
Virus Capsid Model
　Most of the spherical viruses have an icosahedral symmetry and the number and 

arrangement of subunits are determined by “T-number”, which is derived from the 

“quasi-equivalence theory” developed by Caspar and Klug (1962).

Quasi-Equivalence theory

　When three subunits which are intrinsically asymmetric are placed in a triangular 

surface of an icosahedron with three-fold symmetry, one could place 60 subunits on 

the surface of the icosahedron in equivalent manner (Figure 1 (a)).  This structure 

can be regarded as being built with twelve pentamers.  There are a number of 

viruses which consist of 60 subunits.  However, most viruses are larger, and in these 

cases, they consist of more than 60 subunits so that not all the subunits can be placed 

in equivalent positions.  Furthermore, their capsids are made of only one kind of 

polypeptide chain.  How can the subunits be arranged in icosahedral symmetry? In 

answer to the question, Caspar & Klug (1962) presented the concept of “quasi-

equivalence”.

　According to the theory, the icosahedral virus capsid consists of pentamers and 

hexamers.  Hexamers are basically flat, whereas pentamers have a convex shape 

forming the twelve apexes of the icosahedron.  Generally, the same protein molecule 

forms both pentamer and hexamer1).  The bonding relation and their environment in 

the icosahedron are not identical.  It is thought that the subunits retain the 

relationship to the neighboring subunits with some distortion or “quasi-equivalent” 

relation.  This theory is called the “quasi-equivalence theory”.

Figure 1. Structure of spherical shells and the theory of quasi-equivalence

　A, B, C and D in (b) are the same subunits, but placed in non-equivalent positions.  In the case of 

T=1, all the 60 subunits can be placed in equivalent positions, but when T > 1, not all of the subunits 

can be arranged in equivalent positions. 



What is the T-number?

　Choosing an arbitrary lattice point in the p6 net as the origin and placing a pentamer, T-number is 

defined as Ｔ＝ｈ２＋ｈｋ＋ｋ２, where (h, k) is the closest pentamer from the origin.  T signifies the number of 

small unit triangles in a facet of the icosahedron.  The green triangle indicates the case of T=13.

Figure 2. p6 net. 

First, draw a net consisting of regular triangles and take an arbitrary  lattice point as 

the origin.  Two straight lines that are crossing at the angle of 60o are taken as h-axis 

and k-axis.  Now, in order to make the origin a five-fold symmetry, cut out one sixth 

(the shaded area in the figure) and join the two edges.  A convex pentamer is thus 

made.  The next question is which lattice point to choose as the closest pentamer.  

The chosen position uniquely determines the size of the icosahedron.  For example, 

denote the intersection points as (h, k) and if the closest pentamer to the origin is 

placed (1,0), an icosahedron consisting solely of pentamers is formed (Figure 1(a)).  T-

number or the triangulation number which determines the size of an icosahedron is 

defined as:�

            Ｔ＝h2+hk+k2�

�

　Pentamers occupy the twelve apexes and, therefore, there are always twelve 

pentamers present, but the number of hexamers depends on the size of the virus.



　where h and k are 0 or positive integers.  T-number can take only some discrete 

values such as 1, 3, 4, 7, 9, 12, 13 etc.  In Figure 3, an area which is delimited by h- 

and k-axis is shown.  It can be readily shown that T-number corresponds to the 

number of the small unit regular triangles and that S=√T is the length of each edge 

of the regular surface triangles of an icosahedron.

Figure 4. Caps and a cylinder that constitute an icosahedron.

　Some viruses like bacteriophage T4 have a prolate-shaped head which is an  

icosahedron elongated along the five-fold axis.  Let us consider how the prolate 

icosahedron can be constructed.  An icosahedron is made of three parts; namely a top 

and bottom cap and a cylinder that connects the two (Figure 4). 

Figure 3. T-number, right-handed and left-handed icosahedron, and the relationship 
between the T-number and the length of each edge of the regular triangular surface 

　In  (a) and (b) of Figure 1, examples of the head shell with T=1 and T=4 are shown.  

When either h or k is zero, or h=k, the structure is uniquely determined.  However, 

when neither h nor k is zero and h≠k, right-handed (d) and left-handed (l) icosahedra 

can be distinguished.  For example, the T-number of phagel and phage T4 is T=7l 

and T=13l, respectively, but that of the polyoma virus is 7d.



wild type             intermediate          isometric     

Quasi-equivalent theory and the determined �
high resolution structure of the head shell

　Since the appearance of the quasi-equivalence theory, a number of high resolution 

structures of some spherical plant viruses have been reported.  As a result, some 

change in the concept of quasi-equivalence became necessary.  Originally, the concept 

of “quasi-equivalence” assumed that the intersubunit interactions are basically 

identical in pentamers and hexamers, but accommodated in slightly different 

environments (See positions A through D in Figure 1) by “distortion”.  However, 

looking at the high resolution structure of SBMV (Southern Bean Mosaic Virus), the 

three-dimensional structures of each subunit in non-equivalent positions are almost 

identical, but instead, a number of “non-equivalent” bonds are present.  In other 

words, subunits are accommodated not by distortion, but by different bonds in the 

icosahedron.  Furthermore, in adenovirus (T=25), not a pentamer, but a subunit 

which has a pseudo-fivefold symmetry is placed in each five fold symmetrical position. 

Another unexpected finding was the polyoma virus structure, where all the 72 

capsomers were pentamers.  However, aside from the exception, almost all the 

structures of spherical viral capsids are still found to be made of pentamers and 

hexamers, namely based on the “quasi-equivalent theory”. 

Notes:�
1) There are some exceptional cases such as in phage T4, where pentamers and hexamers are made 
of different polypeptide chains. �
2) Recently, the correct number of Q was found to be 20 instead of 21 as previously reported.�
�

Figure 5.  Examples of prolate icosahedrons.  T=13 cap and Q=21(wild type), 17 
(intermediate) and 13(isometric).

The cylinder part is made of ten triangles and the triangles can be characterized by a 

Q-number.  The Q-number also specifies the number of the unit triangles like the T-

number, but can take the value of any positive integers.  In the case of phage T4, T= 

13l and Q=212).  In figure 5, the normal Q=212) as well as the rare case of Q=13 

(isometric) and Q=17 (intermediate) are shown. 
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