Filet-o-Fish: practical and dependable
domain-specific languages for OS development

Pierre-Evariste Dagand
ENS Cachan-Bretagne
France

ABSTRACT

We address a persistent problem with using domain-specific lan-
guages to write operating systems: the effort of implementing,
checking, and debugging the DSL usually outweighs any of its
benefits. Because these DSLs generate C by templated string con-
catenation, they are tedious to write, fragile, and incompatible with
automated verification tools.

We present Filet-o-Fish (FoF), a semantic language to ease DSL
construction. Building a DSL using FoF consists of safely compos-
ing semantically-rich building blocks. This has several advantages:
input files for the DSL are formal specifications of the system’s
functionality, automated testing of the DSL is possible via existing
tools, and we can prove that the C code generated by a given DSL
respects the semantics expected by the developer.

Early experience has been good: FoF is in daily use as part of the
tool chain of the Barrelfish multicore OS, which makes extensive
use of domain-specific languages to generate low-level OS code.
We have found that the ability to rapidly generate DSLs we can
rely on has changed how we have designed the OS.

1. INTRODUCTION

The use of domain-specific languages (DSLs) to generate code for
operating systems is a well-known technique, and it appears to of-
fer significant benefits: programmers can express high-level ideas
about the system at hand and avoid writing large quantities of for-
mulaic C boilerplate. However, the idea has achieved little traction
in the OS community so far: with the notable exception of interface
definition languages for remote procedure call (RPC) stubs, most
OS code is still written in a low-level language such as C. Where
DSL code generators are used in an OS, they tend to be extremely
simple in both syntax and semantics.

We conjecture that the effort to implement a given DSL usually
outweighs its benefit. Based on our own experience developing
code for several operating systems over the years, we identify sev-
eral serious obstacles to using DSLs to build a modern OS: specify-
ing what the generated code will look like, evolving the DSL over
time, debugging generated code, implementing a bug-free code
generator, and testing the DSL compiler.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PLOS 09, October 11, 2009, Big Sky, Montana, USA.

Copyright 2009 ACM 978-1-60558-844-5/09/10 ...$10.00.

Andrew Baumann

Timothy Roscoe
Systems Group, ETH Zurich
Switzerland

We present Filet-o-Fish (FoF), which addresses these problems
by providing a tool to build correct code generators from seman-
tic specifications, in contrast with the traditional approach of using
code templates and string concatenation. DSL compilers built us-
ing FoF are quick to write, simple, and compact, but encode rigor-
ous semantics for the generated code. They allow formal proofs of
the runtime behavior of generated code, and automated testing of
the code generator based on randomized inputs, providing greater
test coverage than is usually feasible in a DSL.

The results are DSL compilers that OS developers can quickly
implement and evolve, and that generate provably correct code.
We use FoF to build a number of domain-specific languages used
in Barrelfish [1], a new OS for heterogeneous multicore systems.
This leads to a DSL-based methodology of OS development that
we have found useful in building Barrelfish.

In the next section, we make a case for the use of DSLs in operat-
ing systems and identify the shortcomings of current techniques. In
Section 3, we demonstrate that FoF is a practical toolkit for the im-
plementation of DSLs, using the example of Hamlet — a key com-
ponent of Barrelfish that specifies and builds the capability infras-
tructure. In Section 4, we elaborate on the case for dependable
code generation. Finally, in Section 5, we situate FoF in the con-
text of other approaches to dependable OS code, and conclude in
Section 6.

2. BACKGROUND

Using little languages to aid in software development is, in general,
a tried-and-trusted technique [13]. The specific use-case we con-
sider in this paper is using one or more domain-specific languages
to build parts of the kernel and basic subsystems of an OS, by gen-
erating low level code (e.g. C) from a high-level specification of
functionality.

