

Whitepaper

NVIDIA’s Next Generation

CUDA
TM

 Compute Architecture:

Fermi
TM

Table of ContentsTable of ContentsTable of ContentsTable of Contents

A Brief History of GPU Computing ... 3

The G80 Architecture ... 4

NVIDIA’s Next Generation CUDA Compute and Graphics Architecture, Code-Named “Fermi” 4

A Quick Refresher on CUDA ... 6

Hardware Execution ... 7

An Overview of the Fermi Architecture ... 7

Third Generation Streaming Multiprocessor .. 8

512 High Performance CUDA cores .. 8

16 Load/Store Units ... 8

Four Special Function Units .. 9

Designed for Double Precision .. 9

Dual Warp Scheduler ... 10

64 KB Configurable Shared Memory and L1 Cache .. 10

Summary Table ... 11

Second Generation Parallel Thread Execution ISA ... 11

Unified Address Space enables Full C++ Support .. 12

Optimized for OpenCL and DirectCompute .. 13

IEEE 32-bit Floating Point Precision .. 13

Improved Conditional Performance through Predication ... 14

Memory Subsystem Innovations .. 15

NVIDIA Parallel DataCacheTM with Configurable L1 and Unified L2 Cache .. 15

First GPU with ECC Memory Support .. 17

Fast Atomic Memory Operations ... 17

GigaThreadTM Thread Scheduler... 18

10x Faster Application Context Switching ... 18

Concurrent Kernel Execution ... 18

Introducing NVIDIA Nexus ... 19

Conclusion ... 20

3

A Brief History of GPU ComputingA Brief History of GPU ComputingA Brief History of GPU ComputingA Brief History of GPU Computing

The graphics processing unit (GPU), first invented by NVIDIA in 1999, is the most pervasive

parallel processor to date. Fueled by the insatiable desire for life-like real-time graphics, the

GPU has evolved into a processor with unprecedented floating-point performance and

programmability; today’s GPUs greatly outpace CPUs in arithmetic throughput and memory

bandwidth, making them the ideal processor to accelerate a variety of data parallel

applications.

Efforts to exploit the GPU for non-graphical applications have been underway since 2003. By

using high-level shading languages such as DirectX, OpenGL and Cg, various data parallel

algorithms have been ported to the GPU. Problems such as protein folding, stock options

pricing, SQL queries, and MRI reconstruction achieved remarkable performance speedups on

the GPU. These early efforts that used graphics APIs for general purpose computing were

known as GPGPU programs.

While the GPGPU model demonstrated great speedups, it faced several drawbacks. First, it

required the programmer to possess intimate knowledge of graphics APIs and GPU

architecture. Second, problems had to be expressed in terms of vertex coordinates, textures

and shader programs, greatly increasing program complexity. Third, basic programming

features such as random reads and writes to memory were not supported, greatly restricting

the programming model. Lastly, the lack of double precision support (until recently) meant

some scientific applications could not be run on the GPU.

To address these problems, NVIDIA introduced two key technologies—the G80 unified

graphics and compute architecture (first introduced in GeForce 8800®, Quadro FX 5600®, and

Tesla C870® GPUs), and CUDA, a software and hardware architecture that enabled the GPU to

be programmed with a variety of high level programming languages. Together, these two

technologies represented a new way of using the GPU. Instead of programming dedicated

graphics units with graphics APIs, the programmer could now write C programs with CUDA

extensions and target a general purpose, massively parallel processor. We called this new way

of GPU programming “GPU Computing”—it signified broader application support, wider

programming language support, and a clear separation from the early “GPGPU” model of

programming.

4

The G80 Architecture

NVIDIA’s GeForce 8800 was the product that gave birth to the new GPU Computing model.

Introduced in November 2006, the G80 based GeForce 8800 brought several key innovations

to GPU Computing:

• G80 was the first GPU to support C, allowing programmers to use the power of the

GPU without having to learn a new programming language.

• G80 was the first GPU to replace the separate vertex and pixel pipelines with a single,

unified processor that executed vertex, geometry, pixel, and computing programs.

