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Preface 

Functional languages enable programmers to concentrate on the problem one would like to 
solve without being forced to worry too much about all kinds of uninteresting implementa-
tion details. A functional program can be regarded as an executable specification. Func-
tional programming languages are therefore popular in educational and research environ-
ments. Functional languages are very suited for teaching students the first principles of 
programming. In research environments they are used for rapid prototyping of complex 
systems. Recent developments in the implementation techniques and new insights in the 
underlying concepts such as input/output handling make that modern functional languages 
can nowadays also be used successfully for the development of real world applications. 

The purpose of this book is to teach practical programming skills using the state-of-the art 
pure functional language CONCURRENT CLEAN. CLEAN has many aspects in common 
with other modern functional languages like MIRANDA, HASKELL and ML. In addition 
CLEAN offers additional support for the development of stand-alone window based appli-
cations and it offers support for process communication and for the development of dis-
tributed applications. 

This book on functional programming using CLEAN is split into three parts.  

In the first part an introduction into functional programming is given. In six Chapters we 
treat the basic aspects of functional programming, functions, data structures, the type sys-
tem and I/O handling. The idea is that you are able to write simple functions and applica-
tions as soon as possible. The intention is not to treat all available features of CLEAN but 
only the most important ones that are most commonly used. A complete description of all 
available language constructs can be found in the CLEAN language manual. 

The main emphasis of this book lies in the second part in which several case studies are 
presented. Each case treats a tiny, but complete application in an illustrative problem do-
main. The case studies include applications like a simple database, an object-oriented draw-
ing program, a data compression utility, an interpreter for a functional language. Each case 
furthermore illustrates a certain aspect of functional programming. Some case applications 
are reused in others to illustrate the reusability of code. 

In the third part of this book we discuss the different kinds of programming development 
techniques for functional programming and efficiency aspects are treated.  

So, a lot of material is presented in this book. However, one certainly does not have to 
work through all case studies. Depending on the programming experience already acquired 
and the time available one can use this book as a textbook for or one or two semester 
course on functional programming.  The book can be used as an introductory textbook for 
people with little programming experience. It can also be used for people who already have 
programming experience in other programming paradigm (imperative, object-oriented or 
logical) and now want to learn how to develop applications in a pure functional language. 

We hope that you enjoy the book and that it will stimulate you to use a functional language 
for the development of your applications. 
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1.1 Functional languages 
Many centuries before the advent of digital computers, functions have been used to de-
scribe the relation between input and output of processes. Computer programs, too, are 
descriptions of the way a result can be computed, given some arguments. A natural way to 
write a computer program is therefore to define some functions and applying them to con-
crete values. 

We need not to constrain ourselves to numeric functions. Functions can also be defined that 
have, e.g., sequences of numbers as argument. Also, the result of a function can be some 
compound structure. In this way, functions can be used to model processes with large, 
structured, input and output. 

The first programming language based on the notion of functions was LISP, developed in 
the early 60s by John McCarthy. The name is an abbreviation of `list processor', which re-
flects the fact that functions can operate on lists (sequences) of values. An important fea-
ture of the language was that functions themselves can be used as argument to other func-
tions. 

Experience with developing large programs has showed that the ability to check programs 
before they are ran is most useful. Apart from the syntactical correctness of a program, the 
compiler can check whether it actually makes sense to apply a given function to a particular 
argument. This is called type checking. For example, a program where the square root of a 
list is taken, is considered to be incorrectly typed and is therefore rejected by the compiler. 

In the last decade, functional languages have been developed in which a type system ensures 
the type correctness of programs. Some examples are ML, MIRANDA, HASKELL, and 
CLEAN. As functions can be used as arguments of other functions, functions are `values' in 
some sense. The ability of defining functions operating on functions and having functions 
as a result (higher-order functions) is an important feature of these functional languages. 

In this book, we will use the language CLEAN. Compared to the other languages mentioned 
above, CLEAN provides an accurate control over the exact manipulations needed to exe-
cute a program. There is a library that offers easy access to functions manipulating the user 
interface in a platform independent way. Also, the type system is enriched with uniqueness 
types, making it possible for implementations to improve the efficiency of program execu-
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tion. Finally, the CLEAN development system is fast and generates very efficient applica-
tions. 

1.2 Programming with functions 
In a functional programming language like CLEAN one defines functions. The functions 
can be used in an expression, of which the value must be computed. 

The CLEAN compiler is a program that translates a CLEAN program into an executable ap-
plication. The execution of such an application consists of the evaluation of an indicated 
expression given the functions you have defined in the program. 

1.2.1 The `Start' expression 
The expression to be evaluated is named Start. By providing an appropriate definition for 
the function Start, you can evaluate the desired expression. For example: 

Start = 5+2*3 

When this Start expression is evaluated, the result of the evaluation, '11', will be shown to 
the user. For the evaluation of the start expression, other functions have to be applied. In 
this case the operators + and *. The operators + and * are actually special functions which 
have been predefined in the standard library which is part of the CLEAN system. 

The standard library consists of several modules. Each module is stored in a separate file. 
Each module contains the definition of a collection of functions and operators that some-
how belong to each other.  

In the program you write you have to specify which of the predefined functions you would 
like to use in your program. For the time being you just simply add the line 

import StdEnv 

and all commonly used predefined functions from the standard library, called the standard 
environment, can be used. The program you write yourself is a kind of module as well. It 
therefore should have a name, say 

module test 

and be stored in a file which in that case must have the name test.icl. So, an example of a 
tiny but complete CLEAN program which can be translated by the compiler into an exe-
cutable application is: 

module test 
 
import StdEnv 
 
Start = 5+2*3 

From now on the lines containing the module name and the import of the standard envi-
ronment will not be written, but are assumed in all examples in this text. 

In the library commonly used mathematical functions are available, such as the square root 
function. For example, when the start expression 

Start = sqrt(2.0) 

is evaluated, the value 1.414214 is displayed to the user. 

Functions are, of course, heavily used in a functional language. To reduce notational com-
plexity in expressions, the parentheses around the argument of a function are commonly 
omitted. Thus, the expression below is also valid: 

Start = sqrt 2.0 

This is a digression from mathematical practice that juxtaposition of expressions indicates 
multiplication. In CLEAN multiplication must be written explicitly, using the * operator. As 
function application occurs far more often than multiplication in functional programming 
practice, this reduces notational burden. The following would be a correct Start expression: 
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Start = sin 0.3 * sin 0.3 + cos 0.3 * cos 0.3 

A sequence of numbers can be put into a list in CLEAN. Lists are denoted with square 
brackets. There is a number of standard functions operating on lists: 

Start = sum [1..10] 

In this example [1..10] is the CLEAN notation for the list of numbers from 1 to 10. The 
standard function sum can be applied to such a list to calculate the sum (55) of those num-
bers. Just as with sqrt and sin the (round) parentheses are redundant when calling the func-
tion sum. 

A list is one of the ways to compose data, making it possible to apply functions to large 
amounts of data. Lists can also be the result of a function. Execution of the program 

Start = reverse [1..10] 

will display the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] to the user. The standard function reverse 
reverses the order of a list. 

There are many more standard functions manipulating lists. What they do can often be 
guessed from the name: length determines the length of a list, sort sorts the elements of a 
list from small to large. 

In a single expression, several functions can be combined. It is, for example, possible to 
first sort a list and then reverse it. The program 

Start = reverse (sort [1,6,2,9,2,7]) 

will sort the numbers in the list, and then reverse the resulting list. The result [9, 7, 6, 2, 2, 
1] is displayed to the user. As conventional in mathematical literature, g (f x) means that f 
should be applied to x and g should be applied to the result of that. The parentheses in this 
example are (even in CLEAN!) necessary, to indicate that (f x) as a whole is an argument of 
g. 

1.2.2 Defining new functions 
In a functional programming language it is possible to define new functions by yourself. 
The function can be used like the predefined functions from the standard environment, in 
the Start expression and in other function definitions. Definitions of functions are always 
part of a module. Such a module is always stored in a file. 

For instance, a function fac, which calculates the factorial of a number, can be defined. 
The factorial of a number n is the product of all numbers between 1 and n. For example, 
the factorial of 4 is 1*2*3*4 = 24. The fac function and its use in the Start expression can 
be defined in a CLEAN program: 

fac n = prod [1..n] 
 
Start = fac 6 

The value of the Start expression, 720, will be shown to the user. 

Functions that are defined can be used in other functions as well. A function that can make 
use of the fac function is over. It calculates the number of possibilities in which k objects 
can be chosen from a collection of n objects. According to statistics literature this number 
equals 

 ( k

n ) = 
n!

k ! (n − k )!
 

These numbers are called binomial coefficients, ( k

n
) is pronounced as n over k. The defi-

nition can, just as with fac, be almost literally (n! means the factorial of n) been written 
down in CLEAN: 

over n k = fac n / (fac k * fac (n-k)) 
 
Start = over 10 3 
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The arguments appearing on the left-hand side of a function definition, like n and k in the 
function over, are called the formal arguments or formal parameters of the function. For using it, 
one applies a function with actual arguments (also called actual parameters). For example, on 
the right-hand side of the start expression the function over is applied to the actual argu-
ments 3 and 120. The actual argument corresponding to n is 3, and the actual argument cor-
responding to k is 120.  

When run, this program displays the number of ways a committee of three persons can be 
chosen from a group of ten people (120). 

Apart from functions, also constants may be defined. This might be useful for definitions 
like 

pi = 3.1415926 

Another example of a constant is Start, which must be defined in every program. In fact, 
constants are just functions without arguments. 

1.2.3 Program evaluation with functions 
So, a functional program generally consists of a collection of function definitions and one 
initial expression (the Start expression). The execution of a functional program starts with 
the evaluation of the initial expression (the Start expression). This initial expression is re-
peatedly replaced by its result after evaluating a function application. This process of 
evaluation is called reduction. One step of the process, evaluating a single function ap-
plication, is called a reduction step. This step consists of the replacement of a part of the ex-
pression which matches a function definition (this part is called the redex, a reducable ex-
pression) with (a copy of) the function definition in which for the formal arguments uni-
formly the actual arguments are substituted. When the expression contains no redexes re-
duction cannot take place anymore: the expression is said to be in normal form. In principle, 
the normal form of the start expression is the result of the evaluation of the program. 

Suppose we define a function as follows 
 
extremelyUsefulFunction x = (x + 19) * x 
 

A program using this function consists then of a start expression 
 
Start = extremelyUsefulFunction 2 
 

This expression will be reduced as follows (the arrow → indicates a reduction step, the re-
dex which is reduced is underlined): 

Start 
→ extremelyUsefulFunction 2 
→ (2 + 19) * 2 
→ 21 * 2 
→ 42 

So, the result of evaluating this extremely useless program is 42. In other words, 42 is the 
normal form of extremelyUsefulFunction 2. 

1.3 Standard functions 

1.3.1 Names of functions and operators 
In the CLEAN standard environment, a large number of standard functions is predefined. 
We will discuss some of them in the subsections below. 

The rules for names of functions are rather liberal. Function names start with a letter, fol-
lowed by zero or more letters, digits, or the symbol _ or .̀ Both lower and upper case let-
ters are allowed, and treated as distinct symbols. Some examples are: 
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f sum x3 Ab g̀  to_the_power_of  AverageLengthOfTheDutchPopulation 

The underscore sign is mostly used to make long names easier to read. Another way to 
achieve that is to start each word in the identifier with a capital. This is a common con-
vention in many programming languages. 

Numbers and back-quotes in a name can be used to emphasize the dependencies of some 
functions or parameters. However, this is only meant for the human reader. As far as the 
CLEAN compiler is concerned, the name x3 is as related to x2 as to qX̀ a_y. Although the 
names of functions and function arguments are completely irrelevant for the semantics (the 
meaning) of the program, it is important to choose these names carefully. A program with 
well-chosen names is much easier to understand and maintain than a program without 
meaningful names. A program with misleading names is even worse. 

Another possibility to choose function names is combining one or more `funny' symbols 
from the set 

~ @ # % ̂  ? ! + - * < > \ / | & = : 

Some examples of names that are allowed are: 
+ ++ && || <= == <> . % 
@@ -*- \/ /\ ... <+> ? :-> 

The names on the first of these two lines are defined in some of the standard modules. The 
operators on the second line are examples of other names that are allowed. 

There is one exception to the choice of names. The following words are reserved for spe-
cial purposes, and cannot be used as the name of a function: 

Bool Char default definition derive case class code export from if implementation import in 
infix infixl infixr instance Int let module of otherwise special system where with 

Also, the following symbol combinations are reserved, and may not be used as function 
name: 

// \\ & : :: { } /* */ | ! & # #! . [ ] = =: :== => -> <- <-: 

However, enough symbol combinations remain to attain some interesting graphic effects… 

1.3.2 Predefined functions on numbers 
There are two kinds of numbers available in CLEAN: Integer numbers, like 17, 0 and -3; 
Floating-point numbers, like 2.5, -7.81, 0.0, 1.2e3 and 0.5e-2. The character e in floating-
point numbers means `times ten to the power of'. For example 1.2e3 denotes the number 
1.2*10

3 
= 1200.0. The number 0.5e-2 is in fact 0.5*10-2 

= 0.005. 

In the standard modules StdInt and StdReal some functions and operators are defined on 
numbers. The four mathematical operators addition (+), subtraction (-), multiplication (*) 
and division (/) can be used on both integer and real numbers, as in the programs 

Start = 5-12 

and 
Start = 2.5 * 3.0 

When dividing integer numbers, the fractional part is discarded: 
Start = 19/4 

displays the result 4 to the user. If exact division is required, real numbers must be used: 
Start = 19.0/4.0 

will show the result 4.75. The arguments of an arithmetic operator must both be integer or 
both be real. The expression 1.5 + 2 is not accepted by the compiler. However, there are 
standard functions toInt and toReal that convert numbers to an integer or real, respectively. 

Other standard functions on integer numbers include 
abs  the absolute value of a number 
sign -1 for negative numbers, 0 for zero, 1 for positive numbers 
gcd  the greatest common divisor of two numbers 
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 ̂  raising a number to a power 

Some standard functions on real numbers are: 
sqrt the square root function 
sin  the sine function 
ln  the natural logarithm 
exp  the exponential function (e-to-the-power-of) 

1.3.3 Predefined functions on Booleans 
The operator < determines whether a number is smaller than another number. The result is 
the constant True (if it is true) or the constant False (if it is false). For example, the value of 
1<2 is True. 

The values True and False are the only elements of the set of truth values or Boolean values 
(named after the English mathematician George Boole, who lived from 1815 till 1864). 
Functions (and operators) resulting such a value are called Boolean functions or predicates. 

Next to < there is also an operator > (greater than), an operator <= (smaller or equal to), and 
an operator >= (greater or equal to). Furthermore, there is the operator == (equal to) and an 
operator <> (not equal to). 

Results of Boolean functions can be combined with the operators && (`and') and || (`or'). 
The operator && only returns True if the results left and right are true: 

Start = 1<2 && 3<4 

will show the result True to the user. The `or' operator needs only one of the two state-
ments to be true (both may be true as well), so 1==1 || 2==3 will yield True. There is a func-
tion not swapping True and False. Furthermore there is a function isEven which checks whe-
ther an integer number is even. 

1.3.4 Predefined functions on lists 
In the standard module StdList a number of functions operating on lists is defined. Some 
functions on lists have already been discussed: length determines the length of a list, sum cal-
culates the sum of a list of whole numbers. 

The operator ++ concatenates two lists. For example, 
Start = [1,2] ++ [3,4,5] 

will show the list [1,2,3,4,5]. 

The function and operates on a list of which the elements are Booleans; and checks if all the 
elements in the list are True. For example, the expression and [1<2, 2<3, 1==0] returns False. 

Some functions have two parameters. The function take operates on a number and a list. If 
the number is n, the function will return the first n elements of the list. For example, take 3 
[2..10] returns the list [2,3,4]. 

1.3.5 Predefined functions on functions 
In the functions discussed so far, the parameters were numbers, Booleans or lists. Howe-
ver, the argument of a function can be a function itself, too! An example of that is the 
function map, which takes two arguments: a function and a list. The function map applies the 
argument function to all the elements of the list. It is defined in the standard module 
StdList. 

Some examples of the use of the map functions are: 
Start = map fac [1,2,3,4,5] 

Applying the fac function to all five numbers, this shows the list [1,2,6,24,120]. 

Running the program 
Start = map sqrt [1.0,2.0,3.0,4.0] 
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shows the list [1.0, 1.41421, 1.73205, 2.0], and the program 
Start = map isEven [1..8] 

checks all eight numbers for even-ness, yielding a list of Boolean values: [False, True, False, 
True, False, True, False, True]. 

1.4 Defining functions 

1.4.1 Definition by combination 
The easiest way to define functions is by combining other functions and operators, for ex-
ample by applying predefined functions that have been imported: 

fac n    = prod [1..n] 
square x = x * x 

Functions can also have more than one argument: 
over n k = fac n / (fac k * fac (n-k)) 
roots a b c = [ (~b+sqrt(b*b-4.0*a*c)) / (2.0*a) 
    , (~b-sqrt(b*b-4.0*a*c)) / (2.0*a) 
    ] 

The operator ~ negates its argument. See 1.3.2 and Chapter 2 for the difference between 2 
and 2.0. 

Functions without arguments are commonly known as `constants': 
pi = 3.1415926535 
e = exp 1.0 

These examples illustrate the general form of a function definition: 
• the name of the function being defined 
• names for the formal arguments (if there are any) 
• the symbol = 
• an expression, in which the arguments may be used, together with functions (either 

functions imported form another module or defined elsewhere in the module) and 
elementary values (like 42). 

In definitions of functions with a Boolean result, at the right hand side of the =-symbol an 
expression of Boolean value is given: 

negative x = x < 0 
positive x = x > 0 
isZero   x = x == 0 

Note, in this last definition, the difference between the =-symbol and the ==-operator. A 
single `equals'-symbol (=) separates the left-hand side from the right-hand side in function 
definitions. A double `equals'-symbol (==) is an operator with a Boolean result, just as < 
and >. 

In the definition of the roots function in the example above, the expressions sqrt(b*b-
4.0*a*c) and (2.0*a) occur twice. Apart from being boring to type, evaluation of this kind of 
expression is needlessly time-consuming: the identical subexpressions are evaluated twice. 
To prevent this, in CLEAN it is possible to name a subexpression, and denote it only once. 
A more efficient definition of the function roots would be: 

roots a b c = [ (~b+s)/d 
    , (~b-s)/d 
    ] 
where 
 s = sqrt (b*b-4.0*a*c) 
 d = 2.0*a 

The word where is not the name of a function. It is one of the `reserved words' that where 
mentioned in subsection 1.3.1. Following the word where in the definition, again some defi-
nitions are given. In this case the constants s and d are defined. These constants may be 
used in the expression preceding the where. They cannot be used elsewhere in the program; 
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they are local definitions. You may wonder why s and d are called `constants', although their 
value can be different on different uses of the roots function. The word `constants' is justi-
fied however, as the value of the constants is fixed during each invocation of roots. 

1.4.2 Definition by cases 
In some occasions it is necessary to distinguish a number of cases in a function definition. 
The function that calculates the absolute value of a number is an example of this: for nega-
tive arguments the result is calculated differently than for positive arguments. In CLEAN, 
this is written as follows: 

abs x 
 | x<0 = ~x 
 | x>=0 = x 

You may also distinguish more than two cases, as in the definition of the signum function 
below: 

signum x 
 | x>0 = 1 
 | x==0 = 0 
 | x<0 = -1 

The expressions in the three cases are `guarded' by Boolean expressions, which are there-
fore called guards. When a function that is defined using guarded expressions is called, the 
guards are tried one by one, in the order they are written in the program. For the first guard 
that evaluates to True, the expression at the right hand side of the =-symbol is evaluated. 
Because the guards are tried in textual order, you may write True instead of the last guard. 
For clarity, you can also use the keyword otherwise. 

abs x 
 | x<0  = ~x 
 | otherwise = x 

A guard which yields always true, like True or otherwise, is in principle superfluous and may 
be omitted. 

abs x 
 | x<0 = ~x 
   = x 

The description of allowed forms of function definition (the `syntax' of a function defini-
tion) is therefore more complicated than was suggested in the previous subsection. A more 
adequate description of a function definition is: 
• the name of the function; 
• the names of zero or more arguments; 
• an =-symbol and an expression, or: one ore more `guarded expressions'; 
• (optional:) the word where followed by local definitions. 
A `guarded expression' consists of a |-symbol, a Boolean expression, a =-symbol, and an 
expression. But still, this description of the syntax of a function definition is not com-
plete… 

1.4.3 Definition using patterns 
Until now, we used only variable names as formal arguments. In most programming lan-
guages, formal arguments may only be variables. But in CLEAN, there are other possibili-
ties: a formal argument may also be a pattern. 

An example of a function definition in which a pattern is used as a formal argument is 
h [1,x,y] = x+y 

This function can only be applied to lists with exactly three elements, of which the first 
must be 1. Of such a list, the second and third elements are added. Thus, the function is 
not defined for shorter and longer list, nor for lists of which the first element is not 1. It is 
a common phenomenon that functions are not defined for all possible arguments. For ex-
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ample, the sqrt function is not defined for negative numbers, and the / operator is not de-
fined for 0 as its second argument. These functions are called partial functions. 

You can define functions with different patterns as formal argument: 
sum []   = 0 
sum [x]  = x 
sum [x,y] = x+y 
sum [x,y,z] = x+y+z 

This function can be applied to lists with zero, one, two or three elements (in the next sub-
section this definition is extended to lists of arbitrary length). In each case, the elements of 
the list are added. On use of this function, it is checked whether the actual argument 
`matches' one of the patterns. Again, the definitions are tried in textual order. For example, 
the call sum [3,4] matches the pattern in the third line of the definition: The 3 corresponds 
to the x and the 4 to the y. 

As a pattern, the following constructions are allowed: 
• numbers (e.g. 3); 
• the Boolean constants True and False; 
• names (e.g. x); 
• list enumeration's, of which the elements must be patterns (e.g. [1,x,y]); 
• lists patterns in which a distinction is made between the first element and the rest of 

the list (e.g. [a:b]). 
Using patterns, we could for example define the logical conjunction of two Boolean func-
tions: 

AND False False = False 
AND False True = False 
AND True  False = False 
AND True  True = True 

By naming the first element of a list, two useful functions can be defined, as is done in the 
module StdList: 

hd [x:y] = x 
tl [x:y] = y 

The function hd returns the first element of a list (its `head'), while the function tl returns 
all but the first element (the `tail' of the list). These functions can be applied to almost all 
lists. They are not defined, however, for the empty list (a list without elements): an empty 
list has no first element, let alone a `tail'. This makes hd and tl partial functions. 

Note the difference in the patterns (and expressions) [x:y] and [x,y]. The pattern [x:y] de-
notes a list with first element (head) x and rest (tail) y. This tail can be any list, including the 
empty list []. The pattern [x,y] denotes a list of exactly two elements, the first one is called 
x, and the other one y. 

1.4.4 Definition by induction or recursion 
In definitions of functions, other functions may be used. But also the function being defi-
ned may be used in it's own definition! A function which is used in its own definition is 
called a recursive function (because its name `re-(oc)curs' in its definition). Here is an example 
of a recursive definition: 

fac n 
 | n==0 = 1 
 | n>0 = n * fac (n-1) 

The name of the function being defined (fac) occurs in the defining expression on the right 
hand side of the =-symbol.  

Another example of a recursively defined function is `raising to an integer power'. It can be 
defined as: 

power x n 
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 | n==0 = 1 
 | n>0 = x * power x (n-1) 

Also, functions operating on lists can be recursive. In the previous subsection we intro-
duced a function to determine the length of some lists. Using recursion we can define a 
function sum for lists of arbitrary length: 

sum list 
 | list == [] = 0 
 | otherwise = hd list + sum (tl list) 

Using patterns we can also define this function in a much more readable way: 
sum []    = 0 
sum [first: rest] = first + sum rest 

Using patterns, you can give the relevant parts of the list a name directly (like first and rest 
in this example). In the definition that uses guarded expressions to distinguish the cases, 
auxiliary functions hd and tl are necessary. 

Using patterns, we can define a function length that operates on lists: 
length []    = 0 
length [first:rest] = 1 + length rest 

The value of the first element is not used (only the fact that a first element exists). For 
cases like this, it is allowed to use the ‘_’ symbol instead of an identifier: 

length []  = 0 
length [_:rest] = 1 + length rest 

Recursive functions are generally used with two restrictions: 
• for a base case there is a non-recursive definition; 
• the actual argument of the recursive call is closer to the base case (e.g., numerically smaller, 

or a shorter list) than the formal argument of the function being defined. 
In the definition of fac given above, the base case is n==0; in this case the result can be de-
termined directly (without using the function recursively). In the case that n>0, there is a 
recursive call, namely fac (n-1). The argument in the recursive call (n-1) is, as required, 
smaller than n. 

For lists, the recursive call must have a shorter list as argumen. There should be a non-
recursive definition for some finite list, usually the empty list.  

1.4.5 Local definitions, scope and lay-out 
If you want to define a function to solve a certain problem you often need to define a 
number of additional functions each solving a part of the original problem. Functions fol-
lowing the keyword where are locally defined which means that they only have a meaning 
within the surrounding function. It is a good habit to define functions that are only used in 
a particular function definition, locally to the function they belong. In this way you make it 
clear to the reader that these functions are not used elsewhere in the program. The scope of 
a definition is the piece of program text where the definition can be used. The box in figure 
1.1 shows the scope of a local function definition, i.e. the area in which the locally defined 
function is known and can be applied. The figure also shows the scope of the arguments of 
a function. If a name of a function or argument is used in an expression one has to look for 
a corresponding definition in the smallest surrounding scope (box). If the name is not de-
fined there one has to look for a definition in the nearest surrounding scope and so on. 

function args
| guard1 = expression1
| guard2 = expression2
where
    function args = expression

 
Figure 1.1: Defining functions and values locally for a function alternative. 
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With a let statement one can locally define new functions which only have a meaning within 
a certain expression.  

roots a b c = let s = sqrt (b*b-4.0*a*c) 
     d = 2.0*a 
    in [(~b+s)/d , (~b-s)/d ] 

A let statement is allowed in any expression on the right-hand side of a function or value 
definition. The scope of a let expression is illustrated in Figure 1.2. 

let function args = expression
in expression

 
Figure 1.2: Defining functions and values locally for a certain expression. 

Layout 

On most places in the program extra whitespace is allowed, to make the program more 
readable for humans. In the examples above, for example, extra spaces have been added in 
order to align the =-symbols. Of course, no extra whitespace is allowed in the middle of an 
identifier or a number: len gth is different from length, and 1 7 is different from 17. 

Also, newlines can be added in most places. We did so in the definition of the roots func-
tion, because the line would be very long otherwise. However, unlike most other program-
ming languages, newlines are not entirely meaningless. Compare these two where-expres-
sions: 

where     where 
 a = f x y    a   = f x 
 b = g z    y b = g z 

The place where the new line is inserted (between the y and the b, or between the x and the 
y) does make a difference: in the first situation a and b are defined while in the second si-
tuation a and y are defined (y has b as formal argument). 

The CLEAN compiler uses the criteria below for determining which text groups together: 
• a line that is indented exactly as much as the previous line, is considered to be a new defi-

nition; 
• a line that is indented more belongs to the expression on the previous line; 
• a line that is indented less does not belong to the same group of definitions any more. 
The CLEAN compiler assumes that you use a fixed width font. The default tab-size is 4. 

The third rule is necessary only when where-constructions are nested, as in: 
f x y = g (x+w) 
where 
 g u = u + v 
 where 
  v = u * u 
 w = 2 + y 

Here, w is a local definition of f, not of g. This is because the definition of w is indented less 
than the definition of v; therefore it doesn't belong to the local definitions of g. If it would 
be indented even less, it would not be a local definition of f anymore as well. This would 
result in an error message, because y is not defined outside the function f and its local def-
initions. 

All this is rather complicated to explain, but in practice everything works fine if you adhere 
to the rule: 

  Definitions on the same level should be indented the same amount. 

This is also true for global definitions, the global level starts at the very beginning of a line. 
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Although programs using this layout rule are syntactically appealing, it is allowed to define 
the scope of definitions explicitly. For example: 

f x y = g (x+w) 
where { g u =u + v 
  where { v = u * u 
     }; 
  w = 2 + y 
   }; 

This form of layout cannot be mixed with the layout rule within a single module. When 
there is a semicolon after the module name on the first line of the module the scope of 
definitions in this module should be indicated by the symbols { and }, otherwise the layout 
rule is used. The semicolons to separate definitions might be written when the layout rule is 
used and ought to be written otherwise. 

1.4.6 Comments 
On all places in the program where extra whitespace is allowed (that is, almost everywhere) 
comments may be added. Comments are neglected by the compiler, but serve to elucidate 
the text for human readers. There are two ways to mark text as comment: 
• with symbols // a comment is marked that extends to the end of the line 
• with symbols /* a comment is marked that extends to the matching symbols */. 

Comments that are built in the second way may be nested, that is contain a comment 
themselves. The comment is finished only when every /* is closed with a matching */. For 
example in 

/* /* hello */ f x = 3 */ 

There is no function f defined: everything is comment. 

1.5 Types 
All language elements in CLEAN have a type. These types are used to group data of the 
same kind. We have seen some integers, like 0, 1 and 42. Another kind of values are the 
Boolean values True and False. The type system of CLEAN prevents that these different 
kinds of data are mixed. The type system of CLEAN assigns a type to each and every el-
ement in the language. This implies that basic values have a type, compound datatypes have 
a type and functions have a type. The types given to the formal arguments of a function 
specify the domain the function is defined on. The type given to the function result specifies 
the range (co-domain) of the function. 

The language CLEAN, and many (but not all) other functional languages, have a static type 
system. This means that the compiler checks that type conflicts cannot occur during pro-
gram execution. This is done by assigning types to all function definitions in the program. 

1.5.1 Sorts of errors 
To err is human, especially when writing programs. Fortunately, the compiler can warn for 
some errors. If a function definition does not conform to the syntax, this is reported by the 
compiler. For example, when you try to compile the following definition: 

isZero x = x=0 

the compiler will complain: the second = should have been a ==. Since the compiler does 
not know your intention, it can only indicate that there is something wrong. In this case the 
error message is (the part […] indicates the file and line where the error is found): 

Parse error [...]: Unexpected token in input: definition expected instead of = 

Other examples of parse and syntax errors that are detected by the compiler are expres-
sions in which not every opening parenthesis has a matching closing one, or the use of re-
served words (such as where) in places where this is not allowed.  
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Also wrong use of the layout rule, or expecting a layout rule while you switched it off by 
writing a semicolon after the module name causes syntax errors. 

A second sort of errors for which the compiler can warn is the use of functions that are 
neither defined nor included from another module. For example, if you define, say on line 
20 of a CLEAN module called test.icl 

Start = Sqrt 5.0 

the compiler notices that the function Sqrt was never defined (if the function in the module 
StdReal was intended, it should have been spelled sqrt). The compiler reports: 

Error [test.icl,20,Start]: Sqrt undefined 

The next check the compiler does is type checking. Here it is checked whether functions are 
only used on values that they were intended to operate on. For example, functions which 
operate on numbers may not be applied to Boolean values, neither to lists. Functions 
which operate on lists, like length, may in turn not be applied to numbers, and so on. 

If in an expression the term 1+True occurs, the compiler will complain: 
Type error […]: "argument 1 of +" cannot unify Bool with Int 

The […] replaces the indication of the file, the line and the function of the location where 
the error was detected. Another example of an error message occurs when the function 
reverse is applied to anything but a list, as in reverse 3: 

Type error […]: "argument 1 of reverse" cannot unify [v1] with Int 

The compiler uses a technique called unification to verify that, in any application, the actual 
types match the corresponding types of the formal arguments. This explains the term 
'unify' in the type error messages if such a matching fails. Only when a program is free of 
type errors, the compiler can generate code for the program. When there are type errors, 
there is no program to be executed. 

In strongly typed languages like CLEAN, all errors in the type of expressions are detected by 
the compiler. Thus, a program that survives checking by the compiler is guaranteed to be 
type-error free. In other languages only a part of the type correctness can be checked at 
compile time. In these languages a part of the type checks are done during the execution of 
the generated application when function is actually applied. Hence, parts of the program 
that are not used in the current execution of the program are not checked for type consis-
tency. In those languages you can never be sure that at run time no type errors will pop up. 
Extensive testing is needed to achieve some confidence in the type correctness of the pro-
gram. There are even language implementations where all type checks are delayed until 
program execution. 

Surviving the type check of the compiler does not imply that the program is correct. If you 
used multiplication instead of addition in the definition of sum, the compiler will not com-
plain about it: it has no knowledge of the intentions of the programmer. These kind of er-
rors, called `logical errors', are among the hardest to find, because the compiler does not 
warn you for them. 

1.5.2 Typing of expressions 
Every expression has a type. The type of a constant or function that is defined can be spec-
ified in the program. For example: 

Start :: Int 
Start = 3+4 

The symbol :: can be pronounced as `is of type'. 
There are four basic types: 
•  Int: the type of the integer numbers (also negative ones); 
•  Real: the type of floating-point numbers (an approximation of the Real numbers); 
•  Bool: the type of the Boolean values True and False; 
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•  Char: the type of letters, digits and symbols as they appear on the keyboard of the com-
puter. 

In many programming languages string, sequence of Char, is a predefined or basic type. 
Some functional programming languages use a list of Char as representation for string. For 
efficiency reasons Clean uses an unboxed array of Char, {#Char}, as representation of 
strings. See below. 

Lists can have various types. There exist lists of integers, lists of Boolean values, and even 
lists of lists of integers. All these types are different: 

x :: [Int] 
x =  [1,2,3] 
 
y :: [Bool] 
y =  [True,False] 
 
z :: [[Int]] 
z =  [[1,2],[3,4,5]] 

The type of a list is denoted by the type of its elements, enclosed in square brackets: [Int] is 
the type of lists of integers. All elements of a list must have the same type. If not, the com-
piler will complain. 

Not only constants, but also functions have a type. The type of a function is determined by 
the types of its arguments and its result. For example, the type of the function sum is: 

sum :: [Int] -> Int 

That is, the function sum operates on lists of integers and yields an integer. The symbol -> 
in the type might remind you of the arrow symbol (→) that is used in mathematics. More 
examples of types of functions are: 

sqrt  :: Real -> Real 
isEven :: Int -> Bool 

A way to pronounce lines like this is `isEven is of type Int to Bool' or 'isEven is a function 
from Int to Bool'. 

Functions can, just as numbers, Booleans and lists, be used as elements of a list as well. 
Functions occurring in one list should be of the same type, because elements of a list must 
be of the same type. An example is: 

trigs :: [Real->Real] 
trigs =  [sin,cos,tan] 

The compiler is able to determine the type of a function automatically. It does so when 
type checking a program. So, if one defines a function, it is allowed to leave out its type 
definition. But, although a type declaration is strictly speaking superfluous, it has two ad-
vantages to specify a type explicitly in the program: 
• the compiler checks whether the function indeed has the type intended by the pro-

grammer; 
• the program is easier to understand for a human reader. 
It is considered a very good habit to supply types for all important functions that you de-
fine. The declaration of the type has to precede to the function definition. 

1.5.3 Polymorphism 
For some functions on lists the concrete type of the elements of the list is immaterial. The 
function length, for example, can count the elements of a list of integers, but also of a list 
of Booleans, and –why not– a list of functions or a list of lists. The type of length is deno-
ted as: 

length :: [a] -> Int 
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This type indicates that the function has a list as argument, but that the concrete type of the 
elements of the list is not fixed. To indicate this, a type variable is written, a in the example. 
Unlike concrete types, like Int and Bool, type variables are written in lower case. 

The function hd, yielding the first element of a list, has as type: 
hd :: [a] -> a 

This function, too, operates on lists of any type. The result of hd, however, is of the same 
type as the elements of the list (because it is the first element of the list). Therefore, to hold 
the place of the result, the same type variable is used. 

A type which contains type variables is called a polymorphic type (literally: a type of many 
shapes). Functions with a polymorphic type are called polymorphic functions, and a lan-
guage allowing polymorphic functions (such as CLEAN) is called a polymorphic language. 
Polymorphic functions, like length and hd, have in common that they only need to know 
the structure of the arguments. A non-polymorphic function, such as sum, also uses proper-
ties of the elements, like `addibility'. Polymorphic functions can be used in many different 
situations. Therefore, a lot of the functions in the standard modules are polymorphic. 

Not only functions on lists can be polymorphic. The simplest polymorphic function is the 
identity function (the function that yields its argument unchanged): 

id :: a -> a 
id x = x 

The function id can operate on values of any type (yielding a result of the same type). So it 
can be applied to a number, as in id 3, but also to a Boolean value, as in id True. It can also 
be applied to lists of Booleans, as in id [True,False] or lists of lists of integers: id 
[[1,2,3],[4,5]]. The function can even be applied to functions: id sqrt or id sum. The ar-
gument may be of any type, even the type a->a. Therefore the function may also be applied 
to itself: id id. 

1.5.4 Functions with more than one argument 
Functions with more arguments have a type, too. All the types of the arguments are listed 
before the arrow. The function over from subsection 1.4.1 has type: 

over :: Int Int -> Int 

The function roots from the same subsection has three floating-point numbers as argu-
ments and a list of floats as result: 

roots :: Real Real Real -> [Real] 

Operators, too, have a type. After all, operators are just functions written between the ar-
guments instead of in front of them. Apart from the actual type of the operator, the type 
declaration contains some additional information to tell what kind of infix operator this is 
(see section 2.1). You could declare for example: 

(&&) infixr 1 :: Bool Bool -> Bool 

An operator can always be transformed to an ordinary function by enclosing it in brackets. 
This means that a && b and (&&) a b are equivalent expresions. In the type declaration of 
an operator and in the left-hand side of its own definition the form with brackets is obliga-
tory. 

1.5.5 Overloading 
The operator + can be used on two integer numbers (Int) giving an integer number as re-
sult, but it can also be used on two real numbers (Real) yielding a real number as result. So, 
the type of + can be both Int Int->Int and Real Real->Real. One could assume that + is a po-
lymorphic function, say of type a a->a. If that would be the case, the operator could be ap-
plied on arguments of any type, for instance Bool arguments too, which is not the case. So, 
the operator + seems to be sort of polymorphic in a restricted way.  
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However, + is not polymorphic at all. Actually, there exists not just one operator +, but 
there are several of them. There are different operators defined which are all carrying the 
same name: +. One of them is defined on integer numbers, one on real numbers, and there 
may be many more. A function or operator for which several definitions may exist, is called 
overloaded.  

In CLEAN it is generally not allowed to use the same name for different functions. If one 
wants to use the same name for different functions, one has to explicitly define this via a 
class declaration. This is usefull when you want to apply a similar function for different 
types. For instance, the overloaded use of the operator + can be declared as (see StdOver-
loaded): 

class (+) infixl 6 a :: a a -> a  

With this declaration + is defined as the name of an overloaded operator (which can be 
used in infix notation and has priority 6, see chapter 2.1). Each of the concrete functions 
(called instances) with the name + must have a type of the form a a -> a, where a is the class 
variable which has to be substituted by the concrete type the operator is defined on. So, an 
instance for + can e.g. have type Int Int -> Int (substitute for the class variable a the type 
Int) or Real Real -> Real (substitute for a the type Real). The concrete definition of an in-
stance is defined separately (see StdInt, StdReal). For instance, one can define an instance for 
+ working on Booleans as follows: 

instance + Bool 
where 
 (+) :: Bool Bool -> Bool 
 (+) True b = True 
 (+) a    b = b 

Now one can use + to add Booleans as well, even though this seems not to be a very useful 
definition. Notice that the class definition ensures that all instances have the same type, it 
does not ensure that all the operators also behave uniformly or behave in a sensible way. 

When one uses an overloaded function, it is often clear from the context, which of the 
available instances is intended. For instance, if one defines: 

increment n = n + 1 

it is clear that the instance of + working on integer numbers is meant. Therefore, increment 
has type: 

increment :: Int -> Int 

However, it is not always clear from the context which instance has to be taken. If one de-
fines: 

double n = n + n 

it is not clear which instance to choose. Any of them can be applied. As a consequence, the 
function double becomes overloaded as well: it can be used on many types. More precisely, 
it can be applied on an argument of any type under the condition that there is an instance 
for + for this type defined. This is reflected in the type of double: 

double :: a -> a | + a 

As said before, the compiler is capable of deducing the type of a function, even if it is an 
overloaded one. More information on overloading can be found in Chapter 4. 

1.5.6 Type annotations and attributes 
The type declarations in CLEAN are also used to supply additional information about (the 
arguments of) the function. There are two kinds of annotations: 
• Strictness annotations indicate which arguments will always be needed during the com-

putation of the function result. Strictness of function arguments is indicated by the !-
symbol in the type declaration. 
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• Uniqueness attributes indicate whether the actual arguments will be shared by other 
functions, or that the function at hand is the only one using them. Uniqueness is indi-
cated by a *-symbol, or a variable and a :-symbol in front of the type of the argument. 
The .-symbol is used as an anonymous uniqueness variable. 

Some examples of types with annotations and attributes from the standard environment: 
isEven     :: !Int -> Bool    // True if argument is even 
spaces     :: !Int -> .[Char]   // Make list of n spaces 
(++) infixr 0   :: ![.a] u:[.a] -> u:[.a] // Concatenate two lists 
class (+) infixl 6 a :: !a !a -> a    // Add arg1 to arg2 

Strictness information is important for efficiency; uniqueness is important when dealing 
with I/O (see Chapter 5). For the time being you can simply ignore both strictness anno-
tations and uniqueness attributes. The compiler has an option that switches off the strict-
ness analysis, and an option that inhibits displaying uniqueness information in types. 

More information on uniqueness attributes can be found in Chapter 4, the effect of strict-
ness is explained in more detail in Chapter 6. 

1.5.7 Well-formed Types 
When you specify a type for a function the compiler checks whether this type is correct or 
not. Although type errors might look boring while you are trying to compile your program, 
they are a great benefit. By checking the types in your program the compiler guarantees 
that errors caused by applying functions to illegal arguments cannot occur. In this way the 
compiler spots a lot of the errors you made while your were writing the program before 
you can execute the program. The compiler uses the following rules to judge type correct-
ness of your program: 
1) all alternatives of a function should have the same type; 
2) all occurrences of an argument in the body of a function should have the same type; 
3) each function used in an expression should have arguments that fits the corresponding 

formal arguments in the function definition; 
4) a type definition supplied should comply with the rules given here. 
An actual argument fits the formal argument of function when its type is equal to, or more 
specific than the corresponding type in the definition. We usually say: the type of the actual 
argument should be an instance of the type of the formal argument. It should be possible to 
make the type of the actual argument and the type of the corresponding formal argument 
equal by replacing variables in the type of the formal argument by other types.  

Similarly, it is allowed that the type of one function alternative is more general that the type 
of an other alternative. The type of each alternative should be an instance of the type of the 
entire function. The same holds within an alternative containing a number of guarded bod-
ies. The type of each function body ought to be an instance of the result type of the func-
tion. 

We illustrate these rules with some examples. In these examples we will show how the 
CLEAN compiler is able to derive a type for your functions. When you are writing func-
tions, you know your intentions and hence a type for the function you are constructing. 
Consider the following function definition: 

f 1 y = 2 
f x y = y 

From the first alternative it is clear the type of f should be Int t -> Int. The first argument 
is compared in the pattern match with the integer 1 and hence it should be an integer. We 
do not know anything about the second argument. Any type of argument will do. So, we 
use a type variable for the type. The body is an Int, hence the type of the result of this 
function is Int. The type of the second alternative is u v -> v. We do not know any thing 
about the type of the arguments. When we look to the body of the function alternative we 
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can only decide that its type is equal to the type of the second argument. For the type of 
the entire function types Int t -> Int and u v -> v should be equal. From the type of the 
result we conclude that v should be Int. We replace the type variable v by Int. The type of 
the function alternatives is now Int t -> Int and u Int -> Int. The only way to make these 
types equal is to replace t and u by Int as well. Hence the type derived by the compiler for 
this function is Int Int -> Int. The process of replacing type variables by types in order to 
make types equal is called unification. 

Type correctness rule 4) implies that it is allowed to specify a more restricted type than the 
most general type that would have been derived by the compiler. As example we consider 
the function Int_Id: 

Int_Id :: Int -> Int 
Int_Id i = i 

Here a type is given. The compiler just checks that this type does not cause any conflicts. 
When we assume that the argument is of type Int also the result is of type Int. Since this is 
consistent with the definition this type is correct. Note that the same function can have 
also the more general type v -> v. Like usual the more specific type is obtained by replacing 
type variables by other types. Here the type variable v is replaced by Int. 

Our next example illustrates the type rules for guarded function bodies. We consider the 
somewhat artificial function g: 

g 0 y z = y 
g x y z 
  | x == y    = y 
  | otherwise = z 

In the first function alternative we can conclude that the first argument should be an Int 
(due to the given pattern), the type of the result of the function is equal to its second ar-
gument: Int u v -> u. 

In the second alternative, the argument y is compared to x in the guard. The ==-operator has 
type a a -> Bool, hence the type of the first and second argument should be equal. Since 
both y and z occur as result of the guarded bodies of this alternative, their types should be 
equal. So, the type of the second alternative is t t t -> t.  

When we unify the type of the alternatives, the type for these alternatives must be made 
equal. We conclude that the type of the function g is Int Int Int -> Int. 

Remember what we have told in section 1.5.5 about overloading. It is not always necessary 
to determine types exactly. It can be sufficient to enforce that some type variables are part 
of the appropriate classes. This is illustrated in the function h. 

h x y z 
  | x == y    = y 
  | otherwise = x+z 

Similar to the function g, the type of argument x and y should be equal since these argu-
ments are tested for equality. However, none of these types are known. It is sufficient that 
the type of these arguments is member of the type class ==. Likewise, the last function body 
forces the type of the arguments x and z to be equal and part of the type class +. Hence, the 
type of the entire function is a a a -> a | + , == a. This reads: the function h takes three 
values of type a as arguments and yields a value of type a, provided that + and == is defined 
for type a (a should be member of the type classes + and ==). Since the type Int Int Int -> 
Int is an instance of this type, it is allowed to specify that type for the function h. 

You might be confused by the power of CLEAN's type system. We encourage you to start 
specifying the type of the functions you write as soon as possible. Types help you to under-
stand the function to write and the functions you have written. Moreover, the compiler 
usually gives more appropriate error messages when the intended type of the functions is 
known. 



I.1 INTRODUCTION TO FUNCTIONAL PROGRAMMING  19 

1.6 Synonym definitions 
There are several reasons for using synonym definitions. First and for all it is always wise to 
use meaningful names throughout your programs. The CLEAN systems does not care about 
names, but for you a program is much easier to develop, understand and maintain when 
sensible names are used. This holds for functions and their arguments as well as for types 
and constructers. 

A second reason to use synonym definitions is that programs become more concise, and 
hence clearer and less error-prone, when expressions that are used at several places are de-
fined only once.  

The third reason to use synonym definitions is that it can increase the efficiency. When we 
define a closed expression, a function without arguments, its has only one well-defined 
value. This value can be computed once and the CLEAN system can automatically use this 
value every time the named expression is used. This is the default behaviour for local defi-
nitions, and can be forced for global definitions by defining global constant functions 
(CAF's). 

1.6.1 Global constant functions (CAF’s) 
We have seen in the definition of the roots function given in subsection 1.4.1 that one can 
define local constants (e.g. s = sqrt(b*b-4.0*a*c)). By using such a local constant efficiency is 
gained because the corresponding expression will be evaluated only once, even if it is used 
on several places.  

It is also possible to define such constants on the global level, e.g. a very large list of integers 
is defined by: 

biglist :: [Int] 
biglist =: [1..100000] 

Notice that one has to use the =: symbol to separate left-hand side from the right-hand side 
of the global constant definition (the =:-symbol can also be used as alternative for = in local 
constant definitions). Constant functions on the global level are also known as constant appli-
cative forms (CAF’s). Global constants are evaluated in the same way as local constants: they 
are evaluated only once. The difference with local constants is that a global constant can be 
used anywhere in the program. The (evaluated) constant will be remembered during the 
whole life time of the application. The advantage is that if the same constant is used on 
several places, it does not has to be calculated over and over again. The disadvantage can 
be that an evaluated constant might consume much more space than an unevaluated one. 
For instance the unevaluated expression [1..100000] consumes much less space than an 
evaluated list with 100000 elements in it. If you rather would like to evaluate the global con-
stant each time it is used to save space, you can define it as:  

biglist :: [Int] 
biglist = [1..100000] 

The use of =: instead of = makes all the difference. 

1.6.2 Macro’s and type synonyms 
It is sometimes very convenient to introduce a new name for a given expression or for an 
existing type. Consider the following definitions:  

:: Color :== Int 
 
Black  :== 1 
White  :== 0 
 
invert :: Color -> Color 
invert Black = White 
invert White = Black 
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In this example a new name is given to the type Int, namely Color. By defining 
:: Color :== Int 

Color has become a type synonym for the type Int. Color -> Color and Int -> Int are now both a 
correct type for the function invert. 

One can also define a synonym name for an expression. The definitions 
Black :== 1 
White :== 0 

are examples of a macro definition. So, with a type synonym one can define a new name for 
an existing type, with a macro one can define a new name for an expression. This can be 
used to increase the readability of a program. 

Macro names can begin with a lowercase character, an uppercase character or a funny char-
acter. In order to use a macro in a pattern, it should syntactical be equal to a constructor; it 
should begin with an uppercase character or a funny character. All identifiers beginning 
with a lowercase character are treated as variables. 

Macro's and type synonyms have in common that whenever a macro name or type syno-
nym name is used, the compiler will replace the name by the corresponding definition be-
fore the program is type checked or run. Type synonyms lead to much more readable code. 
The compiler will try to use the type synonym name for its error messages. Using macro's 
instead of functions or (global) constants leads to more efficient programs, because the 
evaluation of the macro will be done at compile time while functions and (global) constants 
are evaluated at run-time. Since macro names are replaced by their definition, Black and 1 
are completely equivalent. This implies that Black == 3-2 is a valid expression (with value 
True). In chapter 3 we will see a better way to implement types like Color. 

Just like functions macro's can have arguments. Since macro's are 'evaluated' at compile 
time the value of the arguments is usually not known, nor can be computed in all circum-
stances. Hence it is not allowed to use patterns in macro's. When the optimum execution 
speed is not important you can always use an ordinary function instead of a macro with 
arguments. We will return to macro's in chapter 6. 

1.7 Modules 
CLEAN is a modular language. This means that a CLEAN program is composed out of mo-
dules. Each module has a unique name. A module (say you named it MyModule) is in principle 
split into two parts: a CLEAN implementation module (stored in a file with extension .icl, e.g. 
MyModule.icl) and a CLEAN definition module (stored in a file with extension .dcl, e.g. MyMod-
ule.dcl).  

Function definitions can only be given in implementation modules. A function defined in a 
specific implementation module by default only has a meaning inside that module. It can-
not be used in another module, unless the function is exported. To export a function (say 
with the name MyFunction) one has to declare its type in the corresponding definition mod-
ule. Other implementation modules now can use the function, but to do so they have to 
import the specific function. One can explicitly import a specific function from a specific 
definition module (e.g. by declaring: from MyModule import MyFunction). It is also possible to 
import all functions exported by a certain definition module with one import declaration 
(e.g. by declaring: import MyModule). 

For instance, assume that one has defined the following implementation module (to be 
stored in file Example.icl): 

implementation module Example 
 
increment :: Int -> Int 
increment n = n + 1 
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In this example the operator + needs to be imported from module StdInt. This can be done 
in the following way: 

implementation module Example 
 
from StdInt import class + (..), instance + Int 
 
increment :: Int -> Int 
increment n = n + 1 

And indeed, the operator + is an instance of an overloaded operator which is exported 
from StdInt because its type definition appears in the definition module of StdInt. It is a lot 
of work to import all functions explicitly, in particular when one has to deal with over-
loaded functions. Fortunately one can import all standard operators and functions with one 
declaration in the following way: 

implementation module Example 
 
import StdEnv 
 
increment :: Int -> Int 
increment n = n + 1 

The definition module of StdEnv looks like: 
definition module StdEnv 
 
import  
 StdBool, StdInt, StdReal, StdChar, 
 StdArray, StdString, 
 StdFile, 
 StdClass, 
 StdList, StdOrdList, StdTuple, StdCharList, 
 StdFunc, 
 StdMisc, 
 StdEnum 

When one imports a module as a whole (e.g. via import StdEnv) not only the definitions ex-
ported in that particular definition module will be imported, but also all definitions which 
are on their turn imported in that definition module, and so on. In this way one can import 
many functions with just one statement. This can be handy, e.g. one can use it to create 
your own ‘standard environment’. However, the approach can also be dangerous because a 
lot of functions are automatically imported this way, perhaps also functions are imported 
one did not expect at first glance. Since functions must have different names, name con-
flicts might arise unexpectedly (the compiler will spot this, but it can be annoying).   

When you have defined a new implementation module, you can export a function by re-
peating its type (not its implementation) in the corresponding definition module. For in-
stance: 

definition module Example 
 
increment :: Int -> Int 

In this way a whole hierarchy of modules can be created (a cyclic dependency between 
definition modules is not allowed). Of course, the top-most implementation module does 
not need to export anything. That’s why it does not need to have a corresponding defini-
tion module. When an implementation module begins with 

module … 

instead of  
implementation module … 

it is assumed to be a top-most implementation module. No definition module is expected 
in that case. Any top-most module must contain a Start rule such that it is clear which ex-
pression has to be evaluated given the (imported) function definitions. 
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The advantage of the module system is that implementation modules can be compiled 
separately. If one changes an implementation module, none of the other modules have to 
be recompiled. So, one can change implementations without affecting other modules. This 
reduces compilation time significantly. If, however, a definition module is changed, all im-
plementation modules importing from that definition module have to be recompiled as 
well to ensure that everything remains consistent. Fortunately, the CLEAN compiler decides 
which modules should be compiled when you compile the main module and does this rea-
sonably fast… 

1.8 Overview 
In this chapter we introduced the basic concepts of functional programming. Each func-
tional program in CLEAN evaluates the expression Start. By providing appropriate function 
definitions, any expression can be evaluated. 

Each function definition consists of one or more alternatives. These alternatives are dis-
tinguished by their patterns and optionally by guards. The first alternative that matches the 
expression is used to rewrite it. Guards are used to express conditions that cannot be 
checked by a constant pattern (like n>0). When you have the choice between using a pattern 
and a guard, use a pattern because it is more clear. 

It is also possible to define a choice using the conditional function if, or by a case ex-
pression. These possibilities are used for small definitions which do not deserve an own 
function definition, or when writing function patterns becomes boring,. 

The static type system guarantees that dynamic type problems cannot occur: a program that 
is approved by the compiler cannot fail during execution due to type problems. The type 
system allows many powerful constructs like: 
• higher-order functions: the possibility to use functions as argument and result of other 

functions; 
• polymorphism: the possibility to use one function for many different types; 
• overloading: several different functions with the same name can be defined, the compiler 

has to determine which of these functions fits the current type of arguments. A collec-
tion of functions with the same name is called a class. 

In the chapters to come we will discuss these topics in more detail and we will show the 
benefits of these language constructs. 

1.9 Exercises 
1 Make sure the CLEAN system is installed on your computer. The system can be 

downloaded from www.cs.kun.nl/~clean. Write and execute a program that prints the 
value 42. 

2 Write a function that takes two arguments, say n and x, and computes their power, xn. 
Use this to construct a function that squares its argument. Write a program that com-
putes the square of 128. 

3 Define the function isum :: Int -> Int which adds the digits of its argument. So,  
isum 1234 = 10 
isum 0    = 0 
isum 1001 = 2 

You may assume that isum is applied to an argument which is not negative. 

4 Use the function isum  to check whether a number can be divided by 9. 

5 Define a function Max with two arguments that delivers the maximum of the two. 

6 Define a function Min that has two arguments that delivers the minimum of the two. 

7 Define a function MaxOfList that calculates the largest element of a list. 
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8 Define a function MinOfList that calculates the smallest element of a list. 

9 Define a function Last that returns the last element of a list. 

10 Define a function LastTwo that returns the last two elements of a list. 

11 Define a function Reverse that  reverses the elements in a list. 

12 Define a function Palindrome which checks whether a list of characters is a palindrome, 
i.e. when you reverse the characters you should get the same list as the original. 
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2.1 Operators 
An operator is a function of two arguments that is written between those arguments (‘infix’ 
notation) instead of in front of them (‘prefix’ notation). We are more used to write 1 + 2 
instead of writing + 1 2. The fact that a function is an operator is indicated at its type defini-
tion, between its name and concrete type. 

For example, in the standard module StdBool, the definition of the conjunction operator 
starts with: 

(&&) infixr 3 :: Bool Bool -> Bool 

This defines && to be an operator that is written in between the arguments (‘infix’), asso-
ciates to the right (hence the ‘r’ in infixr, see also section 2.1.3), and has priority 3 (see sec-
tion 2.1.2). 

2.1.1 Operators as functions and vice versa 
Sometimes it can be more convenient to write an operator before its arguments, as if it 
were an ordinary function. You can do so by writing the operator name in parentheses. It is 
thus allowed to write (+) 1 2 instead of 1 + 2. This notation with parentheses is obligatory in 
the operators type definition and in the left-hand-side of the operators function definition. 
That is why && is written in parentheses in the definition above. 

Using the function notation for operators is extremely useful in partial parameterization 
and when you want to use an operator as function argument. This is discussed in section 2 
and 3 of this chapter. 

2.1.2 Priorities 
In primary school we learn that ‘multiplication precedes addition’. Put differently: the prior-
ity of multiplication is higher than that of addition. CLEAN also knows about these priori-
ties: the value of the expression 2*3+4*5 is 26, not 50, 46, or 70. 

There are more levels of priority in CLEAN. The comparison operators, like < and ==, have 
lower priority than the arithmetical operators. Thus the expression 3+4<8 has the meaning 
that you would expect: 3+4 is compared with 8 (with result False), and not: 3 is added to the 
result of 4<8 (which would be a type error). 
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Altogether there are twelve levels of priority (between 0 and 11). The two top most pri-
orities are reserved for selection of elements out of an array or record (see subsection 3.4 
and 3.5) and for function application and cannot be taken by any ordinary operator. The 
priorities of the operators in the standard modules are: 
 level 11  ! 
 level 10  reserved: function application 
 level 9  o !! % 

 level 8   ̂  
 level 7  * / mod rem  

 level 6  + - bitor bitand bitxor 
 level 5  ++ +++ 
 level 4  == <> < <= > >= 
 level 3  && 
 level 2  || 

 level 1  := 

 level 0  b̀ind̀  

As of yet, not all these operators have been discussed; some of them will be discussed in 
this chapter or in later ones.  

Since the priority of * (7) is higher than the priority of + (6), the expression 2*3+4*5 is in-
terpreted as (2*3)+(4*5). To override these priorities you can place parentheses in an ex-
pression around subexpressions that must be calculated first: in 2*(3+4)*5 the subexpression 
3+4 is calculated first, despite the fact that * has higher priority than +. 

Applying functions to their actual argument or parameters (the ‘invisible’ operator between 
f and x in f x) has almost topmost priority. The expression square 3 + 4 therefore calculates 3 
squared, and then adds 4. Even if you write square 3+4 first the function square is applied, 
and only then the addition is performed. To calculate the square of 3+4 parentheses are re-
quired to override the high priority of function calls: square (3+4). Only selection from an 
array or record has higher priority than function application. This makes it possible to se-
lect a function from a record and apply it to some arguments without using parentheses 
(see chapter 3). 

2.1.3 Association 
The priority rule still leaves undecided what happens when operators with equal priority 
occur in an expression. For addition, this is not a problem, but for e.g. subtraction this is an 
issue: is the result of 8-5-1 the value 2 (first calculate 8 minus 5, and subtract 1 from the re-
sult), or 4 (first calculate 5 minus 1, and subtract that from 8)?  

For each operator in CLEAN it is defined in which order an expression containing multiple 
occurrences of it should be evaluated. In principle, there are four possibilities for an oper-
ator, say ⊕: 
• the operator ⊕ associates to the left, i.e. a ⊕ b ⊕ c is interpreted as (a ⊕ b) ⊕ c; 
• the operator ⊕ associates to the right, i.e. a ⊕ b ⊕ c is evaluated as a ⊕ (b ⊕ c); 
• the operator ⊕ is associative, i.e. it doesn’t matter in which order a ⊕ b ⊕ c is evaluated 

(this cannot be indicated in the language: a choice between left or right has to be 
made); 

• the operator ⊕ is non-associative, i.e. it is not allowed to write a ⊕ b ⊕ c; you always need 
parentheses to indicate the intended interpretation. 

For the operators in the standard modules the choice is made according to mathematical 
tradition. When in doubt, the operators are made non-associative. For associative operators 
a more or less arbitrary choice is made for left- or right-associativity (one could e.g. select 
the more efficient of the two). 
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Operators that associate to the left are: 
• the ‘invisible’ operator function application, so f x y means (f x) y (the reason for this is 

discussed in section 2.2). 
• the special operator ‘.’ which is used for selection of an element from an array or from 

a record, e.g. a.[i].[j] means (a.[i]).[j] (select element i from array a which gives an 
array from which element j is selected, see also subsection 3.6). 

• the operator -, so the value of 8-5-1 is 2 (as usual in mathematics), not 4. 
Operators that associate to the right are: 
• the operator  ̂(raising to the power), so the value of 2̂ 2̂ 3 is 28=256 (as usual in math-

ematics), not 43=64; 
Non associative operators are: 
• the operator / and the related operators div, rem en mod. The result of 64/8/2 is therefore 

neither 4 nor 16, but undefined. The compiler generates the error message: 
Error […]: / conflicting or unknown associativity for infix operators 

• the comparison operators ==, < etcetera: most of the time it is meaningless anyway to 
write a==b==c. To test if x is between 2 and 8, don’t write 2<x<8 but 2<x && x<8. 

Associative operators are: 
• the operators * and + (these operators are evaluated left-associative according to 

mathematical tradition); 
• the operators ++, +++, && and || (these operators are evaluated right-associative for rea-

sons of efficiency); 
• the function composition operator o (see subsection 2.3.4) 

2.1.4 Definition of operators 
If you define an operator yourself, you have to indicate its priority and order of association. 
We have seen some operator definitions in 1.5.5. As an example, we look at the way in 
which the power-operator can be declared, specifying that it has priority 8 and associates to 
the right: 

(̂ ) infixr 8 :: Int Int -> Int 

For operators that should associate to the left you use the reserved word infixl, for non-
associative operators infix: 

(+) infixl 6 :: Int Int -> Int 
(==) infix 4 :: Int Int -> Int 

By defining the priorities cleverly, it is possible to avoid parentheses as much as possible. 
Consider for instance the operator ‘n over k’ from subsection 1.4.1: 

over n k = fac n / (fac k * fac (n-k)) 

We can define it as an operator by: 
(!̂ !) n k = fac n / (fac k * fac (n-k)) 

Because at some time it might be useful to calculate ( c

a+ b ), it would be handy if !̂ ! had a 
lower priority than +; then you could leave out parentheses in a+b!̂ !c. On the other hand, 
expressions like (

b

a ) < ( 
d

c ) may be useful. By giving !̂ ! a higher priority than <, again no 
parentheses are necessary. 

For the priority of !̂ !, it is therefore best to choose e.g. 5 (lower than + (6), but higher than 
< (4)). About the associativity: as it is not very customary to calculate a!̂ !b!̂ !c, it is best to 
make the operator non-associative. Therefore the type declaration for our new operator 
will be: 

(!̂ !) infix 5 :: Int Int -> Int 

If you insist, you can define an infix operator without specifying its type: 
(!̂ !) infix 5 
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Using this operator you can write a program that decides whether there are more ways to 
select 2 out of 4 people, or one person more from a group that consists of two persons 
more: 

Start = 4 !̂ ! 2 > 4+2 !̂ ! 2+1 

You can use any legal function name as name for an infix operator. So, the operator de-
fined above can also be called over. In order to prevent confusion with ordinary functions, 
it is common to use names with funny symbols for infix operators. 

2.2 Partial parameterization 

2.2.1 Currying of functions 
Suppose plus is a function adding two integer numbers. In an expression this function can 
be called with two arguments, for instance plus 3 5. 

In CLEAN it is also allowed to call a function with less arguments than is specified in its 
type. If plus is provided with only one argument, for example plus 1, a function remains 
which still expects an argument. This function can be used to define other functions: 

successor :: (Int -> Int) 
successor =  plus 1 

Calling a function with fewer arguments than it expects is known as partial parameterization. 

If one wants to apply operators with fewer arguments, one should use the prefix notation 
with parentheses (see section 2.1). For example, the successor function could have been de-
fined using the operator + instead of the function plus, by defining 

successor = (+) 1 

A more important use of a partially parameterized function is that the result can serve as a 
parameter for another function. The function argument of the function map (applying a 
function to all elements of a list) for instance, often is a partially parameterized function: 

map (plus 5) [1,2,3] 

The expression plus 5 can be regarded as ‘the function adding 5 to something’. In the ex-
ample, this function is applied by map to all elements of the list [1,2,3], yielding the list 
[6,7,8]. 

The fact that plus can accept one argument rather than two, suggests that its type should 
be: 

plus :: Int -> (Int->Int) 

That is, it accepts something like 5 (an Int) and returns something like the successor func-
tion (of type Int->Int). 

For this reason, the CLEAN type system treats the types Int Int -> Int and Int -> (Int -> Int) 
as equivalent. To mimic a function with multiple arguments by using intermediate (anony-
mous) functions having all one argument is known as Currying, after the English mathema-
tician Haskell Curry. The function itself is called a curried function. (This tribute is not ex-
actly right, because this method was used earlier by M. Schönfinkel). 

As a matter of fact these types are not treated completely equivalent in a type declaration of 
functions. The CLEAN system uses the types also to indicate the arity (number of argu-
ments) of functions. This is especially relevant in definition modules. The following incre-
ment functions do not differ in behavior, but do have different types. The only difference 
between these functions is their arity. In expressions they are treated as equivalent. 

inc1 :: (Int -> Int)     // function with arity zero 
inc1 = plus 1 
 
inc2 :: Int -> Int      // function with arity one 
inc2 n = plus 1 n 
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Note that the parentheses are essential to distinguish the types. The type (Int->Int) is a 
single unit, it indicates that the function inc1 has no arguments (arity zero) and yields a 
function from Int to Int. The type Int->Int indicates that inc2 is a function with arity 
one that takes a value of type Int as argument that yields a value of type Int. 

