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A Brief History of GPU ComputingA Brief History of GPU ComputingA Brief History of GPU ComputingA Brief History of GPU Computing    

The graphics processing unit (GPU), first invented by NVIDIA in 1999, is the most pervasive 

parallel processor to date. Fueled by the insatiable desire for life-like real-time graphics, the 

GPU has evolved into a processor with unprecedented floating-point performance and 

programmability; today’s GPUs greatly outpace CPUs in arithmetic throughput and memory 

bandwidth, making them the ideal processor to accelerate a variety of data parallel 

applications.  

Efforts to exploit the GPU for non-graphical applications have been underway since 2003. By 

using high-level shading languages such as DirectX, OpenGL and Cg, various data parallel 

algorithms have been ported to the GPU. Problems such as protein folding, stock options 

pricing, SQL queries, and MRI reconstruction achieved remarkable performance speedups on 

the GPU. These early efforts that used graphics APIs for general purpose computing were 

known as GPGPU programs. 

While the GPGPU model demonstrated great speedups, it faced several drawbacks. First, it 

required the programmer to possess intimate knowledge of graphics APIs and GPU 

architecture. Second, problems had to be expressed in terms of vertex coordinates, textures 

and shader programs, greatly increasing program complexity. Third, basic programming 

features such as random reads and writes to memory were not supported, greatly restricting 

the programming model. Lastly, the lack of double precision support (until recently) meant 

some scientific applications could not be run on the GPU. 

To address these problems, NVIDIA introduced two key technologies—the G80 unified 

graphics and compute architecture (first introduced in GeForce 8800®, Quadro FX 5600®, and 

Tesla C870® GPUs), and CUDA, a software and hardware architecture that enabled the GPU to 

be programmed with a variety of high level programming languages. Together, these two 

technologies represented a new way of using the GPU. Instead of programming dedicated 

graphics units with graphics APIs, the programmer could now write C programs with CUDA 

extensions and target a general purpose, massively parallel processor. We called this new way 

of GPU programming “GPU Computing”—it signified broader application support, wider 

programming language support, and a clear separation from the early “GPGPU” model of 

programming. 

  



4 

 

The G80 Architecture 

NVIDIA’s GeForce 8800 was the product that gave birth to the new GPU Computing model. 

Introduced in November 2006, the G80 based GeForce 8800 brought several key innovations 

to GPU Computing: 

• G80 was the first GPU to support C, allowing programmers to use the power of the 

GPU without having to learn a new programming language. 

• G80 was the first GPU to replace the separate vertex and pixel pipelines with a single, 

unified processor that executed vertex, geometry, pixel, and computing programs. 

• G80 was the first GPU to utilize a scalar thread processor, eliminating the need for 

programmers to manually manage vector registers.  

• G80 introduced the single-instruction multiple-thread (SIMT) execution model where 

multiple independent threads execute concurrently using a single instruction.  

• G80 introduced shared memory and barrier synchronization for inter-thread 

communication.  

In June 2008, NVIDIA introduced a major revision to the G80 architecture. The second 

generation unified architecture—GT200 (first introduced in the GeForce GTX 280, Quadro FX 

5800, and Tesla T10 GPUs)—increased the number of streaming processor cores 

(subsequently referred to as CUDA cores) from 128 to 240. Each processor register file was 

doubled in size, allowing a greater number of threads to execute on-chip at any given time. 

Hardware memory access coalescing was added to improve memory access efficiency. 

Double precision floating point support was also added to address the needs of scientific and 

high-performance computing (HPC) applications.   

When designing each new generation GPU, it has always been the philosophy at NVIDIA to 

improve both existing application performance and GPU programmability; while faster 

application performance brings immediate benefits, it is the GPU’s relentless advancement in 

programmability that has allowed it to evolve into the most versatile parallel processor of our 

time. It was with this mindset that we set out to develop the successor to the GT200 

architecture.  

