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This paper reviews the key issues in hypermedia systems as an
overture to the proposal of a new semiotic paradigm for hyperme-
dia data and coding models. The hypertext concept permits users
to interact with and manage data as high-level conceptual objects
rather than as symbol streams. Current hypermedia systems can
best be defined as an amalgamation of hypertext and multimedia.
While the hypertext data model enables this goal, that is not true
for the data models of other media forms. A new semiotic paradigm
that addresses these deficiencies and supports object-oriented in-
teraction with compressed multimedia streams is proposed. This
paper initially presents an overview of the hypertext data model,
contrasting it with existing multimedia data and coding models.
The framework for the new paradigm is then presented in a
brief review of cognitive, psychological, and semiotic principles.
This analysis culminates in the proposal of semiotically based
data models and representations predisposed to the hypermedia
paradigm.
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I. INTRODUCTION

More than 50 years after its inception, hypermedia is
finally on the verge of becoming a reality. This can be
observed in the current popularity of multimedia-enhanced
hypertext systems such as the World Wide Web. These
enhanced hypertext systems do not correspond to true
hypermedia systems since the data models used for the mul-
timedia data do not have the required characteristics. The
main problem is the reliance on stream-based, unstructured
representations. In this paper, a distinction is drawn between
pure hypertext, multimedia-enhanced hypertext, and true
hypermedia. This paper investigates the issues central to
the development of true hypermedia and attempts to answer
the question of how stream-based media can be converted
to structured representations.

To answer this question, we must first understand what
makes hypertext distinct from more conventional informa-
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tion systems. We also need to understand the shortcomings
of existing multimedia technologies to meet these require-
ments. Then, to move beyond the existing technologies, we
shall step back and review salient cognitive and semiotic
issues that are fundamental to hypermedia. Semiotics is the
study of the role of signs in communication and under-
standing. From this investigation, a new semiotic paradigm
will be proposed as the basis for the next generation of
true hypermedia systems. Last, this paper proposes specific
data models for multimedia data concurring with the new
paradigm and presents rudimentary coding schemes based
on these models.

A. Data Models, Coding, and Representations

The critical component in, and identifying feature of, an
information source or system is its data model. The data
model determines the capabilities of the system by defining
the nature of its elemental components and defining or de-
limiting any relationships and interactions both among and
with these components. For any given data model, various
distinct representations may be feasible. The representa-
tion scheme determines the accessibility to the elemental
components, compaction, interactive manipulability, and
the decoding complexity of encoded data. In this context,
the role of data models in information systems and coding
models in coding schemes are essentially identical.

The difference between a data or coding model and its
representation is that the model specifieswhat elements
are in terms of which the data is to be encoded and
their organization. The representation determineshow these
elements are encoded. For example, given a data model
consisting of a collection of smooth curves, each curve
may be represented as a list of polynomial coefficients,
a chain code, or a string of coordinates. Alternatively, in
the specific case of the coefficients, these may be stored
as scaled integers or normalized rational numbers, or even
written out textually.

Given that we know the general characteristics of the
data model required for hypertext [1], we would like to
develop multimedia representations based on this model.
We denominate these representations hypermedia, denoting
the distinction between hypertext and normal text. The
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Table 1

problem remains of determining modality-specific map-
pings from the domain of each medium into this general
data model. Three distinct approaches to this problem
are possible: statistical, syntactical, or semantic (refer to
Table 1). Syntax concerns only the relationships among
symbols and the ways in which they can be manipulated,
while semantics concerns the relationships among sym-
bols and their human-dependent meanings. The traditional
engineering approach to audio and video data processing
has been statistical through signal processing techniques.
Since statistical methods alone are unable to generate the
required mappings, these have often been supplemented
with semantic processes. Little attention has been given to
use of syntactical methods for this purpose.

Assuming that we could generate such mappings, we
then also need to specify 1) adequate representations that
allow direct and independent access to each component
object in the representation and 2) encoding techniques to
generate these representations automatically from the raw
data. This would result in encoded data that is structured
and interactively manipulable.

Existing data models for multimedia information man-
agement have evolved from traditional database, semantic
modeling approaches [2], [3] for which automatic process-
ing may be impossible. In these, the data model is foreign
to the data itself. These models only treat multimedia
data as separate renditions of given semantic entities [4],
completely separating the layout and logical structures from
the conceptual structure [5]. In this paper, we consider data
models where the representation itself encapsulates both
the logical and conceptual structures, eliminating the need
for multiple structures. An early attempt at using structured
data representations was the Multos multimedia system [6].
This system was based on using object recognition to build
separate conceptual structures of images. While the aims
of the Multos system in attempting to handle both images
and text consistently were excellent, its use of semantic
methods limited it to the recognition of synthetic vector
graphic images.

B. Proposed Approach

Semantic methods have played a dominant role in mul-
timedia information systems in the form of either direct
human intervention or constrained automatic object recog-
nition. Semantic methods require knowledge of what an
entity is before any action can be taken toward or with it.
More than just a matching process, recognition involves
the unambiguous interpretation of data to identify and
associate objects with appropriate attributes in a given
knowledge base. A constant need for knowledge about the
definition of new objects and their properties is required to

contend with unfamiliar environments. This limits the use
of unsupervised semantic methods as a general tool.

Information exists and can be defined at various levels.
In its most basic and raw form, a given data stream (such
as from radio astronomy) can be analyzed statistically to
determine the existence of any significant components.
Assuming the absence of noise in the process, these compo-
nents are symbols that may occur according to predefined
relationships among themselves. The syntax exhibited by
these elements defines or infers a grammar that creates
a context for each symbol even in the absence of prior
knowledge. The appreciation of the symbols within their
grammatical contexts gives rise to meaning or semantic
information. For example, in its simplest form, speech can
be described in terms of temporal variations in a spectral
energy distribution. The statistically significant components
that largely comprise formats may be identified. These
combine to form phonemes, which in turn combine more
or less syntactically to form semantically significant words,
phrases, and sentences.

This paper advocates the proposition that syntax, not
semantics, is the key to converting stream-based media
into hypermedia automatically. Unlike semantics, automatic
syntactic analysis does not require any external or prior
knowledge. The versatility of syntax is that while it can
exist on its own, independent of any human interpretation or
intervention, the argument can also be made that semantic
understanding can arise from syntactical analysis [94].
Using a syntactical approach, we can potentially generate
systems with semantic meaning automatically, although
the meaning itself is unknown to the syntactical process.
One specific question this paper will attempt to answer is:
What is the nature of the syntactic elements for formulating
appropriate hypermedia data models?

C. Paper Outline

To establish an appropriate context for the semiotic
paradigm, this paper surveys a number of areas. Section II
commences with an introductory review of hypermedia,
its underlying data model, and the existing deficiencies in
its realization. Section III discusses multimedia information
systems, their access methods, and their implied data mod-
els. Section IV reviews the data models underlying current
multimedia coding schemes. Section V leads up to the new
paradigm by reviewing salient issues in cognition, psy-
chology, and semiotics. It explores the nature of structured
data representations in the early perceptual processes and
discusses the role of Gestalt phenomena in their generation.
Section VI summarizes the requirements for and presents
the new semiotic paradigm. Multimedia data models and
preliminary representations based on a semiotic articulation
are then proposed and discussed.

II. HYPERMEDIA SYSTEMS

This section introduces hypertext and hypermedia sys-
tems. Section II-A outlines their historical development.
Section II-B discusses the underlying cognitive issues and
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objectives. Section II-C describes the general data model.
Sections II-D and II-E explore multimedia extensions and
their deficiencies, respectively. Section II-F discusses what
is outstanding from Vannevar Bush’s original vision.

A. Historical Context

The concept of hypertext and hypermedia is not a recent
development. In 1945, Bush proposed a machine for stor-
ing, browsing, and annotating information on an extensive
on-line graphical system supporting both text and pictures
[7]. The purpose of this system was to manage the ever
growing amount of information and scientific literature that
was becoming unmanageable even then. He called this
machine the “memex.”

One essential feature of this system was its ability to link
together items within and between multimedia documents in
a manner Bush called “trail building.” This linking process
is the central mechanism for supporting associative index-
ing as a supplement to conventional indexing schemes. This
reflects the associative recall and random access of the
human mind. Bush realized that many technological break-
throughs were required to make the “memex” a reality.

Almost 20 years later, in 1963, inspired by Bush’s ideas,
Engelbart [8] also anticipated a system for augmenting
the capabilities of the human mind. This system was to
support high-resolution three-dimensional (3-D) graphics
display and the visual manipulation of concepts and ideas
as symbols. Since machines capable of delivering and
manipulating multimedia information were not available at
the time, the concepts espoused by Bush and Engelbart were
first applied to text. The term hypertext was coined in 1965
by Ted Nelson [9] to describe these text-only systems.

B. Hypertext Concepts and Aim

The hypertext concept is based on a cognitive model of
the communication process. This model defines a proces-
sion of distinct stages in cognition that transform a linear
message into a nonlinear network of ideas in the mind.
Simplistically, in the case of reading comprehension, it
starts by recognizing the constituent symbols (signs) in
a text string. The relationships between these signs are
evaluated, isolating the concepts presented. These concepts
are structured hierarchically and absorbed into long-term
memory as a network of ideas. The two predominant
characteristics of this process are the grouping of symbols
into conceptual units and the formation of relationships
between them.

Modeling and representing a text according to semantic
or conceptual units rather than lexical units in this way
allows it to be manipulated and accessed as a collection
of related ideas and not just as a string of letters. This
abstraction is a powerful tool for information management
because it allows interaction with a given body of text at
a much higher level. The interaction can revolve around
what message is being conveyed and not how it is being
conveyed. It allows the manipulation of the information
structure without needing to deal with the information itself.

Fig. 1. Hypermedia system architecture.

Accordingly, hypertext assists its reader in the process
of transforming knowledge from the primitive form of a
symbol stream into the network- or graph-style structure
used in the latter stages of cognition.

C. Hypertext Data Model

Hypertext abstracts textual data into a set of nodes and
links representing, respectively, conceptual units and the
relationships between them. To create a hypertext, a given
body of text first must be manually partitioned or chunked
into a set of nodes, also known as frames or cards. These
are self-contained units of information, each encompassing
a specific concept. The relationships may then be formed
by connecting the nodes with hyperlinks. The origin of a
hyperlink is some anchor point, typically a key word or
expression within a given reference node. The destination
of a hyperlink is generally another node but may also
be another anchor point within a node. Various attributes,
such as its type, may be attached to a link specifying
the nature of the relationship it defines, its directionality,
or any activation conditions. The total set of these links
forms what is known as a web or hypergraph. By activating
individual links, users can navigate through the information
network or cognitive space defined by the hypergraph. In
addition to link traversal, nodes also may be retrieved
individually through structured browsing or query-based
searching, depending on the system.

This simple node- and link-based data model is central to
hypertext. This model is devoid of any information on how
the data is to be presented or rendered, such as font selection
and text layout. These details must be considered and
encapsulated separately, although each node is generally
presented within a separate view window. This creates the
basic three-layer structure of hypertext system architectures
depicted in Fig. 1. The presentation or user-interface layer
controls the presentation of the data and supplies an in-
terface to perform the navigation. The link layer contains
and manages the relationships between nodes, and the node
layer contains various appropriately structured documents.
A hypermedia engine typically manages all three layers
simultaneously.

The Dexter reference model [10] refers to these three
layers as the run-time, within-component, and storage lay-
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ers, respectively. Accordingly, the creation of hypertext
systems involves three distinct phases that are not always
decoupled in practice. The initial node-authoring phase is
the process of segmenting or chunking the raw data into
a structured collection of nodes. Next is the design of the
data presentation or rendition. Last, the link-authoring phase
involves defining the relationships between the nodes by
defining anchor points and creating links.

D. Multimedia Extensions

Early efforts to incorporate multimedia information into
existing hypertext systems were initially restricted to treat-
ing pictures as single destination nodes not containing any
anchor points. Similar support for audio and video data
was later added, permitting only sequential access and
limiting interaction to playing, stopping, or pausing. This
limitation was due to the unstructured data models used for
the continuous media. Being only bit streams, these models
do not provide any referenceable components within the
streams that may serve as anchor points or link destinations.
This situation is contrary to the primary goal of hypertext,
which is to provide nonsequential access.