Since inc1 yields a function it can be applied to an argument. For instance the expression 
inc1 6 has value 7. This example shows that it is possible to apply a function to more ar-
guments than its arity indicates. The type indicates the number (and kind) of arguments a 
function can take, not its arity. 

Apart from a powerful feature Currying is also a source of strange type error messages. 
Since it is in general perfectly legal to use a function with fewer or more arguments as its 
definition the CLEAN compiler cannot complain about forgotten or superfluous argu-
ments. However, the CLEAN compiler does notice that there is an error by checking the 
type of the expression. Some typical errors are: 

f1 x = 2 * successor 

Which causes the error message 
Type error […f]: "argument 2 of *" cannot unify Int -> Int with Int 

and 
f2 x = 2 * successor 1 x 

The CLEAN type system gives the error message 
Type error […f]: cannot unify Int -> (v4 -> v3) with Int -> Int near successor 

We will sketch the unification process in order to understand these errors. According to the 
rules for well formed types from chapter 1, f1 is initially assigned type a->b. The argument 
x has type a, and the result type b. The result is determined by applying the operator * to 2 
and successor. The operator * has type t t->t. Hence b should be equal to t. Since the 
first argument of *, 2, has type Int. So, t should be Int. The second argument of *, suc-
cessor, has type Int->Int. So, t should be also equal to Int->Int. There is no way to unify 
Int and Int->Int (there is no assignment of types to type variables to make these types 
equal), so this is a type error. 

In f2 a the application of successor is assigned type Int->(v4->v3), Int for 1, v4 for x and 
v3 for the result. From its definition we know that successor has type Int->Int. These 
types should be equal, but there is no way to achieve this: another unification error. 

2.3 Functions as argument 
In a functional programming language, functions behave in many aspects just like other 
values, like numbers and lists. For example: 
• functions have a type; 
• functions can be the result of other functions (which is exploited in Currying); 
• functions can be used as an argument of other functions. 
With this last possibility it is possible to write general functions, of which the specific be-
havior is determined by a function given as an argument. 

Functions which take a function as an argument or which return a function as result are 
sometimes called higher-order functions, to distinguish them from first-order functions like e.g. 
the common numerical functions which work on values. 

The function twice is a higher-order function taking another function, f, and an argument, 
x, for that function as argument. The function twice applies f two times to the argument x: 

twice :: (t->t) t -> t 
twice f x = f (f x) 
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Since the argument f is used as function it has a function type: (t->t). Since the result of the 
first application is used as argument of the second application, these types should be equal. 
The value x is used as argument of f, hence it should have the same type t. 

We show some examples of the use of twice using inc n = n+1. The arrow → indicates a sin-
gle reduction step, the symbol →* indicates a sequence of reduction steps (zero or more). 
We underline the part of the expression that will be rewritten: 

twice inc 0 
→ inc (inc 0) 
→ inc (0+1) 
→ inc 1 
→ 1+1 
→ 2 
 
twice twice inc 0     // f is bound to twice, and x is bound to inc. 
→ twice (twice inc) 0 
→ twice inc ((twice inc) 0) 
→* twice inc 2      // as in the previous example 
→ inc (inc 2) 
→* inc 3 
→* 4 

The part of an expression that can be rewritten is called the redex, reducable expression. It is 
always a function with the number of arguments indicated by its arity (the number of for-
mal arguments in its definition). This is why 0 is part of the redex in the first example and 
not in the second example. Remember that CLEAN is a higher-order language, so looking 
at the type instead of the arity can be misleading. 

The parentheses in the type declaration of higher-order functions can be necessary to indi-
cate which arguments belong to the function and which arguments belong to the type of 
the higher-order function, i.e. to distinguish x (y->z) -> u, (x y->z) -> u and x y -> (z->u). 
Without parentheses, types associate to the right. This implies that x y -> z -> u means x y 
-> (z->u). It is always allowed to insert additional parentheses to indicate the association 
more clearly. 

2.3.1 Functions on lists 
The function map is another example of a higher-order function. This function takes care of 
the principle of ‘handling all elements in a list’. What has to be done to the elements of the 
list, is specified by the function, which, next to the list, is passed to map. 

The function map can be defined as follows (the first rule of the definition states the type of 
the function (you can ask the CLEAN system to derive the types for you). It expresses that 
map takes two arguments, a function (of arguments of type a to results of type b) and a list 
(of elements of type a); the result will be a list of elements of type b) : 

map :: (a->b) [a] -> [b] 
map f []  = [] 
map f [x:xs] = [f x : map f xs] 

The definition uses patterns: the function is defined separately for the case the second ar-
gument is a list without elements, and for the case the list consists of a first element x and a 
remainder xs. The function is recursive: in the case of a non-empty list the function map is 
applied again. In the recursive application, the argument is shorter (the list xs is shorter 
than the list [x:xs]); finally the non-recursive part of the function will be applied. 

Another frequently used higher-order function on lists is filter. This function returns 
those elements of a list, which satisfy some condition. The condition to be used is passed 
as an argument to filter. Examples of the use of filter are (here [1..10] is the CLEAN 
short-hand for the list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]): 

filter isEven [1..10] 

which yields [2, 4, 6, 8, 10], and 
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filter ((>)10) [2,17,8,12,5] 

which yields [2,8,5] (because e.g. (>) 10 2 is equivalent with 10 > 2). Note that in the last ex-
ample the operator > is Curried. If the list elements are of type a, then the function pa-
rameter of filter has to be of type a->Bool. Just as map, the definition of filter is recursive: 

filter :: (a->Bool) [a] -> [a] 
filter p [] = [] 
filter p [x:xs] 
 | p x  = [x : filter p xs] 
 | otherwise = filter p xs 

In case the list is not empty (so it is of the form [x:xs]), there are two cases: either the first 
element x satisfies p, or it does not. If so, it will be put in the result; the other elements are 
(by a recursive call) ‘filtered’. 

2.3.2 Iteration 
In mathematics iteration is often used. This means: take an initial value, apply some function 
to that, until the result satisfies some condition. 

Iteration can be described very well by a higher-order function. In the standard module 
StdFunc this function is called until. Its type is: 

until :: (a->Bool) (a->a) a -> a 

The function has three arguments: the property the final result should satisfy (a function a-
>Bool), the function which is to be applied repeatedly (a function a->a), and an initial value 
(of the type a). The final result is also of type a. The call until p f x can be read as: ‘until p is 
satisfied, apply f to x’. 

The definition of until is recursive. The recursive and non-recursive cases are this time not 
distinguished by patterns, but by Boolean expression: 

until p f x 
 | p x  = x 
 | otherwise = until p f (f x) 

If the initial value x satisfies the property p immediately, then the initial value is also the fi-
nal value. If not the function f is applied to x. The result, (f x), will be used as a new initial 
value in the recursive call of until. 

Like all higher-order functions until can be conveniently called with partially parameterized 
functions. For instance, the expression below calculates the first power of two which is 
greater than 1000 (start with 1 and keep on doubling until the result is greater than 1000): 

until ((<)1000) ((*)2) 1 

The result is the first power of two that is bigger than 1000, that is 1024. 

In contrast to previously discussed recursive functions, the argument of the recursive call 
of until is not ‘smaller’ than the formal argument. That is why until does not always termi-
nate with a result. When calling until ((>)0) ((+)1) 1 the condition is never satisfied (note 
that 0 is the left argument of >); the function until will keep on counting indefinitely, and it 
will never return a result. 

If a program does not yield an answer because it is computing an infinite recursion, the 
running program has to be interrupted by the user. Often the program will interrupt itself 
when its memory resources (stack space or heap space) are exhausted. 

The function iterate behaves like an unbounded until. It generates a list of elements ob-
tained by applying a given function f again and again to an initial value x. 

iterate :: (t->t) t -> [t] 
iterate f x = [x: iterate f (f x)] 

An application of this function will be shown in section 2.4.2. 
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2.3.3 The lambda notation 
Sometimes it is very convenient to define a tiny function ‘right on the spot’ without being 
forced to invent a name for such a function. For instance assume that we would like to cal-
culate x2+3x+1 for all x in the list [1..100]. Of course, it is always possible to define the 
function separately in a where clause: 

ys = map f [1..100] 
where 
 f x = x*x + 3*x + 1 

However, if this happens too much it gets a little annoying to keep on thinking of names 
for the functions, and then defining them afterwards. For these situations there is a special 
notation available, with which functions can be created without giving them a name: 

\ pattern = expression 

or, you may also write: 
\ pattern -> expression 

This notation is known as the lambda notation (after the greek letter λ; the symbol \ is the 
closest approximation for that letter available on most keyboards…). 

An example of the lambda notation is the function \x = x*x+3*x+1. This can be read as: ‘the 
function that, given the argument x, will calculate the value of x2+3x+1’. The lambda nota-
tion is often used when passing functions as an argument to other functions, as in: 

ys = map (\x = x*x+3*x+1) [1..100] 

Lambda notation can be used to define functions with several arguments. Each of these ar-
guments can be an arbitrary pattern. However, multiple alternatives and guards are not al-
lowed in lambda notation. This language construct is only intended as a short notation for 
fairly simple functions which do not deserve a name. 

With a lambda expression a new scope is introduced. The formal parameters have a meaning 
in the corresponding function body. 

 \ args = body 
 

Figure 2.1: Scope of lambda expression. 

Local definitions in a lambda expression can be introduced through a let expression. A ri-
diculous example is a very complex identity function: 

difficultIdentity :: !a -> a 
difficultIdentity x = (\y = let z = y in z) x 

2.3.4 Function composition 
If f and g are functions, than g.f is the mathematical notation for ‘g after f’: the function 
which applies f first, and then g to the result. In CLEAN the operator which composes two 
functions is also very useful. It is simply called o (not . since the . is used in real denota-
tions and  for selection out of a record or an array), which may be written as an infix oper-
ator. This makes it possible to define: 

odd   = not o isEven 
closeToZero = ((>)10) o abs 

The operator o can be defined as a higher-order operator: 
(o) infixr 9 :: (b -> c) (a -> b) -> (a -> c) 
(o) g f = \x = g (f x) 

The lambda notation is used to make o an operator defined on the desired two arguments. 
It is not allowed to write (o) g f x = g (f x) since an infix operator should have exactly two 
arguments. So, we have to define the function composition operator o using a lambda nota-
tion or a local function definition. The more intuitive definition 

comp g f x = g (f x) 
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has three arguments and type (b -> c) (a -> b) a -> c. Although this is a perfectly legal 
function definition in CLEAN, it cannot be used as an infix operator. 

Without lambda notation a local function should be used: 
(o) g f = h 
where h x = g (f x) 

Not all functions can be composed to each other. The range of f (the type of the result of f) 
has to be equal to the domain of g (the type of the argument of g). So if f is a function a -> b, 
g has to be a function b -> c. The composition of two functions is a function which goes 
directly from a to c. This is reflected in the type of o. 

The use of the operator o may perhaps seem limited, because functions like odd can be de-
fined also by 

odd x = not (isEven x) 

However, a composition of two functions can serve as an argument for another higher or-
der function, and then it is convenient that it need not be named. The expression below 
evaluates to a list with all odd numbers between 1 and 100: 

filter (not o isEven) [1..100] 

Using function composition a function similar to twice (as defined in the beginning of sec-
tion 2.3) can be defined: 

Twice :: (t->t) -> (t->t) 
Twice f = f o f 

In the standard module StdFunc the function composition operator is pre-defined. The op-
erator is especially useful when many functions have to be composed. The programming 
can be done at a function level; low level things like numbers and lists have disappeared 
from sight. It is generally considered much nicer to write  

f   = g o h o i o j o k  

rather than  
f x = g(h(i(j(k x)))) 

2.4 Numerical functions 

2.4.1 Calculations with integers 
When dividing integers (Int) the part following the decimal point is lost: 10/3 equals 3. Still it 
is not necessary to use Real numbers if you do not want to loose that part. On the contrary: 
often the remainder of a division is more interesting than the decimal fraction. The remain-
der of a division is the number which is on the last line of a long division. For instance in 
the division 345/12 

1 2 / 3 4 5 \ 2 8 
      2 4 
      1 0 5 
        9 6 
          9 

is the quotient 28 and the remainder 9. 

The remainder of a division can be determined with the standard operator rem. For ex-
ample, 345 rem 12 yields 9. The remainder of a division is for example useful in the next 
cases: 
• Calculating with times. For example, if it is now 9 o’clock, then 33 hours later the time 

will be (9+33) rem 24 = 20 o’clock. 
• Calculating with weekdays. Encode the days as 0=Sunday, 1=Monday, …, 6=Saturday. 

If it is day 3 (Wednesday), then in 40 days it will be (3+40) rem 7 = 1 (Monday). 
• Determining divisibility. A number m is divisible by n if the remainder of the division 

by n equals zero; m rem n == 0. 



34  FUNCTIONAL PROGRAMMING IN CLEAN 

• Determining decimal representation of a number. The last digit of a number x equals x 
rem 10. The last but one digit equals (x/10) rem 10. The second next equals (x/100) rem 10, 
etcetera. 

As a more extensive example of calculating with whole numbers two applications are dis-
cussed: the calculation of a list of prime numbers and the calculation of the day of the week 
on a given date. 

Calculating a list of prime numbers 

A number is divisible by another number, if the remainder of the division by that number, 
equals zero. The function divisible tests two numbers on divisibility: 

divisible :: Int Int -> Bool 
divisible t n = t rem n == 0 

The denominators of a number are those numbers it can be divided by. The function de-
nominators computes the list of denominators of a number: 

denominators :: Int -> [Int] 
denominators x = filter (divisible x) [1..x] 

Note that the function divisible is partially parameterized with x; by calling filter those ele-
ments are filtered out [1..x] by which x can be divided. 

A number is a prime number iff it has exactly two divisors: 1 and itself. The function prime 
checks if the list of denominators indeed consists of those two elements: 

prime :: Int -> Bool 
prime x = denominators x == [1,x] 

The function primes finally determines all prime numbers up to a given upper bound: 
primes :: Int -> [Int] 
primes x = filter prime [1..x] 

Although this may not be the most efficient way to calculate primes, it is the easiest way: 
the functions are a direct translation of the mathematical definitions. 

Compute the day of the week 

On what day will be New Year’s Eve in the year 2002? Evaluation of 
day 31 12 2002 

will yield "Tuesday". If the number of the day is known (according to the mentioned coding 
0=Sunday etc.) the function day is very easy to write: 

:: Day   :== Int 
:: Month :== Int 
:: Year  :== Int 
 
day :: Day Month Year -> String 
day d m y = weekday (daynumber d m y) 
 
weekday :: Day -> String 
weekday 0 = "Sunday" 
weekday 1 = "Monday" 
weekday 2 = "Tuesday" 
weekday 3 = "Wednesday" 
weekday 4 = "Thursday" 
weekday 5 = "Friday" 
weekday 6 = "Saturday" 

The function weekday uses seven patterns to select the right text (a quoted word is a string; 
for details see subsection 3.6). 

When you do not like to introduce a separate function weekday with seven alternatives you 
can also use a case expression: 

day :: Day Month Year -> String 
day d m y 
 = case daynumber d m y of 
  0 = "Sunday" 



I.2 FUNCTIONS AND NUMBERS 35 

  1 = "Monday" 
  2 = "Tuesday" 
  3 = "Wednesday" 
  4 = "Thursday" 
  5 = "Friday" 
  6 = "Saturday" 

The first pattern in the case that matches the value of the expression between case and ofis 
used to determine the value of the expression. In general a case expression consists of the 
key word case, an expression, the key word of and one or more alternatives. Each alterna-
tive consists of a pattern the symbol = and an expression. Like usual you can use a variable 
to write a pattern that matches each expression. As in functions you can replace the vari-
able pattern by _ when you are not interested in its value. 

A case expression introduces a new scope. The scope rules are identical to the scope rules of 
an ordinary function definition. 

  
 
case expression of  

    args = body  

    args = body  
 

Figure 2.2: Scopes in a case expression. 
When you find even this definition of day to longwinded you can use the daynumber as list 
selector. The operator !! selects the indicated element of a list. The first element of a list 
has index 0. 

day :: Day Month Year -> String 
day d m y  = ["Sunday","Monday","Tuesday","Wednesday" 
    ,"Thursday","Friday","Saturday"] !! daynumber d m y 

The function daynumber chooses a Sunday in a distant past and adds: 
• the number of years passed since then times 365; 
• a correction for the elapsed leap years; 
• the lengths of this years already elapsed months; 
• the number of passed days in the current month. 
Of the resulting (huge) number the remainder of a division by 7 is determined: this will be 
the required day number. 

As origin of the day numbers we could choose the day of the calendar adjustment. But it 
will be easier to extrapolate back to the fictional day before the very first day of the cal-
endar: day Zero, i.e. the day before the First of January Year 1, which is, ofcourse, day 1. 
That fictional day Zero will have daynumber 0 and would then be on a Sunday. Accordingly, 
the first day of the calendar (First of January, Year 1) has daynumber 1 and is on a Monday, 
etcetera. The definition of the function daynumber will be easier by this extrapolation.  

daynumber :: Day Month Year -> Int 
daynumber d m y 
 = ( (y-1)*365      // days in full years before this year 
  + (y-1)/4      // ordinary leap year correction 
  - (y-1)/100      // leap year correction for centuries 
  + (y-1)/400      // leap year correction for four centuries 
  + sum (take (m-1) (months y)) // days in months of this year 
  + d 
  ) rem 7 

The call take n xs returns the first n elements of the list xs. The function take is defined in 
the StdEnv. It can be defined by: 

take :: Int [a] -> [a] 
take 0 xs  = [] 
take n [x:xs] = [x : take (n-1) xs] 

The function months should return the lengths of the months in a given year: 
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months :: Year -> [Int] 
months y = [31, feb, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 
where 
 feb | leap y = 29 
  | otherwise = 28 

You might find it convenient to use the predefined conditional function if to eliminate the 
local definition feb in months. The definition becomes: 

months :: Year -> [Int] 
months y = [31, if (leap y) 29 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 

The function if has a special definition for efficiency reasons. Semantically it could have 
been defined as 

if :: !Bool t t -> t 
if condition then else 
 | condition = then 
 | otherwise = else 

Since the calendar adjustment of pope Gregorius in 1752 the following rule holds for leap 
years (years with 366 days): 
• a year divisible by 4 is a leap year (e.g. 1972); 
• but: if it is divisible by 100 it is no leap year (e.g. 1900); 
• but: if it is divisible by 400 it is a leap year (e.g. 2000). 

 
leap :: Year -> Bool 
leap y = divisible y 4 && (not(divisible y 100) || divisible y 400) 

Another way to define this is: 
leap :: Year -> Bool 
leap y 
 | divisible y 100 = divisible y 400 
 | otherwise   = divisible y 4 

With this the function day and all needed auxiliary functions are finished. It might be sen-
sible to add to the function day that it can only be used for years after the calendar adjust-
ment: 

day :: Day Month Year -> String 
day d m y 
 | y>1752 = weekday (daynumber d m y) 

calling day with a smaller year yields automatically an error. This definition of day is an ex-
ample of a partial function: a function which is not defined on some values of its domain. An 
error will be generated automatically when a partial function is used with an argument for 
which it is not defined.  

Run time error, rule 'day' in module 'testI2' does not match 

The programmer can determine the error message by making the function a total function 
and generating an error with the library function abort. This also guarantees that, as in-
tended, daynumber will be called with positive years only. 

day :: Day Month Year -> String 
day d m y 
 | y>1752 = weekday (daynumber d m y) 
 | otherwise = abort ("day: undefined for year "+++toString y) 

When designing the prime number program and the program to compute the day of the 
week two different strategies were used. In the second program the required function day 
was immediately defined. For this the auxiliary function weekday and daynumber were needed. 
To implement daynumber a function months was required, and this months needed a function 
leap. This approach is called top-down: start with the most important, and gradually fill out 
all the details. 

The prime number example used the bottom-up approach: first the function divisible was 
written, and with the help of that one the function denominators, with that a function prime 
and concluding with the required primes. 
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It does not matter for the final result (the compiler does not care in which order the func-
tions are defined). However, when designing a program it can be useful to determine which 
approach you use, (bottom-up or top-down), or that you even use a mixed approach (until 
the ‘top’ hits the ‘bottom’). 

2.4.2 Calculations with reals 
When calculating Real numbers an exact answer is normally not possible. The result of a 
division for instance is rounded to a certain number of decimals (depending on the calcu-
lational preciseness of the computer): evaluation of 10.0/6.0 yields 1.6666667, not 1 2/3. For 
the computation of a number of mathematical operations, like sqrt, also an approximation 
is used. Therefore, when designing your own functions which operate on Real numbers it is 
acceptable the result is also an approximation of the ‘real’ value. The approximation results 
in rounding errors and a maximum value. The exact approximation used is machine de-
pendent. In chapter 1 we have seen some approximated real numbers. You can get an idea 
of the accuracy of real numbers on your computer by executing one of the follwing pro-
grams. 

Start = "e  = " +++ toString (exp 1.0) +++ "\npi = " +++ toString (2.0*asin 1.0) 
 
Start = takeWhile ((<>) 0.0) (iterate (\x = x/10.0) 1.0) 
 
takeWhile::(a -> Bool) [a] -> [a] 
takeWhile f [] = [] 
takeWhile f [x:xs]  
 | f x  = [x:takeWhile f xs] 
 | otherwise = [] 
 

The first program computes the value of some well known constants.  

The second program generates a list of numbers. The second program uses the function 
takeWhile which yields the longest prefix of the list argument for which the elements satsify 
the predicate f. takeWhile gets a list in which each number is 10.0 times smaller than its 
predecessor. The result list ends when the number cannot be determined to be different 
from 0. Without approximations in the computer, this program will run forever.  

The derivative function 

An example of a calculation with reals is the calculation of the derivative function. The 
mathematical definition of the derivative f ' of the function f is: 

 f ' (x) = 

lim

h → 0

f ( x + h ) − f ( x)

h  

The precise value of the limit cannot be calculated by the computer. However, an approx-
imated value can be obtained by using a very small value for h (not too small, because that 
would result in unacceptable rounding errors). 

The operation ‘derivative’ is a higher-order function: a function goes in and a function 
comes out. The definition in CLEAN could be: 

diff :: (Real->Real) -> (Real->Real) 
diff f = derivative_of_f 
where 
 derivative_of_f x = (f (x+h) - f x) / h 
 h     = 0.0001 

The function diff is very amenable to partial parameterization, like in the definition: 
derivative_of_sine_squared :: (Real->Real) 
derivative_of_sine_squared = diff (square o sin) 
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The value of h in the definition of diff is put in a where clause. Therefore it is easily adjusted, 
if the program would have to be changed in the future (naturally, this can also be done in 
the expression itself, but then it has to be done twice, with the danger of forgetting one). 

Even more flexible it would be, to define the value of h as a parameter of diff: 
flexDiff :: Real (Real->Real) Real -> Real 
flexDiff h f x = (f (x+h) - f x) / h 

By defining h as the first parameter of flexDiff, this function can be partially parameterized 
too, to make different versions of diff: 

roughDiff :: (Real->Real) Real -> Real 
roughDiff = flexDiff 0.01 
 
fineDiff = flexDiff 0.0001 
superDiff = flexDiff 0.000001 

In mathematics you have probably learned to compute the derivative of a function sym-
bolically. Since the definition of functions cannot be manipulated in languages like CLEAN, 
symbolic computation of derivatives is not possible here. 

Definition of square root 

The function sqrt which calculates the square root of a number, is defined in standard 
module StdReal. In this section a method will be discussed how you can make your own 
root function, if it would not have been built in. It demonstrates a technique often used 
when calculating with Real numbers. 

For the square root of a number x the following property holds:  

 if y is an approximation of x  

 then 
1

2
(y +

x

y
)  is a better approximation. 

This property can be used to calculate the root of a number x: take 1 as a first approxima-
tion, and keep on improving the approximation until the result is satisfactory. The value y is 
good enough for x  if y2 is not too different from x. 

For the value of 3  the approximations y0, y1 etc. are as follows: 
 y0 = 1    = 1 
 y1 = 0.5*(y0+3/y0) = 2 
 y2 = 0.5*(y1+3/y1) = 1.75 
 y3 = 0.5*(y2+3/y2) = 1.732142857 
 y4 = 0.5*(y3+3/y3) = 1.732050810 
 y5 = 0.5*(y4+3/y4) = 1.732050807 
The square of the last approximation only differs 10-18 from 3. 

For the process ‘improving an initial value until good enough’ the function until from sub-
section 2.3.2 can be used: 

root :: Real -> Real 
root x = until goodEnough improve 1.0 
where 
 improve y    = 0.5*(y+x/y) 
 goodEnough y = y*y ~=~ x 

The operator ~=~ is the ‘about equal to’ operator, which can be defined as follows: 
(~=~) infix 5 :: Real real -> Bool 
(~=~) a b = a-b <h && b-a<h 
where 
 h = 0.000001 

The higher-order function until operates on the functions improve and goodEnough and on the 
initial value 1.0. 
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Although improve is next to 1.0, the function improve is not applied immediately to 1.0; in-
stead of that both will be passed to until. This is caused by the Currying mechanism: it is 
like if there were parentheses as in (((until goodEnough) improve) 1.0). Only when looking 
closely at the definition of until it shows that improve is still applied to 1.0. 

There are some other quite interesting observations possible with improve and goodEnough. 
These functions can, except for their parameter y, make use of x. For these functions x is 
an implicit parameter. 

2.5 Exercises 
1 Combining operators. Define the function odd using the operators isEven, + and o. 

2 Finite precision of reals. Execute the second start expression given in section 2.4.2. 
Rewrite the program such that it only prints the smallest number that is different from 
zero using the function until. 

3 Counting days. Write a function that given the current day and your date of birth de-
termines how many days you have to wait for your birthday. 

4 Define the function mapfun that applies a list of functions to its second argument re-
turning the results of these function applications into a list. So, e.g.  
mapfun [f,g,h] x = [f x, g x, h x] 
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Data structures are used to store and manipulate collections of data and to represent spe-
cific data values. The example of a data type representing specific values that we have seen 
is the algebraic data type Bool which contains the values True and False. In section 3.6 we 
teach you how to define this kind of algebraic data types. 

The lists that we have used earlier are an example of a recursive algebraic data type. In prin-
ciple it is possible to define all data types directly in CLEAN. Since a number of these data 
types are used very frequently in functional programming they are predefined in CLEAN. In 
order to make the manipulation of these data types easier and syntactically nicer special 
purpose notation is introduced for a number of data types. 

An overview of the most important properties of Lists, Tuples, Records and Arrays is 
given in the table below: 

 Length Type Access 

Lists Arbitrary number 
of elements 

Elements all of the 
same type 

Time linear in length of list, access 
can be done recursively 

Tuples Fixed number of 
elements 

Elements can have 
different types 

Constant time indicated by posi-
tion 

Records Fixed number of 
elements 

Elements can have 
different types 

Constant time indicated by the 
name of the record field 

Arrays Fixed number of 
elements 

Elements all of the 
same type 

Constant time indicated by a sub-
script number 

Lists are by far the most frequently used recursive data type in functional programming. 
Lists hold an arbitrary number of elements of the same type. They are discussed in section 
3.1 and 3.2. Tuples hold a fixed number of data values that can be of different types. The 
use of tuples is treated in section 3.3. Records are similar to tuples. The difference between 
a record and a tuple is that fields in a record are indicated by their name, while in a tuple 
they are indicated by their position. Records are discussed in section 3.4. The last prede-
fined data type discussed in this chapter is the data type array. Arrays are similar to fixed 
length lists. In contrast to lists an array element can be selected in constant time. Usually, it 
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is only worthwhile to use arrays instead of lists when this access time is of great impor-
tance. 

3.1 Lists 
In the previous chapters we have seen some lists. A list is a sequence of elements of the 
same type. The elements of the list can have any type, provided of course that each element 
has the same type. The elements of a list are written between the square brackets [ and ]. A 
comma separates the elements. For example the list of the first five prime numbers is 
[2,3,5,7,11]. You can construct a new list of an element and a list by the infix operator :. 
For example [1:[2,3,5,7,11]]. This list can also be written as [1,2,3,5,7,11]. Both notations 
can be used in the patterns of functions manipulating lists. In this section we will elaborate 
on lists and list processing functions. 

3.1.1 Structure of a list 
Lists are used to group a number of elements. Those elements should be of the same type.  

1

:

2 3

[]: ::

 

Figure 3.1: Pictorial representation of the list [1,2,3]. 

A list in CLEAN can be regarded as a linked list: a chain of :-boxes (called the spine of a list) 
referring to each other. The simplest list is the empty list [] which indicates the end of a 
list. A non-empty list is of shape [x:xs] where x refers to a list element and xs refers to a list. 
A pictorial representation of a list is given in figure 3.1. 

For every type there exists a type `list of that type'. Therefore there are lists of integers, lists 
of reals and lists of functions from Int to Int. But also a number of lists of the same type 
can be stored in a list; in this way you get lists of lists of integers, lists of lists of lists of 
Booleans and so forth. 

The type of a list is denoted by the type of its elements between square brackets. The types 
listed above can thus be expressed shorter by [Int], [Real], [Int->Int], [[Int]] and [[[Bool]]]. 

There are several ways to construct a list: by enumeration, by construction using : and by 
specification of an interval. 

Enumeration 

Enumeration of the elements often is the easiest method to build a list. Since it is a list, the 
elements must be of the same type. Some examples of list enumerations with their types 
are: 

[1,2,3]    :: [Int] 
[1,3,7,2,8]   :: [Int] 
[True,False,True] :: [Bool] 
[sin,cos,tan]  :: [Real->Real] 
[[1,2,3],[1,2]]  :: [[Int]] 

For the type of the list it doesn't matter how many elements there are. A list with three in-
teger elements and a list with two integer elements both have the type [Int]. That is why in 
the fifth example the lists [1,2,3] and [1,2] can in turn be elements of one list of lists. 

The elements of a list need not be constants; they may be determined by a computation: 
[1+2,3*x,length [1,2]] :: [Int] 
[3<4,a==5,p && q]  :: [Bool] 

Since they form a list, the expressions used must all be of the same type. 
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There are no restrictions on the number of elements of a list. A list therefore can contain 
just one element: 

[True]     :: [Bool] 
[[1,2,3]]    :: [[Int]] 

A list with one element is also called a singleton list. The list [[1,2,3]] is a singleton list as 
well, for it is a list of lists containing one element (the list [1,2,3]). 

Note the difference between an expression and a type. If there is a type between the square 
brackets, the whole is a type (for example [Bool] or [[Int]]). If there is an expression be-
tween the square brackets, the whole is an expression as well (a singleton list, for example 
[True] or [3]). 

Furthermore the number of elements of a list can be zero. A list with zero elements is 
called the empty list. The empty list has a polymorphic type: it is a `list of whatever'. At posi-
tions in a polymorphic type where an arbitrary type can be substituted type variables are 
used (see subsection 1.5.3); so the type of the empty list is [a]: 

[] :: [a] 

The empty list can be used in an expression wherever a list is needed. The type is then de-
termined by the context: 

sum [] [] is an empty list of numbers 
and [] [] is an empty list of Booleans 
[[],[1,2],[3]] [] is an empty list of numbers 
[[1<2,True],[]] [] is an empty list of Booleans 
[[[1]],[]] [] is an empty list of lists of numbers 
length [] [] is an empty list (doesn't matter of what type) 

Construction using : 

Another way to build a list is by using the notation involving : . This notation most closely 
follows the way lists are actually represented internally in the CLEAN system. For example, 
the list xs = [1,2,3] is actually a shorthand for xs = [1:[2:[3:[]]]]. One can imagine this list to 
be constructed internally as shown in figure 3.2. 

xs

1

:

2 3

[]: ::

 

Figure 3.2: Pictorial representation of the list defined as xs = [1,2,3]. 

If xs is a list (say xs = [1,2,3]), [0:xs] is a list as well, the list [0,1,2,3]. The new list is con-
structed by making a new box to store [x:xs], where x refers to a new box containing 0 and 
xs refers to the old list. In figure 3.3 the pictorial representation is shown. 

:

0

:

2 3

[]:::

1

xs

[0:xs]

 

Figure 3.3: Pictorial representation of the list [0,xs] where xs = [1,2,3]. 

The operator : is often called cons. In the same jargon the empty list, [], is called nil. 
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Enumerable intervals 

The third way to construct a list is the interval notation: two numeric expression with two 
dots between and square brackets surrounding them: the expression [1..5] evaluates to 
[1,2,3,4,5]. The expression [1..5] is a special notation, called a dot-dot expression. Another 
form of a dot-dot expression is [1,3..9] in which the interval is 2 (the difference between 3 
and 1). The dot-dot expression is internally translated to a function calculating the interval. 
For instance, the expression [first,second..upto] is translated to from_then_to  first second 
upto, which in the case of [1,3..9] evaluates to [1,3,5,7,9]. from_then_to is a predefined func-
tion (see StdEnum) which is defined as follows: 

from_then_to :: a a a -> [a] | Enum a 
from_then_to n1 n2 e 
 | n1 <= n2 = from_by_to n1 (n2-n1) e 
 | otherwise = from_by_down_to n1 (n2-n1) e 
where 
 from_by_to n s e 
  | n <= e  = [n : from_by_to (n+s) s e] 
  | otherwise = [] 
 
 from_by_down_to n s e 
  | n >= e  = [n : from_by_down_to (n+s) s e] 
  | otherwise = [] 

The dot-dot expression [1..5] can be seen as a special case of the expression [1,2..5]. If the 
element indicating the step size is omitted, the step size is by default defined to be 1. 

When a list does not have an upper bound, it can be omitted. In this way one can specify a 
list with an infinite number of elements. Such a generated list will be evaluated as far as 
necessary. See also section 3.2.  

Some examples of generated lists are: 
[1..10]  generates the list  [1,2,3,4,5,6,7,8,9,10] 
[1,2..10] generates the list  [1,2,3,4,5,6,7,8,9,10] 
[1,0.. –10] generates the list  [1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10] 
[1.. –10] generates the list [] 
[1..0]  generates the list [] 
[1..1]  generates the list [1] 
[1,3..4] generates the list [1,3] 
[1..]  generates the list [1,2,3,4,5,6,7,8,9,10,… 
[1,3..]  generates the list [1,3,5,7,9,11,13,15,… 
[100,80..] generates the list [100,80,60,40,20,0,-20,-40,… 

Besides for integer numbers a dot-dot expression can also be used for other enumerables 
(class Enum, see chapter 4), such as real numbers and characters. E.g. the expression 
['a'..'c'] evaluates to ['a','b','c']. 

3.1.2 Functions on lists 
Functions on lists are often defined using patterns: the function is defined for the empty list 
[] and the list of the form [x:xs] separately. For a list is either empty or has a first element x 
in front of a (possibly empty) list xs. 

A number of definitions of functions on lists have already been discussed: hd and tl in sub-
section 1.4.3, sum and length in subsection 1.4.4, and map and filter in subsection 2.3.1. Even 
though these are all standard functions defined in the standard environment and you don't 
have to define them yourself, it is important to look at their definitions. Firstly because they 
are good examples of functions on lists, secondly because the definition often is the best 
description of what a standard function does. 

In this paragraph more definitions of functions on lists follow. A lot of these functions are 
recursively defined. In the case of the pattern [x:xs] generally such functions call them-
selves with the (smaller) parameter xs. This is a direct consequence of the fact that lists 
themselves are recursively defined. 
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Selecting parts of lists 

In the standard environment a number of functions are defined that select parts of a list. 
As a list is built from a head and a tail, it is easy to retrieve these parts again: 

hd :: [a] -> a 
hd [x:_] = x 
 
tl :: [a] -> [a] 
tl [_:xs] = xs 

These functions perform pattern matching on their parameters, but observe that both 
functions are partial: there are no separate definitions for the pattern []. If these functions 
are applied to an empty list, the execution will be aborted with an error message generated 
at run time: 

Run time error, rule hd in module ... does not match 

It is a little bit more complicated to write a function that selects the last element from a list. 
For that you need recursion: 

last :: [a] -> a 
last [x]    = x 
last [x:xs] = last xs 

The pattern [x] is just an abbreviation of [x:[]]. Again this function is undefined for the 
empty list, because that case is not covered by the two patterns. Just as hd goes with tl, last 
goes with init. The function init selects everything but the last element. Therefore you 
need recursion again: 

init :: [a] -> [a] 
init [x]    = [] 
init [x:xs] = [x:init xs] 

Figure 3.4 gives a pictorial overview of the effect of applying the functions hd, tl, init and 
last to the list [1,2,3]. Notice that hd, tl and last simply return (a reference to) an existing 
list or list element, while for init new cons boxes have to be constructed (a new spine) refer-
ring to existing list elements. Have again a close look to the definition of these functions. 
The functions hd, tl and last yield a function argument as result while in the init function 
new list parts are being constructed on the right-hand side of the function definition. 

:

1

:

2

:

3

: ::

[]

[]

list

hd list

tl list

init list

last list  

Figure 3.4: Pictorial representation of the list list = [1,2,3], and the result of applying the 
functions hd, tl, init and last to this list. 

In subsection 2.4.1 a function take was presented. Apart from a list take has an integer as an 
argument, which denotes how many elements of the list must be part of the result. The 
counterpart of take is drop that deletes a number of elements from the beginning of the list. 
Finally there is an operator !! that selects one specific element from the list. List elements 
are numbered from 0! This implies that list!!0 yields the same element as hd list. 
Schematic this is shown in figure 3.5. 
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:

1

:

2

:

3

: ::

[]

[]

list

drop 2 list

take 2 list

list !! 2  

Figure 3.5: Pictorial representation of the list list = [1,2,3], and the result of applying the 
functions drop 2, take 2 and !! 2 to this list. 

These functions are defined as follows: 
take :: Int [a] -> [a] 
take n [] = [] 
take n [x:xs] 
 | n < 1  = [] 
 | otherwise = [x:take (n-1) xs] 
 
drop :: Int [a] -> [a] 
drop n [] = [] 
drop n [x:xs] 
 | n < 1  = [x:xs] 
 | otherwise = drop (n-1) xs 

Whenever a list is too short as many elements as possible are taken or left out respectively. 
This follows from the first line in the definitions: if you give the function an empty list, the 
result is always an empty list, whatever the number is. If these lines were left out of the 
definitions, then take and drop would be undefined for lists that are too short. Also with 
respect to the number of elements to take or drop these functions are foolproof1: all nega-
tive numbers are treated as 0. 

The operator !! selects one element from a list. The head of the list is numbered `zero' and 
so xs!!3 delivers the fourth element of the list xs. This operator cannot be applied to a list 
that is too short; there is no reasonable value in that case. The definition is similar to: 

(!!) infixl 9 :: [a] Int -> a 
(!!) [] _ = abort "Subscript error in !!, index too large" 
(!!) [x:xs] n 
 | n == 0 = x 
 | otherwise = xs!!(n-1) 

For high numbers this function costs some time: the list has to be traversed from the be-
ginning. So it should be used economically. The operator is suited to fetch one element 
from a list. The function weekday from subsection 2.4.1 could have been defined this way: 

weekday d = ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"] !! d 

However, if all elements of the lists are used successively, it's better to use map or foldr. 

Reversing lists 

The function reverse from the standard environment reverses the elements of a list. The 
function can easily be defined recursively. A reversed empty list is still an empty list. In case 
of a non-empty list the tail should be reversed and the head should be appended to the end 
of that. The definition could be like this: 

reverse :: [a] -> [a] 
reverse []  = [] 
reverse [x:xs] = reverse xs ++ [x] 

The effect of applying reverse to the list [1,2,3] is depicted in figure 3.6. 

                                                        
1In this respect the definitions of drop and take differ in the StdEnv of Clean 2.01. 
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:

1 2

:

3

: ::

list

reverse list

: []

: []
 

Figure 3.6: Pictorial representation of the list list = [1,2,3], 
and the effect of applying the function reverse to this list. 

Properties of lists 

An important property of a list is its length. The length can be computed using the func-
tion length. In the standard environment this function is defined equivalent with: 

length :: [a] -> Int 
length []  = 0 
length [_:xs] = 1 + length xs 

Furthermore, the standard environment provides a function isMember which tests whether a 
certain element is contained in a list. That function isMember can be defined as follows: 

isMember :: a [a] -> Bool | == a 
isMember e xs = or (map ((==) e) xs) 

The function compares all elements of xs with e (partial parameterization of the operator 
==). That results in a list of Booleans of which or checks whether there is at least one equal 
to True. By the utilization of the function composition operator the function can also be 
written like this: 

isMember :: a -> ([a] -> Bool) | == a 
isMember e = or o map ((==) e) 

The function notMember checks whether an element is not contained in a list: 
notMember e xs = not (isMember e xs) 

Comparing and ordering lists 

Two lists are equal if they contain exactly the same elements in the same order. This is a 
definition of the operator == which tests the equality of lists: 

(==) infix 4 :: [a] [a] -> Bool | == a 
(==) []     []     = True 
(==) []     [y:ys] = False 
(==) [x:xs] []     = False 
(==) [x:xs] [y:ys] = x==y && xs==ys 

In this definition both the first and the second argument can be empty or non-empty; there 
is a definition for all four combinations. In the fourth case the corresponding elements are 
compared (x==y) and the operator is called recursively on the tails of the lists (xs==ys). 

As the overloaded operator == is used on the list elements, the equality test on lists becomes 
an overloaded function as well. The general type of the overloaded operator == is defined in 
StdOverloaded as: 

(==) infix 4 a :: a a -> Bool 

With the definition of == on lists a new instance of the overloaded operator == should be 
defined with type: 

instance == [a] | == a 
where 
 (==) :: [a] [a] -> Bool | == a 

which expresses the == can be used on lists under the assumption that == is defined on the 
elements of the list as well. Therefore lists of functions are not comparable, because func-
tions themselves are not. However, lists of lists of integers are comparable, because lists of 
integers are comparable (because integers are). 
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If the elements of a list can be ordered using <, then lists can also be ordered. This is done 
using the lexicographical ordering (`dictionary ordering'): the first elements of the lists deter-
mine the order, unless they are same; in that case the second element is decisive unless they 
are equal as well, etcetera. For example, [2,3]<[3,1] and [2,1]<[2,2] hold. If one of the two 
lists is equal to the beginning of the other then the shortest one is the `smallest`, for exam-
ple [2,3]<[2,3,4]. The fact that the word `etcetera' is used in this description, is a clue that 
recursion is needed in the definition of the function < (less than): 

(<)  infix  4 :: [a] [a] -> Bool | <,== a 
(<) []  []  = False 
(<) []  _  = True 
(<) _  []  = False 
(<) [x:xs] [y:ys] = x < y || (x == y && xs < ys) 

When the functions < and == have been defined, other comparison functions can easily be 
defined as well: <> (not equal to), > (greater than), >= (greater than or equal to) and <= 
(smaller than or equal to): 

(<>) x y = not (x==y)  
(>)  x y = y < x  
(>=) x y = not (x<y)  
(<=) x y = not (y<x) 
max  x y = if (x<y) y x 
min  x y = if (x<y) x y 

For software engineering reasons, the other comparison functions are in CLEAN actually 
predefined using the derived class members mechanism (see chapter 4.1). The class Eq con-
tains == as well as the derived operator <>, the class Ord contains < as well as the derived op-
erators >, >=, <=, max and min. 

Joining lists 

Two lists with the same type can be joined to form one list using the operator ++. This is 
also called concatenation (`chaining together'). E.g.: [1,2,3]++[4,5] results in the list [1,2,3,4,5]. 
Concatenating with the empty list (at the front or at the back) leaves a list unaltered: 
[1,2]++[] gives [1,2] and []++[1,2] gives also [1,2]. 

The operator ++ is a standard operator (see StdList) defined as: 
(++) infixr 5 :: [a] [a] -> [a] 
(++) []     ys = ys 
(++) [x:xs] ys = [x: xs ++ ys] 

There is another function for joining lists called flatten. It acts on a list of lists. All lists in 
the list of lists which are joined to form one single list. For example 

flatten [[1,2,3],[4,5],[],[6]] 

evaluates to [1,2,3,4,5,6]. The definition of flatten is as follows: 
flatten :: [[a]] -> [a] 
flatten []       = [] 
flatten [xs:xss] = xs ++ flatten xss 

The first pattern, [], the empty list, is an empty list of lists in this case. The result is an empty 
list of elements. In the second case of the definition the list of lists is not empty, so there is a 
list, xs, in front of a rest list of lists, xss. First all the rest lists are joined by the recursive call 
of flatten; then the first list xs is put in front of that as well. 

Note the difference between ++ and flatten: the operator ++ acts on two lists, the function 
flatten on a list of lists. Both are popularly called `concatenation'. (Compare with the situ-
ation of the operator &&, that checks whether two Booleans are both True and the function 
and that checks whether a whole list of Booleans only contains True elements). 
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3.1.3 Higher order functions on lists 
Functions can be made more flexible by giving them a function as a parameter. A lot of 
functions on lists have a function as a parameter. Therefore they are higher-order func-
tions. 

In the standard library some handy higher-order functions on lists are predefined, like map, 
filter and foldr, which can often be used to replace certain types of recursive function 
definitions. Most people write ordinary recursive functions when they are new in functional 
programming. When they have more experience they start to recognize that they can 
equally well define these functions by applications of the standard general list processing 
functions. 

map and filter 

Previously map and filter were discussed. These functions process elements of a list. The 
action taken depends on the function argument. The function map applies its function pa-
rameter to each element of the list: 

    xs = [ 1 , 2 , 3 , 4 , 5 ] 
       ↓  ↓  ↓  ↓  ↓  
  map square xs → [ 1 , 4 , 9 , 16 , 25 ] 

The filter function eliminates elements from a list that do not satisfy a certain Boolean 
predicate: 

    xs = [ 1 , 2 , 3 , 4 , 5 ] 

         ↓    ↓    
  filter isEven xs → [   2 ,   4   ] 

These three standard functions are defined recursively in the standard environment. They 
were discussed earlier in subsection 2.3.1. 

map :: (a->b) [a] -> [b] 
map f []  = [] 
map f [x:xs] = [f x : map f xs] 
 
filter :: (a->Bool) [a] -> [a] 
filter p []  = [] 
filter p [x:xs] 
 | p x  = [x : filter p xs] 
 | otherwise = filter p xs 

By using these standard functions extensively the recursion in other functions can be hid-
den. The `dirty work' is then dealt with by the standard functions and the other functions 
look neater. 

takewhile and dropwhile 

A variant of the filter function is the function takeWhile. This function has, just like filter, 
a predicate (function with a Boolean result) and a list as parameters. The difference is that 
filter always looks at all elements of the list. The function takeWhile starts at the beginning 
of the list and stops searching as soon as an element is found, which does not satisfy the 
given predicate. For example: takeWhile isEven [2,4,6,7,8,9] gives [2,4,6]. Different from fil-
ter the 8 does not appear in the result, because the 7 makes takeWhile stop searching. The 
standard environment definition reads: 

takeWhile :: (a->Bool) [a] -> [a] 
takeWhile p [] = [] 
takeWhile p [x:xs] 
 | p x  = [x : takeWhile p xs] 
 | otherwise = [] 

Compare this definition to that of filter. 

Like take goes with a function drop, takeWhile goes with a function dropWhile. This leaves out 
the beginning of a list that satisfies a certain property. For example: dropWhile isEven 
[2,4,6,7,8,9] equals [7,8,9]. Its definition reads: 
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dropWhile :: (a->Bool) [a] -> [a] 
dropWhile p [] = [] 
dropWhile p [x:xs] 
 | p x  = dropWhile p xs 
 | otherwise = [x:xs] 

There are several variants of the fold function. In this section we will compare them and 
give some hints on their use. 

foldr 

Folding functions can be used to handle the often-occurring recursive operation on the 
elements of a list. There are several variants of these functions like foldr and foldl. The 
foldr function inserts an operator between all elements of a list starting at the right hand 
with a given value. ':' is replaced by the given operator and [] by the supplied value: 

    xs = [ 1 : [ 2 : [ 3 : [ 4 : [ 5 : [] ]]]]] 

       ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  ↓ 
 foldr (+) 0 xs → ( 1 + ( 2 + ( 3 + ( 4 + ( 5 +  0 ))))) 

Note that the list brackets ( [ and ] ) are mapped to ordinary expression brackets ( ( and ) 
respectively). The definition of foldr in the standard environment is semantically equiva-
lent to: 

foldr :: (a->b->b) b [a] -> b 
foldr op e []  = e 
foldr op e [x:xs] = op x (foldr op e xs) 

The version in the standard environment is more efficient than this definition. 

By using standard functions extensively the recursion in other functions can be hidden. 
The `dirty work' is then dealt with by the standard functions and the other functions look 
neater.  

For instance, take a look at the definitions of the functions sum (calculating the sum of a list 
of numbers), product (calculating the product of a list of numbers), and and (checking 
whether all elements of a list of Boolean values are all True): 

sum []  = 0 
sum [x:xs] = x + sum xs 
 
product []  = 1 
product [x:xs] = x * product xs 
 
and []  = True 
and [x:xs] = x && and xs 

The structure of these three definitions is the same. The only difference is the value that is 
returned for an empty list (0, 1 or True), and the operator being used to attach the first ele-
ment to the result of the recursive call (+, * or &&). These functions can be defined more 
easily by  using the foldr function: 

sum  = foldr (+) 0 
product = foldr (*) 1 
and  = foldr (&&) True 

A lot of functions can be written as a combination of a call to foldr and to map. A good ex-
ample is the function isMember: 

isMember e = foldr (||) False o map ((==)e) 

The fold functions are in fact very general. It is possible to write map and filter as appli-
cations of fold: 

mymap :: (a -> b) [a] -> [b] 
mymap f list = foldr ((\h t = [h:t]) o f) [] list 
 
mymap2 :: (a -> b) [a] -> [b] 
mymap2 f list = foldr (\h t = [f h:t]) [] list 
 
myfilter :: (a -> Bool) [a] -> [a] 
myfilter f list = foldr (\h t = if (f h) [h:t] t) [] list 
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As a matter of fact, it is rather hard to find list manipulating functions that cannot be writ-
ten as an application of fold. 

foldl 

The function foldr puts an operator between all elements of a list and starts with this at the 
end of the list. The function foldl does the same thing, but starts at the beginning of the 
list. Just as foldr, foldl has an extra parameter that represents the result for the empty list. 

Here is an example of foldl on a list with five elements: 
    xs =  [ 1 : [ 2 : [ 3 : [ 4 : [ 5 : []]]]] 
        ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  
 foldl (+) 0 xs =  (((((0 + 1) + 2) + 3) + 4) + 5) 

In contrast to the function foldr, the elements are grouped by foldl extactly in reversed 
order compared to the list. The definition of the function foldl can be written like this: 

foldl::(a -> (b -> a)) !a ![b] -> a 
foldl op e []  = e 
foldl op e [x:xs] = foldl op (op e x) xs 

The element e has been made strict in order to serve as a proper accumulator (see chapter 6 
for an explanation). 

In the case of associative operators like + it doesn't matter that much whether you use foldr 
or foldl. Of course, for non-associative operators like - the result depends on which func-
tion you use. In fact, the functions or, and, sum and product can also be defined using foldl. 

From the types of the functions foldl and foldr you can see that they are more general then 
the examples shown above suggest. In fact nearly every list processing function can be ex-
pressed as a fold over the list. As example we show the reverse function: 

reversel :: [a] -> [a] 
reversel l = foldl (\r x = [x:r]) [] l 

These examples are not intended to enforce you to write each and every list manipulation 
as a fold, they are just intended to show you the possibilities. 

3.1.4 Sorting lists 
All functions on lists discussed up to now are fairly simple: in order to determine the result 
the lists is traversed once using recursion. 

A list manipulation that cannot be written in this manner is the sorting (putting the ele-
ments in ascending order). The elements should be completely shuffled in order to accom-
plish sorting. However, it is not very difficult to write a sorting function. There are differ-
ent approaches to solve the sorting problem. In other words, there are different algorithms. 
Two algorithms will be discussed here. In both algorithms it is required that the elements 
can be ordered. So, it is possible to sort a list of integers or a list of lists of integers, but not 
a list of functions. The type of the sorting function expresses this fact: 

sort :: [a] -> [a] | Ord a 

This means: sort acts on lists of type a for which an instance of class Ord is defined. This 
means that if one wants to apply sort on an object of certain type, say T, somewhere an in-
stance of the overloaded operator < on T has to be defined as well. This is sufficient, be-
cause the other members of Ord (<=, >, etcetera) can be derived from <. 

Insertion sort 

Suppose a sorted list is given. Then a new element can be inserted in the right place using 
the following function1: 

Insert :: a [a] -> [a] | Ord a 
Insert e [] = [e] 

                                                        
1We use Insert instead of insert to avoid name conflict with the function defined in StdList. 
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Insert e [x:xs] 
 | e<=x  = [e,x : xs] 
 | otherwise = [x : Insert e xs] 

If the list is empty, the new element e becomes the only element. If the list is not empty the 
first element is called x. When e is smaller than or equal to x, e is put in front of the list; 
otherwise, x is put in front and e must be inserted in the rest of the list. An example of the 
use of Insert: 

Insert 5 [2,4,6,8,10] 

evaluates to [2,4,5,6,8,10]. Observe that when Insert is applied, the parameter list has to be 
sorted; only then the result is sorted, too. 

The function Insert can be used to sort a list that is not already sorted. Suppose [a,b,c,d] 
has to be sorted. You can sort this list by taking an empty list (which is sorted) and insert 
the elements of the list to be sorted one by one. The effect of applying the sorting function 
isort to our example list should be: 

isort [a,b,c,d] = Insert d (Insert c (Insert b (Insert a []))) 

Therefore one possible sorting algorithm is: 
isort :: [a] -> [a] | Ord a 
isort []    = [] 
isort [a:x] = Insert a (isort x) 

with the function insert as defined above. This algorithm is called insertion sort. 

The function isort could also be defined as follows, using a foldr function: 
isort :: ([a] -> [a]) | Ord a 
isort = foldr Insert [] 

The type of isort in the last definition must contain extra parentheses (‘(‘ and ‘)’) to indicate 
that isort is defined with zero arguments. For use in type inference the types of the last two 
definitions are equivalent. 

Merge sort 

Another sorting algorithm makes use of the possibility to merge two sorted lists into one. 
This is what the function merge does1: 

merge :: [a] [a] -> [a] | Ord a 
merge []  ys = ys 
merge xs  [] = xs 
merge [x:xs] [y:ys] 
 | x <= y = [x : merge xs [y:ys]] 
 | otherwise = [y : merge [x:xs] ys] 

If either one of the lists is empty, the other list is the result. If both lists are non-empty, 
then the smallest of the two head elements is the head of the result and the remaining ele-
ments are merged by a recursive call to merge. 

In the last alternative of the function merge the arguments are taken apart by patterns. 
However, the lists are also used as a whole in the right-hand side. CLEAN provides a way to 
prevent rebuilding of these expressions in the body of the function. The pattern being 
matched can also be given a name as a whole, using the special symbol =:, as in the defini-
tion below: 

merge :: [a] [a] -> [a] | Ord a 
merge []  ys   = ys 
merge xs  []   = xs 
merge p=:[x:xs] q=:[y:ys] 
 | x <= y    = [x : merge xs q] 
 | otherwise    = [y : merge p ys] 

Just like insert, merge supposes that the arguments are sorted. In that case it makes sure that 
also the result is a sorted list. 

                                                        
1This function definition is included in StdList. 
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On top of the merge function you can build a sorting algorithm, too. This algorithm takes 
advantage of the fact that the empty list and singleton lists (lists with one element) are al-
ways sorted. Longer lists can (approximately) be split in two pieces. The two halves can be 
sorted by recursive calls to the sorting algorithm. Finally the two sorted results can be 
merged by merge. 

msort :: [a] -> [a] | Ord a 
msort xs 
 | len <= 1 = xs 
 | otherwise = merge (msort ys) (msort zs) 
where 
 ys  = take half xs 
 zs  = drop half xs 
 half = len / 2 
 len  = length xs 

This algorithm is called merge sort. In the standard environment insert and merge are defined 
and a function sort that works like isort. 

3.1.5 List comprehensions 
In set theory the following notation to define sets is often used:  

 V = { x2 | x ← N, x mod 2 = 0 }. 

This expression is called a set comprehension. The set V above consists of all squares of x (x2), 
where x comes from the set N (x ∈ N), such that x is even (x mod 2 = 0). Analogously, in 
CLEAN a similar notation is available to construct lists, called a list comprehension. A simple 
example of this notation is the following expression: 

Start :: [Int] 
Start = [x*x \\ x <- [1..10]] 

This expression can be read as `x squared for all x from 1 to 10'. A list comprehension 
consists of two parts separated by a double backslash (\\). The left part consists of an ex-
pression denoting the elements of the result list. This expression might contain variables, 
introduced in the right part of the list comprehension. The latter is done via generators, i.e. 
expressions of the form x<-xs indicating that x ranges over all values in the list xs. For each 
of these values the value of the expression in front of the double backslash is computed. 

Thus, the example above has the same value as 
Start :: [Int] 
Start = map (\x = x*x) [1..10] 

The advantage of the comprehension notation is that it is clearer.  

Similar to set comprehensions we can add an additional predicate to the values that should 
be used to compute elements of the resulting list. The constraint is separated from the gen-
erator by a vertical bar symbol. The following program computes the list of the squares of 
all even integers between 1 and 10. 

Start :: [Int] 
Start = [x*x \\ x <- [1..10] | x mod 2 == 0] 

In a list comprehension after the double backslash more than one generator can appear 
separated by a ,. This is called a nested combination of generators. With a nested combination of 
generators, the expression in front of the double backslash is computed for every possible 
combination of the corresponding bound variables. For example: 

Start :: [(Int,Int)] 
Start = [(x,y) \\ x<-[1..2], y<-[4..6]] 

evaluates to the list 
[(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)] 

By convention the last variable changes fastest: for each value of x, y traverses the list 
[4..6]. 
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Another way of combining generators is parallel combination of generators, indicated by separat-
ing the generators with a &-symbol instead of the ,-symbol. With parallel combination of 
generators, the ith element is drawn from several lists at the same time. For example: 

Start :: [(Int,Int)] 
Start = [(x,y) \\ x<-[1..2] & y<-[4..6]] 

evaluates to the list 
[(1,4),(2,5)] 

When the shortest list is exhausted, all generators combined with the &-operator stop. 

In analogy to mathematical set comprehensions multiple generators can be combined with 
constraints. The constraint is separated from the generators by a vertical bar symbol. This 
is used in: 

Start :: [(Int,Int)] 
Start = [(x,y) \\ x<-[1..5], y<-[1..x] | isEven x] 

which evaluates to 
[(2,1),(2,2),(4,1),(4,2),(4,3),(4,4)] 

In the resulting list only those values of x are stored for which isEven x evaluates to True. 
The scope of the variable x is not only restricted to the left-hand side of the comprehension 
but extends to the right-hand side of the generator introducing x. This explains why x can 
also be used in isEven x and in [1..x]. It is not allowed to use y in the generators preceding 
it. y can only be used in (x,y) and in the constraint.  

In a list comprehension new variables are introduced when generators are specified. Each gen-
erator can generate a selector which can be tested in a guard and used to generate the next 
selector and finally in the resulting expression. The scope of the variables introduced by the 
generators is indicated in figure 3.7.  

[ expression \\ selector <- expression
|  guard
,  selector <- expression
|  guard

]

 
Figure 3.7: Scopes in a list comprehension. 

The back-arrow (<-) is a special notation reserved for defining list comprehension and can-
not be used as a common operator in an arbitrary expression.  

Strictly speaking the list comprehension notation is superfluous. You can reach the same 
effect by combinations of the standard functions map, filter and flatten. However, espe-
cially in difficult cases the comprehension notation is more concise and therefore much 
easier to understand. Without it the example above should be written like 

Start :: [(Int,Int)] 
Start = flatten (map f (filter isEven [1..5])) 
   where 
    f x = map g [1..x] 
    where 
     g y = (x,y) 

which is less intuitive. 

List comprehensions are very clear. For instance, all Pythagorean triangles with sides less or 
equal than 100 can be defined as follows: 

triangles :: [(Int,Int,Int)] 
triangles = [ (a,b,c) 
   \\ a <- [1..max] 
   , b <- [a..max] 
   , c <- [b..max] 
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   | â 2 + b̂ 2 == ĉ 2 
   ] 
   where max = 100 

By using the list generators [a..max] and [b..max] we prevented that permutations of tri-
angles are found. 

The compiler translates the list comprehensions into an equivalent expression with map, fil-
ter and flatten. Just like the interval notation (the dot-dot expression), the comprehension 
notation is purely for the programmer's convenience. Using list comprehensions it is possi-
ble to define many list processing functions in a very clear and compact manner. 

map :: (a->b) [a] -> [b] 
map f l = [ f x \\ x <- l ] 
 
filter :: (a->Bool) [a] -> [a] 
filter p l = [ x \\ x <- l | p x ] 

However, functions destructing the structure of the list (like sum, isMember, reverse and take) 
are impossible or hard to write using list comprehensions. 

Quick sort 

List comprehensions can be used to give a very clear definition of yet another sorting al-
gorithm: quick sort. Similar to merge sort the list is split into two parts which are sorted 
separately. In merge sort we take the first half and second half of the list and sort these 
separately. In quick sort we select all elements less or equal to a median and all elements 
greater than the median and sort these separately. This has the advantage that the sorted 
sub-lists can be "merged" by the append operator ++. We use the first element of the list as 
median to split the lists into two parts. 

qsort :: [a] -> [a] | Ord a 
qsort []     = [] 
qsort [a:xs] = qsort [x \\ x<-xs | x<a] ++ [a] ++ qsort [x \\ x<-xs | x>=a] 

3.2 Infinite lists 

3.2.1 Enumerating all numbers 
The number of elements in a list can be infinite. The function from below returns an in-
finitely long list: 

from :: Int -> [Int] 
from n = [n : from (n+1)] 

Of course, the computer can't store or compute an infinite number of elements. Fortu-
nately you can already inspect the beginning of the list, while the rest of the list is still to be 
built. Execution of the program Start = from 5 yields: 

[5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,… 

If an infinite list is the result of the program, the program will not terminate unless the user 
interrupts it or the resources of the program are exhausted.  

An infinite list can also be used as an intermediate result, while the final result is finite. For 
example this is the case in the following problem: `determine all powers of three smaller 
than 1000'. The first ten powers can be calculated using the following call: 

Start :: [Int] 
Start = map ((̂ )3) [1..10] 

The result will be the list 
[3,9,27,81,243,729,2187,6561,19683,59049] 

The elements smaller than 1000 can be extracted by takeWhile: 
Start :: [Int] 
Start = takeWhile ((>) 1000) (map ((̂ )3) [1..10]) 

the result of which is the shorter list 
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[3,9,27,81,243,729] 

But how do you know beforehand that 10 elements suffice? The solution is to use the infi-
nite list [1..] instead of [1..10] and so compute all powers of three. That will certainly be 
enough… 

Start :: [Int] 
Start = takeWhile ((>) 1000) (map ((̂ )3) [1..]) 

Although the intermediate result is an infinite list, in finite time the result will be computed. 

This method can be applied because when a program is executed functions are evaluated in 
a lazy way: work is always postponed as long as possible. That is why the outcome of map 
((̂ )3) (from 1) is not computed fully (that would take an infinite amount of time). Instead 
only the first element is computed. This is passed on to the outer world, in this case the 
function takeWhile. Only when this element is processed and takewhile asks for another ele-
ment, the second element is calculated. Sooner or later takeWhile will not ask for new ele-
ments to be computed (after the first number >= 1000 is reached). No further elements will 
be computed by map. This is illustrated in the following trace of the reduction process: 

takeWhile ((>) 5) (map ((̂ )) 3) [1..]) 
→ takeWhile ((>) 5) (map ((̂ ) 3) [1:[2..]]) 
→ takeWhile ((>) 5) [(̂ ) 3 1:map ((̂ ) 3) [2..]] 
→ takeWhile ((>) 5) [3:map ((̂ ) 3) [2..]] 
→ [3:takeWhile ((>) 5) (map ((̂ ) 3) [2..])]   since (>) 5 3 → True 
→ [3:takeWhile ((>) 5) (map ((̂ ) 3) [2:[3..]])] 
→ [3:takeWhile ((>) 5) [(̂ ) 3 2: map ((̂ ) 3) [3..]]] 
→ [3:takeWhile ((>) 5) [9: map ((̂ ) 3) [3..]]] 
→ [3:[]]            since (>) 5 9 → False 

As you might expect list comprehensions can also be used with infinite lists. The same pro-
gram as above can be written as: 

Start :: [Int] 
Start = takeWhile ((>) 1000) [3̂ x \\ x <- [1..]] 

However, be careful not to write: 
Start :: [Int] 
Start = [3̂ x \\ x <- [1..] | 3̂ x < 1000] 

This is equivalent to 
Start :: [Int] 
Start = filter ((>) 1000) [3̂ x \\ x <- [1..]] 

Where the function takeWhile yields the empty list as soon as the predicate fails once, the 
function filter checks each element. For an infinite list, there are infinitely many elements 
to test. Hence this program will not terminate. In fact, it will even produce unexpected re-
sults since no check for integer overflow is present. 

3.2.2 Lazy evaluation 
The evaluation method (the way expressions are calculated) of CLEAN is called lazy evalua-
tion. With lazy evaluation an expression (or part of it) is only computed when it is certain 
that its value is really needed for the result. The opposite of lazy evaluation is strict evaluation, 
also called eager evaluation. With eager evaluation, before computing the a function's result, 
first all actual arguments of the function are evaluated.  

Infinite lists can be defined thanks to lazy evaluation. In languages that use strict evaluation 
(like all imperative languages and some older functional languages) infinite lists are not 
possible. 

Lazy evaluation has a number of other advantages. For example, consider the function 
prime from subsection 2.4.1 that tests whether a number is prime: 

prime :: Int -> Bool 
prime x = divisors x == [1,x] 
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Would this function determine all divisors of x and then compare that list to [1,x]? No, that 
would be too much work! At the call prime 30 the following happens. To begin, the first di-
visor of 30 is determined: 1. This value is compared with the first element of the list [1,30]. 
Regarding the first element the lists are equal. Then the second divisor of 30 is determined: 
2. This number is compared with the second value of [1,30]: the second elements of the 
lists are not equal. The operator == `knows' that two lists can never be equal again as soon 
as two different elements are encountered. Therefore False can be returned immediately. 
The other divisors of 30 are never computed! 