NVIDIA’s Next Generation  

CUDA Compute and Graphics Architecture, Code-Named “Fermi” 

The Fermi architecture is the most significant leap forward in GPU architecture since the 

original G80. G80 was our initial vision of what a unified graphics and computing parallel 

processor should look like. GT200 extended the performance and functionality of G80. With 

Fermi, we have taken all we have learned from the two prior processors and all the applications 

that were written for them, and employed a completely new approach to design to create the 

world’s first computational GPU. When we started laying the groundwork for Fermi, we 

gathered extensive user feedback on GPU computing since the introduction of G80 and GT200, 

and focused on the following key areas for improvement: 
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• Improve Double Precision Performance—while single precision floating point performance 

was on the order of ten times the performance of desktop CPUs, some GPU computing 

applications desired more double precision performance as well. 

• ECC support—ECC allows GPU computing users to safely deploy large numbers of GPUs in 

datacenter installations, and also ensure data-sensitive applications like medical imaging and 

financial options pricing are protected from memory errors. 

• True Cache Hierarchy—some parallel algorithms were unable to use the GPU’s shared memory, 

and users requested a true cache architecture to aid them. 

• More Shared Memory—many CUDA programmers requested more than 16 KB of SM shared 

memory to speed up their applications. 

• Faster Context Switching—users requested faster context switches between application 

programs and faster graphics and compute interoperation. 

• Faster Atomic Operations—users requested faster read-modify-write atomic operations for 

their parallel algorithms. 

With these requests in mind, the Fermi team designed a processor that greatly increases raw 

compute horsepower, and through architectural innovations, also offers dramatically increased 

programmability and compute efficiency. The key architectural highlights of Fermi are: 

• Third Generation Streaming Multiprocessor (SM) 

o 32 CUDA cores per SM, 4x over GT200  

o 8x the peak double precision floating point performance over GT200 

o Dual Warp Scheduler simultaneously schedules and dispatches instructions 

from two independent warps 

o 64 KB of RAM with a configurable partitioning of shared memory and  L1 cache 

• Second Generation Parallel Thread Execution ISA 

o Unified Address Space with Full C++ Support 

o Optimized for OpenCL and DirectCompute 

o Full IEEE 754-2008 32-bit and 64-bit precision 

o Full 32-bit integer path with 64-bit extensions 

o Memory access instructions to support transition to 64-bit addressing 

o Improved Performance through Predication 

• Improved Memory Subsystem 

o NVIDIA Parallel DataCacheTM hierarchy with Configurable L1 and Unified L2 

Caches 

o First GPU with ECC memory support 

o Greatly improved atomic memory operation performance 

• NVIDIA GigaThreadTM Engine 

o 10x faster application context switching 

o Concurrent kernel execution 

o Out of Order thread block execution 

o Dual overlapped memory transfer engines 
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A Quick Refresher on CUDA 

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute 

programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A 

CUDA program calls parallel kernels.  A kernel executes in parallel across a set of parallel 

threads.  The programmer or compiler organizes these threads in thread blocks and grids of 

thread blocks.  The GPU instantiates a kernel program on a grid of parallel thread blocks.  

Each thread within a thread block executes an instance of the kernel, and has a thread ID 

within its thread block, program counter, registers, per-thread private memory, inputs, and 

output results. 

A thread block is a set of 

concurrently executing threads 

that can cooperate among 

themselves through barrier 

synchronization and shared 

memory.  A thread block has a 

block ID within its grid.   

A grid is an array of thread 

blocks that execute the same 

kernel, read inputs from global 

memory, write results to global 

memory, and synchronize 

between dependent kernel calls. 

In the CUDA parallel 

programming model, each 

thread has a per-thread private 

memory space used for register 

spills, function calls, and C 

automatic array variables.  Each 

thread block has a per-Block 

shared memory space used for 

inter-thread communication, 

data sharing, and result sharing 

in parallel algorithms. Grids of 

thread blocks share results in 

Global Memory space after 

kernel-wide global 

synchronization.   