A higher level of interactivity in the form of clickable
pictures was eventually fulfilled through the use of image
maps. These are manually generated overlays specifying hot
regions serving as anchor points. Through the mediation of
an image map, the semblance of structured representation
can be projected onto the unstructured data. The informa-
tion contained by the overlays is separate from the picture
itself, with the demarcation of nodes in overlay-based
systems falling within the presentation layer rather than the
node layer. This violates the Dexter model, which specifies
a structured representation where the node demarcation is
inherent to the data itself.

A similar approach has been taken to a certain extent
with video and audio data. An example of this level
of integration between multimedia and hypertext is the
Amsterdam model [11], which has stream-based support
for unstructured multimedia data. Another is the Hy-Time
(ISO/IEC 10 744) standard, which is largely based on
presentation-level integration through mapping the multi-
media data at run time into a 3-D spatio-temporal pre-
sentation space. Since annotating continuous media in this
manner is extremely tedious, large-scale deployment of
these approaches is less prevalent. Generally, only time-
based indexing is used for continuous media, limiting
access to the frame level in video.

The evolution of this approach for integrating support for
continuous media in the World Wide Web system is suitably
represented by the Vosaic system [12]. Two specific goals of
Vosaic were to address the lack of efficient 1) flexible access
in the form of browsing, hierarchical access, and searching
and 2) reuse of continuous media. The support for flexible
access is provided by manually generated index files con-
taining semantic information about the media stream. This
textual annotation contains attributes specific to media and
encoding schemes as well as frame-number-based structural
information and indexing keywords. Intraframe hyperlinks

are supported by specifying the location of hot regions at
start and end frames to be linearly interpolated over the
interval.

E. Multimedia Deficiencies

The CCITT/ISO standard techniques for encoding mul-
timedia data used in most hypermedia systems include the
Joint Photographic Experts Group (JPEG) algorithm for
still images and the related Motion Pictures Experts Group
(MPEG)-1 algorithm for video. The MPEG requirement
specification stated that it should provide functionality
similar to that “normally associated with VCR’s.” This
objective is far from the kind of functionality that hyper-
media demands. While limited interaction with partially
decoded MPEG and JPEG data streams can occur, this
is confined to the frequency domain. With current coding
techniques, unrestricted data access is possible only after
fully decoding the compressed stream. This is because
compression has been the only objective in the development
of multimedia data representations, without consideration
of information-management issues. Even after decoding
enables access, further processing is required to actually
extract salient information. While flexible access can be
manually supported through separate index files, this should
be intrinsic to the encoded data and fully automatic.

It would be unfortunate to think of hypermedia as an
amalgamation of old technologies. Rather, its interdisci-
plinary nature places new and challenging demands on
existing technologies, provoking the development of new
technologies where the old are incapable of meeting them.
Existing multimedia data representations are clearly inade-
quate in this sense. The recognition of these deficiencies is
evidenced in the fundamental goal of the upcoming MPEG-
4 standard [13], which is “[t]o efficiently code interactive
2D and 3D environments consisting of real-time audio,
video, and synthetic objects” supporting interaction for
“individual objects rather than at the level of the composited
video frame.”

Of the various recent developments in the area of
multimedia-enhanced hypertext, only virtual reality mark-
up language (VRML), which is a graphical counterpart
to hypertext mark-up language (HTML), makes any real
progress in the support for navigable nontextual media. It
provides a highly interactive structured data representation
based on an object-oriented data model. VRML exhibits
qualities essential for true hypermedia, such as individually
referenceable components and intrinsic support for flexible
access and intramedia navigation. It is, however, essentially
limited to synthetic 3-D graphics.

F. Trail Blazing

In his seminal paper “As We May Think” [7], Bush
called for the creation of a new profession of what he
called trail blazers. He defined this vocation as “the task of
establishing useful trails through the enormous mass of the
common record.” Rather than binding users of his machine
to an onerous and mundane task in order to incorporate
new material into his hypermedia system, new material
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simply was supposed to “drop into place.” Trail blazers
were then to form link trails relatively effortlessly in the
data space. According to Bush, “the users of it are free to
use their brains for something more than repetitive detailed
transformations in accordance with established rules.”

It is noteworthy to observe here that these statements do
not actually reflect the current process of hypermedia au-
thoring. While systems capable of automatically generating
hypertext with some success have emerged, this does not
extend to multimedia data. Rather than spending their time
creating links and trails, hypermedia authors typically spend
a large amount of time in laborious manipulation of the un-
derlying data, either restructuring it into nodes to permit the
creation of links between them or generating intermediary
overlay or metainformation files. A large component of this
effort in demarcating node boundaries is highly repetitive
and could be partially automated. Information management
of the node database in large systems is another part of this
problem.

The discrepancy between Bush’s vision about hyperme-
dia authoring and the current situation is largely due to the
inadequacy of compression technologies in the context of
hypermedia information management. Bush makes a critical
observation in his paper regarding the required develop-
ments in information systems that has been overlooked by
many. While he agrees that “[c]ompression is important,
however when it comes to costs,” he further states that,
“[m]ere compression, of course, is not enough; one needs
not only to store a record but also to be able to consult with
it, and this aspect of the matter comes later.” This statement
cuts right to the essence of the problem. The emphasis here
is on compact manipulable data representations supporting
direct access and information management rather than just
on compression alone or information management alone.

Clearly, Bush envisioned that apart from being compact,
data should also be manageable, permitting random and
content-based (associative) interaction. This includes intrin-
sic support for arbitrary intramedia navigation rather than
just intermedia navigation. This requires the existence of
referenceable components in the data representation and the
ability to label any nodes individually in any medium as a
link source or destination. Both textual and nontextual data
should be handled homogeneously, providing the ability to
cut and paste objects between multimedia documents, as
with text-based systems. Accordingly, it should be possible
to restructure the data arbitrarily by adding, moving, or
deleting nodes. This currently cannot be achieved with the
data models used for multimedia data and their respective
unstructured data representations. To achieve these goals
in a multimedia data representation, each node should be
indexible, randomly accessible, and individually decodable.
The node and link structure must also be independent of
presentation/application issues.

III. M ULTIMEDIA INFORMATION SYSTEMS

This section surveys existing data models for multime-
dia information systems. Section III-A presents multimedia

information management principles. Sections III-B, C, and
D discuss the data models as well as structuring mecha-
nisms for image, video, and audio databases, respectively.
Section III-E critically evaluates the relevance of these
methods for hypermedia data modeling.

A. Information Management

Hypermedia systems are specialized multimedia informa-
tion management systems (MIMS) and hence share many
fundamental problems. One is that of defining appropriate
access mechanisms into data streams [14]. It is often better
to access large data streams as a set of individual compo-
nents rather than as a whole, requiring the segmentation of
the data. The management of these components can then be
facilitated by appropriately labeling and indexing them. The
principle difference between hypermedia and conventional
MIMS is that with MIMS, instead of modeling the internal
information in the multimedia data, the data is typically
used as a rendition of some entity of an externally imposed
schema. Conversely, the data model should be intrinsic
to the hypermedia data itself since this must consist of
uniquely referenceable nodes to serve as link anchor points.

Other information-management problems are encoun-
tered in large hypermedia systems, such as resource dis-
covery and content-based retrieval of multimedia data.
Browsing or query-handling support is often provided to
overcome these problems. Query-based access requires
searching through indexes containing keys or labels con-
sisting of some salient semantic, syntactic, or statistical
attribute of each node. Alternatively, browsing requires the
classification of the data within some given hierarchical
organization. This organization may naturally exist within
the data itself as a manifestation of some structural property
of the medium or it may arise in a set of discrete, syntac-
tically unrelated elements through categorizing the specific
attributes of each element. Conventional MIMS generally
utilize separate index files or metafiles to support this type
of functionality, often relying on implicit and/or incidental
data models and thereby avoiding the issues of structured
representations. The following sections briefly review the
data models used for each modality.

B. Image Databases

Traditional pictorial data management is based on manu-
ally annotating images as indivisible objects. These seman-
tic textual annotations are highly dependent on both the
annotator’s choice of vocabulary and immediate context.
This limits the scope of retrieval and impedes reuse in a
different context. These annotations may also arise in a
variety of indirect forms such as a preexisting file name, a
caption [15], or the anchor text in HTML as used by the
Harvest resource discovery system [16].

Automatic object recognition has also been used for la-
beling by extracting semantic descriptions from the images.
This attempts to classify the interpretation of geometric
structure from the image data into predefined semantic
groups. Recognition typically is restricted to simple, pre-
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Fig. 2. Structure of a video.

defined polyhedra in highly constrained environments. The
recognition process is not only equivocal and computation-
ally intensive but the task of precisely specifying many
individual objects is ponderous.

More recently, simpler statistical labeling techniques per-
mitting inexact matching have been used. This precludes
semantic-based queries but first- or second-order statistical
labels can be generated quickly and automatically for
unconstrained images without the need for prior knowledge.
Labels are formed by extracting a number of attributes
from images using a variety of statistical feature analysis
routines. Typical attributes include the average global color,
local variance or texture [17], or algebraic moments of the
image. Searching can be performed by evaluating statistical
similarity.

Hybrid approaches [18] combine semantic features from
graphical annotations with statistical features such as color
and texture. The manual graphical annotations are used to
define the outlines of semantically consistent image regions.
Labels may then be generated for individual objects in an
image. The closed contour shape descriptions are often used
for additional labeling information.

C. Video Computing

The predominant feature in video is its temporal structure.
While individual frames provide the simplest and most
common access mechanism, the importance of higher level
mechanisms can be appreciated when one considers that
a two-hour video typically consists of over half a million
individual frames. Cognitively, people perceive episodes,
scenes, and moving objects, as depicted in Fig. 2, but not
individual frames. A scene in a video is a sequence of
frames that are considered to be semantically consistent.
Scene changes therefore demarcate changes in semantic
context. Segmenting a video into its constituent scenes
permits it to be accessed in terms of meaningful units.

As with still images, the initial indexing attempts were
based on semantic methods [19]. Since manual annotation
is clearly unsuitable for volume work, attention focused
on template-based scene-recognition techniques. Subject
to stringent spatio-temporal structural constraints, these
methods can automatically perform both segmentation and
labeling (Fig. 3). They are typically restricted to news
broadcasts, which exhibit a high amount of regularity.
In these cases, the demarcation between each different
news item can be detected by the alternation between
the regular spatial structure of the news room and the
news footage [20], [21]. Character recognition is used to
generate annotation text from the subtitles for each news

Fig. 3. Structure of a news broadcast.

Fig. 4. Camera work.

item. Template matching, however, is too constrained for
general use.

In spite of their semantic origins, scene boundaries may
be detected automatically using statistical methods. The
common techniques are based on frame difference anal-
ysis, pair-wise pixel comparison, or temporal variation of
color composition [22]. Alternatively, the similarity of low-
frequency images can be compared [23]. Nonlinear access
to video is often supported in the form of temporally
compressed browsing [24], where each individual scene
is either represented as a micon (moving icon) or salient
video still [25]. Scene labels may be generated from the
attributes of a representative image of each scene or from
the temporal properties of the scene. Scene aggregation and
clustering may also be used to extract attributes regarding
the relationships between scenes.

Within any scene, changes in global motion may be used
to perform further segmentation, while the motion itself can
be used as a generic labeling attribute. Shot classification
is used for this dual purpose and involves determining the
global motion induced by camera work and may include
panning, tilting, zooming, tracking, booming, or dollying
(Fig. 4). This can be performed by analyzing the structure
of the flow field defined by motion vectors in motion-
compensated video [26], optical flow analysis, or feature
correspondence methods [27], among others [28].

Local motion can also be exploited for further segmenta-
tion and labeling. Since it is difficult to perform deformable
object tracking under translation, rotation, and scaling, as
well as occlusion, lighting, and background changes, many
attempts have been limited to simple translational motion
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with limited rotation [29]. These schemes often rely on
an operator’s tracing around the outline of each object
to be tracked in the initial image, followed by a simple
search to find matching areas in the succeeding frames.
Simple regions generated automatically using edge, texture,
histogram-splitting, or motion-based image-segmentation
techniques [30] may also be tracked.