The lazy behavior of the operator == is caused by its definition. The recursive line from the 
definition in subsection 3.1.2 reads: 

(==) [x:xs] [y:ys] = x==y && xs==ys 

If x==y delivers the value False, there is no need to compute xs==ys: the final result will al-
ways be False. This lazy behavior of the operator && is clear from its definition: 

(&&) False x = False 
(&&) True  x = x 

If the left argument is False, the value of the right argument is not needed in the compu-
tation of the result. 

Functions that need all elements of a list, cannot be used on infinite lists. Examples of such 
functions are sum and length. 

At the call sum (from 1) or length (from 1) even lazy evaluation doesn't help to compute the 
answer in finite time. In that case the computer will go into trance and will never deliver a 
final answer (unless the result of the computation isn't used anywhere, for then the 
computation is of course never performed)… 

A function argument is called strict when its value is needed to determine the result of the 
function in every possible application of that function. For instance the operator + is strict 
in both arguments, both numbers are needed to compute their sum. The operator &&, as 
defined above, is only strict in its first argument, when this argument is False the result of 
the function is False whatever the value of the second argument is. In CLEAN it is possible 
to indicate strictness of arguments by adding the annotation ! to the argument in the type 
definition. The CLEAN system evaluates arguments that are indicated to be strict eagerly. 
This implies that their value is computed before the function is evaluated. In general it is 
not needed to put strictness annotations in the type definition. The compiler will be able to 
derive most strictness information automatically. 

3.2.3 Functions generating infinite lists 
In the standard module StdEnum some functions are defined that result in infinite lists. An 
infinite list which only contains repetitions of the same element can be generated using the 
function repeat: 

repeat :: a -> [a] 
repeat x = list where [x: list] 

The call repeat 't' returns the infinite list ['t','t','t','t',…. 

An infinite list generated by repeat can be used as an intermediate result by a function that 
does have a finite result. For example, the function repeatn makes a finite number of copies 
of an element: 

repeatn :: Int a -> [a] 
repeatn n x = take n (repeat x) 

Thanks to lazy evaluation repeatn can use the infinite result of repeat. The functions repeat 
and repeatn are defined in the standard library. 

The most flexible function is again a higher-order function, which is a function with a 
function as an argument. The function iterate has a function and a starting element as ar-
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guments. The result is an infinite list in which every element is obtained by applying the 
function to the previous element. For example: 

iterate ((+) 1) 3  is [3,4,5,6,7,8,… 
iterate ((*) 2) 1  is [1,2,4,8,16,32,… 
iterate (\x=x/10) 5678 is [5678,567,56,5,0,0,… 

The definition of iterate, which is in the standard environment, reads as follows: 
iterate :: (a->a) a -> [a] 
iterate f x = [x: iterate f (f x)] 

This function resembles the function until defined in subsection 2.3.2. The function until 
also has a function and a starting element as arguments. The difference is that until stops as 
soon as the value satisfies a certain condition (which is also an argument). Furthermore, 
until only delivers the last value (which satisfies the given condition), while iterate stores all 
intermediate results in a list. It has to, because there is no last element of an infinite list… 

3.2.4 Displaying a number as a list of characters 
A function that can convert values of a certain type into a list of characters is very handy. 
Suppose e.g. that the function intChars is able to convert a positive number into a list of 
characters that contains the digits of that number. For example: intChars 3210 gives the list 
['3210'], which is a shorthand notation for ['3','2','1','0']. With such a function you can 
combine the result of a computation with a list of characters, for example as in intChars 
(3*14)++[' lines']. 

In order to transform an integer to a list of characters we will transform the integer to a list 
of digits. These digits are integers that can be transformed easily to characters. Here we will 
transform an integer to a list of characters by dividing it by 10 until the number becomes 
zero. The wanted digits are now the last digits of the obtained list of numbers. The number 
3210 will be transformed to [3210, 321, 32, 3]. For each of these numbers we obtain the 
last digit as the remainder of the division by 10. This results in the list [0, 1, 2, 3]. The ob-
tained list of digits should still be reversed to obtain the digits in the right order. 

The function intChars can be constructed either by a direct recursive function, or by com-
bining a number of functions that are applied one after another. We will define intChars as 
a combination of simple functions. 

Firstly, the number should be repeatedly divided by 10 using iterate. The infinite tail of ze-
roes is chopped off by takeWhile. Now the desired digits can be found as the last digits of 
the numbers in the list; the last digit of a number is equal to the remainder after division by 
10. The digits are still in the wrong order, but that can be resolved by reverse. Finally the 
digits (of type Int) must be converted to the corresponding digit characters (of type Char). 
For this purpose we have to define the function digitChar: 

digitChar :: Int -> Char 
digitChar n 
 | 0 <= n && n <= 9 = toChar (n + toInt '0') 

An example clarifies this all: 
3210 

   ↓ iterate (\x = x / 10) 
[3210,321,32,3,0,0,… 

   ↓ takeWhile ((<>) 0) 
[3210,321,32,3] 

   ↓ map (\z = z rem 10) 
[0,1,2,3] 

   ↓ reverse 
[3,2,1,0] 

   ↓ map digitChar 
['3','2','1','0'] 



I.3 DATA STRUCTURES  59 

The function intChars can now be simply written as the composition of these five steps. 
Note that the functions are written down in reversed order, because the function composi-
tion operator (o) means `after': 

intChars :: (Int -> [Char]) 
intChars = map digitChar 
   o reverse 
   o map (\z = z rem 10) 
   o takeWhile ((<>) 0) 
   o iterate (\x = x / 10) 

Functional programming can be really programming with functions! 

Of course it is also possible to write a recursive function that does the same job. Actually, 
the function shown here works also for negative numbers and zero. 

intToChars :: Int -> [Char] 
intToChars 0 = ['0'] 
intToChars n | n<0  = ['-':intToChars (~n)] 
             | n<10 = [digitChar n] 
                    = intToChars (n/10) ++ [digitChar (n rem 10)] 

3.2.5 The list of all prime numbers 
In subsection 2.4.1 prime was defined that determines whether a number is prime. With that 
the (infinite) list of all prime numbers can be generated by 

filter prime [2..] 

The prime function searches for the divisors of a number. If such a divisor is large, it takes 
long before the function decides a number is not a prime. 

By making clever use of iterate a much faster algorithm is possible. This method also starts 
off with the infinite list [2..]: 

[2,3,4,5,6,7,8,9,10,11,… 

The first number, 2, can be stored in the list of primes. Then 2 and all its multiples are 
crossed out. What remains is: 

[3,5,7,9,11,13,15,17,19,21,… 

The first number, 3, is a prime number. This number and its multiples are deleted from the 
list: 

[5,7,11,13,17,19,23,25,29,31,… 

The same process is repeated, but now with 5: 
[7,11,13,17,19,23,29,31,37,41,… 

And you go on and on. The function `cross out multiples of first element' is always applied 
to the previous result. This is an application of iterate using [2..] as the starting value: 

iterate crossout [2..] 
where 
 crossout [x:xs] = filter (not o multiple x) xs 
 multiple x y = divisible y x 

The number y is a multiple of x if y is divisible by x. The function divisible was defined in 
section 2.4.1 as: divisible t n = t rem n == 0. As the starting value is an infinite list, the result 
of this is an infinite list of infinite lists. That super list looks like this: 

 [[2,3,4,5,6,7,8,9,10,11,12,13,14,… 
 ,[3,5,7,9,11,13,15,17,19,21,23,25,27,… 
 ,[5,7,11,13,17,19,23,25,29,31,35,37,41,… 
 ,[7,11,13,17,19,23,29,31,37,41,43,47,49,… 
 ,[11,13,17,19,23,29,31,37,41,43,47,51,53,… 
 ,… 

You can never see this thing as a whole; if you try to evaluate it, you will only see the be-
ginning of the first list. But you need the complete list to be visible: the desired prime num-
bers are the first elements of the lists. So the prime numbers can be determined by taking 
the head of each list: 
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primenums :: [Int] 
primenums = map hd (iterate crossout [2..]) 
where 
 crossout [x:xs] = filter (not o (multiple x)) xs 

Thanks to lazy evaluation only that part of each list is calculated that is needed for the de-
sired part of the answer. If you want to know the next prime, more elements of every list 
are calculated as far as necessary. 

Often it is hard (as in this example) to imagine what is computed at what moment. But 
there is no need: while programming you can just pretend infinite lists really exist; the eval-
uation order is automatically optimized by lazy evaluation. 

This algorithm to compute prime numbers is called the sieve of Eratosthenes. Eratosthenes 
was a greek mathematician born in Cyrene who lived 276-196 BC. His algorithm can be 
expressed slightly more elegant using list comprehensions: 

primes :: [Int] 
primes = sieve [2..] 
 
sieve :: [Int] -> [Int] 
sieve [prime:rest] = [prime: sieve [i \\ i <- rest | i mod prime <> 0]] 

3.3 Tuples 
All elements in a list have to be of the same type, e.g. it is not possible to store both an in-
teger and a string in one and the same list. Sometimes one needs to group information of 
different types together. A tuple can be used for this. 

A tuple consists of a fixed number of values that are grouped together (see figure 3.8). The 
values may be of different types. 

T
3

'a' 1 False
 

Figure 3.8: Pictorial representation of the tuple ('a',1,False) of type (Char,Int,Bool). 

Tuples are denoted by round parentheses around the elements. Examples of tuples are: 
(1,'a') a tuple with as elements the integer 1 and the character 'a'; 
("foo",True,2) a tuple with three elements: the string foo, the Boolean True and the 

number 2; 
([1,2],sqrt) a tuple with two elements: the list of integers [1,2] and the function 

from real to real sqrt; 
(1,(2,3)) a tuple with two elements: the number 1 and a tuple containing the 

numbers 2 and 3. 
The tuple of each combination of types is a distinct type. The order in which the compo-
nents appear is important, too. The type of tuples is written by enumerating the types of 
the elements between parentheses. The four expressions above can be types as follows: 

(1,'a')   :: (Int,Char) 
("foo",True,2) :: (String,Bool,Int) 
([1,2],sqrt) :: ([Int],Real->Real) 
(1,(2,3))  :: (Int,(Int,Int)) 

A tuple with two elements is called a 2-tuple or a pair. Tuples with three elements are called 
3-tuples etc. There are no 1-tuples: the expression (7) is just an integer; for it is allowed to 
put parentheses around every expression. 

The standard library provides some functions that operate on tuples. These are good ex-
amples of how to define functions on tuples: by pattern matching. 

fst :: (a,b) -> a 
fst (x,y) = x 
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snd :: (a,b) -> b 
snd (x,y) = y 

These functions are all polymorphic, but of course it is possible to write your own func-
tions that only work for a specific type of tuple: 

f :: (Int,Char) -> Int 
f (n,c) = n + toInt c 

Tuples come in handy for functions with multiple results. Functions can have several ar-
guments. However, functions have only a single result. Functions with more than one re-
sult are only possible by `wrapping' these results up in some structure, e.g. a tuple. Then 
the tuple as a whole is the only result. 

An example of a function with two results is splitAt that is defined in the standard envi-
ronment. This function delivers the results of take and drop at the same time. Therefore the 
function could be defined as follows: 

splitAt :: Int [a] -> ([a],[a]) 
splitAt n xs = (take n xs, drop n xs) 

However, the work of both functions can be done simultaneously. That is why in the stan-
dard library splitAt is defined as: 

splitAt :: Int [a] -> ([a],[a]) 
splitAt 0 xs  = ([] ,xs) 
splitAt n []  = ([] ,[]) 
splitAt n [x:xs] = ([x:ys],zs) 
where 
 (ys,zs) = splitAt (n-1) xs 

The result of the recursive call of splitAt can be inspected by writing down a `right-hand 
side pattern match', which is called a selector: 

splitAt n [x:xs] = ([x:ys],zs) 
where 
 (ys,zs) = splitAt (n-1) xs 

The tuple elements thus obtained can be used in other expressions, in this case to define 
the result of the function splitAt. 

The call splitAt 2 ['clean'] gives the 2-tuple (['cl'],['ean']). In the definition (at the recur-
sive call) you can see how you can use such a result tuple: by exposing it to a pattern match 
(here (ys,zs)). 

Another example is a function that calculates the average of a list, say a list of reals. In this 
case one can use the predefined functions sum and length: average = sum / toReal length. Again 
this has the disadvantage that one walks through the list twice. It is much more efficient to 
use one function sumlength which just walks through the list once to calculate both the sum 
of the elements (of type Real) as well as the total number of elements in the list (of type Int) 
at the same time. The function sumlength therefore returns one tuple with both results 
stored in it: 

average :: [Real] -> Real 
average list = mysum / toReal mylength 
where 
 (mysum,mylength) = sumlength list 0.0 0 
 
 sumlength :: [Real] Real Int -> (Real,Int) 
 sumlength [x:xs] sum length = sumlength xs (sum+x) (length+1) 
 sumlength []     sum length = (sum,length) 

Using type classes this function can be made slightly more general: 
average :: [t] -> t | /, +, zero, one t 
average list = mysum / mylength 
where 
 (mysum,mylength) = sumlength list zero zero 
 



62  FUNCTIONAL PROGRAMMING IN CLEAN 

 sumlength :: [t] t t -> (t,t)  | +, one t 
 sumlength [x:xs] sum length = sumlength xs (sum+x) (length+one) 
 sumlength []     sum length = (sum,length) 

3.3.1 Tuples and lists 
Tuples can of course appear as elements of a list. A list of two-tuples can be used e.g. for 
searching (dictionaries, telephone directories etc.). The search function can be easily written 
using patterns; for the list a `non-empty list with as a first element a 2-tuple' is used. 

search :: [(a,b)] a -> b | == a 
search [(x,y):ts] s 
 | x == s  = y 
 | otherwise = search ts s 

The function is polymorphic, so that it works on lists of 2-tuples of arbitrary type. How-
ever, the elements should be comparable, which is why the function search is overloaded 
since == is overloaded as well. The element to be searched is intentionally defined as the 
second argument, so that the function search can easily be partially parameterized with a 
specific search list, for example: 

telephoneNr = search telephoneDirectory 
translation = search dictionary 

where telephoneDirectory and dictionary can be separately defined as constants. 

Another function in which 2-tuples play a role is the zip function. This function is defined 
in the standard environment. It has two lists as arguments that are chained together ele-
ment-wise in the result. For example: zip [1,2,3] ['abc'] results in the list 
[(1,'a'),(2,'b'),(3,'c')]. If the two lists are not of equal length, the shortest determines the 
size of the result. The definition is rather straightforward: 

zip :: [a] [b] -> [(a,b)] 
zip []  ys  = [] 
zip xs  []  = [] 
zip [x:xs] [y:ys] = [(x,y) : zip xs ys] 

The function is polymorphic and can thus be used on lists with elements of arbitrary type. 
The name zip reflects the fact that the lists are so to speak `zipped'. The functions zip can 
more compactly be defined using a list comprehension:  

zip :: [a] [b] -> [(a,b)] 
zip as bs = [(a,b) \\ a <- as & b <- bs] 

If two values of the same type are to be grouped, you can use a list. Sometimes a tuple is 
more appropriate. A point in the plane, for example, is described by two Real numbers. 
Such a point can be represented by a list or a 2-tuple. In both cases it possible to define 
functions working on points, e.g. `distance to the origin'. The function distanceL is the list 
version, distanceT the tuple version: 

distanceL :: [Real] -> Real 
distanceL [x,y] = sqrt (x*x+y*y) 
 
distanceT :: (Real,Real) -> Real 
distanceT (x,y) = sqrt (x*x+y*y) 

As long as the function is called correctly, there is no difference. But it could happen that 
due to a typing error or a logical error the function is called with three coordinates. In the 
case of distanceT this mistake is detected during the analysis of the program: a tuple with 
three numbers is of another type than a tuple with two numbers. However, using distanceL 
the program is well-typed. Only when the function is really used, it becomes evident that 
distanceL is undefined for a list of three elements. Here the use of tuples instead of lists 
helps to detect errors.  

3.4 Records 
Often one would like to group information of possibly different type on a more structural 
way simply because the information belongs together. Information in a person database 
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may consist for example of a string (name), three integers (date of birth) and a Boolean 
(CLEAN user). If one wants to use such a kind of record, one first has to declare its type in 
a type definition, e.g.: 

:: Person = { name  :: String 
   , birthdate :: (Int,Int,Int) 
   , cleanuser :: Bool 
   } 

Type definitions in CLEAN always start with a :: at the beginning of a line. With this par-
ticular type definition a new type is declared, called a record type. A record is a kind of tuple. 
The record elements can be of different type, just like in tuples. However, in a record type, 
a name (the field name) is used to refer to a record element (see also figure 3.9). This field-
name must be used to identify the corresponding record element. 

Person

cleanuser

birthdate

name
 

Figure 3.9: Pictorial representation of a record Person. 

Once the type is defined, a record of that type can be created, e.g. in the following way:  
SomePerson :: Person 
SomePerson = { name  = "Rinus" 
    , birthdate = (10,26,1952) 
    , cleanuser = True 
    } 

Each of the record elements (identified by fieldname =) must get a value of the type as indi-
cated in the record type declaration. The order in which the fields are specified is irrelevant, 
but all fields of the record have to get a value.  

An important difference between a tuple and a record is that a tuple field always has to be 
selected by its position, as in: 

fst :: (a,b) -> a 
fst (x,y) = x 

while a record field is selected by field name. For instance, one can define: 
:: Pair a b = { first :: a 
    , second :: b 
    } 

This is a polymorphic record named Pair with two record elements. One element is named 
first and is of type a, the other is named second and is of type b. A function which selects 
the first element can be defined as: 

fstR :: (Pair a b) -> a 
fstR {first} = first 

The example illustrates how the pattern matching mechanism can be used to select one or 
more record elements. In this example first in the argument is not an ordinary variable, 
but binds to the field of the record with that name. Hence we can use first in the body of 
the function to represent the field first of the argument. The nice thing about this feature 
is that one only needs to name the fields one is interested in. 

One can even specify a pattern for such a record field. In the next example, the first func-
tion alternative is used only when the field cleanuser has the value True.  

IsCleanUser :: Person -> String 
IsCleanUser {cleanuser = True} = "Yes" 
IsCleanUser _     = "No" 
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There is a special selection operator, '.',  to select an element from a record. It expects an 
expression yielding a record and a field name to select an expression of  that record. For 
instance: 

GetPersonName :: Person -> String 
GetPersonName person = person.name 

This definition is equivalent with: 
GetPersonName2 :: Person -> String 
GetPersonName2 {name} = name 

Finally, there is a special language construct which enables you to create a new record given 
another existing record of the same type. Consider: 

ChangePersonName :: Person String -> Person 
ChangePersonName person newname = {person & name = newname} 

The new record is created by making a copy of the old record person. The contents of the 
fields of the new record will be exactly the same as the contents of the fields of the old re-
cord, with exception of the field name which will contain the new name newname. The opera-
tor & is called the functional update operator. Do not confuse it with a destructive update (as-
signment) as is present in imperative languages (like in C, C++, PASCAL). Nothing is 
changed, a complete new record is made which will be identical to the old one with excep-
tion of the specified new field values. The old record itself remains unchanged. 

The CLEAN system determines the type of a record from the field names used. When there 
are several records with the used field names determining the type fails. The user should 
explicitly specify the type of the record inside the record. It is not sufficient to that the type 
of the record can be deduced from the type of the function. It is always allowed to indicate 
the type of a record explicitly. 

AnotherPerson :: Person 
AnotherPerson = { Person 
    | name  = "Pieter" 
    , birthdate = (7,3,1957) 
    , cleanuser = True 
    } 

The records in CLEAN make it possible to define functions which are less sensible for 
changes. For instance, assume that one has defined: 

:: Point = { x :: Real 
   , y :: Real 
   } 
MovePoint :: Point (Real,Real) -> Point 
MovePoint p (dx,dy) = {p & x = p.x + dx, y = p.y + dy} 

Now, lets assume that in a later state of the development of the program one would like to 
add more information to the record Point, say 

:: Point = { x :: Real 
   , y :: Real 
   , c :: Color 
   } 

where Color is some other type. This change in the definition of the record Point has no 
consequences for the definition of MovePoint. If Point would be a tuple, one would have to 
change the definition of MovePoint as well, because Point would change from a 2-tuple to a 3-
tuple which has consequences for the pattern match as well as for the construction of a 
new point.  

So, for clarity and ease of programming we strongly recommend the use of records instead 
of tuples. Only use tuples for  functions that return multiple results. 

3.4.1 Rational numbers 
An application in which records can be used is an implementation of the Rational numbers. 
The rational numbers form the mathematical set Q, numbers that can be written as a ratio. 
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It is not possible to use Real numbers for calculations with ratios: the calculations must be 

exact, such that the outcome of 
1
2  + 

1

3  is the fraction 
5

6  and not the Real 0.833333. 

Fractions can be represented by a numerator and a denominator, which are both integer 
numbers. So the following type definition is obvious: 

:: Q = { num :: Int 
  , den :: Int 
  } 

Next a number of frequently used fractions get a special name: 
QZero  = {num = 0, den = 1} 
QOne  = {num = 1, den = 1} 
QTwo  = {num = 2, den = 1} 
QHalf  = {num = 1, den = 2} 
QThird  = {num = 1, den = 3} 
Qquarter = {num = 1, den = 4} 

We want to write some functions that perform the most important arithmetical operations 
on fractions: multiplication, division, addition and subtraction. Instead of introducing new 
names for these functions we use the overloading mechanism (introduced in section 1.5.5 
and explained in more detail in section 4.1) in order to use the obvious operator symbols: *, 
/, +, -. 

The problem is that one value can be represented by different fractions. For example, a 
half can be represented by {num=1,den=2}, but also by {num=2,den=4} and {num=17,den=34}. There-
fore the outcome of two times a quarter might `differ' from `half'. To solve this problem a 
function simplify is needed that can simplify a fraction. By applying this function after every 
operation on fractions, fractions will always be represented in the same way. The result of 
two times a quarter can then be safely compared to a half: the result is True. 

The function simplify divides the numerator and the denominator by their greatest common 
divisor. The greatest common divisor (gcd) of two numbers is the greatest number by which 
both numbers are divisible. For negative numbers we want a negative nominator. When the 
denominator is zero the fraction is not defined. The definition of simplify reads as follows: 

simplify :: Q -> Q 
simplify {num=n,den=d} 
 | d == 0    = abort "denominator of Q is 0!" 
 | d < 0     = {num = ~n / g, den = ~d / g} 
 | otherwise = {num =  n / g, den =  d / g} 
where 
 g = gcd n d 

A simple definition of gcd x y determines the greatest divisor of x that also divides y using 
divisors and divisible from subsection 2.4.1. 

gcd :: Int Int -> Int 
gcd x y = last (filter (divisible (abs y)) (divisors (abs x))) 

(In the standard library a more efficient version of gcd is defined: 
gcd :: Int Int -> Int 
gcd x y = gcd' (abs x) (abs y) 
where 
 gcd' x 0 = x 
 gcd' x y = gcd' y (x mod y) 

This algorithm is based on the fact that if x and y are divisible by d then so is x mod y (=x-

(x/y)*y) ). 

Using simplify we are now in the position to define the mathematical operations. Due to 
the number of places where a record of type Q must be created and simplified it is conve-
nient to introduce an additional function mkQ. 

mkQ :: x x -> Q | toInt x 
mkQ n d = simplify {num = toInt n, den = toInt d} 
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To multiply two fractions, the numerators and denominators must be multiplied ( 2

3
*

5

4
 = 

10

12 ). Then the result can be simplified (to 
5

6 ): 

instance * Q 
where (*) q1 q2 = mkQ (q1.num*q2.num) (q1.den*q2.den) 

Dividing by a number is the same as multiplying by the inverse: 
instance / Q 
where (/) q1 q2 = mkQ (q1.num*q2.den) (q1.den*q2.num) 

Before you can add two fractions, their denominators must be made the same first. ( 1

4
+

3

10 = 
10

40 +
12

40  = 
22

40 ). The product of the denominator can serve as the common denominator. 
Then the numerators must be multiplied by the denominator of the other fraction, after 
which they can be added. Finally the result must be simplified (to 11

20
). 

instance + Q 
where (+) q1 q2 = mkQ (q1.num * q2.den + q1.den * q2.num) (q1.den * q2.den) 
 
instance - Q 
where (-) q1 q2 = mkQ (q1.num * q2.den - q1.den * q2.num) (q1.den * q2.den) 

The result of computations with fractions is displayed as a record. If this is not nice 
enough, you can define a function toString: 

instance toString Q  
where  

toString q 
  | sq.den==1 = toString sq.num 
  | otherwise = toString sq.num +++ "/" +++ toString sq.den 

where 
  sq = simplify q 

3.5 Arrays 
An array is a predefined data structure that is used mainly for reasons of efficiency. With a 
list an array has in common that all its elements have to be of the same type.  With a tu-
ple/record-like data structure an array has in common that it contains a fixed number of 
elements. The elements of an array are numbered. This number, called the index, is used to 
identify an array element, like field names are used to identify record elements. An array 
index is an integer number between 0 and the number of array elements - 1.  

Arrays are notated using curly brackets. For instance, 
MyArray :: {Int} 
MyArray = {1,3,5,7,9} 

is an array of integers (see figure 3.10). It's type is indicated by {Int}, to be read as 'array of 
Int'. 

Array5

31

0 2 4

1 5 9

3 7

 

Figure 3.10: Pictorial representation of an array with 5 elements {1,3,5,7,9}. 

Compare this with a list of integers: 
MyList :: [Int] 
MyList = [1,3,5,7,9] 

One can use the operator !! to select the element with index i from a list (see subsection 
3.1.2): For instance 

MyList !! 2 
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will yield the value 5. To select the element with index i from array a one writes a.[i]. So, 
MyArray.[2] 

will also yield the value 5. Besides the small difference in notation there is big difference in 
the efficiency between an array selection and a list selection. To select the element i from a 
list, one has to recursively walk through the spine of the list until the list element i is found 
(see the definition of !! in subsection 3.1.2).  This takes i steps. Element i of an array can 
be found directly in one step because all the references to the elements are stored in the ar-
ray box itself (see figure 3.10). Selection can therefore be done very efficiently regardless 
which element is selected in constant time. 

The big disadvantage of selection is that it is possible to use an index out of the index range 
(i.e. index < 0 or index � n, where n is the number of list/array elements). Such an index 
error generally cannot be detected at compile-time, such that this will give rise to a run-time 
error. So, selection both on arrays as on lists is a very dangerous operation because it is a 
partial function and one easily makes mistakes in the calculation of an index. Selection is 
the main operation on arrays. The construction of lists is such that selection can generally 
be avoided. Instead one can without danger recursively traverse the spine of a list until the 
desired element is found. Hitting on the empty list a special action can be taken. Lists can 
furthermore easily be extended while an array is fixed sized. Lists are therefore more flexi-
ble and less error prone. Unless ultimate efficiency is demanded, the use of lists above ar-
rays is recommended. 

But, arrays can be very useful if time and space consumption is becoming very critical, e.g. 
when one uses a huge and fixed number of elements that are frequently selected and up-
dated in a more or less random order. 

3.5.1 Array comprehensions 
 To increase readability, CLEAN offers array comprehensions in the same spirit as list com-
prehension's. For instance, if ArrayA is an array and ListA a list, then  

NewArray = {elem \\ elem <- ListA} 

will create a new array with the same (amount of) elements as in ListA. Conversion the 
other way around is easy as well: 

NewList = [elem \\ elem <-: ArrayA] 

Notice that the <- symbol is used to draw elements from a list while the <-: symbol is used 
to draw elements from an array. 

Also a map-like function on an array can be defined in a straightforward manner: 
MapArray f a = {f e \\ e <-: a} 

If you use an array comprehension, or one of the other array manipulation  intrdoced be-
low, you should always import StdArray. 

3.5.2 Lazy, strict and unboxed arrays 
To obtain optimal efficiency in time and space, several kinds of arrays can be defined in 
CLEAN. By default an array is a lazy array (say, of type {Int}), i.e. an array consists of a con-
tiguous block of memory containing references to the array elements (see figure 3.10). The 
same representation is chosen if a strict array is used (prefix the element type with a !, e.g.  
{!Int}). Strict arrays have the property that its elements will always be evaluated whenever 
the array is used. For elements of basic type only (Int, Real, Char, Bool) an unboxed array can 
be defined (prefix the element type with a #, e.g. {#Int}). So, by explicitly specifying the type 
of the array upon creation one can indicate which representation one wants: the default one 
(lazy), or the strict or the unboxed version of the array. 
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Unboxed arrays are more efficient than lazy or strict arrays because the array elements 
themselves are stored in the array box. No references to other boxes have to be regarded. 
For instance, the following array 

MyUnboxedArray :: {#Int} 
MyUnboxedArray = {1,3,5,7,9} 

is an unboxed array (due to its type specification) of integers. Compare its representation in 
figure 3.11 with the default representation given in figure 3.10. 

UnbArray5 731 5 9
 

Figure 3.11: Pictorial representation of an unboxed array with 5 elements {1,3,5,7,9}. 

The CLEAN compiler regards lazy, strict and unboxed arrays as objects of different types. 
This means for instance that a function that is expecting an unboxed array of Char cannot be 
applied to a lazy array of Char or the other way around. However, most predefined opera-
tions on arrays (like array selection) are overloaded such that they can be used on lazy, strict 
as well as on unboxed arrays. 

A string is equivalent with an unboxed array of character {#Char}. A type synonym is defined 
in module StdString. For programming convenience, there is special syntax to denote 
strings.  For instance, the string denotation 

"abc" 

is equivalent with the unboxed array {'a','b','c'}. Compare this with ['abc'] which is 
equivalent with the list of characters ['a','b','c']. 

3.5.3 Array updates 
It is also possible to update an array, using the same notation as for records (see subsection 
3.4). In principle a new array is constructed out of existing one. One has to indicate for 
which index the new array differs from the old one. Assume that Array5 is an integer array 
with 5 elements. Then an array with elements {1,3,5,7,9} can be created as follows: 

Array5 :: *{Int} 
Array5 = {1,2,3,4,5} 
 
{Array5 & [0]=1,[1]=3,[2]=5,[3]=7,[4]=9} 

As with record updating, the order in which the array elements are specified is irrelevant. 
So, the following definition 

{Array5 & [1]=3,[0]=1,[3]=7,[4]=9,[2]=5} 

is also fine.  

One can even combine array updates with array comprehension's. So the next two expres-
sions will also yield the array {1,3,5,7,9} as result. 

{Array5 & [i]=2*i+1 \\ i <- [0..4]} 
{Array5 & [i]=elem \\ elem <- [1,3..9] & i <- [0..4]} 

As said before, arrays are mainly important to achieve optimal efficiency. That is why up-
dates of arrays are in CLEAN only defined on unique arrays, such that the update can al-
ways be done destructively ! This is semantically sound because it is known that the original 
unique array is not used anymore. Uniqueness is explained in more detail in chapter 4 and 
5. 

3.5.4 Array patterns 
Array elements can be selected in the patterns of a function. This is similar to the selection 
of the fields of a record. This is illustrated by the following functions. 

CopyFirst :: Int *(a e) -> *(a e) | Array a e 
CopyFirst j   a=:{[0]=a0} = {a & [j] = a0} 
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CopyElem :: Int Int *(a e) -> *(a e) | Array a e 
CopyElem  i j a=:{[i]=ai} = {a & [j] = ai} 
 
CopyCond :: Int Int *(a e) -> *(a e) | Array a e & zero, == e 
CopyCond  i j a=:{[i]=ai, [j]=aj}  
 | a.[0] == zero = {a & [j] = ai} 
 | otherwise  = {a & [i] = aj} 

The selection of elements specified in the pattern is done before the right hand side of the 
rule is constructed. This explains why the given examples are allowed. When the CopyElem 
function is written as 

CopyElem2 :: Int Int *(a e) -> *(a e) | Array a e 
CopyElem2  i j a = {a & [j] = a.[i]} 

it will be rejected by the CLEAN system. An array can only be updated when it is unique. 
The reference to the old array, a.[i], in the array update spoils the uniqueness properties of 
the array. Without selection in the pattern this function should be written with a #! con-
struct: 

CopyElem3 :: Int Int *(a e) -> *(a e) | Array a e 
CopyElem3  i j a  
 #! ai = a.[i] 
 = {a & [j] = ai} 

The graphs specified in the #! part are evaluated before the root expression is evaluated. 
This implies that the element ai is selected from the array before the array is updated. 

Yet another way to write such an update uses the operator !. The expression array![i] 
yields a tuple (elem,array) containing the selected element and the unique array. 

CopyElem4 :: Int Int *(a e) -> *(a e) | Array a e 
CopyElem4  i j array  
 # (elem,array) = array![i] 
 = {array & [j] = elem} 

This array selection operator ! is left associative. This implies that array.[i].[j].[k] is 
equivalent to ((array.[i]).[j]).[k]. This can be abbriviated to array.[i,j,k]. 

The same operator ! can also be used for (unique) records: 
:: *Point = { x :: Real, y :: Real, other fields... } 
 
mirror :: Point -> Point 
mirror p 
 # (x,p) = p!x 
 # (y,p) = p!y 
 = { p & x=y, y=x } 

3.6 Algebraic data types 
We have seen several `built-in' ways to structure information: lists, tuples, records and ar-
rays. In some cases these data structures are not appropriate to represent the information. 
Therefore it has been made possible to define a new, so-called algebraic data type yourself. 

An algebraic data type is a type that defines the way elements can be constructed. In fact, 
all built-in types are predefined algebraic data types. A `list', for instance, is an algebraic 
type. Lists can be constructed in two ways: 
• as the empty list; 
• by prepending an element to an existing list using the [x:xs] notation. 
In the case distinction in definitions of functions that operate on lists these two way con-
struction methods reappear, for example: 

length :: [t] -> Int 
length []  = 0 
length [x:xs] = 1 + length xs 

By defining the function for both cases, the function is totally defined. 
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If you want to use a new data structure in CLEAN, you have to define its type in an alge-
braic data type definition. For instance: 

:: Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun 

is an algebraic data type definition introducing a new type, named Day. It moreover in-
troduces seven new constants that have this type Day (Mon,Tue,Wed,Thu,Fri,Sat,Sun). These con-
stants are called data constructors. Once defined in an algebraic type, the data constructors 
can be used in function definitions. They can appear in expressions to construct new ob-
jects of the specified algebraic type. They can appear in patterns, for instance to dis-
criminate between objects of the same algebraic type. 

IsWeekend Sat  = True 
IsWeekend Sun  = True 
IsWeekend _  = False 

A data constructor can only belong to one algebraic data type definition. As a consequence, 
the CLEAN system can directly tell the type of each data constructor. So, Mon :: Day, Tue :: 
Day, and so on. And therefore, the type of IsWeekend is: 

IsWeekend :: Day -> Bool 

The algebraic type Day is called an enumeration type: the type definition just enumerates all 
possible values. In chapter 2 we used integers to represent the days of the week. This has 
both advantages and disadvantages: 
• An advantage of the algebraic data type is that well chosen names avoid confusion. 

When you use integers you have to decide and remember whether the week starts on 
Sunday or on Monday. Moreover, there is the question whether the first day of the 
week has number 0 or number 1. 

• An other advantage of the algebraic type is that the type checker is able to verify type 
correctness. A function that expects or delivers an element of type Day will always use 
one of the listed values. When you use integers, the compiler is only able to verify that 
an integer is used at each spot a Day is expected. It is still possible to use the value 42 
where a Day is expected. In addition using algebraic datatypes can prevent confusion be-
tween enumerated types. When we use this definition of Day and a similar definition of 
Month it is not possible to interchange the arguments of daynumber by accident without 
making a type error. 

• An advantage of using integers to represent days is that the definition of operations like 
addition, comparison and equality can be reused. In chapter 2 we saw how pleasant this 
is. For an algebraic type all the needed operations have to be defined. 

The balance between advantages and disadvantages for the application at hand determines 
whether it is better to use an algebraic enumeration type or to use integers as encoding 
(Booleans can be used for types with two values). Unless there are strong reasons to use 
something else we generally recommend to use an algebraic data type. In the next section 
we show that it is possible to equip the constructors with arguments and to define recursive 
types. This is far beyond the possibilities of an encoding of types in integers. 

As usual, it is possible to combine algebraic types with other types, such as records for in-
stance, in various ways. For example: 

:: Employee = { name  :: String 
    , gender :: Gender 
    , birthdate :: Date 
    , cleanuser :: Bool 
    } 
:: Date  = { day  :: Int 
    , month  :: Int 
    , year  :: Int 
    } 
:: Gender = Male 
   | Female 

These types can be used in functions like: 
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WeekDayOfBirth :: Employee -> Day 
WeekDayOfBirth {birthdate={day,month,year}} 
 = [Sun, Mon, Tue, Wed, Thu, Fri, Sat] !! daynumber day month year 

Where we use the function daynumber as defined in chapter 2. An example of a function gen-
erating a value of the type Employee is: 

AnEmployee :: Employee 
AnEmployee = { name      = "Pieter" 
    , gender    = Male 
    , birthdate = {year = 1957, month = 7, day = 3} 
    , cleanuser = True 
    } 

3.6.1 Tree definitions 
All data structures can be defined using an algebraic data type definition. In this way one 
can define data structures with certain properties. For instance, a list is a very flexible data 
structure. But, it also has a disadvantage. It is a linear structure; as more and more elements 
are included, the chain (spine) becomes longer and longer (see figure 3.3). Sometimes such 
a linear structure is not appropriate and a tree structure would be better. A (binary) tree can 
be defined as: 

:: Tree a = Node a (Tree a) (Tree a) 
   | Leaf 

You can pronounce this definition as follows. `A tree with elements of type a (shortly, a 
tree of a) can be built in two ways: (1) by applying the constant Node to three arguments (one 
of type a and two of type tree of a), or (2) by using the constant Leaf.' Node and Leaf are two 
new constants. Node is a data constructor of arity three (Node :: a (Tree a) (Tree a) -> (Tree a)), 
Leaf is a data constructor of arity zero (Leaf :: Tree a). The algebraic type definition also 
states that the new type Tree is polymorphic. 

You can construct trees by using the data constructors in an expression (this tree is also 
drawn in the figure 3.12). 

Node 4 (Node 2 (Node 1 Leaf Leaf) 
     (Node 3 Leaf Leaf) 
   ) 
   (Node 6 (Node 5 Leaf Leaf) 
     (Node 7 Leaf Leaf) 
   ) 

You don't have to distribute it nicely over the lines; the following is also allowed: 
Node 4 (Node 2(Node 1 Leaf Leaf)(Node 3 Leaf Leaf)) 

   (Node 6(Node 5 Leaf Leaf)(Node 7 Leaf Leaf)) 

However, the layout of the first expression is clearer. 
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Figure 3.12: Pictorial representation of a tree. 
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Not every instance of the type tree needs to be as symmetrical as the tree shown above. 
This is illustrated by the following example. 

Node 7 (Node 3 (Node 5 Leaf  
      Leaf 
    ) 
    Leaf 
  ) 
  Leaf 

An algebraic data type definition can be seen as the specification of a grammar in which is 
specified what legal data objects are of a specific type. If you don't construct a data struc-
ture as specified in the algebraic data type definition, a type error is generated at compile 
time. 

Functions on a tree can be defined by making a pattern distinction for every data con-
structor. The next function, for example, computes the number of Node constructions in a 
tree: 

sizeT :: (Tree a) -> Int 
sizeT Leaf   = 0 
sizeT (Node x p q) = 1 + sizeT p + sizeT q 

Compare this function to the function length on lists. 

There are many more types of trees possible. A few examples: 
• Trees in which the information is stored in the leaves (instead of in the nodes as in 

Tree): 
:: Tree2 a = Node2 (Tree2 a) (Tree2 a) 
   | Leaf2 a 

 Note that even the minimal tree of this type contains one information item. 
• Trees in which information of type a is stored in the nodes and information of type b 

in the leaves: 
:: Tree3 a b = Node3 a (Tree3 a b) (Tree3 a b) 
    | Leaf3 b 

• Trees that split in three branches at every node instead of two: 
:: Tree4 a = Node4 a (Tree4 a) (Tree4 a) (Tree4 a) 
   | Leaf4 

• Trees in which the number of branches in a node is variable: 
:: Tree5 a = Node5 a [Tree5 a] 

 In this tree you don't need a separate constructor for a `leaf', because you can use a 
node with no outward branches. This type in known as Rose-trees. 

• Trees in which every node only has one outward branch: 
:: Tree6 a = Node6 a (Tree6 a) | Leaf6 

 A `tree' of this type is essentially a list: it has a linear structure. 
• Trees with different kinds of nodes: 

:: Tree7 a b = Node7a Int a (Tree7 a b) (Tree7 a b) 
    | Node7b Char (Tree7 a b) 
    | Leaf7a b 
    | Leaf7b Int 

3.6.2 Search trees 
A good example of a situation in which trees perform better than lists is searching (the 
presence of) an element in a large collection. You can use a search tree for this purpose. 

In subsection 3.1.2 a function isMember was defined that delivered True if an element was 
present in a list. Whether this function is defined using the standard functions map and or 

isMember :: a [a] -> Bool | Eq a 
isMember e xs = or (map ((==)e) xs) 

or directly with recursion 
isMember e []  = False 
isMember e [x:xs] = x==e || isMember e xs 
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doesn't affect the efficiency that much. In both cases all elements of the list are inspected 
one by one. As soon as the element is found, the function immediately results in True 
(thanks to lazy evaluation), but if the element is not there the function has to examine all 
elements to reach that conclusion. 

It is somewhat more convenient if the function can assume the list is sorted, i.e. the ele-
ments are in increasing order. The search can then be stopped when it has `passed' the 
wanted element. As a consequence the elements must not only be comparable (class Eq), 
but also orderable (class Ord): 

isElem:: a [a] -> Bool | Eq, Ord a 
isElem e []  = False 
isElem e [x:xs] = e == x || (e > x && isElem e xs) 

A much larger improvement can be achieved if the elements are not stored in a list, but in 
search tree. A search tree is a kind of `sorted tree'. It is a tree built following the definition of 
Tree from the previous paragraph: 

:: Tree a  = Node a (Tree a) (Tree a) 
    | Leaf 

At every node an element is stored and two (smaller) trees: a `left' subtree and a `right' sub-
tree (see figure 3.12). Furthermore, in a search tree it is required that all values in the left 
subtree are smaller or equal to the value in the node and all values in the right subtree greater. 
The values in the example tree in the figure are chosen so that it is in fact a search tree. 

In a search tree the search for an element is very simple. If the value you are looking for is 
equal to the stored value in an node, you are done. If it is smaller you have to continue 
searching in the left subtree (the right subtree contains larger values). The other way 
around, if the value is larger you should look in the right subtree. Thus the function el-
emTree reads as follows: 

elemTree :: a (Tree a) -> Bool | Eq, Ord a 
elemTree e Leaf = False 
elemTree e (Node x le ri) 
 | e==x = True 
 | e<x = elemTree e le 
 | e>x = elemTree e ri 

If the tree is well-balanced, i.e. it doesn't show big holes, the number of elements that has 
to be searched roughly halves at each step. And the demanded element is found quickly: a 
collection of thousand elements only has to be halved ten times and a collection of a mil-
lion elements twenty times. Compare that to the half million steps isMember costs on average 
on a collection of a million elements. 

In general you can say the complete search of a collection of n elements costs n steps with 
isMember, but only 2log n steps with elemTree. 

Search trees are handy when a large collection has to be searched many times. Also e.g. 
search from subsection 3.3.1 can achieve enormous speed gains by using search trees. 

Structure of a search tree 

The form of a search tree for a certain collection can be determined `by hand'. Then the 
search tree can be typed in as one big expression with a lot of data constructors. However, 
that is an annoying task that can easily be automated. 

Like the function insert adds an element to a sorted list (see subsection 3.1.4), the function 
insertTree adds an element to a search tree. The result will again be a search tree, i.e. the 
element will be inserted in the right place: 

insertTree :: a (Tree a) -> Tree a | Ord a 
insertTree e Leaf = Node e Leaf Leaf 
insertTree e (Node x le ri) 
 | e<=x = Node x (insertTree e le) ri 
 | e>x = Node x le (insertTree e ri) 
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If the element is added to a Leaf (an `empty' tree), a small tree is built from e and two empty 
trees. Otherwise, the tree is not empty and contains a stored value x. This value is used to 
decide whether e should be inserted in the left or the right subtree. When the tree will only 
be used to decide whether an element occurs in the tree there is no need to store dupli-
cates. It is straightforward to change the function insertTree accordingly: 

insertTree :: a (Tree a) -> Tree a | Ord, Eq a 
insertTree e Leaf = Node e Leaf Leaf 
insertTree e node=:(Node x le ri) 
 | e<x = Node x (insertTree e le) ri 
 | e==x = node 
 | e>x = Node x le (insertTree e ri) 

By using the function insertTree repeatedly, all elements of a list can be put in a search tree: 
listToTree :: [a] -> Tree a | Ord, Eq a 
listToTree []     = Leaf 
listToTree [x:xs] = insertTree x (listToTree xs) 

The experienced functional programmer will recognise the pattern of recursion and replace 
it by an application of the function foldr: 

listToTree :: ([a] -> Tree a) | Ord, Eq a 
listToTree = foldr insertTree Leaf 

Compare this function to isort in subsection 3.1.4. 

A disadvantage of using listToTree is that the resulting search tree is not always well bal-
anced. This problem is not so obvious when information is added in random order. If, 
however, the list, which is turned into a tree, is already sorted, the search tree `grows 
cooked'. For example, when running the program 

Start = listToTree [1..7] 

the output will be 
Node 7 (Node 6 (Node 5 (Node 4 (Node 3 (Node 2 (Node 1 Leaf Leaf) Leaf) Leaf) Leaf) Leaf) 
Leaf) Leaf 

Although this is a search tree (every value is between values in the left and right subtree) 
the structure is almost linear. Therefore logarithmic search times are not possible in this 
tree. A better (not `linear') tree with the same values would be: 

Node 4 (Node 2 (Node 1 Leaf Leaf) 
    (Node 3 Leaf Leaf) 
  ) 
  (Node 6 (Node 5 Leaf Leaf) 
    (Node 7 Leaf Leaf) 
  ) 

3.6.3 Sorting using search trees 
The functions that are developed above can be used in a new sorting algorithm: tree sort. 
For that one extra function is necessary: a function that puts the elements of a search tree 
in a list preserving the ordering. This function is defined as follows: 

labels :: (Tree a) -> [a] 
labels Leaf    = [] 
labels (Node x le ri) = labels le ++ [x] ++ labels ri 

The name of the function is inspired by the habit to call the value stored in a node the label 
of that node. 

In contrast with insertTree this function performs a recursive call to the left and the right 
subtree. In this manner every element of the tree is inspected. As the value x is inserted in 
the right place, the result is a sorted list (provided that the argument is a search tree). 

An arbitrary list can be sorted by transforming it into a search tree with listToTree and than 
summing up the elements in the right order with labels: 

tsort :: ([a] -> [a]) | Eq, Ord a 
tsort = labels o listToTree 
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In chapter 6 we will show how functions like labels can be implemented more efficiently 
using a continuation. 

3.6.4 Deleting from search trees 
A search tree can be used as a database. Apart from the operations enumerate, insert and 
build, which are already written, a function for deleting elements comes in handy. This 
function somewhat resembles the function insertTree; depending on the stored value the 
function is called recursively on its left or right subtree. 

deleteTree :: a (Tree a) -> (Tree a) | Eq, Ord a 
deleteTree e Leaf = Leaf 
deleteTree e (Node x le ri) 
 | e<x = Node x (deleteTree e le) ri 
 | e==x = join le ri 
 | e>x = Node x le (deleteTree e ri) 

If, however, the value is found in the tree (the case e==x) it can't be left out just like that 
without leaving a `hole'. That is why a function join that joins two search trees is necessary. 
This function takes the largest element from the left subtree as a new node. If the left sub-
tree is empty, joining is of course no problem: 

join :: (Tree a) (Tree a) -> (Tree a) 
join Leaf b2 = b2 
join b1   b2 = Node x b1̀  b2 
where 
 (x,b1̀ ) = largest b1 

The function largest, apart from giving the largest element of a tree, also gives the tree that 
results after deleting that largest element. These two results are combined in a tuple. The 
largest element can be found by choosing the right subtree over and over again: 

largest :: (Tree a) -> (a,(Tree a)) 
largest (Node x b1 Leaf) = (x,b1) 
largest (Node x b1 b2)   = (y,Node x b1 b2̀ ) 
where 
 (y,b2̀ ) = largest b2 

As the function largest is only called from join it doesn't have to be defined for a Leaf-tree. 
It is only applied on non-empty trees, because the empty tree is already treated separately in 
join. 

3.7 Abstract data types 
In subsection 1.6 we have explained the module structure of CLEAN. By default a function 
only has a meaning inside the implementation module it is defined in. If you want to use a 
function in another module as well, the type of that function has to be repeated in the cor-
responding definition module. Now, if you want to export a type, you simply repeat the 
type declaration in the definition module. For instance, the type Day of subsection 3.4.1 is 
exported by repeating its complete definition  

definition module day 
 
:: Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun 

in the definition module.  

For software engineering reasons it is often much better only to export the name of a type 
but not its concrete definition (the right-hand side of the type definition). In CLEAN this is 
achieved by specifying only the left-hand side of a type in the definition module. The con-
crete definition (the right-hand side of the type definition) remains hidden in the imple-
mentation module, e.g. 

definition module day 
 
:: Day 
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So, CLEAN's module structure can be used to hide the actual definition of a type. The ac-
tual definition of the type can be an algebraic data type, a record type, a predefined type, or 
a synonym type (giving a new name to an existing type). 

A type of which the actual definition is hidden is called an abstract data type. The advantage 
of an abstract data type is that, since its concrete structure remains invisible for the outside 
world, an object of abstract type can only be created and manipulated with help of func-
tions that are exported by the module as well. The outside world can only pass objects of 
abstract type around or store them in some data structure. They cannot create such an ab-
stract object nor change its contents. The exported functions are the only means with 
which the abstract data can be created and manipulated.  

Modules exporting an abstract data type provide a kind of data encapsulation known from 
the object-oriented style of programming. The exported functions can be seen as the 
methods to manipulate the abstract objects.  

The most well known example of an abstract data type is a stack. It can be defined as: 
definition module stack 
 
:: Stack a 
 
Empty ::   (Stack a) 
isEmpty ::   (Stack a) -> Bool 
Top  ::   (Stack a) -> a 
Push :: a (Stack a) -> Stack a 
Pop  ::   (Stack a) -> Stack a 

It defines an abstract data type (object) of type 'Stack of anything'. Empty should be defined 
(in the implementation module) as a function (method) that creates an empty stack. The 
other functions can be used to push an item of type a on top of a given stack yielding a 
stack (Push), to remove the top element from a given stack (Pop), to retrieve the top element 
from a given stack (Top), and to check whether a given stack is empty or not (isEmpty). 

In the corresponding implementation module one has to think of a convenient way to rep-
resent a stack, given the functions (methods) on stacks one has to provide. A stack can very 
well be implemented by using a list. No new type is needed. Therefore, a stack can be de-
fined by using a synonym type. 

implementation module stack 
 
::Stack a :== [a] 
 
Empty :: (Stack a) 
Empty = [] 
 
isEmpty :: (Stack a) -> Bool 
isEmpty [] = True 
isEmpty s = False 
 
Top :: (Stack a) -> a 
Top [e:s] = e 
 
Push :: a (Stack a) -> Stack a 
Push e s = [e:s] 
 
Pop :: (Stack a) -> Stack a 
Pop [e:s] = s 

Since the definition module only contains the abstract definition ::Stack a (instead of the 
complete definition ::Stack a :== [a]), no user of the stack can use the fact that it is im-
plemented by a list. This ensures that it is possible to change the implementation without 
having to change any of the places where the type Stack is used. 
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3.8 Correctness of programs 
It is of course very important that the functions you have defined work correctly on all cir-
cumstances. This means that each function has to work correctly for all imaginable values 
of its parameters. Although the type system ensures that a function is called with the cor-
rect kind of parameters, it cannot ensure that the function behaves correctly for all possible 
values the arguments can have. One can of course try to test a function. In that case one 
has to choose representative test values to test the function with. It is often not easy to find 
good representative test values. When case distinctions are made (by using patterns or 
guards) one has to ensure that all possibilities are being tested. However, in general there 
are simply too many cases. Testing can increase the confidence in a program. However, to 
be absolutely sure that a function is correct one needs a formal way to reason about func-
tions and functional programs. One of the nice properties of functional programming is 
that functions are side-effect free. So, one can reason about functional programs by using 
simple standard mathematical formal reasoning techniques like uniform substitution and 
induction. 

3.8.1 Direct proofs 
The simplest form of proofs is a direct proof. A direct proof is a obtained by a sequence of 
rewrite steps. For a simple example we consider the following definitions: 

I :: t -> t 
I x = x      
 
twice :: (t->t) t -> t 
twice f x = f (f x)  // This function is defined in StdEnv. 
 
f :: t -> t 
f x = twice I x 

When we want to show that for all x, f x = x, we can run a lot of tests. However, there are 
infinitely many possible arguments for f . So, testing can build confidence, but can't show 
that truth of f x = x. A simple proof shows that f x = x for all x. We start with the function 
definition of f and apply reduction steps to its body. 

f x = twice I x    // The function definition 
 = I (I x)   // Using the definition of twice 
 = I x    // Using the definition of I for the outermost function I 
 = x     // Using the definition of I          

This example shows the style we will use for proofs. The proof consists of a sequence of 
equalities. We will give a justification of the equality as a comment and end the proof with 
the symbol . 

Even direct proofs are not always as simple as the example above. The actual proof con-
sists usually of a sequence of equalities. The crux of constructing proofs is to decide which 
equalities should be used.  

For the same functions it is possible to show that the functions f and I behave equal. It is 
tempting to try to prove f = I. However, we won't succeed when we try to proof the func-
tion f equal to I using the same technique as above. It is not necessary that the function 
bodies can be shown equivalent. It is sufficient that we show that functions f and I pro-
duce the same result for each argument: f x = I x. In general: two functions are considered to be 
equivalent when they produce the same answer for all possible arguments. It is very simple to show this 
equality for our example: 

f x = twice I x  // The function definition 
 = I (I x)  // Using the definition of twice 
 = I x   // Using the definition of I for the outermost function I   

As you can see from this example it is not always necessary to reduce expressions as far as 
you can (to normal form). In other proofs it is needed to apply functions in the opposite 
direction: e.g. to replace x by I x. 
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A similar problem arises when we define the function g as: 
g :: (t -> t) 
g = twice I 

And try to prove that g x = x for all x. We can't start with the function definition and apply 
rewrite rules. In order to show this property we have to supply an arbitrary argument x to 
the function g. After invention of this idea the proof is simple and equivalent to the proof 
of f x = x. 

3.8.2 Proof by case distinction 
When functions to be used in proof are defined consists of various alternatives or contain 
guards its is not always possible to use a single direct proof. Instead of one direct proof we 
use a direct proof for all relevant cases. 

As an example we will show that for all integer elements x, abs x � 0 , using 
abs :: Int -> Int 
abs n  
 | n < 0     = ~n 
 | otherwise = n 

Without assumptions on the argument the proof can't be made. The cases to distinguish 
are indicated by the function under consideration. Here the guard determines the cases to 
distinguish. 

Proof 

Case x < 0 
abs x = ~x   // Using the definition of abs 

Since x < 0, ~x will be greater than 0, using the definitions in the class Eq, x > 0 implies x � 
0. Hence, abs x � 0  when x < 0. 

Case x � 0  
abs x = x   // Using the definition of abs 

Since x � 0  and abs x = x we have abs x � 0 .  
Each x is either < 0 or � 0. For both cases we have abs x � 0. So, abs x � 0 for all x.  

The last line is an essential step in the proof. When we do not argue that we have covered 
all cases there is in fact no proof. Nevertheless, this last step is often omitted. It is fairly 
standard and it is supposed to be evident for the reader that all cases are covered. 

The trouble of proving by cases is that you have to be very careful to cover all possible 
cases. A common mistake for numbers is to cover only the cases x<0 and x>0. The case x=0 
is erroneously omitted. 

Proof by case can be done for any data type. Sometimes we can handle many values at 
once (as is done in the proof above), in other situation we must treat some or all possible 
values separately. Although a proof by case can have many cases, the number of cases 
should at least be finite. 

As additional example we show that Not (Not b) = b for all Booleans b using: 
Not :: Bool -> Bool 
Not True  = False 
Not False = True 

Proof of Not (Not b) = b. 

Case b == True 
Not (Not b)    // The value to be computed. 
 = Not (Not True) // Using the assumption of this case. 
 = Not False   // Using the definition of Not for the innermost application. 
 = True    // Using the definition of Not. 
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Case b == False 
Not (Not b)    // The value to be computed. 
 = Not (Not False) // Using the assumption of this case. 
 = Not True   // Using the definition of Not for the innermost application. 
 = False    // Using the definition of Not. 

Each Boolean (Bool) is either True or False. So, this proof covers all cases and proves that Not 
(Not b) = b for all Booleans b.  

3.8.3 Proof by induction 
As stated in the previous section proof by cases works only when there are a finite amount 
of cases to be considered. When there are in principle infinitely many cases to consider we 
can often use a proof by induction. The principle of proving properties by induction is very 
well known in mathematics. In mathematics we prove that some property P n holds for all 
natural numbers n by showing two cases : 

• Base case:   Prove P 0 

• Induction step: Prove P (n+1) assuming that P n holds. 

The principle of this proof is very similar to recursion. Using the base case and the induc-
tion step we can prove P 1. Using P 1 and the induction step we show that P 2 holds. In the 
same way we can prove P 3, P 4, P 5, …. Using this machinery we can prove P n for any n. 
Since this is a common proof method, it suffices to show the base case and the induction 
step. The fact that the property can be proven for any value from these parts is taken for 
granted when you refer to induction. 

As example we will show that the following efficient definition of the Fibonacci function 
and the naive definition are equivalent for all non-negative integers. 

tupleFib :: Int -> Int 
tupleFib n = fibn 
where 
 (fibn,_) = tf n 
 tf 0 = (1,1) 
 tf n = (y,x+y) where (x,y) = tf (n-1) 
 
fib :: Int -> Int 
fib 0 = 1 
fib 1 = 1 
fib n = fib (n-1) + fib (n-2) 

Proof of tupleFib n = fib n 

The key step here is to understand that tf n = (fib n, fib (n+1)) for all integers n >= 0. Once 
we have seen that this is the goal of our proof, it can be proven by induction. 

Case n == 0 

We have to prove that tf 0 == (fib 0, fib (0+1)). This is done by rewriting tf 0. 
tf 0     //  Expression to be proven equal to (fib 0, fib (0+1)) 
 = (1,1)    //  Definition of tf. 
 = (fib 0,1)   //  Using first alternative of the definition of fib. 
 = (fib 0,fib 1)  //  Using second alternative of the definition of fib. 
 = (fib 0,fib (0+1)) //  Arithmetic. 

This proves that tf n = (fib n, fib (n+1)) for n = 0. 

Case n + 1 

We have to show that tf (n+1) = (fib (n+1), fib (n+1+1)) assuming that tf n = (fib n, fib 
(n+1)). We will prove this by rewriting the expression tf (n+1). 

tf (n+1)          //  Initial expression. 
 = (y,x+y) where (x,y) = tf (n+1-1)   //  Definition of tf, assuming that n>0. 
 = (y,x+y) where (x,y) = tf n    //  Arithmetic 
 = (y,x+y) where (x,y) = (fib n, fib (n+1)) //  Induction hypothesis 
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 = (fib (n+1),fib n + fib (n+1))   //  Rewriting the expression. 
 = (fib (n+1),fib (n+1+1))     //  Last alternative of function fib. 

This proves that tf (n+1) = (fib (n+1), fib (n+1+1)) assuming that tf n = (fib n, fib (n+1)). 
These case together prove by induction that tf n = (fib n, fib (n+1)) for all positive n. Us-
ing this result, proving tupleFib n = fib n is done by a direct proof. 

tupleFib n 
 = fibn where (fibn,_) = tf n    //  Definition of tupleFib. 
 = fibn where (fibn,_) = (fib n, fib (n+1)) //  Using the result proven above. 
 = fib n          //  Rewriting the expression.  
The key step in designing proofs is to find the appropriate sub-goals. Proofs can become 
very complex, by having many sub-goals. These sub-goals can require additional induction 
proofs and sub-goals, and so on.  

As additional example we will prove the following Fibonacci function that avoids tuples 
equivalent to the function fib. 

fastFib :: Int -> Int 
fastFib n = f n 1 1 
where  
 f 0 a b = a 
 f n a b = f (n-1) b (a+b) 

Proof of fastFib n = fib n for all n � 0 . 

We will first prove that f n 1 1 = f (n-m) (fib m) (fib (m+1)) for all m such that m�0 && m�n . 
This is proven again by induction: 

 Proof of f n 1 1 = f (n-m) (fib m) (fib (m+1))  

 Case m == 0 of f n 1 1 = f (n-m) (fib m) (fib (m+1))  
 f (n-m) (fib m) (fib (m+1))      //  Start with right-hand side. 
  = f n (fib 0) (fib 1)       //  Use m == 0. 
  = f n 1 1          //  Use function fib. 

 Case m + 1 of f n 1 1 = f (n-m) (fib m) (fib (m+1))  
 f n 1 1            //  Left-hand side of goal. 
  = f (n-m) (fib m) (fib (m+1))     //  Use induction hypothesis. 
  = f (n-(m+1)) (fib (m+1)) (fib m + fib (m+1)) //  Rewrite according to f. 
  = f (n-(m+1)) (fib (m+1)) (fib ((m+1)+1))  //  Using fib in reverse. 

This proves that f n 1 1 = f (n-m) (fib m) (fib (m+1)). Now we can use this result to prove 
that fastFib n = fib n. 

fastFib n          //  Left-hand side of equality to prove. 
 = f n 1 1         //  Definition of fastFib. 
 = f (n-m) (fib m) (fib (m+1))    //  Using the sub-goal proven above. 
 = f 0 (fib n) (fib (n+1))     //  Use m = n and arithmetic. 
 = fib n          //  According to definition of f.  

Inductive proofs for recursive data types 

There is no reason to limit induction proofs to natural numbers. In fact induction proofs 
can be given for any ordered (data) type, under the assumption that the data structures are 
finite. A well-known example in functional languages is the data type list. The base case is 
P([]), the induction step is P([x:xs]) assuming P(xs). 

As example we will show the equivalence of the following functions to reverse lists. The 
function rev is simple and a clear definition. In chapter III.3 we will show that reverse is 
more efficient. 

rev :: [t] -> [t]     //  Quadratic in the length of the argument list. 
rev []    = [] 
rev [a:x] = rev x ++ [a] 
 
reverse :: [t] -> [t]    //  Linear in the length of the argument list. 
reverse l = r l [] 
where  
 r []    y = y 
 r [a:x] y = r x [a:y] 
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Proof of rev l = reverse l for every (finite) list l. 

In order to prove this we first prove an auxiliary equality: r xs ys = rev xs ++ ys. This is 
proven by induction to xs. 

 Proof of r xs ys = rev xs ++ ys. 

 Case xs == [] of r xs ys = rev xs ++ ys. 
 r xs ys 
  = r [] ys     //  Using xs == []. 
  = ys      //  Definition of the function r. 
  = [] ++ ys     //  Definition of the operator ++ in reverse. 
  = rev [] ++ ys    //  The first alternative of rev in reverse. 

 Case xs == [a:x] of r xs ys = rev xs ++ ys. Assuming r x ys = rev x ++ ys. 
 r xs ys 
  = r [a:x] ys    //  Using xs == [a:x]. 
  = r x [a:ys]    //  According to function r. 
  = rev x ++ [a:ys]   //  Using the induction hypothesis 
  = rev x ++ [a] ++ ys  //  Using operator ++ in reverse. 
  = rev [a:x] ++ ys   //  Associativity of ++ and last alternative of rev. 

This proves r xs ys = reverse xs ++ ys by induction. We will use this auxiliary result to show 
our main equality: reverse l = rev l. 

reverse l 
 = r l []      //  According to the definition of reverse. 
 = rev l ++ []     //  Using the auxiliary result. 
 = rev l       //  Using l ++ [] = l for any list l.    

Actually the proofs presented above are not complete. Also the "obvious" properties of the 
operators should be proven to make the proofs complete. This is a topic of the exercises. 

After you have found the way to prove a property, it is not difficult to do. Nevertheless, 
proving function correct is much work. This is the reason that it is seldom done in practise, 
despite the advantages of the increased confidence in the correctness of the program. Since 
also proofs can be wrong, you should always be a little bit careful in using the results of 
your program, even if you have proven your program "correct".  

3.8.4 Program synthesis 
In the previous section we treated the development of function definitions and proving 
their equivalence as two separate activities. In program synthesis these actions are inte-
grated. We start with a specification, usually a naive and obviously correct implementation, 
and syntheses a new function definition. The reasoning required in both methods is essen-
tially equal. In program synthesis we try to construct the function in a systematic way. 
Without synthesis these programs should be created out of thin air. In practice we often 
need to create the key step for program synthesis out of thin air. This key step is usually 
exactly equivalent to the step needed to construct the proof afterwards. 

In program synthesis we use only a very limited number of transformations: rewrite ac-
cording to a function definition (also called unfold [Burstall 87?]), introduction of patterns and 
guards (similar to the cases in proofs), inverse rewrite steps (this replacing of an expression by a 
function definition is called fold), and finally the introduction of eureka definitions.  

In order to demonstrate program synthesis we will construct a recursive definition for re-
verse from the definition using the toolbox function foldl. The definition for foldl is re-
peated here to since it will be used in the transformation. 

reverse :: [t] -> [t] 
reverse l = foldl (\xs x = [x:xs]) [] l//  The specification 
 
foldl :: (a -> (b -> a)) a [b] -> a  //  Toolbox function equivalent to StdEnv 
foldl f r []    = r 
foldl f r [a:x] = foldl f (f r a) x 
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The first step is to introduce patterns for the argument list in reverse. This is necessary 
since no rewrite step can be done without assumption on the form of the argument. 

Case l == []  
reverse l           //  The function to transform 
 = foldl (\xs x = [x:xs]) [] l     //  Using the specification. 
 = foldl (\xs x = [x:xs]) [] []     //  The assumption of this case. 
 = []           //  Using alternative 2 of foldl. 