This approach is typified by the Devil language for hardware ac-
cess [11]. An OS programmer describes the register set of a hard-
ware device in the high-level Devil language, which is then com-
piled into a library providing C functions to read and write values
from the device registers. In doing so, Devil frees the programmer
from having to write extensive bit-manipulation macros or inline
functions to map between the values the OS code deals with, and
the bit-representation used by the hardware: Devil generates code
to do this automatically.

Conceptually, such a DSL both abstracts away low-level details
and justifies the abstraction by its semantics. In principle, it reduces
development time by allowing the programmer to focus on high-
level abstractions. The programmer needs to write less code, in a
language with syntax and type checks adapted to the problem at
hand, further reducing the likelihood of errors.

Despite this, neither mainstream commercial operating systems
(such as Windows, Linux, and BSD) nor research operating sys-
tems use DSLs in this way, other than for RPC stub generation. We
claim there are a number of reasons for this, although performance
is unlikely to be one of them: it is relatively easy to hand-optimize
code in critical cases, even within a DSL framework. Instead, our
argument is that DSLs today simply do not deliver enough bene-
fit to programmers (over and above hand-coding formulaic C) to
justify the costs of building and using them.

The first difficulty is merely that it is a lot of effort to build a
compiler for a domain-specific language beyond very simple syn-
tactic sugar. While the DSL syntax itself may be easy to design
given an understanding of the problem at hand, the developer must
then build a parser for the language and a code generator to output
C, C++, or Sing# [7] for example.

Efficient tools for rapidly building parsers are now available
(such as the Parsec library [10] we use for the languages described
in this paper). In reality, most of the implementation work for a
DSL is in the backend that takes the abstract syntax tree produced
by the parser, and generates code to be compiled and linked into
the OS. In most existing DSLs for OS development (including the
early ones we used in developing Barrelfish), this amounts to con-
catenating strings together to generate code from inline templates.
For example, nearly half the source lines of the Devil compiler! are
devoted to the embedding of a C AST — Devil symbolically ma-
nipulates a syntactic abstraction of C, hence complicating the col-
lection and verification of semantic properties, such as in data-flow
analyses.

The second challenge is in deciding what code to generate. The
generated code is likely to be quite specific to a particular system,
and since one is essentially writing a program to generate a pro-
gram, it is usual to hand-code several cases in C before attempting
to write the code generator. Unfortunately, having done this, the
task of reproducing this work again in the DSL compiler is often
unappealing.

The third difficulty is that even when the backend has been writ-
ten, it does not provide a great deal of assurance for the OS pro-
grammer. While the DSL may be semantically rich, this seman-
tics remains informal, and thus cannot be formally reasoned about.
More importantly, there is no guarantee that the generated code is
correct, whereas hand-coding (for example) device access in C al-
lows the programmer to at least see the complete consequences of
his or her code. Systems programmers are frequently suspicious
of such DSL compilers, even when they can look at the generated
C, in part because they understand how easy it is to make mistakes
when writing string concatenation code.

The fourth problem occurs when the output of the compiler is
indeed buggy. It is notoriously hard to pinpoint compiler bugs,
particularly in OS-level code, and the effort required to diagnose
such bugs in a DSL compiler (which will inevitably be less mature,
albeit less complex, than one for a more mainstream language) is
a barrier to adoption. Even testing a DSL compiler with adequate
coverage is a challenge — after 6 months of regular use, a graduate
student working in our group found a bug in the DSL compiler we
use for device access (similar to Devil); the symptom was a kernel-
level segmentation fault at boot time.

Finally, it is hard to evolve such a language. As systems and re-
quirements change, alterations to the DSL syntax or semantics, or
the interface between the generated code and the OS, entail corre-
sponding changes to the code generator. This further amplifies the
problems of programming and debugging.

'From http://phoenix.labri.fr/software/devil/distrib/devil-src.Linux-2.tgz
counted using David A. Wheeler’s “SLOCCount”.

