tinctive units whose only function is to distinguish the
the frequency partials, correlations in frequency or intensity monemes. Typically, semiotics has involved the study of
modulation, suggestive signal transitions, the presentationwords (which are primarily syntactic units) as monemes
rate of the stimuli, and the intensity of the partials, with and their composition.
more intense higher frequency partials tending to segrega- |t is also possible to extend the semiotic model to higher

Other
Signs Syntax emantics

Designatum

tion. level knowledge representations. Metasigns are formed by
_ o grouping signs in the same manner as subsigns are grouped
C. Signs and Semiosis to form signs. These metasigns may be considered to

Semiosis is the process of making and using signs to be true semantic units, given that semantics arise within
effect communication and understanding. Semiotics [110] appropriate groupings of syntactic units. A group of these
is the study of communication and understanding. It is metasigns can be considered to define the graph of a
concerned with the relationships of meaning of the signs. semantic network, with each metasign corresponding to a
Apart from the classical verbal and lexical communication node instance and the designatum being the conceptual
processes to which it is applied, semiotics is pertinent unit represented by each sign. The syntactical domain
to a wider range of interactive information processing. specifies the links defining the relations to other nodes.
Morris [111] describes semiotics in the context of three In this manner, a hierarchical semiotic structure may be
basic phases of interaction. First is the perceptual stage,defined where the higher level signs may be recursively
which is based on seeking signs or objects. Second is thedecomposed into their component subsigns.
manipulatory stage, which is gaining control of the signs.  Hypertext specifically attempts to model the data as a
Third is the consumatory stage, which lets the signs perform network of semantic or conceptual units (Fig. 10). Hy-
their function. There are also three corresponding types of pertext nodes are more appropriately called hypersigns,
inquiry that can be performed and three different relation- conveying potent semantics and typically consisting of a
ships that can be held with the signs. In the perceptual number of metasigns. At this level, the (hyper)signs become
stage, signs are primarily designative in that they signify more amorphous and the focus is on the relationships
what to expect from them. In the manipulatory stage, signs between the concepts they designate. In hypertext, the sign
are prescriptive because they signify appropriate coursesvehicles are anchor keywords or phrases that are directly
of action. In the consumatory stage, signs are appraisivelinked to their designatum, the nodes. This reduces the
because they reveal how well they respond to the desiredrole of the interpretant since both the sign vehicles and
manipulation. designatum are concurrently present in the media. The

Fig. 9 shows the three dimensions of semiosis: signs, syntax or relationship between the signs in hypertext is
designatum (what a sign stands for), and the interpretant (ordefined by other sign vehicles embedded within each node.
user). These three dimensions have correlates in semioticsThe semiotic analysis of each hypertext node in isolation
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Table 6
Ll g daiil Praggiiiaiics
i = = e = Textual Element Letters Words Sentences | Paragraphs
L Type of Unit Lexical Syntactic Semantic | Conceptual
Designation Subsign Sign Metasign Hypersign

Bomame el Synlax

a highly evolved structure with definite rules much like
normal grammars, resembling the hierarchical organization
of text. While music can be physically expressed in terms
Cliod: 1o {MC Hode Ty oo : of frequency, time, and intensity, in musicological terms,
e R 3 S music has three dimensions: melody, harmony, and rhythm.
Melody is the progression of tones produced by adding
Fig. 10. Semiotic dimension of hypertext. them horizontally, while adding tones vertically generates
chords and adding chords sequentially produces harmony.
may additionally be performed in terms of its component Rhythm is produced by periodic repetition. The smallest
signs and subsigns. subsign of music is therefore a tone or toneme. While a
The semiotics of hypertext systems can be readily an- Single tone has no embodied meaning, a short series of
alyzed since the articulation of text and speech is quite tones can readily convey an emotional experience [113].
evident, but this is not the case for other modalities. If the series is ascending, it expresses outgoing emotion;
Determining the articulation in multimedia data is not if descending, it expresses incoming emotion. If it is in a
straightforward since there may be little correspondence major key, joy is conveyed,; alternatively, sorrow [114]. The
between the physical manifestation of the data and mentallogical theory of semiotics in music [115] postulates that at
representation of the sign vehicles. For example, phoneticleast three notes are required to form monemes.
representations are quite different from the time-domain Articulation also exists in pictures. Various proposals for
speech signals. Generating suitable data models for hyperthe articulatory units include the concept ofiromemes
media requires the identification of the semiotic articulation (color elements) andormemes(shape elements), among
in multimedia data. This requires identifying the subsigns in others [116], [117]. However, it is difficult to foresee
each media and how these may be combined to form signs.any lexical constructs to combinghromemego produce
meaningful units. Another approach that has been proposed
D. Semiotic Articulation is Marr's model [118], which postulates the existence
While classical semiotics is based on the theory of Of three different representation systems starting with an
double articulation, each different communication system initial 2-D primal sketch and progressing to a viewer-
has its own domain-specific set of articulatory units. A good centric 2 1/2-D sketch and finally to an object-centric
example of a well-developed theory of double articulation is 3-D representation for semantic recognition. Apart from
linguistics. Phonemes, which are meaningless sounds, ardhe vague notion oftexturemes which are difficult to
the subsigns that can be combined to form monemes (orisolate and are not distinctive, Marr's model does not really
morphemes) equating roughly to syllables. provide primitive elements that could be considered suitable
In the textual domain, the subsigns are known as articulatory units. A better approach is based upon Gestalt
graphemes and correspond to alphabetical letters inPsSychology, although a suitable definition of subsigns or
English. This is an example of cenemic writing, where the Primitive elements in pictures is currently lacking.
graphemes represent phonetic elements such as phonemes Video or film communication is a composite medium of
or syllables (Table 6). Conversely, in pleremic writing @ sequence of images undergoing motion. Since the articu-
systems, the graphemes refer to semantic units suchlation within each frame is the same as for still images, the
as pictographs. Accordingly, the semiotics of writing is primary feature of video and film is its temporal domain.
viewed as either an autonomous or heteronomous systemAccordingly, the first level of articulation is the shot (or
Depending on which view is accepted, graphemes arescene) and is known as thedeme[119], [120]. Some
either signs or subsigns. In the autonomous view, the uncertainty has been expressed regarding the existence of
monemes equate to words, while in the heteronomousa second level of articulation. One proposal is that it is
view, graphemes are already signs so that when groupedcomposed of spatial-graphical objects callEdemes(or
they become metasigns. iconemels These already represent meaningful elements,
Articulation is also evident in music, although it is more however, and are therefore unsuitable. An alternative would
abstract than other forms of communication. This is becausebe to exploit the predominantly temporal nature of video
there is no clear separation of form or expression from and the observation that interframe changes are largely
the content in music since the expression is the content.motion induced. Accordingly, it would not be inappropriate
Instead of information, it mainly communicates emotion to propose that the second-level units be composed of a set
since music is the logical expression of feelings. Music of motion primitives. Eco [121] considers motion primitives
also has a powerful referential potential, which assigns the dynamic units of a third level of articulation called
meaning through association to past experiences. Music hasinemorphs
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Table 7