• G80 was the first GPU to utilize a scalar thread processor, eliminating the need for

programmers to manually manage vector registers.

• G80 introduced the single-instruction multiple-thread (SIMT) execution model where

multiple independent threads execute concurrently using a single instruction.

• G80 introduced shared memory and barrier synchronization for inter-thread

communication.

In June 2008, NVIDIA introduced a major revision to the G80 architecture. The second

generation unified architecture—GT200 (first introduced in the GeForce GTX 280, Quadro FX

5800, and Tesla T10 GPUs)—increased the number of streaming processor cores

(subsequently referred to as CUDA cores) from 128 to 240. Each processor register file was

doubled in size, allowing a greater number of threads to execute on-chip at any given time.

Hardware memory access coalescing was added to improve memory access efficiency.

Double precision floating point support was also added to address the needs of scientific and

high-performance computing (HPC) applications.

When designing each new generation GPU, it has always been the philosophy at NVIDIA to

improve both existing application performance and GPU programmability; while faster

application performance brings immediate benefits, it is the GPU’s relentless advancement in

programmability that has allowed it to evolve into the most versatile parallel processor of our

time. It was with this mindset that we set out to develop the successor to the GT200

architecture.

NVIDIA’s Next Generation

CUDA Compute and Graphics Architecture, Code-Named “Fermi”

The Fermi architecture is the most significant leap forward in GPU architecture since the

original G80. G80 was our initial vision of what a unified graphics and computing parallel

processor should look like. GT200 extended the performance and functionality of G80. With

Fermi, we have taken all we have learned from the two prior processors and all the applications

that were written for them, and employed a completely new approach to design to create the

world’s first computational GPU. When we started laying the groundwork for Fermi, we

gathered extensive user feedback on GPU computing since the introduction of G80 and GT200,

and focused on the following key areas for improvement:

5

• Improve Double Precision Performance—while single precision floating point performance

was on the order of ten times the performance of desktop CPUs, some GPU computing

applications desired more double precision performance as well.

• ECC support—ECC allows GPU computing users to safely deploy large numbers of GPUs in

datacenter installations, and also ensure data-sensitive applications like medical imaging and

financial options pricing are protected from memory errors.

• True Cache Hierarchy—some parallel algorithms were unable to use the GPU’s shared memory,

and users requested a true cache architecture to aid them.

• More Shared Memory—many CUDA programmers requested more than 16 KB of SM shared

memory to speed up their applications.

• Faster Context Switching—users requested faster context switches between application

programs and faster graphics and compute interoperation.

• Faster Atomic Operations—users requested faster read-modify-write atomic operations for

their parallel algorithms.

With these requests in mind, the Fermi team designed a processor that greatly increases raw

compute horsepower, and through architectural innovations, also offers dramatically increased

programmability and compute efficiency. The key architectural highlights of Fermi are:

• Third Generation Streaming Multiprocessor (SM)

o 32 CUDA cores per SM, 4x over GT200

o 8x the peak double precision floating point performance over GT200

o Dual Warp Scheduler simultaneously schedules and dispatches instructions

from two independent warps

o 64 KB of RAM with a configurable partitioning of shared memory and L1 cache

• Second Generation Parallel Thread Execution ISA

o Unified Address Space with Full C++ Support

o Optimized for OpenCL and DirectCompute

o Full IEEE 754-2008 32-bit and 64-bit precision

o Full 32-bit integer path with 64-bit extensions

o Memory access instructions to support transition to 64-bit addressing

o Improved Performance through Predication

• Improved Memory Subsystem

o NVIDIA Parallel DataCacheTM hierarchy with Configurable L1 and Unified L2

Caches

o First GPU with ECC memory support

o Greatly improved atomic memory operation performance

• NVIDIA GigaThreadTM Engine

o 10x faster application context switching

o Concurrent kernel execution

o Out of Order thread block execution

o Dual overlapped memory transfer engines

6

A Quick Refresher on CUDA

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute

programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A

CUDA program calls parallel kernels. A kernel executes in parallel across a set of parallel

threads. The programmer or compiler organizes these threads in thread blocks and grids of

thread blocks. The GPU instantiates a kernel program on a grid of parallel thread blocks.