Hamlet file

| Parser, front end |
last

{|_AST to FoFCode]
: }FoFCode
i FoFCodetoC_]

Written by developer

| C compiler |

object code

Figure 1: Implementing the Hamlet DSL in FoF

Standing back for a moment, these difficulties mostly arise from
the fact that the semantics of such DSLs are only specified infor-
mally, and are never propagated through to the generated code. Our
goal with FoF is to address this: by attaching stronger semantics to
the abstract syntax of a given DSL, we can generate C that a pro-
grammer can trust, facilitate automated checking and testing with
high coverage, and at the same time reduce the complexity and de-
velopment time of a DSL compiler. Our goal is to create DSLs that
are both practical (easy to implement and use, efficient) and de-
pendable (programmers can rely on their correctness, and the gen-
erated code is intuitive and clear).

3. PRACTICAL DSL CONSTRUCTION

Our approach with FoF is to raise the level of abstraction at which
a DSL is developed — rather than concatenating strings of C code, a
FoF DSL compiler emits code only through the use of higher-order
combinators that encode the essential elements of C. From a techni-
cal point of view, FoF is simply an embedding of C in a functional
language, here Haskell. However, because the syntax and seman-
tics of C are extremely weak, we abstract away a large amount of
detail. The result is a semantically-clear embedding directed by a
mechanized semantics. Using FoF, a back-end can safely manip-
ulate an abstraction of C in the form of an embedded language.
Instead of being a string concatenation function, a back-end is now
implemented as a composition of FoF building blocks.

To illustrate the use of FoF as a tool for constructing DSLs, we
use Hamlet, one of four DSLs implemented to date in the develop-
ment of the Barrelfish OS [1]. As is usual for DSLs, Hamlet defines
both a language to specify the Barrelfish capability system, and a
compiler to generate code implementing this specification.

Barrelfish has a capability system modeled on seL.4 [9] that uses
kernel-mediated capabilities both as a security mechanism and for
explicit user-level control over kernel memory management. One
important operation in this model is retype, which takes an existing
capability and produces one or more derived capabilities. This op-
eration is used to create new kernel-level memory objects (such as
page tables or execution contexts) from capabilities to raw regions
of RAM, and thus its correctness is critical to the security of the
system.

The behavior of retype is determined by an informal specifica-
tion of the capability type system, which defines valid capability
types, their properties, and their relationships. In particular, this
specification describes the retyping policy, i.e. given a capability,
to what capabilities it can be retyped. As the capability system is

/+ Phys address range #/
cap PhysAddr {

validateRetypeCode dstType (srcTypeV, validTypesP) =

bool is_well_founded(enum objtype fof_yl,
enum objtype fof_y2){

retype_to { do switch (fof_yl) {

RAM: {base, bits}, return (srcTypeV, (do case ObjType_PhysAddr: {

DevFrame: {base, bits}, returnc $ cond validTypesP)) return ((((false

PhysAddr: {base, bits} where || (fof_y2 = ObjType_RAM))
}; cond validTypes = foldl orType false validTypes || (fof_y2 = ObjType_DevFrame))
eq paddr base; orType x srcType = x .||. (dstType .=. srcType) || (fof_y2 = ObjType_PhysAddr)));

eq uint8 bits;
};
(a) Input file

(b) Haskell source of the Hamlet compiler

break;

...
(c) Example of generated C code

Figure 2: Extracts from Hamlet DSL

bound to evolve often, for example with the introduction of new ca-
pability types, its implementation needs to be maintainable. More-
over, because it manipulates low-level data-structures, the code is
tedious and error-prone to write. Therefore, the Barrelfish capabil-
ity system forms a good candidate for the use of a DSL, namely
Hamlet.

The role of Hamlet is twofold. First, based on a high-level de-
scription of the capabilities, a sample of which is shown in Fig-
ure 2a, it defines the corresponding data-structures. This amounts
to building a set of complex data-types, based on a combination of
struct, union, and base C types. Second, it generates code for a
number of predicates that check the validity of user-initiated oper-
ations. This consists of translating the high-level policy into low-
level manipulations of the capability data structures.