D. Audio Computing

Little support exists for nonspeech audio data since
most of the work in this area has focused on recorded
speech. While automatic speech recognition [31] would
be an ideal solution for transforming linear speech into
“hyperspeech,” it unfortunately only works across a fairly
narrow range of conditions. Hence, manual annotation
in the form of synchronized transcripts is typically used
to support nonsequential access. While it is useful for
component labeling, speaker-dependent word spotting is
also too constrained for general unsupervised use [32].

Other, less constrained statistical techniques also exist
in speech processing such as detecting pauses, changes
of speaker [33], gender identification, and possibly voic-
ing and prosodic features [34]. These typically rely on
evaluating energy measures, zero crossing rates, autocor-
relation, and/or linear predictive coder (LPC) coefficients
[35]. Similarly, simpler generic statistical methods may be
used for arbitrary audio data. These are based on extracting
features such as signal power, centroid (brightness), pitch,
bandwidth, and harmonicity from the short-time Fourier
spectrum (STFT) of the audio signal [36].

In the specific case of music, it is also possible to exploit
the inherent organization contained in the music itself.
Aigrain et al. [37] propose a representation of music based
on a hierarchy of objects that are automatically delimited.
This representation is composed ofstrokes, patterns, which
are collections of up to 100 strokes, andsections, which
are delimited by silence and/or scansions. The strokes are
roughly equivalent to chords or notes. The continuity of the
fundamentals can be used to delimit harmonic groupings.
Individual notes may be detected as the local minima in
the smoothed amplitude signal.

E. Intrinsic Information Management

Current MIMS try to organize data according to semantic
or statistical criteria, often implicitly forming incidental
data models. All support for information management is
totally external to the data itself and based on antecedently
generated indexes. The entities in these indexes form the
basis of the data models so that the data itself as a rendition
of an entity is only peripheral to the data model. Since the
indexes and data are normally separate, support for infor-
mation management is not intrinsic to the actual data but
instead specific to the system application layer (or DBMS).
This creates a problem with portability and reusability of
the data, requiring the generation of new indexes whenever
the data is reused in a new environment or system. This can
only be overcome by appending or interleaving the index

into the data stream and embedding the application as well
[38]. In any case, the actual multimedia data representation
remains unchanged and, therefore, unstructured.

This indexing information, however, constitutes a po-
tentially large amount of storage overhead. Consider the
amount of data required to index just one hour of video. A
current method is based on storing binary image masks for
each object in the video [18]. Assuming that for each frame
only a single binary mask was used, the storage overhead
would be 5% of the total video. This is quite a significant
amount, approaching 3.5 Gb for 1 h of video. (i.e., 640
480 1 b/frame 25 f/s 3600 s/h). Compressing the
indexing data is only a partial solution since this would be
offset by the increased query processing required to access
the compressed index data.

Ideally, the source media representation itself should
intrinsically support information management based on
its data model without requiring a separate index. Such
hypermedia data-representation schemes would encode the
data in terms of a structure where the salient characteristics
of its elements are explicit and directly accessible. This
obliterates the overhead of storing persistent indexes sepa-
rately and removes the need to decode and process the data
before it can be manipulated. Such representations should
not necessarily offer less compression than current coding
technologies.

Except in highly constrained environments [39], syntac-
tical methods have been largely overlooked as the basis
of information management. The use of suitably abstracted
syntactical over statistical information is cognitively more
appropriate for similarity matching [40]. It is also more
flexible and less constrained than semantic methods. A large
component of the primary information required for this
type of analysis in the visual domain is available through
low-level vision techniques [41], [42].

IV. M ULTIMEDIA CODING MODELS

AND REPRESENTATIONS

This section reviews existing multimedia coding mod-
els and representation schemes. Section IV-A introduces
the principles of multimedia coding and representations.
Section IV-B discusses computer graphics models and rep-
resentations. Sections IV-C, D, and E, respectively, review
common audio-, image-, and video-coding schemes from
the perspective of their assumed data models.

A. Coding Principles

Traditionally, the sole objective in audio, image, and
video coding has been to compress the data. Multimedia
coding methodologies have accordingly approached the
problem by regularizing or conditioning the data to make
it well behaved in light of the selected coding technique.
Most of the techniques used to achieve high compression do
so at the expense of information-management interests by
obfuscating the salient perceptual and structural information
in the underlying data.
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Fig. 5. Constructive solid geometry.

Typical examples are the standard JPEG and MPEG cod-
ing techniques, which uniformly segment images into small
blocks that are transformed into the frequency domain. The
coefficients in each block are then reordered according to
a “zig-zag” pattern and run-length encoded using variable-
length codes. The mapping from the initial spatial domain
into this final representation is extremely complex. This
encoding process occludes most of the spatial information
that is present in the image, which is then unavailable for
interactive manipulation or information management in any
form.

In image coding, the intensity or shading information is
of the utmost importance and accurately encoded. Little
attention is given to the spatial information, and most
techniques typically segment images into small uniform
blocks without consideration of the underlying image data.
Also, elements in encoded images typically are neither ran-
domly accessible nor individually decodable. Conversely,
the encoding of computer graphics has pursued the objec-
tive of supporting interactive manipulation. Hence, graphic
images are stored as a list of explicit and readily accessible
unrendered graphic primitives in metafiles [43]. The shapes
of primitives are accurately encoded while the color is only
approximated. Each primitive is randomly accessible and
individually decodable. Table 2 contrasts these approaches.

B. Computer Graphics

The basic data model in 3-D graphics normally consists
of a small set of parametized graphic primitives. Techniques
such as constructive solid geometry (CSG) permit the cre-
ation of compound objects by merging primitives through
the use of set theoretic operators (Fig. 5). This uses a tree-
structure representation (Fig. 6) where the nodes contain the
operations and the leaves contain the geometric primitives
[44]. There is a strong correlation between this representa-
tion and the hypertext data model. In CSG, each primitive

Fig. 6. CSG surface generation.

Table 3

corresponds to a node while each operator corresponds to a
typed hyperlink. The operator tree encapsulates syntactical
information regarding the composition of an object. The
overall semantic interpretation of the object is a function of
the semantics of each component primitive in conjunction
with the syntactic information of the operator tree.

Using this basic model, complex objects can be generated
through deformations of simple primitives or by using more
complex primitives, such as superquadrics [45]. Alterna-
tively, as in the case of quadtrees [46] and octrees [47],
a single primitive may be used to tessellate a complex
data space hierarchically. Conversely, instead using solid
primitives, boundary models rely on two-dimensional (2-
D) primitives to model a 3-D object. These representations
define a 3-D wire frame or polygon mesh as a list of
its composite flat-shaded 2-D polygons or smooth-shaded
surface patches in 3-D space.

C. Image-Coding Models

The classical approach to image coding has been to
model the statistical distribution of the interpixel lumi-
nance variations across the 2-D image plane. It is possible
to classify the existing coding schemes according to the
data models suggested by the spatial relationships of the
interpixel variations. This approach presents five common
data models that are consistent with the evolution of image
coding first identified in [126]. These models consist of
elements that are given in Table 3.

The earliest image-coding techniques, like pulse-code
modulation (PCM), attempt to encode the data as an ordered
set of statistically independent pixels. Schemes falling
into this category include predictive [48] and statistical
or entropy-based encoding, which normally encode each
element as an independent symbol. This model cannot
convey any significant information about the data since the
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granularity of the elements is too small and the relationships
between elements are fixed to the raster scan order.

Vector-based schemes such as run-length encoding (RLE)
and white-block skipping exploit correlation between adja-
cent pixels in one dimension. These model the data as a
sequence of fixed color, horizontal, variable-length vectors
[49]. One advantage of RLE is that some information is
directly accessible in the compressed representation from
the distribution of run lengths. Since the granularity is not
as fine, the elements may convey some limited information.
The orientation and order of the vectors is fixed, however,
limiting the possible structural information conveyed.

Polygon-based schemes model images as a set of regions
where the pixel values are stationary in two dimensions. Ex-
amples of this model include tree-based schemes, 2-D RLE,
and polygonization techniques. The 2-D RLE schemes [50]
typically produce huge numbers of minute irregular regions
for continuous tone images. Polygonization schemes [51],
[52], which attempt to fit large, simple flat-shaded polygons
to the image data, must introduce substantial loss to form
the polygons. Alternatively, tree-structured representations
[53] like quad and binary trees [54] hierarchically decom-
pose images into many flat-shaded rectangular regions with
both size and location constraints. While the granularity of
this model is better, the stringent regularizing constraints
needed obscure any inherent important information in the
image.

Most schemes model the data as an array of nonover-
lapping surface patches, regions where the pixel values
vary smoothly in two dimensions. This model permits a
significantly higher level of information to be encapsulated
by each element, such as perspective or depth information
from the surface shading. Examples of this model include
contour-texture coding, vector quantization, fractals, and
transform-based coding. These are distinguished by the
representation used to describe the surface-intensity vari-
ations. In the simplest case, vector quantization schemes
often directly specify the pixel values for each surface
[55]. Transform coding [56] represents surfaces as weighted
sums of transform coefficients. Contour-texture coding typ-
ically represents the surface intensity as a low-degree 2-D
polynomial approximation [57]. Fractal coding schemes
[58] represent images as a set of surfaces, each defined as
a 3-D contractive affine transformation of a given attractor.
Fractal schemes are related to grammatical image models
that interpret a regular language as an image [59].

Most of the surface-based schemes uniformly segment
each image into small blocks to best exploit local stationar-
ity. Even the methods that explicitly attempt to preserve
the shapes of natural image regions, such as contour-

texture coding, heavily regularize the data. This is due
to the simplistic descriptions typically used for the region
shapes [60], using either small rectangles [61] or very low
order polynomial approximations. The severe constrains on
the shape and locality of each surface and the complex
representations typical of implementations of this data
model limit their usefulness.

Ultimately, it is possible to model the image data as a 3-
D environment. Model or analysis-synthesis-based coding
[62], [63] relies on updating a predefined 3-D geomet-
ric model of an image. These schemes assume a lot of
knowledgea priori regarding the scene, relying heavily
on object recognition [64], [65]. The types of scenes they
can cope with are accordingly restricted. One result of
this dependence on recognition is that much semantic and
structural knowledge is encapsulated by the representations.
Identifying an object as a face or the relationship between
the eyebrows and the eyes conveys much meaning. These
techniques cannot handle arbitrary environments containing
unknown or deformable objects, although some work is
addressing this problem [66], [67].

It should be noted that in the cases of JPEG and MPEG,
the final data representation is a compound generated
by successively applying various encoding methods. A
different data model is used for each stage. First, an image
is modeled as an array of smoothly varying blocks. After
transformation and quantization, the data within each block
is modeled as a sequence of vectors and accordingly run-
length encoded. Last, the resulting data is modeled and
encoded as a set of statistically independent variables.

D. Video Interframe Coding Models

Interframe coding schemes are distinguished by the man-
ner in which they attempt to model data changes between
consecutive frames. Typically, interframe differences are
all assumed to have been generated by some form of
motion. This motion can be described according to its
dimensionality [126], as in Table 4. At the lowest level,
no motion in any dimension yields still images.

The stationary-change model includes simple predictive
[68] and conditional replenishment techniques [69], [70]. It
assumes the absence of any image flow so that any changes
are due only to an “in-place” change of pixel values. The
motion is purely orthogonal to the image plane, which is
the color domain. This model can only indicate that change
has occurred and its location. It is not very robust, failing
in the presence of global image motion or even just a large
amount of object motion.

Planar motion models assume that motion is purely
translatory and confined to a single plane. These seg-
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ments frame spatially into two parts, the unchanged back-
ground and the displaced regions, providing motion vectors
for each displaced region. Effective structural information
can be conveyed by the relationships between the motion
vectors. Uniform patterns may be indicative of certain
forms of global motion, while nonconforming vectors indi-
cate the presence of independent object motion. Motion-
compensation schemes [71] fall into this category and
operate either at a pixel level, such as the differential
methods and pel-recursive schemes [72], or at a block level.
Second-order geometric or affine transformations [73] may
be used additionally to model rotation, skew, and zooming
as well as to compensate for global motion [74].

Layered (2 1/2-D) schemes model planar motion assumed
to occur in multiple coexistent parallel planes and consist
of a background image and an ordered set of planar objects
undergoing motion. These schemes are used to implement
background-preserving prediction algorithms, which elimi-
nate the need to retransmit background segments when they
are revealed after having been occluded. Implementations
of this model may operate at either the pixel [75] or block
level with simple translational motion, although perspective
and affine transformations may also be supported with small
image regions [76]. This coding model directly provides
information regarding motion velocity, depth order, and
motion continuity in the event of object collisions.