Case l == [a:x]  
reverse l           //  The function to transform. 
 = foldl (\xs x = [x:xs]) [] l     //  Using the specification. 
 = foldl (\xs x = [x:xs]) [] [a:x]    //  Assumption l == [a:x]. 
 = foldl f (f [] a) x where f = \xs x = [x:xs] //  Alternative 1 of foldl. 
 = foldl (\xs x = [x:xs]) [a] x     //  Lambda reduction. 
 = foldl (\xs x = [x:xs]) ([]++[a]) x   //  Properties of ++. 
 = foldl (\xs x = [x:xs]) [] x ++ [a]   //  Function foldl and λ-term. 
 = reverse x ++ [a]        //  Fold to call of reverse. 

Collecting the cases we have obtained: 
reverse :: [t] -> [t] 
reverse []    = [] 
reverse [a:x] = reverse x ++ [a] 

In order to turn this in an algorithm that is linear in the length of the list we need the eu-
reka definition revAcc xs ys = reverse xs ++ ys. Note that this is exactly equivalent to the key 
step of the proof in the previous section. 

reverse l           //  Function to transform. 
 = reverse l ++ []        //  Property of ++. 
 = revAcc l []         //  Eureka definition. 

To obtain a definition for r we use again pattern introduction: 

Case l == []  
revAcc [] ys = reverse [] ++ ys     //  Eureka definition and l == []. 
 = [] ++ ys          //  Definition of reverse. 
 = ys           //  Definition of operator ++. 

Case l == [a:x]  
revAcc [a:x] ys = reverse [a:x] ++ ys    //  Eureka definition, l==[a:x]. 
 = reverse x ++ [a] ++ ys      //  Recursive definition reverse. 
 = reverse x ++ [a:ys]       //  Associativity of ++. 
 = revAcc x [a:ys]        //  Fold using eureka definition. 

Collecting the cases we obtain: 
reverse :: [t] -> [t] 
reverse l = revAcc l [] 
 
revAcc :: [t] [t] -> [t] 
revAcc [] ys    = ys 
revAcc [a:x] ys = revAcc x [a:ys] 

Since we used exactly the same eureka definition as was used in the proof, it is not sur-
prising to see that we have obtained an completely equivalent definition of reverse. The key 
step in this kind of program synthesis is to discover the proper eureka definitions. 

When you use uniqueness information in your functions you have to pay additional atten-
tion to the transformations. It is not sufficient that the uniqueness properties are preserved, 
but the compiler must also be able to verify them. Transformations using the first three 
steps can in principle be automated to a certain extent [Wadler 88, Koopman ??] and will 
perhaps be incorporated into function language implementations in the future. 

3.9 Run-time errors 
The static type system of CLEAN prevents run-time type errors. The compiler ensures that 
it is impossible to apply a function to arguments of the wrong type. This prevents a lot of 
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errors during program execution. Nevertheless, the compiler is not able to detect all possi-
ble errors. In this section we discuss some of the errors that can still occur. 

3.9.1 Non-termination 
It is perfectly possible to write programs in CLEAN that can run forever. Sometimes this is 
the intention of the programmer, in other situations this is considered an error. A very 
simple example of a program that will not terminate is: 

Start :: String 
Start = f 42 
 
f :: t -> u 
f x = f x 

There is nothing wrong with the type of this program, but it will never produce a result. 
Programs that yields an infinite data structure are other examples of programs that does 
not terminate: 

Start :: [Int] 
Start = ones where ones = [1:ones] 

As we have seen, there are programs manipulating infinite data structures that do termi-
nate. In general it is undecidable whether a given program will terminate or not. So, the 
compiler is not able to warn you that your program does not terminate. 

In large programs it may be pretty complicated to detect the reason why a program does 
not terminate. When a critical observation of your program does not indicate the error you 
should isolate the error by breaking your program into pieces that are tested individually. 
You can prevent a lot these problems by making it a habit to inspect the termination prop-
erties of each function you have written immediately after you have written it down. As we 
have seen there are many valid programs that use infinite data structures. For instance the 
first 20 prime numbers are computed by (see section 3.2.5): 

Start :: [Int] 
Start = take 20 primes 

3.9.2 Partial functions 
Many of the functions that you write are partial functions: the result of the function is only 
defined for some of the arguments allowed by the type system. Some examples are: 

fac :: Int -> Int 
fac 0 = 1 
fac n = n * fac (n-1) 
 
depth :: (Tree a) -> Int 
depth (Node _ l r) = max (depth l) (depth r) 

The result of the function fac is only defined for integers greater or equal to 0. For negative 
arguments the function does not terminate. The function depth is only defined for trees that 
are not a single leaf. There is no rule alternative applicable to the expression depth Leaf. 
Whenever CLEAN tries to evaluate this expression an appropriate error message is gener-
ated: 

Run time error, rule 'depth' in module 'test' does not match 

The CLEAN compiler analyses functions during compilation. Whenever the compiler can-
not decide that there is always a rule alternative applicable it generates an appropriate warn-
ing: 

Warning [test.icl,35,depth]: function may fail 

Partial functions may result in a run-time error, either defined by the programmer or gener-
ated by the compiler in case none of the alternatives of a function matches.. 
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fac1 :: Int -> Int 
fac1 0 = 1 
fac1 n  
 | n>0  = n * fac1 (n-1) 
 | otherwise = abort "fac1 has an negative argument" 
 
fac2 :: Int -> Int 
fac2 0 = 1 
fac2 n  
 | n>0 = n * fac2 (n-1) 

When called with a negative argument these functions respectively will cause the following 
error messages: 

fac1 has an negative argument 
Run time error, rule 'fac2' in module 'test' does not match 

Although the error is easy to detect in this way it might be a problem to detect the reason 
why this error was generated. You should make it a habit to consider what will happen 
when the function is called with 'wrong' arguments. With respect to detecting problems the 
functions fac1 and fac2 are considered better than fac. When you are worried about the ad-
ditional runtime taken by the additional test you might consider doing the test for appro-
priate arguments once and for all: 

fac3 :: Int -> Int 
fac3 n  
| n >= 0 = f n 
where 
 f 0 = 1 
 f n = n * f(n-1) 

In general it is worse to receive a wrong answer than receiving no answer at all. When you 
obtain no result you are at least aware of the fact that there is a problem. So, do not write: 

fac4 n  
 | n < 1  = 0 
 | otherwise = n * fac4 (n-1) 

A related error is: 
Subscript error in !!, index too large 

This error is caused by selecting an element out of a list that does not exists, using the op-
erator !!. A way to generate the index out of range error is: 

Start = [1..5] !! 10 

3.9.3 Cyclic dependencies 
When your program uses its own results before they can be computed you have a nasty 
error known as cycle in spine or black hole. The origin of the name of this error lies in one of 
the ways functional languages can be implemented (see part III). This kind of errors can be 
very hard to find.  

We will illustrate this kind of error by a program that generates a sorted list of all numbers 
of the form 2n3m. Computing these numbers is known as the Hamming problem. We will 
generate Hamming numbers by observing that a new Hamming number can be computed 
by multiplying and existing number by 2 or 3. Since we generate an infinite list of these 
numbers we cannot use on ordinary sorting function to sort Hamming numbers. We sort 
these numbers by an adapted version of the function merge. 

ham :: [Int] // definition below gives cycle in spine error 
ham =: merge [n*2 \\ n <- ham] [n*3 \\ n <- ham] 
where 
 merge l=:[a:x] m=:[b:y] 
  | a<b  =  [a:merge x m] 
  | a==b  =  merge l y 
  | otherwise =  [b: merge l y] 
 
Start::[Int] 
Start = take 100 ham 
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Here it is no problem that the function merge is only defined for non-empty lists, it will only 
be used to merge infinite lists. Execution of this program yields: 

Run Time Warning: cycle in spine detected 

The source of the error is that the program is not able to generate a first Hamming num-
ber. When we know this and observe that 1 is the first hamming number (1 = 2030), it is 
easy to give a correct version of this function: 

ham :: [Int] // correct definition with first number in initial cycle 
ham =: [1:merge [n*2 \\ n <- ham] [n*3 \\ n <- ham]] 
where 
 merge  l=:[a:x] m=:[b:y] 
 | a<b  = [a:merge x m] 
 | a==b  = merge l y 
 | otherwise = [b: merge l y] 

When we do not use the computed Hamming numbers to generate new Hamming num-
bers, but compute these numbers again as in: 

ham :: [Int] // no cycle but function def, = instead of :=, gives heap full error 
ham = merge [n*2 \\ n <- ham] [n*3 \\ n <- ham] 
where 
 merge l=:[a:x] m=:[b:y] 
 | a<b  = [a:merge x m] 
 | a==b  = merge l y 
 | otherwise = [b: merge l y] 

we obtain a 'heap full' message instead of the 'cycle in spine'. For each occurrence of ham 
the expression is evaluated again. Since none of these functions is able to generate a first 
element, an infinite expression will be generated. The heap will always be too small to hold 
this expression. 

3.9.4 Insufficient memory 
The heap is a piece of memory used by the CLEAN program to evaluate expressions. When 
this memory is exhausted the program tries to regain memory by removing parts of the ex-
pression that are not needed anymore. This process is called garbage collection. When it is not 
possible to find sufficient unused memory during garbage collection, the program is 
aborted and the error message 'heap full' is displayed. The size of the heap used by pro-
grams written in CLEAN can be determined in the CLEAN system. When you program dis-
plays the 'heap full' message you can try it again after you have increased the heap size. As 
shown in the previous paragraph it is also possible that a programming error causes this 
error message. No matter how large the heap is, the program will never behave as intended. 
In large programs it can be pretty tough to locate the source of this kind of error. 

Apart from the heap, a program written in CLEAN uses some stacks. These stacks are used 
to maintain information on function arguments and parts of the expression currently under 
evaluation. Also these stacks can be too small. What happens when such a stack overflow 
occurs depends on the platform you are using and the options set in the CLEAN system. 
When you choose 'Check Stacks' the program should notice that the stack space is ex-
hausted and abort the program with an appropriate message. Stack checks cause a slight 
run-time overhead. Hence, people often switch stack checks off. Without these checks the 
stack can 'grow' within memory used for other purposes. The information that was kept 
there is spoiled. This can give error like 'illegal instruction'. 

Whether an erroneous program causes a heap full message or a stack overflow can depend 
on very small details. The following program will cause a 'heap full' error: 

Start :: String 
Start = f 42 
 
f :: t -> u 
f x = f (f x) 

We can understand this by writing the first lines of a trace: 
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Start 
→ f 42 
→ f (f 42) 
→ f (f (f 42)) 
→ … 

It is clear that this expression will grow without bound. Hence execution will always cause 
a heap full error. 

When we add a strictness annotation is added to the function f, the argument of f will be 
evaluated before the application of f itself is evaluated (see part III). 

Start :: String 
Start = f 42 
 
f :: t -> u 
f x = f (f x) 

The trace looks very similar: 
Start 
→ f 42 
→ f (f 42) 
→ f (f (f 42)) 
→ … 

In order to keep track of the function and its argument under evaluation some stack space 
is used. Now it depends on the relative size of the stack and the size of the memory which 
one is the first to be exhausted. CLEAN has a built in strictness analyzer that approximates 
the strictness properties of functions. A very small and semantically irrelevant change may 
change the derived strictness properties and hence cause the difference between a 'heap 
full' or 'stack overflow' error. 

→ fib 4 
→∗ fib 3 + fib 2 
→ fib 3 + fib 1 + fib 0 
→ fib 3 + fib 1 + 1 
→ fib 3 + 1 + 1 
→ fib 3 + 2 
→∗ fib 2 + fib 1 + 2 
→ fib 2 + 1 + 2 
→∗ fib 1 + fib 0 + 1 + 2 
→ fib 1 + 1 + 1 + 2 
→ 1 + 1 + 1 + 2 
→∗ 5 

From this trace it is clear that the operator + evaluates its second argument first. 

It is tempting to write a function trace :: !String x -> x that writes the string as trace to 
stderr. The definition of this function is somewhat more complicated as you might expect: 

trace :: !String x -> x 
trace s x  
 #! y   = fwrites s stderr 
 |  1<2 = const x y   // const is defined in StdEnv as: const x y = x 
 = abort "?" 

The problem with a simple-minded approach like: 
trace s x  
#! y = fwrites s stderr  
= const x y  

is that the strictness analyser of CLEAN discovers that x is always needed. So, x is evaluated 
before the function trace is invoked. This will spoil the order of the trace information. 
Switching strictness analysis off prevents this, but it may change the order of evaluation of 
the program you are investigating. 

Using the function trace we can write a version of the Fibonacci function that produces a 
trace as: 

fib n = trace ("fib "+toString n+" ") 
    (if (n<2) 1 (fib (n-1) + fib (n-2))) 
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When we want to include also the result of reduction is the trace we have to be vary careful 
that the order of computations is not changed. For some programs changing the order of 
computations is not a real problem. For other programs, changing the order of reductions 
can cause non-termination. 

When we write: 
fib n = trace ("fib "+toString n+" = "+toString m+" ") m 
 where m = if (n<2) 1 (fib (n-1) + fib (n-2)) 

the trace will be reversed! In order to write the first call of fib, we must evaluated this 
string. In order to evaluate this string we need the value of the outermost function, and 
hence all other occurrences of the fib function. 

The module StdDebug that comes with the Clean system contains several predefined vari-
ants of the trace function. 

3.10 Exercises 
1. Define a function CountOccurrences that counts the number of times a given element is 

occurring in a given list. 
CountOccurrences :: a [a] -> Int | == a 

2 Define the function MakeFrequenceTable 
MakeFrequenceTable [a] -> [(a, Int)] | == a 

That makes a frequency table. The table consists of a list of tuples. Each tuple consists 
of an element from the original list and its frequency (percentage). E.g. 
Frequencytable [1,2,3,2] = [(1,25),(2,50),(3,25)] 

3 Equality on tuples can be defined as: 
(==) (a,b) (c,d) = a == c && b == d 

Although the equality operator is also applied in the right-hand side expression this 
function is actually not recursive.  

What is the difference between this operator definition and the recursive definition of 
equality for lists in Section 3.1.2? 

4 Define the function flatten (see Section 3.1.2) in terms of foldr and ++. 

5 Write a list comprehension for generating all permutations of some input list. 

6 Describe the effect on the evaluation order of swapping x==y and xs==ys in the defini-
tion of == in Section 3.2.2. 

7 Extend the set of operators on rational numbers with == and <. 

8 Discuss how you can guarantee that rational numbers used in ordinary programs are 
always 'simplified'. 

9 Define an appropriate data type for AVL-trees and define functions for balancing, 
searching, inserting and deleting elements in such trees. 

10 Proof that abs (sign x) < 2 for all x using: 
sign x | x < 0  = -1 
| x == 0 = 0 
| x > 0  = 1 

11 Proof that fib n � n  for all n�2 . 

12 Proof that l ++ [] = l. 

13 Proof that x ++ (y ++ z) = (x ++ y) ++ z. This is the associativity of ++. 

14 Proof that rev (x ++ y) = rev y ++ rev x. 

15 Proof that rev (rev xs) = xs for every finite list. 

16 Proof that foldl (\xs x = [x:xs]) ys x = foldl (\xs x = [x:xs]) [] x ++ ys. 
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17 Synthesize a recursive function to add elements of a list which is equivalent to: 
sum :: [t] -> t | + , zero t 
sum l = foldr (+) zero l 

18 Design a Eureka rule to introduce an accumulator and transform the recursive func-
tion to a call of the addition function using the accumulator. 
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CLEAN is a strongly typed language. This means that every expression in the language is 
typed and that the compiler can verify type correctness before the program is executed. Ill-
typed programs are not accepted. Due to the type system, many errors can be found and 
reported at compile time. It is important to find programming errors in an early stage of 
the software development process. Correcting errors later generally takes much more effort 
and can cost a considerable amount of money. The type system certainly helps to find a 
large class of errors as soon as possible. However, the type system can only find certain 
programming errors that have to do with inconsistent use. E.g. it cannot find logical errors. 
Although the CLEAN's type system is very flexible there are some restrictions as well in or-
der to make type correctness statically decidable. This implies that in some rare cases the 
compiler rejects programs although they are correct. We are willing to pay this price due to 
the very strong advantages of static decidability of type correctness. 

Type systems can also be used to increase the expressive power of a language. This chapter 
explains a number of language features that are related to the type system. First we will ex-
plain the overloading mechanism of CLEAN that makes it possible to use the same function 
name for different functions performing similar kind of actions. It can be used to write 
(parts of) programs in such a way that the actual data structures being used can be chosen 
in a later state of the design (section 4.1). We explain how one can store objects of different 
types into a recursive data structure like a list using existentially quantified data types. In 
this way an object-oriented style of programming can be achieved (section 4.2). Finally we 
treat an important feature of CLEAN: the uniqueness type system (section 4.3). It makes it 
possible to destructively update data structures like arrays and files without violating the 
pure functional semantics of the language. 

4.1 Type Classes 
When one defines a new function one has to give the function a new (meaningful) name 
different from all other function names which have been defined in the same scope. How-
ever, sometimes it can be very convenient to reuse an existing name. An obvious example 
is the function '+'. One would like to have a '+' on integers, a '+' on reals and so on. So, 
sometimes one can increase the readability by using the same name for different functions 
doing similar kind of things albeit on different types. The mechanism that allows such 
functions to be defined is called overloading or ad-hoc polymorphism. Overloading occurs when 
several functions with the same name are defined in the same scope. However, each of 
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these functions has a (slightly) different type. So, one and the same (overloaded) function 
name (e.g. +) is associated with a collection of different operations (Int addition, Real addi-
tion, etcetera). Notice the difference with a polymorphic function like map, which is just 
one function defined over a range of types acting in the same way for each concrete type. 

The definition of an overloaded function consists of two parts: 
1) The signature of the overloaded function, i.e. the name and the overall type the over-

loaded functions have in common; 
2) A collection of (type dependent) concrete realizations: the instances. 
For reasons of flexibility, these parts can be specified separately (e.g. in different modules). 
In CLEAN, a signature is introduced by a class declaration. This class declaration indicates that 
there may occur a number of functions with that name. In order to guarantee that all these 
functions are sufficient similar, the type of these functions should be an instance of the 
common type given in the signature. The signature can be seen as a blueprint all concrete 
instances have to obey. Examples of such signatures are the following (pre-defined) class 
declarations introducing some common overloaded operators. 

class (+) infixl 6 a :: a a -> a 
class (-) infixl 6 a :: a a -> a 
class zero   a :: a  
 
class (*) infixl 7 a :: a a -> a 
class (/) infix 7 a :: a a -> a 
class one   a :: a 
 
class (==) infix 2 a :: a a -> Bool  
class (<) infix 2 a :: a a -> Bool  

In each class declaration, one of the type variables appearing in the signature is denoted 
explicitly. This class variable is used to relate the type of an overloaded operator to all the 
types of its instances. The latter are introduced by instance declarations. An instance declara-
tion associates a function body with a concrete instance type. The type of this function is 
determined by substituting the instance type for the class variable in the corresponding sig-
nature. For example, we can define an instance of the overloaded operator + for strings, as 
follows. 

instance + {#Char} 
where 
 (+) s1 s2 = s1 +++ s2 

Since it is not allowed to define instances for type synonyms we have to define an instance 
for {#Char} rather than for String. Allowing instances for type synonyms would make it 
possible to have several different instances of some overloaded function which are actually 
instances for the same type. The Clean systems cannot distinguish which of these instances 
should be applied.  

By substituting {#Char} for a in the signature of + one obtains the type for the newly defi-
ned operator, to wit {#Char} {#Char}-> {#Char}. In CLEAN it is permitted to specify the 
type of an instance explicitly, provided that this specified type is exactly the same as the 
type obtained via the above-mentioned substitution. Among other things, this means that 
the following instance declaration is valid as well. 

instance + {#Char} 
where 
 (+) :: {#Char} {#Char} -> {#Char} 
 (+) s1 s2 = s1 +++ s2 

A large number of these operators and instances for the basic types and data types are pre-
defined in StdEnv. In order to limit the size of the standard library only those operations 
that are considered the most useful are defined. It might happen that you have to define 
some instances of standard functions and operators yourself. 
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Observe that, what we have called an overloaded function is not a real function in the usual 
sense: An overloaded function actually stands for a whole family of functions. Therefore, if 
an overloaded function is applied in a certain context, the type system determines which 
concrete instance has to be used. For instance, if we define 

increment n = n + 1 

it is clear that the Int addition is meant leading to a substitution of this Int version for +. 
However, it is often impossible to derive the concrete version of an overloaded function 
from the context in which it is applied. Consider the following definition: 

double n = n + n 

Now, one cannot determine from the context which instance of + is meant. In fact, the 
function double becomes overloaded itself, which is reflected in its type: 

double :: a -> a | + a 

The type context + appearing in the type definition indicates the restriction that double is de-
fined only on those objects that can be handled by a +.  

Some other examples are: 
instance + (a,b) | + a & + b 
where 
 (+) (x1,y1) (x2,y2) = (x1+x2,y1+y2) 
 
instance == (a,b) | == a & == b 
where 
 (==) (x1,y1) (x2,y2) = x1 == x2 && y1 == y2 

In general, a type context of the form C a, restricts instantiation of a to types for which an 
instance declaration of C exists. If a type context for a contains several class applications, it 
assumed that a is chosen from the instances types all these classes have in common. 

One can, of course, use a more specific type for the function double. E.g. 
double :: Int -> Int 
double n = n + n 

Obviously, double is not overloaded anymore: due to the additional type information, the 
instance of + to be used can now be determined. 

Type contexts can become quite complex if several different overloaded functions are used 
in a function body. Consider, for example, the function determinant for solving quadratic 
equations. 

determinant a b c = b * b - (fromInt 4) * a * c 

The type of determinant is 
determinant :: a a a -> a | *, -, fromInt a 

To enlarge readability, it is possible to associate a new (class) name with a set of existing 
overloaded functions. E.g. 

class Determinant a | *, -, fromInt a 

The class Determinant consists of the overloaded functions *, - and fromInt. Using the 
new class in the type of determinant leads to the type declaration: 

determinant :: a a a -> a | Determinant a. 

Notice the difference between the function determinant and the class Determinant. The 
class Determinant is just a shorthand notation for a set of type restrictions. The name of 
such a type class should start with an uppercase symbol. The function determinant is just a 
function using the class Determinant as a compact way to define some restrictions on its 
type. As far as the CLEAN system is concerned it is a matter of coincidence that you find 
these names so similar. 

Suppose C1 is a new class, containing the class C2. Then C2 forms a so-called subclass of C1. 
‘Being a subclass of’ is a transitive relation on classes: if C1 on its turn is a subclass of C3 
then also C2 is also a subclass of C3. 
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A class definition can also contain new overloaded functions, the so-called members of the 
class. For example, the class PlusMin can be defined as follows. 

class PlusMin a 
where 
 (+) infixl 6 :: a a -> a 
 (-) infixl 6 :: a a -> a 
 zero   :: a 

To instantiate PlusMin one has to specify an instance for each of its members. For exam-
ple, an instance of PlusMin for Char might look as follows. 

instance PlusMin Char 
where 
 (+) x y = toChar ((toInt x) + (toInt y)) 
 (-) x y = toChar ((toInt x) - (toInt y)) 
 zero = toChar 0 

Some of the readers will have noticed that the definition of an overloaded function is es-
sentially the same as the definition of a class consisting of a single member. Indeed, classes 
and overloaded operators are one and the same concept. Since operators are just functions 
with two arguments, you can use operators in type classes in the same way as ordinary 
functions. 

As stated before, a class defines in fact a family of functions with the same name. For an 
overloaded function (a class member) a separate function has to be defined for each type 
instance. In order to guarantee that only a single instance is defined for each type, it is not 
allowed to define instances for type synonyms. The selection of the instance of the over-
loaded function to be applied is done by the CLEAN system based on type information. 
Whenever possible this selection is done at compile-time. Sometimes it is not possible to 
do this selection at compile-time. In those circumstances the selection is done at run-time. 
Even when the selection of the class member to be applied is done at run-time, the static 
type system still guarantees complete type consistency. 

In CLEAN, the general form of a class definition is a combination of the variants discussed 
so far: A new class consists of a collection of existing classes extended with a set of new 
members. Besides that, such a class will appear in a type context of any function that uses 
one or more of its members, of which the actual instance could not be determined. For 
instance, if the PlusMin class is used (instead of the separate classes +, - and zero), the ty-
pes of double and determinant will become: 

double :: a -> a | PlusMin a 
determinant :: a a a -> a | *, PlusMin, fromInt a 

The CLEAN system itself is able to derive this kind of types with class restrictions. 

The class PlusMin is defined in the standard environment (StdClass) is slightly different 
from the definition shown in this section. The definition is the standard environment is: 

class PlusMin a | + , - , zero a 

When you use the class PlusMin there is no difference between both definitions. However, 
when you define a new instance of the class you have to be aware of the actual definition 
of the class. When the class contains members, you have to create an instance for all mem-
ber of the class as shown here. For a class that is defined by a class context, as PlusMin 
from StdClass, you define an instance by defining instances for all classes listed in the con-
text. In the next section we show an example of the definition of an instance of this class. 

4.1.2 A class for Rational Numbers 
In chapter 3.4.1 we introduced a type Q for representing rational numbers. These numerals 
are records consisting of a numerator and a denominator field, both of type Int: 

:: Q = { num :: Int 
  , den :: Int 
  } 
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We define the usual arithmetical operations on Q as instances of the corresponding type 
classes. For example, 

instance + Q 
where 
 (+) x y = mkQ (x.num * y.den + x.den * y.num) (x.den * y.den) 
 
instance - Q 
where 
 (-) x y = mkQ (x.num * y.den - x.den * y.num) (x.den * y.den) 
 
instance fromInt Q 
where 
 fromInt i = mkQ i 1 
 
instance zero Q 
where 
 zero = fromInt 0 
 
instance one Q 
where 
 one = fromInt 1 

Using: 
mkQ :: x x -> Q | toInt x 
mkQ n d = simplify {num = toInt n, den = toInt d} 
 
simplify :: Q -> Q 
simplify {num=n,den=d} 
 | d == 0    = abort "denominator of Q is 0!" 
 | d < 0     = {num = ~n / g, den = ~d / g} 
 | otherwise = {num =  n / g, den =  d / g} 
where 
 g = gcd n d 

At first sight, it seems as if the definition of, for example, the instance for + is recursive, 
for, an application of + also appears in the body of this instance. However, from its con-
text, it immediately follows that the actual operation that is meant is the + for values of type 
Int. 

When a new data type is introduced, it is often convenient if a string representation of this 
data type is available. Amongst other things, this representation can be used for printing a 
concrete value of that type on the screen. For this purpose, the class toString is intro-
duced in the standard environment: 

class toString a :: a -> String 

The corresponding instance of toString for Q might look as follows. 
instance toString Q  
where toString q 
 | sq.den==1 = toString sq.num 
 | otherwise = toString sq.num +++ "/" +++ toString sq.den 
where 
 sq = simplify q 

By making Q an abstract data type, the simplification of q in this function can be omitted. 
Such an abstract data type guarantees that all rational numbers are simplified, provided that 
the functions in the abstract data type always simplify a generated rational numbers. 

By defining an instance of class Enum for the type Q it is even possible to generate list of ra-
tional numbers using dotdot expressions. Apart form the functions +, -, zero and one, the 
class Enum contains the ordering operator <. A suited instance declaration of < for Q is 

instance < Q 
where 
 (<) x y = x.num * y.den < x.den * y.num 

A program like 
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Start :: [String] 
Start = [toString q \\ q <- [zero, mkQ 1 3 .. mkQ 3 2]] 

is type correct. It’s execution yields: 
["0","1/3","2/3","1","4/3"] 

4.1.3 Internal overloading 
The execution of the program 

Start :: String 
Start = toString sum 
where 
 sum :: Q 
 sum = zero + zero 

results in the string "0". 

It seems as if it makes no difference if we would write 
Start = toString (zero + zero) 

However, in this situation it is not possible to determine the used instances of zero, + and 
toString uniquely, i.e. there are several concrete instances that can be applied. The prob-
lem is that the expression toString (zero + zero) is internally overloaded: its result type 
(which is simply String) does not reflect the overloading. Such an expression will cause the 
compiler to generate the error message: 

Type error [...]: "zero" (internal) overloading is insolvable 

When it is known which instance of, for example, zero should be used, one can deduce the 
concrete instances of + and toString. Internal overloading can always be solved by intro-
ducing auxiliary local definitions that are typed explicitly (like the sum function in the above 
example). 

4.1.4 Derived class members 
Sometimes, a member of a class is not really a new function, but defined in terms of other 
members (either of the same class or of a subclass). The standard environment, for exam-
ple, introduces the class Eq containing the comparison operators == (already defined as 
class in StdOverloaded) and <> in the following way. 

class Eq a | == a 
where 
 (<>) infix 4 :: a a -> Bool | Eq a 
 (<>) x y :== not (x == y) 

The <> operator is an example of, what is called, a derived class member: a member of which 
the body is included in the class definition itself. In contrast to other functional languages, 
like Haskell and Gofer, the instances of derived members are never specified in CLEAN; 
they are inherited from the classes corresponding to the used operators (== in the above ex-
ample). 

In the same style we can define a complete set of ordering operators based on <. 
class Ord a | < a 
where 
 (>)  infix 4 :: a a -> Bool | Ord a 
 (>)  x y :== y < x 
 
 (<=) infix 4 :: a a -> Bool | Ord a 
 (<=) x y :== not (y<x) 
 
 (>=) infix 4 :: a a -> Bool | Ord a 
 (>=) x y :== not (x<y) 

In fact, also the equality operator == could be defined as a derived member, e.g. by speci-
fying 
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class Eq a | < a 
where 
 (==) infix 4 :: a a -> Bool | Eq a 
 (==) x y :== x <= y && x >= y 
 
 (<>) infix 4 :: a a -> Bool | Eq a 
 (<>) x y :== not (x == y) 

By this mechanism, one obtains all ordering operations for a certain type, solely by defining 
an instance of < for this type. For efficiency reasons this is not done in the standard envi-
ronment of CLEAN. In order to enable all possible comparison for some type T you should 
define an instance of < and ==. 

When defining instances of functions acting on polymorphic data structures, these instan-
ces are often overloaded themselves, as shown by the following example. 

instance < [a] | < a 
where 
 (<) :: [a] [a] -> Bool | < a 
 (<) _  []  = False 
 (<} []  _  = True 
 (<) [x:xs] [y:ys] = x < y || x == y && xs < ys 

The instance type [a] is supplied with a type context which reflects that, in the body of the 
instance, the < operator is applied to the list elements. Observe that the specified type is, as 
always, the same as the type obtained from the signature of < after substituting [a] | < a for 
the class variable. 

This example clearly shows the expressive power of the type classes. Suppose an instance < 
for some type T is available. With one single instance definition it is possible to compare 
objects of type [T], of type [[T]] and so on. 

4.1.5 Type constructor classes 
Until now, we assumed that each type constructor has a fixed arity indicating the number a 
type arguments, an application of that type constructor is supposed to have. For example 
the list constructor [] has arity 1, the 3-tuple constructor (,,) has arity 3, etcetera. Higher-
order types are obtained by allowing type constructor applications in which the actual num-
ber of type arguments is less than the arity of the used constructor. In CLEAN it is possible 
to define classes with class variables ranging over such higher-order types. This leads to a 
so-called type constructor class. Type constructor classes can be used to define collections of 
overloaded higher-order functions. To explain the idea, consider the map function, defined 
as usual. 

map :: (a -> b) [a] -> [b] 
map f []     = [] 
map f [x:xs] = [f x:map f xs] 

Experienced programmers will recognise that similar functions are often used for a wide 
range of other, mostly polymorphic data structures. E.g. 

:: Tree a = Node a [Tree a] 
 
mapTree :: (a -> b) (Tree a) -> Tree b 
mapTree f (Node el ls) = Node (f el) (map (mapTree f) ls) 
 
:: MayBe a = Just a | Nothing 
 
MapMayBe :: (a -> b) (MayBe a) -> MayBe b 
MapMayBe f (Just a) = Just (f a) 
MapMayBe f Nothing  = Nothing 

Since all of these variants for map have the same kind of behavior, it seems to be attractive 
to define them as instances of a single overloaded map function. Unfortunately, the over-
loading mechanism presented so far is not powerful enough to handle this case. For, an 
adequate class definition we should be able to deal with (at least) the following type spe-
cifications: 
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(a -> b) [a] -> [b] 
(a -> b) (Tree a) -> Tree b 
(a -> b) (MayBe a) -> MayBe b. 

It is easy to see, that a type signature for map such that all these type specifications can be 
obtained via the substitution of a single class variable by appropriate instance types, is im-
possible. However, by allowing class variables to be instantiated with higher-order instead 
of first-order types, such a type signature can be found, as indicated by the following class 
definition. 

class map t :: (a -> b) (t a) -> t b 

Here, the ordinary type variables a and b range over first-order types, whereas the class 
variable t ranges over higher-order types. To be more specific, the concrete instance types 
that can be substituted for t are (higher-order) types with one argument too few. The in-
stance declarations that correspond to the different versions of map can now be specified as 
follows. 

instance map [] 
where 
 map f l = [f e \\ e <- l] 
 
instance map Tree 
where 
 map f (Node el ls) = Node (f el) (map (map f) ls) 
 
instance map MayBe 
where 
 map f (Just a) = Just (f a) 
 map f Nothing  = Nothing 

The following instance declaration for map is also valid. 
instance map ((,) a) 
where 
 map :: (a -> b) (c,a) -> (c,b) 
 map f (x,y) = (x,f y) 

Here (,) a denotes the 2-tuple type constructor applied to a type variable a. Observe that 
an instance for type (,) (i.e. the same type constructor, but now with no type arguments) is 
impossible. 

4.2 Existential types 
Polymorphic algebraic data types offer a large flexibility when building new data structures. 
For instance, a list structure can be defined as: 

:: List a = Cons a (List a) | Nil 

This type definition can be used to create a list of integers, a list of characters, or even a 
lists of lists of something. However, according to the type definition, the types of the list 
elements stored in the list should all be equal, e.g. a list cannot contain both integers and 
characters. Of course, one can solve this problem ad hoc, e.g. by introducing the following 
auxiliary type. 

:: OneOf a b = A a | B b 

Indeed, a list of type List (OneOf Int Char) may contain integers as well as characters, but 
again the choice is limited. In fact, the number of type variables appearing in the data type 
definition determines the amount of freedom. Of course, this can be extended to any finite 
number of types, e.g. List (OneOf (OneOf Int (List Int)) (OneOf Char (Char -> 
Int))). 

To enlarge applicability, CLEAN has been extended with the possibility to use so-called exis-
tentially quantified type variables (or, for short, existential type variables) in algebraic data type 
definitions. Existential type variables are not allowed in type specifications of functions, so 
data constructors are the only symbols with type specifications in which these special type 
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variables may appear. In the following example, we illustrate the use of existential variables 
by defining a list data structure in which elements of different types can be stored. 

:: List = E.a: Cons a List | Nil 

The E prefix of a indicates that a is an existential type variable. In contrast to ordinary po-
lymorphic (or, sometimes, called universally quantified) type variables, an existential type vari-
able can be instantiated with a concrete type only when a data object of the type in ques-
tion is created. Consider, for example, the function 

newlist = Cons 1 Nil 

Here, the variable a of the constructor Cons is instantiated with Int. Once the data struc-
ture is created this concrete type information, however, is lost which is reflected in the type 
of the result (List). This type allows us to build structures like Cons 1 (Cons 'a' Nil).   

However, when a data structure which is an instantiation of an existential quantified type 
variable is accessed e.g. in a pattern match of a function, it is not possible to derive its con-
crete type anymore. Therefore, the following function Hd which yields the head element of 
a list 

Hd :: List -> ????   // this function cannot be typed statically 
Hd (Cons x xs) = x 

is illegal, for, it is unknown what the actual type of the returned list element will be. It can 
be of any type. The types of the list elements stored in the list are lost, and yielding a list 
element of an unknown type as function result cannot be allowed because the type checker 
cannot guarantee type correctness anymore. The function Hd is rejected by the type system. 
But, accessing the tail of the above list, e.g. by defining 

Tl :: List -> List 
Tl (Cons x xs) = xs 

is allowed: one cannot do anything with Tl’s result that might disturb type safety. 

One might conclude that the existential types are pretty useless. They are not, as shown 
below. 

Creating objects using existential types 

Clearly, a data structure with existential quantified parts is not very useful if there exist no 
way of accessing the stored objects. For this reason, one usually provides such a data struc-
ture with an interface: a collection of functions for changing and/or retrieving information 
of the hidden object. So, the general form of these data structures is 

:: Object = E.a: { state :: a 
     , method_1 :: ... a ... -> ... 
     , method_2 :: ... -> ...a... 
     ,... 
     } 

The trick is that, upon creation of the data structure, the type checker can verify the inter-
nal type consistency of the state and the methods working on this state, which are stored 
together in the data structure created. Once created, the concrete type associated with the 
existentially quantified type variable is lost, but it can always be guaranteed that the stored 
methods can safely be applied to the corresponding stored state whatever the concrete type 
is.   

Those who are familiar with object-oriented programming will recognise the similarity be-
tween the concept of object-oriented data abstraction and existentially quantified data structures 
in CLEAN. 

For a full-fledged example of the use of existential types in a program for drawing objects 
such as lines, rectangles and other curves we refer to part II of this book. Also, the advan-
tages of the use of existential types over a more elaborate way of achieving similar general-
ity using algebraic types will be discussed using that example. 
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A pipeline of functions 

Existentially quantified data structures can also be used to solve the following problem. 
Consider the function seq , which applies a sequence of functions to a given argument (see 
also Chapter 5). 

seq :: [t->t] t -> t 
seq []     s = s 
seq [f:fs] s = seq fs (f s) 

Since all elements of a list must have the same type, only (very) limited sequences of func-
tions can be composed with seq. In general it is not possible to replace f o g o h by seq [h, 

g, f]. The types of the argument and the final result as well as the types of all intermediate 
results might all be different. However, by applying the seq function all those types are 
forced to become the same. 

Existential types make it possible to hide the actual types of all intermediate results, as 
shown by the following type definition. 

:: Pipe a b = Direct (a->b) 
   | E.via: Indirect (a->via) (Pipe via b) 

Using this Pipe data type, it is possible to compose arbitrary functions in a real pipeline 
fashion. The only restriction is that types of two consecutive functions should match. The 
function ApplyPipe for applying a sequence of functions to some initial value is defined as 
follows. 

ApplyPipe:: (Pipe a b) a -> b 
ApplyPipe (Direct f)  x = f x 
ApplyPipe (Indirect f pipe)x = ApplyPipe pipe (f x) 

The program: 
Start :: Int 
Start = ApplyPipe (Indirect toReal (Indirect exp (Direct toInt))) 7 

is valid. The result is 1097. 

4.3 Uniqueness types 
A very important property for reasoning about and analysing functional programs is refe-
rential transparency: functions always return the same result when called with the same ar-
guments. Referential transparency makes it possible to reason about the evaluation of a 
program by substituting an application of a function with arguments by the functions def-
inition in which for each argument in the definition uniformly the corresponding argument 
of the application is substituted. This principle of uniform substitution, which is familiar from 
high school mathematics, is vital for reasoning about functional programs. 

Imperative languages like C, C++ and PASCAL allow data to be updated destructively. This 
feature is not only important for reasons of efficiency (the memory reserved for the data is 
re-used again). The possibility to destructively overwrite data is a key concept on any com-
puter. E.g. one very much would like to change a record stored in a database or the con-
tents of a file. Without this possibility no serious program can be written. Incorporating 
destructive updating without violating referential transparency property of a functional 
program takes some effort. 

The price we have to pay in imperative languages is that there is no referential trans-
parency; the value of a function application can be dependent on the effects of the pro-
gram parts evaluated previously. These side-effects makes it very complicated to reason 
about imperative programs. Uniqueness types are a possibility to combine referential trans-
parency and destructive updates. 
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4.3.1 Graph Reduction 
Until now we have not been very precise about the model of computation used in the func-
tional language CLEAN. Since the number of references to an expression is important to 
determine whether it is unique or not, we must become a little bit more specific. 

The basic ingredients of execution, also called reduction, have been discussed. The first prin-
ciple we have seen is uniform substitution: an application of a function with arguments is re-
placed by the function definition in which for each argument in the definition uniformly 
the corresponding argument of the application is substituted. The second principle is lazy 
evaluation: an expression is only evaluated when its value is needed to compute the initial 
expression. 

Now we add the principle of graph reduction: all occurrences of a variable are replaced by one 
and the same expression during uniform substitution. The variables are either formal func-
tion arguments or expressions introduced as local definition. This implies that expressions 
are never copied and hence an expression is evaluated at most once. The corresponding 
variables can share the computed result. This is a sound thing to do due to referential 
transparency: the value of an expression is independent of the context in which it is evalu-
ated. Due to the referential transparency there is no semantic difference between uniform 
substitution by copying or by sharing. Reduction of expressions that can be shared is called 
graph reduction. Graph reduction is generally more efficient than ordinary reduction be-
cause it avoids re-computation of expressions. 

Graph reduction is illustrated by the following examples. A reduction step is indicated by 
the symbol →, a sequence of reduction steps is indicated by →∗. Whenever we find it use-
ful we underline the redex (reducible expression): the expression to be rewritten. Local defini-
tions are used to indicate sharing. 

Start = 3*7 + 3*7 
 
Start 
→ 3*7 + 3*7 
→ 3*7 + 21 
→ 21 + 21 
→ 42 

Start = x + x where x = 3*7 
 
Start 
→ x + x where x = 3*7 
→ x + x where x = 21 
→ 42 

Note that the sharing introduced in the rightmost program saves some work. These re-
duction sequences can be depicted as: 
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Figure 4.1: Pictorial representation of the reduction sequences shown above. 

An other example where some work is shared is the familiar power function. 
power :: Int Int -> Int 
power x 0 = 1 
power x n = x * power x (n-1) 
 
Start :: Int 
Start = power (3+4) 2 

This program is executed by the following sequence of reduction steps. 
Start 
→ power (3+4) 2 
→ x * power x (2-1) where x = 3+4 
→ x * power x 1 where x = 3+4 
→ x * x * power x (1-1) where x = 3+4 
→ x * x * power x 0 where x = 3+4 
→ x * x * 1 where x = 3+4 
→ x * x * 1 where x = 7 
→ x * 7 where x = 7 
→ 49 

The number of references to an expression is usually called the reference count. From this ex-
ample it is clear that the reference count can change dynamically. Initially the reference 
count of the expression 3+4 is one. The maximum reference count of this node is three. 
The result, the reduct, of the expression 3+4, 7, is used at two places. 
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4.3.2 Destructive updating 
Consider the special data structure that represents a file. This data structure is special since 
it represents a structure on a disk that (usually) has to be updated destructively. So, a pro-
gram manipulating such a data structure is not only manipulating a structure inside the pro-
gram but it is also manipulating a structure (e.g. a file) in the outside world. The CLEAN 
run-time system takes care of keeping the real world object and the structure inside your 
program up to date. In your program you just manipulate the data structure. 

Assume that one would have a function fwritec that appends a character to an existing file 
independent of the context from which it is called and returns the modified file. So, the 
intended result of such a function would be a file with the extra character in it: 

fwritec :: Char File -> File 

Such a function could be used by other functions:  
AppendA :: File -> File 
AppendA file = fwritec 'a' file 

In fact, File is an abstract data type similar to stack introduced in section 3.7. A function 
to push an 'a' to the stack is: 

pushA :: (Stack Char) -> Stack Char 
pushA stack = push 'a' stack 

We can push two characters on the stack by: 
pushAandB :: (Stack Char) -> Stack Char 
pushAandB stack = push 'b' (push 'a' stack) 

In exactly the same way we can write two characters to a file: 
AppendAandB :: File -> File 
AppendAandB file = fwritec 'b' (fwritec 'a' file) 

Problems with destructive updating 

The fact that the abstract data type File is mapped to a file on disc causes special care. Let 
us suppose that the following function AppendAB could be defined in a functional language.  

AppendAB :: File -> (File, File) 
AppendAB file = (fileA, fileB) 
where  
fileA = fwritec 'a' file 
 fileB = fwritec 'b' file 

What should then be the contents of the files in the resulting tuple (fileA, fileB)? There 
seem to be only two solutions, which both have unwanted properties.  

The first solution is to assume that fwritec destructively changes the original file by ap-
pending a character to it (like in imperative languages). However, the value of the resulting 
tuple of AppendAB will now depend on the order of evaluation. If fileB is evaluated before 
fileA then 'b' is appended to the file before 'a'. If fileA is evaluated before fileB then 
the 'a' will be written before 'b'. This violates the rule of referential transparency in func-
tional programming languages. So, just overwriting the file is rejected since loosing referen-
tial transparency would tremendously complicate analysing and reasoning about a program. 

The second solution would be that in conformity with referential transparency the result is 
a tuple with two files: one extended with a character 'a' and the other with the character 
'b'. This does not violate referential transparency because the result of the function calls 
AppendA file and AppendB file is not influenced by the context. This means that each 
function call fwritec would have to be applied on a 'CLEAN' file, which in turn would 
mean that for the function call AppendAB two copies of the file have to be made. To the 
first copy the character 'a' is appended, and to the second copy the character 'b' is ap-
pended. If the original of the file is not used in any other context, it can be thrown away as 
garbage.  

One could implement such a file by using a stack. For instance the function: 
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pushAB :: (Stack Char) -> (Stack Char, Stack Char) 
pushAB stack = (push 'b' stack, push 'a' stack) 

yields a tuple of two stacks. Although these stacks might be partially shared, there are now 
conceptually two stacks: on with a 'b' on top and another one with an 'a' on top. 

This second solution however, does not correspond to the way operating systems behave 
in practice. It is rather impractical. This becomes even more obvious when one wants to 
write to a window on a screen: one would like to be able to perform output in an existing 
window. Following this second solution one would be obliged to construct a new window 
with each outputting command. 

So, it would be nice if there would be a way to destructively overwrite files and the like 
without violating referential transparency. We require that the result of any expression is well 
defined and we want to update files and windows without making unnecessary copies. 

4.3.4 Uniqueness information 
The way to deal with this problem may be typical for the way language designers think: "If 
you don't like it, you don't allow it". So, it will not be allowed to update a data structure 
representing a real world object when there is more than one reference to it. The compiler 
should therefore reject the definition of AppendAB above.  

Assume that we are able to guarantee that the reference count of the file argument of fwri-
tec is always exactly one. We say that such an argument is unique. Now, when we apply 
fwritec to such a unique file we can observe the following. Semantically we should pro-
duce a new file. But we know that no other expression can refer to the old file: only fwri-
tec has a reference to it. So, why not reuse the old file passed as argument to fwritec to 
construct the new file? In other words: when old file is unique it can simply be updated de-
structively by fwritec to produce the new file in the intended efficient and safe way. 

Although the definition of AppendAB as shown above will be forbidden, it is, in principle, 
allowed to write down the following: 

WriteAB :: File -> File 
WriteAB file = fileAB 
where 
 fileA  = fwritec 'a' file 
 fileAB = fwritec 'b' fileA 

Here, the data dependency is used to determine the order in which the characters are ap-
pended to the file (first 'a', then 'b'). This solution is semantically equal to the function 
AppendAandB introduced above. This programming style is very similar to the classical im-
perative style, in which the characters are appended by sequential program statements. 
Note however that the file to which the characters are appended is explicitly passed as an 
argument from one function definition to another. This technique of passing around of an 
argument is called environment passing. The functions are called state transition functions since 
the environment that is passed around can be seen as a state that may be changed while it is 
passed. The functions are called state transition functions since the environment that is 
passed can be seen as a state that may be changed while it is passed. 

4.3.5 Uniqueness typing 
Of course, somehow it must be guaranteed (and specified) that the environment is passed 
properly i.e. in such a way that the required updates are possible. For this purpose a type 
system is designed which derives the uniqueness properties. A function is said to have an ar-
gument of unique type if there will be just a single reference to the argument when the func-
tion will be evaluated. This property makes it safe for the function to re-use the memory 
consumed by the argument when appropriate.  
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In figure 4.1 all parts of the example of the left-hand side are unique. On the right-hand 
side the expression 3*7 is not unique since it is shared by both arguments of the addition. 
By drawing some pictures, it is immediately clear that the function WriteAB introduced 
above uses the file unique, while in AppendAB the reference count of the file is 2. Hence, the 
compiler rejects the function AppendAB. 
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Figure 4.2: The result of WriteAB file 
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Figure 4.3: The result of AppendAB file 

The function fwritec demands its second argument, the file, to be of unique type (in order 
to be able to overwrite it) and consequently it is derived that WriteAB must have a unique 
argument too. In the type this uniqueness is expressed with an asterisk that is attached as 
an attribute to the conventional type. The compiler uses this asterisk; the compiler only ap-
proves the type when it can determine that the reference count of the corresponding argu-
ment will be exactly one when the function is executed. 

fwritec :: Char *File -> *File 
WriteAB :: *File -> *File 

The uniqueness type system is an extension on top of the conventional type system. When 
in the type specification of a function an argument is attributed with the type attribute 
unique (*) it is guaranteed by the type system that, upon evaluation of the function, the 
function has private ("unique") access to this particular argument. 

The correctness of the uniqueness type is checked by the compiler, like all other type in-
formation (except strictness information). Assume now that the programmer has defined 
the function AppendAB as follows:  

AppendAB :: File -> (File, File) 
AppendAB file = (fileA, fileB) 
where 
 fileA = fwritec 'a' file 
 fileB = fwritec 'b' file 

The compiler will reject this definition with the error message: 
<conflicting uniqueness information due to argument 2 of fwritec> 

This rejection of the definition is caused by the non-unique use of the argument file in the 
two local definitions (assuming the type fwritec :: Char *File -> *File). 

It is important to know that there can be many references to the object before this specific 
access takes place. For instance, the following function definition will be approved by the 
type system, although there are two references to the argument file in the definition. When 
fwritec is called, however, the reference is unique.  
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AppendAorB :: Bool *File -> *File 
AppendAorB cond file  
 | cond  = fwritec 'a' file 
 | otherwise = fwritec 'b' file 

So, the concept of uniqueness typing can be used as a way to specify locality requirements of 
functions on their arguments: If an argument type of a function, say F, is unique then in any 
concrete application of F the actual argument will have reference count 1, so F has indeed 
‘private access’ to it. This can be used for defining (inherent) destructive operations like the 
function fwritec for writing a character to a file.  

Observe that uniqueness of result types can also be specified, allowing the result of an 
fwritec application to be passed to, for instance, another call of fwritec. Such a combina-
tion of uniqueness typing and explicit environment passing will guarantee that at any mo-
ment during evaluation the actual file has reference count 1, so all updates of the file can 
safely be done in-place. If no uniqueness attributes are specified for an argument type (e.g. 
the Char argument of fwritec), the reference count of the corresponding actual argument 
is generally unknown at run-time. Hence, no assumption can be made on the locality of 
that argument: it is considered as non-unique. 

Offering a unique argument if a function requires a non-unique one is safe. More techni-
cally, we say that a unique object can be coerced to a non-unique one. Assume, for instance, 
that the functions freadc and fwrites have type 

freadc:: File -> (Bool, Char, File) // The Boolean indicates success or failure 
fwrites :: String *File -> *File. 

in the application 
readwrite :: String *File -> (Bool, Char, File) 
readwrite s f = freadc (fwrites s f)  

the (unique) result File of fwrites is coerced to a non-unique one before it is passed to 
freadc. 

Of course, offering a non-unique object if a function requires a unique one always fails. 
For, the non-unique object is possible shared, making a destructive update not well-de-
fined. Note that an object may lose its uniqueness not only because uniqueness is not re-
quired by the context, but also because of sharing. This, for example, means that although 
an application of fwritec itself is always unique (due to its unique result type), it is con-
sidered as non-unique if there exist more references to it. To sum up, the offered type (by an 
argument) is determined by the result type of its outermost application and the reference 
count of that argument. 

Until now, we distinguished objects with reference count 1 from objects with a larger re-
ference count: only the former might be unique (depending on the object type itself). As 
we have seen in the example above the reference count is computed for each right-hand 
side separately. When there is an expression in the guards requiring an unique object this 
must be taken into account. This is the reason we have to write: 

AppendAorB:: *File -> *File 
AppendAorB file 
 | fc == 'a' = fwritec 'a' nf 
 | otherwise = fwritec 'b' nf 
where 
 (_,fc,nf) = freadc file 

The function freadc reads a character form a unique file and yields a unique file: 
freadc:: *File -> (Bool, Char, *File) 

We assume here that reading a character from a file always succeeds. When the right-hand 
side of AppendAorB is evaluated, the guard is determined first (so the resulting access from 
sfreadc to file is not unique), and subsequently one of the alternatives is chosen and 
evaluated. Depending on the condition fc == ‘a’, either the reference from the first fwri-
tec application to nf or that of the second application is left unused, therefore the result is 
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unique. As you might expect it is not allowed to use file instead of nf in the right-hand 
sides of the function AppendAorB. File manipulation is explained in more detail in chapter 5. 

4.3.5 Nested scope style 
A convenient notation for combining functions that are passing around environments is to 
make use of nested scopes of let-before definitions (indicated by let or #). In that style the 
example WriteAB can be written as follows: 

WriteAB :: *File -> *File 
WriteAB file 
 # fileA  = fwritec 'a' file 
 # fileAB = fwritec 'b' fileA 
 = fileAB 

Let-before expressions have a special scope rule to obtain an imperative programming 
look. The variables in the left-hand side of these definitions do not appear in the scope of 
the right-hand side of that definition, but they do appear in the scope of the other defini-
tions that follow (including the root expression, excluding local definitions in where blocks. 
This is shown in the figure 4.4: 

function args
    # selector = expression
    | guard    = expression

    # selector = expression
    | guard    = expression
    where

definitions

 
Figure 4.4: Scope of let-before expressions 

Note that the scope of variables in the let before expressions does not extend to the defi-
nitions in the where expression of the alternative. The reverse is true however: definitions 
in the where expression can be used in the let before expressions. 

Due to the nesting of scopes of the let-before the definition of WriteAB can be written as 
follows: 

WriteAB :: *File -> *File 
WriteAB file 
 # file = fwritec 'a' file 
 # file = fwritec 'b' file 
 = file 

So, instead of inventing new names for the intermediate files (fileA, fileAB) one can reuse 
the name file. The nested scope notation can be very nice and concise but, as is always 
the case with scopes, it can also be dangerous: the same name file is used on different 
spots while the meaning of the name is not always the same (one has to take the scope into 
account which changes from definition to definition). However, reusing the same name is 
rather safe when it is used for a threaded parameter of unique type. The type system will 
spot it (and reject it) when such parameters are not used in a correct single threaded man-
ner. We certainly do not recommend the use of let before expressions to adopt a impera-
tive programming style for other cases. 

The scope of the variables introduces by the #-definitions is the part of the right-hand side 
of the function following the #-definition. The right-hand side #-definition and the where-
definitions are excluded from this scope. The reason to exclude the right-hand of the #-
definition is obvious from the example above. When the body of the #-definition is part of 
the scope the variable file would be a circular definition. The reason to exclude the where-
definitions is somewhat trickier. The scope of the where-definitions is the entire right-hand 
side of the function alternative. This includes the #-definitions. This implies that when we 
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use the variable file in a where-definition of WriteAB it should be the original function ar-
gument. This is counterintuitive, you expect file to be the result of the last freadc. When 
you need local definitions in the one of the body of such a function you should use let or 
with. See the language manual and chapter 6 for a more elaborate discussion of the various 
local definitions. 

4.3.6 Propagation of uniqueness 
Pattern matching is an essential aspect of functional programming languages, causing a 
function to have access to ‘deeper’ arguments via ‘data paths’ instead of via a single refer-
ence. For example, the head function for lists, which is defined as 

head :: [a] -> a 
head [x:xs] = x 

has (indirect) access to both x and xs This deeper access gives rise to, what can be called, 
indirect sharing: several functions access the same object (via intermediate data construc-
tors) in spite of the fact that the object itself has reference count 1. Consider, for example 
the function heads which is defined as follows. 

heads list = (head list, head list) 

In the right-hand side of heads, both applications of head retrieve their result via the same 
list constructor. In the program 

Start = heads [1,2] 

the integer 1 does not remain unique, despite the fact that it has reference count 1. In this 
example the sharing is indicated by the fact that list has reference count 2. Sharing can be 
even more hidden as in: 

heads2 list=:[x:_] = (head list, x) 

If one wants to formulate uniqueness requirements on, for instance, the head argument of 
head, it is not sufficient to attribute the corresponding type variable a with *; the surroun-
ding list itself should also become unique. One could say that uniqueness of list elements 
propagates outwards: if a list contains unique elements, the list itself should be unique as well. 
One can easily see that, without this propagation requirement, locality of object cannot be 
guaranteed anymore. E.g., suppose we would admit the following type for head. 

head :: [*a] -> *a 

Then, the definition of heads is typable, for there are no uniqueness requirements on the 
direct argument of the two head applications. The type of heads is: 

heads :: [*a] -> (*a,*a) 

which is obviously not correct because the same object is delivered twice. However, ap-
plying the uniqueness propagation rule leads to the type 

head :: *[*a] -> *a 

Indeed, this excludes sharing of the list argument in any application of head, and therefore 
the definition of heads is no longer valid. This is exactly what we need. 

In general, the propagation rule reflects the idea that if an unique object is stored in a larger 
data structure, the latter should be unique as well. This can also be formulated like: an object 
stored inside a data structure can only be unique when the data structure itself is unique as well. 

In practice, however, one can be more liberal when the evaluation order is taken into ac-
count. The idea is that multiple references to an (unique) object are harmless if one knows 
that only one of the references will be present at the moment the object is accessed de-
structively. For instance, the compiler 'knows' that only one branch of the predefined con-
ditional function if will be used. This implies that the following function is correct. 

transform :: (Int -> Int) *{#Int} -> *{#Int} 
transform f s 
 | size s == 0 = s 
 | otherwise   = if (s.[0] == 0) 
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                    {f i \\ i <-: s} 
                    {f i \\ _ <-: s & i <- [s.[0]..]} 

This example shows also that uniqueness of objects is not restricted to files and windows. 
Since arrays are usually large, it is in CLEAN only allowed to update unique arrays. Using 
the space of the old array, such an update can be done very efficient. 

4.3.7 Uniqueness polymorphism 
To indicate that functions leave uniqueness properties of arguments unchanged, one can 
use (uniqueness) attribute variables. The simplest example is the identity function that can be 
typed as follows: 

id :: u:a -> u:a 

Here a is an ordinary type variable, whereas u is an attribute variable. If id is applied to an 
unique object the result is also unique (in that case u is instantiated with the concrete at-
tribute *). Of course, if id is applied to a non-unique object, the result remains non-unique. 
Note that we tacitly assume an attribute for ‘non-unique’ although there exists no de-
notation for it in CLEAN. 

The next example shows that it is necessary to distinguish between type variables and at-
tribute variables. 

tup :: a -> (a, a) 
tup x = (x, x) 

Even if the argument of tup is unique, in the result this expression will be shared. 

One can also indicate relations between attribute variables appearing in the type specifi-
cation of a function, by adding so-called coercion statements. These statements consist of at-
tribute inequalities of the form u <= v. The idea is that attribute substitutions are only al-
lowed if the resulting attribute inequalities are valid, i.e. not resulting in an equality of the 
form  

 ‘non-unique � unique’.  

The use of coercion statements is illustrated by the next example in which the uniqueness 
type of the well known append operator ++ is shown. 

(++) infixr 5 :: v:[u:a] w:[u:a] -> x:[u:a], [v x<=u, w<=x] 

The first coercion statement expresses uniqueness propagation for lists: if the elements a 
are unique (by choosing * for u) these statements force v, w and x to be instantiated with * 
as well. Note that u <= * iff u = *. The latter statement w<=x expresses that the spine unique-
ness of append’s result depends only on the spine attribute w of the second argument. This 
reflects the operational behaviour of append, namely, to obtain the result list, the first list 
argument is fully copied, after which the final tail pointer is redirected to the second list 
argument.  

(++) [x:xs] list = [x: xs ++ list] 
(++) _  list = list 

In CLEAN it is permitted to omit attribute variables and attribute inequalities that arise 
from propagation properties; those will be added automatically by the type system. As a 
consequence, the following type specification for ++ is also valid. 

(++) infixr 5 :: [u:a] w:[u:a] -> x:[u:a], [w<=x] 

Of course, it is always allowed to use a more specific type (by instantiating type and/or at-
tribute variables). All types given below are valid types for ++. 

(++) infixr 5 ::  [u:a] x:[u:a]  -> x:[u:a] 
(++) infixr 5 :: *[*Int] *[*Int] ->  *[*Int] 
(++) infixr 5 ::  [a]    *[a]    ->  *[a] 

To make types more readable, CLEAN offers the possibility to use anonymous attribute va-
riables as a shorthand for attribute variables of which the actual names are not essential. 
Using anonymous attributes ++ can be typed as follows. 
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(++) infixr 5 :: [.a] u:[.a] -> v:[.a], [u<=v] 

This is the type derived by the compiler. The type system of CLEAN will substitute real at-
tribute variables for the anonymous ones. Each dot gives rise to a new attribute variable 
except for the dots attached to type variables: type variables are attributed uniformly in the 
sense that all occurrences of the same type variable will obtain the same attribute. In the 
above example this means that all dots are replaced by one and the same (new) attribute 
variable. 

Finally, we can always use an unique list where an ordinary list is expected. So, it is suf-
ficient to specify the following type for append: 

(++) infixr 5::[.a] u:[.a] -> u:[.a] 

Apart from strictness annotations this is the type specified for the append operator in the 
module StdList of the standard environment. 

4.3.8 Attributed data types 
First, remember that types of data constructors are not specified by the programmer but 
derived from their corresponding data type definition. For example, the (classical) defi-
nition of the List type 

:: List a = Cons a (List a) | Nil 

leads to the following types for its data constructors. 
Cons :: a (List a) -> List a 
Nil  :: List a 

To be able to create unique instances of data types, a programmer does not have change 
the corresponding data type definition itself; the type system of CLEAN will automatically 
generate appropriate uniqueness variants for the (classical) types of all data constructors. 
Such a uniqueness variant is obtained via a consistent attribution of all types and subtypes 
appearing in a data type definition. E.g., for Cons this attribution yields the type 

Cons :: u:a -> v:(w:(List u:a) -> x:(List u:a)), [v <= u,w <= x] 

Describing the attribution mechanism in all its details is beyond the scope of this book; the 
procedure can be found in the reference manual and [Barendsen 93]. The main property is 
that all type variables and all occurrences of the defined type constructor, say T, will receive 
an attribute variable. Again this is done in a uniform way: equal variables will receive equal 
attributes, and the occurrences of T are equally attributed as well. Besides that, attribute 
variables are added at non-variable positions if they are required by the propagation prop-
erties of the corresponding type constructors (see example below). The coercion state-
ments are, as usual, determined by the propagation rule. 

One can also specify that a part of data type definition, should receive the same attribute as 
the defined type constructor, say T, itself. For this purpose the anonymous (.) attribute vari-
able is reserved, which can be attached to any (sub) type on the right-hand of T’s definition. 
The idea is that the dot attribute denotes the same attribute as the one assigned to the oc-
currences of T. This is particularly useful if one wants to store functions into data struc-
tures; see also the next section on higher-order uniqueness typing. For example, the follow-
ing definition of Tree 

:: Tree2 = Node2 .Int [Tree2] 

causes the type for the data constructor Node to be expanded to 
Node2 :: .Int -> .([.Tree2] -> Tree2) 

Unfortunately, the type attribute . is not used in the result of the constructor Node. Hence, 
there is no way to store the uniqueness of the arguments of Node in its type. So, in contrast 
with the type List, it is not possible to construct unique instances of the type Tree2. This 
implies that the function to reverse trees 

swap (Node a leafs) = Node a [swap leaf \\ leaf <- rev leafs] 
 



I.4 THE POWER OF TYPES 109 

rev :: [.a] -> [.a] 
rev list = rev_ list [] 
where rev_ [x:xs] list = rev_ xs [x:list] 
  rev_ []     list = list 

obtains type 
swap :: (Tree a) -> Tree a 

instead of 
swap :: u:(Tree .a) -> u:(Tree .a) 

This implies that an unique tree will loose its uniqueness attribute when it is swapped by 
this function swap. Due to the abbreviations introduced above the last type can also be 
written as: 

swap :: (Tree .a) -> (Tree .a) 

When we do need unique instances of type Tree, we have to indicate that the list of trees 
inside a node has the same uniqueness type attribute as the entire node: 

:: Tree a = Node a .[Tree a] 

Now the compiler will derive and accept the type that indicates that swapping an unique 
tree yields an unique tree: swap :: (Tree .a) -> (Tree .a). 

When all trees ought to be unique we should define 
:: *Tree a = Node a [Tree a] 

The corresponding type of the function swap is 
swap :: (Tree .a) -> Tree .a 

In practice the pre-defined attribution scheme appears to be too restrictive. First of all, it is 
convenient if it is allowed to indicate that certain parts of a data structure are always 
unique. Take, for instance, the type Progstate, defined in chapter 5 containing the (unique) 
file system of type Files.  

:: *ProgState = {files :: Files} 

According to the above attribution mechanism, the Files would have been non-unique. To 
circumvent this problem, one can make Progstate polymorphic, that is to say, the defini-
tion Progstate becomes 

:: Progstate file_system = {files :: file_system} 

Then, one replaces all uses of Progstate by Progstate *Files. This is, of course, a bit la-
borious, therefore, it is permitted to include * attributes in data type definitions themselves. 
So, the definition of Progstate, is indeed valid. Note that, due to the outwards propagation 
of the * attribute, Progstate itself becomes unique. This explains the * on the left-hand 
side of the definition of Progstate. 

