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Abstract. Greatly extended series have been derived for moments of the pair-connectedness
for bond and site percolation on the directed square and triangular lattices. The length of the
various series has been at least doubled to more than 110 (100) terms for the square-lattice
bond (site) problem and more than 55 terms for the bond and site problems on the triangular
lattice. Analysis of the series leads to very accurate estimates for the critical parameters and
generally seems to rule out simple rational values for the critical exponents. The values of the
critical exponents for the average cluster size, parallel and perpendicular connectedness lengths
are estimated byγ = 2.277 69(4), ν‖ = 1.733 825(25) and ν⊥ = 1.096 844(14), respectively.
An improved estimate for the percolation probability exponent is obtained from the scaling
relationβ = (ν‖ + ν⊥ − γ )/2 = 0.276 49(4). In all cases the leading correction to scaling term
is analytic.

1. Introduction

Models exhibiting critical behaviour similar to directed percolation (DP) are encountered
in a wide variety of problems such as fluid flow in porous media, Reggeon field theory,
chemical reactions, population dynamics, catalysis, epidemics, forest fires, and even galactic
evolution. Directed percolation is thus a model of relevance to a very diverse set of physical
problems and it is therefore no wonder that it continues to attract a great deal of attention.
Furthermore, two-dimensional directed percolation is one of the simplest models which is
not translationally invariant and therefore cannot be treated in the framework of conformal
field theory [1]. This leaves open a number of fundamental questions about this model.
What should one expect an exact solution to look like and more concretely are the critical
exponents rational?

In the absence of an exact solution the most powerful method for studying lattice-
statistics models is probably that of series expansions. The method of exact series
expansions consists of calculating the first few coefficients in the Taylor expansion of various
thermodynamic functions, or, in more abstract terms, various moments of some appropriate
generating function. Given such a series, highly accurate estimates can be obtained for the
critical parameters using differential approximants [2]. In the most favourable cases one can
even find an exact expression for the generating function from the first-series coefficients.

Low-density series in the variablep, which is the probability that bonds or sites are
present, were first derived by Blease [3], who used a transfer-matrix method to calculate
series for the cluster size and other moments of the pair-connectedness of bond percolation
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on directed square and triangular lattices. These series were greatly extended by Essamet
al [4], who also studied site percolation. They devised a non-nodal graph expansion, which
enabled them to calculate twice as many terms correctly from the basic transfer-matrix
calculation, and derived the series to order 49 (48) for the square bond (site) problem and to
order 25 (26) for the triangular bond (site) problem. These long series resulted in accurate
exponent estimates and led to the conjectured critical exponentsγ = 41/18, ν⊥ = 79/72,
ν‖ = 26/15, andβ = 199/720 [4].

High-density series for the percolation probability were derived by Blease [3]. The
square bond series was greatly extended by Baxter and Guttmann [5] using a superior
transfer-matrix method and an extrapolation procedure based on predicting correction terms
from successive calculations on finite lattices of increasing size. The analysis of the resulting
series conformed to the conjectured fraction forβ. This series and the one for the square
site problem were recently extended by Jensen and Guttmann [6] who also studied the
triangular bond and site problems [7]. The analysis of these extended series yielded more
precise exponent estimates. From these estimates they concluded that there are no simple
rational fractions whose decimal expansion agrees with the highly accurate estimates ofβ

obtained from the square bond and triangular site series. In particular, the rational fraction
suggested by Essamet al [4] is incompatible with the estimates.

In this paper I combine an efficient transfer-matrix calculation with the non-nodal graph
expansion and the above-mentioned extrapolation method and have been able to more than
double the number of series terms for moments of the pair-connectedness. Most of the
series have been extended to order 112 for the square bond problem, 106 for the square site
problem, 57 for the triangular bond problem and 56 for the triangular site problem. The
series were analysed using differential approximants which can accommodate a wide variety
of functional features and certainly should be appropriate in this case. The major result of
the analysis is that the exact exponent values conjectured by Essamet al [4] generally seems
to be incompatible with the numerical estimates from the differential approximant analysis.