Three-dimensional motion models are expressed in
analysis-synthesis-based coding techniques [77], which
rely on object recognition and mainly perform tracking
tasks. They accordingly require a predefined geometric
scene structure. Thisa priori knowledge about the scene
permits high-level interpretation of the scene motion. A
wide variety of techniques have been used to perform
this type of analysis [78]. Alternatively, modeling and
parametizing the unconstrained 3-D motion that is occurring
in an unknown scene [79] is a difficult task.

E. Audio Coding Models

Traditionally, audio coding has been based on either time-
or frequency-domain representations. Many of the coding
techniques can be applied to either domain. Audio signals
can be defined by their frequency, intensity, and time, and
most coding schemes can be classified according to the
degrees of freedom that the individual elements of their data
models have in this 3-D framework (Table 5). Time-domain
representations can be considered to be based on collapsing
the frequency dimension into a single channel. A few 4-D
representations also exist, which use the periodicity of the
signal in terms of its frequency decomposition as the other
dimension, such as correlograms and wefts [80].

The simplest schemes model the audio signal as a se-
quence of unit-length amplitude samples. The frequency
composition of the signal is disregarded. Coding schemes in
this category include PCM, differential PCM, and temporal-
domain vector quantization, which represents the data as
discrete segments of waveform samples. This model cannot
provide much significant information about the audio data.

Next are schemes that model the signal as a set of
spectral lines or frequency bands, which are permitted to
vary in amplitude. Again, each element is of unit length
but this time localized in frequency. This permits each
model element to convey information regarding its pitch
and intensity. Typical examples include subband coding
[81], which encodes the signal as a relatively small number
of independent frequency bands, and adaptive transform
coding (ATC) [82], which generates spectrogram-like rep-
resentations with homogeneously treated high-resolution
frequency bands.

A signal may also be modeled as a set of sinusoidal
frequency tracks. These may vary across both amplitude
and frequency in time. Each track additionally conveys
information about the time evolution of pitch contours and
the presence of frequency modulation. The temporal and
frequency relationships between these tracks also provide
cues for stream segregation [83]. An example of this model
is sinusoidal transform coding [84], which encodes a signal
as a polynomial description of the amplitude and phase
evolution of the frequency tracks to be reconstructed in
each frame of an STFT.

A harmonic group is defined as a set of simultaneous
frequency tracks having similar time evolution but being
displaced in frequency. Direct harmonic coding (DHC) [85]
is an example of this class attempting to identify harmonics
in a signal based on its STFT and pitch estimation. A
special case of this model is vocoding, which models
speech as a set of formants together with other voicing
parameters. A formant is defined as a set of adjacent
frequency tracks forming specific frequency distributions
that remain approximately constant over time. The most
common form of vocoder is the LPC, which extracts
the formants directly from the predictor coefficients that
represent an optimal estimate to a spectrum for a given
number of poles.

F. Coding Models for Hypermedia

The sole objective in coding and representation schemes
for multimedia data has been compression for bandwidth
reduction. This has been pursued without consideration
of information management issues, resulting in unstruc-
tured stream-based data representations. Accordingly, the
compressed data can only be accessed sequentially, and
interactive manipulation is impossible. While existing cod-
ing schemes make use of a variety of data models, their
convoluted representations and regularizations obfuscate
the structural information of the underlying data, making
them unsuitable for hypermedia. Hence, nonlinear access
can only be supported after extensive processing to generate
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separate index files. While these may permit some random
access, the data are still not interactively manipulable.

Only the model-based (recognition) coding schemes seem
to provide suitable support for hypermedia. The require-
ment of precisely knowing what an object is prior to being
able to access or interact with it, however, is an unnatural
imposition. It is the process of interaction (if only in the
form of exposure) with an unknown object that leads to its
classification (at a late stage in cognition) within a semantic
network in the mind based on the nature and outcome of
the interaction.

Accordingly, semantic methods are inappropriate as
generic techniques for generating structured data represen-
tations. Instead of attempting to recognize specific objects
or first understand the data semantically, the problem
should be approached through abstraction. In this case,
a subsumption-style architecture [86] is more appropriate.
The architecture consists of simple layers, each building
on and utilizing the functionality of the preceding layer to
perform increasingly more complex tasks. This alleviates
the lower levels from being overburdened with knowledge
that is irrelevant to their function. Instead of a system that
can recognize and identify a limited number of specific
objects, a system is required that can identify the presence
of objects and their characteristics without necessarily
recognizing what they are. Object recognition can be
delegated to some later stage of processing if it is so
desired. Rather than semantic information, syntactical or
structural information should be exploited as the basis for
these coding models, as in cognition.

V. COGNITION, SEMIOTICS, AND

PERCEPTUAL PSYCHOLOGY

This section surveys pertinent cognitive, psychological,
and semiotic issues for multimedia data models. Section V-
A reviews general cognitive principles and data models.
Section V-B examines the mental representations in the
early perceptual processes. Section V-C surveys semiotics
and its relation to hypermedia systems. Section V-D re-
views semiotic articulation in multimedia data streams.
Section V-E discusses Gestalt theory in relation to the
creation of structured data representations.

A. Cognitive Data Models

Since hypermedia is meant to imitate the cognitive
process, it would not be inappropriate to base any
hypermedia data models on the mental representations
that underlie cognition. However, cognition is a complex
process composed of different tasks proceeding in various
stages concurrently, for each of which a new representation
is used. While our understanding of cognition is still very
primitive, some basic principles may be exploited in the
formulation of suitable data models for hypermedia.

The study of eye movements during reading [87] reveals
much about the early cognitive processes. In essence, word
recognition relies on a feature-analytic approach operating
at three levels with feature-, letter-, and word-specific

Fig. 7. Memory model.

detectors. From a formal language theory perspective, the
lexical word-formation process is followed by sentence
formation through syntactical analysis. The semantics are
then evaluated and the meaning is integrated with past
experience in the mind through pragmatic processes. The
contextual theory of meaning specifies that the mean-
ing of a symbol is a syntactic function of its relation
to other symbols. Thus, the reading process utilizes at
least five distinct representations composed of features,
letters, words, sentences, and semantic structures. This
description is somewhat simplistic, for in reality, there are
various feed-forward and feedback systems that mediate
in the processes and influence them based on contex-
tual factors and expectations. A similar process occurs
when speaking with a new representation formed in a
different region of memory as it proceeds from seman-
tic through syntactic, morphologic, and phonological sys-
tems.

According to the memory-spatial metaphor often used to
help explain this principle, memories are treated as objects
stored in specific locations in the mind. The common mul-
tistore memory model (Fig. 7) specifies three main types
of memory, each with very different data representations.
These are 1) a predominantly feature-analytic, modality-
specific, brief sensory store, 2) the working memory [88],
which seems to contain about seven pointers [89] to pre-
viously stored memories, much like address registers in a
computer [90], and 3) the long-term store with unlimited
capacity. According to a long tradition arguing that all
knowledge is in the form of associations [91], the long-
term memory stores knowledge in the form of either an
associative, semantic, or declarative network.

Semantic networks consist of nodes, each representing a
single concept, connected by links of various types and
activation strengths. The constitution of the nodes may
be explained in part by the attribute theory of concepts,
which states that semantics are captured by conjunctive
lists of attributes. These attributes may be one of two types:
defining or characteristic. This theory also specifies that the
concepts themselves are hierarchically organized, probably
through link-based inferences. Coding theory attempts to
describe the analogical or propositional representations of
concepts as syntactically based primitive codes in the
mind composed of imagens or logogens [92]. Kosslyn
[93] proposed a computational model of imagery stating
that in long-term memory, analogical information is stored
about the spatial representation of images and is linked to
propositional information about the parts of visual objects
and how these are related to each other.
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Essentially, cognition revolves around the formation and
manipulation of a hierarchical network of mental represen-
tations. At the bottom are the simple features detected by
the early perceptual processes, which are somehow trans-
formed into meaningful conceptual units at the top. How
the semantic understanding actually takes place probably
can best be understood in the context of the fundamental
principle of understanding, which states that to understand
something is either to understand it in terms of something
else (a recognition task) or to get used to it [94].

In the first case, understanding is externally relative
since it concerns correspondence between two domains: a
previously understood semantic domain and the new one
providing only syntactic information. While the syntactic
domain is understood in terms of the semantic domain, at
some previous time the semantic domain must also have
been understood in this way in terms of another, so that
understanding is recursive in this manner. This is known as
the correspondence continuum [95], which affirms that an
element may be either syntactic or semantic depending on
the point of view. This dual role of cognitive objects may
be partly appreciated through the overlap between syntax
and semantics, since both are concerned with the relations
that exist among symbols.

In the second case, understanding can only be internally
relative and therefore can only concern syntax. In absence
of external relations, semantic understanding is reduced
to syntactic understanding. Without any correspondences
with which to define the meaning of any given symbols,
they must be understood in terms of themselves. Therefore,
the syntactic domain becomes its own semantic domain.
This base case, the last semantic domain in a correspon-
dence continuum, can only be understood syntactically.
The cognitive process of transforming sensory data to
perceptual features and finally into a semantic network
representation is reduced to a purely syntactical process
in this instance. Given that these transformations rely on
syntactical processes, two questions remain: What are the
syntactical units at each level and what is the nature of
these syntactical transformations?

B. Perceptual Data Models

Some insight into the modality-specific representations
and transformations found in the sensory store is provided
by psychophysical evidence. While containing many both
inhibitory and excitory feedback and feed-forward paths,
the neurological organization tends to be predominantly
hierarchical. This structure consists of increasingly more
complex receptive fields in succeeding levels, forming
specifically tuned pathways. The receptive fields at each
level are composed of simple configurations of its sub-
ordinate elements and detect increasingly more abstract
features.

In the case of vision, we know that while the spatial
layout is preserved, the representation generated by the
retina is heavily distorted due to the physical limitations
of the eye and the properties of the retina [96], [97]. A
number of processes also specifically enhance the visibility

Fig. 8. Mental audio representation.

of perceptually important features such as luminance edges
[98], [99]. Color is encoded according to an opponent color
model [100] providing lower spatio-temporal resolution to
the chromatic detail. In fact, the perception of color is
often extrapolated from luminance edges via a filling-in
mechanism [101].

It has been shown that there are two main pathways
operating in parallel in the visual cortex. It is known that
structure and motion are processed separately from color,
form, and texture [102]. The color pathway mainly performs
recognition tasks, while the other is dedicated to structure
and motion analysis. This distinction is interesting from a
cognitive viewpoint because it implies that structural un-
derstanding is to a certain extent separate from recognition.
This suggests that semantic understanding is intrinsically
related to, yet separate from, syntactic understanding in the
mind.

The first data representation in the visual cortex [103]
is defined by the incipient neurones, which have center-
surround, circularly symmetric receptive fields. These feed
into “simple” cells, which respond to specifically oriented
line segments. Next, temporally modulated, specifically
oriented line segments are detected by “complex” cells.
Corners and ends of line segments are next detected by
orientation-specific “hypercomplex” or end-stopped cells
[104]. Each higher level is less dependent on spatial lo-
calization, and cells that respond to hand images and faces
have even been found.

The initial data representation in audition is a tonotopi-
cally organized frequency decomposition of the acoustic
signal performed by the basilar membrane in the cochlea
[105]. Signal masking arising in the cochlea has the ef-
fect of accentuating dominant frequencies. The frequency
separation is logarithmic due to the placement of the
innervating nerve fibers. Below about 4–5 kHz, they also
encode timing information of the stimulus waveform [106].
Beyond the cochlea, temporal and intensity information are
separately processed in two parallel pathways [107]. At
these higher levels in the cortex, neurones detect three main
types of features: tone bursts, noise bursts, and frequency-
or intensity-modulated components [108] (Fig. 8). Some
neurones detect specific frequency or intensity modulation
rates while others respond to the direction or speed of
frequency sweeps. Others detect repetition rates or the
onsets or offsets of stimuli, or are stimuli-duration selective.