Level Text Speech Music Images Video
Sign Words Monemes Motifs Objects Videmes
Subsign | Graphemes Phonemes Tonemes  Graphic Primitives  Motion Primitives

The double articulation in classical semiotics implies the

existence of only a single level of cognitive units, each Goooy
capable of equivalent semantic value, and a single level of

precognitive detection units. In reality, there is a continuum 4 )
of cognitive units having increasingly higher semantic @

significance. For example, phonemes in speech can be

described in terms of formants, voicing, and manner of ar-
ticulation. Suprasegmental phonemes in speech (secondary @) (b)
phonemes oprosodemesinclude the pitch and melody of  Fig. 11. (a) Contextual effects. (b) Contextual influence.
speech, which in some languages, like Chinese, are essential

in determining meaning. Graphemes in text can also be
defined in terms of simpler primitives consisting of oriented
straight lines, intersections, and closed or open curves in
certain configurations. Fortunately, from psychophysics, we
know the general nature of these most primitive elements
for multimedia data. We also have a fair idea as to the nature
of the signs and metasigns (Table 7). The task remaining
to formulate perceptually concurring data models is to
determine the specific nature of these primitive elements

nd how th mbin her h level to form signs .. . ) .
and how they combine together at each level to form sig Sstlmulus with other parts and still manage to retain the

and metasigns. ) .
Understar?ding how these elements can be grouped tOguallty of the whole. Examples of this are commonly found

form single conceptual units is a significant difficulty since Ir:]e?suilgr?lsttz;izsp(;'srllo?mar:)?t:n(t:hee (g‘hggr?tgftz(;v i?:flgzgzgs
this typically requires semantic knowledge. At higher lev- . tancy. Imp .,
els, the rules defining how elements may be combined in perception is readily exemplified in Fig. 11(a), where

are also increasingly more complex. The task of assigning ?hc_)nzontal Llrl?esdpf equ?ll_lengt_h appie:r ttoh be dlsfhar?tef'r Int
a semantic to a given metasign is a recognition processthIS _c?se, tet' mgt;r:a |Ir1es||mp<’t:1r: epth cues that afiec
heavily dependent on pragmatics. More than just a clus- "< MterPretation ot the fine fengtn.

tering problem, the question of how the meaning of each b The(jrolg Ofl contextual mfluencis n lpelrc.e?ltlon extendsh
individual sign is modified by the grouping and determina- 2YONd SIMu taneous context to historical Influences suc

tion of the overall meaning of the metasign is perplexing. as fa_miliar_ity and expectations. There is the tendency to
However, divorced from semantic and pragmatic issues, theclass_n‘y stimulatory (_avents according _to past experience.
individual low-level signs, being syntactic units, are rela- I thiS case, categorical event perception takes precedence
tively easy to identify in a given communication medium, CVEr sensory perception and may override it. In Fig. 11(b),
Gestalt psychology attempts to offer some insights into the the letters O, V, U, m, and x are interpreted as facial features
question of how syntactic units are grouped together to form gnd not as letters. A powerful example of contextual effects
semantically significant units.

characteristics required on the part of an element for it to
contribute to the forming of a more significant whole?
When a whole is greater than the sum of its parts, it
creates a recursive relationship in that the meaning of
the whole must then influence the meaning of each part.
Context clearly influences perception. In fact, we seem
to respond more to relationships among stimuli than to
the specific characteristics of the individual stimuli. This
explains why it is possible to replace original parts of a

is the filling-in mechanism, which automatically interpo-
lates stimuli to preserve the perception of continuity even
when the stimulus itself is discontinuous. This phenomena
E. Gestalt Psychology can be found in audio perception, where a gap due to signal
Gestalt theory is perhaps one of the best establisheddropout in a tone or in a frequency sweep can be masked by
yet poorly defined theories of perception [122]. This the- presenting narrow-band noise in synchrony with the onset
ory postulates that perception is based on sets of stimuliand offset of the gap. In the visual domain, the filling-in
where the whole has a meaning or significance that is notmechanism is more powerful and can completely eliminate
predictable from its elements. These semantic groups arecertain image contours and create the perception of surfaces
known as Gestalten. For example, a square is semanticallythat do not exist. In the Kanizsa diagrams [123], white
more significant than a group of lines and a tune is more polygons are clearly perceived through visual interpolation
than the sum of its notes. This leads to some interestingeven though they do not exist (Fig. 12).
guestions, namely, what is the nature of the groupings that Apart from complex contextual influences that affect the
have increased significance over other arbitrary groupings?formation of perceptual groupings, another difficulty in
This question has two implicit components. First, what defining grouping rules for perceptual organization is that
bearing does the relationship between the elements have orthe mind is constantly searching for alternate organizations.
the significance of the whole? Second, are there any specificAlso, groupings may be difficult to define in complex
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Table 8

Semiotics Hypertext Cognition Graphics (CSG)
Semantics / Designatum Node Layer Defining Attributes Geometric Primitives
Pragmatics / Interpretant | Presentation | Characteristic Attributes Shape Parameters
Syntax  / Relationships Link Layer Associations Set Theoretic Operators

N O e o —
7O - | e 2SO
‘ v 'a 0 ‘, | .J Fig. 13. Grouping rules.

systems to be effective, the data representations should
be based on data models, which permit direct access to

. . the semiotic structures in the data. The problem is how
patterns, and a single component may only be assigned, . . : .

) . . : S to identify and isolate these structures. Initially, we may
to a single group. In spite of this, various principles have

been proposed [124] that are based on the proximity, begin by abstractlng the three dlmensmns of ser‘-m.ojucs
oot b (semantics, pragmatics, and syntax) into the type definition,
similarity, continuity, common fate, and closure of the . ; . —
AN A expression or form, and relations. The basic type definition
stimuli (Fig. 13). The common-fate principle is based on ; L . o
) : o of an object epitomizes the core semantic value and is its
correlations in the form of synchronization or frequency _ .~ . . o .
: . ! S ! principal attribute. The form of rendition or expression of an
or intensity modulation. Closure implies the continued . : - . . .
. LT . . - object provides additional interpretational cues suggesting
perception of obscured stimuli via an interpolative or filling- e . L S :
; : specific semantic detail similar to prosodics in speech. This
in mechanism. N o .
. . o encapsulates an object’'s characteristic attributes and may
While general grouping principles have been suggested, o . '
- . s e be conveyed through parameterization. The relations define
Gestalt theory has difficulty in specifying the definition A . . .
o L the possible interactions between the objects or signs. We
of the primitive elements themselves. This is because :
. S . .~ can use this abstracted framework to compare the general
contextual factors and relationships interfere with the in- . . . . X
) . equivalence of diverse information-processing systems, as
terpretation and definition of the elements. However, from