Each thread within a thread block executes an instance of the kernel, and has a thread ID

within its thread block, program counter, registers, per-thread private memory, inputs, and

output results.

A thread block is a set of

concurrently executing threads

that can cooperate among

themselves through barrier

synchronization and shared

memory. A thread block has a

block ID within its grid.

A grid is an array of thread

blocks that execute the same

kernel, read inputs from global

memory, write results to global

memory, and synchronize

between dependent kernel calls.

In the CUDA parallel

programming model, each

thread has a per-thread private

memory space used for register

spills, function calls, and C

automatic array variables. Each

thread block has a per-Block

shared memory space used for

inter-thread communication,

data sharing, and result sharing

in parallel algorithms. Grids of

thread blocks share results in

Global Memory space after

kernel-wide global

synchronization.

CUDA Hierarchy of threads, blocks, and grids, with corresponding

per-thread private, per-block shared, and per-application global

memory spaces.

7

Hardware Execution

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes

one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks;

and CUDA cores and other execution units in the SM execute threads. The SM executes

threads in groups of 32 threads called a warp. While programmers can generally ignore warp

execution for functional correctness and think of programming one thread, they can greatly

improve performance by having threads in a warp execute the same code path and access

memory in nearby addresses.

An Overview of An Overview of An Overview of An Overview of the Fermi Architecturethe Fermi Architecturethe Fermi Architecturethe Fermi Architecture

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA

cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The

512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory

partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM

memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread

global scheduler distributes thread blocks to SM thread schedulers.

Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical

rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).

8

Third Generation Streaming

Multiprocessor

The third generation SM introduces several

architectural innovations that make it not only the

most powerful SM yet built, but also the most

programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA

processors—a fourfold

increase over prior SM

designs. Each CUDA

processor has a fully

pipelined integer arithmetic

logic unit (ALU) and floating

point unit (FPU). Prior GPUs used IEEE 754-1985

floating point arithmetic. The Fermi architecture

implements the new IEEE 754-2008 floating-point

standard, providing the fused multiply-add (FMA)

instruction for both single and double precision

arithmetic. FMA improves over a multiply-add

(MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no

loss of precision in the addition. FMA is more

accurate than performing the operations

separately. GT200 implemented double precision FMA.

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result,

multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard

programming language requirements. The integer ALU is also optimized to efficiently support

64-bit and extended precision operations. Various instructions are supported, including

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population

count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be calculated

for sixteen threads per clock. Supporting units load and store the data at each address to

cache or DRAM.

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

SFU

SFU

SFU

SFU

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Core

Register File (4096 x 32-bit)

CUDA Core

Operand Collector

Dispatch Port

Result Queue

FP Unit INT Unit

Fermi Streaming Multiprocessor (SM)

9

Four Special Function Units

Special Function Units (SFUs) execute transcendental instructions such as sin, cosine,

reciprocal, and square root. Each SFU executes one instruction per thread, per clock; a warp

executes over eight clocks. The SFU pipeline is decoupled from the dispatch unit, allowing the

dispatch unit to issue to other execution units while the SFU is occupied.

Designed for Double Precision

Double precision arithmetic is at the heart of HPC applications such as linear algebra,

numerical simulation, and quantum chemistry. The Fermi architecture has been specifically

designed to offer unprecedented performance in double precision; up to 16 double precision

fused multiply-add operations can be performed per SM, per clock, a dramatic improvement

over the GT200 architecture.

Early performance evaluations show Fermi performing up to 4.2x faster than

GT200 in double precision applications.

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Double Precision Matrix
Multiply

Double Precision Tri-Diagonal
Solver

Double Precision Application Performance

GT200

Architecture

Fermi

Architecture

10

Dual Warp Scheduler

The SM schedules threads in groups of 32 parallel threads called warps. Each SM features two

warp schedulers and two instruction dispatch units, allowing two warps to be issued and

executed concurrently. Fermi’s dual warp scheduler selects two warps, and issues one

instruction from each warp to a group of sixteen cores, sixteen load/store units, or four SFUs.