The characteristic of isolating dominant frequencies to-
gether with directional sweep and modulation detectors in-
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Fig. 9. Dimensions of semiosis.

dicates that some type of frequency and amplitude tracking
is performed by the auditory system. One could hypothesize
the existence of a mental auditory representation composed
of tracks in frequency-time-intensity space. In reality, there
are many interconnected representations in the cortex but
we have very little information about what these are. It
is known that the higher level representations are based
on the lower level features but little is known about how
the latter are combined into higher level representations.
There is, however, clear evidence that the grouping of
these primitive features underlies the phenomenon of stream
segregation [109].

There are a number of factors that influence the gradual
segregation of auditory stimuli into acoustic objects. Each
factor competes for supremacy in determining groupings,
forming various segregation propositions that are evaluated
in parallel, of which the most probable is chosen. Some
of these factors include the synchrony and harmonicity of
the frequency partials, correlations in frequency or intensity
modulation, suggestive signal transitions, the presentation
rate of the stimuli, and the intensity of the partials, with
more intense higher frequency partials tending to segrega-
tion.

C. Signs and Semiosis

Semiosis is the process of making and using signs to
effect communication and understanding. Semiotics [110]
is the study of communication and understanding. It is
concerned with the relationships of meaning of the signs.
Apart from the classical verbal and lexical communication
processes to which it is applied, semiotics is pertinent
to a wider range of interactive information processing.
Morris [111] describes semiotics in the context of three
basic phases of interaction. First is the perceptual stage,
which is based on seeking signs or objects. Second is the
manipulatory stage, which is gaining control of the signs.
Third is the consumatory stage, which lets the signs perform
their function. There are also three corresponding types of
inquiry that can be performed and three different relation-
ships that can be held with the signs. In the perceptual
stage, signs are primarily designative in that they signify
what to expect from them. In the manipulatory stage, signs
are prescriptive because they signify appropriate courses
of action. In the consumatory stage, signs are appraisive
because they reveal how well they respond to the desired
manipulation.

Fig. 9 shows the three dimensions of semiosis: signs,
designatum (what a sign stands for), and the interpretant (or
user). These three dimensions have correlates in semiotics,

which are syntax, semantics, and pragmatics. The syntacti-
cal dimension of semiotics defines the formal relationships
between individual signs and how these may be combined
to form compound signs. Semantics defines the meaning of
the signs themselves through the relationship between each
sign and its designatum. Pragmatics is the integration of the
meaning with the interpretant’s past experience. It defines
the relationships between signs and their interpreters and
is based on the origin, uses, and effects of the signs. The
domain of semiotics also embraces the classical engineering
realm of information theory. In semiotic terms, Shannon’s
information theory deals with efficient sign vehicle trans-
mission where a sign vehicle is a sign independent of its
significance.

Semiotics traditionally has been applied to the external
representational systems used for explicit communication.
These representations correspond to lower levels in the
cognitive-communicative process that are predominated by
syntactical considerations. A distinguishing feature of hu-
man communication is the fundamental principle of dou-
ble articulation, which specifies a two-level structure for
communication [112]. Classical semiotics accordingly has
focused on the analysis of signs (monemes) and their
composition in areas such as text and speech. The signs
(which are defined as the smallest units of meaning) are
constituted by subsigns, which are meaningless but dis-
tinctive units whose only function is to distinguish the
monemes. Typically, semiotics has involved the study of
words (which are primarily syntactic units) as monemes
and their composition.

It is also possible to extend the semiotic model to higher
level knowledge representations. Metasigns are formed by
grouping signs in the same manner as subsigns are grouped
to form signs. These metasigns may be considered to
be true semantic units, given that semantics arise within
appropriate groupings of syntactic units. A group of these
metasigns can be considered to define the graph of a
semantic network, with each metasign corresponding to a
node instance and the designatum being the conceptual
unit represented by each sign. The syntactical domain
specifies the links defining the relations to other nodes.
In this manner, a hierarchical semiotic structure may be
defined where the higher level signs may be recursively
decomposed into their component subsigns.

Hypertext specifically attempts to model the data as a
network of semantic or conceptual units (Fig. 10). Hy-
pertext nodes are more appropriately called hypersigns,
conveying potent semantics and typically consisting of a
number of metasigns. At this level, the (hyper)signs become
more amorphous and the focus is on the relationships
between the concepts they designate. In hypertext, the sign
vehicles are anchor keywords or phrases that are directly
linked to their designatum, the nodes. This reduces the
role of the interpretant since both the sign vehicles and
designatum are concurrently present in the media. The
syntax or relationship between the signs in hypertext is
defined by other sign vehicles embedded within each node.
The semiotic analysis of each hypertext node in isolation
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Fig. 10. Semiotic dimension of hypertext.

may additionally be performed in terms of its component
signs and subsigns.

The semiotics of hypertext systems can be readily an-
alyzed since the articulation of text and speech is quite
evident, but this is not the case for other modalities.
Determining the articulation in multimedia data is not
straightforward since there may be little correspondence
between the physical manifestation of the data and mental
representation of the sign vehicles. For example, phonetic
representations are quite different from the time-domain
speech signals. Generating suitable data models for hyper-
media requires the identification of the semiotic articulation
in multimedia data. This requires identifying the subsigns in
each media and how these may be combined to form signs.

D. Semiotic Articulation

While classical semiotics is based on the theory of
double articulation, each different communication system
has its own domain-specific set of articulatory units. A good
example of a well-developed theory of double articulation is
linguistics. Phonemes, which are meaningless sounds, are
the subsigns that can be combined to form monemes (or
morphemes) equating roughly to syllables.

In the textual domain, the subsigns are known as
graphemes and correspond to alphabetical letters in
English. This is an example of cenemic writing, where the
graphemes represent phonetic elements such as phonemes
or syllables (Table 6). Conversely, in pleremic writing
systems, the graphemes refer to semantic units such
as pictographs. Accordingly, the semiotics of writing is
viewed as either an autonomous or heteronomous system.
Depending on which view is accepted, graphemes are
either signs or subsigns. In the autonomous view, the
monemes equate to words, while in the heteronomous
view, graphemes are already signs so that when grouped
they become metasigns.

Articulation is also evident in music, although it is more
abstract than other forms of communication. This is because
there is no clear separation of form or expression from
the content in music since the expression is the content.
Instead of information, it mainly communicates emotion
since music is the logical expression of feelings. Music
also has a powerful referential potential, which assigns
meaning through association to past experiences. Music has

Table 6

a highly evolved structure with definite rules much like
normal grammars, resembling the hierarchical organization
of text. While music can be physically expressed in terms
of frequency, time, and intensity, in musicological terms,
music has three dimensions: melody, harmony, and rhythm.
Melody is the progression of tones produced by adding
them horizontally, while adding tones vertically generates
chords and adding chords sequentially produces harmony.
Rhythm is produced by periodic repetition. The smallest
subsign of music is therefore a tone or toneme. While a
single tone has no embodied meaning, a short series of
tones can readily convey an emotional experience [113].
If the series is ascending, it expresses outgoing emotion;
if descending, it expresses incoming emotion. If it is in a
major key, joy is conveyed; alternatively, sorrow [114]. The
logical theory of semiotics in music [115] postulates that at
least three notes are required to form monemes.

Articulation also exists in pictures. Various proposals for
the articulatory units include the concept ofchromemes
(color elements) andformemes(shape elements), among
others [116], [117]. However, it is difficult to foresee
any lexical constructs to combinechromemesto produce
meaningful units. Another approach that has been proposed
is Marr’s model [118], which postulates the existence
of three different representation systems starting with an
initial 2-D primal sketch and progressing to a viewer-
centric 2 1/2-D sketch and finally to an object-centric
3-D representation for semantic recognition. Apart from
the vague notion oftexturemes, which are difficult to
isolate and are not distinctive, Marr’s model does not really
provide primitive elements that could be considered suitable
articulatory units. A better approach is based upon Gestalt
psychology, although a suitable definition of subsigns or
primitive elements in pictures is currently lacking.

Video or film communication is a composite medium of
a sequence of images undergoing motion. Since the articu-
lation within each frame is the same as for still images, the
primary feature of video and film is its temporal domain.
Accordingly, the first level of articulation is the shot (or
scene) and is known as thevideme [119], [120]. Some
uncertainty has been expressed regarding the existence of
a second level of articulation. One proposal is that it is
composed of spatial-graphical objects calledcinemes(or
iconemes). These already represent meaningful elements,
however, and are therefore unsuitable. An alternative would
be to exploit the predominantly temporal nature of video
and the observation that interframe changes are largely
motion induced. Accordingly, it would not be inappropriate
to propose that the second-level units be composed of a set
of motion primitives. Eco [121] considers motion primitives
the dynamic units of a third level of articulation called
cinemorphs.
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Table 7

The double articulation in classical semiotics implies the
existence of only a single level of cognitive units, each
capable of equivalent semantic value, and a single level of
precognitive detection units. In reality, there is a continuum
of cognitive units having increasingly higher semantic
significance. For example, phonemes in speech can be
described in terms of formants, voicing, and manner of ar-
ticulation. Suprasegmental phonemes in speech (secondary
phonemes orprosodemes) include the pitch and melody of
speech, which in some languages, like Chinese, are essential
in determining meaning. Graphemes in text can also be
defined in terms of simpler primitives consisting of oriented
straight lines, intersections, and closed or open curves in
certain configurations. Fortunately, from psychophysics, we
know the general nature of these most primitive elements
for multimedia data. We also have a fair idea as to the nature
of the signs and metasigns (Table 7). The task remaining
to formulate perceptually concurring data models is to
determine the specific nature of these primitive elements
and how they combine together at each level to form signs
and metasigns.

Understanding how these elements can be grouped to
form single conceptual units is a significant difficulty since
this typically requires semantic knowledge. At higher lev-
els, the rules defining how elements may be combined
are also increasingly more complex. The task of assigning
a semantic to a given metasign is a recognition process
heavily dependent on pragmatics. More than just a clus-
tering problem, the question of how the meaning of each
individual sign is modified by the grouping and determina-
tion of the overall meaning of the metasign is perplexing.
However, divorced from semantic and pragmatic issues, the
individual low-level signs, being syntactic units, are rela-
tively easy to identify in a given communication medium.
Gestalt psychology attempts to offer some insights into the
question of how syntactic units are grouped together to form
semantically significant units.

E. Gestalt Psychology

Gestalt theory is perhaps one of the best established
yet poorly defined theories of perception [122]. This the-
ory postulates that perception is based on sets of stimuli
where the whole has a meaning or significance that is not
predictable from its elements. These semantic groups are
known as Gestalten. For example, a square is semantically
more significant than a group of lines and a tune is more
than the sum of its notes. This leads to some interesting
questions, namely, what is the nature of the groupings that
have increased significance over other arbitrary groupings?
This question has two implicit components. First, what
bearing does the relationship between the elements have on
the significance of the whole? Second, are there any specific

(a) (b)

Fig. 11. (a) Contextual effects. (b) Contextual influence.

characteristics required on the part of an element for it to
contribute to the forming of a more significant whole?

When a whole is greater than the sum of its parts, it
creates a recursive relationship in that the meaning of
the whole must then influence the meaning of each part.
Context clearly influences perception. In fact, we seem
to respond more to relationships among stimuli than to
the specific characteristics of the individual stimuli. This
explains why it is possible to replace original parts of a
stimulus with other parts and still manage to retain the
quality of the whole. Examples of this are commonly found
in musical transposition and in the phenomenon of bright-
ness constancy. The importance of contextual influences
in perception is readily exemplified in Fig. 11(a), where
horizontal lines of equal length appear to be disparate. In
this case, the diagonal lines impart depth cues that affect
the interpretation of the line length.

The role of contextual influences in perception extends
beyond simultaneous context to historical influences such
as familiarity and expectations. There is the tendency to
classify stimulatory events according to past experience.
In this case, categorical event perception takes precedence
over sensory perception and may override it. In Fig. 11(b),
the letters O, V, U, m, and x are interpreted as facial features
and not as letters. A powerful example of contextual effects
is the filling-in mechanism, which automatically interpo-
lates stimuli to preserve the perception of continuity even
when the stimulus itself is discontinuous. This phenomena
can be found in audio perception, where a gap due to signal
dropout in a tone or in a frequency sweep can be masked by
presenting narrow-band noise in synchrony with the onset
and offset of the gap. In the visual domain, the filling-in
mechanism is more powerful and can completely eliminate
certain image contours and create the perception of surfaces
that do not exist. In the Kanizsa diagrams [123], white
polygons are clearly perceived through visual interpolation
even though they do not exist (Fig. 12).