Section V-B, we know that the elements must be hier- de&%?;;?;ﬁd Ivr\l/engLei(?éntify a number of general orin-
archically defined. Also, since the relationships among Y, 9 P

perceptual stimuli are more important than the absolute ciples from gognmon and Ggstalt p_sych_ology (Fig. 14) _that
T : govern semiotic structures in multimedia data. Essentially,
values of the stimuli, it appears appropriate to propose a

i A A they are semihierarchical, multilayer network structures.
hierarchy of primitive elements based on clearly defined ) . :

: . Each element or node in this structure is separately de-
relationships between the elements.

scribed in terms of both its defining and characteristic
attributes, and the relationships between elements are ex-
plicitly defined. Furthermore, to permit intramedia nodes to
be fully linkable as a source or destination and to support
This section presents the new semiotic paradigm poth information management and interactive manipulation
for hypermedia data modeling. Section VI-A discusses of the data, each element must also be indexible, individu-
the characteristics desired for hypermedia models anda"y decodable, and randomly accessible.
introduces the new paradigm. Section VI-B presents new Another consideration is that the basis of this organi-
syntactic data models for multimedia based on a semiotic zation should not be semantic but syntactical to permit
articulation. Section VI-C discusses the information- environment-independent automatic processing_ The repre-
management support provided by the data models. sentation should not obfuscate any inherent structural and
Section VI-D presents rudimentary compressed representaperceptually important information in the data. Also, in

Cardnuity Chsgurne Common Fabs

Fig. 12. Visual interpolation.

VI. HYPERMEDIA DATA MODELS. A
NEwW SEMIOTIC PARADIGM

tions for audio and video data based on the models. conformity with the concept of subsumption architectures
o _ for information processing, the representation should be
A. Semiotic Paradigm midlevel and generic rather than distinct for each specific

As a communication system operating at an advancedapplication. This would permit the representation, given
cognitive level, the semiotics of hypermedia is complex. suitable supplementation, to be used for a variety of differ-
Semiotics is established on the fact that all communication ent applications. It should make all information explicitly
is based on the generation and perception of signs. All available to higher level processes such as content-based
but the most primitive communication is highly structured, retrieval, structured browsing, editing, recognition, and un-
and semiotics attempts to determine the nature of thesederstanding without attempting to interpret the information
structures and their constituent elements. For hypermediain any way. Searching in such a compact data space
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Semiotics Gestalt Theory
® Signs ¢ Relationships vs Elements
e Articulation + ® Whole > Sum of parts
* Dimensions of meaning ¢ Grouping Rules

Cognition
s Attribute theory of concepts
o Hierarchically Structured
¢ Correspondence continuum

Fig. 14. Principal properties.

Table 9

Hypermedia Properties

Existing Representations

Required Representations

Structured Representation
Indexible Components

Random Access

Decoding Granularity

Internode Relationships

Link Support / Navigation
Content Based Access / Retrieval
Structured Browsing
Restructureable

Manipulable Representation
Compressed Data

Interaction

Navigational Dependencies
Authoring Support

Information abstraction / preservation

No - bit steam

At best Frame based

No

Often entire stream

None or serial only, concealed
Only as a destination

Manually Annotated Indexes
No

No

Virtually full decoding required
Yes

Extremely limited, frame based
Presentation level integration
Not reusable, system dependent
No / Obfuscated

Multilayer Network Structure
Per Object/Node Indexing
Content Based

Individually Decodable Nodes
Unconstrained and Explicit
Per node source and destination
Intrinsic Support
Hierarchical, intrinsic

Add, Move, and Delete Nodes
Fully Compressed Editing
Same amount as existing
Extensive node / content based
Environment independent
Reusable, Portable

Yes / Explicit

would only involve supplying similarity-matching algo- Table 10

rithms without needing to decompress or furthe_r PrOCeSS 5oeT Tmages - Spatial | Video -Temporal Audio Aconic
the data, or to create separate index files. Object recog- Metasign Picture Episode Episode
nition and understanding could be performed simply by __Signs Objects ; Scene Phrase / Motif

. . . . . : SubSigns 1 Surfaces Shot / Global Motion Harmonic Group
directly interpreting the structural information that is made ¢,/ Dines Object / Local Motion | Pitch Contoar / Tradk

explicitly available in the same compressed data. Table 9 subsigns 3 Pixels Tone Burst
contrasts these properties with those provided by existing
coding schemes. ) .

A general semiotic framework based on syntactic prin- SyStématic approaches have been suggested. It is proposed
ciples can be formulated to create data models and repre_that these elements should be defined in terms of a multidi-

sentation schemes to meet these requirements. Syntacticdl'€nsional decomposition of the data space itself, creating a
models can explicitly reveal the structure of the informa- hierarchy of elements with decreasing degrees of freedom

tion, permitting efficient, generic, and interactive access to @S the dimensional constraints increase. This permits the

any encapsulated semantic information without permitting 9eneration of higher level elements from simple linear

the semantic information to encumber the interaction. While 9roupings of those below them that mimic the organization

not necessarily revealing what the encapsulated semantic®f the early perceptual processes. The dimensionality of an
are, they do not preclude the inferral of semantic interpreta- €lément becomes its defining attribute while any additional
tions. The constituent elements in syntactical structures arePa@rameterizations are the characteristic attributes.

easy to identify and extract through statistical techniques. 1he élements at the higher levels of this hierarchy contain
They are also capable of conveying powerful semantic 9réater semantic power than those at the lower levels due to

information given the right association through the re- the Gestalt principle that the whole is greater than the sum

lationships between them. Specific statistical information ©f itS parts. For example, at the lowest level of an image,
about each syntactic entity can be obtained by individually & row of picture elements (pixels) forms a line, and an
accessing each syntactic element. The proposed data modélPPropriately structured group of four lines forms a square.
for each medium is accordingly constituted of three specific Th€ square is TUCh more t”han just four lines; it has an
components: primitive syntactical units, the characteristic €xtra quality of *squareness.” Each line is more than just a
attributes or parameterizations for each primitive, and the clugter of pixels; it e>§h|b|ts lineness.” Judicious .plac.ement
set of relationships between the units. Corresponding repre-Of lines produces simple vector and cartoon-like images

sentation schemes would preserve these three informatiorfnat nonetheless can carry very powerful semantics, such
components, making them explicit and directly accessible. @ computer-aided design drawings. Rather than focusing
on the capacity for semantic expression through Gestalt

phenomenon or determining possible grammars at this

B. Semiotic Data Models stage, however, we are interested only in defining the

While various ad hoc attempts have been made to de-primitive elements. Table 10 identifies these elements for
fine the primitive syntactical units in multimedia data, no each domain according to their dominant modes.