Because warps execute independently, Fermi’s scheduler does not need to check for

dependencies from within the instruction stream. Using this elegant model of dual-issue, Fermi

achieves near peak hardware performance.

Most instructions can be dual issued; two integer instructions, two floating instructions, or a

mix of integer, floating point, load, store, and SFU instructions can be issued concurrently.

Double precision instructions do not support dual dispatch with any other operation.

64 KB Configurable Shared Memory and L1 Cache

One of the key architectural innovations that greatly improved both the programmability and

performance of GPU applications is on-chip shared memory. Shared memory enables threads

within the same thread block to cooperate, facilitates extensive reuse of on-chip data, and

greatly reduces off-chip traffic. Shared memory is a key enabler for many high-performance

CUDA applications.

G80 and GT200 have 16 KB of shared memory per SM. In the Fermi architecture, each SM has

64 KB of on-chip memory that can be configured as 48 KB of Shared memory with 16 KB of L1

cache or as 16 KB of Shared memory with 48 KB of L1 cache.

For existing applications that make extensive use of Shared memory, tripling the amount of

Shared memory yields significant performance improvements, especially for problems that are

11

bandwidth constrained. For existing applications that use Shared memory as software

managed cache, code can be streamlined to take advantage of the hardware caching system,

while still having access to at least 16 KB of shared memory for explicit thread cooperation.

Best of all, applications that do not use Shared memory automatically benefit from the L1

cache, allowing high performance CUDA programs to be built with minimum time and effort.

Summary Table

GPU G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating

Point Capability

None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating

Point Capability

128 MAD
ops/clock

240 MAD ops /
clock

512 FMA ops /clock

Warp schedulers (per SM) 1 1 2

Special Function Units

(SFUs) / SM

2 2 4

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or
48 KB

L2 Cache (per SM) None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Second Generation Parallel Thread Execution ISA

Fermi is the first architecture to support the new Parallel Thread eXecution (PTX) 2.0 instruction

set. PTX is a low level virtual machine and ISA designed to support the operations of a parallel

thread processor. At program install time, PTX instructions are translated to machine

instructions by the GPU driver.

The primary goals of PTX are:

� Provide a stable ISA that spans multiple GPU generations

� Achieve full GPU performance in compiled applications

� Provide a machine-independent ISA for C, C++, Fortran, and other compiler targets.

� Provide a code distribution ISA for application and middleware developers

� Provide a common ISA for optimizing code generators and translators, which map PTX
to specific target machines.

� Facilitate hand-coding of libraries and performance kernels

� Provide a scalable programming model that spans GPU sizes from a few cores to many
parallel cores

12

PTX 2.0 introduces several new features that greatly improve GPU programmability, accuracy,

and performance. These include: full IEEE 32-bit floating point precision, unified address space

for all variables and pointers, 64-bit addressing, and new instructions for OpenCL and

DirectCompute. Most importantly, PTX 2.0 was specifically designed to provide full support for

the C++ programming language.

Unified Address Space enables Full C++ Support

Fermi and the PTX 2.0 ISA implement a unified address space that unifies the three separate

address spaces (thread private local, block shared, and global) for load and store operations.

In PTX 1.0, load/store instructions were specific to one of the three address spaces; programs

could load or store values in a specific target address space known at compile time. It was

difficult to fully implement C and C++ pointers since a pointer’s target address space may not

be known at compile time, and may only be determined dynamically at run time.

With PTX 2.0, a unified address space unifies all three address spaces into a single, continuous

address space. A single set of unified load/store instructions operate on this address space,

augmenting the three separate sets of load/store instructions for local, shared, and global

memory. The 40-bit unified address space supports a Terabyte of addressable memory, and

the load/store ISA supports 64-bit addressing for future growth.