  

CUDA Hierarchy of threads, blocks, and grids, with corresponding 

per-thread private, per-block shared, and per-application global 

memory spaces. 
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Hardware Execution 

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes 

one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks; 

and CUDA cores and other execution units in the SM execute threads. The SM executes 

threads in groups of 32 threads called a warp. While programmers can generally ignore warp 

execution for functional correctness and think of programming one thread, they can greatly 

improve performance by having threads in a warp execute the same code path and access 

memory in nearby addresses.    

 

An Overview of An Overview of An Overview of An Overview of the Fermi Architecturethe Fermi Architecturethe Fermi Architecturethe Fermi Architecture    

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA 

cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The 

512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory 

partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM 

memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread 

global scheduler distributes thread blocks to SM thread schedulers. 

 

Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical 

rectangular strip that contain an orange portion (scheduler and dispatch), a green portion 
(execution units), and light blue portions (register file and L1 cache). 
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Third Generation Streaming 

Multiprocessor  

The third generation SM introduces several 

architectural innovations that make it not only the 

most powerful SM yet built, but also the most 

programmable and efficient. 

512 High Performance CUDA cores 

Each SM features 32 CUDA 

processors—a fourfold 

increase over prior SM 

designs.  Each CUDA 

processor has a fully 

pipelined integer arithmetic 

logic unit (ALU) and floating 

point unit (FPU). Prior GPUs used IEEE 754-1985 

floating point arithmetic.  The Fermi architecture 

implements the new IEEE 754-2008 floating-point 

standard, providing the fused multiply-add (FMA) 

instruction for both single and double precision 

arithmetic.  FMA improves over a multiply-add 

(MAD) instruction by doing the multiplication and 

addition with a single final rounding step, with no 

loss of precision in the addition.  FMA is more 

accurate than performing the operations 

separately. GT200 implemented double precision FMA. 

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, 

multi-instruction emulation sequences were required for integer arithmetic.  In Fermi, the newly 

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard 

programming language requirements.  The integer ALU is also optimized to efficiently support 

64-bit and extended precision operations. Various instructions are supported, including 

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population 

count. 

16 Load/Store Units  

Each SM has 16 load/store units, allowing source and destination addresses to be calculated 

for sixteen threads per clock. Supporting units load and store the data at each address to 

cache or DRAM.  
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Four Special Function Units 

Special Function Units (SFUs) execute transcendental instructions such as sin, cosine, 

reciprocal, and square root. Each SFU executes one instruction per thread, per clock; a warp 

executes over eight clocks. The SFU pipeline is decoupled from the dispatch unit, allowing the 

dispatch unit to issue to other execution units while the SFU is occupied. 

Designed for Double Precision 

Double precision arithmetic is at the heart of HPC applications such as linear algebra, 

numerical simulation, and quantum chemistry. The Fermi architecture has been specifically 

designed to offer unprecedented performance in double precision; up to 16 double precision 

fused multiply-add operations can be performed per SM, per clock, a dramatic improvement 

over the GT200 architecture.  

 

Early performance evaluations show Fermi performing up to 4.2x faster than 

GT200 in double precision applications. 
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Dual Warp Scheduler 

The SM schedules threads in groups of 32 parallel threads called warps. Each SM features two 

warp schedulers and two instruction dispatch units, allowing two warps to be issued and 

executed concurrently. Fermi’s dual warp scheduler selects two warps, and issues one 

instruction from each warp to a group of sixteen cores, sixteen load/store units, or four SFUs. 

Because warps execute independently, Fermi’s scheduler does not need to check for 

dependencies from within the instruction stream. Using this elegant model of dual-issue, Fermi 

achieves near peak hardware performance. 

 

Most instructions can be dual issued; two integer instructions, two floating instructions, or a 

mix of integer, floating point, load, store, and SFU instructions can be issued concurrently. 

Double precision instructions do not support dual dispatch with any other operation. 