Apart from complex contextual influences that affect the
formation of perceptual groupings, another difficulty in
defining grouping rules for perceptual organization is that
the mind is constantly searching for alternate organizations.
Also, groupings may be difficult to define in complex
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Table 8

Fig. 12. Visual interpolation.

patterns, and a single component may only be assigned
to a single group. In spite of this, various principles have
been proposed [124] that are based on the proximity,
similarity, continuity, common fate, and closure of the
stimuli (Fig. 13). The common-fate principle is based on
correlations in the form of synchronization or frequency
or intensity modulation. Closure implies the continued
perception of obscured stimuli via an interpolative or filling-
in mechanism.

While general grouping principles have been suggested,
Gestalt theory has difficulty in specifying the definition
of the primitive elements themselves. This is because
contextual factors and relationships interfere with the in-
terpretation and definition of the elements. However, from
Section V-B, we know that the elements must be hier-
archically defined. Also, since the relationships among
perceptual stimuli are more important than the absolute
values of the stimuli, it appears appropriate to propose a
hierarchy of primitive elements based on clearly defined
relationships between the elements.

VI. HYPERMEDIA DATA MODELS: A
NEW SEMIOTIC PARADIGM

This section presents the new semiotic paradigm
for hypermedia data modeling. Section VI-A discusses
the characteristics desired for hypermedia models and
introduces the new paradigm. Section VI-B presents new
syntactic data models for multimedia based on a semiotic
articulation. Section VI-C discusses the information-
management support provided by the data models.
Section VI-D presents rudimentary compressed representa-
tions for audio and video data based on the models.

A. Semiotic Paradigm

As a communication system operating at an advanced
cognitive level, the semiotics of hypermedia is complex.
Semiotics is established on the fact that all communication
is based on the generation and perception of signs. All
but the most primitive communication is highly structured,
and semiotics attempts to determine the nature of these
structures and their constituent elements. For hypermedia

Fig. 13. Grouping rules.

systems to be effective, the data representations should
be based on data models, which permit direct access to
the semiotic structures in the data. The problem is how
to identify and isolate these structures. Initially, we may
begin by abstracting the three dimensions of semiotics
(semantics, pragmatics, and syntax) into the type definition,
expression or form, and relations. The basic type definition
of an object epitomizes the core semantic value and is its
principal attribute. The form of rendition or expression of an
object provides additional interpretational cues suggesting
specific semantic detail similar to prosodics in speech. This
encapsulates an object’s characteristic attributes and may
be conveyed through parameterization. The relations define
the possible interactions between the objects or signs. We
can use this abstracted framework to compare the general
equivalence of diverse information-processing systems, as
demonstrated in Table 8.

Additionally, we can identify a number of general prin-
ciples from cognition and Gestalt psychology (Fig. 14) that
govern semiotic structures in multimedia data. Essentially,
they are semihierarchical, multilayer network structures.
Each element or node in this structure is separately de-
scribed in terms of both its defining and characteristic
attributes, and the relationships between elements are ex-
plicitly defined. Furthermore, to permit intramedia nodes to
be fully linkable as a source or destination and to support
both information management and interactive manipulation
of the data, each element must also be indexible, individu-
ally decodable, and randomly accessible.

Another consideration is that the basis of this organi-
zation should not be semantic but syntactical to permit
environment-independent automatic processing. The repre-
sentation should not obfuscate any inherent structural and
perceptually important information in the data. Also, in
conformity with the concept of subsumption architectures
for information processing, the representation should be
midlevel and generic rather than distinct for each specific
application. This would permit the representation, given
suitable supplementation, to be used for a variety of differ-
ent applications. It should make all information explicitly
available to higher level processes such as content-based
retrieval, structured browsing, editing, recognition, and un-
derstanding without attempting to interpret the information
in any way. Searching in such a compact data space
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Fig. 14. Principal properties.

Table 9

would only involve supplying similarity-matching algo-
rithms without needing to decompress or further process
the data, or to create separate index files. Object recog-
nition and understanding could be performed simply by
directly interpreting the structural information that is made
explicitly available in the same compressed data. Table 9
contrasts these properties with those provided by existing
coding schemes.

A general semiotic framework based on syntactic prin-
ciples can be formulated to create data models and repre-
sentation schemes to meet these requirements. Syntactical
models can explicitly reveal the structure of the informa-
tion, permitting efficient, generic, and interactive access to
any encapsulated semantic information without permitting
the semantic information to encumber the interaction. While
not necessarily revealing what the encapsulated semantics
are, they do not preclude the inferral of semantic interpreta-
tions. The constituent elements in syntactical structures are
easy to identify and extract through statistical techniques.
They are also capable of conveying powerful semantic
information given the right association through the re-
lationships between them. Specific statistical information
about each syntactic entity can be obtained by individually
accessing each syntactic element. The proposed data model
for each medium is accordingly constituted of three specific
components: primitive syntactical units, the characteristic
attributes or parameterizations for each primitive, and the
set of relationships between the units. Corresponding repre-
sentation schemes would preserve these three information
components, making them explicit and directly accessible.

B. Semiotic Data Models

While various ad hoc attempts have been made to de-
fine the primitive syntactical units in multimedia data, no

Table 10

systematic approaches have been suggested. It is proposed
that these elements should be defined in terms of a multidi-
mensional decomposition of the data space itself, creating a
hierarchy of elements with decreasing degrees of freedom
as the dimensional constraints increase. This permits the
generation of higher level elements from simple linear
groupings of those below them that mimic the organization
of the early perceptual processes. The dimensionality of an
element becomes its defining attribute while any additional
parameterizations are the characteristic attributes.

The elements at the higher levels of this hierarchy contain
greater semantic power than those at the lower levels due to
the Gestalt principle that the whole is greater than the sum
of its parts. For example, at the lowest level of an image,
a row of picture elements (pixels) forms a line, and an
appropriately structured group of four lines forms a square.
The square is much more than just four lines; it has an
extra quality of “squareness.” Each line is more than just a
cluster of pixels; it exhibits “lineness.” Judicious placement
of lines produces simple vector and cartoon-like images
that nonetheless can carry very powerful semantics, such
as computer-aided design drawings. Rather than focusing
on the capacity for semantic expression through Gestalt
phenomenon or determining possible grammars at this
stage, however, we are interested only in defining the
primitive elements. Table 10 identifies these elements for
each domain according to their dominant modes.
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Fig. 15. Semiotic data model.

Each of these primitive elements or subsigns in isolation,
a simple polygon, or a motion primitive or tone burst have
little (if any) semantic qualities. To constitute signs, it is
necessary to group these primitives together appropriately
to create semantically significant elements. For example,
phonemes are a select grouping of frequency tracks and a
face is an appropriate grouping of surface patches. Omitted
from this analysis is any definition of the grammars required
to generate these signs. Such definitions are beyond the
scope of this analysis since there are a plethora of potential
grammars, one for each different semantic entity. It should
be possible to infer groupings for a particular data stream,
however, by identifying commonly occurring configura-
tions, which, while not necessarily constituting semantic
units, may be used to enhance coding gains.

Each sign can be decomposed into one or more of the
subsigns in its domain (Fig. 15), and each subsign also
recursively can be defined in terms of the simpler ones.
Rather than representing data by a single type of element,
as many coding schemes do, these models encourage the
simultaneous use of all the elements for a given domain.
This enables the concept of layering where complex data
can be defined by the superposition of simpler elements.
It is intended that higher level elements define the basic
data characteristics and lower ones are used to supply any
additional fine detail not adequately conveyed by the more
complex elements. While it is possible exclusively to use
the lowest level subsigns to represent a given media, it
would be making poor use of the model. The main purpose
of the lower level elements is to provide a fallback mode
to compensate for when the higher level elements fail to
model the underlying data accurately. Video coding is an
example of this where planar motion compensation alone
is insufficient to compensate for interframe changes. In this
case, the residue can be appropriately modeled as the result
of additional stationary changes. Layering also facilitates
progressive refinement of data and the ready discarding of
fine detail if needed.

Each primitive element in this generic data model also
has a set of parameters associated with it that is specific
to the element’s domain. These are identified in Table 11.
The abstraction provided by this model permits all of the
important cognitive information to be explicitly available
for later high-level processing. For humans, it is difficult to
perceive something without simultaneously interpreting its
meaning. This recognition of meaning is highly dependent

Table 11

on the interpretation of the relationships between syntactic
elements. Alternatively, in this model no attempt is made to
interpret this information in any way, thereby not binding
any semantics to the data. This preserves the generality of
the information encapsulated by the model by not constrain-
ing its ultimate designation. This also permits generalized
scene descriptions conveying the core semantics to be
generated from the data by simply considering the defining
and relational attributes alone. A formal description of the
proposed data models for image, audio, and video data is
presented in the following definitions.

Definition 1—Image Points:An image is a function of the
set of all ordered pairs ( ) of real numbers or

. The pair ( ) is referred to as a point. The set
of all points, , given by

, defines the image plane.
Definition 2—Relational Vectors:Given an ordered set of
points , one can define an

ordered set of vectors
specifying spatial relationships between these points. A
graphical pattern is then defined as the biproduct

. If these are
time variant , they become relational motion vectors.

Definition 3—Adjacency:The neighborhood of a point
in the image plane can be defined as the set

;
. The adjacency of two

points and is denoted by .
Adjacency can also be expressed by the relationship defined
by the vectors

.
Definition 4—Paths:Joining a string of adjacent points

forms a “path.” A path of length is defined as the set
of adjacent points

. Each point can be defined parametrically as
subject to the constraint that
where . The path

definition then becomes
. A closed path is subject to the additional

constraint that .
Property 1: Paths and are said to be connected

if at least two points (one point from each) are adjacent.
This is denoted by the commutative relation

.
Property 2: Two paths and can be said to be

adjacent if they are connected and every point in pathis
adjacent to a point in pathover the common interval .
We then say ,

.
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Definition 5—Domains:Joining adjacent paths that lie
side by side forms a domain

. This equally can be expressed as
where

is the infinite set of all possible paths. Since
, then any point on can be specified

by . Alternatively, a domain
may also be defined as the set of all points lying within
a closed path or closed set of connected paths, i.e.,

.
1) Image Model: An image can alternatively be defined

as being composed of a set of ordered three-tuples
where is the color or intensity of

the image at location . An image then becomes
.

The most primitive elements in an image are the pixels or
picture elements , which have two distinct
attributes: their color/intensity and spatial location.

Adding a number of pixels together in any given direction
forms a line that has the additional property of length. Its
orientation can be disregarded as being a function of an
arbitrary frame of reference. The formal definition of a line

is given by the set of pixels lying on a path where
. Both the path and

the intensity of the line along the path are defined as simple
parametric functions. Two special classes exist: flat-shaded
lines where is constant over and the case where
defines a straight line.

Adjacent lines form a surface. A surfaceis defined by a
set of adjacent lines that contain all of the pixels in a domain

. Formally,
. The function defining

the intensity contour is assumed to produce a smooth
surface. A polygon is a special case where remains
constant over the surface area. Due to this smoothness
constraint, to model a natural image region properly, one
may require the addition of a zero mean, stationary noise
component. In this case, the surface model becomes

where is the noise
function at point ( ). If the nonzero components in the
noise function are separated out, the model becomes a
superposition of a set of pixels over the original surface.

An object is defined as a collection of connected
parametrically defined surfaces, lines, and pixels that have
been translated to the origin. The spatial relationships
between them are given by the set of vectors .
Thus

where and are the
infinite sets of all possible surfaces, lines, and points,
respectively. An image is finally defined as a finite set of
spatially related objects, formally .

While the typical image-coding models are based on an
array of nonoverlapping uniform rectangles, the elements
in this model are spatially unconstrained in their shape and
localization. Every image can be considered to be composed
of these primitive elements. The discontinuities in the
image form the boundaries between each element. The
nature of the discontinuities defines the type of primitive

inferred. For example, macrodiscontinuities such as edges
bound the region defining a smooth-shaded surface patch.
A microdiscontinuity will bound the region defining a flat-
shaded polygon or vector. In this sense, any image can be
considered to be a product of primitive instancing.