Stationary Change
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Table 11
Picture Video Episode Audio Episode Defining Characteristic Attributes
Pixel Colour / Intensity Location
. Line Path (length, orientation) Intensity contour
Object Scene Phrase Surface Shape (area, orientation) Shading Texture
g SZ g Stationary change Region Shape / Area Region Content Time / Duration
Object Motion Affine Transformation Depth Order Time / Duration
Surface Shots H.Group Shot Camera Motion Lighting Changes | Time / Duration
Ry b Y u Pure Tone Frequency Amplitude Duration
Lines Object Motion Tracks Frequency Track | Pitch Contour (melody) Intensity Contour Modulation
\ " " Harmonic Group Frequency spacing Energy distribution Periodicity
Points Stationary Change Tone Burst

on the interpretation of the relationships between syntactic
elements. Alternatively, in this model no attempt is made to
interpret this information in any way, thereby not binding

Each of these primitive elements or subsigns in isolation, @ny semantics to the data. This preserves the generality of
a simple polygon, or a motion primitive or tone burst have the information encapsulated by the model by not constrain-
little (if any) semantic qualities. To constitute signs, it is NG its ultimate designation. This also permits generalized
necessary to group these primitives together appropriatelyscene descriptions conveying the core semantics to be
to create semantically significant elements. For example, 9enerated from the data by simply considering the defining
phonemes are a select grouping of frequency tracks and zand relational attributes alone. A formal description of the
face is an appropriate grouping of surface patches. OmittedProposed data models for image, audio, and video data is
from this analysis is any definition of the grammars required Presented in the following definitions.
to generate these signs. Such definitions are beyond the Definition 1—Image PointsAn image is a function of the
scope of this analysis since there are a plethora of potentialSet of all ordered pairs( ) of real numbers': ® — R or
grammars, one for each different semantic entity. It should (z, ¥) L 2. The pair ¢, %) is referred to as a point. The set
be possible to infer groupings for a particular data stream, of all points, C C %2, given by {(z, 4)|0 < z < w, 0 <
however, by identifying commonly occurring configura- y < h}, defines the image plane.
tions, which, while not necessarily constituting semantic  Definition 2—Relational VectorsGiven an ordered set of
units, may be used to enhance coding gains. n points £ = {(ey, ez, - -+, en)|e € C'}, one can define an
Each sign can be decomposed into one or more of theordered set ofy vectorsV = {(vy, va, - -+, v,)|v € R?}
subsigns in its domain (Fig. 15), and each subsign also specifying spatial relationships between these points. A
recursively can be defined in terms of the simpler ones. graphical pattern is then defined as the biprodGct=
Rather than representing data by a single type of element,F @ V = {(e; + v1, 2 + v2, - -+, e, + v,)}. If these are
as many coding schemes do, these models encourage théme variantV(¢), they become relational motion vectors.
simultaneous use of all the elements for a given domain. Definition 3—Adjacency:The neighborhood of a point
This enables the concept of layering where complex dataa = (z, y) in the image plane can be defined as the set
can be defined by the superposition of simpler elements. N(a) = N(z, y) = {(u, v); |[z—u|+|y—v| =1, |[z—u| =
It is intended that higher level elements define the basic |[y—v| =1, (x, ¥) € C, (u, v) € C}. The adjacency of two
data characteristics and lower ones are used to supply anyointsa andb is denoted byr +b < a € N(b), b € N(a).
additional fine detail not adequately conveyed by the more Adjacency can also be expressed by the relationship defined
complex elements. While it is possible exclusively to use by the vectord = {[(u, v), (u+i, v+5)]|lu, v € R, ¢, j €
the lowest level subsigns to represent a given media, it {-—1, 0, +1}}.
would be making poor use of the model. The main purpose Definition 4—Paths:Joining a string of adjacent points
of the lower level elements is to provide a fallback mode forms a “path.” A path@ of lengthn is defined as the set
to compensate for when the higher level elements fail to of n adjacent points} = {(p1, p2, p3, -+, Pr)|pP1 * P2 *
model the underlying data accurately. Video coding is an ps = ---* p, }. Each point can be defined parametrically as
example of this where planar motion compensation alone p(t) — [z(¢), y(¢)] subject to the constraint thaft + 1) =
is insufficient to compensate for interframe changes. In this [z(¢) + ¢, y(t) + j] where¢, j € {-1, 0, +1}. The path
case, the residue can be appropriately modeled as the resuldefinition then become® = {p(t)|p(t) € C, p(t) * p(t +
of additional stationary changes. Layering also facilitates 1), 0 < ¢t < n}. A closed path is subject to the additional
progressive refinement of data and the ready discarding ofconstraint thatp,, * pg.
fine detail if needed. Property 1: Pathsf(¢) andg(s) are said to be connected
Each primitive element in this generic data model also if at least two points (one point from each) are adjacent.
has a set of parameters associated with it that is specificThis is denoted by the commutative relatif(t)4g(s) <
to the element’'s domain. These are identified in Table 11. 3t € R|f(¢) € N[{g(s)|0 < s < m}].
The abstraction provided by this model permits all of the  Property 2: Two pathsf(¢) and g(s) can be said to be
important cognitive information to be explicitly available adjacent if they are connected and every point in path
for later high-level processing. For humans, it is difficult to adjacent to a point in patiiover the common intervalnt.
perceive something without simultaneously interpreting its We then sayf(¢) = g(s) < f(t)#g(s), Vh € snt, f(h) €
meaning. This recognition of meaning is highly dependent N[{g(s); 0 < s <m}], g(h) € N[{f(¢); 0 <t < n}].

Fig. 15. Semiotic data model.
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Definition 5—Domains:Joining adjacent paths that lie inferred. For example, macrodiscontinuities such as edges
side by side forms a domai® = {(¢1, g2, g3, -+, qn)|q1* bound the region defining a smooth-shaded surface patch.
g2 % g3 * --- * g, }. This equally can be expressed as A microdiscontinuity will bound the region defining a flat-
D = {q(s)|q(s) € Q*, q(s) xq(s + 1), 0 < s < n} where shaded polygon or vector. In this sense, any image can be
Q* is the infinite set of all possible paths. Sing&) — considered to be a product of primitive instancing.

[2(2), y(t)] € ¢(s), then any point onD can be specified A simplistic example can best serve to illustrate the
by p(s, t) — [z(s, t), y(s, t)]. Alternatively, a domain  application of this model. Fig. 16 is an image composed
may also be defined as the set of all points lying within of four identifiable foreground objects (sun, plant, ant,
a closed path or closed set of connected paths, le= and cloud) and the background. Each of these occurs in
{q()]|q(s) € Q*, q(s)#q(s+ 1), q(0)4#g(n), 0 < s < n}. a certain spatial relationship to the other. Placing a grid

1) Image Model: An image can alternatively be defined of 9 x 7 elements over the image, we can additionally
as being composed of a set of ordered three-tuplesspecify the spatial relationships between each of these
(z,y,4) D C where{ is the color or intensity of objects in reference to an origin, say the bottom left-hand
the image at locationz, 3. An image then becomes corner. The respective relations then become approximately
I ={(z,y, )0 £ 2 L w,0 <y < h0< i <10 {(0, 6), (5, 4), (2, 1), (7, §), which could alternatively
The most primitive elements in an image are the pixels or be defined relative to each other. The full definition of
picture elements” = (z, y, ¢), which have two distinct  the diagram becomes the set of constituent elements, the
attributes: their color/intensity and spatial location. relationships between them, and the parameterizations for

Adding a number of pixels together in any given direction each element, which have been omitted for simplicity. The
forms a line that has the additional property of length. Its symbols O+, L*, ST, and P+, respectively, denote the
orientation can be disregarded as being a function of ansets of all objects, lines, surfaces, and pixels in the image
arbitrary frame of reference. The formal definition of a line (see Fig. 16).