The implementation of a unified address space enables Fermi to support true C++ programs. In

C++, all variables and functions reside in objects which are passed via pointers. PTX 2.0 makes

13

it possible to use unified pointers to pass objects in any memory space, and Fermi’s hardware

address translation unit automatically maps pointer references to the correct memory space.

Fermi and the PTX 2.0 ISA also add support for C++ virtual functions, function pointers, and

‘new’ and ‘delete’ operators for dynamic object allocation and de-allocation. C++ exception

handling operations ‘try’ and ‘catch’ are also supported.

Optimized for OpenCL and DirectCompute

OpenCL and DirectCompute are closely related to the CUDA programming model, sharing the

key abstractions of threads, thread blocks, grids of thread blocks, barrier synchronization, per-

block shared memory, global memory, and atomic operations. Fermi, a third-generation CUDA

architecture, is by nature well-optimized for these APIs. In addition, Fermi offers hardware

support for OpenCL and DirectCompute surface instructions with format conversion, allowing

graphics and compute programs to easily operate on the same data. The PTX 2.0 ISA also

adds support for the DirectCompute instructions population count, append, and bit-reverse.

IEEE 32-bit Floating Point Precision

Single precision floating point instructions now support subnormal numbers by default in

hardware, as well as all four IEEE 754-2008 rounding modes (nearest, zero, positive infinity,

and negative infinity).

Subnormal numbers are small numbers that lie between zero and the smallest normalized

number of a given floating point number system. Prior generation GPUs flushed subnormal

operands and results to zero, incurring a loss of accuracy. CPUs typically perform subnormal

calculations in exception-handling software, taking thousands of cycles. Fermi’s floating point

units handle subnormal numbers in hardware, allowing values to gradually underflow to zero

with no performance penalty.

A frequently used sequence of operations in computer graphics, linear algebra, and scientific

applications is to multiply two numbers, adding the product to a third number, for example,

D = A × B + C. Prior generation GPUs accelerated this function with the multiply-add (MAD)

instruction that allowed both operations to be performed in a single clock. The MAD instruction

performs a multiplication with truncation, followed by an addition with round-to-nearest even.

Fermi implements the new fused multiply-add (FMA) instruction for both 32-bit single-precision

and 64-bit double-precision floating point numbers (GT200 supported FMA only in double

precision) that improves upon multiply-add by retaining full precision in the intermediate stage.

The increase in precision benefits a number of algorithms, such as rendering fine intersecting

geometry, greater precision in iterative mathematical calculations, and fast, exactly-rounded

division and square root operations.

14

Improved Conditional Performance through Predication

In the Fermi ISA, the native hardware predication support used for divergent thread

management is now available at the instruction level. Predication enables short conditional

code segments to execute efficiently with no branch instruction overhead.

15

Memory Subsystem Innovations

NVIDIA Parallel DataCacheTM with Configurable L1 and Unified L2 Cache

Working with hundreds of GPU computing

applications from various industries, we learned

that while Shared memory benefits many

problems, it is not appropriate for all problems.

Some algorithms map naturally to Shared

memory, others require a cache, while others

require a combination of both. The optimal

memory hierarchy should offer the benefits of

both Shared memory and cache, and allow the

programmer a choice over its partitioning. The

Fermi memory hierarchy adapts to both types of

program behavior.

Adding a true cache hierarchy for load / store

operations presented significant

challenges. Traditional GPU architectures

support a read-only ‘‘load’’ path for texture

operations and a write-only ‘‘export’’ path for

pixel data output. However, this approach is

poorly suited to executing general purpose C or

C++ thread programs that expect reads and

writes to be ordered. As one example: spilling a

register operand to memory and then reading it

back creates a read after write hazard; if the

read and write paths are separate, it may be necessary to explicitly flush the entire write /

‘‘export’’ path before it is safe to issue the read, and any caches on the read path would not be

coherent with respect to the write data.