64 KB Configurable Shared Memory and L1 Cache 

One of the key architectural innovations that greatly improved both the programmability and 

performance of GPU applications is on-chip shared memory. Shared memory enables threads 

within the same thread block to cooperate, facilitates extensive reuse of on-chip data, and 

greatly reduces off-chip traffic. Shared memory is a key enabler for many high-performance 

CUDA applications. 

G80 and GT200 have 16 KB of shared memory per SM. In the Fermi architecture, each SM has 

64 KB of on-chip memory that can be configured as 48 KB of Shared memory with 16 KB of L1 

cache or as 16 KB of Shared memory with 48 KB of L1 cache.   

For existing applications that make extensive use of Shared memory, tripling the amount of 

Shared memory yields significant performance improvements, especially for problems that are 
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bandwidth constrained. For existing applications that use Shared memory as software 

managed cache, code can be streamlined to take advantage of the hardware caching system, 

while still having access to at least 16 KB of shared memory for explicit thread cooperation. 

Best of all, applications that do not use Shared memory automatically benefit from the L1 

cache, allowing high performance CUDA programs to be built with minimum time and effort. 

Summary Table 

GPU G80 GT200 Fermi 

Transistors 681 million 1.4 billion 3.0 billion 

CUDA Cores 128 240 512 

Double Precision Floating 

Point Capability 

None 30 FMA ops / clock 256 FMA ops /clock 

Single Precision Floating 

Point Capability 

128 MAD 
ops/clock 

240 MAD ops / 
clock 

512 FMA ops /clock 

Warp schedulers (per SM) 1 1 2 

Special Function Units 

(SFUs) / SM 

2 2 4 

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or 
16 KB 

L1 Cache (per SM) None None Configurable 16 KB or 
48 KB 

L2 Cache (per SM) None None 768 KB 

ECC Memory Support No No Yes 

Concurrent Kernels No No Up to 16 

Load/Store Address Width 32-bit 32-bit 64-bit 

 

Second Generation Parallel Thread Execution ISA 

Fermi is the first architecture to support the new Parallel Thread eXecution (PTX) 2.0 instruction 

set.  PTX is a low level virtual machine and ISA designed to support the operations of a parallel 

thread processor. At program install time, PTX instructions are translated to machine 

instructions by the GPU driver.  

The primary goals of PTX are: 

� Provide a stable ISA that spans multiple GPU generations 

� Achieve full GPU performance in compiled applications 

� Provide a machine-independent ISA for C, C++, Fortran, and other compiler targets. 

� Provide a code distribution ISA for application and middleware developers 

� Provide a common ISA for optimizing code generators and translators, which map PTX 
to specific target machines. 

� Facilitate hand-coding of libraries and performance kernels 

� Provide a scalable programming model that spans GPU sizes from a few cores to many 
parallel cores 
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PTX 2.0 introduces several new features that greatly improve GPU programmability, accuracy, 

and performance. These include: full IEEE 32-bit floating point precision, unified address space 

for all variables and pointers, 64-bit addressing, and new instructions for OpenCL and 

DirectCompute. Most importantly, PTX 2.0 was specifically designed to provide full support for 

the C++ programming language. 

Unified Address Space enables Full C++ Support 

Fermi and the PTX 2.0 ISA implement a unified address space that unifies the three separate 

address spaces (thread private local, block shared, and global) for load and store operations. 

In PTX 1.0, load/store instructions were specific to one of the three address spaces; programs 

could load or store values in a specific target address space known at compile time. It was 

difficult to fully implement C and C++ pointers since a pointer’s target address space may not 

be known at compile time, and may only be determined dynamically at run time.  

With PTX 2.0, a unified address space unifies all three address spaces into a single, continuous 

address space. A single set of unified load/store instructions operate on this address space, 

augmenting the three separate sets of load/store instructions for local, shared, and global 

memory. The 40-bit unified address space supports a Terabyte of addressable memory, and 

the load/store ISA supports 64-bit addressing for future growth. 