L is given by the set of pixels lying on a path where 2) Audio Model: Audio signals can be represented as a
L ={[p(t), i(t)]|p(t) € Q, 0 < ¢ < 1}. Both the path and  time-frequency distribution defined as an ordered set of
the intensity of the line along the path are defined as simple three-tuples £, ¥, ©) where: is the amplitude of the signal
parametric functions. Two special classes exist: flat-shadedat frequencyf and timey. A time-frequency representation

lines wherei(¢) is constant ove€} and the case wherg) of audio then becomed = {(f, 4, 9|0 < f < h, 0 <
defines a straight line. y<1,0<1¢< 1}

Adjacent lines form a surface. A surfafes defined by a The most primitive audio element is a pure tone burst
set of adjacent lines that contain all of the pixels in a domain or spectral line localized in both time and frequency. In
D. Formally, S = {[p(s, t), i(s, t)]|p(s, t) € D, 0 < s < its simplest form it is defined by a poinf(y, 7) that has

m,0 < ¢t < n,s L t}. The functioni(s, ¢) defining constant intensity and unit-length duration. A noise burst
the intensity contour is assumed to produce a smoothis a set of statistically uncorrelated points. The general
surface. A polygon is a special case whéte ¢) remains form of a tone burst has arbitrary duration and is time
constant over the surface area. Due to this smoothnessvariant in intensity. This is parametrically defined Bs—
constraint, to model a natural image region properly, one {[f, y(t), i(#)]|0 < ¢ < 1} being localized in both time and
may require the addition of a zero mean, stationary noise frequency and having an intensity contour.
component. In this case, the surface model becafhes The set of unit tone bursts lying on a path which
S+ {[n(z, v)]|(z, y) € D} wheren(z, y) is the noise is permitted to vary parametrically in frequency, forms a
function at point ¢, ¥). If the nonzero components in the frequency track. These have the additional property of pitch
noise function are separated out, the model becomes acontour and are defined @& = {[f(¢), y(¢), i(®)]|0 <
superposition of a set of pixels over the original surface. ¢ < 1}. A set of m synchronous tracks, which follow the
An object O is defined as a collection of connected same path but are displaced in frequency, form a harmonic
parametrically defined surfaces, lines, and pixels that havegroup that is defined al = {¢t(n)|t(0) =T, t(n+ 1) =
been translated to the origin. The spatial relationships (f, 0, 0)+t(n), 0 < f < h, 0 < n < m)}. These (Fig. 17)
between them are given by the set of vectdfsC R2. have the additional properties of harmony or timbre.
Thus O = V & {(e1, ez, €3, -+, ep)le € S§* U L* U A phrase or moneméV/ is defined as a temporally
P*, ci4ca4c34 - - 4e,} where S* L* and P* are the connected group of frequency tracks, tone bursts, and
infinite sets of all possible surfaces, lines, and points, harmonic groups. Translating each of these to the ori-
respectively. An image is finally defined as a finite set of gin, the spectral and temporal relationships between them
spatially related objects, formally = OT ¢ V. are given by the set of vecto® C R2. Thus M =
While the typical image-coding models are based on an V & {(ey1, €2, €3, -+, ep)le € T* U F* U H*} where
array of nonoverlapping uniform rectangles, the elements 7%, F'*, and H* are the infinite sets of all possible tones,
in this model are spatially unconstrained in their shape and tracks, and harmonic groups, respectively. Both rhythm and
localization. Every image can be considered to be composedmeter are higher level concepts beyond the scope of this
of these primitive elements. The discontinuities in the analysis.
image form the boundaries between each element. The 3) Video Model: At the most primitive level, a video
nature of the discontinuities defines the type of primitive episode can be considered to be composed of an
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Image ={sun, plant, ant, cloud| cloud € 0"} & {(0,6), (5,4), (2,1), (7,5)}
sun= {corona, 5 ray$ coronac St, raysc LT} @ {V | rays radiate out from coroha
plant = {centre, stem, 8 peta|ssteme ST} ¢ {V | stem is beneath centre, radiating petals
centre= {oval, spotd oval € ST, spotsc PT} @ {V | spots lie within ova}
petals= {surface, textur¢ textureC P*} @ {V | texture radiates from centre
ant = {head, thorax, abdomdrthoraxe St} @ {V | thorax ¢ head¢ abdome#
head= {oval, antennagoval € S™, antennae_ L™} & {V | antennae above head

thorax= {oval, legs| oval € St, legsC LT} @ {V | legs below body

Pictun:

Fig. 16. Image articulation.
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Fig. 17. Audio structural primitives.

ordered set of scenes. A scene is a set of imagesto planar motion where the direction and distance of the

{o, I1, I3, ---, L)|L,, = I,4+1} delimited by a scene  motion is parametrically defined in time as the set of points
change or sharp discontinuify, <> I,,11. A scene may  such thatPM = {[x(t), y(t), i]| It € R|i(t) #i(t + 1)}.
be interpreted as a single time-variant image, dendted Stationary change or planar motion normally occur simul-

but it may be equivalently expressed as an ordered set oftaneously to groups of adjacent pixels in given domains of
tuples[z, y, i(t)] wherei is the color value of the scene at the scene having the properties of the region shape and the
a location or point£, y) for the image at timeé. Formally, nature of the change. In these cases, instead of modeling
a scene is the séfz, v, i(t)]|[x, v, ()] = [z, v, t(t+1)], motion at the pixel level, it is more convenient to do so
0<z<w,0<y<h 0<i<1,0<t<n}. Three at the region or object level. Hence, an image undergoing
basic types of time-variant phenomena may occur over planar motion can best be described as a set of objects
the duration of a scene: stationary change (SC), planarwhose spatial relationships are time variant. From the image
motion (PM), and global motion. Fig. 18(a) depicts a two- model, we havd (t) = Ot & V(¢) whereO™ is the set of
image scene exemplifying all three types of changes andall objects in the scene and the relationship vectors are tem-
Fig. 18(b) shows all of the nine regions in the scene that porally variant, becoming relational motion vectdf¢t) =
change over the two images. {[vo(®), v1(t), va(t), - -+, va(£)]|0 < ¢ < frames}. Rather
Stationary change is the simplest primitive produced by than just describing the two-dimensional translational mo-
only an “in-place” color change. This is defined as the set of tion, this planar-motion definition may be extended to
time-variant color pixels such th&8C = {[x, y, i(t)]| 3t € account for layered motion (LM) by defining the vectors as
R|i(t) # i(t + 1)}. While the SC primitive assumes that three-dimensional entities(¢t) = [z(¢), y(t), 2(¢)] where
changed pixels are spatially fixed, an alternative interpre- z(t) specifies the depth information.
tation considers the color value of each pixel to be fixed Since planar motion assumes the content of each region
and its spatial location to be time variant. This gives rise to remain constant, it is unable to account for all of the
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(@) (b)