A simplistic example can best serve to illustrate the
application of this model. Fig. 16 is an image composed
of four identifiable foreground objects (sun, plant, ant,
and cloud) and the background. Each of these occurs in
a certain spatial relationship to the other. Placing a grid
of 9 7 elements over the image, we can additionally
specify the spatial relationships between each of these
objects in reference to an origin, say the bottom left-hand
corner. The respective relations then become approximately
(0, 6), (5, 4), (2, 1), (7, 5), which could alternatively

be defined relative to each other. The full definition of
the diagram becomes the set of constituent elements, the
relationships between them, and the parameterizations for
each element, which have been omitted for simplicity. The
symbols and , respectively, denote the
sets of all objects, lines, surfaces, and pixels in the image
(see Fig. 16).

2) Audio Model: Audio signals can be represented as a
time-frequency distribution defined as an ordered set of
three-tuples ( ) where is the amplitude of the signal
at frequency and time . A time-frequency representation
of audio then becomes

.
The most primitive audio element is a pure tone burst

or spectral line localized in both time and frequency. In
its simplest form it is defined by a point ( ) that has
constant intensity and unit-length duration. A noise burst
is a set of statistically uncorrelated points. The general
form of a tone burst has arbitrary duration and is time
variant in intensity. This is parametrically defined as

being localized in both time and
frequency and having an intensity contour.

The set of unit tone bursts lying on a path, which
is permitted to vary parametrically in frequency, forms a
frequency track. These have the additional property of pitch
contour and are defined as

. A set of synchronous tracks, which follow the
same path but are displaced in frequency, form a harmonic
group that is defined as

. These (Fig. 17)
have the additional properties of harmony or timbre.

A phrase or moneme is defined as a temporally
connected group of frequency tracks, tone bursts, and
harmonic groups. Translating each of these to the ori-
gin, the spectral and temporal relationships between them
are given by the set of vectors . Thus

where
and are the infinite sets of all possible tones,

tracks, and harmonic groups, respectively. Both rhythm and
meter are higher level concepts beyond the scope of this
analysis.

3) Video Model: At the most primitive level, a video
episode can be considered to be composed of an
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Image=fsun, plant, ant, cloud j cloud 2 O+g � f(0; 6); (5; 4); (2; 1); (7; 5)g

sun= fcorona, 5 raysj corona2 S+, rays� L+g � fV j rays radiate out from coronag

plant = fcentre, stem, 8 petalsj stem2 S+g � fV j stem is beneath centre, radiating petalsg

centre= foval, spotsj oval2 S+, spots� P+g � fV j spots lie within ovalg

petals= fsurface, texturej texture� P+g � fV j texture radiates from centreg

ant = fhead, thorax, abdomenj thorax2 S+g � fV j thorax head abdomeng

head= foval, antennaej oval2 S+, antennae� L+g � fV j antennae above headg

thorax= foval, legsj oval2 S+, legs� L+g � fV j legs below bodyg

Fig. 16. Image articulation.

Fig. 17. Audio structural primitives.

ordered set of scenes. A scene is a set of images
delimited by a scene

change or sharp discontinuity . A scene may
be interpreted as a single time-variant image, denoted,
but it may be equivalently expressed as an ordered set of
tuples where is the color value of the scene at
a location or point ( ) for the image at time. Formally,
a scene is the set ,

, , . Three
basic types of time-variant phenomena may occur over
the duration of a scene: stationary change (SC), planar
motion (PM), and global motion. Fig. 18(a) depicts a two-
image scene exemplifying all three types of changes and
Fig. 18(b) shows all of the nine regions in the scene that
change over the two images.

Stationary change is the simplest primitive produced by
only an “in-place” color change. This is defined as the set of
time-variant color pixels such that

. While the SC primitive assumes that
changed pixels are spatially fixed, an alternative interpre-
tation considers the color value of each pixel to be fixed
and its spatial location to be time variant. This gives rise

to planar motion where the direction and distance of the
motion is parametrically defined in time as the set of points
such that .

Stationary change or planar motion normally occur simul-
taneously to groups of adjacent pixels in given domains of
the scene having the properties of the region shape and the
nature of the change. In these cases, instead of modeling
motion at the pixel level, it is more convenient to do so
at the region or object level. Hence, an image undergoing
planar motion can best be described as a set of objects
whose spatial relationships are time variant. From the image
model, we have where is the set of
all objects in the scene and the relationship vectors are tem-
porally variant, becoming relational motion vectors

. Rather
than just describing the two-dimensional translational mo-
tion, this planar-motion definition may be extended to
account for layered motion (LM) by defining the vectors as
three-dimensional entities where

specifies the depth information.
Since planar motion assumes the content of each region

to remain constant, it is unable to account for all of the
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(a) (b)

Fig. 18. (a) Motion in a scene. (b) Stationary change.

(a) (b)

Fig. 19. (a) Planar motion vectors. (b) Global motion compensation in scene.

changes in Fig. 18. In this case, it is necessary to fall back
onto stationary change to complete the scene. Fig. 19(a)
shows the five motion vectors for the scene, which includes
one bird and the street marking, person, and traffic light.
It is unable to account for the changed state of the traffic
light or the missing bird, which must be compensated for
using the SC primitive.

Since planar or simple layered motion can only exist
in very constrained environments, this definition is too
restrictive to model the motion of real objects since these
are subject to more complex 3-D transformations. In this
case, it is convenient to consider a scene to be a time-
constrained view of a 3-D space. Returning to our object
image model , the vectors become six-
dimensional time-variant entities, each defining an affine
transform. This permits the objects to move in simulated 3-
D space by rotating, translating, and scaling. Planar and
layered motion are just special cases of object motion,
which is defined by motion vectors of the form

where the translation is defined by the parameters,
the scaling by , and the rotation by the combination
of . Perspective transformations are accounted
for by parameters . Rather than just considering the
motion of independent regions, uniformity in the time-
variant set of motion-relationship vectors may be suggestive

of the existence of global motion. This global motion also
takes the form of an affine or perspective transform that
applies to the entire image. Taking the global motion vector
component into consideration, the set of relational
motion vectors in a scene becomes
where defines the globally compensated local motion
vectors. Since the use of multiple motion models is required
to describe the motion in a scene adequately, then the
addition of the global-motion model further enhances the
flexibility. In this case, compensating for the translational
global motion reduces to the number of motion vectors
required to describe the motion. Fig. 19(b) shows the result
of applying a global motion transformation to the previous
example. Three local motion vectors and two cases of
stationary change must be updated.

A set of frames in a scene where the global motion
is uniform defines a shot. A scene can be considered to
be composed of an ordered subset of shots. A shot is
formally defined as the set of adjacent images such that

frames.

C. Content-Based Access and Management

In addition to forming the basis for compact representa-
tions, these data models permit the access and management
techniques of the general cognitive memory model to be
imitated in various ways. The memory model consists of
a modality-specific sensory store that receives and analog-
ically encodes input data from the perceptual processes.
This data is then passed to the working memory, where
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Fig. 20. Syntactic analysis.

control is consciously performed, and finally placed in long-
term storage. Rather than containing representations of the
actual sensory data, the working memory operates with
labels or pointers to conceptual objects or groups of objects,
permitting the manipulation of highly complex entities or
groups of these. The counterparts to these components in
a hypermedia system are the input processing, hypermedia
engine, and hyperbase.

The input-processing section of such a system should
accept raw multimedia data and encode it according to the
semiotic data model. Following this, the hypermedia engine
can effortlessly mediate in all of the user-directed control
functions such as navigation, authoring, or integrating new
data elements into the existing hyperbase. Content-based
retrieval functions can be performed by directly querying
the node attributes. Additionally, in contrast to existing
compressed time-based browsing of audio and video data
streams, browsing can be content-based since the support
for this is intrinsically provided by the data models. To be
particularly effective, however, this access should be based
on semiotic signs generated from the subsigns through the
application of Gestalt principles.

In the case of content-based retrieval, there is no need
for additional processing to extract labels or create indexes
since the data models explicitly represent the data in
terms of their salient attributes. These models provide a
wide range of information for generating component labels,
which may be interpreted to be of a statistical, syntactical,
or semantic nature. Primarily, statistical information is
directly encapsulated by them since the primitive elements
are statistically defined. More abstract information is pro-
vided by the syntactic analysis of the relationships between
the elements and their defining attributes. Depending on
the analysis domain, this high-level syntactical analysis
may provide either structural, episodic, tonal, 3-D motion
and shape, or subject information. This information may
be used in conjunction with Gestalt principles or audio-

stream segregation to generate semantic groupings from the
syntactical units. For example, adjacent image primitives
that have synchronized motion have a high probability of
forming a semantically consistent and meaningful object.
Fig. 20 demonstrates the basic concept behind this analysis.

The lowest level elements in the data models readily
produce statistical information about their subject. For
example, the average color or texture can be directly
calculated from the pixels or vectors in an image. In video,
the amount of stationary change is a good indication of
the occurrence of scene changes. Likewise, in the audio
domain, the energy distribution exhibited by tone bursts
can be used to perform source classification. Music predom-
inantly consists of long harmonic tracks with rare periods of
silence. Noise is composed of many short discordant tone
bursts. Silence is defined as the absence of any frequency
tracks. Speech is a combination of relatively short noise and
tone bursts interspersed with frequency sweeps and many
pauses.

Alternatively, syntactical information is predominantly
conveyed by the primitive elements at the higher levels.
In images, the relationships between the region segmen-
tation suggested by the surface elements may be used for
structural analysis. Shot classification in video also conveys
syntactic information by defining the relationship between
frames and image elements in a scene over time. In audio,
the relationship between temporally adjacent frequency
tracks can be directly used for retrieval by defining pitch
contours or melodies. Additionally, speaker changes and
gender may be determined from the fundamental frequency
or pitch of the lowest track. Speaker emphasis may be
detected from the change in relative amplitude of the tracks.

The highest level elements may be used to generate
semantic information directly. The surface shading of ob-
jects in a scene can be used to perform shape estimation
and identify region shapes used for object recognition.
The generation of this semantic information may often
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Table 12

Fig. 21. Query processing for content-based retrieval.

be contingent on the specification of appropriate grouping
rules or the nature of the relationships between primitive
elements. Certain groupings may have specific semantic
interpretations such as in face recognition. In audio, cer-
tain harmonic groupings may be indicative of particular
musical instruments. Additionally, even with these higher
level primitives, the statistical and syntactical attributes
are still readily available since each element is linearly
decomposable into its constituent lower level elements.
Table 12 summarizes information that may be immediately
extracted or directly generated from the model.

To provide effective content-based retrieval, a variety
of query methods must be supported, which must be
mapped into the attribute set irrespective of how they
are posed. Given an attribute set, queries may be posed
by directly specifying attribute values. For example, to
locate a red image, one could enter255, 0, 0 into the
color field of a form-based query. Alternatively, a natural
language interface would permit the expression of these
values within language like constructs by saying “find
images with color 255, 0, 0.” A more advanced query
mechanism would rely on the mediation of an expert system
where the knowledge base would maintain descriptive
lists of real-world objects in terms of their attributes.
Posing a semantic query by specifying the name of an
object (e.g., find a red image) would result in a set of
attributes’ being submitted to the retrieval engine. All of
these queries are fundamentally similar in that they are
expressed alphanumerically. Alternatively, a query may
be posed by example. Synthetic visual queries could be
formulated by using a drawing tool or by compositing an
image from a feature database. Similar methods can be
used for audio queries, such as humming a tune. Fig. 21
shows some options for posing queries and their mapping
mechanisms.

D. Example Representations

Thus far, the data models and their management aspects
have been discussed but not the issue of their derivative
representations and encoding. This will determine the ac-
cessibility of the information provided by the data models.
This section describes rudimentary audio and video repre-
sentation schemes, which seek to make this information
explicitly available in compressed form. These coding
schemes are two specific instances of the data models and
are by no means definitive. They permit information man-
agement data and interactive manipulation in its compressed
form to a certain extent. More work is required to develop
representations that fully implement the data models.

The communication systems of advanced animals are
composed of three classes of audio signals: noise bursts,
tone bursts, and frequency sweeps. Frequency resolution
is better at low frequencies while temporal resolution is
better at high frequencies, leading to a scalogram-like
time-frequency distribution (TFD). Instead of an STFT,
a multiresolution discrete cosine transform (MDCT) is
used to generate the frequency decomposition since the
DCT domain has the advantage that it does not require
separate phase information and has higher data compaction.
The MDCT is preferred due to lower blocking artifacts.
Constant-length, variable-resolution analysis windows are
used to generate the analysis bands separated by octaves
[Fig. 22(a)]. The higher frequency bands exhibit low fre-
quency but high temporal resolution while the low fre-
quency bands have high frequency and low temporal res-
olution.