The structure of the Hamlet compiler is shown in Figure 1, and
is illustrative of a typical FoF DSL. The DSL developer imple-
ments a front-end, usually comprising a parser and some syntax
and type checks, and a back-end, which converts an AST to FoF
code through the composition of FoF constructs. The FoF com-
piler then translates this to C.

The process of building a front-end is well-understood, and is
made easier by tools such as Parsec [10]. We therefore focus on the
back-end, which in the case of Hamlet is responsible for generating
two outputs: a C header file containing the data structures, and a
source file containing the implementation of the predicates.

An extract of the FoF back-end code for Hamlet and the cor-
responding generated C are shown in Figures 2b and 2c. This
is part of the Hamlet compiler responsible for generating the C
function is_well_founded — a predicate that determines whether
a given source capability type may be retyped to a requested desti-
nation type. In particular, validateRetypeCode is called repeatedly
to generate the multiple cases of a large switch statement on the
source capability type. The tuple it returns consists of a matched
case (srcTypeV, or ObjType_PhysAddr in the C code) and a series of
statements making up the body. Here, the body is a single statement
that returns true if the destination type is one of the legal retyping
paths and false otherwise.

From this small example, we can observe several important prop-
erties of a FoF DSL. First, the combinators used to specify the gen-
erated C code (here returnc, .||. and .==.) are similar in structure
to the C that we may write, with the omission of syntactical details
such as semicolons and the break statement. However, through
the use of FoF, we have much stronger guarantees than could be
achieved by concatenating strings of code: the compiler ensures
that the generated code is valid by construction and always com-
piles. Whereas this guarantee is purely syntactic, the following
section shows how FoF can be leveraged to generate correct-by-
construction C, i.e. code respecting the high-level semantics speci-
fied by the DSL designer.

Second, the embedding in Haskell promotes a higher-order pro-
gramming style: FoF code fragments are strongly-typed values
that, as such, can be manipulated as data without affecting the va-
lidity of the resulting C code. For example, the returned expression
in the example is generated by folding the orType function (using
the standard Haskell foldl) over the list of valid destination types.
As a result, the code for a FoF-based DSL is typically very concise
— the entire Hamlet compiler consists of 700 lines of Haskell.

Finally, FoF enhances the re-use of components between differ-
ent DSLs, or between different parts of the same DSL. Because the
strict typing of Haskell applies to all DSL code, and because the
DSL back-end does not directly manipulate or generate strings of
source code, the developer need not worry about details such as
assigning unique variable and function names in different contexts.

4. DSL DEPENDABILITY WITH FOF

In the previous section we showed how FoF makes it easier to im-
plement DSLs by allowing the developer to write the backend as a
collection of typed combinators rather than string concatenations.
We now focus on the other main goal of FoF: to improve the cor-
rectness of OS code by using DSLs with dependably correct im-
plementations. We emphasize at this point that FoF should not be
seen as a programming language. FoF is indeed a safe abstrac-
tion of C embedded in a functional language, and must naturally be
compiled to C (or another systems programming language) to be
useful. However, FoF is first and foremost a semantic language: it
gives a meaning, the semantics, to a DSL.

This novelty has far-reaching consequences. For example, let us
assume that in Figure 2b the developer mistakenly wrote .&&. in-
stead of .||. in the last line, hence replacing an or by an and. In
a syntactic framework, there is no way to catch this mistake: both
combinators are meaningless symbols taking two arguments of the
same type and returning an element. On the other hand, FoF au-
tomatically builds an executable expression denoting the semantics
of this code. In the remainder of this section, we show how this
allows the the developer to informally reason about the code, auto-
matically test it, or perform a formal correctness proof. Needless
to say, at the semantic level, the difference between an and and an
or is striking.