Fig. 18. (a) Motion in a scene. (b) Stationary change.

| ' | Global

(b)

Fig. 19. (a) Planar motion vectors. (b) Global motion compensation in scene.

changes in Fig. 18. In this case, it is necessary to fall back of the existence of global motion. This global motion also
onto stationary change to complete the scene. Fig. 19(a)takes the form of an affine or perspective transform that
shows the five motion vectors for the scene, which includes applies to the entire image. Taking the global motion vector
one bird and the street marking, person, and traffic light. componentg(¢) into consideration, the set of relational
It is unable to account for the changed state of the traffic motion vectors in a scene becom¥s$t) = g(t) e W(¢)
light or the missing bird, which must be compensated for whereW (¢) defines the globally compensated local motion
using the SC primitive. vectors. Since the use of multiple motion models is required
Since planar or simple layered motion can only exist to describe the motion in a scene adequately, then the
in very constrained environments, this definition is too addition of the global-motion model further enhances the
restrictive to model the motion of real objects since these flexibility. In this case, compensating for the translational
are subject to more complex 3-D transformations. In this global motion reduces to the number of motion vectors
case, it is convenient to consider a scene to be a time-required to describe the motion. Fig. 19(b) shows the result
constrained view of a 3-D space. Returning to our object of applying a global motion transformation to the previous
image modell(t) = O @ V(¢), the vectors become six- example. Three local motion vectors and two cases of
dimensional time-variant entities, each defining an affine stationary change must be updated.
transform. This permits the objects to move in simulated 3- A set of frames in a scene where the global motion
D space by rotating, translating, and scaling. Planar andis uniform defines a shot. A scene can be considered to
layered motion are just special cases of object motion, be composed of an ordered subset of shots. A shot is
which is defined by motion vectors of the form formally defined as the set of adjacent images such that
I(t) = O @ [g(t) e W(t)]|g(t) = g(t+1), 0 < ¢ < frames.

a(t) O(t) =(t)
w(t) = ;Eg Zg; y(lt) C. Content-Based Access and Management

In addition to forming the basis for compact representa-
where the translation is defined by the parametersg, tions, these data models permit the access and management
the scaling bya, b, and the rotation by the combination techniques of the general cognitive memory model to be
of a, b, ¢, d. Perspective transformations are accounted imitated in various ways. The memory model consists of
for by parametery, ¢q. Rather than just considering the a modality-specific sensory store that receives and analog-
motion of independent regions, uniformity in the time- ically encodes input data from the perceptual processes.
variant set of motion-relationship vectors may be suggestive This data is then passed to the working memory, where
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Fig. 20. Syntactic analysis.

control is consciously performed, and finally placed in long- stream segregation to generate semantic groupings from the
term storage. Rather than containing representations of thesyntactical units. For example, adjacent image primitives
actual sensory data, the working memory operates with that have synchronized motion have a high probability of
labels or pointers to conceptual objects or groups of objects,forming a semantically consistent and meaningful object.
permitting the manipulation of highly complex entities or Fig. 20 demonstrates the basic concept behind this analysis.
groups of these. The counterparts to these components in The lowest level elements in the data models readily
a hypermedia system are the input processing, hypermedigproduce statistical information about their subject. For
engine, and hyperbase. example, the average color or texture can be directly
The input-processing section of such a system should calculated from the pixels or vectors in an image. In video,
accept raw multimedia data and encode it according to thethe amount of stationary change is a good indication of
semiotic data model. Following this, the hypermedia engine the occurrence of scene changes. Likewise, in the audio
can effortlessly mediate in all of the user-directed control domain, the energy distribution exhibited by tone bursts
functions such as navigation, authoring, or integrating new can be used to perform source classification. Music predom-
data elements into the existing hyperbase. Content-basednantly consists of long harmonic tracks with rare periods of
retrieval functions can be performed by directly querying silence. Noise is composed of many short discordant tone
the node attributes. Additionally, in contrast to existing bursts. Silence is defined as the absence of any frequency
compressed time-based browsing of audio and video datatracks. Speech is a combination of relatively short noise and
streams, browsing can be content-based since the supportone bursts interspersed with frequency sweeps and many
for this is intrinsically provided by the data models. To be pauses.
particularly effective, however, this access should be based Alternatively, syntactical information is predominantly
on semiotic signs generated from the subsigns through theconveyed by the primitive elements at the higher levels.
application of Gestalt principles. In images, the relationships between the region segmen-
In the case of content-based retrieval, there is no needtation suggested by the surface elements may be used for
for additional processing to extract labels or create indexesstructural analysis. Shot classification in video also conveys
since the data models explicitly represent the data in syntactic information by defining the relationship between
terms of their salient attributes. These models provide aframes and image elements in a scene over time. In audio,
wide range of information for generating component labels, the relationship between temporally adjacent frequency
which may be interpreted to be of a statistical, syntactical, tracks can be directly used for retrieval by defining pitch
or semantic nature. Primarily, statistical information is contours or melodies. Additionally, speaker changes and
directly encapsulated by them since the primitive elements gender may be determined from the fundamental frequency
are statistically defined. More abstract information is pro- or pitch of the lowest track. Speaker emphasis may be
vided by the syntactic analysis of the relationships between detected from the change in relative amplitude of the tracks.
the elements and their defining attributes. Depending on The highest level elements may be used to generate
the analysis domain, this high-level syntactical analysis semantic information directly. The surface shading of ob-
may provide either structural, episodic, tonal, 3-D motion jects in a scene can be used to perform shape estimation
and shape, or subject information. This information may and identify region shapes used for object recognition.
be used in conjunction with Gestalt principles or audio- The generation of this semantic information may often
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Table 12

Attributes

Still Images

Video

Audio

Statistical | Colour and Texture Scene Change Detection | Spectral Energy Distribution
Geometric moments Scene lengths, activity. Dynamics, Silence detection
Syntactical | Image and Shot Classification Pitch contours, Timbre, Source
segmentation structure | Scene transition graphs Classification, Chord Structure,
Object motion tracking
Semantic Shape Estimation Motion Estimation Speech and melody recognition,
Object Recognition Gesture Analysis word spotting,
Node Index
Semantic
Query
Auttributes
Natual
Language
Description| Query

Fig. 21. Query processing for content-based retrieval.