The Fermi architecture addresses this challenge by implementing a single unified memory

request path for loads and stores, with an L1 cache per SM multiprocessor and unified L2

cache that services all operations (load, store and texture). The per-SM L1 cache is

configurable to support both shared memory and caching of local and global memory

operations. The 64 KB memory can be configured as either 48 KB of Shared memory with 16

KB of L1 cache, or 16 KB of Shared memory with 48 KB of L1 cache. When configured with

48 KB of shared memory, programs that make extensive use of shared memory (such as

electrodynamic simulations) can perform up to three times faster. For programs whose memory

accesses are not known beforehand, the 48 KB L1 cache configuration offers greatly improved

performance over direct access to DRAM.

16

In either configuration, the

L1 cache also helps by

caching temporary register

spills of complex programs.

Prior generation GPUs

spilled registers directly to

DRAM, increasing access

latency. With the L1 cache,

performance scales

gracefully with increased

temporary register usage.

Fermi features a 768 KB

unified L2 cache that

services all load, store, and

texture requests. The L2

provides efficient, high

speed data sharing across

the GPU. Algorithms for

which data addresses are

not known beforehand, such

as physics solvers,

raytracing, and sparse

matrix multiplication

especially benefit from the

cache hierarchy. Filter and

convolution kernels that

require multiple SMs to read

the same data also benefit.

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

GT200 Architecture Fermi Architecture

Radix Sort using Shared Memory

0%

50%

100%

150%

200%

250%

300%

GT200 Architecture Fermi Architecture

PhysX Fluid Collision for Convex Shapes

When using 48 KB of shared memory on Fermi, Radix Sort executes

4.7x faster than GT200.

Physics algorithms such as fluid simulations especially benefit from Fermi’s
caches. For convex shape collisions, Fermi is 2.7x faster than GT200.

17

First GPU with ECC Memory Support

Fermi is the first GPU to support Error Correcting Code (ECC) based protection of data in

memory. ECC was requested by GPU computing users to enhance data integrity in high

performance computing environments. ECC is a highly desired feature in areas such as

medical imaging and large-scale cluster computing.

Naturally occurring radiation can cause a bit stored in memory to be altered, resulting in a soft

error. ECC technology detects and corrects single-bit soft errors before they affect the system.

Because the probability of such radiation induced errors increase linearly with the number of

installed systems, ECC is an essential requirement in large cluster installations.

Fermi supports Single-Error Correct Double----Error Detect (SECDED) ECC codes that correct

any single bit error in hardware as the data is accessed. In addition, SECDED ECC ensures

that all double bit errors and many multi-bit errors are also be detected and reported so that

the program can be re-run rather than being allowed to continue executing with bad data.

Fermi’s register files, shared memories, L1 caches, L2 cache, and DRAM memory are ECC

protected, making it not only the most powerful GPU for HPC applications, but also the most

reliable. In addition, Fermi supports industry standards for checking of data during

transmission from chip to chip. All NVIDIA GPUs include support for the PCI Express standard

for CRC check with retry at the data link layer. Fermi also supports the similar GDDR5 standard

for CRC check with retry (aka “EDC”) during transmission of data across the memory bus.

Fast Atomic Memory Operations

Atomic memory operations are important in parallel programming, allowing concurrent threads

to correctly perform read-modify-write operations on shared data structures. Atomic

operations such as add, min, max, and compare-and-swap are atomic in the sense that the

read, modify, and write operations are performed without interruption by other threads. Atomic

memory operations are widely used for parallel sorting, reduction operations, and building data

structures in parallel without locks that serialize thread execution.

Thanks to a combination of more atomic units in hardware and the addition of the L2 cache,

atomic operations performance is up to 20× faster in Fermi compared to the GT200 generation.

18

GigaThreadTM Thread Scheduler

One of the most important technologies of the Fermi architecture is its two-level, distributed

thread scheduler. At the chip level, a global work distribution engine schedules thread blocks

to various SMs, while at the SM level, each warp scheduler distributes warps of 32 threads to

its execution units. The first generation GigaThread engine introduced in G80 managed up to

12,288 threads in realtime. The Fermi architecture improves on this foundation by providing not

only greater thread throughput, but dramatically faster context switching, concurrent kernel

execution, and improved thread block scheduling.