A cornerstone of the greater dependability of FoF-based DSLs is
the correctness of the FoF-to-C compiler, for which a formal proof
exists for a representative subset of the language [5]. This correct-
ness result ensures that the semantics of FoF are preserved when
compiled to C. Given this, it is sufficient to reason from a given
DSL down to FoF code without needing to consider the generated
C code, since we are guaranteed that the generated C code hon-
ors the FoF semantics. Furthermore, since the FoF backend is im-
plemented as Haskell combinators, this reasoning process is made

Hamlet Semantics — valid/invalid

QuickCheck
4

AST =
1

4
FoF Interpreter FoF value ——— true/false

Figure 3: Testing infrastructure of Hamlet

much easier.

As a working example, we discuss the correctness of the Hamlet-
generated predicate is_well_founded, a portion of which was pre-
sented in the previous section. Proving the correctness of this pred-
icate amounts to showing that the following diagram commutes:

Hamlet input Retype policy —— valid/invalid
‘ T

Hamlet compiler =

1

FoF semantics —— true/false

L
FoFCode

That is: given a Hamlet input, the retype policy — encoding
whether it is valid or not to retype a capability to another — should
give the same result as the FoF code generated by the compiler,
interpreted according to the semantics of FoF.

We describe the semantics of FoF by means of an interpreter
(as opposed to the C code generator) that evaluates FoF code to
FoF values. Because this interpreter is implemented in a purely
functional style, it denotes a pure semantics of the FoF language.
We build on the work of Swierstra [14] on the functional seman-
tics of effects: whereas semantics are traditionally described in
an operational or denotational framework, Swierstra proposes a
lightweight semantics framework based on pure functions, hence
implementable — and executable — in a pure functional language.
Therefore, proofs of correctness of DSLs can be carried out by
equational reasoning, and their semantics can be described in a the-
orem prover [14]. Being able to actually execute the semantics also
allows our users to test their FoF code in Haskell, instead of having
to test the resulting C code.

As a first step towards a provably-correct DSL compiler, we
demonstrate the use of QuickCheck [3] on the Hamlet compiler.
QuickCheck is a library for random testing in Haskell. Being a li-
brary, it is easy to use, but also efficient. QuickCheck automatically
generates data-structures and tests the truth values of user-defined
properties. We instruct QuickCheck to generate random yet valid
ASTs, and use the FoF interpreter to test the output of the Hamlet
compiler against the expected behavior. Note this assumes that the
Hamlet parser is correct. This assumption is usually made by veri-
fied compilers like CompCert [2]. Moreover, the syntax of Hamlet
is simple, hence the parser is small and trustable by inspection.

The properties we are to test must specify the semantics of Ham-
let with respect to is_well_founded. Informally, its semantics is
the following: given a source and a destination capability type in
the AST, is_well_founded returns true if and only if the destina-
tion type belongs to the valid destinations of the source type. This
property is directly expressed in Haskell.

The corresponding infrastructure is shown in Figure 3. Quick-
Check generates random ASTs. For a given AST, the Hamlet se-
mantics dictates whether retypings are valid or invalid. The same
AST is also compiled to FoF code that is later interpreted: retyping
a source capability to a destination capability should succeed if and
only if this is allowed by the Hamlet semantics. We have tested this

PhysAddr)

Figure 4: Automatically-generated retyping graph

property by generating random input ASTs, and found extensive
application of such random testing to be tractable [5].

This approach compares favorably to conventional compiler test-
ing, where the developer writes test cases, each of which are then
compiled and compared with an expected output. The FoF ap-
proach with QuickCheck has four clear advantages. First, no test
cases must be written, as QuickCheck generates these itself. Sec-
ond, coverage is greater because the tests generated by QuickCheck
are random. Third, checking the correctness of a given output is
precise, because we are able to test whether the output is semanti-
cally correct or not. Finally, since the process is entirely automated,
testing can be done as a background task, and coverage can be in-
creased by devoting more CPU cycles to testing.