 

The implementation of a unified address space enables Fermi to support true C++ programs. In 

C++, all variables and functions reside in objects which are passed via pointers. PTX 2.0 makes 
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it possible to use unified pointers to pass objects in any memory space, and Fermi’s hardware 

address translation unit automatically maps pointer references to the correct memory space.  

Fermi and the PTX 2.0 ISA also add support for C++ virtual functions, function pointers, and 

‘new’ and ‘delete’ operators for dynamic object allocation and de-allocation. C++ exception 

handling operations ‘try’ and ‘catch’ are also supported.  

Optimized for OpenCL and DirectCompute 

OpenCL and DirectCompute are closely related to the CUDA programming model, sharing the 

key abstractions of threads, thread blocks, grids of thread blocks, barrier synchronization, per-

block shared memory, global memory, and atomic operations.  Fermi, a third-generation CUDA 

architecture, is by nature well-optimized for these APIs. In addition, Fermi offers hardware 

support for OpenCL and DirectCompute surface instructions with format conversion, allowing 

graphics and compute programs to easily operate on the same data. The PTX 2.0 ISA also 

adds support for the DirectCompute instructions population count, append, and bit-reverse.  

IEEE 32-bit Floating Point Precision 

Single precision floating point instructions now support subnormal numbers by default in 

hardware, as well as all four IEEE 754-2008 rounding modes (nearest, zero, positive infinity, 

and negative infinity).  

Subnormal numbers are small numbers that lie between zero and the smallest normalized 

number of a given floating point number system. Prior generation GPUs flushed subnormal 

operands and results to zero, incurring a loss of accuracy. CPUs typically perform subnormal 

calculations in exception-handling software, taking thousands of cycles. Fermi’s floating point 

units handle subnormal numbers in hardware, allowing values to gradually underflow to zero 

with no performance penalty. 

A frequently used sequence of operations in computer graphics, linear algebra, and scientific 

applications is to multiply two numbers, adding the product to a third number, for example, 

D = A × B + C. Prior generation GPUs accelerated this function with the multiply-add (MAD) 

instruction that allowed both operations to be performed in a single clock. The MAD instruction 

performs a multiplication with truncation, followed by an addition with round-to-nearest even. 

Fermi implements the new fused multiply-add (FMA) instruction for both 32-bit single-precision 

and 64-bit double-precision floating point numbers (GT200 supported FMA only in double 

precision) that improves upon multiply-add by retaining full precision in the intermediate stage.  

The increase in precision benefits a number of algorithms, such as rendering fine intersecting 

geometry, greater precision in iterative mathematical calculations, and fast, exactly-rounded 

division and square root operations.  
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Improved Conditional Performance through Predication 

In the Fermi ISA, the native hardware predication support used for divergent thread 

management is now available at the instruction level.  Predication enables short conditional 

code segments to execute efficiently with no branch instruction overhead. 
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Memory Subsystem Innovations 

NVIDIA Parallel DataCacheTM with Configurable L1 and Unified L2 Cache 

Working with hundreds of GPU computing 

applications from various industries, we learned 

that while Shared memory benefits many 

problems, it is not appropriate for all problems.  

Some algorithms map naturally to Shared 

memory, others require a cache, while others 

require a combination of both. The optimal 

memory hierarchy should offer the benefits of 

both Shared memory and cache, and allow the 

programmer a choice over its partitioning. The 

Fermi memory hierarchy adapts to both types of 

program behavior. 

Adding a true cache hierarchy for load / store 

operations presented significant 

challenges.  Traditional GPU architectures 

support a read-only ‘‘load’’ path for texture 

operations and a write-only ‘‘export’’ path for 

pixel data output.  However, this approach is 

poorly suited to executing general purpose C or 

C++ thread programs that expect reads and 

writes to be ordered.  As one example: spilling a 

register operand to memory and then reading it 

back creates a read after write hazard; if the 

read and write paths are separate, it may be necessary to explicitly flush the entire write / 

‘‘export’’ path before it is safe to issue the read, and any caches on the read path would not be 

coherent with respect to the write data. 