be contingent on the specification of appropriate grouping D. Example Representations

rules or the nature of the relationships between primitive  Thys far, the data models and their management aspects
elements. Certain groupings may have specific semantichaye peen discussed but not the issue of their derivative
interpretations such as in face recognition. In audio, Cer- renresentations and encoding. This will determine the ac-
tain harmonic groupings may be indicative of particular ceggipility of the information provided by the data models.
musical instruments. Additionally, even with these higher This section describes rudimentary audio and video repre-
level primitives, the statistical and syntactical attributes ¢ i~iion schemes. which seek to make this information
are still readily available since each element is linearly explicitly available,in compressed form. These coding
decomposable in.to it; constiFuent lower Ievel e'e’“_e”‘s- schemes are two specific instances of the data models and
Table 12 summarizes information that may be immediately are by no means definitive. They permit information man-
eX%,athg\,%redZﬁgﬂﬁvgeeZirrit:,ﬂ_gggneéhfengz:' a variet agement data and interactive manipulation in its compressed
of uzr methods must be subported whic,h must b); form to a certain extent. More work is required to develop
query PP X representations that fully implement the data models.

mapped into the attribute set irrespective of how they Th icati ¢ f ad d animal
are posed. Given an attribute set, queries may be posed € communication systems of advanced animals are

by directly specifying attribute values. For example, to composed of three classes of audio signals: noise bursts,
locate a red image, one could ent@55, 0, 0 into thé tone bursts, and frequency sweeps. Frequency resolution

color field of a form-based query. Alternatively, a natural is better at low frequencies while temporal resolution is

language interface would permit the expression of these b,etter at high fr?q‘%e”?iesy leading to a scalogram-like
values within language like constructs by saying “find time-frequency distribution (TFD). Instead of an STFT,

images with color 255, 0, 0.” A more advanced query & multiresolution discrete cosine transform (MDCT) is

mechanism would rely on the mediation of an expert system Used to generate the frequency decomposition since the
where the knowledge base would maintain descriptive DCT domain has the advantage that it does not require
lists of real-world objects in terms of their attributes. Separate phase information and has higher data compaction.

Posing a semantic query by specifying the name of an The MDCT is preferred due to lower blocking artifacts.
object (e.g., find a red image) would result in a set of Constant-length, variable-resolution analysis windows are
attributes’ being submitted to the retrieval engine. All of used to generate the analysis bands separated by octaves
these queries are fundamentally similar in that they are [Fig. 22(a)]. The higher frequency bands exhibit low fre-
expressed alphanumerically. Alternatively, a query may quency but high temporal resolution while the low fre-
be posed by example. Synthetic visual queries could bequency bands have high frequency and low temporal res-
formulated by using a drawing tool or by compositing an olution.

image from a feature database. Similar methods can be The overall encoding algorithm is depicted in Fig. 22(b).
used for audio queries, such as humming a tune. Fig. 21 After the scalogram is generated, it is processed by applying
shows some options for posing queries and their mapping masking and quiet thresholds to remove perceptually redun-
mechanisms. dant data. Peak picking and tracking is then performed to
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Fig. 22. (a) MDCT scalogram generation. (b) Coding algorithm.
extract the frequency tracks. Peaks are defined as the set Coplanar Polygons Overlaid Polygons

of all points in the TFD such thatX (f;—1)| < | X (/)| >

| X (fiy1)| where X (f) is the magnitude at frequengyat
each instancé in time. Tracking is performed by joining
the peaks in time that are closest in frequency within limits. rig 23 primitive layering.
Each track is then classified according to its type (noise,

tone burst, or_swegp) and represented as differential Chainthe parameters for each track. Voiced/unvoiced speech
codes. Fo_llowmg simple strgam segregatlon., th? track; a'€qetection can be performed by evaluating the ratio of noise
encoded in groups. The residual spectrum is differentially to tracks over a short time period. Change of speaker and

?ar:'(z)ondz(tjr acst ?esfast ggfgnnéglzgg;hStgtn?)fburfts's-rze égp;essnnc'f;ender may be determined from the frequency of the lowest
' uctire | ' groups, SWEepS, anqy, . Speaker emphasis may be detected from the change
tones. To simplify access, the header information contains .

table of contents in chronoloaical order of the element in relative amplitude of the tracks. The possibility of the
a table ot contents in chronological order of the €ements oo ¢ s feature set for speech recognition needs to be
containing only the type of element, its starting time, and a

. . L . investigated. The distribution of partials in harmonic groups
pointer to t_he location (.)f any add|t|(?nal parameters in the can be analyzed to evaluate timbre. Other attributes may be
stream. This structure is as follows: directly determined from the tracks, such as the modulation,
AUDIO = {(Header Information, GROUP TRACK", tempo, frequency, duration, dynamics, periodicity, pitch

TONE", NOISE'} contour, and harmonics of the audio data, that may be used

GROUP= {SWEEP, nPartials, offsets[nPartials], for contept-based retrievgl. L
In the video representation [125], each frame is viewed as

energy[nPartialg] an image composed of primitive elements in various layers
SWEEP= {TONE, frequency][lengtH}] at different levels of detail. This permits complex-shaped
TONE = {length, frequency, intensity[length] elements to be defined in terms of an overlay of simpler

_ . . elements. The representational efficiency of using simple
NOISE = {frequency, intensit). overlaid primitives (Fig. 23) instead of coplanar primitives
Using this representation, it is immediately possible to is apparent in that only two overlaid instead of three copla-

perform source classification by looking at the length, track nar rectangles are required to represent the same complex

type, and frequency localization. Following from this, it pattern. Since the sensitivity of the human visual system
is possible to perform further class-specific analysis on decreases under temporal variations in the stimulus, an
the tracks. Since the tracks are defined parametrically,image can be updated progressively in terms of these layers
this analysis amounts simply to comparing the values of and the finer detail layers can be updated at a slower rate.
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Fig. 24. Spatial layering.

The intraframe or image encoding algorithm extracts the of elements in the group, and the string of elements.
primitive elements from each level in succeeding stages, asEach element is defined by its spatial relationship with its
shown in Fig. 24. The encoder initially attempts approx- preceding element and any additional shape information.
imately to fit the surfaces that are the largest primitives The resulting information is encoded using variable-length
to the underlying image. The encoding process then pro-codes. The simplified structure of the representation is as
ceeds by attempting to fit the next lower level, smaller follows:
primitives to t_he rgsidual data. The adequacy of the fit is VIDEO = {(Header Information, Color Map,
based on estimating the cost of encoding the same data

using a coplanar arrangement of lower order primitives IMAGES([frames])
alone versus a layered representation. If no coding gain IMAGES = {SURFGROUP, LINEGROUP,
is achieved through encoding the region as the high-order PELGROUP; Layers of PGROUP