Of course, QuickCheck testing does not provide the same level
of assurance as a direct proof of the semantics of the Hamlet front-
end. To date we have not tried to produce such a proof, in part
because QuickCheck provides us (in our opinion, so far) sufficient
assurance for practical OS development. Moreover, the property
we test with QuickCheck ensures that the generated code is seman-
tically correct for the given capability specification. Although the
Hamlet compiler is not proved to preserve the DSL semantics for
all inputs, the user is guaranteed that, if the compiler does not de-
tect an error for her input, then the generated code is correct. Thus,
FoF allows the DSL designer to build a lightweight and efficient
translation validation infrastructure [12] for her DSL.

So far, we have formally verified the correctness of the FoF-to-C
compiler for a subset of the language, thoroughly tested the cor-
rectness of Hamlet using QuickCheck, and shown how the Hamlet
compiler gives us the guarantee that the generated code is correct.
For the DSL designer, this combination of features substantially
increases the reliability of DSL code over non-semantic methods,
and offers the possibility of exhaustive compiler verification with
reasonable effort.

The ability to rely on the correctness of a DSL has affected how
we have designed aspects of the Barrelfish OS. In particular, Ham-
let means that we can extend the type system for capabilities with-
out requiring cross-cutting changes in the hand-written C code that
comprises much of the OS. This has encouraged us to move more
OS functionality into this type system. For example, all the re-
quired checks on user manipulation of hardware page tables on as-
sorted architectures are now performed this way: we have differ-
ent capability types for all levels and flavors of page table entries.
This has greatly simplified the virtual memory system, but would
have been prohibitively expensive without dependable high-level
language support.

Similarly, DSLs have influenced the documentation and specifi-
cation of the OS. Whereas we previously wrote an informal specifi-
cation of the capability system by hand, Hamlet makes it possible to
generate a human-readable specification from the Hamlet descrip-
tion. For example, Figure 4 shows a diagram of capability retyping
paths automatically generated from the snippet in Figure 2a.

/ Design {\ / Semantics \

Specification Proofs FoF code Proofs
C code C code

(a) Top-down approach (b) Bottom-up approach

Figure 5: Reliable design approaches

S. RELATED WORK

We have discussed DSL-based approaches to improving OS code
in Section 2. A number of other language-related techniques are
complementary to FoF; we present a brief survey here.

One such approach is to implement the OS in a safer low-level
language than C, such as Cyclone [8], Deputy [4], or Sing# [7].
While undoubtedly leading to more dependable code, these lan-
guages remain by their nature highly general (and hence applica-
ble to OS code), while lacking the ability to directly express very
specific OS abstractions (such as the type and representation of ca-
pabilities in Barrelfish) in the way that a custom language such as
Hamlet can. The contrast is thus to some extent artificial: an attrac-
tive hybrid approach is for FoF to generate code for one of these
languages, thereby exploiting the best features of both.

The meta-compilation technique has been successfully applied
to large-scale systems [6]. An API (such as that of the Linux ker-
nel) implicitly defines a high-level language, and is thus governed
by a semantics. This semantics is formalized and used to automat-
ically check C code (which does not itself have strong semantics).
This technique can provide useful results but not completeness: it
is geared to finding errors, instead of proving (or constructing) their
absence. In contrast, FoF gives a semantics to the generated low-
level code. Because we can reason about a high-level language sup-
ported by a mechanized semantics, we do not give up completeness,
and any verification effort can rely on more powerful mathematical
and software tools.

Finally, FoF is complementary to the standard top-down ap-
proach to reliability, exemplified most recently by the seL4 OS [9].
To prove the correctness of a system top-down, one starts with a
high-level model which is then refined to machine code, or at least
C. In the case of an OS, the high-level model must handle every
corner case encountered by the low-level models. In practice, the
high-level design is iteratively improved while the refinement map-
ping proofs to the lower-level models are worked on. Each time
the high-level model is modified, the proofs must be updated (or
restarted from scratch).