The Fermi architecture addresses this challenge by implementing a single unified memory 

request path for loads and stores, with an L1 cache per SM multiprocessor and unified L2 

cache that services all operations (load, store and texture).  The per-SM L1 cache is 

configurable to support both shared memory and caching of local and global memory 

operations. The 64 KB memory can be configured as either 48 KB of Shared memory with 16 

KB of L1 cache, or 16 KB of Shared memory with 48 KB of L1 cache.   When configured with 

48 KB of shared memory, programs that make extensive use of shared memory (such as 

electrodynamic simulations) can perform up to three times faster. For programs whose memory 

accesses are not known beforehand, the 48 KB L1 cache configuration offers greatly improved 

performance over direct access to DRAM.  
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In either configuration, the 

L1 cache also helps by 

caching temporary register 

spills of complex programs. 

Prior generation GPUs 

spilled registers directly to 

DRAM, increasing access 

latency. With the L1 cache, 

performance scales 

gracefully with increased 

temporary register usage. 

 

Fermi features a 768 KB 

unified L2 cache that 

services all load, store, and 

texture requests. The L2 

provides efficient, high 

speed data sharing across 

the GPU. Algorithms for 

which data addresses are 

not known beforehand, such 

as physics solvers, 

raytracing, and sparse 

matrix multiplication 

especially benefit from the 

cache hierarchy. Filter and 

convolution kernels that 

require multiple SMs to read 

the same data also benefit.  
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When using 48 KB of shared memory on Fermi, Radix Sort executes 

4.7x faster than GT200. 

 

Physics algorithms such as fluid simulations especially benefit from Fermi’s 
caches. For convex shape collisions, Fermi is 2.7x faster than GT200. 
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First GPU with ECC Memory Support 

Fermi is the first GPU to support Error Correcting Code (ECC) based protection of data in 

memory. ECC was requested by GPU computing users to enhance data integrity in high 

performance computing environments.  ECC is a highly desired feature in areas such as 

medical imaging and large-scale cluster computing.  

Naturally occurring radiation can cause a bit stored in memory to be altered, resulting in a soft 

error. ECC technology detects and corrects single-bit soft errors before they affect the system. 

Because the probability of such radiation induced errors increase linearly with the number of 

installed systems, ECC is an essential requirement in large cluster installations. 

Fermi supports Single-Error Correct Double----Error Detect (SECDED) ECC codes that correct 

any single bit error in hardware as the data is accessed. In addition, SECDED ECC ensures 

that all double bit errors and many multi-bit errors are also be detected and reported so that 

the program can be re-run rather than being allowed to continue executing with bad data. 

Fermi’s register files, shared memories, L1 caches, L2 cache, and DRAM memory are ECC 

protected, making it not only the most powerful GPU for HPC applications, but also the most 

reliable. In addition, Fermi supports industry standards for checking of data during 

transmission from chip to chip.  All NVIDIA GPUs include support for the PCI Express standard 

for CRC check with retry at the data link layer. Fermi also supports the similar GDDR5 standard 

for CRC check with retry (aka “EDC”) during transmission of data across the memory bus. 

Fast Atomic Memory Operations  

Atomic memory operations are important in parallel programming, allowing concurrent threads 

to correctly perform read-modify-write operations on shared data structures. Atomic 

operations such as add, min, max, and compare-and-swap are atomic in the sense that the 

read, modify, and write operations are performed without interruption by other threads.  Atomic 

memory operations are widely used for parallel sorting, reduction operations, and building data 

structures in parallel without locks that serialize thread execution.   

Thanks to a combination of more atomic units in hardware and the addition of the L2 cache, 

atomic operations performance is up to 20× faster in Fermi compared to the GT200 generation.  
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GigaThreadTM  Thread Scheduler 

One of the most important technologies of the Fermi architecture is its two-level, distributed 

thread scheduler. At the chip level, a global work distribution engine schedules thread blocks 

to various SMs, while at the SM level, each warp scheduler distributes warps of 32 threads to 

its execution units. The first generation GigaThread engine introduced in G80 managed up to 

12,288 threads in realtime. The Fermi architecture improves on this foundation by providing not 

only greater thread throughput, but dramatically faster context switching, concurrent kernel 

execution, and improved thread block scheduling. 