10x Faster Application Context Switching

Like CPUs, GPUs support multitasking through the use of context switching, where each

program receives a time slice of the processor’s resources. The Fermi pipeline is optimized to

reduce the cost of an application context switch to below 25 microseconds, a significant

improvement over last generation GPUs. Besides improved performance, this allows

developers to create applications that take greater advantage of frequent kernel-to-kernel

communication, such as fine-grained interoperation between graphics and PhysX applications.

Concurrent Kernel Execution

Fermi supports concurrent kernel execution, where different kernels of the same application

context can execute on the GPU at the same time. Concurrent kernel execution allows

programs that execute a number of small kernels to utilize the whole GPU. For example, a

PhysX program may invoke a fluids solver and a rigid body solver which, if executed

sequentially, would use only half of the available thread processors. On the Fermi architecture,

different kernels of the same CUDA context can execute concurrently, allowing maximum

utilization of GPU resources. Kernels from different application contexts can still run

sequentially with great efficiency thanks to the improved context switching performance.

Serial Kernel Execution Concurrent Kernel Execution

Kernel 1 Kernel 2

Kernel 3 Kernel 4

Kernel 5

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Kernel 5

19

Introducing Introducing Introducing Introducing NVIDIA NexusNVIDIA NexusNVIDIA NexusNVIDIA Nexus

NVIDIA Nexus is the first development environment designed specifically to support massively

parallel CUDA C, OpenCL, and DirectCompute applications. It bridges the productivity gap

between CPU and GPU code by bringing parallel-aware hardware source code debugging and

performance analysis directly into Microsoft Visual Studio, the most widely used integrated

application development environment under Microsoft Windows.

Nexus allows Visual Studio developers to write and debug GPU source code using exactly the

same tools and interfaces that are used when writing and debugging CPU code, including

source and data breakpoints, and memory inspection. Furthermore, Nexus extends Visual

Studio functionality by offering tools to manage massive parallelism, such as the ability to

focus and debug on a single thread out of the thousands of threads running parallel, and the

ability to simply and efficiently visualize the results computed by all parallel threads.

Nexus is the perfect environment to develop co-processing applications that take advantage of

both the CPU and GPU. It captures performance events and information across both

processors, and presents the information to the developer on a single correlated timeline. This

allows developers to see how their application behaves and performs on the entire system,

rather than through a narrow view that is focused on a particular subsystem or processor.

NVIDIA Nexus integrated development environment

20

ConclusionConclusionConclusionConclusion

For sixteen years, NVIDIA has dedicated itself to building the world’s fastest graphics

processors. While G80 was a pioneering architecture in GPU computing, and GT200 a major

refinement, their designs were nevertheless deeply rooted in the world of graphics. The Fermi

architecture represents a new direction for NVIDIA. Far from being merely the successor to

GT200, Fermi is the outcome of a radical rethinking of the role, purpose, and capability of the

GPU.

Rather than taking the simple route of adding execution units, the Fermi team has tackled

some of the toughest problems of GPU computing. The importance of data locality is

recognized through Fermi’s two level cache hierarchy and its combined load/store memory

path. Double precision performance is elevated to supercomputing levels, while atomic

operations execute up to twenty times faster. Lastly, Fermi’s comprehensive ECC support

strongly demonstrates our commitment to the high-performance computing market.

On the software side, the architecture brings forward support for C++, the world’s most

ubiquitous object-orientated programming language, and Nexus, the world’s first integrated

development environment designed for massively parallel GPU computing applications.

With its combination of ground breaking performance, functionality, and programmability, the

Fermi architecture represents the next revolution in GPU computing.

Notice

ALL INFORMATION PROVIDED IN THIS WHITE PAPER, INCLUDING COMMENTARY, OPINION, NVIDIA DESIGN

SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER

AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF

NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the

consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its

use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications

mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or

systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, FERMI and GeForce are trademarks or registered trademarks of NVIDIA Corporation in the United

States and other countries. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