4.3.9 Higher order uniqueness typing 
Higher-order functions give rise to partial (often called curried) applications (of functions as 
well as of data constructors), i.e. applications in which the actual number of arguments is 
less than the arity of the corresponding symbol. If these partial applications contain unique 
sub-expressions one has to be careful. Consider, for example the following function fwri-
tec with type fwritec :: *File Char -> *File in the application (fwritec unifile) 
(assuming that unifile returns a unique file). Clearly, the type of this application is of the 
form o:(Char -> *File). The question is: what kind of attribute is o? Is it a variable, is it *, 
or is it ‘not unique’. Before making a decision, we will illustrate that it is dangerous to allow 
the above application to be shared. For example, if (fwritec unifile) is passed to a func-
tion 

WriteAB write_fun = (write_fun 'a', write_fun 'b') 

Then the argument of fwritec is not longer unique at the moment one of the two write 
operations takes place. Apparently, the (fwritec unifile) expression is essentially unique: its 
reference count should never become greater than 1. To prevent such an essentially unique 
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expression from being copied, the uniqueness type system considers the -> type construc-
tor in combination with the * attribute as special: it is not permitted to discard its uni-
queness. Now, the question about the attribute o can be answered: it is set to *. If WriteAB 
is typed as follows 

WriteAB :: (Char -> u:File) -> (u:File, u:File) 
WriteAB write_fun = (write_fun 'a', write_fun 'b') 

the expression WriteAB (fwritec unifile) is rejected by the type system because it does 
not allow the actual argument of type *(Char -> *File) to be coerced to (Char -> 
u:File). One can easily see that it is impossible to type WriteAB in such a way that the ex-
pression becomes type-able. This is exactly what we want for files. 

To define data structures containing curried applications it is often convenient to use the 
(anonymous) dot attribute. Example 

:: Object a b = { state :: a 
    , fun   :: .(b -> a) 
    } 
 
new :: *Object *File Char 
new = {state = unifile, fun = fwritec unifile} 

Since new contains an essentially unique expression it becomes essentially unique itself. So, 
the result of new can only be coerced to a unique object implying that in any containing 
new, the attribute type requested by the context has to be unique. 

Determining the type of a curried application of a function (or data constructor) is so-
mewhat more involved if the type of that function contains attribute variables instead of 
concrete attributes. Mostly, these variables will result in additional coercion statements. as 
can be seen in the example below. 

Prepend :: u:[.a] [.a] -> v:[.a], [u<=v] 
Prepend a b = Append b a 
 
PrependList :: u:[.a] -> w:([.a] -> v:[.a]), [u<=v, w<=u] 
PrependList a = Prepend a 

Some explanation is in place. The expression PrependList some_list yields a function that, 
when applied to another list, say other_list, delivers a new list consisting of the concate-
nation of other_list and some_list. Let us call this final result new_list. If new_list 
should be unique (i.e. v becomes *) then, because of the coercion statement u<=v the at-
tribute u becomes * as well. But, if u = * then also w = *, for, w<=u. This implies that (arrow) 
type of the original expression PrependList some_list becomes unique, and hence this 
expression cannot be shared. The general rule for determining the uniqueness type of cur-
ried variants of (function or data) symbols is quite complex, it can be found in the ref-
erence manual and [Barendsen 93]. 

4.3.10 Creating unique objects 
In the preceding subsections we showed how unique objects can be manipulated. The 
question that remains is how to become the initial unique object. All unique objects cor-
responding with real world entities, like files and windows, are retrieved from the world. 
This is explained in detail in chapter 5.  

It is also possible to have unique objects of other data types. Especially for arrays it is use-
ful to have unique instances, since only unique arrays can be updated destructively. Such 
data structures are very useful in cases ultimate efficiency is required. 

4.4 Exercises 
1 Define an instance for type Q of the standard class Arith. 

class Arith a | PlusMin, MultDiv, abs, sign, ~ a 
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2 Define complex numbers similar to Q and specify an instance of the class Arith for this 
new type. 

3 Define an instance of PlusMin for lists [a] such that, for instance, the addition of two 
lists takes place element wise (if necessary, the shortest list is extended with zeros to 
obtain two lists of equal length). So, [1,2,3] + [4,5] = [5,7,3]. 

4 Why should a Pipe object contain at least one function (each Pipe object ends with a 
Direct constructor containing the final function to be applied)? One can image a defi-
nition of Pipe with a kind of Nil constructor with no argument as a terminator. 
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In the previous chapter we showed how uniqueness typing can be used to manipulate ob-
jects such as files in a safe manner. In this chapter it is described in more detail how this 
can be used to do file I/O. Furthermore we explain how interactive window based pro-
grams can be written in a pure functional language like Clean. 

Writing window applications is not a simple task. To make life easier a large library has 
been written in Clean (the Object I/O library) which offers functions and data structures with 
which interactive applications can be described platform independently on a high level of 
abstraction. This chapter contains several examples to illustrate the functionality offered by 
this CLEAN library. An important advantage of the CLEAN library is that the same program 
can run without any change on different machines (e.g. Macintosh, Windows ’98). On each 
machine the resulting menus, dialogs, and windows adhere to the look and feel common to 
that machine. For programmers who want to write real world applications using the 
CLEAN Object I/O library we highly recommend the Object I/O Tutorial (for the latest 
information see www.cs.kun.nl/~clean). 

5.1 Changing Files in the World 
We start with having a closer look on ordinary file I/O as provided by the standard envi-
ronment before we turn to the Object I/O library. Suppose we want to write a program 
that copies one file to another file. It is easy to define a function that writes a list of charac-
ters to a file. Combining this with a function to read characters from a file (CharListRead) 
gives a function to copy a file. 

CharListWrite :: [Char] *File -> *File 
CharListWrite []     f = f 
CharListWrite [c:cs] f = CharListWrite cs (fwritec c f) 
 
CharFileCopy :: File *File -> *File 
CharFileCopy infile outfile = CharListWrite (CharListRead infile) outfile 

Reading characters from a file requires a few more lines than writing since for reading not 
only an environment (the file) has to be passed but also a result has to be yielded. The file 
from which characters are read is not required to be unique since no destructive update is 
involved in reading.  

CharListRead :: File -> [Char] 
CharListRead f  
 | not readok = [] 
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 | otherwise  = [char : CharListRead filewithchangedreadpointer] 
where 
 (readok,char,filewithchangedreadpointer) = sfreadc f 

The read function is lazy. So, character by character the file will be read when the charac-
ters are needed for the evaluation (the actual library implementation of sfreadc will probably 
use some kind of buffering scheme). 

This completes the file copy function, but we do not have a file copy program yet. What is 
missing are functions to open and close the files and, of course, we have to arrange that the 
file system is accessible. A copy function that also opens and closes files is given below. It 
requires an environment that contains the file system as argument and yields it as a result. 
Each environment that is an instance of the class FileSystem models the file system. The 
class FileSystem is defined in the StdFile that is part of StdEnv. This module provides 
instances for Files and World. This implies that it is unnecessary to extract the filesystem 
from the world in order to access it. 

CopyFile :: String String *env -> *env | FileSystem env 
CopyFile inputfname outputfname filesys 
 | readok && writeok && closeok 
     = finalfilesystem  
 | not readok = abort ("Cannot open input file: '"   +++ inputfname  +++ "'") 
 | not writeok = abort ("Cannot open output file: '"  +++ outputfname +++ "'") 
 | not closeok = abort ("Cannot close output file: '" +++ outputfname +++ "'") 
where 
 (readok,inputfile,touchedfilesys) = sfopen inputfname FReadText filesys 
 (writeok,outputfile,nwfilesys)  = fopen outputfname FWriteText touchedfilesys 
 copiedfile       = CharFileCopy inputfile outputfile 
 (closeok,finalfilesystem)   = fclose copiedfile nwfilesys 

The function CopyFile can be written more elegantly using nested scopes. We do not have to 
invent names for the various 'versions' of the file system. Note that this version is only syn-
tactically different from the previous function. The various versions of the file system still 
exist, but all versions have the same name. The scopes of the #-definitions determine which 
version is used. 

CopyFile :: String String *env -> *env | FileSystem env 
CopyFile inputfname outputfname files 
  # (readok,infile,files)  = sfopen inputfname FReadText files 
  | not readok    = abort ("Cannot open input file: '"  +++ inputfname  +++ "'") 
  # (writeok,outfile,files) = fopen outputfname FWriteText files 
  | not writeok    = abort ("Cannot open output file: '" +++ outputfname +++ "'") 
  # copiedfile    = CharFileCopy infile outfile 
 (closeok,files)   = fclose copiedfile files 
  | not closeok    = abort ("Cannot close output file: '"+++ outputfname +++ "'") 
  | otherwise    = files 

In the definitions the library functions fopen and sfopen are used to open files. The difference 
between them is that fopen creates a uniquely referenced file value and sfopen allows sharing 
of the file. Both functions have argument attributes indicating the way the file is used 
(FReadText, FWriteText). Another possible attribute would be FAppendText. Similar attributes exist 
for dealing with data files (binary files). 

Accessing the file system itself means accessing the 'outside world' of the program. This is 
established by parameterisation of the Start rule with an abstract environment of type World 
which encapsulates the complete status of the machine.  
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file 1 file 2 ...

file system
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World

 

Figure 5.1: The abstract type World encapsulating the file system. 

Every interactive program must return a new World value, making the changes to the envi-
ronment explicit.  

inputfilename :== "source.txt" 
outputfilename :== "copy.txt" 
 
Start :: *World -> *World 
Start world = CopyFile inputfilename outputfilename world 

This completes the file copy program. Other ways to read files are line-by-line or mega-
byte-by-megabyte which may be more appropriate depending on the context. It is certainly 
more efficient than reading a file character-by-character. The corresponding read-functions 
are given below. 

LineListRead :: File -> [String] 
LineListRead f 
 | sfend f   = [] 
 # (line,filerest) = sfreadline f   // line still includes newline character 
 = [line : LineListRead filerest] 
 
MegStringsRead :: File -> [String] 
MegStringsRead f 
 | sfend f    = [] 
 # (string,filerest) = sfreads f MegaByte 
 = [string : MegStringsRead filerest] 
where 
 MegaByte = 1024 * 1024 

The functions given above are lazy. So, the relevant parts of a file are read only when this is 
needed for the evaluation of the program. 

Sometimes it may be wanted to read a file completely before anything else is done. Below a 
strict read-function is given which reads in the entire file at once.  

CharListReadEntireFile :: File -> [Char] 
CharListReadEntireFile f  
 #  (readok,char,filewithchangedreadpointer) = sfreadc f 
 | not readok = [] 
 #!  chars   = CharListReadEntireFile filewithchangedreadpointer 
 | otherwise = [char : chars] 

The #! construct (a strict let construct) forces evaluation of the defined values independent 
whether they are being used later or not. 

5.1.1 Hello World 
A classic and famous exercise for novice programmers is to create a program that shows 
the message hello world to the user. The simplest CLEAN program that does this is of 
course: 

Start = "hello world" 

The result is displayed on the console (be sure that this option is set in the program envi-
ronment). A more complicated way to show this message to the user, is by opening the 
console explicitly. The console is a very simple window.  The console is treated just like a 
file. One can read information from the console and write information to the console by 
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using the read and write functions defined in StdFile. By subsequently applying read and 
write functions to the console one can achieve an easy synchronisation between reading 
and writing. This is shown in the program below. To open the “file” console the function 
stdio has to be applied to the world. The console can be closed by using the function fclose. 

module hello1 
 
import StdEnv 
 
Start :: *World -> *World 
Start world 
 # (console,world) = stdio world 
 # console   = fwrites "Hello World.\n" console 
 # (ok,world)  = fclose console world 
 | not ok   = abort "Cannot close console.\n" 
 | otherwise   = world 

We extend the example a little by reading the name of the user and generating a personal 
message. Now it becomes clear why the console is used as a single file to do both output 
and input. Reading the name of the user can only be done after writing the message "What is 
your name?" to the console. The data dependency realised by passing around the unique con-
sole automatically establishes the desired synchronisation. 

module hello2 
 
import StdEnv 
 
Start :: *World -> *World 
Start world 
 # (console,world) = stdio world 
 # console   = fwrites "What is your name?\n" console 
 # (name,console) = freadline console 
 # console   = fwrites ("Hello " +++ name) console 
 # (_,console)  = freadline console 
 # (ok,world)  = fclose console world 
 | not ok   = abort "Cannot close console" 
 | otherwise   = world 

In this program we have added a second readline action in order to force the program to 
wait after writing the message to the user. 

5.1.2 Tracing Program Execution 
When programs are getting big a formal proof of the correctness of all functions being 
used is undoable. In the future one might hope that automatic proof systems become pow-
erful enough to assist the programmer in proving the correctness. However, in reality a 
very large part of the program might still contain errors despite of a careful program de-
sign, the type correctness and careful testing. When an error occurs, one has to find out 
which function is causing the error. In a large program such a function can be difficult to 
find. So, it might be handy to make a trace of the things happening in your program. Cur-
rently, Clean has no debug or trace tool. This implies that you have to add trace statements 
in the program code. Generally this can require a substantial redesign of your program 
since you have to pass a file or list around in your program in order to accommodate the 
trace. Fortunately, there is one exception to the environment passing of files. One can al-
ways write information to a special file, stderr without a need to open this file or pass it 
around explicitly. The trace can be realised by writing information to stderr. 

As an example we show how to construct a trace of the simple Fibonacci function: 
module fibtrace 
 
import StdEnv, StdDebug 
 
fib n = (if (n<2) 1 (fib (n-1) + fib (n-2))) ---> ("fib ", n) 
 
Start = fib 4 
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(--->) infix :: a !b -> a | toString b 
(--->) value message = trace_n message value 
 
instance toString (a,b) | toString a & toString b where 
 toString (a,b) = "(" +++ toString a +++ "," +++ toString b +++ ")" 

This yields the following trace: 
fib 4 
fib 2 
fib 0 
fib 1 
fib 3 
fib 1 
fib 2 
fib 0 
fib 1 

We usually write this trace as: 
Start 
→ fib 4 
→∗ fib 3 + fib 2 
→ fib 3 + fib 1 + fib 0 
→ fib 3 + fib 1 + 1 
→ fib 3 + 1 + 1 
→ fib 3 + 2 
→∗ fib 2 + fib 1 + 2 
→ fib 2 + 1 + 2 
→∗ fib 1 + fib 0 + 1 + 2 
→ fib 1 + 1 + 1 + 2 
→ 1 + 1 + 1 + 2 
→∗ 5 

From this trace it is clear that the operator + evaluates its second argument first.  

The trace function ---> is an overloaded infix operator based on the function trace_n which 
is defined in StdDebug. It yields its left-hand-side as result and writes as a side-effect its right-
hand-side as trace to stderr. 

5.2 Environment Passing Techniques 
Consider the following definitions: 

WriteAB :: *File -> *File 
WriteAB file = fileAB 
where 
 fileA    = fwritec 'a' file 
 fileAB   = fwritec 'b' fileA 
 
WriteAB :: *File -> *File 
WriteAB file = fwritec 'b' (fwritec 'a' file) 
 
WriteAB :: *File -> *File 
WriteAB file  
 # file = fwritec 'a' file 
 # file = fwritec 'b' file 
 = file 

They are equivalent using slightly different programming styles with environment passing 
functions. 

A disadvantage of the first one is that new names have to be invented: fileA and fileAB. If 
such a style is used throughout a larger program one tends to come up with less clear na-
mes such as file1 and file2 which makes it hard to understand what is going on.  

The second style avoids this but has as disadvantage that the order of reading the function 
composition is the reverse of the order in which the function applications will be executed. 
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The first two styles are not easily modified: adding or removing one of the actions causes 
renaming or bracket incompatibilities.  

The third style uses the nested scope style. It is dangerous as well since the same name can 
be re-used in several definitions. An error is easily made. Therefore one should restrict this 
style to unique objects like files, the world, and the console. This allows the type system to 
detect many kinds of type errors. If other names are also re-used in this style of program-
ming (which is quite similar to an imperative style of programming) typing errors might be 
introduced which cannot easily be detected by the type system. 

Below some other styles of defining the same function are given (for writing characters to a 
file one of the last styles is preferable since they avoid the disadvantages mentioned above). 
The first example uses function composition. For this reason the type of WriteAB is a 
function. The brackets indicate that it has arity zero.  

WriteAB :: (*File -> *File) 
WriteAB = fwritec 'b' o fwritec 'a' 

With seq a list of state-transition functions is applied consecutively. The function seq is a 
standard library function (StdFunc) that is defined as follows: 

seq :: [s->s] s -> s 
seq []     x = x 
seq [f:fs] x = seq fs (f x) 

Some alternative definitions of WriteAB using the function seq: 
WriteAB :: (*File -> *File) 
WriteAB = seq [fwritec 'a', fwritec 'b'] 
 
WriteAB :: *File -> *File 
WriteAB file = seq [fwritec 'a', fwritec 'b'] file 
 
WriteAB :: (*File -> *File) 
WriteAB = seq (map fwritec ['ab']) 

A convenient way to write information to a file is by using the overloaded infix operator <<< 
(see StdFile). It assumes a file on the left-hand-side and a value (of which type an instance 
of <<< should exist) to write to the file on the right-hand-side. It can be used as follows: 

WriteAB :: *File -> *File 
WriteAB file = file <<< 'a' <<< 'b'  
 
WriteFac :: Int *File -> *File 
WriteFac n file = file <<< " The value of fac " <<< n <<< " is " <<< fac n 

The advantage of using the overloaded <<< operator is that the programmer can define in-
stances for user-defined algebraic data structures. 

5.2.1 Composing Functions with Results 
Functions of similar type such as the functions above that convert a value to a string to be 
written to a file can easily be combined by using functions like seq or <<<. However, func-
tions that read information from a file most probably produce results of different type (e.g. 
freadc reads a character while freads reads a string). The most direct way to combine such 
functions is by using the nested scope style.  

Assume that one wants to read a zip code from a file. A zip code consists of an integer 
value followed by two characters: :: ZipCode :== (Int, Char, Char). The following ex-
ample shows how this can be written in CLEAN. 

readzipcode :: *File -> (ZipCode,*File) 
readzipcode file  
 # (b1,i, file)   = freadi file 
 # (b2,c1,file)   = freadc file 
 # (b3,c2,file)   = freadc file 
 | b1 && b2 && b3 = ((i,c1,c2), file) 
 | otherwise       = abort "readzipcode failure" 
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In the let construct (indicated by #) the results of a read action can be specified easily. The 
order in which the read actions are performed is controlled by passing around the uniquely 
attributed file parameter. 

5.2.2 Monadic Style 
Due to the uniqueness typing system of CLEAN it is possible to safely pass around objects 
such as files. However, most other functional languages lack such a powerful type system. 
So, how do they provide the destructive update of an object such as a file without loss of 
referential transparency? The trick is not to pass around the object explicitly, but pass it 
around implicitly. In this way it is hidden from the programmer and it cannot become 
shared (because no user-defined function explicitly has it as parameter). In this way referen-
tial transparency is guaranteed. A well-known example of such an approach is used in the 
lazy and pure functional language HASKELL. It is called the monadic approach. All update-
able objects are part of one big state equivalent to the World in CLEAN. This state is hidden 
and cannot be accessed explicitly by the program. The program must use primitive opera-
tions on the hidden state, and, more importantly, compose them using the monadic func-
tions. An interactive HASKELL program itself is a monadic function. A monadic function 
that returns a value of type a has type (IO a). In CLEAN one would specify this type as: 

:: St s a :== s -> (a,s) 
:: IO a :== St World a 

The main problem to solve is: how can one read values from a file which is hidden in a 
monad if one does not have access to it. A special operator, called bind, which combines 
two monadic functions, performs the trick. 

(̀ bind̀ ) infix 0 :: (St s a) (a -> (St s b)) -> (St s b) 
(̀ bind̀ ) f_sta a_fstb = stb 
where  
 stb st = a_fstb a nst 
 where  
  (a,nst) = f_sta st 
 
return :: a -> (St s a) 
return x = \s = (x,s) 

The bind function ensures that the two monadic functions are applied one after another. 
The result of the first monadic function is given as additional argument to the second mo-
nadic function. In this way the second monadic function can inspect the result of the pre-
vious monadic function. The return function ‘promotes’ any value of type a to a monadic 
operation of type (IO a).  

In CLEAN one can also use the monadic style of programming (without being forced to 
actually hide the state). The zip-code can be read from a file in a monadic style in the fol-
lowing way: 

readzipcode :: St *File ZipCode 
readzipcode 
  = freadint  ̀ bind̀  \(b1,i)  =  
 freadchar ̀ bind̀  \(b2,c1  =  
 freadchar ̀ bind̀  \(b3,c2) =  
 if (b1 && b2 && b3) (return (i,c1,c2)) 
                     (abort "readzipcode failure") 
where 
 freadint = st2fun freadi 
 freadchar = st2fun freadc 
 
st2fun :: (.s -> (a,b,.s)) .s -> ((a,b),.s) 
st2fun f s = let (a,b,s1) = f s in ((a,b),s1) 

This example shows how state-transition functions producing different types of results can 
be combined in CLEAN in a monadic style of programming.  
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The advantage of the monadic approach is that no additional type system like uniqueness 
typing is needed to guarantee safe I/O in a pure functional language. The disadvantage is 
that, in order to make it impossible for programmers to duplicate “unique” objects, these 
objects have to be hidden for them. Therefore, all objects to be updated are stored into one 
hidden data structure that can only be accessed by the run-time-system, but not directly by 
the programmer. To do this a programmer has to offer a combination of monadic func-
tions to be applied by the system on the hidden state. So, the monadic style is less flexible 
than the solution offered by CLEAN’s uniqueness typing system which enables an arbitrary 
number of updateable objects which can be freely passed around and can be accessed di-
rectly. If one wishes one can program in a monadic style in CLEAN too. The state may but 
does not have to be hidden from the user. The uniqueness typing can be used to guarantee 
that the monad is treated correctly. 

5.3 Handling Events 
The previous sections showed us how to write a program that changes the file system. The 
file names were hard-coded in the program. One can make an interactive version of these 
programs via the console, as illustrated in Section 5.1.1., or one would like to take advan-
tage of a graphical user interface to allow the user to browse the file system in a standard 
way. For the latter purpose, it is not sufficient to fetch the file system out of the world. The 
program needs to keep track of user actions such as keyboard and mouse input, button 
presses, and so on. These actions are encoded by the underlying system as events. Events are 
gathered in an event queue in chronological order. The program should handle these 
events in the given order. 

The Object I/O library makes it relatively easy to write flexible and platform independent 
programs equipped with a graphical user interface. The central idea is that the library man-
ages the event queue. The user program using this library defines objects like windows, dia-
logs, and pull-down menus. Each object contains functions to handle the various events 
relevant for such an object. These functions are called callback functions. The I/O library 
takes care of selecting the current event and finding the appropriate callback function. It 
also performs all the necessary low level I/O operations that has to be done in every inter-
active program. The programmer can concentrate on the key aspects of the interactive pro-
gram. 

Every interactive element in the Object I/O library has a state. The state defines for in-
stance the things drawn inside a window or the name of the file where data is stored. The 
states have to be available when an event occurs and they are changed by the associated 
callback function. The I/O library also handles these states. Each event handler receives 
the current state of the interactive element it is part of as argument and produces a new 
state. In fact there are two states involved: the local state of the device and the global state 
of the I/O process. According to good software engineering practise all things that are only 
of interest to the device should be stored in its local state. In this way we prevent that the 
global state of the process is cluttered with details. Only the things that have an impact on 
several devices should be stored in the global process-state. This 'global' process-state is on 
its turn local to the process. 

It is important to realise that the devices are specified using ordinary data structures and 
functions in CLEAN. This implies that the definition of the devices can be manipulated just 
like any other data structure in CLEAN. In this way all kinds of devices can be created dy-
namically! 

The high level way in which dialogs and windows are specified makes it possible to define 
them in a platform independent way: the look and feel of the dialogs and the other devices 
will depend of the concrete operating system used. The CLEAN code can be used un-
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changed on any platforms where the CLEAN system is available. The resulting application 
will have the appropriate look and feel that is typical for that platform. 

Each callback function used in the abstract device specification has a unique parameter that 
represents the current state of the program (called the PSt, pronounce “process state”). This 
process state itself consists of the local “logical” state and the abstraction (called the IOSt, 
pronounce “I/O state”) of the states of the graphical user interface components of the in-
teractive program.  

ls

processState :: PSt l

io

localState :: l IO State :: *IOSt l

event queue
windows
menus
dialogs
timers
...

 

Figure 5.2: The process state, PSt, and its components. 

A program starts an interactive process with the function startIO imported by the library 
StdIO. The type of this function is: 

startIO :: !DocumentInterface !.l !(ProcessInit (PSt .l)) ![ProcessAttribute (PSt .l)] 
                  !*World -> *World 

The first argument determines the kind of interface infrastructure used by the program. 
There are three possibilities inspired by the interface types provided by Windows: 

:: DocumentInterface 
 = NDI         // No       Document Interface 
 | SDI         // Single   Document Interface 
 | MDI         // Multiple Document Interface 

Applications that are happy with dialogs only should use the No Document Interface 
(NDI). Programs equipped with a Single Document Interface (SDI) indicate that they intend 
to use at most one window at a time for editing text or drawing. There are no restrictions on 
other GUI elements, so they can use as many menus as necessary. In a Multiple Document 
Interface application (MDI) there are no restrictions to the number of windows. Windows 
automatically provides the Window-menu to manipulate these windows. Applications should 
use a minimal interface infrastructure, as this gives users proper visual clues about the in-
tention and capability of the program.  

The second argument of the library function startIO is the initial logical state of the pro-
gram. This state contains all information that is global in the interactive process. It is good 
programming practice to store this information in a record because this allows you to easily 
modify the state afterwards. The type of this argument is the type variable l, this indicates 
that any type can be used. For performance reasons this argument is strict (also in the PSt 
record). 

The third argument of startIO has type ProcessInit (PSt .l), which is equivalent to 
(PSt .l) -> (PSt .l). This function is responsible for creating the initial GUI elements 
such as dialogs and menus, and perhaps do some further initialization of the global state. 
We will see some concrete examples very soon. 

The fourth argument is a list of process attributes. These attributes control matters that are 
relevant to the interactive process. Attribute lists occur all over the Object I/O library. 
With every GUI element, the attribute list collects all optional properties. For every attrib-
ute, a sensible default value is defined. In addition, the Object I/O library sticks to the rule 
that the first occurrence of an attribute in the list is the defining value of that particular at-
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tribute. Any further occurrences of attributes with the same data constructor are ignored. 
This provides an easy way to overrule attributes from external definitions. like the position 
and size of the window. One process attribute that is wise to include in interactive pro-
grams is the ProcessClose attribute: 

:: ProcessAttribute st 
 = … | ProcessClose (IdFun st) | … 

The callback function argument is evaluated whenever an event indicates that the interac-
tive process should terminate. This is a kind request: the program is allowed to react by sav-
ing data to the file system, or asking the user if it really should exit, and so on. In the Ob-
ject I/O library, the only way to terminate an interactive process is with the function closeProc-
ess: 

closeProcess :: (PSt .l) -> PSt .l 

For simple programs, it is usually sufficient to include the (ProcessClose closeProcess) 
attribute in the process attribute list.  

Together with these four elements, the function startIO is a function that changes the 
unique world. So, its type is *World -> *World.  

The events handled by startIO are all the recorded events that are directed to the program. 
Typical examples are pressing or releasing of keys at the keyboard, mouse clicks or mouse 
movements in a window, selection of menu items, and timer ticks. The events are handled 
in the order of occurrence in the event stream. The function startIO will search in the de-
vice definitions in the specified data structure which callback function (event-handler) is 
specified to handle this event. This callback function will be applied to the current process 
state. This produces a new process state. This is repeated until one of the callback func-
tions indicate that the program should terminate, using closeProcess as described above. 

The function startIO is predefined in the Object I/O library. Event handling is illustrated by 
the following, strongly simplified function definition. Warning: this is pseudo-code to ex-
plain the event handling, not the actual implementation. 

startIO :: !DocumentInterface !.l !(ProcessInit (PSt .l)) ![ProcessAttribute (PSt .l)] 
!*World -> *World 

startIO xDI public initializeGUI attributes world 
 # (events,world)  = openEventQueue world 
 # pSt     = {ls=public, io=createIOSt events xDI attributes world} 
 # pSt     = initializeGUI pSt 
 # {io={events,world}} = handleAllEvents pSt 
 = closeEventQueue events world 
where 
 handleAllEvents pSt=:{io} 
  # (quit,io)   = signalsQuit io 
  | quit    = {pSt & io=io} 
  # (newEvent, io) = getNextEvent io 
  # (f,io)   = findHandler newEvent io 
  # pSt    = f {pSt & io=io} 
  = handleAllEvents pSt 

This shows that first of all, the initial I/O-operations are performed (by initializeGUI pSt). 
When the initial I/O-operation is finished, the events are processed in the order of appear-
ance in the event queue. The event handler to be used is determined by the current set of 
devices, which is recorded in the I/O-state component of the process-state. The I/O-state 
is part of the arguments and result of the event handler. This implies that it is possible that 
event handlers install new callback functions to process the events in the tail of the queue. 
A program only has to invoke the function startIO to an appropriate list of initialization 
actions. This controls the entire behaviour of the program. 

Programming GUIs requires some knowledge of the corresponding terminology (menu, 
pop-up menu, modal dialog, radio button, close box etc.). Such knowledge is assumed to 
be present with the reader (as a user of such systems). However, when it is felt appropriate, 
some of this terminology will be explained when it occurs in an example. 
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5.4 Dialogs and Menus 
Dialogs and menus offer high level metaphores for user-application interaction. Dialogs  
resemble forms, and menus resemble menu cards as used in restaurants. Menus consist of 
menu elements such as simple items (also called commands), or groups of items of which one 
is check-marked (also called radio elements), or even menus (in which case they are called sub 
menus). Dialogs are a highly structured form of windows. For this purpose, dialogs contain 
controls. Controls are commonly standard predefined graphical user interface elements, but 
the programmer can also define interface elements. Examples of standard controls are text 
fields determined by the program (TextControl), user input text fields (EditControl), and but-
tons (ButtonControl). Controls can be defined by combining existing controls as well. In this 
way it is easy to make more complicated combinations. A dialog containing the most 
common controls is depicted in figure 5.3.  

 

Figure 5.3: An example dialog containing a collection of controls. 

Dialogs can be opened in two modes: 
Modeless dialogs: This is the general mode of opening a dialog. A modeless dialog is 

opened using the function openDialog. The dialog will stay open until the program 
closes it using the function closeWindow. (or terminates using closeProcess). In the 
meantime the program can do other things. 

Modal dialogs: Sometimes it is necessary to force the user to handle a dialog completely 
before the program can continue. For this purpose modal dialogs are useful. Modal 
dialogs are dialogs that cannot be pushed to the background. They are opened using 
the function openModalDialog. This function terminates only when its dialog has been 
closed using the function closeWindow (or if the program terminates using closeProc-
ess). 

The conventional use of a dialog is that the user is (kindly) requested to fill in some of the 
edit controls, make the appropriate selections in the pop up, radio, or check controls, and 
then confirm the input by pressing one of the button controls. As explained earlier, press-
ing the button control will cause evaluation of the associated event handler. This function 
will need to know what the user has filled in and what selections have been made. For this 
purpose it can retrieve a WState which is an abstract data type containing all information of 
the dialog. The value of text fields and the selected radio buttons or check boxes can be 
extracted from this data type using the appropriate manipulation functions. In this chapter 
we show a number of examples. The complete list of access functions can be found in 
module StdControl. 

5.4.1 A Hello World Dialog 
As a first example of a program using dialogs we create a GUI version of the hello world 
program. This dialog to be generated contains only a text message to the user and one but-
ton. On a Macintosh and a Windows PC they look as follows: 
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Figure 5.4: The hello world dialog. 

In addition the program contains a single menu. This pull-down menu contains only the 
quit command. The CLEAN code for all this looks as follows: 

module helloDialog 
 
import StdEnv, StdIO 
 
Start :: *World -> *World 
Start world 
 = startIO MDI Void (open_dialog o open_menu) [ProcessClose closeProcess] world 
where 
 open_dialog pSt 
  # (okId,pSt) = openId pSt 
  = snd (openDialog undef (dialog okId) pSt) 
 
 dialog okId = Dialog "Hello Dialog" 
     ( TextControl "Hello World, I am a Clean user!" [] 
     :+: ButtonControl "OK" [ ControlPos (Left,zero) 
                         , ControlId okId 
                         , ControlFunction quit 
                         ] 
     )                      [ WindowOk okId ] 
 open_menu = snd o openMenu undef filemenu 
 filemenu = Menu "File" 
     ( MenuItem "Quit"    [ MenuShortKey 'Q' 
                         , MenuFunction quit 
                         ] 
     )                      [] 
 
quit :: (.ls,PSt .ps) -> (.ls,PSt .ps) 
quit (ls,pSt) = (ls,closeProcess pSt) 

GUI elements are described by means of appropriate data types (such as Dialog, TextCon-
trol and ButtonControl). These describe each of the elements in an interactive program. 
The last argument of a control is always the list of control attributes. Again, the I/O library 
provides sensible default for these attributes in order to limit the amount of attributes to be 
specified.  

The arguments of Dialog are its title (“Hello Dialog”), a composition of controls (here one 
text control and one button control), and a list of window attributes (the identification of 
the default button). The size of the dialog is determined by the size of its controls, unless 
overruled by the attributes. Every device instance has a local state in which data can be 
stored that is of interest only for that device instance. The initial value of that local state is 
given as the first argument of every device open function. Because in this example the dia-
log is very simple it does not really require state. It defines the state as the undefined value 
(undef). Note that this value aborts the program if it gets evaluated! This implies that local 
state of top-level GUI elements is always placed in a lazy context.1 This is actually true for 
all local state values. 

                                                        
1 For efficiency reasons, the public state of every interactive process is always in a strict position. This makes 
the value undef unsuited as a value for a global state that is not used. The singleton type constructor Void can 
be used instead (:: Void = Void). 
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The global state of the I/O process is defined in StdIO by a record named PSt. Each re-
cord contains some process dependent ‘local’ data, and the I/O environment. This I/O 
environment is modelled by the abstract data type IOSt.  

:: *PSt l 
 = { ls :: !l   // The local (and private) data of the process 
  , io :: !*IOSt l  // The IOSt environment of the process 
  } 

The fact that all device instances have a global state and a local state is also visible in the 
types of the event handlers. Every event handler is a state transition function of type 
(.ls,PSt .l) -> (.ls,PSt .l). Each handler receives and produces a record containing the local 
state of the device and the local state of the I/O process. This local state of the process is 
often called global state from the perspective of the device. This is the reason why quit has 
the given type. Since many device handlers have an empty local state the I/O library con-
tains the function noLS which just passes the local state from the argument to the result. 

noLS :: (.a->.b) (.c,.a) -> (.c,.b) 
noLS f (c,a) = (c,f a) 

This enables us to write event handlers where an unchanged local state is handled entirely 
by the function noLS. Using noLS the function quit can be written as: 

quit :: ((.ls,PSt .l) -> (.ls,PSt .l)) 
quit = noLS closeProcess 

The program opens only one menu defined by filemenu which is a value of type Menu. Its ar-
guments are its title (“File”), the menu elements (the menu item labelled “Quit”), and an 
empty list of menu attributes. The only menu element is a value of type MenuItem. Its argu-
ments are its name (“Quit”), and a list of attributes (the keyboard shortcut ‘Q’, and the 
same callback function as the button in the dialog. The callback function of the “Ok”-
button activates the quit function as well and will quit the program. 

The Windows platform encourages programmers to allow users to navigate menus and 
controls by means of the keyboard. Elements that can be addressed quickly have an under-
lined character in their label. An Object I/O program can provide this information by add-
ing a &-character right in front of the character that has to underlined. The user can then 
quickly select these elements by pressing the Alt-key and the underlined character. On 
other platforms single &-characters are ignored, and double &-characters produce a single & 
in the label. 

QuitMenu :: Menu MenuItem .ls (PSt .ps) 
QuitMenu = Menu "&File"  
   ( MenuItem "&Quit" [ MenuShortKey 'Q' 
         , MenuFunction (noLS closeProcess) 
         ] 
   ) [] 

All functions to create a device, such as openDialog and openMenu, take the process state as 
argument and yield a tuple containing a possible error message and the new process state. 

class Menus mdef where 
 openMenu :: .ls !(mdef .ls (PSt .l)) !(PSt .l) -> (!ErrorReport, !PSt .l) 
 … 
class Dialogs ddef where 
 openDialog :: .ls !(ddef .ls (PSt .l)) !(PSt .l) -> (!ErrorReport, !PSt .l) 
 … 

Here we ignore the error reports and select the new process state by the function snd. 

In order to modify a GUI element after it has been created, one needs to identify it. This is 
done by providing each element that is going to be accessed an identification attribute of type 
Id. Using these Id values dialogs can be closed, windows can be drawn into, text typed in a 
dialog can be read, menu items can be disabled, etcetera. However, an id is only needed 
when we want to perform special actions with the device. In all other situation the value of 
the id is irrelevant and it can be left out. In this example we need only an id for the “Ok”-
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button, in order to make it the default button of the dialog (using the WindowOk attribute). 
The class Ids from StdId, which is a part of StdIO, defines the Id creation functions.  

class Ids env where 
 openId  ::  !*env -> (!Id, !*env) 
 openIds  :: !Int !*env -> (![Id],!*env) 

These functions create one Id or a list of n Id's. The environment can be World, IOSt, or 
PSt. 

It is a recommended programming style to keep the Ids of devices as much as possible lo-
cal. The program above creates the Id within the dialog definition. In case one needs a 
known number of Ids the function openIds is useful. It returns a list of Ids, the elements of 
which can be accessed using a list pattern. It can be extended easily when more (or less) Ids 
are required. 

All by all we need to explain a lot for such a relatively simple program. Fortunately, the 
same principles are applied throughout the entire I/O library. The knowledge gained here 
will help you to understand and develop many other I/O programs.  

5.4.2 A File Copy Dialog 
Now suppose that we want to write a GUI version of the file copying program (Section 
5.1) by showing the following dialog (see Figure 5.5) to the user: 

   

Figure 5.5: The dialog result of the function CopyFileDialogInWorld. 

Also in the case of the file copy program the program-state can be Void. The interactive file-
copying program has a similar structure as the hello world examples above.  

Start :: *World -> *World 
Start world = CopyFileDialogInWorld world 
 
CopyFileDialogInWorld :: *World -> *World 
CopyFileDialogInWorld world 
 = startIO NDI Void opendialog [ProcessClose closeProcess] world 
where 
 opendialog pSt 
  # ([dlgId,okId,srcId,dstId:_],pSt) = openIds 4 pSt 
  # copyFileDialog  
   = Dialog "File Copy"  
    ( LayoutControl 
    ( TextControl "File to read: "    [ ] 
    :+: TextControl "Copied file name: "  [ ControlPos (Left,zero) ] 
    ) [ ControlHMargin 0 0,ControlVMargin 0 0 ] 
    :+: LayoutControl 
    ( EditControl defaultin length nrlines [ ControlId srcId ] 
    :+: EditControl defaultin length nrlines [ ControlId dstId 
               , ControlPos (Left,zero) 
               ] 
    ) [ ControlHMargin 0 0,ControlVMargin 0 0 ] 
    :+: ButtonControl "Cancel" [ ControlPos (Left,zero) 
           , ControlFunction (noLS closeProcess) 
           ] 
    :+: ButtonControl "OK"   [ ControlId okId 
           , ControlFunction (noLS (ok dlgId srcId dstId)) 
           ] 
    ) [ WindowId dlgId 
     , WindowOk okId 
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     ] 
  = snd (openDialog undef copyFileDialog pSt) 
 
 ok :: Id Id Id (PSt .l) -> PSt .l 
 ok id sid did pSt 
  # (Just wstate,pSt) = accPIO (getWindow id) pSt 
  # [(_,Just inputfilename),(_,Just outputfilename):_] 
         = getControlTexts [sid,did] wstate 
  # pSt    = appFiles (CopyFile inputfilename outputfilename) pSt 
  = closeProcess pSt 

This program uses a No Document Interface. This implies that only the dialog is available 
for interaction with the user. In this example that is just what we want. The appearance of 
the dialog (see Figure 5.5) is determined by the dialog definition copyFileDialog that enumer-
ates its components. The dialog definition is similar to the dialog in the hello-world exam-
ple above. The extra to the program is that we use layout controls to group the text-controls 
and edit-controls in order to obtain two decent columns. Apart from this lightweight layout 
control to group controls, controls can also be arranged in a compound control. A compound 
control can be regarded as a sub window that contains an arbitrary set of controls, has 
scrollbars, and so on.  

The code to actually copy a file is identical to the code presented in Section 5.1. 

A disadvantage of the dialog defined above is that it does not enable the user to browse 
through the file system to search for the files to be copied. Using the functions from the 
library module StdFileSelect such dialogs are created in the way that is standard for the ac-
tual machine the program will be running on. 

import StdFileSelect 
 
fileReadDialog :: (String (PSt .l) -> PSt .l) (PSt .l) -> PSt .l 
fileReadDialog fun pSt 
 = case selectInputFile pSt of 
  (Just name,pSt) = fun name pSt 
  (nothing,  pSt) = pSt 
 
fileWriteDialog :: (String (PSt .l) -> PSt .l) (PSt .l) -> PSt .l 
fileWriteDialog fun pSt 
 = case selectOutputFile prompt defaultFile pSt of 
  (Just name,pSt) = fun name pSt 
  (nothing,  pSt) = pSt 
where 
 prompt    = "Write output as:" 
 defaultFile   = "file.copy" 

  

Figure 5.6: A standard selectInputFile dialog on a Mac and Windows. 

Given these two functions, it is easy to create a program that allows the user to browse the 
file system. This is left as an exercise.  



128 FUNCTIONAL PROGRAMMING IN CLEAN 

5.4.3 Function Test Dialogs 
Suppose you have written a function myGreatFun and you want to test it with some input val-
ues. A way to do this is to use ‘console’ mode and introduce a Start rule with as its right-
hand-side a tuple or a list of applications of the function with the different input values:  

Start = map myGreatFun [1..1000] 

or e.g. 
Start = (myGreatFun 'a', myGreatFun 1, myGreatFun "GreatFun") 

From practical experience we know that this static way of testing generates less variety 
when compared with dynamic interactive testing. For interactive testing, a dialog in which 
input values can be typed, will be very helpful.  

The previous section has shown how to define a dialog. Here we will define a function that 
takes a list of functions as argument and produces an interactive program with dialogs with 
which these functions can be tested. We want this definition to be as general as possible. 
We use overloading to require that the input values (typed in the dialog as a String) can be 
converted to the required argument of the test function. A test function will be represented 
by the following synonym type: 

:: TestFunction :== (TestArguments -> TestOutput, TestArguments, Name) 
:: TestArguments :== [String] 
:: TestOutput  :== String 
:: Name   :== String 

The arguments of the test function are collected as a list of strings from the dialog. The 
following functions can be used to do the appropriate type conversions. By using type 
classes these functions can be very general. Adding similar functions to handle functions 
with another number of arguments is very simple. 

no_arg :: a TestArguments -> TestOutput | toString a 
no_arg f [] = toString f 
no_arg f l  = error 0 l 
 
one_arg :: (a -> b) TestArguments -> TestOutput | fromString a & toString b 
one_arg f [x] = toString (f (fromString x)) 
one_arg f l   = error 1 l 
 
two_arg :: (a b -> c) TestArguments -> TestOutput | fromString a & fromString b & toString c 
two_arg f [x,y] = toString (f (fromString x) (fromString y)) 
two_arg f l     = error 2 l 
 
three_arg :: (a b c -> d) TestArguments -> TestOutput | fromString a & fromString b  
                                                      & fromString c & toString d 
three_arg f [x,y,z] = toString (f (fromString x) (fromString y) (fromString z)) 
three_arg f l       = error 3 l 
 
error arity arglist 
  :== "This function should have " +++  
      (if (arity==1) "1 argument" (toString arity +++ "arguments")) +++  
      " instead of " +++  
      toString (length arglist) 

The overloaded test dialog can be used to test a function on a structured argument (a list, a 
tree, a record, ...) straightforwardly. All that is needed is to write instances of fromString and 
toString for types or subtypes if they are not already available. 

The function test dialogs are organised as a module that should be imported in a program 
that contains the functions to be tested. The imported module contains a function that 
generates the appropriate dialogs and overloaded functions to do the conversion from 
strings for the function arguments and to a string for the function result. For each function 
test dialog there is a menu element in the menu Functions that activates the dialog. The 
menu elements are not composed with the usual :+:, but as a list with ListLS. The imple-
mentation module looks like: 
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implementation module funtest 
 
import StdEnv, StdIO 
 
functionTest :: [TestFunction] *World -> *World 
functionTest funs world 
 # (ids,world) = openIds (length funs) world 
 = startIO MDI Void (initialIO (zip2 funs ids)) [ProcessClose closeProcess] world 
where 
 initialIO :: [(TestFunction,Id)] -> (PSt .l) -> PSt .l 
 initialIO fun_ids 
  = openfunmenu o openfilemenu 
 where 
  openfilemenu= snd o openMenu undef fileMenu 
  openfunmenu = snd o openMenu undef funMenu 
  fileMenu = Menu "&File"  
      ( MenuItem "&Quit" [ MenuShortKey 'Q' 
                        , MenuFunction (noLS closeProcess) 
                        ] 
      ) [] 
  funMenu  = Menu "Fu&nctions" 
      ( ListLS 
      [ MenuItem fname   [ MenuFunction (noLS opentest) 
                        : if (c<='9') [MenuShortKey c] [] 
                        ] 
      \\ ((_,_,fname),_) <- fun_ids 
      & opentest        <- map functiondialog fun_ids 
      & c               <- ['1'..] 
      ] 
      ) [] 

The function that defines the dialogs (functiondialog) is defined below. It is quite similar to 
the file copy dialog. Its first elements are the input fields for the function arguments. For 
each argument there is a text control indicating the argument and an edit control to hold 
the actual argument value. This is followed by a field for the result, and three buttons. The 
first button closes this dialog, the second button quits the program, and the last button is 
the default button that evaluates the function to be tested. Its callback function extracts the 
actual arguments from the proper edit fields in the dialog. These arguments are passed as a 
list of strings to the function to be tested. The test function produces a result which is 
shown in the result field. 

functiondialog :: (TestFunction,Id) (PSt .l) -> PSt .l 
functiondialog ((fun,initvals,name),dlgId) pSt 
 # (argIds,  pSt) = openIds arity pSt 
 # (resultId,pSt) = openId pSt 
 # (evalId,  pSt) = openId pSt 
 = snd (openDialog undef (dialog argIds resultId evalId) pSt) 
where 
 arity  = length initvals 
 arg_label n = "arg "+++toString n 
  
 dialog argIds resultId evalId 
  = Dialog name 
   ( ListLS 
   [ TextControl (arg_label n) 
    [ ControlPos   (LeftOf (argIds!!n),zero) 
    , ControlWidth (ContentWidth ("arg "+++toString arity)) 
    ] 
   :+: EditControl val width nrlines 
    [ ControlId (argIds!!n) 
    : if (n==0) [ControlPos (Right,zero)]  
                [ControlPos (Below (argIds!!(n-1)),zero)] 
    ] 
   \\  val <- initvals 
   &   n   <- [0..] 
   ] 
   :+: TextControl "result"  
    (if (arity==0) [ControlPos (Left,zero)] [ControlPos (LeftOf resultId,zero)]) 
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   :+: EditControl "" width nrlines 
    [ ControlId resultId 
    : if (arity==0) [] [ControlPos (Below (argIds!!(arity-1)),zero)] 
    ] 
   :+: LayoutControl 
   ( ButtonControl "Close" 
    [ ControlFunction (noLS (closeWindow dlgId)) ] 
   :+: ButtonControl "Quit"  
    [ ControlFunction (noLS closeProcess) ] 
   :+: ButtonControl "Eval" 
    [ ControlId evalId 
    , ControlFunction (noLS (appPIO (eval fun))) 
    ] 
   ) [ ControlPos (Center,zero) ] 
   ) [ WindowId dlgId 
    , WindowOk evalId 
    ] 
 where 
  eval :: (TestArguments -> TestOutput) (IOSt .l) -> IOSt .l 
  eval fun ioSt 
   # (Just wSt,ioSt) = getWindow dlgId ioSt 
   # input           = map (fromJust o snd) (getControlTexts argIds wSt) 
   = setControlText resultId (fun input) ioSt 

We need only the definition of some constants to complete this module. 
nrlines :== 2 
width :== PixelWidth 250 

In order to test the functions sqrt, power, and "Hello world" we write the following program. 
module functiontest 
 
import funtest 
 
Start :: *World -> *World 
Start world 
 = functionTest funs world 
where 
 funs = [ (one_arg squareRoot  ,["2"]     ,"squareRoot") 
     , (two_arg power       ,["2","10"],"power"     ) 
     , (no_arg "Hello world",[]        ,"Program"   ) 
     ] 
 
power :: Int Int -> Int 
power x n 
 | n==0  = 1 
 | isEven n = y * y with y = power x (n/2) 
 | otherwise = x * power x (n-1) 
 
squareRoot :: Real -> Real 
squareRoot r = sqrt r 

When we execute this program and open all dialogs we obtain an interface as shown in the 
next figure. This enables the user to test functions interactively. 
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Figure 5.7: An example of the use of the function test dialog system generator. 

This completes the full definition of general dialogs for testing polymorphic functions. The 
only problem with this program might be its generality. When overloaded functions are 
tested the internal overloading cannot always be solved. By defining a version with a re-
stricted (polymorphic) type instead of the overloaded type this problem is solved in the 
usual way. We have seen this in the function sqrt above. 

5.4.4 An Input Dialog for a Menu Function 
Similarly, an input dialog for a menu function can be defined. A menu function is the ar-
gument function of the MenuFunction attribute. Its type is the standard process state transition 
function, IdFun (PSt .l).  

Very little has to be changed in the program. The type of the dialog generating function 
becomes: 

:: TestMenuFunction l :== (TestArguments -> IdFun (PSt l), TestArguments, Name) 
 
menufunctiondialog :: Id (TestMenuFunction .l) (PSt .l) -> PSt .l 

Furthermore we remove the result controls from the dialog. The result of a menu function 
is not printable. The local eval function should become: 

… 
 eval :: (TestArguments -> IdFun (PSt .l)) (PSt .l) -> PSt .l 
 eval fun pSt 
  # (Just wSt,pSt) = accPIO (getWindow dlgId) pSt 
  = fun (map (fromJust o snd) (getControlTexts argIds wSt)) pSt 

This input dialog can be used for all kinds of ‘menu’ that require a single (structured) input. 
The result of applying the function inputdialog to a name, a width and a menu function is 
again a menu function incorporating the extra input! 

5.4.5 General Notices 
Notices are simple dialogs that contain a number of text lines, followed by at least one but-
ton. The buttons present the user with a number of options. Choosing an option closes the 
notice, and the program can continue its operation. Here is its type definition:  

:: Notice ls pst   = Notice [String] (NoticeButton *(ls,pst)) [NoticeButton *(ls,pst)] 
:: NoticeButton st = NoticeButton String (IdFun st) 

We intend to make notices a new instance of the Dialogs type constructor class. So we have 
to provide implementations for the overloaded functions openDialog, openModalDialog, and get-
DialogType. We also add a convenience function, openNotice, which opens a notice in case one 
is not interested in a local state.  

instance Dialogs Notice where 
 openDialog ls notice pSt 
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  # (wId, pSt) = openId pSt 
  # (okId,pSt) = openId pSt 
  = openDialog ls (noticeToDialog wId okId notice) pSt 
 openModalDialog ls notice pSt 
  # (wId, pSt) = openId pSt 
  # (okId,pSt) = openId pSt 
  = openModalDialog ls (noticeToDialog wId okId notice) pSt 
 getDialogType notice 
  = "Notice" 
 
openNotice :: (Notice .ls (PSt .l)) (PSt .l) -> PSt .l 
openNotice notice pSt = snd (openModalDialog undef notice pSt) 

The function noticeToDialog transforms a Notice into a Dialog. It conveniently uses list 
comprehensions and layout controls. Here is its definition. 

noticeToDialog :: Id Id (Notice .ls (PSt .l)) 
 -> Dialog (:+: (LayoutControl (ListLS TextControl)) 
    (:+: ButtonControl 
     (ListLS ButtonControl) 
    )) .ls (PSt .l) 
noticeToDialog wId okId (Notice texts (NoticeButton text f) buttons) 
 = Dialog ""  
  ( LayoutControl 
  ( ListLS 
   [ TextControl text [ControlPos (Left,zero)] \\ text <- texts ] 
  ) [ ControlHMargin   0 0 
   , ControlVMargin   0 0 
   , ControlItemSpace 3 3 
   ] 
  :+: ButtonControl text  
   [ ControlFunction (noticefun f) 
   , ControlPos (Right,zero) 
   , ControlId  okId 
   ] 
  :+: ListLS 
  [ ButtonControl text  
    [ ControlFunction (noticefun f) 
    , ControlPos (LeftOfPrev,zero) 
    ] 
  \\ (NoticeButton text f) <- buttons 
  ] 
  ) [ WindowId wId, WindowOk okId ] 
where 
 noticefun f (ls,pSt) = f (ls,closeWindow wId pSt) 

We can export this new instance of the Dialogs type constructor class in a new module, no-
tice. 

definition module notice 
 
import StdWindow 
 
:: Notice ls pst   = Notice [String] (NoticeButton *(ls,pst)) [NoticeButton *(ls,pst)] 
:: NoticeButton st = NoticeButton String (IdFun st) 
 
instance Dialogs Notice 
 
openNotice :: (Notice .ls (PSt .l)) (PSt .l) -> PSt .l 

Given the notice implementation, we can use it in the following examples. They are self-
explanatory. 

import StdEnv, StdIO, notice 
 
// warning on function to be applied: default Cancel 
warnCancel :: [a] (IdFun (PSt .l)) (PSt .l) -> PSt .l | toString a 
warnCancel info fun pSt = openNotice warningdef pSt 
where 
 warningdef = Notice (map toString info) (NoticeButton "Cancel" id) 
           [NoticeButton "OK" (noLS fun)] 
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// warning on function to be applied: default OK 
warnOK :: [a] (IdFun (PSt .l)) (PSt .l) -> PSt .l | toString a 
warnOK info fun pSt = openNotice warningdef pSt 
where 
 warningdef = Notice (map toString info) (NoticeButton "OK" (noLS fun)) 
           [NoticeButton "Cancel" id] 
 
// message to user: continue on OK 
inform :: [String] (PSt .l) -> PSt .l 
inform strings pSt = openNotice (Notice strings (NoticeButton "OK" id) []) pSt 

The functions above can be used to inform and warn the user of the program but also to 
supply information to the programmer about arguments and (sub) structures when a spe-
cific function is called. The latter can be very helpful when debugging the program. 

       

Figure 5.8: Some simple applications of the notices defined above. 

These general functions to generate notices are used in the example programs below. 

5.5 The Art of State 
The GUI elements that we have encountered up until now did not have any state. This was 
made explicit by declaring a Void state in a strict context (the public process state) and the 
undefined value (undef) in a lazy context (all local states). In this section we show how 
GUI elements can incorporate state. We start from a shared local state at top-level in a dia-
log, and end with a fully reusable GUI component. In each of these examples we imple-
ment a counting device, that, when opened in a dialog, looks as follows:  

 

Figure 5.9: The counting device. 

The code patterns discussed here occur frequently in Object I/O programs.  

5.5.1 A Dialog with state 
We start with developing a counting device with a dialog. The value of the counter is stored 
in the local state of the dialog. The state of the entire process is still empty: Void. The pro-
gram is very similar to the dialogs shown in the previous section.  

module counter 
 
import StdEnv, StdIO 
 
Start :: *World -> *World 
Start world = startIO NDI Void initIO [ProcessClose closeProcess] world 
 
initIO :: (PSt .l) -> PSt .l 
initIO pSt 
 # (id,pSt) = openId pSt 
 = snd (openDialog 0 (dialog id) pSt) 
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where 
 dialog textid 
  = Dialog "Counter" counter [WindowClose (noLS closeProcess)] 
 where 
  counter 
   = TextControl "Counter value"[] 
   :+: TextControl "0            "[ ControlId       textid 
           ] 
   :+: ButtonControl "&-"    [ ControlFunction (upd (\n=n-1)) 
           , ControlPos      (Left,zero) 
           ] 
   :+: ButtonControl "&0"   [ ControlFunction (upd (\n=0)) 
           , ControlTip      "Set counter to 0" 
           ] 
   :+: ButtonControl "&+"   [ ControlFunction (upd (\n=n+1)) 
           ] 
  upd :: (Int->Int) (Int,PSt .l) -> (Int,PSt .l) 
  upd f (count,pSt) 
   # count = f count 
   = (count, appPIO (setControlText textid (fromInt count)) pSt) 

The actual change of the local state is done by the control function upd. This function is 
parameterised by a function that performs the actual update. The new state is delivered and 
the appropriate text control is updated according to the new value of the local state.  

A few details of this program are worth to be mentioned. The initial text of the text control 
to show the value of the counter contains a sequence of spaces in order to make it wide 
enough for large counter values. The buttons have a keyboard interface using the &-
character. The middle button is equipped with a tool tip (as shown in Figure 5.9). 

5.5.2 A Control with State 
The previous example showed how a dialog could implement a counter by encapsulating a 
local integer state value. This value is local to the dialog: no GUI element outside of the 
dialog has access to it. However, the value is global to all controls inside the dialog. From a 
software engineering point of view this is still rather unsafe. Suppose one adds a button to 
the dialog that somehow interferes with the counter state value. It can do so because it has 
the value in scope. The best solution is to enforce the counter state value to be local to the 
controls that implement the ‘counting device’. This can be done easily with the NewLS type 
constructor. The changes with respect to the previous program are marked in bold. 

module counter2 
 
import StdEnv, StdIO 
 
Start :: *World -> *World 
Start world = startIO NDI Void initIO [ProcessClose closeProcess] world 
 
initIO :: (PSt .l) -> PSt .l 
initIO pSt 
 # (id,pSt) = openId pSt 
 = snd (openDialog undef (dialog id) pSt) 
where 
 dialog textid 
  = Dialog "Counter" counter [WindowClose (noLS closeProcess)] 
 where 
  counter 
   = LayoutControl 
     { newLS  = 0 
     , newDef =  TextControl "Counter value"[] 
      :+: TextControl "0            "[ ControlId       textid 
              ] 
      :+: ButtonControl "&-"    [ ControlFunction (upd (\n=n-1)) 
              , ControlPos      (Left,zero) 
              ] 
      :+: ButtonControl "&0"   [ ControlFunction (upd (\n=0)) 
              , ControlTip      "Set counter to 0" 
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              ] 
      :+: ButtonControl "&+"   [ ControlFunction (upd (\n=n+1)) 
              ] 
     } [] 
  upd :: (Int->Int) (Int,PSt .l) -> (Int,PSt .l) 
  upd f (count,pSt) 
   # count = f count 
   = (count, appPIO (setControlText textid (fromInt count)) pSt) 

It should be observed that the GUI elements are exactly identical to the dialog example 
above. The upd function is also identical. The only difference is that the initial counter 
state value is hidden from the context, and that we use a layout control to ensure the local 
layout properties of the counter control. The counter control can be used in arbitrary dia-
logs without danger of violating the integrity of its local state. 

5.5.3 A reusable Control 
The previous example showed how to encapsulate state in an arbitrary collection of con-
trols. This technique can be applied to any collection of GUI elements. The state can not 
be accessed externally, thus ensuring the integrity of its data. However, this does not make 
the control completely reusable because it still depends on a fixed set of identification val-
ues (textid). Knowledge of these identification values can still violate the integrity of the 
counter control: a function with access to the identification value of the text control could 
set the text label to “monkey” which is definitely not a number in any language. The Object 
I/O library has been designed to allow programmers to define new instances of controls 
that can be used in the same way as standard control elements (and, as usual, this is also 
valid for all other GUI element classes such as windows, dialogs, menus, and so on). In this 
section we show how this is done. 

Every control is an instance of the Controls type constructor class that implements two 
member functions: 

class Controls cdef where 
 controlToHandles :: !.(cdef      .ls (PSt .l)) !(PSt .l) 
      -> (![ControlState .ls (PSt .l)], !PSt .l) 
 getControlType  ::  .(cdef      .ls .pst) 
      -> ControlType 

The first task to accomplish is to invent an abstract identification value for counter con-
trols in order to prevent external tempering. We only need to identify the text control. To 
anticipate future changes we define a record with a single identifier field: 

:: CounterControlId 
 = { displayId :: Id 
  } 
 
openCounterControlId :: *env -> (CounterControlId,*env) | Ids env 
openCounterControlId env 
 # (id,env) = openId env 
 = ({displayId=id},env) 

We now introduce a new type constructor that describes the counter control. We follow 
the convention that a type should define a minimum of mandatory attributes, and provide a 
maximum number of optional attributes with sensible default values. A counter can be 
characterised by its initial value, and the decrement/increment value. Although one could 
choose the defaults zero and one for these values (and therefore make them optional) we 
choose to make them mandatory. All other attributes will be inherited from the standard 
list of control attributes. Finally, we adopt the convention that a type constructor is post-
fixed with the ‘family’ name (-Control in this case), and give the data constructor the same 
name.  

:: CounterControl ls pst 
 = CounterControl InitialValue 
                (DecrementValue, IncrementValue) 
                CounterControlId 
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                [ControlAttribute *(ls,pst)] 
:: InitialValue   :== Int 
:: IncrementValue :== Int 
:: DecrementValue :== Int 

Given this new element of the language of control specifications, we need to implement 
the two Controls class member functions. The function getControlType is easy: it simply 
returns the String version of the type constructor name: getControlType = "Counter-
Control". The function that actually ‘implements’ a counter control is identical to the defi-
nition in the previous section (again, the upd function does not change): 

instance Controls CounterControl where 
 controlToHandles (CounterControl initValue (decrVal,incrVal) counterId attributes) pSt 
  # counter 
   = LayoutControl 
     { newLS  = initValue 
     , newDef =  TextControl "Counter value"[] 
      :+: TextControl (toString initValue) 
            [ ControlId  textid 
            ] 
      :+: ButtonControl "&-"  [ ControlFunction (upd (\n=n+decrVal)) 
            , ControlPos   (Left,zero) 
            ] 
      :+: ButtonControl "&0" [ ControlFunction (upd (\n=0)) 
            , ControlTip  "Set counter to 0" 
            ] 
      :+: ButtonControl "&+" [ ControlFunction (upd (\n=n+incrVal)) 
            ] 
     } attributes 
  = controlToHandles counter pSt 
 where 
  textid = counterId.displayId 
 
  upd :: (Int->Int) (Int,PSt .l) -> (Int,PSt .l) 
  upd f (count,pSt) 
   # count = f count 
   = (count, appPIO (setControlText textid (fromInt count)) pSt) 
 
 getControlType _ = "CounterControl" 

The differences are obvious: the initial value was zero and is now provided by the control 
definition, as are the increment and decrement values (which were –1 and 1 respectively). 
We collect the functions and data structures defined so far in a new module to emphasize 
the fact that this is a reusable control. If we call this module CounterControl then the defi-
nition module looks like: 

definition module CounterControl 
 
import StdControl, StdId 
 
:: CounterControlId 
 
openCounterControlId :: *env -> (CounterControlId,*env) | Ids env 
 
:: CounterControl ls pst 
 = CounterControl InitialValue 
                (DecrementValue, IncrementValue) 
                CounterControlId 
                [ControlAttribute *(ls,pst)] 
:: InitialValue   :== Int 
:: IncrementValue :== Int 
:: DecrementValue :== Int 
 
instance Controls CounterControl 

The program can use this new counter control element: 
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module counter3 
 
import StdEnv, StdIO, CounterControl 
 
Start :: *World -> *World 
Start world = startIO NDI Void initIO [ProcessClose closeProcess] world 
 
initIO :: (PSt .l) -> PSt .l 
initIO pSt 
 # (id,pSt) = openCounterControlId pSt 
 = snd (openDialog undef (dialog id) pSt) 
where 
 dialog counterId 
  = Dialog "Counter" counter [WindowClose (noLS closeProcess)] 
 where 
  counter = CounterControl 0 (-1,1) counterId [] 

5.5.4 Adding an Interface to the Counter 
With the previous implementation of a counter a programmer can add these new GUI 
elements to any dialog (and windows, as we will see in the next section). However, a pro-
gram is not able to read the current value nor set it externally to a new value. The reason is 
that both the identification value and the local state are abstract. This was done for good 
reasons. Still, having access to new GUI elements is a useful thing, so how does one go 
about this?  

The Object I/O library provides one single mechanism that allows programmers to ‘break’ 
the encapsulation of local state in a well-controlled manner. This mechanism is message pass-
ing, and there is a special kind of GUI element to which messages can be sent: receivers. Uni-
directional receivers are suited for receiving messages only, and bi-directional receivers can re-
spond with a reply message. The message and response type are encoded in a special identi-
fication value. In this section we will discuss only bi-directional receivers, as these are most 
commonly used when defining access functions to new GUI elements.  

A bi-directional receiver that accepts messages of type m and responds with messages of 
type r must be identified by an identification value of type (R2Id m r). Messages are han-
dled via callbacks, so the callback function of a bi-directional receiver is a variation of the 
ubiquitous callback type 

(.ls,PSt .l) -> (.ls,PSt .l).  

Because it accepts a message of type m and responds with a reply of type r the type of the 
callback function is really:  

m -> (.ls,PSt .l) -> (r,(.ls,PSt .l)).  

Finally, there are some optional attributes, but these are seldom relevant. In all, bi-
directional receivers are defined with the following type constructor: 

:: Receiver2 m r ls pst = Receiver2 (R2Id m r) (Receiver2Function m r *(ls,pst)) 
                                                [ReceiverAttribute     *(ls,pst)] 
:: Receiver2Function m r st :== m -> st -> *(r,st) 

Receivers are an instance of the Controls type constructor class (this fact is implemented 
in module StdControlReceiver), so they can be used in any context where usually controls 
can occur. This implies that they have access to the same local state as controls have.  

Messages can be sent to bi-directional receivers only in a synchronous fassion with the 
function 

syncSend2 :: !(R2Id m r) m !(PSt .l) -> (!(!SendReport,!Maybe r), !PSt .l) 

If a bi-directional receiver is associated with the indicated identification argument, and it is 
enabled, and it is not blocked cyclically for another communication to finish, then the mes-
sage (the second argument) is actually sent to the receiver who will apply its callback func-
tion to the message. This function computes a reply message r which is returned as (Just r). 
Successful communication is reported by the value SendOk of type SendReport. If any of 
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the previous conditions are violated, no message passing takes place, Nothing is returned, as 
well as an appropriate error report.  