10x Faster Application Context Switching 

Like CPUs, GPUs support multitasking through the use of context switching, where each 

program receives a time slice of the processor’s resources. The Fermi pipeline is optimized to 

reduce the cost of an application context switch to below 25 microseconds, a significant 

improvement over last generation GPUs. Besides improved performance, this allows 

developers to create applications that take greater advantage of frequent kernel-to-kernel 

communication, such as fine-grained interoperation between graphics and PhysX applications. 

Concurrent Kernel Execution 

Fermi supports concurrent kernel execution, where different kernels of the same application 

context can execute on the GPU at the same time. Concurrent kernel execution allows 

programs that execute a number of small kernels to utilize the whole GPU. For example, a 

PhysX program may invoke a fluids solver and a rigid body solver which, if executed 

sequentially, would use only half of the available thread processors.  On the Fermi architecture, 

different kernels of the same CUDA context can execute concurrently, allowing maximum 

utilization of GPU resources. Kernels from different application contexts can still run 

sequentially with great efficiency thanks to the improved context switching performance. 

Serial Kernel Execution Concurrent Kernel Execution

Kernel 1 Kernel 2

Kernel 3 Kernel 4

Kernel 5

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Kernel 5
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Introducing Introducing Introducing Introducing NVIDIA NexusNVIDIA NexusNVIDIA NexusNVIDIA Nexus        

NVIDIA Nexus is the first development environment designed specifically to support massively 

parallel CUDA C, OpenCL, and DirectCompute applications. It bridges the productivity gap 

between CPU and GPU code by bringing parallel-aware hardware source code debugging and 

performance analysis directly into Microsoft Visual Studio, the most widely used integrated 

application development environment under Microsoft Windows.  

Nexus allows Visual Studio developers to write and debug GPU source code using exactly the 

same tools and interfaces that are used when writing and debugging CPU code, including 

source and data breakpoints, and memory inspection. Furthermore, Nexus extends Visual 

Studio functionality by offering tools to manage massive parallelism, such as the ability to 

focus and debug on a single thread out of the thousands of threads running parallel, and the 

ability to simply and efficiently visualize the results computed by all parallel threads. 

Nexus is the perfect environment to develop co-processing applications that take advantage of 

both the CPU and GPU. It captures performance events and information across both 

processors, and presents the information to the developer on a single correlated timeline. This 

allows developers to see how their application behaves and performs on the entire system, 

rather than through a narrow view that is focused on a particular subsystem or processor. 

 

NVIDIA Nexus integrated development environment 
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ConclusionConclusionConclusionConclusion 

For sixteen years, NVIDIA has dedicated itself to building the world’s fastest graphics 

processors. While G80 was a pioneering architecture in GPU computing, and GT200 a major 

refinement, their designs were nevertheless deeply rooted in the world of graphics. The Fermi 

architecture represents a new direction for NVIDIA. Far from being merely the successor to 

GT200, Fermi is the outcome of a radical rethinking of the role, purpose, and capability of the 

GPU. 

Rather than taking the simple route of adding execution units, the Fermi team has tackled 

some of the toughest problems of GPU computing. The importance of data locality is 

recognized through Fermi’s two level cache hierarchy and its combined load/store memory 

path. Double precision performance is elevated to supercomputing levels, while atomic 

operations execute up to twenty times faster. Lastly, Fermi’s comprehensive ECC support 

strongly demonstrates our commitment to the high-performance computing market.  

On the software side, the architecture brings forward support for C++, the world’s most 

ubiquitous object-orientated programming language, and Nexus, the world’s first integrated 

development environment designed for massively parallel GPU computing applications.  

With its combination of ground breaking performance, functionality, and programmability, the 

Fermi architecture represents the next revolution in GPU computing. 
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