The overall encoding algorithm is depicted in Fig. 22(b).
After the scalogram is generated, it is processed by applying
masking and quiet thresholds to remove perceptually redun-
dant data. Peak picking and tracking is then performed to
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(a)

(b)

Fig. 22. (a) MDCT scalogram generation. (b) Coding algorithm.

extract the frequency tracks. Peaks are defined as the set
of all points in the TFD such that

where is the magnitude at frequencyat
each instance in time. Tracking is performed by joining
the peaks in time that are closest in frequency within limits.
Each track is then classified according to its type (noise,
tone burst, or sweep) and represented as differential chain
codes. Following simple stream segregation, the tracks are
encoded in groups. The residual spectrum is differentially
encoded as a set of unit-length tone bursts. The represen-
tation structure is defined as a set of groups, sweeps, and
tones. To simplify access, the header information contains
a table of contents in chronological order of the elements
containing only the type of element, its starting time, and a
pointer to the location of any additional parameters in the
stream. This structure is as follows:

AUDIO (Header Information, GROUP, TRACK ,

TONE , NOISE

GROUP SWEEP, nPartials, offsets[nPartials],

energy[nPartials]

SWEEP TONE, frequency[length]

TONE length, frequency, intensity[length]

NOISE frequency, intensity

Using this representation, it is immediately possible to
perform source classification by looking at the length, track
type, and frequency localization. Following from this, it
is possible to perform further class-specific analysis on
the tracks. Since the tracks are defined parametrically,
this analysis amounts simply to comparing the values of

Fig. 23. Primitive layering.

the parameters for each track. Voiced/unvoiced speech
detection can be performed by evaluating the ratio of noise
to tracks over a short time period. Change of speaker and
gender may be determined from the frequency of the lowest
track. Speaker emphasis may be detected from the change
in relative amplitude of the tracks. The possibility of the
use of this feature set for speech recognition needs to be
investigated. The distribution of partials in harmonic groups
can be analyzed to evaluate timbre. Other attributes may be
directly determined from the tracks, such as the modulation,
tempo, frequency, duration, dynamics, periodicity, pitch
contour, and harmonics of the audio data, that may be used
for content-based retrieval.

In the video representation [125], each frame is viewed as
an image composed of primitive elements in various layers
at different levels of detail. This permits complex-shaped
elements to be defined in terms of an overlay of simpler
elements. The representational efficiency of using simple
overlaid primitives (Fig. 23) instead of coplanar primitives
is apparent in that only two overlaid instead of three copla-
nar rectangles are required to represent the same complex
pattern. Since the sensitivity of the human visual system
decreases under temporal variations in the stimulus, an
image can be updated progressively in terms of these layers
and the finer detail layers can be updated at a slower rate.
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Fig. 24. Spatial layering.

The intraframe or image encoding algorithm extracts the
primitive elements from each level in succeeding stages, as
shown in Fig. 24. The encoder initially attempts approx-
imately to fit the surfaces that are the largest primitives
to the underlying image. The encoding process then pro-
ceeds by attempting to fit the next lower level, smaller
primitives to the residual data. The adequacy of the fit is
based on estimating the cost of encoding the same data
using a coplanar arrangement of lower order primitives
alone versus a layered representation. If no coding gain
is achieved through encoding the region as the high-order
primitive plus the required lower order primitives, then
it is discarded and the region is encoded with the lower
order primitives alone. This provides a multiresolution
representation since each layer consists of primitives of a
different spatial/temporal/spectral resolution. Less obvious
is that it also provides a multilevel information system
since each layer has different semantic value. To simplify
development of the representation, however, it has been
restricted to utilizing constrained lower level primitive
elements.

The intraframe data model consists of pixels, lines, and
surfaces. The lines may be of any orientation but are
straight. Since the surfaces are also constrained to being
flat-shaded rectangles with predefined sizes for simplicity,
additional flexibility is provided by extracting each sized
surface as a separate layer. No attempt at this stage has
been made to isolate objects as special groupings of these
primitives, and further work is required in this area. The
defining attribute of each primitive is its type or shape,
while its characteristic attributes include color, size, and
orientation. The relationships between the elements are
encoded as their relative position along a path that visits
all the elements per layer. This path is defined by a
pseudo-random adaptive raster scanning technique based on
predicting both the scan direction and changes in direction
[126].

The representation encodes each type of primitive in
separate layers and grouped by color, since the video
representation is color mapped. The representation for a
layer becomes a layer-type specifier followed by the number
of different color groups and each color group. Each color
group is defined as the color for the group, the number

of elements in the group, and the string of elements.
Each element is defined by its spatial relationship with its
preceding element and any additional shape information.
The resulting information is encoded using variable-length
codes. The simplified structure of the representation is as
follows:

VIDEO (Header Information, Color Map,

IMAGES[frames])

IMAGES SURFGROUP, LINEGROUP,

PELGROUP; Layers of PGROUP

PGROUP (nColors, CGROUP[nColors])

CGROUP (Color, quantity, PRIMITIVES

[quantity])

PRIMITIVES localization, shape parameterization

Fig. 25 shows the progressive or layer-based update of
both full images and a conditional replenishment image.
In the interframe coding, only stationary changes have
been modeled. Instead of spreading the update data over
a larger time window, as is typical to reduce burstiness,
we perform spatially localized temporal subsampling by
temporally modulating the replenishment threshold. Vary-
ing the amplitude and period of the modulation allows
high-contrast areas to be updated at a higher rate than
low-contrast areas. This is in accordance with perceptual
psychology since high-contrast areas are more quickly
detected than low-contrast areas due to the characteristics
of the probability summation detection process. In combi-
nation with the layered representation, this forms a new
approach to exploiting the reduced sensitivity of the visual
system based on spatio-temporal layering. This allows one
to restrict spatial subsampling to specific regions of the
image where motion is occurring as well as controlling
the replenishment rate of individual regions based on the
perceived contrast change. If a primitive at any layer has
been encoded, none of the lower layers will be encoded for
the area covered by that primitive during that frame. The
finer resolution data will have to wait for the next frame
to be updated. Additionally, deliberate dropping of the
lower level data that has higher resolution permits graceful
degradation to occur.
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Fig. 25. Layered images.

This algorithm is ideally suited to scene-change replen-
ishment, bringing the higher contrast changes into view
first and then gradually bringing into view the changes
that are of a lower contrast nature. Since the human visual
system is particularly sensitive to edges, and especially
moving edges, this scheme is also aptly suited to handling
image motion. This is because a moving edge generally
constitutes high-contrast changes, which will be updated
faster than areas where the change is due to a moving
image gradient. These will constitute low-contrast changes
and need not be updated as quickly since their detection
will be slower.

While maintaining relatively high image quality, this
manipulable representation scheme can achieve compressed
data rates on par with traditional schemes. The video
encoding gives compression ratios around 20:1 to 80:1
depending on the amount of motion in the video. The
average data rates for quarter common intermediate format
(176 144 pixels) teleconferencing-type color video are
about 2 kb per frame. Because of the decoding simplic-
ity, faster than real time decoding is possible even on
low-power PC’s. For example, on an IBM PC 486/33
MHz with a standard VGA display and ISA bus, de-
coding can achieve rates of up to 70 frames per second
on average.

The versatility of the representation for content-based
retrieval is evident since scene changes can be detected
simply by a combination of thresholding the number of
primitives per frame and the change in color composition
given by the color fields. At most, this involves only adding
together a few of the data fields in the representation. The
average image color similarly can be calculated from the
color and number of elements in each color group. The
nature of the texture is given by the shapes and sizes

of elements and their color contrast in any given region.
Additionally, distinctly colored objects can be directly
isolated and manipulated by simply identifying which color
group(s) they belong to. Higher level information would be
available given the full implementation of the data model,
which requires further work.

VII. CONCLUSIONS

This paper has presented a new semiotic paradigm for
hypermedia data modeling. Commencing with the hyper-
media vision from its inception and progressing to the
existing multimedia extended hypertext systems, a brief
review has been presented of the data-model-related issues
along with the existing shortcomings and requirements for
true hypermedia systems. The retarded state of multimedia
technology in this situation is prevalent in its deficiency
to provide random and associative (content-based) access,
interactive manipulation, and a structured representation.
Since the only objective of multimedia encoding has been
compression, the resulting bit-stream-based data model
is antagonistic to these requirements. The necessity for
manipulable representations based on suitable data models
is mandated to achieve the ultimate goals of hypermedia.
Semiotics is presented as an avenue by which to achieve
these goals.

The goals of hypermedia demand the consideration of
cognitive and semiotic issues as the basis for any proposed
data models for hypermedia. This will impinge on the
nature of the information conveyed or encapsulated by
the data model itself. Of the three domains that may
form the basis of this information—semantic, syntactic,
and statistical—only the syntactic domain is capable of
providing the framework required to generate suitable data
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models. Modeling the data as semantic units requires human
intervention since semantic analysis is subject to a constant
need for knowledge, being unable to cope in unconstrained
environments. Statistical data models, which are currently
used for obtaining compression, are unstructured and cannot
convey any meaning about the data. Alternatively, modeling
the data as syntactic units can be performed automatically,
and there is significant evidence regarding the role of
syntactical analysis in cognition. Since semantics can arise
within a grouping of syntactical units, being able explicitly
to access and interactively manipulate the syntactic units
in a given media allows one to generate new semantics by
restructuring them.

A review of the existing coding models used for vec-
tor graphics, image, video, and audio representations re-
veals their unsuitability for hypermedia since they virtually
encrypt the underlying information. Coding schemes are
required that can provide both compression and support
for retrieval. Additionally, a review of existing multimedia
information-management technologies reveals that existing
management support is external to the data itself, relying
on separate indexes, and is highly dependent on semantic
methods. The same level of random and content-based
access provided by multimedia databases should be sup-
ported by hypermedia systems. Rather than supporting this
functionality through separate indexes, as is currently done,
this should be intrinsically supported within the encoded
hypermedia data through the mechanism of the data-coding
model.

The cognitive principles governing semiosis used to
formulate suitable hypermedia data models were presented
in a brief review of cognition, semiotics, and perceptual
psychology. Some of these principles include the depen-
dence of semantic understanding on syntactic processes
and the suggestion that structural (syntactic) understand-
ing is processed distinctly from, yet simultaneously with,
recognition or semantic understanding. The grouping of
suitable syntactic elements to form perceptually signifi-
cant units was discussed. Gestalt theory cannot define the
nature of these elements but does suggest some general
grouping rules. Alternatively, semiotics has traditionally
defined a double articulation as being composed of the
smallest semantically meaningful units of data (signs) and
their constituent elements (subsigns). To extend and apply
these principles to hypermedia data models, it is required
recursively to decompose these signs into subsigns. This
decomposition permits the definition of primitive elements
that are known to combine syntactically into signs but it
does not provide a grammar to define how they may be
combined. The process of encoding a given data set in
terms of these syntactic elements essentially becomes the
task of inferring a grammar or alternatively defining the
relationships required between elements to reconstruct the
original data set.

Based on this framework, a new semiotic paradigm
has been proposed for hypermedia data models and rep-
resentations. Cognitively based semiotic articulations for
multimedia data have been identified from which semiotic

data models have been proposed for image, video, and
audio data, permitting structured data representations to
be developed. Each model element is separately treated
in terms of its defining, characteristic, and relational at-
tributes. The data models support content-based access
to the data by providing direct access to statistical and
syntactic information, and may be used to infer semantic
information as well. The suitability of these data models
is demonstrated through rudimentary encoding schemes,
which provide compact representations while preserving
direct access to the underlying information for content-
based retrieval purposes. Further work involves a complete
implementation of the data models for the various modali-
ties and the extension of the models to include semantically
more significant articulated and deformable objects.

In conclusion, a new semiotic paradigm has been pro-
posed for hypermedia data modeling and the basis for
hypermedia representations. The need for the new paradigm
has been established and its relationship with existing tech-
nologies in hypermedia has been presented. Data models
based on semiotic articulation for multimedia data have also
been proposed, and their utility as the basis for hypermedia
representations has been demonstrated and explored.
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