From this account it is not so hard to see how receivers and message passing can help to 
build an external interface to new GUI elements. Let’s make one for counters. Suppose we 
want to add the following two access functions to the counter that read and set the counter 
respectively: 

getCounterValue :: CounterControlId     (PSt .l) -> (Maybe Int,PSt .l) 
setCounterValue :: CounterControlId Int (PSt .l) -> PSt .l 

The first thing we need to do is to extend the CounterControlId record with a bi-
directional identification value. Here we can profit from the fact that we used a record type:  

:: CounterControlId 
 = { displayId  :: Id 
  , receiverId :: R2Id Message Reply 
  } 
 
openCounterControlId :: *env -> (CounterControlId,*env) | Ids env 
openCounterControlId env 
 # (id,  env) = openId env 
 # (r2id,env) = openR2Id env 
 = ({displayId=id,receiverId=r2id},env) 

Now we need to invent a type for the messages that are sent to the receiver (Message), and 
a type for the messages that it replies with (Reply). A request to read the current value of 
the counter is encoded by GetValue, and a request to write the current value with (Set-
Value Int). The response to GetValue is encoded with (CurValue Int), and the response 
to (SetValue Int) with SetValueOk. We have: 

:: Message = GetValue     | SetValue Int 
:: Reply = CurValue Int | SetValueOk 

The implementation of the receiver callback function is straightforward. When it receives a 
GetValue message, it simply returns the local integer state c as (CurValue c). When it re-
ceives a (SetValue c) message, it returns the SetValueOk message, and takes care that the 
new local state value is c, and changes the text label. This amounts to: 

receiverfun :: Id Message (Int,PSt .l) -> (Reply,(Int,PSt .l)) 
receiverfun _ GetValue (c,pSt) 
 = (CurValue c,(c,pSt)) 
receiverfun textid (SetValue c) (_,pSt) 
 = (SetValueOk,(c, appPIO (setControlText textid (fromInt c)) pSt)) 

The realization of the two access functions is equally straightforward. We include it without 
comment. 

getCounterValue :: CounterControlId (PSt .l) -> (Maybe Int,PSt .l) 
getCounterValue {receiverId} pSt 
 = case syncSend2 receiverId GetValue pSt of 
  ((SendOk,Just (CurValue c)),pSt) -> (Just c, pSt) 
  (unexpectedResult,          pSt) -> (Nothing,pSt) 
 
setCounterValue :: CounterControlId Int (PSt .l) -> PSt .l 
setCounterValue {receiverId} c pSt 
 = case syncSend2 receiverId (SetValue c) pSt of 
  ((SendOk,Just SetValueOk),pSt) -> pSt 
  (unexpectedResult,        pSt) -> pSt 

The only thing that needs to be done is to include a receiver in the counter control: 
instance Controls CounterControl where 
 controlToHandles (CounterControl initValue (decrVal,incrVal) counterId attributes) pSt 
  # counter 
   = LayoutControl 
   { newLS  = initValue 
   , newDef = TextControl "Counter value" [] 
     :+: TextControl (toString initValue) 
           [ ControlId       textid 
           ] 
     :+: ButtonControl "&-"  [ ControlFunction (upd (\n=n+decrVal)) 



I.5 INTERACTIVE PROGRAMS 139 

           , ControlPos      (Left,zero) 
           ] 
     :+: ButtonControl "&0" [ ControlFunction (upd (\n=0)) 
           , ControlTip      "Set counter to 0" 
           ] 
     :+: ButtonControl "&+" [ ControlFunction (upd (\n=n+incrVal)) 
           ] 
     :+: Receiver2 receiverid (receiverfun textid) [] 
   } attributes 
 = controlToHandles counter pSt 
 where 
  textid  = counterId.displayId 
  receiverid = counterId.receiverId 
 
  upd :: (Int->Int) (Int,PSt .l) -> (Int,PSt .l) 
  upd f (count,pSt) 
   # count = f count 
   = (count, appPIO (setControlText textid (fromInt count)) pSt) 
 getControlType _ = "CounterControl" 

The counter control as developed here is completely reusable, encapsulates its local state 
and identifiers, and allows external access only if its identification value is available. The 
dialog that incorporates the counter control is identical to the previous version, but now 
the counter value can be read and written. 

5.6 Windows 
Programming windows is more elaborate than programming a dialog (a dialog has more 
structure so the library can deal with most of the work). A dialog is basically a collection of 
controls within a fixed size frame, whereas the purpose of a window is to display a document 
that can be manipulated by the user via the keyboard and mouse. In general a window 
shows only a portion of the document, and it therefore allows the user to scroll and change 
the size of the window. Consequently, a window must have an update function that redraws 
(part of) the window when required (e.g. when the window is put in front of another win-
dow or when it is scrolled). Windows do have in common with dialogs the set of controls, 
and also their placement is just as flexible.  
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Figure 5.10: Some window terminology. 

The document that is displayed in a window is presented at the background of the window. 
This is called the document layer. If there are controls in a window then these are placed be-
fore the document, in the control layer. These layers are visually clipped inside the window (dia-
log) frame.  

To present the document to the user the program must draw in the document layer. For 
this purpose the document layer contains a picture. A picture is a uniquely attributed envi-
ronment of type *Picture. The module StdPicture contains all drawing operations on pictures. 
Every drawing operation has an effect on the picture. The smallest drawing unit in a pic-
ture is a pixel. Pixels are identified by their co-ordinate, for which we use the Point2 data 
type. A Point2 is a pair of integers:  
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:: Point2 = { x :: !Int 
   , y :: !Int 
   } 
 
instance == Point2 
instance +    Point2 
instance -    Point2 
instance zero Point2 

Pixel co-ordinates increase from left to right and top to bottom. The first integer determines the 
horizontal position. It is often called x co-ordinate. The other integer is usually called the y 
co-ordinate, remember that it increments when you move from the top to the bottom. This 
is different from what is custom in mathematics! Pictures have a finite domain: the range of 
x co-ordinates and y co-ordinates is [-230, 230].  

A window is used to view a part of the picture of the document layer. The program can 
control the visible part by defining a view domain. This value defines the minimum and 
maximum x and y co-ordinates. Given this information, the window allows the user to 
scroll over the document layer, and therefore display different sections of a picture. The 
co-ordinate of the pixel that is displayed at the left-top corner of the window is called the 
window origin. The visible portion of the picture is determined by the window view size. So, if 
the current window view size is w pixels wide and h pixels high, and the current window 
origin is the point (x,y), then all pixels with x co-ordinates between x and x+w, and y co-
ordinates between y and y+h are in principle visible.  

The object I/O library takes care of scrolling, zooming, and resizing the window. The ac-
tions associated with mouse events, keyboard events and with clicking in the close box are 
determined by the program. Your program always works in the co-ordinate system of the 
picture. Drawing outside the current window view frame has no visual effect, but these ac-
tions are performed nevertheless. In order to speed up drawing you can define the drawing 
functions in such a way that only items inside the current window view frame are shown. 
This is worthwhile when drawing happens to be (too) time consuming.  

The parts of the window that are currently outside the window, or are hidden behind some 
other window or control, are not memorized by the object I/O library. Whenever the user 
scrolls the window or moves a window that is in front of another, the newly exposed pic-
ture area needs to be drawn. The object I/O system uses a function that is optionally pro-
vided by the program. This function is the so called look function. It has the following type.  

:: Look   :== SelectState -> UpdateState -> *Picture -> *Picture 
:: UpdateState = { oldFrame :: !ViewFrame 
     , newFrame :: !ViewFrame 
     , updArea  :: !UpdateArea 
     } 
:: ViewFrame :== Rectangle 
:: UpdateArea :== [ViewFrame] 

This update function has as arguments the current SelectState of the window, and a descrip-
tion of the area to be updated which is defined in a record of type UpdateState. This record 
contains the list of rectangles to be updated (updArea field), and the currently visible part of 
the window (newFrame field). In case the update was generated because the size of the win-
dow was changed, the previous size of the window is also given (oldFrame field). This field is 
equal to the newFrame field in case the window was not resized. 

5.6.1 Hello World in a Window 
In section 5.4.1 we have shown how to create a hello world program using a dialog. We now 
show how to create a slightly more exciting version of this program by putting the message 
in a window. It should be noted that a window definition is virtually identical to a dialog 
definition. The differences are the type constructor (Window versus Dialog), and a different 
set of valid attributes.  
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The “Hello World!” message is drawn by the look function (the WindowLook attribute). The 
window has no controls (expressed by using NilLS as the second argument of Window). We 
have not set a view domain. In that case the Object I/O system choses the default value of 
the co-ordinates between zero and 230. By setting the initial window view size we control 
the initial size of the window. If this attribute is omitted then the object I/O system will 
create a window that is as large as possible but inside the given window view domain (since 
this is usually larger than the screen this results in a full screen window view frame).  

This program can be terminated in five ways: by the process close attribute, by selecting the 
Quit command from the File menu, by pressing a key on the keyboard when the window is 
active (WindowKeyboard attribute), by pressing the mouse in the window (WindowMouse attribute), 
or by closing the window (WindowClose attribute). 

module helloWindow 
 
import StdEnv, StdIO 
 
Start :: *World -> *World 
Start world = startIO SDI Void (openwindow o openmenu) [ProcessClose closeProcess] world 
where 
 openwindow   = snd o openWindow undef window 
 window    = Window "Hello window" 
       NilLS 
       [ WindowKeyboard filterKey   Able (const quit) 
       , WindowMouse  filterMouse Able (const quit) 
       , WindowClose  quit 
       , WindowViewSize {w=160,h=100} 
       , WindowLook  True (\_ _ = look) 
       ] 
 openmenu   = snd o openMenu undef file 
 file    = Menu "&File" 
       ( MenuItem "&Quit" [MenuShortKey 'Q',MenuFunction quit] 
       ) [] 
 quit    = noLS closeProcess 
 look    = drawAt {x=30,y=30} "Hello World!" 
 filterKey   key  = getKeyboardStateKeyState key<>KeyUp 
 filterMouse mouse = getMouseStateButtonState mouse==ButtonDown 

This program produces a window as shown in the next figure. 

   

Figure 5.11: The hello world window program.  

5.6.2 Peano Curves 
In order to demonstrate line drawing in a window we will treat Peano curves. Apart from 
axioms about numbers, Giuseppe Peano (1858-1932) also studied how you can draw a line 
to cover a square. A simple way to do this is by drawing lines from left to right and back at 
regular distances. More interesting curves can be obtained using the following algorithm. 
The order zero is to do nothing at all. In the first order we start in the left upper quadrant, 
move to pen to the right, down and to the left. This is the curve Peano 1. Since the net 
movement of the pen is down, we call this curve south. In the second Peano curve we re-
place each of the lines from Peano 1 with a similar figure. The line to the left is replaced by 
south, east, north and east. Each of the new lines is only half as long as the lines in the pre-
vious order. By repeating this process to the added lines, we obtain the following sequence 
of Peano curves. 
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Figure 5.12: Some Peano curves. 

We start with representing the figures by means of a list of drawing functions. From StdPic-
ture and StdIOCommon we use the following types: 

:: Picture 
 
class Drawables figure where 
 draw  ::         !figure !*Picture -> *Picture 
 drawAt  :: !Point2 !figure !*Picture -> *Picture 
 undraw  ::         !figure !*Picture -> *Picture 
 undrawAt :: !Point2 !figure !*Picture -> *Picture 
 
instance Drawables Vector2 
 
:: Vector2 = {vx::!Int,vy::!Int}       // defined in StdIOCommon 
 
setPenPos  :: !Point2 !*Picture -> *Picture 

In particular we use the function setPenPos to move the pen to the argument co-ordinate 
without drawing, and the Vector2 instance of the overloaded draw function to draw a line 
from the current pen position over the given vector. The new pen position is at the end of 
the vector. 

The pictures above are generated by four mutually recursive functions. The integer argu-
ment, n, determines the number of the approximation. The length of the lines, d, is deter-
mined by the window view frame size and the approximation used. Instead of generating 
lists of lines in each of the functions and appending these lists we use continuations. In gen-
eral a continuation determines what has to be done when the current function is finished. 
In this situation the continuation contains the list of lines to be drawn after this pen 
movement is finished. 

peano :: Int -> [IdFun *Picture] 
peano n = [ setPenPos {x=d/2,y=d/2} 
    : south n [] 
    ] 
where 
 south 0 c = c 
 south n c = east (n-1)  [ lineEast 
        : south (n-1) [ lineSouth 
            : south (n-1) [lineWest:west (n-1) c] 
            ] 
        ] 
 east 0 c = c 
 east n c = south (n-1) [ lineSouth 
        : east (n-1) [ lineEast 
            : east (n-1)[lineNorth: north (n-1) c] 
            ] 
        ] 
 north 0 c = c 
 north n c = west (n-1)  [ lineWest 
        : north (n-1) [ lineNorth 
            : north (n-1) [lineEast: east (n-1) c] 
            ] 
        ] 
 west 0 c = c 
 west n c = north (n-1) [ lineNorth 
        : west (n-1) [ lineWest 
            : west (n-1) [lineSouth: south (n-1) c] 
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            ] 
        ] 
 lineEast = draw {vx=  d, vy=  0} 
 lineWest = draw {vx= ~d, vy=  0} 
 lineSouth = draw {vx=  0, vy=  d} 
 lineNorth = draw {vx=  0, vy= ~d} 
 
 d   = windowSize / (2̂ n) 

Embedding in a Program 

We need a window to draw these curves. This is done in a fairly standard way. The window 
is created by the proper initialization action of startIO, which also opens two menus. There 
is no need for a logical state. The current order of the Peano curve will be stored implicitly 
in the look function. Because we are going to change the look attribute of the window we 
need to identify it. For this purpose we first create an identification value of type Id using 
the function openId (defined in module StdId) and pass it to the initialization function of star-
tIO. All local function definitions in initialIO can now easily refer to this identification value. 

import StdEnv, StdIO 
 
Start :: *World -> *World 
Start world 
 # (id,world) = openId world 
 = startIO SDI Void (initialIO id) [ProcessClose closeProcess] world 
where 
 initialIO wId 
  = seq [openwindow,openfilemenu,openfiguremenu] 

Two menus are opened. The “File” menu contains only the menu item “Quit”. The “Fig-
ure” menu contains items to generate various Peano curves. This menu is generated by an 
appropriate list comprehension. 

openfilemenu = snd o openMenu undef file 
file = Menu "&File" 
   ( MenuItem "&Quit" [ MenuShortKey 'Q' 
                     , MenuFunction (noLS closeProcess) 
                     ] 
   )  [] 
openfiguremenu = snd o openMenu undef fig 
fig  = Menu "Fi&gure" 
   ( ListLS 
    [  MenuItem (toString i) [ MenuShortKey (toChar (i + toInt '0')) 
                             , MenuFunction (noLS (changeFigure i)) 
                             ] 
    \\ i <- [1..8] 
    ] 
   ) [] 

Changing a figure requires three actions. First, the window title is changed in order to re-
flect the current Peano curve drawn, using setWindowTitle. Then, the window look function is 
set to the new curve, using setWindowLook. Finally, the entire picture domain is erased and the 
new figure is drawn, using appWindowPicture. 

changeFigure peano_nr pSt=:{io} 
 # io = setWindowTitle wId ("Peano "+++toString peano_nr)  io 
 # io = setWindowLook  wId False (False,\_ _= redraw) io 
 = {pSt  & io = appWindowPicture wId redraw io} 
where 
 redraw = seq [ unfill pictDomain : figure = peano peano_nr ] 

The window is a fairly standard scroll window. The only thing that is a bit special is the fact 
that we insert a white margin around the figure. We accomplish this easily by setting the 
minimum values of the window view domain attribute not to zero, but {x = ~margin, y =~ mar-
gin}. In this way we can draw the Peano curves from zero and the object I/O system will 
take care of the margins. The WindowHScroll and WindowVScroll attributes add a horizontal and 
vertical scrollbar respectively. Their attribute function is evaluated whenever the user is op-
erating the scrollbars. In that case a new thumb position needs to be calculated. Because 
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this situation occurs rather often, the object I/O library has a predefined function, 
stdScrollFunction (in module StdIOCommon) that you can use. It is parameterized with the direc-
tion and the scroll step size. Note that the menu function changeFigure assumes that the win-
dow is identified by the Id value wId. If one forgets to set the WindowId attribute then the 
menu operations will not have the desired effect.  

openwindow = snd o openWindow undef window 
where 
 window = Window "Peano" NilLS 
    [ WindowHScroll    (stdScrollFunction Horizontal 10) 
    , WindowVScroll    (stdScrollFunction Vertical   10) 
    , WindowViewDomain pictDomain 
    , WindowViewSize   {w=windowSize+2*margin,h=windowSize+2*margin} 
    , WindowLook       True (\_ _= seq (peano 1)) 
    , WindowId         wId 
    ] 

We only need to define some constants to make this program complete (the images in fig-
ure 5.12 were generated using windowSize of 128): 

windowSize :== 512 
pictDomain :== { corner1 = {x = ~margin,           y = ~margin} 
    , corner2 = {x = windowSize+margin, y = windowSize+margin} 
    } 
margin  :== 4 

Memory Use 

Although the program described above works correctly, it uses enormous amounts of 
memory (several megabytes for peano 8). The reason for this is that Peano curves consist of 
a very large number of lines that are memorized by the program for future reuse.  

How many lines does the representation of a Peano curve contain? Let’s call the number of 
lines c (for complexity).The number of lines in a Peano curve of order n is: 

c 0 = 3 
c n = 3 + 4*c (n-1) 

This is obvious from the structure of the definition of the functions north, east, south and 
west. In the next chapter we will argue that this implies that the number of lines increases 
exponential with the order of the Peano curve. 

c 1  = 3 
c 2  = 15 
c 3  = 63 
c 4  = 255 
c 5  = 1023 
c 6  = 4095 
c 7  = 16383 
c 8  = 65535 
c 9  = 262143 
c 10 = 1048575 

Why is the list of drawing functions memorized? This becomes clear if we look at the func-
tion changeFigure. The value figure is the list of lines in the Peano curve. It is computed in 
order to update the window by passing it as argument to appWindowPicture. Since the same 
argument is used in the new window look function, the result of the computation is stored 
for reuse. This is an example of the graph reduction scheme used by CLEAN: an expression 
is evaluated at most once. Usually this is a benefit, by sharing the result of the reduction, 
programs become faster.  

In this situation you might prefer a small program instead of a program that consumes 
megabytes of memory and is only a little bit faster. This can be achieved by making the list 
of lines in the window look function and in the initial window look two separate ex-
pressions. Instead of sharing the result of peano peano_nr, we substitute it at each reference: 

changeFigure peano_nr pSt=:{io} 
 # io = setWindowTitle wId ("Peano "+++toString peano_nr) io 
 # io = setWindowLook  wId False (False,\_ _= seq [unfill pictDomain:peano peano_nr]) io 
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 = {pSt  & io = appWindowPicture wId redraw io} 
where 
 redraw = seq [unfill pictDomain:peano peano_nr] 

This reduces the memory requirements for this program with about one order of magni-
tude, without a significant increase of the execution time. The list of lines is recomputed 
for each update, but a line becomes garbage as soon as it is drawn, this implies that the 
memory needed to store the line can be reused immediately after drawing. 

As a final remark, one can observe that the changeFigure function contains a small redun-
dancy. After setting the look of the window, the very same look functions are drawn in the 
window. This can be combined by passing a True Boolean argument to setWindowLook and skip 
the application of appWindowPicture altogether. 

changeFigure peano_nr pSt=:{io} 
 # io = setWindowTitle wId ("Peano "+++toString peano_nr) io 
 # io = setWindowLook  wId True (False,\_ _= seq [unfill pictDomain:peano peano_nr]) io 
 = {pSt  & io=io} 

Avoiding Lists 

From the discussion above it is clear that long lists of drawing functions are a potential 
problem. Instead of building a list of drawing functions that has to be evaluated by seq, we 
can also apply the drawing functions immediately on the picture. 

As a second and completely separate change we will draw the Peano curves using a current 
direction. In order to represent the direction we define: 

:: Dir = North | East | South | West 
 
turnRight :: !Dir -> Dir 
turnRight North = East 
turnRight East = South 
turnRight South = West 
turnRight West = North 
 
turnLeft :: !Dir -> Dir 
turnLeft North = West 
turnLeft East = North 
turnLeft South = East 
turnLeft West = South 

Using the current direction we observe that there are basically three drawable elements in 
the Peano curves: straight lines, a C-shaped curve, and its mirror image called D-shaped 
curve. The direction of a curve is by convention the direction of the total pen movement. 
This implies that the direction of Peano 1 in figure 5.12 is South. In that figure you can see 
that the D-shaped curve at the lowest level consists of a turn to the left, a line, a turn right, 
a line, a turn right, and a line. 

Recursively replacing the lines in a curve by other curves and connection lines produces 
higher order Peano curves. For instance the D-curve at level i is replaced by a turn left, C-
curve(i-1), line, turn right, D-curve(i-1), line, D-curve(i-1), turn right, line, and C-curve(i-1). 

This is implemented directly as: 
peano :: !Int !*Picture -> *Picture 
peano n picture 
 # picture = setPenPos {x=len/2, y=len/2} picture 
 = curveD South n picture 
where 
 curveD :: !Dir !Int !*Picture -> *Picture 
 curveD d 0 picture 
  = picture 
 curveD d i picture 
  # d   = turnLeft d 
  # i   = i-1 
  # picture = curveC d i picture 
  # picture = line d picture 
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  # d   = turnRight d 
  # picture = curveD d i picture 
  # picture = line d picture 
  # picture = curveD d i picture 
  # d   = turnRight d 
  # picture = line d picture 
  # picture = curveC d i picture 
  = picture 
  
 curveC :: !Dir !Int !*Picture -> *Picture 
 curveC d 0 picture 
  = picture 
 curveC d i picture 
  # d   = turnRight d 
  # i   = i-1 
  # picture = curveD d i picture 
  # picture = line d picture 
  # d   = turnLeft d 
  # picture = curveC d i picture 
  # picture = line d picture 
  # picture = curveC d i picture 
  # d   = turnLeft d 
  # picture = line d picture 
  # picture = curveD d i picture 
  = picture 
 
  line :: !Dir -> IdFun *Picture 
 line North = draw {zero & vy = ~len} 
 line East  = draw {zero & vx =  len} 
 line South = draw {zero & vy =  len} 
 line West  = draw {zero & vx = ~len} 
  
 len = windowSize / (2̂ n) 

Printing 

The module StdPrint from the I/O library provides primitives to print drawings. Printing 
pictures is very similar to drawing in a window. Since the resolution of printers is usually 
much higher than the resolution of a screen, we have to be a bit careful. When the same 
pixels are drawn on a piece of paper as on the screen we obtain a very tiny picture. The li-
brary functions provide an option to enlarge the pixels on the paper to make the picture 
printed on paper similar to the picture drawn on the screen. If you want to use the full 
resolution of the printer you have to provide a print function that employs all pixels of the 
printer. 

Another difference between drawing in a window and on a printer is that you might want 
to produce a sequence of pages. A window has only one document layer that might repre-
sent information that should be printed on several pages. A program indicates the pages to 
be printed as a list of drawing functions, each of which represents one single separate page.  

The module StdPrintText contains primitives to draw high quality text on a printer. If de-
sired you can print headers and footers on the pages. The definition module contains an 
explanation. 

The easiest way to print the contents of a window is by reusing the look function of the 
window. In our current example the look function is changed dynamically to draw the right 
Peano curve. The current order of the Peano curve is known only inside the window look 
function. To print this curve we either have to store this information in the process state, 
or we have to use the current look function for printing. To prevent possible problems 
with conflicting information in the process state and look function we will use the window 
look function to draw on the printer. 

The Peano program has to be extended a little bit in order to enable printing. First we add 
a menu item to the “File” menu that will activate printing. The menu definition becomes: 



I.5 INTERACTIVE PROGRAMS 147 

file = Menu "&File" 
   ( MenuItem "&Print" [ MenuShortKey 'P' 
                      , MenuFunction (noLS printImage) 
                      ] 
   :+: MenuItem "&Quit"  [ MenuShortKey 'Q' 
                      , MenuFunction (noLS closeProcess) 
                      ] 
   )  [] 

The function printUpdateFunction from the I/O library is used to initialize printing. 
printUpdateFunction 
  :: !Bool (UpdateState -> *Picture -> *Picture) [Rectangle] !PrintSetup !*env  
  -> (!PrintSetup,!*env) | PrintEnvironments env 

The first argument of this function is a Boolean determining whether a dialog will pop up 
that lets the user choose printing options. If no dialog is shown, printing will happen in the 
(system dependent) default way. The next argument is the actual drawing function. Note 
that if one uses the look function it must be applied to a SelectState first. The list of rec-
tangles determines the areas to be printed by the drawing function. The printer setup is an 
abstract data type that represents the used printer. The printUpdateFunction function al-
ways emulates the screen resolution. 

The library functions getWindowLook and defaultPrintSetup obtain the current look func-
tion and printer setup. 

getWindowLook  :: !Id !(IOSt .l) -> (!Maybe (Bool,Look),!IOSt .l) 
defaultPrintSetup :: !*env -> (!PrintSetup,!*env) | FileEnv env 

When a rectangle supplied to printUpdateFunction does not fit on one page the figure is 
drawn on as many pages as are necessary. So, in order to print exactly one page we need 
the dimensions of a page. These dimensions are selected from the page setup by: 

getPageDimensions :: !PrintSetup !Bool -> PageDimensions 

The boolean determines whether we want to emulate the screen dimensions (True), or we 
want to use the actual printer resolution (False). 

Using these library functions the printImage function called by the menu item print is 
rather simple. First we try to get the look from the current I/O state. If such a look is 
found we pick up the printer setup and page dimensions and compute the print rectangle. 
This information is supplied to printUpdateFunction. The new printer setup yielded by 
this function is discarded by snd. If selecting the look of the window fails, the function 
printImage is finished immediately. 

printImage :: (PSt .l) -> PSt .l 
printImage pSt 
 # (maybe_look,pSt)    = accPIO (getWindowLook wId) pSt 
 = case maybe_look of 
  Just (_,look) 
   # (setup,pSt) = defaultPrintSetup pSt 
   # page_dim    = getPageDimensions setup True 
   # rectangle   = {zero & corner2={x=page_dim.page.w-1,y=page_dim.page.h-1}} 
   = snd (printUpdateFunction True (look Able) [rectangle] setup pSt) 
  otherwise 
   = pSt 

5.6.3 A Window to show Text 
Let us use the file read functions to create a program that shows the contents of that file in 
a window extended with the options to select (hilight) a line with the mouse and scroll us-
ing the keyboard arrow keys. This results in a simple program that demonstrates how to 
program a window application with a keyboard and mouse user interface. 

One should now be familiar with the typical startup code of an Object I/O program. The 
menu system is straightforward. The public state of the application is a record that contains 
a field (lines) for the text lines of the file, a field (select) to indicate if a line is selected, a 
field (selectedline) that gives the line number of the selected line, a field (windowid) that iden-
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tifies the window, and a field (textFont) that contains the information to draw the text in the 
proper font and to access the font metrics.  

module displayfileinwindow 
 
import StdEnv, StdIO 
 
::  ProgState 
    = { lines        :: [String] 
      , select       :: Bool 
      , selectedline :: Int 
      , windowid     :: Id 
      , textFont     :: InfoFont 
      } 
 
Start :: *World -> *World 
Start world 
    # (fontinfo,world) = accScreenPicture getInfoFont world 
    # (windowid,world) = openId world 
    # initstate        = { lines        = [] 
                         , select       = False 
                         , selectedline = abort "No line selected" 
                         , windowid     = windowid 
                         , textFont     = fontinfo 
                         } 
    = startIO SDI initstate openmenu [ProcessClose quit] world 
where 
    openmenu  = snd o openMenu undef menu 
    menu      = Menu "&File" 
                    (   MenuItem "&Open" [ MenuShortKey 'O' 
                                         , MenuFunction (noLS (fileReadDialog show)) 
                                         ] 
                    :+: MenuSeparator    [] 
                    :+: MenuItem "&Quit" [MenuShortKey 'Q',MenuFunction (noLS quit)] 
                    )   [] 
     
    quit      = closeProcess 

The function show opens the file, reads its content, and calls displayInWindow to display the 
result in a window. 

show :: String (PSt ProgState) -> PSt ProgState 
show name pSt=:{ls} 
    # (readok,file,pSt) = sfopen name FReadText pSt 
    | not readok        = abort ("Could not open input file '" +++ name +++ "'") 
    # lines             = LineListRead file 
    | isEmpty lines     = pSt  
    | otherwise         = displayInWindow {pSt & ls = {ls & lines = lines}} 

Because we intend to show only one window at a time, displayInWindow must first close a 
previous window. Note that this does not cause a runtime error because closeWindow simply 
skips if there is no window to close. Trying to open a new window when there is already a 
window in a SDI application also skips.  
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displayInWindow :: (PSt ProgState) -> PSt ProgState 
displayInWindow pSt=:{ls=state=:{textFont,windowid,lines}} 
    = (snd o openWindow undef windowdef o closeWindow windowid) pSt 
where 
    windowdef 
        = Window "Read Result" 
            NilLS 
            [ WindowHScroll    (stdScrollFunction Horizontal width) 
            , WindowVScroll    (stdScrollFunction Vertical   height) 
            , WindowViewDomain { corner1={x= ~whiteMargin,y=0} 
                               , corner2={x= maxLineWidth,y=length lines*height} 
                               } 
            , WindowViewSize   {w=640,h=480} 
            , WindowLook       False (look state) 
            , WindowKeyboard   filterKey   Able (noLS1 handleKeys) 
            , WindowMouse      filterMouse Able (noLS1 handleMouse) 
            , WindowId         windowid 
            ] 
    {width,height} = textFont 
 
whiteMargin  = 5 
maxLineWidth = 1024 

The units of scrolling and the size of the domain are defined using the font sizes that are 
taken from the default font of the application. These values are calculated by the function 
getInfoFont and stored in a record of type InfoFont. Because the metrics of a font depends on 
the resolution of the drawing environment, the function getInfoFont is actually an access 
function on the Picture environment. In this case we are interested in the screen resolution, 
which is the reason why we have used the accScreenPicture at application startup to create a 
temporary screen picture environment. Observe that the type of accScreenPicture is over-
loaded: it can be applied to World and (IOSt .l) environments.  

::  InfoFont  
    = { font   :: Font 
      , width  :: Int 
      , height :: Int 
      , up     :: Int 
      } 
 
getInfoFont :: *Picture -> (InfoFont,*Picture) 
getInfoFont env 
    # (font,   env) = openDefaultFont     env 
    # (metrics,env) = getFontMetrics font env 
    = ( { font   = font 
        , width  = metrics.fMaxWidth 
        , height = fontLineHeight metrics 
        , up     = metrics.fAscent+metrics.fLeading 
        } 
      , env 
      ) 

As explained earlier, the look function attribute of a window is called automatically by the 
Object I/O system when (part of) the window must be redrawn. It is applied to the list of 
areas that need to be redrawn and the current value of the *Picture environment of the win-
dow.  

In this case the look function is also parameterized with the public state record to give it 
easy access to the required information. In order to keep the program simple the complete 
lines are drawn even when part of them is outside the redraw area (this has no visible effect 
apart from a very small inefficiency). 

look :: ProgState SelectState UpdateState -> IdFun *Picture 
look state=:{select,selectedline,textFont,lines} _ updSt=:{updArea} 
    = strictSeq (map update updArea) 
where 
    update :: Rectangle -> IdFun *Picture 
    update domain=:{corner1=c1=:{y=top},corner2=c2=:{y=bot}} 
        = drawlines (tolinenumber textFont top) (tolinenumber textFont (dec bot)) lines o 
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          unfill {corner1={c1 & x= ~whiteMargin},corner2={c2 & x=maxLineWidth}} 
     
    drawlines :: Int Int [String] *Picture -> *Picture 
    drawlines first last textlines picture 
        # picture = strictSeq  [   drawAt {x=0,y=y} line 
                               \\  line <- textlines%(first,last) 
                                &  y <- [init_y,init_y + textFont.height..] 
                               ] picture 
        | select && (selectedline >= first || selectedline <= last) 
            = hiliteline textFont selectedline picture 
        | otherwise 
            = picture 
    where 
        init_y = towindowcoordinate textFont first + textFont.up 

The drawing functions from the library use, of course, window co-ordinates in the window 
domain while each program usually has its own co-ordinates in (a part of) its state. There-
fore, a program will generally contain transformation functions between the different sets 
of co-ordinates.  

In this case the program will have to transform window co-ordinates to line numbers and 
vice versa. This obviously depends on the font metrics.  

tolinenumber font windowcoordinate = windowcoordinate / font.height 
 
towindowcoordinate font linenumber = linenumber * font.height 

Using these transformations it is simple to write a function that hilights a line. Hilighting is 
done by the overloaded functions hilite and hiliteAt of the type constructor class Hilites 
which has the same signature as the Drawables class that we have seen earlier. The only in-
stances that can be highlighted are boxes and rectangles.  

towindowrectangle font linenumber  
    = { corner1 = {x = ~whiteMargin,  y = winco              } 
      , corner2 = {x =  maxLineWidth, y = winco + font.height} 
      } 
where 
    winco = towindowcoordinate font linenumber 

The Keyboard Handler 

The window keyboard attribute function is called by the Object I/O system if its parent 
window is enabled, active, and the keyboard input is accepted by its keyboard event filter. 
The keyboard state value records the keyboard information (is it a keydown?, which key?, is 
a meta-key or modifier such as shift, alt/option, command or control down pressed?). Be-
cause the keyboard function is a callback function it is of course also applied to the process 
state. Its result is a modified process state. An associated predicate on keyboard attributes 
filters the cases in which the function is interested. This function can be used to simplify 
the function implementation. If you are interested in getting all keyboard events, then the 
expression (const True) does the trick. In our little program the filter is defined by the func-
tion filterKey. We are only interested in special keys (the cursor keys and page up/down keys) 
that are pressed. This is done as follows: 

filterKey :: KeyboardState -> Bool 
filterKey (SpecialKey _ keyState _) = keyState <> KeyUp 
filterKey _                         = False 

The keyboard function handleKeys calls moveWindowViewFrame which internally will apply the win-
dow look function. Calculation of the scrolling vector is straightforward. To calculate the 
vector in case of page down and page up, the current window view frame size is required. This 
information is obtained by the function getWindowViewFrame (in StdWindow). The function rectan-
gleSize (defined in StdIOCommon) returns the Size of a Rectangle. Recall that Size is a record type 
with the integer fields w and h representing the width and height respectively.  

handleKeys :: KeyboardState (PSt ProgState) -> PSt ProgState 
handleKeys (SpecialKey kcode _ _) pSt=:{ls={textFont=font,windowid},io} 
    # (frame,io) = getWindowViewFrame windowid io 
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    = {pSt & io = moveWindowViewFrame windowid (v (rectangleSize frame).h) io} 
where 
    v pagesize 
        | kcode==leftKey    = {zero & vx= ~font.width} 
        | kcode==rightKey   = {zero & vx=  font.width} 
        | kcode==upKey      = {zero & vy= ~font.height} 
        | kcode==downKey    = {zero & vy=  font.height} 
        | kcode==pgUpKey    = {zero & vy= ~pagesize} 
        | kcode==pgDownKey  = {zero & vy=  pagesize} 
        | otherwise         = zero 

The Mouse Handler 

The window mouse attribute function is called by the Object I/O system if its parent win-
dow is enabled, active, and the mouse input is accepted by its mouse event filter. The 
mouse state value records the mouse information (position, no/single/double/triple/long 
click, modifier keys down). In the same way as keyboard functions, the mouse function 
modifies the process state. An associated predicate on mouse attributes filters the cases in 
which the function is interested. This function can be used to simplify the function imple-
mentation. If you are interested in getting all mouse events, then the expression (const True) 
does the trick. In this program we are only interested in double down mouse events. This is 
done as follows: 

filterMouse :: MouseState -> Bool 
filterMouse (MouseDown _ _ 2) = True 
filterMouse _                 = False 

The mouse function handleMouse changes the selected line, unhilights the previous selection 
(by highlighting it again), and hilights the new selection. Because the public state of the 
program is changed by the mouse function, we need to get the window look function ‘in 
sync’ because it is parameterized with the public state.  

handleMouse :: MouseState (PSt ProgState) -> PSt ProgState 
handleMouse (MouseDown {y} _ _) 
pSt=:{ls=state=:{textFont,select,selectedline=oldselection,windowid},io} 
    # io = appWindowPicture windowid (changeselection oldselection selection) io 
    = {pSt & ls = newstate 
           , io = setWindowLook windowid False (False, look newstate) io 
      } 
where 
    selection = tolinenumber textFont y 
    newstate  = {state & select = True,selectedline = selection} 
     
    changeselection :: Int Int -> IdFun *Picture 
    changeselection old new  
        | select    = hiliteline textFont new o hiliteline textFont old 
        | otherwise = hiliteline textFont new 
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Figure 5.13: A view of the display file program when it has read in its own source. 

5.7 Timers 
Some applications need to perform task at a regular basis. For this purpose timers have been 
included in the Object I/O library. A timer associates a callback function f with a timer in-
terval t that causes the system to generate a timer event every t timing units, causing f to be 
evaluated. Timer resolutions vary on different platforms. The valid timing unit is defined 
by the constant ticksPerSecond (StdSystem) that states the number of timing units in a 
second.  

Adding timers is very similar to adding dialogs and menus: they can be created in the ini-
tialization functions of the startIO function (but of course also at different occasions). Tim-
ers are identified with an Id value. They are characterized by a time interval and a callback 
function that is to be executed whenever the timer interval has elapsed. Timers can be en-
abled and disabled, but to do so its Id must be known.  

As an example of a timer, we add an auto-backup feature that can be toggled by the user 
via a menu command to the file display program of Section 5.6.3. This is taken care of by a 
single timer which saves the displayed file in a copy every five minutes. We create the timer 
at program start-up. We extend the program state record with a field to identify the timer 
(timerid) and menu command (autosaveid) and initialize these values. We indicate the 
changes to the Start rule in bold.  

Start :: *World -> *World 
Start world 
    # (fontinfo,  world) = accScreenPicture getInfoFont world 
    # (windowid,  world) = openId world 
    # (timerid,   world) = openId world 
    # (autosaveid,world) = openId world 
    # initstate          = { lines        = [] 
                           , select       = False 
                           , selectedline = abort "No line selected" 
                           , windowid     = windowid 
                           , timerid      = timerid 
                           , autosaveid   = autosaveid 
                           , textFont     = fontinfo 
                           } 
    = startIO SDI initstate (opentimer o openmenu) [ProcessClose quit] world 
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The timer creation function opentimer opens a timer that is identified by the timerid re-
cord value of the program state, is initially not enabled (TimerSelectState attribute is set 
to Unable), and which has the callback action timerfunction.This function uses the file-
WriteDialog function that was presented in Section 5.4.2. It applies its argument function 
writeFile whenever the user has selected an output file. This function simply writes all 
lines to the given file.  

opentimer pSt=:{ls={timerid}} 
          = (snd o openTimer undef timer) pSt 
where 
    timer = Timer timerInterval 
                  NilLS 
                  [ TimerId          timerid 
                  , TimerSelectState Unable 
                  , TimerFunction    (noLS1 timerfunction) 
                  ] 
    timerInterval = 5 * 60 * ticksPerSecond 
    timerfunction nrofintervalspassed 
          = fileWriteDialog writeFile 
    where 
        writeFile :: String (PSt ProgState) -> PSt ProgState 
        writeFile fileName pSt=:{ls={lines}} 
            # (ok,file,pSt) = fopen fileName FWriteText pSt 
            | not ok        = pSt 
            # file          = foldl (<<<) file lines 
            # (ok,pSt)      = fclose file pSt 
            | not ok        = pSt 
            | otherwise     = pSt 

The menu command has initial title “Enable AutoSave”. When selected, it should enable 
the timer and change its title to “Disable AutoSave”. When selected once more, it disables 
the timer and changes its title back to the previous one. This a good case of the use of local 
state in the menu command, namely a Boolean that keeps track of the auto save option. As-
suming we have a local boolean state, the callback function of the command is easy: 

autoSave :: (Bool,PSt ProgState) -> (Bool,PSt ProgState) 
autoSave (autosave,pSt=:{ls={timerid,autosaveid}}) 
    = ( not autosave 
      , appPIO (toggle timerid o setMenuElementTitles [(autosaveid,newtitle)]) pSt 
      ) 
where 
    (toggle,newtitle) = if autosave (disableTimer,"Enable Auto&Save" ) 
                                    (enableTimer, "Disable Auto&Save") 

All that remains to be done is to introduce the local boolean state in the new menu com-
mand. This is similar to what was explained in Section 5.5.2. Initially, the auto save option 
is off, so the initial value is False. The menu creation function is modified as follows: 

openmenu pSt=:{ls={autosaveid}} 
          = (snd o openMenu undef menu) pSt 
where 
    menu  = Menu "&File" 
                (   MenuItem "&Open" [ MenuShortKey 'O' 
                                     , MenuFunction (noLS (fileReadDialog show)) 
                                     ] 
                :+: { newLS  = False 
                    , newDef = MenuItem "Enable Auto&Save" 
                                     [ MenuId       autosaveid 
                                     , MenuShortKey 'S' 
                                     , MenuFunction autoSave 
                                     ] 
                    } 
                :+: MenuSeparator    [] 
                :+: MenuItem "&Quit" [MenuShortKey 'Q',MenuFunction (noLS quit)] 
                )   [] 

Note that many of the program changes required for exercise 5.6 are also required for this 
auto save function. 
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5.8 A Line Drawing Program 
In order to show how all pieces introduced above fit together we will show a complete 
window based program. The program is a simple line drawing tool. It is not intended as a 
complete drawing program, but to illustrate the structure of such programs. As a conse-
quence there are a lot of desirable options of a drawing program that are missing. Adding 
these features does not require new techniques. 

From the GUI library point of view, the program is rather complete. It contains a window 
to display the drawings and to allow manipulations using the mouse to create and change 
lines. The user can use the keyboard to scroll the image or delete the last line added. The 
image can be stored in a file and read from a file. There is a timer to remind the user to 
save the picture. Dialogs are used for a help function and the standard about dialog. The 
menus implement the commands as usual. 

The program is called linedraw. It starts by importing the needed modules that contain the 
type definitions and functions used to manipulate the standard data structures and compu-
tation (StdEnv) and Object I/O-system (StdIO). The module notice contains the notice 
implementation that was discussed in Section 5.4.5. 

module linedraw 
 
import StdEnv,StdIO,notice 

The Program State 

As a first step the important data types of the program are defined. As the data structure 
for the public state of the program we will use a record, because this will allow us to easily 
add extensions. In this way we can develop the program in an incremental way. In the first 
version we will store two pieces of data in the record:  

(1) since the program is going to be a pure line drawing tool, a list of lines – in the re-
cord field lines – is sufficient for keeping track of the lines that the user has 
drawn,  

(2) the name of the last input and output file used – in the record field fname –, this is 
the default when we save the image again.  

The initial values of these fields are [] (no lines drawn at start) and "" (no file chosen) re-
spectively.  

::  ProgState 
    = { lines    :: [Line2]         // The drawing 
      , fname    :: String          // Name of file to store drawing 
      } 
    = { lines    = []               // No lines are drawn 
      , fname    = ""               // No file has been chosen 
      , noticeOK = True             // Auto-save can be chosen 
      } 

In addition to the public state we decide to add to the window a local state that is used by 
the mouse when drawing lines. Here the Maybe data type comes in handy (it is defined in 
the module StdMaybe). Only when the mouse is actually tracking, a line is stored in the 
window state, otherwise it is simply Nothing. Again, to allow future extensions we use a 
record type for the local state of the window: 

::  WindowState 
    = { trackline :: Maybe Line2    // The line that is tracked in the window 
      } 
initWindowState 
    = { trackline = Nothing         // No line is being tracked 
      } 
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Global Structure 

We will describe the program top down. This implies that we begin with the Start rule. 
The first part of the program should be fairly standard by now, so we show all the code 
involved. The only difference with previous versions is that the initialization action – ini-
tialIO – is parameterized with the Ids of the drawing window and timer respectively. All 
further device definitions are local to the initialization function initialIO, and can therefore 
refer to these Ids. The initialization function opens the timer, the window, and two menus: 

Start :: *World -> *World 
Start world 
    # (wId,world) = openId world 
    # (tId,world) = openId world 
    = startIO SDI initProgState (initialIO (wId,tId)) [ProcessClose quit] world 
where 
    quit               = closeProcess 
    initialIO (wId,tId)= openeditmenu o openfilemenu o openwindow o opentimer 
    where 
        openfilemenu   = snd o openMenu undef file 
        file           = Menu "&File" 
                         (   MenuItem "&Open" [MenuShortKey 'O',MenuFunction (noLS open) ] 
                         :+: MenuItem "&Save" [MenuShortKey 'S',MenuFunction (noLS save) ] 
                         :+: MenuSeparator    [] 
                         :+: MenuItem "&Quit" [MenuShortKey 'Q',MenuFunction (noLS quit) ] 
                         )                    [] 
        openeditmenu   = snd o openMenu undef edit 
        edit           = Menu "&Edit" 
                         (   MenuItem "&Remove Line" 
                                              [MenuShortKey 'R',MenuFunction (noLS remove)] 
                         )   [] 
        openwindow     = snd o openWindow initWindowState window 
        window         = Window "Picture" 
                           NilLS 
                           [ WindowId          wId 
                           , WindowHScroll     (stdScrollFunction Horizontal 10) 
                           , WindowVScroll     (stdScrollFunction Vertical   10) 
                           , WindowViewDomain  pictDomain 
                           , WindowViewSize    initWindowSize 
                           , WindowLook        False (\_ _ =look []) 
                           , WindowMouse       filterMouse Able handleMouse 
                           , WindowKeyboard    filterKey   Able (noLS1 handleKey) 
                           , WindowClose       (noLS quit) 
                           ] 
        opentimer      = snd o openTimer undef timer 
        timer          = Timer time NilLS  
                           [ TimerId           tId 
                           , TimerFunction     (noLS1 remindSave) 
                           ] 

During the development of such a program you can begin with a less elaborated user in-
terface. In fact we started without timers. Also the help function and the option to remove 
lines were not present in the first prototypes. 

It is convenient to construct programs in an incremental way. We begin with a very simple 
version of the program and add extensions one by one. The program is compiled and 
tested before each subsequent addition. Because all callback functions are optional, it is 
easy to start with either no function attribute at all or use a no-operation (for which pur-
pose the StdFunc function id proves to be useful). Also the window look attribute can be 
absent or a no-operation in a first approximation of your program (although that will in 
general make it hard for you to see if your program is correct). The mouse and keyboard 
handler of the window can be omitted at start, or we can again use a no-operation. 

Also the first thing to define in an interactive program is its termination. We will do this by 
the menu command Quit. This enables us to leave the test versions of our program in a de-
cent way. As should be known by now, the only function that terminates any interactive 
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program is closeProcess (in module StdProcess). The implementation of the Quit call-
back function quit is therefore simply equal to closeProcess.  

Mouse Handling 

The next thing to implement is the essential part of the program: mouse handling. This is 
generally a good strategy: do the hard and crucial parts of the program as soon as possible. 
The simple details that complete your program can be added later. The difficult part de-
termines most likely the success of the program under construction. There is no excuse to 
spend time on simple work on a program that still risks to be changed fundamentally. 

The first thing that needs to be done with the mouse is drawing lines. A line starts at the 
point where the mouse button is pressed and ends where the mouse button is released. 
While the mouse is dragged the line under construction is drawn like a rubber band. This 
very informal specification tells us what mouse events we are interested in: a mouse down, 
followed by an arbitrary number of mouse drags, and a mouse up event. In particular, we are 
not interested in mouse move events. Another mouse event that is important in this pro-
gram is the mouse lost event. This event is generated whenever the ordinary sequence of 
MouseMove*; MouseDown; MouseDrag*; MouseUp is interrupted for some reason (for instance 
because another program forced a notice in front of the application). In that case a 
MouseLost event is inserted. The mouseFilter function simply excludes the MouseMove event: 

filterMouse :: MouseState -> Bool 
filterMouse (MouseMove _ _ ) = False 
filterMouse _                = True 

As discussed earlier, the window has a local state, a record of type WindowState. The 
mouse callback function handleMouse stores the information it needs to operate properly. 
It is parameterized with the filtered MouseState value. These always contain the current po-
sition of the mouse. The only things we need to remember are the starting point of the line 
and the previous end point in order to erase the previous version of the line drawn. As the 
abstract specification suggests, drawing this rubber band consists of three phases, each of 
which is adequately defined by one function alternative of handleMouse. The alternatives 
are pattern-matches on the MouseState alternative constructors MouseDown, MouseDrag, 
MouseUp, and MouseLost. We discuss them in the same order.  

• When the mouse button goes down, handleMouse stores the current mouse posi-
tion in the window state. The timer that might open the auto save dialog is disabled 
(using timerOff) to prevent interference. 
handleMouse (MouseDown pos _ _) (window,pSt) 
    = ({window & trackline=Just {line_end1=pos,line_end2=pos}},timerOff pSt) 

• While the user drags the mouse around, handleMouse first erases the previously 
tracked line and then draws the new tracked line. The new tracked line is stored in 
the window state. Proceeding in this way gives the effect of a rubber band. The 
drawing function appXorPicture is used to prevent damage to the existing picture. 
Drawing any object twice subsequently in XorMode restores the original picture. To 
prevent flickering, redrawing is suppressed in case the mouse was at the same posi-
tion (tested in the first guard).  
handleMouse (MouseDrag pos _) (window=:{trackline=Just track},pSt) 
    | pos == track.line_end2 
        = (window,pSt) 
    | otherwise 
        # newtrack  = {track & line_end2=pos} 
        = ( { window & trackline=Just newtrack } 
          , appPIO (appWindowPicture wId  
                        (appXorPicture (draw track o draw newtrack))) pSt 
          ) 

• When the mouse button goes up the line is completed and tracking has finished. So 
the window state is reset to Nothing, and the new line is added to the public pro-
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gram state. Because the picture has changed, the timer is switched on again (using 
timerOn). The look function of the window also needs to be updated. Since the line 
is already visible, there is no need to refresh the window which is indicated by the 
first False Boolean argument of setWindowLook.  
handleMouse (MouseUp pos _) ( window=:{trackline=Just track} 
                            , pSt=:{ls=progstate=:{lines}} 
                            ) 
    # pSt           = {pSt & ls=newprogstate} 
    # pSt           = timerOn pSt 
    # pSt           = appPIO (setWindowLook wId False (False,\_ _=look newlines)) pSt 
    = ({window & trackline=Nothing},pSt) 
where 
    newline         = {track & line_end2=pos} 
    newlines        = [newline:lines] 
    newprogstate    = {progstate & lines=newlines} 

• Whenever the mouse is lost the program should forget about the last line. The im-
age has to be restored at what it was before the whole operation started. This is not 
a hard job: 
handleMouse MouseLost (window=:{trackline=Just track}, pSt=:{ls=progstate}) 
    # pSt           = appPIO (appWindowPicture wId (appXorPicture (draw track))) pSt 
    = ({window & trackline=Nothing}, pSt) 

With these functions you can compile your program and draw some lines. You will soon 
discover that it is desirable to change the drawing. A very simple way to change the picture 
is by removing the last drawn line. For this we introduce the menu command Remove Line, 
which has callback function remove. If there are lines overlapping the line to be removed, it 
is not sufficient to erase that line. This would create holes in the picture. We simply erase 
the entire picture and draw all remaining lines again. This time we achieve this by setting 
the first Boolean argument of setWindowLook to True which causes a refresh of the entire 
visible area of the window. With some more programming effort the amount of drawing 
can be reduced, but there is currently no reason to spend this effort. If the list of lines is 
empty then no line needs to be removed. We make the computer beep in order to indicate 
this ‘error’.  

remove :: (PSt ProgState) -> PSt ProgState 
remove pSt=:{ls={lines=[]}} 
    = appPIO beep pSt 
remove pSt=:{ls=state=:{lines=[_:rest]},io} 
    = { pSt & ls={state & lines=rest} 
            , io=setWindowLook wId True (False,\_ _=look rest) io 
      } 
 
look :: [Line2] *Picture -> *Picture 
look ls picture 
    = foldr draw (unfill pictDomain picture) ls 

Another way to change the picture is by editing an existing line. If the user presses the 
mouse button together with the shift key very close to one of the ends of a line, that line can 
be changed. We use ‘very close’ instead of ‘exactly at’ because it is difficult for a user to po-
sition the mouse exactly at the end of a line. 

We change the function handleMouse. First we check whether the shift key is pressed. If it 
is, we try to find a line end touched by the mouse. If such a line is found, we remove it 
from the state, and start drawing the line with the removed line as initial version. If no line 
is touched the program ignores this mouse event. If the shift key is not pressed, we pro-
ceed as in the previous version of the function handleMouse. It is sufficient to add the new 
alternative before the other alternative of handleMouse, that does a pattern-match on Mouse-
Down because in CLEAN function alternatives are evaluated in textual order.  

handleMouse (MouseDown pos {shiftDown} nrDown) (window,pSt=:{ls=state=:{lines}}) 
    | shiftDown 
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        = case touch pos lines of 
            Just (track,ls) = ( { window & trackline = Just track } 
                              , timerOff { pSt & ls = {state & lines=ls} } 
                              ) 
            Nothing         = handleMouse (MouseDown pos NoModifiers nrDown) (window,pSt) 

The function touch determines whether or not a point is very close to the end of one of 
the given lines. Instead of yielding a Boolean, this function uses the type Maybe. In case of 
success the line touched and the list of all other lines is returned, otherwise Nothing. 

touch :: Point2 [Line2] -> Maybe (Line2,[Line2]) 
touch p [] 
    = Nothing 
touch p [line=:{line_end1=s,line_end2=e}:rest] 
    | closeTo p s = Just ({line_end1=e,line_end2=s},rest) 
    | closeTo p e = Just (line,rest) 
    | otherwise   = case touch p rest of 
                        Just (t,rest̀ ) = Just (t,[line:rest̀ ]) 
                        Nothing        = Nothing 
where 
    closeTo {x=a,y=b} {x,y} = (a-x)̂ 2 + (b-y)̂ 2 <= 10 

File I/O 

The next thing we want our program to be capable of is to store and retrieve the drawing 
in a file. Each line is represented by its end points. Each of these points consists of two 
integers. So we can store a line as a sequence of four integers in a data file. We use the 
standard platform dependent output file selector dialogue from StdFileSelect to let the user 
choose the name of the output file. 

save :: (PSt ProgState) -> PSt ProgState 
save pSt=:{ls=state=:{fname,lines}} 
    # (maybe_fn,pSt)        = selectOutputFile "Save as" fname pSt 
    | isNothing maybe_fn 
        = pSt 
    # fn                    = fromJust maybe_fn 
    # (ok,file,pSt)         = fopen fn FWriteData pSt 
    | not ok 
        = inform ["Cannot open file"] pSt 
    # file                  = seq [  fwritei i 
                                  \\ {line_end1,line_end2} <- lines 
                                  ,  i <- [line_end1.x,line_end1.y,line_end2.x,line_end2.y] 
                                  ]  file 
    # (ok,pSt)              = fclose file pSt 
    | not ok 
        = inform ["Cannot close file"] pSt 
    | otherwise 
        = {pSt & ls={state & fname=fn}} 

We reused the inform notice, introduced in section 5.4.5, in case that there is something 
wrong with opening or closing the file. 

Opening and reading lines from a file is very similar. Again, we kindly ask the user to pick a 
file using the platform dependent input file selector dialogue (also defined in StdFileSelect). We 
open the selected file as a unique file in order to allow reuse. In this way the user can read a 
drawing from a file, change it and save it again in the same file. Each sequence of four inte-
gers found in the file is interpreted as a line. We do not do any checks on the format of the 
file.  

open :: (PSt ProgState) -> PSt ProgState 
open pSt=:{ls=state} 
    # (maybe_fn,pSt)        = selectInputFile pSt 
    | isNothing maybe_fn 
        = pSt 
    # fn                    = fromJust maybe_fn 
    # (ok,file,pSt)         = fopen fn FReadData pSt 
    | not ok 
        = inform ["Cannot open file"] pSt 
    # (ints,file)           = readInts file 
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    # (ok,pSt)              = fclose file pSt 
    | not ok 
        = inform ["Cannot close file"] pSt 
    | otherwise 
        # lines             = toLines ints 
        # pSt               = appPIO (setWindowLook wId True (False,\_ _=look lines)) pSt 
        = {pSt & ls={state & lines=lines,fname=fn}} 
where 
    toLines :: [Int] -> [Line2] 
    toLines [a,b,x,y:r] = [{line_end1={x=a,y=b},line_end2={x=x,y=y}}:toLines r] 
    toLines _           = [] 
 
    readInts :: *File -> ([Int],*File) 
    readInts file 
        # (end,file)    = fend file 
        | end           = ([],file) 
        # (ok,i,file)   = freadi file 
        | not ok        = ([],file) 
        # (is,file)     = readInts file 
        | otherwise     = ([i:is],file) 

The Keyboard Handler 

As a next step we add a keyboard interface to the window of our drawing program. The 
arrow keys scroll the window and the backspace and delete key is equivalent to the menu item 
remove. These keys all belong to the SpecialKey alternative constructor of the Keyboard-
State type. We also intend to ignore KeyUp events. These considerations lead to the fol-
lowing keyboard filter filterKey: 

filterKey :: KeyboardState -> Bool 
filterKey (SpecialKey _ kstate _) = kstate<>KeyUp 
filterKey _                       = False 

Because of this definition of the keyboard filter the keyboard callback function handleKey 
of the window only needs to handle special keys. Its first alternative simply checks for the 
backspace and delete key. If it is one of these keys, handleKey proceeds as remove. The 
other alternative of handleKey takes care of all other special keys for scrolling. It is very 
similar to the keyboard function discussed in Section 5.5.3. Again getWindowViewFrame is 
used to determine the current dimension of the window. Depending on the special key the 
window view frame is moved, using moveWindowViewFrame.  

handleKey :: KeyboardState (PSt ProgState) -> PSt ProgState 
handleKey (SpecialKey kcode _ _) pSt 
    | isMember kcode [backSpaceKey,deleteKey] 
        = remove pSt 
handleKey (SpecialKey kcode _ _) pSt=:{io} 
    # (frame,io) = getWindowViewFrame wId io 
    = {pSt & io = moveWindowViewFrame wId (v (rectangleSize frame).h) io} 
where 
    v pagesize 
        | kcode==leftKey    = {zero & vx=   ~10} 
        | kcode==rightKey   = {zero & vx=  10} 
        | kcode==upKey      = {zero & vy= ~10} 
        | kcode==downKey    = {zero & vy=  10} 
        | kcode==pgUpKey    = {zero & vy= ~pagesize} 
        | kcode==pgDownKey  = {zero & vy=  pagesize} 
        | otherwise         = zero 

Timers 

The last GUI element we add is the timer. After a predefined amount of time since the first 
change of the drawing, a notice is shown to the user. This notice reminds the user to save 
his work. There are two buttons in the notice. The “Save now” button calls the save func-
tion. The other button resets the timer. A timer can be reset by first disabling it and then 
enabling it. This is implemented by the function timerReset.  

timerReset tId = appListPIO [disableTimer tId,enableTimer tId] 
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In order to keep the irritation factor low on behalf of the user we add two functions, 
timerOff and timerOn, that will prevent the notice from popping up when the user is 
drawing a line. One might assume that simply calling disableTimer and enableTimer does 
the trick. This naïve implementation does not work. The reason for this complication is 
that enableTimer, when applied to a disabled timer, resets the last evaluation time stamp of 
the timer. Because of this, a straightforward approach will always defer the timer whenever 
the user draws something. What is required is an additional piece of state that tells the 
timer if it is allowed to bother the user. We can now profit from the fact that the program 
state ProgState is a record. We extend it with a new field, noticeOK, and need to give it an 
initial value: 

::  ProgState 
    = { lines    :: [Line2]         // The drawing 
      , fname    :: String          // Name of file to store drawing 
      , noticeOK :: Bool            // It is ok to show notice 
      } 
initProgState 
    = { lines    = []               // No lines are drawn 
      , fname    = ""               // No file has been chosen 
      , noticeOK = True             // Auto-save can be chosen 
      } 

The function timerOff that protects the user simply sets the noticeOK field to False.  
timerOff :: (PSt ProgState) -> PSt ProgState 
timerOff pSt=:{ls=state} 
    = {pSt & ls={state & noticeOK=False}} 

If the timer interval elapses, the timer callback function remindSave checks the noticeOK 
flag. If it is not supposed to interfere, it does nothing. Otherwise it happily interrupts the 
user.  

remindSave :: NrOfIntervals (PSt ProgState) -> PSt ProgState 
remindSave _ pSt=:{ls=state=:{noticeOK}} 
    | noticeOK  = timerReset tId (openNotice notice pSt) 
    | otherwise = pSt 
where 
    notice      = Notice ["Save now?"] (NoticeButton "Later" id)  
                         [ NoticeButton "Save now" (noLS save) ] 

For the function timerOn there are two cases: either the timer did not want to interfere 
while the noTimer flag was True in which case it can be set to False safely, or the timer 
did want to interfere but was not allowed to. The latter situation is detected because in that 
case the timer took the bold initiative to set the flag to False. In this case timerOn simply 
calls the timer function as a delayed action.  

timerOn :: (PSt ProgState) -> PSt ProgState 
timerOn pSt=:{ls=state=:{noticeOK}} 
    | noticeOK  = remindSave undef pSt 
    | otherwise = {pSt & ls={state & noticeOK=True}} 

Finally, there are some constants used in the program. The first two constants determine 
properties of the drawing window. The value time determines the time interval between 
save reminders. 

pictDomain      :== {zero & corner2={x=1000,y=1000}} 
initWindowSize  :== {w=500,h=300} 
time            :== 5*60*ticksPerSecond 

This completes our line drawing example. It demonstrates how all parts introduced above 
can be put together in order to create a complete program. It is tempting to add features to 
the program in order to make it a better drawing tool. One can think of toggling the save 
reminder and set its time interval. An option to set line thickness would be nice, as well as 
circles, rectangles, etcetera etcetera. Adding these things requires no new techniques. In 
order to limit the size of the example we leave it to the user to make these enhancements. 
Chapter II.4 discusses a more sophisticated drawing tool. 
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5.9 Exercises 
1. Write a program that applies a given transformation function from character lists to 

character lists on a given file. Structure the program such that the transformation func-
tion can be provided as an argument. Test the program with a function that transforms 
normal characters into capitals and with a function that collects lines, sorts them and 
concatenates them again to a character list. 

2. Combine the FileReadDialog and FileWriteDialog functions into a complete copyfile pro-
gram which copies files repeatedly as indicated in a dialog by the user. 

3. Adapt the program you made for exercise 5.1 such that it transforms files as indicated 
in a dialog by the user. 

4. Write a program that generates one of the following curves in a window: 

  or   

5 Adapt the display file program such that the user can save the viewed file with a Selec-
tOutputFile dialog. Use (possibly a variant of) the function FileWriteDialog. In order to as-
sure that saving is done instantly instead of lazily the Files component of the ProgState 
can be made strict by prefixing Files in the type definition of ProgState with an exclama-
tion mark. Add the text as a field in the state record. It may also prove to be useful to 
add the name of the file and the file itself to this state. In order to allow the user to 
overwrite the displayed file the program will have to be changed to use fopen for dis-
playing instead of sfopen since a file opened with sfopen can be neither updated nor 
closed. 

6 Adapt the program you made for exercise 5.3 such that it shows the result of a trans-
formation of a file in a window such that the user can browse through it before saving 
it. 

7 Include in the program of exercise 5.6 a menu function opening a dialog with RadioItems 
such that the user can select the transformation to be applied. 

8 Adapt the display file program such that the user can choose with a ScrollingList the 
font which is used to display the file. 

9 Include in the program of exercise 5.7 a timer that scrolls to the next page automati-
cally after a period of time which can be set by the user via an input dialog.  

10 Extend an existing program using the function GetCurrentTime and a timer to display the 
time in hours and minutes every minute. Choose your own way to display the time: in 
words or as a nice picture using the draw functions from the I/O module deltaPicture.  

11 (Large exercise) Extend the display file program with editing capabilities by extending 
the keyboard and mouse functions. Incorporate the results of exercises 5.6, 5.8 and 5.9 
and extend it into your own window-based editor. 

12 Change the line drawing program such that only horizontal and vertical lines can be 
drawn if the shift key is pressed during drawing. The line draw should be the 'best fit' 
of the line connecting the stating point and the current mouse position. 

13 Extend the line drawing program such that the thickness of lines can be chosen from a 
sub-menu. 
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Until now we haven't bothered much about the efficiency of the programs we have written. 
We think this is the way it should be. The correctness and clearness is more important than 
speed. However, sooner or later you will create a program that is unacceptably slow. In this 
section we provide you with the necessary tools to understand the efficiency of your pro-
grams. 

There are two important aspects of efficiency that deserve some attention. The first aspect 
is the amount of time needed to execute a given program. The other aspect is the amount 
of memory space needed to compute the result.  

In order to understand the time efficiency of programs we first argue that counting the 
number of reduction steps is generally a better measure than counting bare seconds. Next 
we show how we usually work more easily with a proper approximation of the number of 
reduction steps. Although we give some hints on space efficiency in this chapter, we delay 
the thorough discussion to part III. 

Furthermore, we give some hints how to further improve the efficiency of programs. Lazy 
evaluation and the use of higher functions can slow down your program. In this Chapter 
we do not want to advocate that you have to squeeze the last reduction step out of you 
program. We just want to show that there are some costs associated with certain language 
constructs and what can be done to reduce these costs when the (lack of) execution speed 
is a problem.  

Your computer is able to do a lot of reduction steps (up to several million) each second. 
So, usually it is not worthwhile to eliminate all possible reduction steps. Your program 
should in the first place be correct and solve the given problem. The readability and main-
tainability of your program is often much more important than the execution speed. Pro-
grams that are clear are more likely to be correct and better suited for changes. Too much 
optimization can be a real burden when you have to understand or change programs. The 
complexity of the algorithms in your program can be a point of concern. 

6.1 Reasoning About Efficiency 
When you have to measure time complexity of your program you first have to decide 
which units will be used. Perhaps your first idea is to measure the execution time of the 
program in seconds. There are two problems with this approach. The first problem is that 
the execution time is dependent of the actual machine used to execute the program. The 
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second problem is that the execution time is generally dependent on the input of the pro-
gram. Also the implementation of the programming language used has generally an impor-
tant influence. Especially in the situation in which there are several interpreters and com-
pilers involved or implementations from various manufactures. 