Figure 5 compares this with the bottom-up approach adopted by
FoF. FoF starts with a mature infrastructure in C. The DSL then
abstracts the essence of the infrastructure and formalizes its seman-
tics. Because a DSL input is a specification, the correctness of the
system depends only on the correctness of the DSL compiler. Un-
like the top-down approach, which must deal with the system en
masse, FoF allows developers to concentrate on critical parts of the
system. The approaches are not exclusive: the bottom-up approach
can be used in top-down proofs, since a DSL shortens the distance
between the top-level model and its implementation, simplifying
both the proofs and their evolution.

6. CONCLUSION AND FUTURE WORK

In this paper, we have argued for a radically new approach to sys-
tem code reliability. We advocate a bottom-up philosophy using
semantically-rich DSLs, combined and stacked up together to in-
crementally build critical components of the system. To this end,
we have developed FoF. Thanks to its expressiveness, the imple-
mentation of DSLs is easier. Thanks to its functional semantics,
the verification of DSLs is tractable. Hence, in one go, we are able
to abstract away their functionality and formalize their semantics.

FoF is still at an early stage in development, and we expect
to gain more experience in building DSLs in the context of Bar-
relfish. We also plan to implement a translation validation infras-
tructure [12] in the FoF-to-C compiler. While we have a pen and
paper compiler correctness proof for a subset of FoF, we do not
yet have complete verification. A validating FoF compiler would
provide a proof of correctness of the generated C for a given input.
This provides a less burdensome logical framework than that in ex-
haustive correctness proofs, and by virtue of its integration with the
compiler, would track the evolution of FoF.

Beyond this, FoF enables a DSL-intensive development process
of low-level systems code, and we are interested in where this leads.
One possibility is that the various little languages used for Bar-
relfish converge — it is already clear that there are common features
between RPC stub generation and hardware memory layout, for
example. In the limit, C becomes a “glue” language for high-level
descriptions with strong semantics.

References

[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schiipbach, and A. Singhania. The multikernel: A new

OS architecture for scalable multicore systems. In Proc. ACM Sympo-

sium on OS Principles, Big Sky, MT, USA, Oct. 2009.

S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C com-

piler front-end. Formal Methods, pages 460—475, 2006.

[3] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for ran-

dom testing of Haskell programs. ACM SIGPLAN Notices, 35(9):268—

279, 2000.

J. Condit, M. Harren, Z. Anderson, D. Gay, and G. Necula. Depen-

dent types for low-level programming. Programming Languages and

Systems, pages 520-535, 2007.

P-E. Dagand. Language support for reliable operating systems. Mas-

ter’s thesis, ENS Cachan-Bretagne, June 2009.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules

using system-specific, programmer-written compiler extensions. In

Proc. 4th Symposium on OS Design and Implementation, Oct. 2000.

[7]1 G.C.HuntandJ.R. Larus. Singularity: Rethinking the software stack.

ACM SIGOPS Operating Systems Review, 41(2):37-49, Apr. 2007.

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and

Y. Wang. Cyclone: A safe dialect of C. In Proc. USENIX Annual Tech-

nical Conference, pages 275-288, 2002.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-

rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,

H. Tuch, and S. Winwood. seL.4: Formal verification of an OS kernel.

In Proc. ACM Symposium on OS Principles, Big Sky, MT, USA, Oct.

2009.

[10] D.Leijen and E. Meijer. Parsec: Direct style monadic parser combina-
tors for the real world. Technical Report UU-CS-2001-27, Department
of Computer Science, Universiteit Utrecht, 2001.

[11] E. Meérillon, L. Réveillére, C. Consel, R. Marlet, and G. Muller. Devil:
an IDL for hardware programming. In Proc. 4th Symposium on OS
Design and Implementation, pages 17-30, 2000.

[12] G. C. Necula. Translation validation for an optimizing compiler. ACM
SIGPLAN Notices, 35(5):83-94, 2000.

[13] M. Shapiro. Purpose-built languages. Commun. ACM, 52(4):36-41,
2009.

[14] W. Swierstra. A Functional Specification of Effects. PhD thesis, Uni-
versity of Nottingham, Nov. 2008.

[2

—

[4

=

[5

—

[6

[t

[8

[

[9

—