primitive plus the required lower order primitives, then
it is discarded and the region is encoded with the lower PGROUP= {(nColors, CGROUP[nColors})
order primitives alone. This provides a multiresolution CGROUP= {(Color, quantity, PRIMITIVES
representation since each layer consists of primitives of a [quantity])}
@fferent' spaﬂal/temporal/spectrgl resqlutlon. L.ess obvious PRIMITIVES = {localization, shape parameterizafjon
is that it also provides a multilevel information system
since each layer has different semantic value. To simplify  Fig. 25 shows the progressive or layer-based update of
development of the representation, however, it has beenboth full images and a conditional replenishment image.
restricted to utilizing constrained lower level primitive In the interframe coding, only stationary changes have
elements. been modeled. Instead of spreading the update data over
The intraframe data model consists of pixels, lines, and a larger time window, as is typical to reduce burstiness,
surfaces. The lines may be of any orientation but are we perform spatially localized temporal subsampling by
straight. Since the surfaces are also constrained to beingemporally modulating the replenishment threshold. Vary-
flat-shaded rectangles with predefined sizes for simplicity, ing the amplitude and period of the modulation allows
additional flexibility is provided by extracting each sized high-contrast areas to be updated at a higher rate than
surface as a separate layer. No attempt at this stage hasow-contrast areas. This is in accordance with perceptual
been made to isolate objects as special groupings of thesgsychology since high-contrast areas are more quickly
primitives, and further work is required in this area. The detected than low-contrast areas due to the characteristics
defining attribute of each primitive is its type or shape, of the probability summation detection process. In combi-
while its characteristic attributes include color, size, and nation with the layered representation, this forms a new
orientation. The relationships between the elements areapproach to exploiting the reduced sensitivity of the visual
encoded as their relative position along a path that visits system based on spatio-temporal layering. This allows one
all the elements per layer. This path is defined by a to restrict spatial subsampling to specific regions of the
pseudo-random adaptive raster scanning technique based oimage where motion is occurring as well as controlling
predicting both the scan direction and changes in direction the replenishment rate of individual regions based on the
[126]. perceived contrast change. If a primitive at any layer has
The representation encodes each type of primitive in been encoded, none of the lower layers will be encoded for
separate layers and grouped by color, since the videothe area covered by that primitive during that frame. The
representation is color mapped. The representation for afiner resolution data will have to wait for the next frame
layer becomes a layer-type specifier followed by the numberto be updated. Additionally, deliberate dropping of the
of different color groups and each color group. Each color lower level data that has higher resolution permits graceful
group is defined as the color for the group, the number degradation to occur.
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Fig. 25. Layered images.

This algorithm is ideally suited to scene-change replen- of elements and their color contrast in any given region.
ishment, bringing the higher contrast changes into view Additionally, distinctly colored objects can be directly
first and then gradually bringing into view the changes isolated and manipulated by simply identifying which color
that are of a lower contrast nature. Since the human visualgroup(s) they belong to. Higher level information would be
system is particularly sensitive to edges, and especially available given the full implementation of the data model,
moving edges, this scheme is also aptly suited to handlingwhich requires further work.
image motion. This is because a moving edge generally
constitutes high-contrast changes, which will be updated
faster than areas where the change is due to a movingVIl. CONCLUSIONS
image gradient. These will constitute low-contrast changes ;g paper has presented a new semiotic paradigm for
and need not be updated as quickly since their detectionhypermedia data modeling. Commencing with the hyper-
will be slower. media vision from its inception and progressing to the

While maintaining relatively high image quality, this existing multimedia extended hypertext systems, a brief
manipulable representation scheme can achieve compressefbyiew has been presented of the data-model-related issues
data rates on par with traditional schemes. The video gjong with the existing shortcomings and requirements for
encoding gives compression ratios around 20:1 to 80:1 trye hypermedia systems. The retarded state of multimedia
depending on the amount of motion in the video. The technology in this situation is prevalent in its deficiency
average data rates for quarter common intermediate formatio provide random and associative (content-based) access,
(176 x 144 pixels) teleconferencing-type color video are interactive manipulation, and a structured representation.
about 2 kb per frame. Because of the decoding simplic- Since the only objective of multimedia encoding has been
ity, faster than real time decoding is possible even on compression, the resulting bit-stream-based data model
low-power PC’s. For example, on an IBM PC 486/33 is antagonistic to these requirements. The necessity for
MHz with a standard VGA display and ISA bus, de- manipulable representations based on suitable data models
coding can achieve rates of up to 70 frames per secondis mandated to achieve the ultimate goals of hypermedia.
on average. Semiotics is presented as an avenue by which to achieve

The versatility of the representation for content-based these goals.
retrieval is evident since scene changes can be detected The goals of hypermedia demand the consideration of
simply by a combination of thresholding the number of cognitive and semiotic issues as the basis for any proposed
primitives per frame and the change in color composition data models for hypermedia. This will impinge on the
given by the color fields. At most, this involves only adding nature of the information conveyed or encapsulated by
together a few of the data fields in the representation. Thethe data model itself. Of the three domains that may
average image color similarly can be calculated from the form the basis of this information—semantic, syntactic,
color and number of elements in each color group. The and statistical—only the syntactic domain is capable of
nature of the texture is given by the shapes and sizesproviding the framework required to generate suitable data
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models. Modeling the data as semantic units requires humandata models have been proposed for image, video, and
intervention since semantic analysis is subject to a constantaudio data, permitting structured data representations to
need for knowledge, being unable to cope in unconstrainedbe developed. Each model element is separately treated
environments. Statistical data models, which are currently in terms of its defining, characteristic, and relational at-
used for obtaining compression, are unstructured and cannotributes. The data models support content-based access
convey any meaning about the data. Alternatively, modeling to the data by providing direct access to statistical and
the data as syntactic units can be performed automatically,syntactic information, and may be used to infer semantic
and there is significant evidence regarding the role of information as well. The suitability of these data models
syntactical analysis in cognition. Since semantics can ariseis demonstrated through rudimentary encoding schemes,
within a grouping of syntactical units, being able explicitly which provide compact representations while preserving
to access and interactively manipulate the syntactic unitsdirect access to the underlying information for content-
in a given media allows one to generate new semantics bybased retrieval purposes. Further work involves a complete
restructuring them. implementation of the data models for the various modali-

A review of the existing coding models used for vec- ties and the extension of the models to include semantically
tor graphics, image, video, and audio representations re-more significant articulated and deformable objects.
veals their unsuitability for hypermedia since they virtually ~ In conclusion, a new semiotic paradigm has been pro-
encrypt the underlying information. Coding schemes are posed for hypermedia data modeling and the basis for
required that can provide both compression and supporthypermedia representations. The need for the new paradigm
for retrieval. Additionally, a review of existing multimedia has been established and its relationship with existing tech-
information-management technologies reveals that existingnologies in hypermedia has been presented. Data models
management support is external to the data itself, relying based on semiotic articulation for multimedia data have also
on separate indexes, and is highly dependent on semantideen proposed, and their utility as the basis for hypermedia
methods. The same level of random and content-basedrepresentations has been demonstrated and explored.
access provided by multimedia databases should be sup-
ported by hypermedia systems. Rather than supporting this
functionality through separate indexes, as is currently done,
this should be intrinsically supported within the encoded The author wishes to express his gratitude to Dr. A.
hypermedia data through the mechanism of the data-codingQureshi for his considerable assistance in the preparation
model. of this manuscript, to A. Wardhani and K. Melih for

The cognitive principles governing semiosis used to their contributions, and to the reviewers for their valuable
formulate suitable hypermedia data models were presentedcomments.
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