In order to overcome the first problem we measure the execution time in reduction steps 
instead of in seconds. Usually it is sufficient to have an approximation of the exact number 
of reduction steps. The second problem is handled by specifying the number of reduction 
steps as function of the input of the program. This is often called the complexity of the pro-
gram. 

For similar reasons we will use nodes to measure the space complexity of a program or 
function. The space complexity is also expressed as function of the input. In fact we dis-
tinguish the total amount of nodes used during the computation and the maximum number 
of nodes used at the same moment to hold an (intermediate) expression. Usually we refer 
to the maximum number of nodes needed at one moment in the computation as the space 
complexity. 

The time complexity of a program (or function) is an approximation of the number of re-
duction steps needed to execute that program. The space complexity is an approximation 
of the amount of space needed for the execution. It is more common to consider time 
complexity than space complexity. When it is clear from the context which complexity is 
meant we often speak of the complexity. 

6.1.1 Upper Bounds 
We use the O-notation to indicate the approximation used in the complexity analysis. The 
O-notation gives an upper bound of the number of reductions steps for sufficient large in-
put values. The expression O( g ) is pronounced as big-oh of g. 

This is formally defined as: Let f and g be functions. The statement f (n ) is O( g (n )) means 
that there are positive numbers c and m such that for all arguments n � m we have |f (n )| 
� c*|g (n )|. So, c*|g (n )| is an upper bound of |f (n )| for sufficient large arguments. 

We usually write f (n ) = O( g (n )), but this can cause some confusion. The equality is not 
symmetric; f (n ) = O( g (n )) does not imply O( g (n )) = f (n ). This equality is also not tran-
sitive; although 3*n2 = O(n2 ) and 7*n2 = O(n2 ) this does not imply that 3*n2 = 7*n2. Al-
though this is a strange equality we will use it frequently. 

As example we consider the function f (n ) = n2 + 3*n + 4. For n � 1 we have n2 + 3*n + 4 
� n2 + 3*n*n + 4*n2 = n2 + 3*n2 + 4*n2 = 8*n2. So, f (n ) = O(n2 ). 

Keep in mind that the O-notation provides an upper bound. There are many upper bounds 
for a given function. We have seen that 3*n2 = O(n2 ), we can also state that 3*n2 = O(n3 ), or 
3*n2 = O( 2n ). 

We can order functions by how fast their value grows. We define f < g as f = O( g ) and g � 
O( f ). This means that g grows faster than f. In other words: 

f < g ⇔  
)(
)(lim

ng
nf

n ∞→
= 0 

Using this notation we can list the order of the most occurring complexity functions: 

1 = n0 < log ( log n ) < log n < nb < n = n1 < nc < nlog n < cn < nn < ccn, 
where 0 < b < 1 < c. 

In addition we have an ordering within functions of a similar form: 

nb < nc  when 0 < b < c; 
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cn < dn  when 1 < c < d. 

In order to give you some idea how fast the number of reduction steps grows for various 
complexity functions we list some examples in the following table: 

function n = 10 n = 100 n = 1000 n = 10000 name 

O( 1 ) 1 1 1 1 Constant 

O( 10log n ) 1 2 3 4 Logarithmic1 

O( n  ) 3 10 32 100  

O( n ) 10 100 1000 10000 Linear 

O( n 10log n ) 10 200 3000 40000  

O( n2 ) 100 10000 106 108 Quadratic 

O( n3 ) 1000 106 109 1012 Cubic 

O( 2n ) 1024 1030 10300 103000 Exponential 

Table 1: Number of reduction steps as function of the input and complexity. 

Some of these numbers are really huge. Consider the following examples: the number of 
bits on a 1 GigaByte hard disk is 1010, light travels about 1016 meters in one year, and the 
mass of our sun is about 2*1030 Kg. The number of elementary particles is about 1080. At a 
speed of one million reduction steps per second a program of 1030 reductions takes about 
3*1016 = 30,000,000,000,000,000 years. As a reference, the age of the universe is estimated 
at 12*109 year. It is currently unlikely that your machine executes a functional program sig-
nificantly faster than 106 or 107 reduction steps per second. Using a reduction speed of 106 
steps per second, 109 takes about a quarter of an hour. At this speed 1012 reduction steps 
takes about twelve days, this is probably still more than you want for the average program. 

6.1.2 Under Bounds 
In addition to the approximation of the upper bound of the number of reductions steps 
needed, we can give an approximation of the under bound of the amount of reductions 
needed. This is the number of reductions that is needed at least. We use the Ω-notation, 
pronounced omega notation, for under bounds. The Ω-notation is defined using the 
O-notation: 

f (n ) = Ω( g (n )) ⇔ g (n ) = O( f (n )) 

This implies that it is a similar approximation as the upper bound. It is only valid for large 
arguments and constants are irrelevant. 

As an example we consider again the function f (n ) = n2 + 3*n + 4. An under bound for 
those function is the constant. f (n ) = Ω(1). In fact this is an under bound of any function, 
we cannot expect anything to grow slower than no increase at all. With a little more effort 
we can show that f (n ) = Ω(n ) and even f (n ) = Ω(n2 ). This last approximation can be jus-
tified as follows: for any n � 0 we have f (n ) = n2 + 3*n + 4 > n2 + 3*n � n2. 

6.1.3 Tight Upper Bounds 
As we have seen upper bounds and under bounds can be very rough approximations. We 
give hardly any information by saying that a function is Ω(1) and O( 2n ). When the upper 
bound and under bound are equal we have tight bounds around the function, only the con-
stants in the asymptotic behavior are to be determined. We use the Θ-notation, pro-
nounced theta notation, to indicate tight upper bounds: 
                                                        
1We used logarithms with base 10 in this table since we use powers of 10 as value for n. A logarithm with 
base 2 is more common in complexity analysis. This differs only a constant factor (2.3) in the value of the 
logarithm. 
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f (n ) = Θ( g (n )) ⇔ f (n ) = O( g (n )) ∧ f (n ) = Ω( g (n )) 

For the function f (n ) = n2 + 3*n + 4 we have seen f (n ) = O(n2 ) and f (n ) = Ω(n2 ). This 
makes it obvious that f (n ) = Θ(n2 ). 

6.2 Counting Reduction Steps 
Now we have developed the tools to express the complexity of functions. Our next task is 
to calculate the number of reduction steps required by some expression or function to de-
termine the time complexity, or the number of nodes needed to characterize the space 
complexity. When there are no recursive functions (or operators) involved this is simply a 
matter of counting. All these functions will be of complexity Θ(1). 

Our running example, f (n ) = n2 + 3*n + 4 has time complexity Θ(1). The value of the 
function itself grows quadratic, but the amount of steps needed to compute this value is 
constant: two multiplications and three additions. We assume that multiplication and addi-
tion is done in a single instruction of your computer, and hence in a single reduction step. 
The amount of time taken is independent of the value of the operands. The number of 
nodes needed is also constant: the space complexity is also Θ(1). This seems obvious, but it 
isn't necessarily true. A naive implementation of multiplication uses repeated addition. This 
kind of multiplication is linear in the size of the argument. Even addition becomes linear in 
the size of the argument when we represent the arguments as Church numbers: a number 
is either zero, or the successor of a number. 

::  Nat = Zero | Succ Nat 
 
instance + Nat where  
    (+) Zero     n = n 
    (+) (Succ n) m = n + (Succ m) 
 
instance zero Nat where zero = Zero 
instance one  Nat where one  = Succ Zero 

For recursive functions we have to look more carefully at the reduction process. Usually 
the number of reduction steps can be determined by inductive reasoning. As example we 
consider the factorial function fac: 

fac :: Int -> Int 
fac 0 = 1 
fac n = n * fac (n-1) 

For any non-negative argument this takes 3*n+1 reduction steps (for each recursive call one 
for fac, one for * and one for -). Hence, the time complexity of this function is Θ(n). As a 
matter of fact also the space complexity is Θ(n). The size of the largest intermediate ex-
pression n * (n-1) * … * 2 * 1 is proportional to n. 

Our second example is the naive Fibonacci function: 
fib :: Int -> Int 
fib 0 = 1 
fib 1 = 1 
fib n = fib (n-1) + fib (n-2) 

Computing fib n invokes the computation of fib (n-1) and fib (n-2). The computation of fib 
(n-1) on its turn also calls fib (n-2). Within each call of fib (n-2) there will be two calls of fib 
(n-4). In total there will be one call of fib (n-1), two calls of fib (n-2), three calls of fib (n-3), 
four calls of fib (n-4)…. The time (and space) complexity of this function is greater than 
any power. Hence, fib n = Θ(2n): the number of reduction steps grows exponentially. 

6.2.1 Memorization 
It is important to realize that the complexity is a property of the algorithm used, but not 
necessarily a property of the problem. For our Fibonacci example we can reduce the com-
plexity to O(n) when we manage to reuse the value of fib (n-m) when it is needed again. 
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Caching these values is called memorization. A simple approach is to generate a list of Fibo-
nacci numbers. The first two elements will have value 1, the value of all other numbers can 
be obtained by adding the previous two. 

fib2 :: Int -> Int 
fib2 n = fibs!!n 
 
fibs :: [Int] 
fibs =: [1,1:[f n \\ n <- [2..]]] 
where 
 f n = fibs!!(n-1) + fibs!!(n-2) 

Now we want to determine the time complexity of fib2. It is obvious that selecting element 
n from list fibs takes n reduction steps. This is O(n). To compute element n of the list fibs 
we need to calculate element n-1 (and hence all previous elements) and to do two list selec-
tions each of O(n) and one addition. The calculation of element n-1 on its turn requires two 
list selections of O(n-1) and an addition. The total amount of work is 1 + … + O(n-1) + O(n). 
This makes the time complexity of fibs O(n2), which is much better than the naive algo-
rithm used above. The space required is proportional to the length of the list of Fibonacci 
numbers: O(n).  

Using an array instead of a list makes an important difference. Array selection is done in 
constant time and hence the computation of Fibonacci numbers is done in linear time. A 
drawback of using an array is that we have to indicate the size of the array and hence the 
maximum Fibonacci number. We will show that we do not need an array to compute Fi-
bonacci numbers in linear time. 

It is not useful to make the list of Fibonacci numbers a global constant when only one Fi-
bonacci number is needed in your program. Nevertheless it is essential to achieve the shar-
ing that all numbers used as intermediate values are obtained form one and the same list. 
This can be achieved by making the fibs a local definition of the function fib2. 

The generation of the list of Fibonacci numbers can be further improved. To compute the 
next Fibonacci number we need the previous two. Our current algorithm selects these 
numbers from the list as if this is a random selection. This selection takes O(n) reduction 
steps. The following function to generate a list of Fibonacci function uses the known order 
in which the elements are used to compute the next element: 

fibs2 :: [Int] 
fibs2 =: [1,1:[a+b \\ a <- fibs2 & b <- tl fibs2]] 

When you prefer explicit recursive functions instead of the list comprehension, this algo-
rithm can be written as: 

fibs3 :: [Int] 
fibs3 =: [1, 1: zipWith (+) fibs3 (tl fibs3)] 
 
zipWith:: (a b->c) [a] [b] -> [c] 
zipWith f [a:x] [b:y] = [f a b: zipWith f x y] 
zipWith _ _     _     = [] 

The second alternative of zipWith is never used in this application. It is only included to 
make map2 a generally useful function. 

Computing the next element of the list fibs3 takes only two reductions (zipWith and +). This 
makes this algorithm to compute Fibonacci numbers O(n) in time and space. 

The complexity analysis shows that the function fib2 behaves much better than fib. Al-
though the function fib is clearer, it is obvious that fib2 is preferred in programs. List selec-
tion using fibs2 or fibs3 has the same time complexity, but is only worthwhile when many 
Fibonacci numbers are used. 

When our program needs only a single Fibonacci number there is no need to create a list of 
these numbers as a CAF. Since only the two previous numbers are used to compute the 
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next Fibonacci number, there is no need at all to store them in a list. This is used in the fol-
lowing function to compute Fibonacci numbers. 

fib4 n = f n 1 1 
where 
 f :: !Int !Int !Int -> Int 
 f 0 a b = a 
 f n a b = f (n-1) b (a+b) 

Computing the next Fibonacci number takes three reduction steps. So, this algorithm has a 
time complexity of O(n). By making the local function f strict in all of its arguments we 
achieved that these arguments are evaluated before f is evaluated. This makes the space 
required for the intermediate expressions a constant. The space complexity of this version 
of the Fibonacci function is O(1). Using advanced mathematics it is even possible to com-
pute a Fibonacci number in logarithmic time. 

6.2.2 Determining the Complexity for Recursive Functions 
In the examples above a somewhat ad hoc reasoning is used to determine the complexity 
of functions. In general it is convenient to use a function indicating the number of reduc-
tion steps (or nodes) involved. Using the definition of the recursive function to analyze it is 
possible to derive a recursive expression for the complexity function C(n ). The complexity 
can than be settled by inductive reasoning. The next table lists some possibilities (c and d 
are arbitrary constants � 0): 

C(n )  Complexity 
½*C(n-1)   O(1) 

½*C(n-1) + c*n + d  O(n ) 
C(n-1) + d  O(n ) 

C(n-1) + c*n + d  O(n2 ) 
C(n-1) + c*nx + d  O(nx+1 ) 

2*C(n-1) + d  O(2n ) 
2*C(n-1) + c*n + d  O(2n ) 

C(n/2)  O(1) 
C(n/2) + d  O(log n ) 

C(n/2) + c*n + d  O(n ) 
2*C(n/2) + d  O(n ) 

2*C(n/2) + c*n + d  O(n log n ) 
4*C(n/2) + c*n2 + d  O(n2 log n ) 

Table 2: The complexity for recursive relations of the number of reduction steps C(n ). 

Although this table is not exhaustive, it is a good starting point to determine the complexity 
of very many functions. 

As example we will show how the given upperbound, O(log n ), of the complexity function 
C can be verified for C(n ) = C(n/2)+d. We assume that C(n/2) is O(log n/2). This implies 
that there exists positive numbers a and b such that C(n/2) � a*log n/2 + b for all n � 2. 

C(n ) 
= C(n/2)+d     // Using the recursive equation for C(n ) 
� a*log (n/2) + b +d   // Using the induction hypothesis 
= a*(log n - log 2) + b +d // log (x/y) = log x - log y 
= a*log n + b + d - a   // arithmetic 
� a*log n + b iff d � a 

We are free to choose positive values a and b. So, we can take a value a such that a � d for 
any d. When we add the fact that C(0) can be done in some finite time, we have proven that 
C(n ) = O(log n ).  
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It is a good habit to indicate the reason why the step in a proof is valid as a comment. This 
makes it easy for other people to understand and verify your proof. Even for you as an au-
thor of the proof it is very useful. At the moment of writing you have to think why this 
step is valid, and afterwards it is also for you easier to understand what is going on. 

In exactly the same we can show that C(n ) = C(n/2)+d implies that C(n ) = O(n ). For our 
proof with induction we assume now that C(n/2) � a*n/2 + b. The goal of our proof is 
that this implies also that C(n ) � a*n + b. 

C(n ) 
= C(n/2) + d     // Using the recursive equation for C(n ) 
� a*n/2 + b +d    // Using the induction hypothesis 
� a*n + b + d    // Since a and n are positive 

For the same reasons as above this implies that C(n ) = O(n ). This is consistent with our 
claim that we only determine upperbounds and the ordering on functions: log n < n. 

When we would postulate that C(n ) = C(n/2)+d implies that C(n ) = O(1) we have as in-
duction hypothesis C(n/2) � b. 

C(n ) 
= C(n/2) + d     // Using the recursive equation for C(n ) 
� b + d      // Using the induction hypothesis 

But C(n ) = O(1) this implies that C(n ) � b. This yields a contradiction. For arbitrary d the 
equation b + d � b is not valid. C(n ) = C(n/2)+d only implies that C(n ) = O(1) when 
d = 0. This is a special case in table 2. 

As illustration of these rules we return to the complexity of some of our examples. The 
number of reduction steps of the factorial example above we have C(n) = C(n-1) + 3, hence 
the complexity is O(n). For the naive Fibonacci function fib we have C(n) = C(n-1) + C(n-2) 
+ 4 � 2*C(n-1), this justifies our claim that this function has complexity O(2n ). The time 
complexity to compute element n of the list fibs is C(n-1) to compute the preceding part of 
the list, plus two list selections of n and n-1 reductions plus two subtractions and one addi-
tion. This implies that C(n) � C(n-1) + 2*n +4, so the complexity is indeed O(n2 ). For fib3 
we have C(n) = C(n-1) + 3. This implies that this function is O(n). 

6.2.3 Manipulation of Recursive Data Structures 
When we try to use the same techniques to determine the complexity of the naive reverse 
function we immediately run into problems. This function is defined as: 

reverse :: [a] -> [a] 
reverse []    = [] 
reverse [a:x] = reverse x ++ [a] 

The problem is that the value of the argument is largely irrelevant. The length of the list 
determines the number of needed reduction steps, not the actual value of these elements. 
For a list of n elements we have C(n) is equal to the amount of work to reverse a list of 
length n-1 and the amount of work to append [a] to the reversed tail of the list. Looking at 
the definition of the append operator it is obvious that this takes a number of steps pro-
portional to the length of the first list: O(n ).  

(++) infixr 5 :: ![a] [a] -> [a] 
(++) [hd:tl] list = [hd:tl ++ list] 
(++) nil     list = list 

For the function reverse we have C(n) � C(n-1) + n +1. Hence the function reverse is O(n2 ). 

Again the complexity is a property of the algorithm used, not necessarily of property of the 
problem. It is the application of the append operator that causes the complexity to grow to 



170  FUNCTIONAL PROGRAMMING IN CLEAN 

O(n2 ). Using another definition with an additional argument to hold the part of the list re-
versed up to the current element accomplish an O(n) complexity. 

reverse :: [a] -> [a] 
reverse l = rev l [] 
where 
 rev [a:x] l = rev x [a:l] 
 rev []    l = l 

For this function we have C(n) = C(n-1) + 1. This implies that this function is indeed O(n ). 
It is obvious that we cannot reverse a list without processing each element in the list at 
least once, this is O(n ). So, this is also an under bound. 

Using such an additional argument to accumulate the result of the function appears to be 
useful in many situations. This kind of argument is called an accumulator. We will show vari-
ous other applications of an accumulator in this chapter. 

Our next example is a FIFO queue, First In First Out. We need functions to create a new 
queue, to insert and to extract an element in the queue. In our first approach the queue is 
modelled as an ordinary list: 

:: Queue t :== [t] 
 
new :: Queue t 
new = [] 
 
ins :: t (Queue t) -> Queue t 
ins e queue = queue++[e] 
 
ext :: (Queue t) -> (t,Queue t) 
ext [e:queue] = (e,queue) 
ext _         = abort "extracting from empty queue" 

Due to the FIFO behavior of the queue the program 
Start = fst (ext (ins 42 (ins 1 new))) 

yields 1. Inserting an element in the queue has a complexity proportional to the length of 
the queue since the append operator has a complexity proportional to the length of the first 
list. Storing the list to represent the queue in reversed order makes inserting O(1), but 
makes extracting expensive. We have to select the last element of a list and to remove the 
last element of that list. This is O(n ). 

Using a clever trick we can insert and extract elements in a FIFO queue in constant time. 
Consider the following implementation of the queue: 

:: Queue t = Queue [t] [t] 
 
new :: Queue t 
new = Queue [] [] 
 
ins :: t (Queue t) -> Queue t 
ins e (Queue l m) = (Queue l [e:m]) 
 
ext :: (Queue t) -> (t,Queue t) 
ext (Queue [e:l] m ) = (e,Queue l m) 
ext (Queue _     []) = abort "extracting from empty queue" 
ext (Queue _     m ) = ext (Queue (reverse m) []) 

Inserting an element in the queue is done in constant time. We just add an element in front 
of a list. Extracting is also done in constant time when the first list in the data structure 
Queue is not empty. When the first list in the data structure is exhausted, we reverse the sec-
ond list. Reversing a list of length n is O(n). We have to do this only after n inserts. So, on 
average inserting is also done in constant time! Again, the complexity is a property of the 
algorithm, not of the problem. 

As a matter of fact, lazy evaluation makes things a little more complicated. The work to 
insert an element in the first queue is delayed until its is needed. This implies that it is de-
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layed until we extract an element from the queue. It holds that inserting and extracting that 
element is proportional to the amount of elements in the queue. 

6.2.4 Estimating the Average Complexity 
The analysis of functions that behave differently based on the value of the list elements is 
somewhat more complicated. In Chapter 3 we introduced the following definition for in-
sertion sort. 

isort :: [a] -> [a] | Ord a 
isort []    = [] 
isort [a:x] = insert a (isort x) 
 
insert :: a [a] -> [a] | Ord a 
insert e []    = [e] 
insert e [x:xs] 
 | e<=x  = [e,x : xs] 
 | otherwise = [x : insert e xs] 

It is obvious that this algorithm requires one reduction step of the function isort for each 
element of the list. The problem is to determine the number of reductions required by in-
sert. This depends heavily on the values in the list used as actual argument. When this list 
happens to be sorted, then the test e<=x always holds. Only a single reduction step is re-
quired for each insertion in this situation. In this best case, the number of reduction steps is 
proportional to the length of the list, the complexity is O(n). 

When the argument list is sorted in the inverse order and all arguments are different the 
number of reduction steps required by insert is equal to the number of elements that are 
already sorted. Hence, the number of reduction steps is n for the function isort and 1 + 2 + 
… + (n-1) + n steps for inserting the next element in the sorted sub-list. From mathematics it 
is known that 

1 + 2 + … + (n -1) + n = ∑
=

n

i

i
1

=  
2
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The total number of reduction steps needed is n + n*(n-1)/2. This shows that the worst case 
complexity of the insertion sort algorithm is O(n2). 

Note that we used a different technique to compute the complexity here. We computed the 
number of reduction steps required directly. This is often hard to compute. Using the re-
cursive function C(n), we have C(n) = C(n-1) + n. This implies that the complexity deter-
mined in this way is also O(n2). 

The amount of reduction steps needed to sort an arbitrary list will be somewhere between 
the best case and the worst case. On average we expect that a new element will be inserted 
in the middle of the list of sorted elements. This requires half of the reduction steps of the 
worst case behavior. This makes the expected number of reduction steps for an average list 
n + n*(n-1)/4. So, in the average case the complexity of insertion sort is still O(n2). 

As a conclusion we can say that the time taken by insertion sort is essentially quadratic in 
the length of the list. In the exceptional case that the list is (almost) sorted, the time re-
quired is (almost) linear. The space required is always proportional to the length of the list, 
hence the space complexity is O(n). 

The quadratic time complexity of the insertion sort algorithm does not imply that sorting is 
always O(n2). We will now look at the time complexity of merge sort. In chapter 3 we im-
plemented this sorting algorithm as: 

msort :: [a] -> [a] | Ord a 
msort xs 
 | len<=1 = xs 
 | otherwise = merge (msort ys) (msort zs) 
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where 
 ys   = take half xs 
 zs   = drop half xs 
 half  = len / 2 
 len   = length xs 
 
merge :: [a] [a] -> [a] | Ord a 
merge [] ys  = ys 
merge xs []  = xs 
merge p=:[x:xs] q=:[y:ys] 
 | x <= y = [x : merge xs q] 
 | otherwise = [y : merge p ys] 

Computation of len takes n steps (as usual n is the length of the list). The computation of 
half is done in a single step. The functions take and drop are both O(n). Merging two lists 
takes O(n) steps. So, one call of merge takes O(n) steps plus two times the amount of steps 
required sorting a list of length n/2. This is C(n) = 2*C(n/2) + c*n. This implies that merge 
sort is O(n*log n). The logarithm reflects the fact that a list of length n can be split 2

log n 
times into lists of length greater than one. On average this algorithm has a better complex-
ity than isort. 

Our next sorting algorithm to study is quick sort. It is defined as: 
qsort :: [a] -> [a] | Ord a 
qsort []     = [] 
qsort [a:xs] = qsort [x \\ x<-xs | x<a] ++ [a] ++ qsort [x \\ x<-xs | x>=a] 

In order to compute the complexity of this function we have to consider again various 
cases. Evaluating the list comprehensions takes O(n) steps, where n is the length of the list 
to process. The first ++ takes a number of steps proportional to the length of the list gen-
erated by the first list comprehension. The second ++ takes only 2 steps. This is due to the 
fact that ++ associates to the right. 

Now we consider the case that the input list is sorted. The first list comprehension will 
yield an empty list, which is sorted in a single reduction step. It takes one step to append 
the rest of the sorted list to this empty list. It requires O(n) steps to reduce both list com-
prehensions. The length of the list to sort by the second recursive call of qsort is n-1. For 
the total amount of reduction steps we have C(n) = C(n-1)+2*n+3. This implies that this best 
case complexity of qsort is O(n2). 

In the worst case situation the list is sorted in the opposite order. The situation is very simi-
lar to the best case. The difference with the best case is that all elements of the tail of the 
input end up in the first recursive call of qsort and the second list to sort is empty. Now the 
first ++ takes n reduction steps. This implies that C(n) = C(n-1)+3*n+2. The time complexity of 
the worst case is also O(n2). 

For the average case we assume that both list comprehensions yield a list containing half of 
the input list. The list comprehensions take both O(n) reductions steps and the first ++ will 
consume n/2 steps. This indicates that C(n) = 2*C(n/2)+c*n. Hence the qsort algorithm is in 
the average case O(n*log n). Note that the best case of the input for isort is not the best 
case for qsort. In contrast, best case for isort is worst case for qsort. 

The final sorting algorithm discussed in chapter 3 is tree sort. 
tsort :: ([a] -> [a]) | Eq, Ord a 
tsort = labels o listToTree 
 
:: Tree a 
 = Node a (Tree a) (Tree a) | Leaf 
 
listToTree :: [a] -> Tree a | Ord, Eq a 
listToTree []     = Leaf 
listToTree [x:xs] = insertTree x (listToTree xs) 
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insertTree :: a (Tree a) -> Tree a | Ord a 
insertTree e Leaf = Node e Leaf Leaf 
insertTree e (Node x le ri) 
 | e<=x = Node x (insertTree e le) ri 
 | e>x = Node x le (insertTree e ri) 
 
labels :: (Tree a) -> [a] 
labels Leaf    = [] 
labels (Node x le ri) = labels le ++ [x] ++ labels ri 

One reduction step of listToTree is used for each element in the input list. For insertTree 
again three different cases are considered. When the list is random, the tree will become 
balanced. This implies that 2log n reduction steps are needed to insert an element in the 
tree. When the list is sorted, or sorted in reverse order, we obtain a degenerated (list-like) 
tree. It will take n reduction steps to insert the next element. The number of reduction steps 
for the function labels depends again on the shape of the tree. When all left sub-trees are 
empty, there are 3 reduction steps needed for every Node. This happens when the input list 
was inversely sorted. Since insertion is O(n2) in this situation, the complexity of the entire 
sorting algorithm is O(n2). When all right sub-trees are empty, the input was sorted, there 
are O(n) reduction steps needed to append the next element. Since insertion is O(n2) in this 
situation, the entire algorithm is O(n2). 

For balanced trees insertion of one element takes O(2log n). Construction of the entire tree 
requires O(n*log n) steps. Transforming the tree to a list requires transforming two trees of 
half the size to lists, 2*C(n-1), appending the second list to a list of n/2 elements. For the 
number of reduction steps we have C(n) = 2*C(n-1)+n/2+d. Hence the complexity of trans-
forming the tree to a list is O(n*log n). This implies that tree sort has complexity O(n*log n). 

Based on this analysis it is hard to say which sorting algorithm should be used. When you 
know that the list is almost sorted you can use isort and you should not use qsort. When 
you know that the list is almost sorted in the inverse order you can use msort and you 
should not use isort or qsort. For a list that is completely random qsort and msort a good 
choices. For an arbitrary list msort is a good choice. It is a little more expensive than qsort or 
tsort for a complete random list, but it behaves better for sorted lists. 

6.2.5 Determining Upper Bounds and Under Bounds 
Above we have determined the upper bounds of the complexity of various algorithms. 
When we do this carefully the obtained upper bound is also a tight upper bound. It is clear 
that this tight upper bound is not necessarily an under bound for the problem. Our first 
algorithm to reverse list is O(n2), while the second algorithm is O(n). Also for the sorting 
algorithm we have a similar situation: the isort algorithm has complexity O (n2), while also 
sorting algorithms exist of complexity O(n*log n). 

The question arises whether it is possible to reverse a list in a number of reduction steps 
that is lower than O(n). This is highly unlikely since we cannot imagine an algorithm that 
reverses a list without at least one reduction step for each element of the list. Reversing is 
Ω(n). Since we have an algorithm with complexity O(n), the complexity of the best reversing 
algorithms will be Θ(n). 

For sorting algorithms we can also determine an under bound. Also for sorting it is not 
feasible that there exists a sorting algorithm that processes each list element once. Sorting is 
at least Ω(n). We have not yet found a sorting algorithm with this complexity for an average 
list. Now we have to decide whether we start designing better sorting algorithms, or to 
make a better approximation of the under bound of sorting. For sorting a general list it is 
not feasible that we can determine the desired position of an element by processing it once. 
The best we can hope for is that we can determine in which half of the list it should be 
placed. So, a better approximation of the under bound of sorting is Ω(n*log n). Since we 
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know at least one sorting algorithm with this complexity, we can conclude that sorting arbi-
trary lists is Θ(n*log n). 

Finding upper bounds of the complexity of an algorithm is not very difficult. When the 
approximations are made carefully, even determining close upper bounds of the algorithm 
is merely a matter of counting. Finding tight upper bounds of the problem is more compli-
cated, because it involves a study of every feasible algorithm. 

Lazy evaluation complicates accurate determination of the number of reduction steps se-
verely. We have always assumed that the entire expression should be evaluated. In the ex-
amples we have taken care that this is what happens. However, when we select the first 
element of a sorted list it is clear that the list will not be sorted entirely due to lazy evalua-
tion. Nevertheless a lot of comparisons are needed that prepares for sorting the entire list. 
The given determination of the complexity remains valid as an upper bound. Determining 
the under bound, or accurate number of reduction steps, is complicated by lazy evaluation. 

6.3 Constant Factors 
Above we have emphasized the complexity of problems and hence ignored all constant 
factors involved. This does not imply that constant factors are not important. The opposite 
is true, when efficiency is important you have to be keen on reduction steps that can be 
avoided, even if the overhead is just a constant factor. As a matter of fact, even a precise 
count of the reduction steps is not the final word, not every reduction steps in CLEAN 
takes an equal amount of time. So, some experiments can be very useful when the highest 
speed is desired. See part III for additional information and hints. 

The fact that msort is O(n*log n) and sorting is Θ(n*log n) does not imply that msort is the best 
sorting algorithm possible. The complexity indicates that for large lists the increase of the 
time required is proportional to n*log n. For the actual execution time constant factors are 
important. Let’s have a look again at the function msort. 

msort :: [a] -> [a] | Ord a 
msort xs 
 | len<=1 = xs 
 | otherwise = merge (msort ys) (msort zs) 
where 
 ys   = take half xs 
 zs   = drop half xs 
 half  = len / 2 
 len   = length xs 

It is clear that it can be improved with a constant factor. The functions take and drop both 
process the list xs until element half. This can be combined in a single function split: 

msort2 :: ![a] -> [a] | Ord a 
msort2 xs 
 | len <= 1 = xs 
 | otherwise = merge (msort2 ys) (msort2 zs) 
where 
 (ys,zs)  = split (len/2) xs 
 len   = length xs 
 
 split :: !Int [a] -> ([a],[a]) 
 split 0 xs     = ([],     xs  ) 
 split n [x:xs] = ([x:xs̀ ],xs̀ )̀  
 where 
  (xs̀ ,xs̀ )̀ = split (n-1) xs 

Further analysis shows that there is no real reason to compute the length of the list xs. This 
takes n steps. It is only necessary to split this list into two parts of equal length. This can be 
done by selecting the odd and even elements. Since we do not want to compute the length 
of the list to be sorted, the termination rules should also be changed. This is done in the 
function msort3 and the accompanying function split2. 
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msort3 :: ![a] -> [a] | Ord a 
msort3 []  = [] 
msort3 [x] = [x] 
msort3 xs  = merge (msort3 ys) (msort3 zs) 
where 
 (ys,zs) = split2 xs 
 
 split2 :: ![a] -> ([a],[a]) 
 split2 [x,y:r] = ([x:xs],[y:ys]) where (xs,ys) = split2 r 
 split2 l       = (l,[]) 

Using accumulators we can avoid the construction of tuples to construct the parts of the 
list xs. In the function msort4 we call the split function with empty accumulators. 

msort4 :: ![a] -> [a] | Ord a 
msort4 [] = [] 
msort4 [x] = [x] 
msort4 xs  = merge (msort4 ys) (msort4 zs) 
where 
 (ys,zs) = split3 xs [] [] 
 
 split3 :: [a] [a] [a] -> ([a],[a]) 
 split3 [x,y:r] xs ys = split3 r [x:xs] [y:ys] 
 split3 [x]     xs ys = (xs,[x:ys]) 
 split3 l       xs ys = (xs,ys) 

Another approach to avoid the computation of the length of the list to be sorted in each 
recursive call is to determine the length once and pass the actual length as argument to the 
actual sorting function. Since the supplied length and the actual length should be identical 
this approach is a little bit more error prone. 

A similar technique can be used in the quick sort algorithm. Currently there are two list 
comprehensions used to split the input list. Using an additional function it is possible to do 
this in one pass of the input list. This is the topic of one of the exercises. 

6.3.1 Generating a Pseudo Random List 
In order to investigate whether the reduced number of reduction steps yields a more ef-
ficient algorithm we need to run the programs and measure the execution times. Since 
some of the sorting programs are sensitive to the order of elements in the input list we 
want to apply the sorting functions to a list of random numbers. 

Due to the referential transparency property of functional languages the generation of ran-
dom numbers is somewhat tricky. When a single random number is needed we can use for 
instance the (milli)seconds from a clock. However, when we fill a list of numbers in this 
way the numbers will be strongly correlated. The solution is to use pseudo-random numbers. 
Given a seed the next number can be generated by the linear congruetial method. 

nextRan :: Int -> Int 
nextRan s = (multiplier*s + increment) mod modulus 

The constants multiplier, increment and modulus are suitable large numbers. In the examples 
below we will use the values: 

multiplier :== 26183 
increment :== 29303 
modulus  :== 65536 // this is 2̂ 16 

A sequence of these pseudo random numbers can be generated by: 
ranList :: [Int] 
ranList = iterate nextRan seed 

The seed can be obtained from the clock or be some constant. To compare the sorting 
functions we will use the constant 42, this has the advantage that each sorting function has 
the same input.  

The only problem with these numbers is the possibility of cycles. When nextRan n = n, or 
nextRan (nextRan n) = n, or nextRan (nextRan ( …n)…) = n for some n, there will be a cycle in the 
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generated list of random numbers as soon as this n occurs once. When the constants are 
well chosen there are no troubles with cycles. In fact nextRan is an ordinary referential trans-
parent function. It will always yield the same value when the same seed is used. This im-
plies that ranList will start a cycle as soon as an element occurs for the second time. It is 
often desirable that the same number can occur twice in the list of random numbers used 
without introducing a cycle. This can be achieved by scaling the random numbers. 

When we need random numbers in another range we can scale the numbers in ranList. A 
simple approach is: 

scaledRans :: Int Int -> [Int] 
scaledRans min max = [i mod (max-min+1) + min \\ i <- ranList] 

When you need random numbers with a nice equal distribution over the whole range this 
function is only appropriate when modulus is a multiple of the range. Consider the situation 
where modulus is about 1.5*range. Numbers in the first part of the range will occur twice as 
much as the other numbers. When modulus is much larger than the range, the ratio 2/1 
changes to n+1/n. For large n this is a good approximation of 1. The problem can be 
avoided by using a slightly more complex function to scale the random numbers. 

scaledRans :: Int Int -> [Int] 
scaledRans min max = [i \\ i <- [i/denominator + min \\ i <- ranList] | i<=max] 
where denominator = modulus / (max-min+1) 

The distribution of these numbers is very regular.  

When only the flatness of the distribution counts you can also use the list obtained by flat-
ten (repeat [min..max]). It is of course far from random. 

6.3.2 Measurements 
In order to achieve a reasonable execution time1 we sort a list of 1000 numbers 1000 times 
and a list of 4000 elements 1000 times. We prefer to sort a shorter list 1000 times instead 
of a long list once in order to reduce the overhead of generating the input list and to reduce 
the amount of heap space necessary. We are also not interested in the time it takes to print 
the list, so the result of the program will only display one element of the sorted list. We se-
lect the last element in order to be sure that the entire list is sorted. This is achieved by the 
program below. At the position sort we substitute the name of the function to investigate. 
The #! construct is used to force evaluation. 

Start = ntimes 1000 
 
ntimes :: !Int -> Int 
ntimes n 
 #! e = last (sort rlist) 
 =  case n of 
  0 -> e 
  n -> ntimes (n-1) 
 
rlist =: take 1000 ranList 

The results are listed in the table 3. As a reference we included also quick sort, tree sort and 
insertion sort. The functions qsort2 and tsort2 are variants of qsort and tsort introduced be-
low. The result for the StdFunc function id shows that the time to select the last element and 
to generate the list to process can be neglected. The function msort2̀  is the function msort2 
where split is replaced by the function splitAt from the standard environment. 

                                                        
1We used a PC running Microsoft Windows 98 2nd edition with an Intel Pentium III processor, 256MB 
RAM, for the experiments. The application gets 1 MB of heap space and uses stack checks. 
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function 1000 elements 4000 elements ratio 
 execution gc total execution gc total execution gc total 
msort 4.20 0.67 4.87 23.93 9.07 33.00 5.70 13.53 6.77 
msort2 4.53 0.93 5.47 25.99 19.13 45.12 5.74 20.57 8.25 
msort2̀  4.97 1.12 6.10 27.68 20.82 48.51 5.57 18.59 7.96 
msort3 6.41 1.81 8.23 35.41 32.49 67.91 5.52 17.91 8.25 
msort4 4.29 1.09 5.39 27.29 23.56 50.85 6.36 21.53 9.43 
qsort 3.96 0.56 4.53 22.11 8.51 30.63 5.58 15.31 6.77 
qsort2 3.15 0.39 3.54 17.45 5.31 22.77 5.54 13.69 6.42 
tsort 4.75 0.71 5.47 26.09 7.05 33.15 5.49 9.91 6.06 
tsort2 3.98 0.53 4.52 21.53 5.34 26.88 5.41 10.05 5.95 
isort 39.89 5.02 42.92 910.22 234.01 1144.24 24.03 46.58 26.66 
id 0.86 0.00 0.86 0.42 0.00 0.42 4.93 - 4.93 

Table 3: Execution-, garbage collection-, and total time in seconds of various sorting algorithms. 

It is clear that any algorithm with complexity O(n log n) is much better on this size of input 
lists than isort with complexity O(n2). Although there is some difference between the vari-
ous variants of the merge sort algorithm, it is hard to predict which one is the best. For in-
stance, the difference between msort2̀  and msort2 is caused by an optimization for tuples that 
does not work across module boundaries. You can’t explain this difference based on the 
function definitions. Hence, it is hard to predict this. 

The complexity theory predicts that the ratio between the execution speed for the pro-
grams with complexity O(n log n) is 4.80, for an algorithm of O(n2) this ratio is 16. These 
numbers correspond pretty well with the measured ratios. Only the time needed by the tree 
sorts grows slower than expected. This indicates that the used lists are not large enough to 
neglect initialization effects. 

You can also see that the required amount of garbage collection time grows much faster 
than the execution time. The amount of garbage collection needed is determined by the 
number of nodes used during execution and the number of nodes that can be regained dur-
ing garbage collection. For a large list, less memory can be regained during garbage col-
lection, and hence more garbage collections are needed. This increases the total garbage 
collection time faster as you might expect based on the amount of nodes needed. To re-
duce the amount of garbage collection time the programs should be equipped with more 
memory. 

For the user of the program only the total execution time matters. This takes both the pure 
reduction time and the garbage collection time into account. The total execution time is 
dependent of the amount of heap space used by the program. 

Another thing that can be seen from this table is that it is possible to optimize programs by 
exploring the efficiency of some educated guesses. However, when you use a function with 
the right complexity it is only worthwhile to use a more complicated algorithm when the 
execution speed is of prime interest. The difference in speed between the various sorting 
algorithms is limited. We recommend to use one of the merge sort functions to sort list of 
an unknown shape. Quick sort and tree sort behave very well for random list, but for 
sorted list they are O(n2). This implies that the execution time will be much longer. 

6.3.3 Other Ways to Speed Up Programs 
Another way to speed up programs is by exploiting sharing. In the Fibonacci example earlier 
in this chapter we saw that this can even change the complexity of algorithms profitably. In 
the program used to measure the execution time of sorting functions we shared the genera-
tion of the list to be sorted. Reusing this lists saves a constant factor for this program. 
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There are many more ways to speed up programs. We will very briefly mention two other 
possibilities. The first way to speed up a program is by executing all reduction steps that do 
not depend on the input of the program before the program is executed. This is called partial 
evaluation [Jones 95]. A way to achieve this effect is by using macro’s whenever possible. 
More sophisticated techniques also look at function applications. A simple example illus-
trates the intention. 

power :: Int Int -> Int 
power 0 x = 1 
power n x = x*power (n-1) x 
 
square :: Int -> Int 
square x = power 2 x 

Part of the reduction steps needed to evaluate an application of square does not depend on 
the value x. By using partial evaluation it is possible to transform the function square to 

square :: Int -> Int 
square x = x*x*1 

Using the mathematical law x*1 = x, it is even possible to obtain: 
square :: Int -> Int 
square x = x*x 

The key idea of partial evaluation is to execute rewrite steps that do not depend on the ar-
guments of a function before the program is actually executed. The partially evaluated pro-
gram will be faster since there are less reduction steps to execute.  

The next technique to increase the efficiency of programs is to combine the effects of sev-
eral functions to one function. This is called function fusion. We will illustrate this with the 
function qsort as example. This function was defined as: 

qsort :: [a] -> [a] | Ord a 
qsort []     = [] 
qsort [a:xs] = qsort [x \\ x<-xs | x<a] ++ [a] ++ qsort [x \\ x<-xs | x>=a] 

At first glance there is only one function involved here. A closer look shows that also the 
operator ++ is to be considered as a function application. As a matter of fact also the list 
comprehensions can be seen as function applications. The compiler will transform them to 
ordinary function applications. We will restrict ourselves here to the function qsort and the 
operator ++. When qsort has sorted the first part of the result list (containing those elements 
that are smaller than the first element), the operator ++ scans that list in order to append the 
other elements of the list. During the scanning of the list all cons nodes will be copied. 
This is clearly a waste of work.  

Copying cons nodes can be avoided by using a continuation argument in the sorting function. 
The continuation argument determines what must be done when this function is finished. 
In this example this is what has to be appended to the list when the list to be sorted is ex-
hausted. Initially there is nothing to be appended to the sorted list. We use an additional 
function, qs, that handles sorting with continuation lists. 

qsort2 :: [a] -> [a] | Ord a 
qsort2 l = qs l [] 

The continuation of sorting all elements smaller than the first element is the sorted list con-
taining all other elements. Its continuation is the continuation supplied as argument to qs. 
When the list to be sorted is empty we continue with the continuation c. 

qs :: [a] [a] ->[a] | Ord a 
qs []     c = c 
qs [a:xs] c = qs [x \\ x<-xs | x<a] [a:qs [x \\ x<-xs | x>=a] c] 

The trace of the reduction of a small example clarifies the behaviour of these functions: 
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qsort2 [1,2,1] 
→ qs [1,2,1] [] 
→ qs [] [1:qs [2,1] []] 
→ [1:qs [2,1] []] 
→ [1:qs [1] [2:qs [] []]] 
→ [1:qs [] [1:qs [] [2:qs [] []]]] 
→ [1:[1:qs [] [2:qs [] []]]] 
→ [1:[1:[2:qs [] []]]] 
→ [1:[1:[2:[]]]] 
= [1,1,2] 

qsort [1,2,1] 
→ qsort []++[1]++qsort [2,1] 
→ []++[1]++qsort [2,1] 
→ [1]++qsort [2,1] 
→ [1:[]++qsort [2,1]] 
→ [1:qsort [2,1]] 
→ [1:qsort [1]++[2]++qsort []] 
→ [1:qsort []++[1]++qsort []++ 
        [2]++qsort []] 
→ [1:[]++[1]++qsort []++[2]++qsort []] 
→ [1:[1]++qsort []++[2]++qsort []] 
→ [1:1:[]++qsort []++[2]++qsort []] 
→ [1:1:qsort []++[2]++qsort []] 
→ [1:1:[]++[2]++qsort []] 
→ [1:1:[2]++qsort []] 
→ [1:1:2:[]++qsort []] 
→ [1:1:2:qsort []] 
→ [1:1:2:[]] 
= [1,1,2] 

Figure 6.1: Traces showing the advantage of a continuation in the quick sort algorithm. 

It is obvious that the version of quick sort using continuations requires a smaller number 
of reduction steps. This explains why it is approximately 25% faster. 

In the same spirit we can replace the operator ++ in the tree sort function, tsort, with a con-
tinuation. 

tsort2 :: ([a] -> [a]) | Eq, Ord a 
tsort2 = flip labels2 [] o listToTree 
 
labels2 :: (Tree a) [a] -> [a] 
labels2 Leaf   c = c 
labels2 (Node x le ri) c = labels2 le [x: labels2 ri c] 

As shown in table 3 above, this function using continuations is indeed more efficient (ap-
proximately 19%). 

6.4 Exploiting Strictness 
As explained in previous chapters, a function argument is strict when its value is always 
needed in the evaluation of a function call. Usually an expression is not evaluated until its 
value is needed. This implies that expressions that, if they would be evaluated, cause non-
terminating reductions, or errors, or yield infinite data structures, can be used as function 
arguments. Problems do not arise until the value of such expressions is really needed. 

The price we have to pay for lazy evaluation is a little overhead. The graph representing an 
expression is constructed during a rewrite step. When the value of this expression is needed 
the nodes in the graph are inspected and later on the root is updated by the result of the 
rewrite process. This update is necessary since the node may be shared (occurring at several 
places in the expression). By updating the node in the graph re-computation of its value is 
prevented. 

When the value of a node is known to be needed it is slightly more efficient to compute its 
value right away and store the result directly. The sub-expressions that are known to be 
needed anyway are called strict. For these expressions there is no reason to store the ex-
pression and to delay its computation until needed. The CLEAN compiler uses this to 
evaluate strict expressions at the moment they are constructed. This does not change the 
number of reduction steps. It only makes the reduction steps faster. 

The CLEAN compiler uses basically the following rules to decide whether an expression is 
strict: 
1) The root of the right-hand side is a strict expression. When a function is evaluated this 

is done since its value is needed. This implies that also the value of its reduct will be 
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needed. This is repeated until the root of the right hand side cannot be reduced any-
more. 

2) Strict arguments of functions occurring in a strict context are strict expressions. The 
function is known to be needed since it occurs in a strict context. In addition it is 
known that the value of the strict arguments is needed when the result of the function 
is needed. 

These rules are recursively applied to determine as many strict sub-expressions as possible. 
This implies that the CLEAN compiler can generate more efficient programs when strict-
ness of function arguments is known. In general strictness is an undecidable property. We 
do not make all arguments strict in order to be able to exploit the advantages of lazy 
evaluation. Fortunately, any safe approximation of strictness helps to speed up programs. 
The compiler uses a sophisticated algorithm based on abstract interpretation [Plasmeijer 
94]. A simpler algorithm to determine strictness uses the following rules: 
1) Any function is strict in the first pattern of the first alternative. The corresponding 

expression should be evaluated in order to determine whether this alternative is ap-
plicable. This explains why the append operator, ++, is strict in its first argument. 
 
(++) infixr 5 :: ![x] [x] -> [x] 
(++) [hd:tl] list = [hd:tl ++ list] 
(++) nil     list = list 
 

 Since it is generally not known how much of the generated list is needed, the append 
operator is not strict in its second argument. 

2) A function is strict in the arguments that are needed in all of its alternatives. This ex-
plains why the function add is strict in both of its arguments and mul is only strict in its 
first argument. In the standard environment both + and * are defined to be strict in 
both arguments. 
 
mul :: !Int Int -> Int 
mul 0 y = 0 
mul x y = x*y 
 
add :: !Int !Int -> Int 
add 0 y = y 
add x y = x+y 

You can increase the amount of strictness in your programs by adding strictness informa-
tion to function arguments in the type definition of functions. Sub-expressions that are 
known to be strict, but which do not correspond to function arguments can be evaluated 
strict by defining them as strict local definitions using #!. 

6.5 Unboxed Values 
Objects that are not stored inside a node in the heap are called unboxed values. These un-
boxed values are handled very efficiently by the CLEAN system. In this situation the 
CLEAN system is able to avoid the general graph transformations prescribed in the seman-
tics. It is the responsibility of the compiler to use unboxed values and to do the conversion 
with nodes in the heap whenever appropriate. Strict arguments of a basic type are handled 
as unboxed values in CLEAN. Although the compiler takes care of this, we can use this to 
speed up our programs by using strict arguments of a basic type whenever appropriate. 

We illustrate the effects using the familiar function length. A naïve definition of length is: 
length :: ![x] -> Int 
length [a:x] = 1 + length x 
length []    = 0 

A trace shows the behaviour of this function: 
length [7,8,9] 
→ 1 + length [8,9] 
→ 1 + 1 + length [9] 



EFFICIENCY OF PROGRAMS 181 

→ 1 + 1 + 1 + length [] 
→ 1 + 1 + 1 + 0 
→ 1 + 1 + 1 
→ 1 + 2 
→ 3 

The CLEAN system builds an intermediate expression of the form 1 + 1 + … + 0 of a size 
proportional to the length of the list. Since addition is known to be strict in both argu-
ments, the expression is constructed on the stacks rather than in the heap. Nevertheless it 
consumes time and space. 

Construction of the intermediate expression can be avoided using an accumulator: a 
counter indicating the length of the list processed until now. 

lengthA :: ![x] -> Int 
lengthA l = L 0 l 
where  
 L :: Int [x] -> Int 
 L n [a:x] = L (n+1) x 
 L n []    = n  

The expression lengthA [7,8,9] is reduced as: 
lengthA [7,8,9] 
→ L 0 [7,8,9] 
→ L (0+1) [8,9] 
→ L ((0+1)+1) [9] 
→ L (((0+1)+1)+1) [] 
→ ((0+1)+1)+1 
→ (1+1)+1 
→ 2+1 
→ 3 

The problem with this definition is that the expression used as accumulator grows during 
the processing of the list. Evaluation of the accumulator is delayed until the entire list is 
processed. This can be avoided by making the accumulator strict.  

lengthSA :: ![x] -> Int 
lengthSA l = L 0 l 
where 
 L :: !Int [x] -> Int 
 L n [a:x] = L (n+1) x 
 L n []    = n  

In fact the CLEAN system is able to detect that this accumulator is strict. When you don’t 
switch strictness analysis off, the CLEAN system will transform lengthA to lengthSA. The trace 
becomes: 

lengthSA [7,8,9] 
→ L 0 [7,8,9] 
→ L (0+1) [8,9] 
→ L 1 [8,9] 
→ L (1+1) [9] 
→ L 2 [9] 
→ L (2+1) [] 
→ L 3 [] 
→ 3 

Since the accumulator is a strict argument of a basic type, the CLEAN system avoids the 
construction of data structures in the heap. An unboxed integer will be used instead of the 
nodes in the heap. In table 4 we list the run time of some programs to illustrate the effect 
of strictness. We used a PC with a Pentium, 128 MB RAM, running Windows 98 2nd edi-
tion to compute 1000 times the length of a list of 10,000 elements. The application had 400 
KB of heap. The difference between the programs is the function used to determine the 
length of the list. 
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function execution gc total 
length 3.76 6.93 10.69 
lengthA 3.74 6.87 10.62 
lengthSA 1.15 0.01 1.16 

Table 4: Runtime in seconds of a program to determine the length of a list. 

Using a lazy accumulator is as costly as the naïve way of computing the length of a list. In 
both cases all computations are done in a lazy context. The intermediate expression 1+1+…+0 
is constructed in the heap. Adding strictness information improves the efficiency of the 
computation of the length of a list using an accumulator by a factor of 10. The overloaded 
version of this function defined in the standard environment does use the efficient algo-
rithm with a strict accumulator. 

Adding a strictness annotation can increase the efficiency of the manipulation of basic 
types significantly. You might even consider adding strictness annotations to arguments 
that are not strict in order to increase the efficiency. This is only safe when you know that 
the corresponding expression will terminate.  

As an example we consider the function to replace a list of items by a list of their indices: 
indices :: [x] -> [Int] 
indices l = i 0 l 
where i :: Int [x] -> [Int] 
  i n []    = [] 
  i n [a:x] = [n: i (n+1) x] 

The local function i is not strict in its first argument: when the list of items is empty the 
argument n is not used. Nevertheless, the efficiency of the function indices can be doubled 
(for a list of length 1000) when this argument is made strict by adding an annotation. The 
cost of this single superfluous addition is outweighed by the more efficient way to handle 
this argument. 

We have seen another example in the function fib4 to compute Fibonacci numbers in linear 
time: 

fib4 n = f n 1 1 
where f :: !Int !Int !Int -> Int 
  f 0 a b = a 
  f n a b = f (n-1) b (a+b) 

Making f strict in its last argument does cause that one addition is done too much (in the 
last iteration of f the last argument will not be used), but makes the computation of (fib4 
45) twelve times as efficient. When f evaluates all its arguments lazily, the Fibonacci func-
tion slows down by another factor of two. 

6.6 The Cost of Currying 
All functions and constructors can be used in a Curried way in CLEAN. Although you are 
encouraged to do this whenever appropriate, there are some runtime costs associated with 
Currying. When speed becomes an issue it may be worthwhile to consider the elimination 
of some heavily used Curried functions from your program. 

Currying is costly because it is not possible to detect at compile time which function is ap-
plied and whether it has the right number of arguments. This implies that this should be 
done at runtime. Moreover certain optimizations cannot be applied for Curried functions. 
For instance, it is not possible to use unboxed values for strict arguments of basic types. 
The CLEAN system does not know which function will be applied. Hence, it cannot be de-
termined which arguments will be strict. This causes additional loss of efficiency compared 
with a simple application of the function. 
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To illustrate this effect we consider the function Sum to compute the sum of a list of inte-
gers. The naïve definition is: 

Sum :: ![Int] -> Int 
Sum [a:x] = a + Sum x 
Sum []    = 0 

Using the appropriate fold function this can be written as Foldr (+) 0, where Foldr is defined 
as: 

Foldr :: (a b -> b) b ![a] -> b 
Foldr op r [a:x] = op a (Foldr op r x) 
Foldr op r []    = r 

In the function Sum the addition is treated as an ordinary function. It is strict in both ar-
guments and the arguments are of the basic type Int. In the function Foldr the addition is a 
curried function. This implies that the strictness information cannot be used and the ex-
ecution will be slower. Moreover it must be checked whether op is a function, or an ex-
pression like (id (+)) which yields a function. Also the number of arguments needed by the 
function should be checked. Instead of the ordinary addition there can be something like 
(\n -> (+) n). This function takes one of the arguments and yields a function that takes the 
second argument. Even when these things do not occur, the implementation must handle 
these options at runtime. For an ordinary function application, it can be detected at com-
pile time whether there is an ordinary function application. 

The function foldr from the standard environment eliminates these drawbacks by using a 
macro: 

foldr op r l :== foldr r l 
where 
 foldr r []  = r 
 foldr r [a:x] = op a (foldr r x) 

By using this macro, a tailor-made foldr is created for each and every application of foldr in 
the text of your CLEAN program. In this tailor-made version the operator can usually be 
treated as an ordinary function. This implies that the ordinary optimizations will be applied. 

As argued above, it is better to equip the function to sum the elements of a list with a strict 
accumulator. 

SumA :: ![Int] -> Int 
SumA l = S 0 l 
where  
 S :: !Int ![Int] -> Int 
 S n [a:x] = S (n+a) x 
 S n []    = n 

The accumulator argument n of the function SumA is usually not considered to be strict. Its 
value will never be used when SumA is applied to an infinite list. However, the function SumA 
will never yield a result in this situation. 

The same recursion pattern is obtained by the expression Foldl (+) 0. This fold function can 
be defined as: 

Foldl :: (b a -> b) !b ![a] -> b 
Foldl op r [a:x] = Foldl op (op r a) x 
Foldl op r []    = r 

The second argument of this function is made strict exactly for the same reason as in SumA. 
In StdEnv also this function is defined using a macro to avoid the cost of Currying: 

foldl op r l :== foldl r l 
where 
 foldl r []  = r 
 foldl r [a:x] = foldl (op r a) x 

We will compare the run time of programs computing 1000 times the sum of the list 
[1..10000] in order to see the effects on the efficiency. 
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function execution gc total 
Sum 1.9 0.04 1.94 
Foldr (+) 0 6.12 17.56 23.69 
foldr (+) 0 1.9 0.02 1.93 
SumA 1.34 0.01 1.36 
Foldl (+) 0 2.49 3.67 6.17 
foldl (+) 0 1.32 0.02 1.34 

Table 5: Runtime in seconds of a program to determine the costs of Currying. 

The following table shows the impact of omitting all strictness information; also the strict-
ness analyser of the CLEAN system is switched off. The only remaining strictness informa-
tion is the strictness of the operator + from StdEnv. 

function execution gc total 
Sum 1.86 0.03 1.89 
Foldr (+) 0 6.18 17.49 23.67 
foldr (+) 0 1.91 0.02 1.94 
SumA 1.20 0.02 1.22 
Foldl (+) 0 7.47 24.55 32.03 
foldl (+) 0 4.52 7.66 12.18 

Table 6: Runtime of a program to determine the costs of Currying without strictness. 

From the figures in these tables we can conclude that there are indeed quite substantial 
costs involved by using Curried functions. However, we used a Curried function manipu-
lating strict arguments of a basic type. The main efficiency effect is caused by the loss of 
the possibilities to treat the arguments as unboxed values. For functions manipulating ordi-
nary datatypes the cost of Currying is much smaller. When we use the predefined folds 
from StdEnv there is no significant overhead in using Curried functions due to the macro’s 
in the definition of these functions. 

6.6.1 Folding to the Right or to the Left 
Many functions can be written as a fold to the left, foldl, or a fold to the right, foldr. As we 
have seen above, there are differences in the efficiency. For functions like sum it is more ef-
ficient to use foldl. The argument e behaves as an accumulator. 

A function like reverse can be written using foldl and using foldr: 
reversel l = foldl (\r x -> [x:r]) [] l 
 
reverser l = foldr (\x r -> r++[x]) [] l 

Difference in efficiency depends on the length of the list used as argument. The function 
reverser requires a number of reduction steps proportional to the square of the length of 
the list. For reversel the number of reduction steps is proportional to the length of the list. 
For a list of some hundreds of elements the difference in speed is about two orders of 
magnitude! 

Can we conclude from these example that it is always better to use foldl? No, life is not that 
easy. As a counter example we consider the following definitions: 

el = foldl (&&) True (repeat 100 False) 
er = foldr (&&) True (repeat 100 False) 

When we evaluate el, the accumulator will become False after inspection of the first Boo-
lean in the list. When you consider the behaviour of && it is clear that the result of the entire 
expression will be False. Nevertheless, your program will apply the operator && to all other 
Booleans in the list. 
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However, we can avoid this by using foldr. This is illustrated by the following trace: 
foldr (&&) True (repeat 100 False) 
→ foldr (&&) True [False: repeat (100-1) False] 
→ (&&) False (foldr (&&) True (repeat (100-1) False)) 
→ False 

That does make a difference! As a rule of thumb you should use foldl for operators that are 
strict in both arguments. For operators that are only strict in their first argument foldr is a 
better choice. For functions such as reverse there is not a single operator that can be used 
with foldl and foldr. In this situation the choice should be determined by the complexity of 
the function given as argument to the fold. The function \r x -> [x:r] in foldl requires a 
single reduction step, whereas the function \x r -> r++[x] from foldr takes a number of re-
duction steps proportional to the length of r. Hence foldl is much better in this example 
than foldr. However, in a map or a filter the function foldr is much better than foldl. Hence, 
you have to be careful for every use of fold. 

It requires some practice to be able to write functions using higher-order list manipulations 
like fold, map and filter. It takes some additional training to appreciate this kind of defini-
tions. The advantage of using these functions is that it can make the recursive structure of 
the list processing clear. The drawbacks are the experience needed as a human to read and 
write these definitions and some computational overhead. 

6.7 Exercises 
1. In the function qsort there are two list comprehensions used to split the input list. It 

is possible to split the input list in one pass of the input list similar to msort4. Using 
an additional function it is possible to do this in one pass of the input list. Deter-
mine whether this increases the efficiency of the quick sort function. 

2. To achieve the best of both worlds in the quick sort function you can combine 
splitting the input in one pass and continuation passing. Determine whether the 
combination of these optimizations does increase the efficiency. 

3. When the elements of a list can have the same value it may be worthwhile to split 
the input list of the quick sort function in three parts: one part less than the first 
element, the second part equal to the first element and finally all elements greater 
than the first element. Implement this function and determine whether it increases 
the speed of sorting the random list. We can increase the amount of duplicates by 
appending the same list a number of times. 

4. Determine and compare the runtime of the sorting functions msort4, qsort4 (from 
the previous exercise), tsort2 and isort for non-random lists. Use a sorted list and its 
reversed version as input of the sorting functions to determine execution times. 
Determine which sorting algorithm is the best. 

5. Investigate whether it is useful to pass the length of the list to sort as additional 
argument to merge sort. This length needs to be computed only once by counting 
the elements. In recursive calls it can be computed in a single reduction step. We 
can give the function split a single argument as accumulator. Does this increase the 
efficiency? 

6. Study the behavior of sorting functions for sorted lists and inversely sorted lists. 

7. Determine the time complexity of the functions qsort2 and tsort2. 
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The first part of this book explains the language concepts found in Clean, as well as many 
examples illustrating the application of these concepts. These examples show how the lan-
guage constructs can be used to express algorithms. As soon as you start to develop your 
own programs you will discover that much work must be done before you can start writing 
Clean code. In large software projects only a small fraction of the time is spent writing 
code. Most of the time is used to analyse the problem, design a solution, to verify whether 
the implementation really solves the problem, writing documentation etc. In small projects, 
like most programming exercises, these topics take a smaller fraction of the time, but are 
also very important. 

The branch of computer science concerned with the construction trajectory of large soft-
ware systems is called software engineering. The way a software system is constructed is 
called the software construction process, the software process, or even just the proc-
ess. A complete discussion of software processes and their merits is outside the scope of 
this book. We will just highlight some aspects that are necessary for the successful con-
struction of small and medium scale software systems. 

A.1 A program development strategy 
There is not a single route to success in software development, nor a strategy that guaran-
tees success. Nevertheless there are a number of rule that greatly increase your chances of 
success. Probably the most important rules are: 
• Think well before you start programming and keep thinking while you are busy. 
• Work systematically in all phases of the software process. 
• Give always priority the most risky tasks. A task is considered risky if it can fail or can 

cause a large amount of work. Many people tend to do the easy thing first and wait 
with the more difficult parts until there is more experience. When there is a chance that 
the difficult parts fail or generate an unpredictable amount of work this is not an effec-
tive strategy. If a serious problem appears, this causes changes in the system under 
construction. These changes might have repercussions on the constructed parts. 

• Do not hesitate to confess that you made a mistake at some point. Although it might 
be very painful to admit that you were wrong and it can imply an awful lot of work to 
correct the mistake. The best you can do is to step back and face the consequences. Ig-
noring the error is usually not an option. Trying to hide the consequences of the fault is 
usually unsuccessful and a lot more work than correcting it. 
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• Write documentation in all phases of the software process. Writing things down forces 
you to formulate them clearly. Moreover, the documents make it possible to find back 
and review decisions and their rationale. 

• Be prepared for changes. All software tends to be used much longer than originally in-
tended. During this life the software is changed very often. The sources of these 
changes might be a better understanding of the problem, observation of the behaviour 
of the constructed software, and changing constraints imposed by the environment 
where the program is used. So, be very careful with assumptions on things that "won't 
happen'" or are "facts" for the current situation. 

 A defensive style of program development is advocated to prevent problems: list any 
assumptions explicitly and/or make it possible to check these assumptions during pro-
gram execution. In practice this happens to be a very good intention, which is almost 
impossible to fulfil completely. 

Keeping these rules in mind a software process should consists at least of an analysis phase, 
a design phase, an implementation phase and a validation phase. During the analysis you 
determine what has to be done. The design tells how it has to be done. During implementa-
tion a program is constructed. The correctness and suitability is tested during the validation 
phase. We will discuss each of these phases in more detail. 

A.1.1 Analysis 
The purpose of the analysis phase is to determine the goal and constraints on the software 
to be constructed. The analysis should produce a clear list of requirements. These require-
ments specify what the product should do. It is important to realise that also the environ-
ment may impose important constraints. For instance, a program to store names and ad-
dresses of people can be quite different if it is for personal use and will contain about 50 
persons, or for governmental use and should hold the names and addresses of all 16 mil-
lion Dutch people. A program that will be used daily by a large number of people imposes 
different requirements than a program that will be used once to solve some problem. 

During this phase a document is written that contains a clear description of the problem to 
be solved and the associated requirements to a sufficient amount of detail. This document 
should be clear for the software developers and their customer. The topics should be ex-
plained in general terms and can be illustrated by some concise concrete examples. Pref-
erably the analysis document should contain a verifiable condition that can be used to de-
termine whether the final product meets the intentions. Such a test can for instance consist 
of a set of inputs with desired outputs. 

Based on this problem description you should decide whether it is feasible and wise to con-
struct such a product. Perhaps it is possible to find a suited product for free on the inter-
net, or it is cheaper to buy an existing product. The available time or resources can be in-
sufficient to create such a product. The fact that a single person can produce some system 
in 100 hours does not imply that 100 programmers can create an equivalent product in one 
hour. If you are convinced that the available time, knowledge or manpower is insufficient 
to solve the specified problem, it is not useful to start designing and implementing a solu-
tion. 

In large projects one often decides to create a prototype of the product in order to verify 
the validity of the analysis. This prototype is a partial implementation of the final product. 
It may be too slow, too big, limited in functionality or amount of data processed, awkward 
to use or a combination of these. Important questions to be answered are: what is the pur-
pose of the prototype, and what will happen with the constructed prototype? Will this pro-
totype be the basis of the final product, or is it thrown away as soon as the questions are 
answered. A prototype that has to be extended to a complete product imposes other con-
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straints than a throw-away program. The prototype itself is again a software system that 
should be created using an appropriate software process. 

Experience shows that software is used longer than originally intended and changed very 
often. This indicates that the analysis done at the start of a project is only a snapshot of the 
actual requirements and constraints. This does not imply that an analysis is useless or un-
important. It just indicates that you should be prepared for changes. 

In many programming exercises, the exercise itself contains a suited analysis of the prob-
lem to be solved. In fact the exercise might as well contain a partial or complete design. 

A.1.2 Design 
During the design phase you determine how the described problem will be solved. Al-
though developing a solution is a creative process, there are guidelines that can help to find 
a suitable algorithm. First of all, you can look if the problem is a familiar problem, or con-
tains familiar sub-problems. For tasks like searching, sorting and parsing there are standard 
solutions in the literature. It is much better to use such a known solution than to reinvent 
the wheel. 

Dividing a problem into a number of sub-problems can often solve problems that are not 
recognised as standard problem. Of course you should also indicate how the combination 
of the solutions of these sub-problems solves the original problem. Each of these sub-
problems is solved using the same strategy. Such a divide and conquer strategy only works 
if the sub-problems are really simpler to solve. It is always wise to separate loosely coupled 
parts like computations and user-interface as much as possible. 

Whenever possible you should try to develop a constructive algorithm which constructs the 
desired solution. If you cannot come up with a constructive solution and the number of 
candidate solutions is finite you can use an algorithm that tries each of the candidate solu-
tions in turn. Whenever possible use a backtrack algorithm that tries identical parts of simi-
lar solutions once. Try to find an ordering of candidate solutions such that the most likely 
solution is checked as soon as possible. 

Together with the algorithm you design a data structure to represent the objects and pro-
gram-state manipulated. Also for the data structure you use standard solutions (like lists, 
various trees, arrays and records) whenever appropriate. 

During the design phase a document is produced that contains the made decisions as well 
as their rationale. The algorithm can be described in natural language, mathematics or 
(pseudo) code. Use whatever fits your needs best. Illustrate the algorithm and data struc-
tures with pictures whenever appropriate. For each sub-problem you have to specify system-
atically how it is split is sub-problems, how these solutions ought to be combined, and how 
various cases are handled. This document ought to indicate also how errors and unex-
pected situations must be handled. 

Use some small examples to verify the correctness of the designed solution. Have a look at 
the complexity of the described algorithm. Is it feasible to design a more efficient solution? 
A prototype implementation can be used to validate the suitability of the design. 

If the solution can be described directly in a mathematical style and a functional program-
ming language like Clean is used to describe the solution, the design happens to be a pro-
gram. This is one of the big advantages of the use of high-level functional languages. In all 
other situations you have to translate the design to a programming language: the implemen-
tation phase. 
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A.1.3 Implementation 
During the implementation phase you write the actual program. Before you start pro-
gramming you should have a clear view on the problem to be solved (from the analysis 
phase) and how this problem can be solved (from the design phase). 

A large program will consist of a number of modules. It is important to use a well-
engineered module structure. Good candidates for modules are the data structures with 
associated manipulation functions and the sub-problems found in the design. 

Determine an order in which these modules are developed. Give priority to any modules 
that contain a risk for the success of the project. Furthermore, develop modules in such an 
order that modules can be checked as soon as possible. Finally you can try to have a partial 
implementation of the final program running as soon as possible by choosing an appropri-
ate implementation order of the modules. Perhaps you have do provide dummy implemen-
tations of some modules. This increases the possibilities to test modules, provides feedback 
and is usually encouraging for the construction team and their customers. 

Document any additional decisions that are taken during the implementation. List what 
forced you to make a decision, what you decided and why. Also write appropriate com-
ments in the code. Do not write things that are obvious from the code like "this function 
takes an integer as argument and produces a Boolean", but indicate the role of the argu-
ments and result. For instance "this function takes a year after 1752 as argument and returns 
True iff it is a leap year". 

In big projects the actual implementation only consumes a relative small part, often about 
25%, of the total effort needed to construct the system. 

A.1.4 Validation 
After the individual modules are created, tested, and integrated to a complete system, you 
should systematically verify the consistency, correctness and validity of the constructed sys-
tem. By consistency we mean that the program should not crash or show other unaccept-
able behaviour for any sensible combination of inputs. The correctness implies that the 
reaction of the systems is according to the description in the problem analysis. The final 
validation checks whether the created system really solved the problem it was designed for. 

During all phases of the process you or your customer might want to make changes. In 
general the impact of the changes increases by an order of magnitude for each phase it is 
delayed. On the other hand, if you are too eager to incorporate changes, you may never 
finish a complete version of the system. For each potential change that comes up during 
the process, you should identify whether it is vital, what are the consequences, and whether 
it is better to delay it or to incorporate it immediately. 

A.1.5 Reflection 
Finally you should look back at the software process. Relevant questions are: 
• Are all important decisions documented? 
• Are any of these decisions wrong? 
• With the experience you have on the end of the project, which decisions could have 

been improved? 
• What are the keys for success or failure of the project? 
• What lessons should be learned for future projects and processes? 
Making mistakes is inevitable. Not trying to learn from these mistakes is perhaps the big-
gest mistake you can make. 
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A.2 Top-down versus Bottom up 
In traditional software processes one distinguishes top-down and bottom-up program de-
velopment. In top-down development a program is designed and implemented by repeat-
edly dividing the problem into sub-problems until these sub-problems can be solved im-
mediately. The top is the formulation of the solution at the highest level of abstraction and 
the bottom is the collection of sub-problems whose solution is immediately expressed in 
the language primitives. The division of problems into sub-problems leads only to a solu-
tion if the final sub-problems can be solved effectively in the implementation language. 
This implies that the desired division into sub-problems can be somewhat language de-
pendent. Not every division from problems in sub-problems yields an effective algorithm. 
The sooner you have problems that can be expressed directly in the language primitives the 
better. 

In bottom-up development one starts with simple data-structures and associated manipu-
lations that might be useful for the given problem: the bottom. By repeatedly combining 
these manipulations and data structures, more and more powerful combinations are cre-
ated. At the top there is a combination that solves the given problem. It is very unlikely 
that just combining data structures and functions blindly yields a solution for the given 
problem. Just like the top-down strategy there ought to be an intuition that guides the de-
velopment process. 

A combination of these strategies might be a very effective way to solve a given problem. 
Useful data structures and associated manipulations are created in a bottom-up fashion. 
The central problem is divided into sub-problems that are closer to these data structures 
and functions. 

For the implementation phase a bottom-up strategy is often very effective. The modules 
needed and their functionality is known. By constructing modules bottom-up you are able 
to compile and test a module as soon as it is written. 

A.3 Evolutionary development 
There is a growing recognition that software, like many other complex systems, evolves 
over a period of time. In evolutionary development one accepts that it is impossible to de-
velop the finally desired product at once. As soon as the customer sees the product that 
was specified during the analysis, he wants additional features and changes his mind on the 
existing possibilities. Also the evolving world imposes changing requirements on the soft-
ware system. 

Above we described how a software system is created in a process that visits all phases 
(analysis, design, implementation and validation) exactly once. Such a process is called a 
waterfall-model. A phase that is left is not visited again: water does not flow up. In prac-
tise we will visit earlier phases after a mistake is discovered. The plain waterfall model as-
sumes that software engineers are better then ordinary people and do not make errors. 
More realistic variants of the waterfall model cope with errors by allowing us to return to 
earlier phases in order to correct errors. 

As a consequence of the evolving requirements it is impossible to create the ultimate prod-
uct once and forever. Instead of creating the best possible product and changing that af-
terwards, an evolutionary software process prescribes iteration through all phases of the 
process mentioned above. In each pass some well-described features are added to the sys-
tem or changed. Again the most risky parts should be done with priority in order to pre-
vent that useless things are done or many changes will be needed afterwards. 

The advantages of evolutionary software development are obvious: there is fast feedback 
on the most risky aspects of the system, the users are able to give feedback much earlier, 
and one anticipates on all kind of changes. The disadvantages of evolutionary software 
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construction are that people are often so occupied by making changes that it takes too long 
to create a version of the system that incorporates all basic features. Moreover, since 
change is the dominant factor it is much harder to obtain and maintain valid documenta-
tion of the system. Are the documented decisions and facts still valid after all changes? Are 
they made to delay the implementation of some futures? Is every important decision 
documented? 

Facing the disadvantages it is clear that the number of iterations should be kept low. Small 
systems, like most programming exercises, can and ought to be constructed in one go. 

A.4 Quality and reviews  
Software quality has many faces. This includes, but is not limited to: 
• correctness: does the product produce the right answers; 
• documentation: is there valid, clear and useful documentation; 
• economy: how does the price of the product relate to its functionality; 
• efficiency: how efficient is the system; 
• functionality: is the product flexible enough; 
• modifiability: how easy is it to change the product; 
• portability: how easy is it to use the system under different circumstances; 
• reliability: does the product work correct under rare conditions; 
• reusability: how easy is it to reuse parts of the system; 
• testability: how difficult is it to test that the product is correct; 
• validity: does the product solve the needs of the user. 
Many of these properties are hard to measure. For instance how easy it is to modify the 
system heavily depends on the kind of changes one wants to make. Usually it is unknown 
what changes will be required. However, most reviewers doesn't complain because it hap-
pens to be their job to spot problems, but since the have found a real problem. You ought 
to consider these problems serious.  

A way to increase the quality of a product is to review the documents and code produced. 
In a review a document or piece of code is examined by a group of people in order to find 
factual or potential problems. For instance future users of the system review the analysis 
document in order to determine whether the described product solves their problem. An-
other example is the review of code in order to detect errors or problems with its reuse or 
change. Reviews can also be held to determine other aspects of quality or to verify the pro-
gress and suitability of the software process. 

The difference between testing and reviewing is that testing considers the system a black 
box, the test just determines whether the system shows the desired response to given in-
puts. Reviews can show actual or potential problems long before the program can be 
tested, or troubles that cannot be found by testing. Since the impact (and costs) of a change 
increases when it is delayed, reviews can decrease the development cost and increase the 
quality. 

It is highly recommended to review all documents at least once. When no reviewers are 
available it is even more important that read all documents and the code yourself in order 
to spot factual or potential problems. A program that is accepted by the compiler and pro-
duces some output isn't necessarily correct. Reviews don't replace systematic testing, but 
are a valuable extension to these tests. This holds also for programming exercises! 

All items raised during a review should be qualified in one of the following categories: 
• Wrong. The reviewed document was correct, the comment of the reviewers made was 

wrong and should be ignored. 
• No action. The review showed an anomaly, but it is not critical and the cost of rectifying 

it is not justified. 
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• Repair. The detected fault has to be corrected, usually by the authors of the document. 
The impact of the fault is expected to be low. 

• Overall reconsideration. A fault was detected that impacts other parts of the system. This 
does not imply that the fault and all its consequences should be corrected immediately. 
Such an overall change may be not cost-effective. Instead of correcting the entire sys-
tem, one can decide to change other parts of the system 

When repair is needed, it should be done as soon as possible in order to reduce the impact 
of the change and the associated effort. 
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The CLEAN system has a set of modules called the standard environment. These modules 
are a library that contains basic operations on the predefined datatypes and functions that 
are considered generally useful. In contrast to many other languages basic operators, like +, 
are not part of the language, but part of the standard library. This has as consequence that 
each program using these operators should import the library. The advantages are that you 
can add instance of these operators for your own datatypes, like we did for rational num-
bers in section 3.4.1, and that you did not have to use the predefined operators. However, 
the basic types and the denotation of values of these types are part of the language. 

The modules are implemented in CLEAN, in ABC-code or even in platform dependent as-
sembler code. Usually it does not matter how the functions are implemented. It is sufficient 
to know the type of the function as specified in the definition module. For high level func-
tions it might be convenient to study the function definitions since the implementation is 
the most concise and complete description of its semantics. This holds for example for list 
manipulating functions in StdList. Fortunately, these functions are defined in CLEAN. 

In this appendix we will discuss the components of the standard library. This appendix 
only shows the definition modules. Whenever necessary you are encouraged to look at the 
relevant parts of the implementation modules. 

Apart from this standard environment the CLEAN system has a rich collection of libraries. 
These modules can be found on the web-site of CLEAN, www.cs.kun.nl/~clean. You are 
encouraged to look at these libraries as soon as you have a little experience with program-
ming in CLEAN. 

B.1 StdEnv 
This module is just a shortcut to include all parts of the standard library. It is used very of-
ten. Only when you want to be specific about the parts of the standard library imported 
you use the individual parts rather than StdEnv. If you want to control the import of parts 
of the standard library you should be alert on automatic imports. For instance the modules 
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that contain standard operations on basic types, like the module StdInt, import the module 
StdOverloaded. This implies that you might import more than you expect by looking at the 
explicit imports in your main module. 

definition module StdEnv 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import  
 StdBool, 
 StdInt, 
 StdReal, 
 StdChar, 
 StdArray, 
 StdString, 
 StdFile, 
 
 StdClass, 
 
 StdList, 
 StdOrdList, 
 StdTuple, 
 StdCharList, 
 StdFunc, 
 StdMisc, 
 
 StdEnum 

B.2 StdOverloaded 
The module StdOverloaded contains the class definitions for the standard overloaded 
functions. The classes for basic infix operators like + and * are defined here. 

This module is not imported by StdEnv directly, but it is imported by modules like StdBool 
and StdInt. This implies that StdOverloaded is imported indirectly by StdEnv.. 

definition module StdOverloaded 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
class (+)  infixl 6 a :: !a !a -> a  // Add arg1 to arg2 
 
class (-)  infixl 6 a :: !a !a -> a   // Subtract arg2 from arg1 
class zero    a :: a     // Zero (unit element for addition) 
 
class (*)  infixl 7 a :: !a !a -> a  // Multiply arg1 with arg2 
class (/)  infixl 7 a :: !a !a -> a  // Divide arg1 by arg2 
class one    a :: a     // One (unit element for multiplication) 
 
class (==) infix  4 a :: !a !a -> Bool // True if arg1 is equal to arg2 
class (<)  infix  4 a :: !a !a -> Bool // True if arg1 is less than arg2 
class isEven a :: !a -> Bool;     // True if arg1 is an even number 
class isOdd  a :: !a -> Bool;     // True if arg1 is an odd  number 
 
class length m :: !(m a) -> Int    // Number of elements in arg 
           // used for list like structures (linear time) 
 
class (%)  infixl 9 a :: !a !(!Int,!Int) -> a// Slice a part from arg1 
 
class (+++) infixr 5 a  :: !a !a -> a // Append args 
 
class (̂ )  infixr 8 a :: !a !a  -> a  // arg1 to the power of arg2 
class abs     a :: !a  -> a  // Absolute value 
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class sign    a :: !a   -> Int  // 1 (pos value) -1 (neg value) 0 (if zero) 
class ~    a :: !a   -> a  // -a1 
 
class (mod) infix 7 a :: !a !a -> a   // arg1 modulo arg2 
class (rem) infix 7 a :: !a !a -> a    // remainder after division 
class gcd a :: !a !a -> a      // Greatest common divider 
class lcm a :: !a !a -> a      // Least common multiple 
 
class toInt   a :: !a  -> Int  // Convert into Int 
class toChar  a :: !a  -> Char // Convert into Char 
class toBool  a :: !a  -> Bool // Convert into Bool 
class toReal  a :: !a  -> Real // Convert into Real 
class toString  a :: !a  -> {#Char} // Convert into String 
 
class fromInt  a :: !Int   -> a // Convert from Int 
class fromChar  a :: !Char  -> a // Convert from Char 
class fromBool  a :: !Bool  -> a // Convert from Bool 
class fromReal  a :: !Real  -> a // Convert from Real 
class fromString a :: !{#Char}  -> a // Convert from String 
 
class ln   a :: !a   -> a  // Logarithm base e 
class log10   a :: !a   -> a  // Logarithm base 10 
class exp   a :: !a   -> a  // e to to the power  
class sqrt   a :: !a   -> a  // Square root 
 
// Trigonometrical Functions: 
 
class sin   a :: !a  -> a  // Sine 
class cos   a :: !a  -> a  // Cosine 
class tan   a :: !a  -> a  // Tangent 
class asin   a :: !a  -> a  // Arc Sine 
class acos   a :: !a  -> a  // Arc Cosine 
class atan   a :: !a  -> a  // Arc Tangent 
class sinh   a :: !a  -> a  // Hyperbolic Sine 
class cosh   a :: !a  -> a  // Hyperbolic Cosine 
class tanh   a :: !a  -> a  // Hyperbolic Tangent 
class asinh   a :: !a  -> a  // Arc Hyperbolic Sine 
class acosh   a :: !a  -> a  // Arc Hyperbolic Cosine 
class atanh   a :: !a  -> a  // Arc Hyperbolic Tangent 

B.3 StdBool 
This module implements relevant classes from StdOverloaded for the Booleans. Also the 
basic Booleand operators and (&&), or (||), and not (not) are defined here.  

system module StdBool 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdOverloaded 
 
instance ==    Bool 
 
instance toBool   Bool 
 
instance fromBool  Bool 
instance fromBool  {#Char} 
 
// Additional Logical Operators: 
 
not     :: !Bool  -> Bool // Not arg1 
(||) infixr 2 :: !Bool Bool -> Bool // Conditional or  of arg1 and arg2 
(&&) infixr 3 :: !Bool Bool -> Bool // Conditional and of arg1 and arg2 
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B.4 StdInt 
This module defines relevant functions from StdOverloaded for the integers. Moreover a 
few infix operators are defiend to handle integers as bit sequences. The size of these bitse-
quences and ordinary integers can be platform dependent. For version 1.3 uses 32-bit 
signed integers for all platfroms.  

system module StdInt  
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdOverloaded 
 
 
instance +    Int 
 
instance -     Int 
 
instance zero   Int 
 
instance *     Int 
 
instance /    Int 
instance one   Int 
 
 
instance ̂     Int 
instance abs   Int 
instance sign   Int 
instance ~    Int 
 
instance ==    Int 
instance <     Int 
instance isEven   Int // True if arg1 is an even number 
instance isOdd   Int // True if arg1 is an odd  number 
 
instance toInt   Char 
instance toInt   Int 
instance toInt   Real 
instance toInt   {#Char} 
 
instance fromInt  Int 
instance fromInt  Char 
instance fromInt  Real 
instance fromInt  {#Char} 
 
// Additional functions for integer arithmetic:  
 
instance mod Int  // arg1 modulo arg2 
instance rem Int  // remainder after integer division 
instance gcd Int // Greatest common divider 
instance lcm Int // Least common multiple 
 
// Operators on Bits: 
 
(bitor)  infixl 6 :: !Int !Int  -> Int  // Bitwise Or of arg1 and arg2 
(bitand) infixl 6 :: !Int !Int  -> Int  // Bitwise And of arg1 and arg2 
(bitxor) infixl 6 :: !Int !Int  -> Int  // Exclusive-Or arg1 with mask arg2 
(<<)     infix  7 :: !Int !Int  -> Int  // Shift arg1 to the left arg2 bit places 
(>>)     infix  7 :: !Int !Int  -> Int  // Shift arg1 to the right arg2 bit places 
bitnot    :: !Int   -> Int  // One's complement of arg1 
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B.5 StdReal 
This module provides functions form StdOverloaded for reals. In additional to the ordi-
nary conversion from reals to integers, by toInt or fromReal, this module provides the 
function entier to convert a real to an integer.  

system module StdReal 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdOverloaded 
 
instance +   Real 
instance -   Real 
instance zero  Real 
 
instance *   Real 
instance /   Real 
instance one  Real 
 
instance ̂    Real 
instance abs  Real 
instance sign  Real 
instance ~   Real 
 
instance ==   Real 
 
instance <    Real 
 
instance toReal  Int 
instance toReal  Real 
instance toReal  {#Char} 
 
instance fromReal Int 
instance fromReal Real 
instance fromReal {#Char} 
 
// Logarithmical Functions: 
 
instance ln   Real // Logarithm base e 
instance log10  Real // Logarithm base 10 
instance exp  Real // e to to the power  
instance sqrt  Real // Square root 
 
// Trigonometrical Functions: 
 
instance sin  Real // Sinus 
instance cos  Real // Cosinus 
instance tan  Real // Tangens 
instance asin  Real // Arc Sinus 
instance acos  Real // Arc Cosinus 
instance atan  Real // Arc Tangent 
instance sinh  Real // Hyperbolic Sine 
instance cosh  Real // Hyperbolic Cosine 
instance tanh  Real // Hyperbolic Tangent 
instance asinh  Real // Arc Hyperbolic Sine 
instance acosh  Real // Arc Hyperbolic Cosine, partial function, 
       // only defined if arg > 1.0 
instance atanh  Real // Arc Hyperbolic Tangent, partial function, 
       // only defined if -1.0 < arg < 1.0 
 
// Additional conversion: 
 
entier   :: !Real  -> Int  // Convert Real into Int by taking entier 
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B.6 StdChar 
The module StdChar implements relevent functions from StdOverloaded for the type 
Char. This module provides some additional predicates on characters and conversions be-
tween lowercase and uppercase characters. The ordinary conversion between integers and 
characters (by toInt, fromChar, toChar and fromInt) is based on ASCII character codes. 
The function digitToInt converts digits, like '1', to the corresponding number, 1 in this 
example.  

system module StdChar 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdOverloaded 
 
instance +     Char 
instance -     Char 
instance zero    Char 
instance one    Char 
 
instance ==    Char 
instance <     Char 
 
instance toChar   Char 
instance toChar   Int 
 
instance fromChar  Int 
instance fromChar  Char 
instance fromChar  {#Char} 
 
// Additional conversions: 
 
digitToInt  :: !Char -> Int  // Convert Digit into Int 
toUpper   :: !Char -> Char // Convert Char into an uppercase Char 
toLower   :: !Char -> Char // Convert Char into a  lowercase Char 
 
// Tests on Characters: 
 
isUpper   :: !Char -> Bool // True if arg1 is an uppercase character 
isLower   :: !Char -> Bool // True if arg1 is a lowercase character 
isAlpha   :: !Char -> Bool // True if arg1 is a letter 
isAlphanum  :: !Char -> Bool // True if arg1 is an alphanumerical character 
isDigit   :: !Char -> Bool // True if arg1 is a digit 
isOctDigit  :: !Char -> Bool // True if arg1 is a digit 
isHexDigit  :: !Char -> Bool // True if arg1 is a digit 
isSpace   :: !Char -> Bool // True if arg1 is a space, tab etc 
isControl  :: !Char -> Bool // True if arg1 is a control character 
isPrint   :: !Char -> Bool // True if arg1 is a printable character 
isAscii   :: !Char -> Bool // True if arg1 is a 7 bit ASCII character 

B.7 StdArray 
Module StdArray provides basic operations on arrays. The actual implementation of these 
operators is provided in the module _SystemArray. Modules with a name starting with an 
underscore character are special in CLEAN. Some functions provided by this module are 
used in the code generation. In this example these functions are used for the implementa-
tion of array comprehensions. It is dangerous to use these functions as ordinary functions 
in your program. Only use the functions listed in StdArray. 

Programs that use array denotations or array comprehensions should import the module 
StdArray. The compiler generates an appropriate error message if you forget this. 

definition module StdArray 
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// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 1.3 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import _SystemArray 
 
/* 
Definitions in _SystemArray: 
class Array .a e where 
 select    :: !.(a .e) !Int -> .e 
 uselect    :: !u:(a e) !Int -> *(e, !u:(a e)) 
 size    :: !.(a .e)   -> Int 
 usize    :: !u:(a .e)  -> *(!Int, !u:(a .e)) 
 update    :: !*(a .e) !Int .e -> *(a .e)  
 createArray   :: !Int e   -> *(a e) 
 _createArray  :: !Int    -> *(a .e) 
 replace    :: !*(a .e) !Int .e -> *(!.e, !*(a .e)) 
 
instance Array {!} a 
 
instance Array {#} Int 
instance Array {#} Char 
instance Array {#} Real 
instance Array {#} Bool 
 
instance Array {#} {#.a} 
instance Array {#} {!.a} 
instance Array {#} {.a} 
 
instance Array {#} a 
 
instance Array {} a 
*/ 

B.8 StdString 
The type String is not a predefiend type in CLEAN. In fact strings are unboxed arrays of 
characters. The module StdString provides the name String as type synonym for unboxed 
array of characters, {#Char}, as well as instances of some functions from StdOverloaded.  

system module StdString 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdOverloaded 
 
instance ==   {#Char} 
instance <    {#Char} 
 
instance fromString {#Char} 
 
instance toString Int 
instance toString Char 
 
instance toString Real 
 
instance toString Bool 
 
instance toString {#Char} 
 
instance %   {#Char} 
 
instance +++  {#Char}       // string concatenation 
 
(+++.) infixr 5 :: !{#Char} !{#Char} -> .{#Char} // string concatenation with unique result 
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(:=) infixl 9 :: !{#Char} !(!Int,!Char) -> {#Char} // update i-th element with char 

B.9 StdFile 
The module StdFile contains the primitives to manipulate files. This module provides also 
the abstract datatype Files that represents the unique file-system. Using overloading in the 
class FileSystem it is possible to open files directly from the World as well as from the file-
system derived form this world.  

You might find the overloaded operator <<< very convenient to write things to a file. 
system module StdFile 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
// File modes synonyms 
 
FReadText :== 0 // Read from a text file 
FWriteText :== 1 // Write to a text file 
FAppendText :== 2 // Append to an existing text file 
FReadData :== 3 // Read from a data file 
FWriteData :== 4 // Write to a data file 
FAppendData :== 5 // Append to an existing data file 
 
// Seek modes synonyms 
 
FSeekSet :== 0 // New position is the seek offset 
FSeekCur :== 1 // New position is the current position plus the seek offset 
FSeekEnd :== 2 // New position is the size of the file plus the seek offset 
 
:: *Files 
 
// Acces to the FileSystem (Files) 
 
class FileSystem f where 
 fopen :: !{#Char} !Int !*f -> (!Bool,!*File,!*f) 
   /* Opens a file for the first time in a certain mode 
    (read, write or append, text or data). 
    The boolean output parameter reports success or failure. */ 
 fclose :: !*File !*f -> (!Bool,!*f) 
   /* Closes a file */ 
 stdio  :: !*f -> (!*File,!*f) 
   /* Open the 'Console' for reading and writing. */ 
 sfopen :: !{#Char} !Int !*f -> (!Bool,!File,!*f) 
   /* With sfopen a file can be opened for reading more than once. On a file 
    opened by sfopen only the operations beginning with sf can be used. 
    The sf... operations work just like the corresponding f... operations. 
    They can't be used for files opened with fopen or freopen. */ 
 
instance FileSystem Files 
instance FileSystem World 
 
class FileEnv env where 
 accFiles :: !.(*Files -> (.x,*Files)) !*env -> (!.x,!*env) 
 appFiles :: !.(*Files -> *Files) !*env -> *env 
 
instance FileEnv World 
 
// openfiles :: !*World -> (!*Files,!*World) // no longer supported 
// closefiles :: !*Files !*World -> *World    // no longer supported 
 
freopen  :: !*File !Int -> (!Bool,!*File) 
/* Re-opens an open file in a possibly different mode. 
 The boolean indicates whether the file was successfully closed before reopening. */ 
 



APPENDIX B: THE STANDARD ENVIRONMENT 203 

 

// Reading from a File: 
 
freadc  :: !*File -> (!Bool,!Char,!*File) 
/* Reads a character from a text file or a byte from a datafile. 
 The boolean indicates succes or failure */ 
 
freadi  :: !*File -> (!Bool,!Int,!*File) 
/* Reads an Integer from a textfile by skipping spaces, tabs and newlines and 
 then reading digits, which may be preceeded by a plus or minus sign. 
 From a datafile freadi will just read four bytes (a Clean Int). */ 
 
freadr  :: !*File -> (!Bool,!Real,!*File) 
/* Reads a Real from a textfile by skipping spaces, tabs and newlines and then 
 reading a character representation of a Real number. 
 From a datafile freadr will just read eight bytes (a Clean Real). */ 
 
freads  :: ! *File !Int -> (!*{#Char},!*File) 
/* Reads n characters from a text or data file, which are returned as a String. 
 If the file doesn't contain n characters the file will be read to the end 
 of the file. An empty String is returned if no characters can be read. */ 
 
freadsubstring :: !Int !Int !*{#Char} !*File -> (!Int,!*{#Char},!*File) 
 /* 
 Reads n characters from a text or data file, which are returned in the string 
 arg3 at positions arg1..arg1+arg2-1. If the file doesn't contain arg2 characters 
 the file will be read to the end of the file, and the part of the string arg3 that 
 could not be read will not be changed. The number of characters read, the modified 
 string and the file are returned. 
 */ 
 
freadline :: !*File -> (!*{#Char},!*File) 
/* Reads a line from a textfile. (including a newline character, except for the last 
 line) freadline cannot be used on data files. */ 
 
// Writing to a File: 
 
fwritec  :: !Char !*File -> *File 
/* Writes a character to a textfile. 
 To a datafile fwritec writes one byte (a Clean Char). */ 
 
fwritei  :: !Int !*File -> *File 
/* Writes an Integer (its textual representation) to a text file. 
 To a datafile fwritei writes four bytes (a Clean Int). */ 
 
fwriter  :: !Real !*File -> *File 
/* Writes a Real (its textual representation) to a text file. 
 To a datafile fwriter writes eight bytes (a Clean Real). */ 
 
fwrites  :: !{#Char} !*File -> *File 
/* Writes a String to a text or data file. */ 
 
fwritesubstring :: !Int !Int !{#Char} !*File -> *File 
/* Writes the characters at positions arg1..arg1+arg2-1 of string arg3 to 
 a text or data file. */ 
 
class (<<<) infixl a :: !*File !a -> *File 
/* Overloaded write to file */ 
 
instance <<< Int 
instance <<< Char 
instance <<< {#Char} 
instance <<< Real 
 
// Testing: 
 
fend  :: !*File -> (!Bool,!*File) 
/* Tests for end-of-file. */ 
 
ferror  :: !*File -> (!Bool,!*File) 
/* Has an error occurred during previous file I/O operations? */ 
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fposition :: !*File -> (!Int,!*File) 
/* returns the current position of the file poInter as an Integer. 
 This position can be used later on for the fseek function. */ 
 
fseek  :: !*File !Int !Int -> (!Bool,!*File) 
/* Move to a different position in the file, the first Integer argument is the offset, 
 the second argument is a seek mode. (see above). True is returned if successful. */ 
 
// Predefined files. 
 
stderr  :: *File 
/* Open the 'Errors' file for writing only. May be opened more than once. */ 
 
// Opening and reading Shared Files: 
 
sfreadc  :: !File -> (!Bool,!Char,!File) 
sfreadi  :: !File -> (!Bool,!Int,!File) 
sfreadr  :: !File -> (!Bool,!Real,!File) 
sfreads  :: !File !Int -> (!*{#Char},!File) 
sfreadline :: !File -> (!*{#Char},!File) 
sfseek  :: !File !Int !Int -> (!Bool,!File) 
 
sfend  :: !File -> Bool 
sfposition :: !File -> Int 
/* The functions sfend and sfposition work like fend and fposition, but don't return a 
 new file on which other operations can continue. They can be used for files opened 
 with sfopen or after fshare, and in guards for files opened with fopen or freopen. */ 
 
// Convert a *File into: 
 
fshare  :: !*File -> File 
/* Change a file so that from now it can only be used with sf... operations. */ 

B.10 StdClass 
The module StdClass defines a number of classes as a combination of overloaded func-
tions from StdOverloaded. This module imports the function not from StdBool in order to 
implement the inequality operator, <>, in terms of the equality operator, ==. 

definition module StdClass 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdOverloaded 
from StdBool import not 
 
// Remark: derived class members are not implemented yet! 
// For the time-being, macro definitions are used for this purpose 
// This may cause misleading error messages in case of type errors  
 
class PlusMin a | + , - , zero a 
 
class MultDiv a | * , / , one a 
 
class Arith a  | PlusMin , MultDiv , abs , sign , ~ a  
 
class IncDec a | + , - , one , zero a 
where 
  inc :: !a -> a | + , one a 
  inc x :== x + one 
 
  dec :: !a -> a | - , one a 
  dec x :== x - one 
 
class Enum a | < , IncDec a 
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class Eq a | == a  
where 
  (<>) infix  4 :: !a !a -> Bool | Eq a 
  (<>) x y :== not (x == y) 
 
class Ord a | < a 
where 
  (>) infix  4 :: !a !a -> Bool | Ord a 
  (>) x y  :== y < x  
 
  (<=) infix 4 :: !a !a -> Bool | Ord a 
  (<=) x y :== not (y<x) 
 
  (>=) infix 4 :: !a !a -> Bool | Ord a 
  (>=) x y :== not (x<y)  
 
  min::!a !a -> a | Ord a 
  min x y  :== case (x<y) of True = x; _ = y 
 
  max::!a !a -> a | Ord a 
  max x y  :== case (x<y) of True = y; _ = x 

B.11 StdList 
The module StdList contains a collection of standard list manipulating functions. Especially 
the higher order functions like map and fold are very useful. Applying these functions in-
stead of writing a plain recursive function has the advantage that the recursion structure 
becomes clear. As your experience as functional programmer grows you are encouraged to 
look again on the functions provided here in order to increase you abilities to recognise 
possible applications of these functions.  

In case of semantic questions, like is take 5 [] an error or equivalent to [], you are en-
couraged to look at the implementation module. 

definition module StdList 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdClass 
import StdInt,StdChar,StdReal 
 
// Instances of overloaded functions: 
 
instance == [a] | == a 
 
instance < [a] | Ord a 
 
instance length [] 
instance %  [a] 
 
instance toString  [x] | toChar x  // Convert [x]    via [Char] into String 
instance fromString [x] | fromChar x // Convert String via [Char] into [x] 
 
// List Operators: 
 
(!!)  infixl 9 :: ![.a] Int -> .a    // Get nth element of the list 
(++) infixr 5 :: ![.a] u:[.a] -> u:[.a]  // Append args 
flatten    :: ![[.a]] -> [.a]    // e0 ++ e1 ++ ... ++ e## 
isEmpty    :: ![.a] -> Bool    // [] ? 
 
// List breaking or permuting functions: 
 
hd   :: ![.a] -> .a       // Head of the list 
tl   :: !u:[.a] -> u:[.a]     // Tail of the list 



206 FUNCTIONAL PROGRAMMING IN CLEAN 

 

last  :: ![.a] -> .a       // Last element of the list 
init   :: ![.a] -> [.a]      // Remove last element of the list 
take  :: !Int [.a] -> [.a]     // Take first arg1 elements of the list 
takeWhile :: (a -> .Bool) !.[a] -> .[a]   // Take elements while pred holds 
drop  :: Int !u:[.a] -> u:[.a]    // Drop first arg1 elements from list 
dropWhile :: (a -> .Bool) !u:[a] -> u:[a]  // Drop elements while pred holds 
span  :: (a -> .Bool) !u:[a] -> (.[a],u:[a]) // (takeWhile list,dropWhile list) 
filter  :: (a -> .Bool) !.[a] -> .[a]   // Drop all elements not satisfying pred 
reverse  :: ![.a] -> [.a]      // Reverse the list 
insert   :: (a -> a -> .Bool) a !u:[a] -> u:[a] // Insert arg2 when pred arg2 elem holds 
insertAt :: !Int .a u:[.a] -> u:[.a]    // Insert arg2 on position arg1 in list 
removeAt :: !Int !u:[.a] -> u:[.a]    // Remove arg2!!arg1 from list 
updateAt  :: !Int .a u:[.a] -> u:[.a]    // Replace list!!arg1 by arg2 
splitAt  :: !Int u:[.a] -> ([.a],u:[.a])  // (take n list,drop n list) 
 
// Creating lists: 
 
map   :: (.a -> .b) ![.a] -> [.b]    // [f e0,f e1,f e2,... 
iterate  :: (a -> a) a -> .[a]     // [a,f a,f (f a),... 
indexList :: !.[a] -> [Int]      // [0..maxIndex list] 
repeatn  :: !.Int a -> .[a]      // [e0,e0,...,e0] of length n 
repeat  :: a -> [a]        // [e0,e0,... 
unzip  :: ![(.a,.b)]   -> ([.a],[.b])  // ([a0,a1,...],[b0,b1,...]) 
zip2  :: ![.a] [.b]   -> [(.a,.b)]  // [(a0,b0),(a1,b1),... 
zip   :: !(![.a],[.b])  -> [(.a,.b)]  // [(a0,b0),(a1,b1),... 
diag2  :: !.[a] .[b]  -> [.(a,b)]   // [(a0,b0),(a1,b0),(a0,b1),... 
diag3  :: !.[a] .[b] .[c] -> [.(a,b,c)]  // [(a0,b0,c0),(a1,b0,c0),... 
 
// Folding and scanning: 
 
// for efficiency reasons, foldl and foldr are macros, 
// so that applications of these functions will be inlined 
 
// foldl :: (.a -> .(.b -> .a)) .a ![.b] -> .a // op(...(op (op (op r e0) e1)...e##) 
foldl op r l :== foldl r l 
 where 
  foldl r []  = r 
  foldl r [a:x] = foldl (op r a) x 
 
// foldr :: (.a -> .(.b -> .b)) .b ![.a] -> .b // op e0 (op e1(...(op r e##)...) 
foldr op r l :== foldr l 
 where 
  foldr [] = r 
  foldr [a:x] = op a (foldr x) 
 
scan  ::  (a -> .(.b -> a)) a ![.b] -> .[a] // [r,op r e0,op (op r e0) e1,... 
 
// On Booleans 
 
and   :: ![.Bool] -> Bool     // e0 && e1 ... && e## 
or   :: ![.Bool] -> Bool     // e0 || e1 ... || e## 
any   :: (.a -> .Bool) ![.a] -> Bool  // True, if ei is True for some i 
all   :: (.a -> .Bool) ![.a] -> Bool  // True, if ei is True for all i 
 
// When equality is defined on list elements 
 
isMember      ::    a   !.[a] -> Bool | Eq a // Is element in list 
isAnyMember   :: !.[a]  !.[a] -> Bool | Eq a // Is one of arg1 an element arg2 
removeMember  :: a !u:[a] -> u:[a] | Eq a // Remove first occurrence of arg1 from list arg2 
removeMembers :: !u:[a] !.[a]->u:[a]|Eq a // Remove first occurrences in arg2 from list arg1 
removeDup     :: !.[a] -> .[a] | Eq a     // Remove all duplicates from list 
removeIndex :: a !u:[a]->(Int,u:[a])|Eq a//"removeMember" returning index of removed element 
limit         :: !.[a] -> a | Eq a       // find two succeeding elements that are equal 
                                         // e.g. limit [1,3,2,2,1] == 2 
 
// When addition is defined on list elements 
 
sum :: !.[a] -> a |  + , zero  a  // sum of list elements, sum [] = zero 
 
// When multiplication and addition is defined on list elements 
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prod :: !.[a] -> a | * , one  a   // product of list elements, prod [] = one 
avg :: !.[a] -> a | / , IncDec a  // average of list elements, avg [] gives error! 

B.12 StdOrdList 
This module contains functions to sort and merge lists, and to determine the maximum 
and minimum element of lists provided that an ordering on the list elements is given. Each 
function comes in two variants. The first variant assumes that the ordering is provided via 
the class Ord. The second version of the function takes an additional argument providing 
the ordering. This makes it easy to sort lists using non-standard orderings, and do other 
things like that. 

definition module StdOrdList 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdClass 
 
sort    ::               !u:[a] -> u:[a] | Ord a // Sort the list (mergesort) 
 special 
  a = Char 
  a = Int 
  a = Real 
sortBy  :: (a a -> Bool) !u:[a] -> u:[a]    // Sort the list, arg1 is < function 
merge   ::               !u:[a] !v:[a] -> w:[a] 
       | Ord a,[u v <= w] // Merge two sorted lists giving a sorted list 
 special 
  a = Char 
  a = Int 
  a = Real 
mergeBy :: (a a->Bool) !u:[a] !v:[a] -> w:[a] // Merge two sorted lists giving a sorted list 
         ,[u v <= w]  // arg1 is < function 
maxList :: !.[a]    -> a    | Ord a // Maximum element of list 
 special 
  a = Char 
  a = Int 
  a = Real 
maxListBy :: (a a -> Bool) !.[a] -> a    // Maximum element of list, arg1 is < 
function 
minList :: !.[a]    -> a    | Ord a // Minimum element of list 
 special 
  a = Char 
  a = Int 
  a = Real 
minListBy :: (a a -> Bool) !.[a] -> a // Minimum element of list, arg1 is < function 

B.13 StdTuple 
The module StdTuple contains some definitions to make handling of two- and tree-tuples 
a little bit easier. For efficiency reasons some of these manipulations are implemented as a 
macro rather than as function definition. 

definition module StdTuple 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
import StdClass 
 
// fst  :: !(!.a,.b) -> .a        // t1 of (t1,t2) 
fst tuple :== t1 where (t1, _) = tuple 
// snd  :: !(.a,!.b) -> .b        // t2 of (t1,t2) 
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snd tuple :== t2 where (_, t2) = tuple 
 
// fst3 :: !(!.a,.b,.c) -> .a        // t1 of (t1,t2,t3) 
fst3 tuple :== t1 where (t1, _, _) = tuple 
// snd3 :: !(.a,!.b,.c) -> .b        // t2 of (t1,t2,t3) 
snd3 tuple :== t2 where (_, t2, _) = tuple 
// thd3 :: !(.a,.b,!.c) -> .c        // t3 of (t1,t2,t3) 
thd3 tuple :== t3 where (_, _, t3) = tuple 
 
instance == (a,b)   | Eq a & Eq b 
instance == (a,b,c) | Eq a & Eq b & Eq c 
 
instance <  (a,b)   | Ord a & Ord b 
instance <  (a,b,c) | Ord a & Ord b & Ord c 
 
app2  :: !(.(.a -> .b),.(.c -> .d)) !(.a,.c) -> (.b,.d) // app2 (f,g) (a,b) = (f a,g b) 
app3  :: !(.(.a -> .b),.(.c -> .d),.(.e -> .f)) !(.a,.c,.e) -> (.b,.d,.f) 
             // app3 (f,g,h) (a,b,c) = (f a,g b,h c) 
 
curry :: !.((.a,.b) -> .c) .a .b -> .c     // curry f a b = f (a,b) 
uncurry :: !.(.a -> .(.b -> .c)) !(.a,.b) -> .c   // uncurry f (a,b) = f a b 

B.14 StdCharList 
This module provides some functions to handle text represented as list of characters. 

definition module StdCharList 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
cjustify :: !.Int ![.Char] -> .[Char] // Center [Char] in field with width arg1 
ljustify :: !.Int ![.Char] -> .[Char] // Left justify [Char] in field with width arg1 
rjustify :: !.Int ![.Char] -> [Char]  // Right justify [Char] in field with width arg1 
 
flatlines :: ![[u:Char]] -> [u:Char]  // Concatenate by adding newlines 
mklines  :: ![Char] -> [[Char]]   // Split in lines removing newlines 
 
spaces  :: !.Int -> .[Char]    // Make [Char] containing n space characters 

B.15 StdFunc 
This module contains standard functions for some domains. We will discuss these func-
tions shortly. 

In combinatory logic the functions id and const are well known. In this field they are usu-
ally called I and K respectively. The library provides longer names in order to avoid name 
clashes. The third function, S (defined as S f g x = (f x) (g x)) from this field is hardly 
ever used in ordinary functional programs and therefore not included in the library. 

The function flip reverses the arguments of a function: flip f x y = f y x. 

The operator o is used to denote function composition: (f o g) x = f (g x). This is es-
pecially useful when the composition of f and g is yielded as higher order function (i.e. the 
argument x is not yet available). 

The functions twice, while, until and iter can be used to apply a function repeatedly to 
some argument. For efficiency reasons it is defined as macro. 

The function seq applies all functions from the given listfrom left to right to a single argu-
ment. For example: seq [f,g,h] x = h (g (f x)). 

The remaining functions are used for the composition of functions yielding a new state and 
an ordinary function result. Their used is explained in the I/O chapter. The combination of 
the function bind and return is called a monad. 
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definition module StdFunc 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
id    :: !.a -> .a        // identity function 
const :: !.a .b -> .a       // constant function 
 
//flip  :: !.(.a -> .(.b -> .c)) .b .a -> .c  // Flip arguments 
flip f a b :== f b a 
 
(o) infixr  9 // ::  u:(.a -> .b) u:(.c -> .a) -> u:(.c -> .b) // Function composition 
(o) f g :== \ x = f (g x) 
 
twice   :: !(.a -> .a)   .a             -> .a  // f (f x) 
while   :: !(a -> .Bool) (a -> a)   a  ->  a  // while (p x) f (f x)  
until   :: !(a -> .Bool) (a -> a)   a  ->  a  // f (f x) until (p x) 
iter   :: !Int    (.a -> .a) .a -> .a  // f (f..(f x)..)  
 
// Some handy functions for transforming unique states: 
 
seq    :: ![.(.s -> .s)] .s -> .s     // fn-1 (..(f1 (f0 x))..) 
seqList   :: ![St .s .a] .s -> ([.a],.s)    // fn-1 (..(f1 (f0 x))..) 
 
:: St s a :== s -> *(a,s) 
 
// monadic style: 
 
(̀ bind̀ ) infix 0 // :: w:(St .s .a) v:(.a -> .(St .s .b)) -> u:(St .s .b), [u <= v, u <= w] 
(̀ bind̀ ) f g :== \st0 = let (r,st1) = f st0 in g r st1 
 
// return :: u:a -> u:(St .s u:a) 
return r :== \s = (r,s) 

B.16 StdMisc 
The module StdMisc contains two miscellaneous function definitions. The function abort 
interrupts the program execution after printing the given error message. The error message 
can be any expression yielding a string. The function undef represents an undefined value, 
evaluating this undefined value yields a runtime error. This function is used as placeholder 
until an appropriated value is available. 

system module StdMisc 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
abort  :: !{#Char} -> .a    // stop reduction and print argument 
undef  :: .a       // fatal error, stop reduction. 

B.17 StdEnum 
The module StdEnum contains functions that are used by the compiler to generate code for 
dotdot expressions. These functions have special names and are actually defined in the 
module _SystemEnum. These functions are defined based on the classes Enum, Incdec and 
Ord. This is organised such that dotdot expressions can be constructed for each type that is 
an instance of these classes. The use of dotdot expressions for user-defined datatypes is 
illustrated by the abstract type for rational numbers in chapter 3. 

The definition for expressions of the form [x..] requires that there exists an instance of 
inc,  for the type of x. For all other expressions the type should be an instance of class 
Enum. 
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definition module StdEnum 
 
// **************************************************************************************** 
// Concurrent Clean Standard Library Module Version 2.0 
// Copyright 1998 University of Nijmegen 
// **************************************************************************************** 
 
/* 
 This module must be imported if dotdot expressions are used 
 
  [from .. ]   -> _from from 
  [from .. to]  -> _from_to from to 
  [from, then .. ] -> _from_then from then 
  [from, then .. to] -> _from_then_to from then to 
*/ 
  
import _SystemEnum 

B.18 Dependencies between modules from StdEnv 
The table shows the dependencies of the modules in the standard environment. We distin-
guish various dependencies: 
d definition module imports module directly; 
i definition module imports module indirectly; 
p definition module imports module partially; 
u implementation module uses one or more definitions from the indicates module, only 

used when the module is not import directly or indirectly. Indirect imports by the im-
plementation module are not indicated. 

 
 module name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1 StdEnv  i d d d d d d d d d d d d d d d 
2 StdOverloaded                  
3 StdBool  d                
4 StdInt  d                
5 StdReal  d                
6 StdChar  d                
7 StdArray                  
8 StdString  d                
9 StdFile                  
10 StdClass  d p               
11 StdList  i u d d d u u  d      u u 
12 StdOrdList    d d d    d u     u  
13 StdTuple   u       d        
14 StdCharList    u  u     u       
15 StdFunc    u      u      u  
16 StdMisc                  
17 StdEnum u                 

In order to use one or more definitions from any of these modules the corresponding defi-
nition module is imported. The use of this definition module forces the import all directly, 
indirectly and partially used modules. Whenever up-to-date native code or abc-files are 
available the corresponding implementation modules are not needed. In order to recompile 
a module the modules labeled u in the table are required. 
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In de programmeervakken P1 en P2 leer je algoritmen bedenken en implementeren in de 
programmeertalen Clean en C++. Programmeren is deels een creatief proces. Uiteraard 
kun je creatieve processen nooit in regels vangen. Toch geldt ook voor creatieve processen 
dat de kwaliteit van het eindproduct aanzienlijk verbeterd wordt als je op een gestructu-
reerde wijze te werk gaat. Daarom laten we je in de P-lijn op een gestructureerde manier 
werken. Dat wordt hier beneden uitgelegd. Voordat we dat gaan doen gaan we eerst in op 
algemene richtlijnen die altijd van belang zijn bij het construeren van algoritmen en data-
structuren: 
1) Pak een probleem altijd zo algemeen mogelijk aan. Dit heeft twee voordelen: (i) algo-

ritmen voor een algemener probleem zijn vaak eenvoudiger, en (ii) programma’s die op 
een dergelijke wijze zijn opgezet zijn met minder moeite uit te breiden/aan te passen.  

2) Een algoritme moet zo min mogelijk geheugen gebruiken tijdens het oplossen van het 
probleem. Hoewel computers heden ten dage over steeds meer geheugen beschikken 
moet dat toch door alle applicaties gedeeld worden. Met “zo min mogelijk” bedoelen 
we niet dat je gaat beknibbelen op elke bit en byte, maar dat als er een oplossing moge-
lijk is die een factor 10 (100, 1000, enz.) minder geheugen nodig heeft, deze uiteraard 
de voorkeur heeft. Let op de complexiteit (hoe snel het geheugen gebruik groeit als 
functie van de grootte van de invoer) van het algoritme (zie hoofdstuk 6). 

3) Een algoritme moet zo min mogelijk tijd in beslag nemen. Computers worden steeds 
sneller. Desondanks zitten programma’s die slordig met tijd omspringen snel tegen hun 
practisch toepasbare limiet aan dan verstandige programma’s. Vergelijk bijvoorbeeld 
het zoeken van een element in een gesorteerde lijst met die uit een gebalanceerde 
zoekboom. Ook hier geldt dat “zo min mogelijk” niet betekent dat je tot op de machi-
ne-instructie precies weet hoe lang je programma ergens over doet (als dat al zou kun-
nen), maar dat als er een oplossing mogelijk is waarvan het aantal rekenstappen minder 
snel toeneemt met de grootte van het probleem, deze de voorkeur heeft. 

Deze richtlijnen moet je altijd meenemen tijdens het ontwikkelen van algoritmen en data-
structuren. Dit is onafhankelijk van welke methode je ook gebruikt.  

De methode die wij aanbevelen om een probleem of algoritme gestructureerd aan te pak-
ken bestaat uit vijf stappen: 

1) Probleem analyse 
2) Algoritme en datastructuren 
3) Reflectie 
4) Implementeren 
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5) Evaluatie 

C.1 Probleem analyse 
De eerste stap in het oplossen van een probleem is altijd het bestuderen van het probleem. 
Praktijkproblemen kenmerken zich vaak door een overvloed aan details die niet wezenlijk 
zijn voor het probleem. De nadruk in deze stap moet dus zijn dat de essentie van het pro-
bleem gevonden wordt. We noemen een aantal manieren om een probleem te analyseren. 
Bij je eigen probleemanalyse kun je een of meerdere van deze technieken gebruiken.  
a. Abstractie: Lijkt dit probleem op een ander bekend probleem? Is het een speciaal geval 

van een ander bekend probleem? Kun je het probleem zodanig generaliseren zodat het 
een speciaal geval wordt van een algemener probleem? 

 Voorbeeld: Het sorteren van een lijst personen is een speciaal geval van een algemene 
sorteerfunctie. Dat is dan het eigenlijke probleem wat je op moet lossen.  

b. Vaststellen eigenschappen: Beschrijf wat de eigenschappen zijn van het probleem. Probeer 
hierbij zo dicht mogelijk tot de kern van het probleem te komen.  

 Voorbeeld: Het sorteren van een reeks elementen is het vinden van een permutatie van 
die elementen waarvoor geldt dat achtereenvolgende elementen dezelfde ordening heb-
ben. Een lege reeks is altijd gesorteerd.  

 Voorbeeld: Priemgetallen zijn alleen geheel deelbaar door 1 en zichzelf. 
 Voorbeeld: Een kortste route zal dezelfde plaats nooit tweemaal bezoeken. 
 Voorbeeld: Een persoon komt in een ordening voor een andere persoon als zijn naam 

lexicografisch voor de naam van die andere persoon komt. 
c. Vaststellen randvoorwaarden: De randvoorwaarden van een probleem zijn van invloed op 

het te ontwikkelen algoritme en datastructuren. Voorbeelden van randvoorwaarden 
zijn: 

 Voorbeeld: Het programma moet binnen een vast tijdsinterval t een oplossing presen-
teren. 

 Voorbeeld: Het programma moet oplossingen opleveren die hoogstens een waarde ε 
van het optimum liggen. 

 Voorbeeld: Het programma moet 2Gigabyte aan gegevens kunnen verwerken. 
 Voorbeeld: Het programma heeft bepaalde gegevens extreem vaak nodig. Deze moe-

ten dus efficiënt opgeslagen worden en snel beschikbaar zijn. 
 Voorbeeld: Het programma wordt niet door specialisten gebruikt. Het moet dus zeer 

gebruikersvriendelijk zijn. 
 Stel de randvoorwaarden vast. Dit geeft je houvast bij het bedenken van een ontwikke-

len van het algoritme en datastructuren. 
c. Tekenen van plaatjes: Voor sommige problemen is het erg natuurlijk om met behulp van 

het tekenen van plaatjes tot de kern van het probleem te komen.  
 Voorbeeld: Vinden van de weg vanuit een willekeurige positie in een doolhof naar (een 

van) de uitgang(en).  
 Voorbeeld: Vinden van het kortste pad tussen twee plaatsen in een aantal plaatsen die 

door een wegennetwerk verbonden zijn.  
 Voorbeeld: Programma’s die met verzamelingen werken kun je vaak goed weergeven 

m.b.v. Ven-diagrammen. 
 Voorbeeld: Programma’s die iets met recursieve datastructuren doen (zoals lijsten, 

bomen, graphen) kun je vaak goed weergeven door plaatjes van die datastructuren te 
tekenen. Teken bij bepaalde operaties alle tussenstappen zodat je een goed idee hebt 
van tussentoestanden.  

d. Invoer-uitvoer: Bedenk voor het probleem een aantal representatieve invoermogelijkheden 
en bepaal de bijbehorende uitkomst. Hierop voortbordurend kun je vervolgens gaan 
nadenken over bijzondere invoeren.  

 Voorbeeld: Een representatief voorbeeld voor een sorteerprogramma is de lijst 3, 15, 7 
want alle volgordes komen eens voor (3<15, 15>7). Bijzondere invoeren waar je dan 
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aan kunt denken zijn: (i) uitbreiden met duplicaten (3, 15, 3, 7), (ii) uitbreiden met nega-
tieve getallen (3, -2, 15, 7).  

C.2 Algoritme en datastructuren 
Ontwikkel op een abstract niveau je algoritme en de bijbehorende datastructuren. Met ab-
stract niveau bedoelen we dat je niet in de een of andere programmeertaal je algoritme en 
datastructuren gaat uitwerken, maar in plaats daarvan in Nederlands en/of wiskunde precies 
het algoritme en de datastructuren beschrijft. Afhankelijk van het probleem zal het de ene 
keer meer voor de hand liggen eerst het algoritme te ontwikkelen en aan de hand daarvan 
de datastructuren, en in andere gevallen juist omgekeerd. Evenzo kan het voorkomen dat 
algoritme en datastructuren tegelijkertijd uitgewerkt moeten worden. De volgende technie-
ken zijn behulpzaam bij het vinden van een algoritme en datastructuren. 
a. Abstractie: Als het probleem een speciaal geval is van een bekende oplossing, beschrijf 

dan hoe je het algoritme in termen van het bekende algoritme oplost. Als je het pro-
bleem kunt generaliseren, beschrijf dan het algemene algoritme en hoe je het concrete 
probleem daarmee oplost.  

 Voorbeeld: Het sorteren van een lijst van personen is een speciaal geval van een alge-
mene sorteerfunctie. Als deze al bestaat, moet je aangeven hoe deze functie de vergelij-
king uitgevoerd wil zien en hoe de elementen opgeslagen dienen te worden. Als je zelf 
de generalisatie maakt, bedenk dan dat je algoritme zo flexibel mogelijk moet zijn. Hoe 
geef je de vergelijking door en hoe sla je de elementen op? 

b. Verdeel-en-heers: Veel problemen bestaan op een natuurlijke wijze uit deelproblemen. Het 
oplossen van een deelprobleem is vaak eenvoudiger dan van het samengestelde pro-
bleem. Bepaal wat de deelproblemen zijn, pak deze aan met behulp van deze methode, 
en beschrijf hoe de deeloplossingen samengesteld moeten worden om het grote pro-
bleem op te lossen.  

 Voorbeeld: In veel programma’s staat het verzorgen van invoer en uitvoer van gege-
vens los van de feitelijke berekeningen die gedaan moeten worden. Het ligt voor de 
hand deze fases van het algoritme te scheiden. 

 Voorbeeld: Recursie is een zeer geschikte techniek om een probleem op te lossen door 
middel van een oplossing van een kleinere versie van hetzelfde probleem. 

In het algemeen wordt het algoritme opgebouwd uit een aantal deelalgoritmen die een sim-
peler probleem oplossen. Het splitsen van een algoritme in delen gaat door totdat de deel-
algoritmen zo simpel zijn dat het meteen duidelijk is hoe dit algoritme gerealiseerd kan 
worden. Door het gebruik van bibliotheken kunnen problemen die in principe complex 
zijn toch eenvoudig worden. We lossen het probleem op door een geschikt algoritme uit de 
bibliotheek te gebruiken. 

Voorbeeld: Het scrollen van de inhoud van een window en het aanpassen van de scroll 
bars is een tamelijk complex probleem. Door gebruik te maken van een geschikte biblio-
theek kan het in veel gevallen eenvoudig opgelost worden. 

Merk op dat er geen enkel bezwaar tegen is om een deelalgoritme op meerdere plaatsen in 
het algoritme toe te passen. Door geschikt gekozen abstracties kunnen ook verwante deel-
problemen herleid worden tot een deelalgoritme. Het verdient aanbeveling om ook binnen 
een algoritme hergebruik van deelalgoritmen na te streven. In een plaatje ziet het er dan als 
volgt uit: 
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a l g o r i t m e

d e e l a l g o r i t m e jd e e l a l g o r i t m e 1 d e e l a l g o r i t m e N

d e e l a l g o r i t m e Sd e e l a l g o r i t m e 1 . 1 d e e l a l g o r i t m e N . M

. . . .

. . . .

. . . .. . . . . .. .  

Leg vast onder welke voorwaarden een oplossing voor een deelprobleem werkt en wat de 
eigenschappen van het resultaat zijn.  
 Voorbeeld: Het sorteren van een lijst getallen kun je opsplitsen door de lijst in tweeën 

te hakken, deze helften te sorteren, en de resultaten daarvan samen te voegen. Een ei-
genschap van de samenvoeg functie is dat deze een gesorteerde lijst oplevert mits de 
argument lijsten al gesorteerd zijn. 

c. Datastructuren: Bedenk welke gegevens bijgehouden moeten worden. Geef alle data-
structuren toepasselijke, informatieve namen en gebruik deze in je algoritme en, in de 
volgende stap, zo mogelijk ook in je programma. Leg vast aan welke eisen gegevens 
moeten voldoen. Tegelijkertijd met je datastructuur bepaal je de primitieve operaties 
waarvan de rest van je algoritme gebruik kan maken. 

 Voorbeeld: Als je een database van personen aan het maken bent, dan houd je gege-
vens van het type Persoon bij. Personen worden geïdentificeerd door een Naam. Perso-
nen worden gesorteerd op Leeftijd, Naam, Afdeling. Leg de eigenschappen vast: een Leef-
tijd is nooit negatief, een Naam is maximaal 30 tekens. Verantwoord je keuze t.ov. de 
criteria (denk aan de milleniumbug!). 

 Voorbeeld: Om gegevens snel op te kunnen zoeken sla je deze in een gesorteerde 
zoekboom op. Dit is je datastructuur. Primitieve operaties zijn: creëren van een lege 
boom, toevoegen van elementen, verwijderen van elementen, opzoeken van elementen.  

C.3 Reflectie 
Als je eenmaal een algoritme gevonden hebt is het belangrijk om jezelf er van te overtuigen 
dat deze het gegeven probleem oplost. Hierbij is het natuurlijk niet voldoende te zeggen: 
“Volgens doet ‘ie het nu”. Dit is immers de meest gedane uitspraak door informatici☺. 
Meer objectieve methoden zijn de volgende: 
a. Ga voor een aantal strategisch gekozen voorbeelden na dat je algoritme de juiste oplos-

sing genereert. Behulpzaam hierbij is zelf voor computer spelen: ga stap voor stap je al-
goritme na en controleer of de denkstappen die je erbij in gedachte had kloppen.  

b. Ga na of je algoritme aan de algemene richtlijnen en programma-specifieke randvoor-
waarden voldoet.  

c. Bewijs dat je algoritme correct is. Dit doe je door met een sluitende en precieze redene-
ring aan te tonen dat in alle gevallen je algoritme doet wat het zou moeten doen. Als je 
algoritme wiskundig van aard is, dan kun je het zelfs correct bewijzen met wiskundige 
preciezie.  

C.4 Implementeren 
Je hebt nu in Nederlands en/of wiskunde op een abstract niveau precies vastgelegd wat je 
algoritme is en welke datastructuren gebruikt gaan worden. Nu ga je dit abstracte algoritme 
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stapsgewijs uitwerken naar een programma in een concrete programmeertaal. De methode 
die we volgen is de top-down programmeerstijl. In de top-down programmeerstijl worden 
de deeloplossingen in een programma omgezet in de volgorde waarin ze met de verdeel-en-
heers techniek zijn gevonden. Deze methode is uiteraard noch zaligmakend noch uniek. 
Een andere bekende methode, de bottom-up methode, werkt juist omgekeerd: er wordt 
begonnen met de implementatie van de simpelste deeloplossingen en bouwen daarmee op-
lossingen voor steeds grotere deelproblemen. 

Tijdens het implementeren worden algoritmen en datastructuren zoals verkregen in stap 2 
stapsgewijs omgezet in een programma. Een algoritme is geschreven in syntactisch en se-
mantisch correct Nederlands en/of wiskunde. Een programma is een syntactische en se-
mantische correcte beschrijving in een concrete programmeertaal. Top-down programme-
ren lijkt sterk op de verdeel-en-heers methode in stap 2: 
a. Samengestelde algoritmen: Definieer een programmafragment dat het deelalgoritme 

implementeert in termen van de functies die corresponderen met de deelalgoritmen van 
dit samengestelde algoritme. Doorgaans wordt zo'n samengesteld algoritme gerealiseerd 
als een functie of enkele samenhangende functies. Geef deze functies een sprekende 
naam en een type. Leg vast welke datastructuren nodig zijn. Beschrijf bij elke functie 
wat de argumenten zijn en wat het resultaat is. 

b. Primitieve algoritmen: Primitieve algoritmen worden gerealiseerd door basis elemen-
ten (waarden, eenvoudige expressies, statements, …) uit de programmeertaal of aan-
roepen naar een bibliotheek die de gewenste functionaliteit aanbiedt. Het werk dat zo'n 
bibliotheek voor je doet kan zeer complex zijn. Voor dit programma ben je echter niet 
geïnteresseerd in hoe de bibliotheek deze functionaliteit realiseert, je bekijkt het als een 
zwarte doos die gewoon zijn werk doet. 

Controleer of de types van de functies kloppen die je in de tussenstappen maakt. Als je dit 
recept volgt krijg je “bijna vanzelf” een programma. De afhankelijkheden van het pro-
gramma zien er dan als volgt uit: 

f  =  f 1 . . f j . . f N

f Sf 1  =  f 1 . 1 . . f S f N  =  f S . . f N . M

f Sf 1 . 1 f N . M

. . . .

. . . .

. . . .. . . . . .. .  

Merk op dat de structuur van dit plaatje gelijk is aan die van het algoritme uit sectie C.2. Bij 
een top-down programmeerproces worden de programmaonderdelen van boven naar be-
neden ontwikkeld. Zo wordt onderdeel f uitgedrukt in termen van f1 .. fN, onder de aanname 
dat die onderdelen later correct geïmplementeerd zullen worden. Bij bottum-up program-
mering worden de onderdelen van dit plaatje van onder naar boven gemaakt. Voor het re-
sultaat is de volgorde van realisatie natuurlijk onbelangrijk. 

C.5 Evaluatie 
Beoordeel de geconstrueerde programmatekst op kwaliteit en breng verbeteringen aan. As-
pecten met betrekking tot kwaliteit zijn onder andere: 
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a. Als op verschillende plekken in je programma dezelfde dingen gedaan worden door 
verschillende functies, dan dien je die te vervangen door aanroepen van een gemeen-
schappelijke functie. 

b. Als op verschillende plekken in je programma verschillende dingen gedaan worden die 
door specialisatie van een algemenere functie ook gedaan hadden kunnen worden, dan 
dien je die te vervangen door aanroepen van zo’n algemenere functie. Eventueel moet 
je dus zo’n algemenere functie toevoegen.  

c. Als achteraf blijkt dat de keuze voor een bepaalde datastructuur leidt tot moeilijk be-
grijpbare code, dan moet je overwegen of deze niet beter vervangen kan worden door 
(een) andere datastructu(u)r(en).  

d. Test je programma met representatieve invoeren. Merk op dat testen zelden een vol-
doende reden kan zijn om te zeggen dat een programma klopt. Dit kan alleen in die ge-
vallen waarin het doenlijk is om alle mogelijke invoeren de revu te laten passeren.  
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