The remainder of the article is organized as follows. In section 2 I will give further
details of the models studied in this paper. Section 3 contains a description of the series-
expansion technique with special emphasis on the transfer-matrix calculation (section 3.1)
and the extrapolation procedure for the square bond case (section 3.3). Details of the
extrapolation procedure for the remaining problems are given in the appendix. Details of
the series analysis are given in section 4 and the results are discussed and summarized in
section 5.

2. Specification of the models

Domany and Kinzel [8] demonstrated that site and bond percolation on the directed square
lattice are special cases of a one-dimensional stochastic cellular automaton in which the
preferred directiont is time. DP is thus a model for a simple branching process in which a
sitex occupied at timet may give rise to zero or one offspring on each of the sitesx ± 1 at
time t + 1. Whether a site(x, t) is occupied or not depends only on the state of its nearest
neighbours in the row above. The evolution of the model on the square lattice is therefore
governed by the conditional probabilitiesP(σx |σl, σr), with σi = 1 if site i is occupied
and 0 otherwise. These transition probabilities are the probabilities of finding the site(x, t)

in stateσx given that the sites(x − 1, t − 1) and (x + 1, t − 1) were in statesσl and σr ,
respectively. One has a very free hand in choosing the transition probabilities as long as
one respects conservation of probability,P(1|σl, σr) = 1 − P(0|σl, σr). In addition studies
have generally been limited to cases in which the transition probabilities are independent
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of both x and t . In this paper I restrict my study to the following two cases corresponding
to bond and site percolation:

P(0|σl, σr) =
{

(1 − p)σl+σr bond

(1 − p)1−(1−σl)(1−σr ) site.
(2.1)

On the triangular lattice the model is described by the probabilitiesP(σx |σl, σt , σr) of
finding the site(x, t) in stateσx given that the sites(x−1, t−1), (x, t−2), and(x+1, t−1)

were in statesσl , σt andσr , respectively, and I study the two cases

P(0|σl, σt , σr) =
{

(1 − p)σl+σt+σr bond

(1 − p)1−(1−σ1)(1−σt )(1−σr ) site.
(2.2)

The behaviour of the model is controlled by the branching probabilityp. Whenp is
smaller than a critical valuepc the branching process eventually dies out and all space–time
clusters remain finite. Forp > pc there is a non-zero probabilityP(p) that the branching
process will survive indefinitely. This percolation probability is the order parameter of the
process, and close topc it vanishes as a power-law:

P(p) ∝ (p − pc)
β p → p+

c . (2.3)

In the low-density phase(p < pc) many quantities of interest can be derived from the
pair-connectednessCx,t (p), which is the probability that the sitex is occupied at timet
given that the origin was occupied att = 0. The moments of the pair-connectedness may
be written as

µn,m(p) =
∞∑
t=0

∑
x

xntmCx,t (p). (2.4)

Due to symmetry, moments involving odd powers ofx vanish. The remaining moments
diverge asp approaches the critical point from below:

µn,m(p) ∝ (pc − p)−(γ+nν⊥+mν‖) p → p−
c . (2.5)

One generally only studies the lower-order moments such as the mean cluster sizeS(p) =
µ0,0(p), the first parallel momentµ0,1(p), the second perpendicular momentµ2,0(p), and
the second parallel momentµ0,2(p).

3. Series expansions

From (2.4) it follows that the first and second moments can be derived from the quantities

S(t) =
∑

x

Cx,t (p) and X(t) =
∑

x

x2Cx,t (p) (3.1)

as

S =
∞∑
t=0

S(t) µ0,1 =
∞∑
t=1

tS(t) µ0,2 =
∞∑
t=1

t2S(t) µ2,0 =
∞∑
t=0

X(t). (3.2)

S(t) and X(t) are polynomials inp obtained by summing the pair-connectedness over
all lattice sites whose parallel distance from the origin ist . As shown by Essam [9] the
pair-connectedness can be expressed as a sum over all graphs formed by taking unions of
directed paths connecting the origin to the site(x, t),

Cx,t (p) =
∑

g

d(g)pe (3.3)
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wheree is the number of random elements (bonds or sites) in the graphg. Any directed
path to a site whose parallel distance from the origin ist contains at leastm(t) steps with
m(t) = t for the square lattice andm(t) = b(t + 1)/2c (integer division) for the triangular
lattice. From this it follows that ifS(t) and X(t) have been calculated fort 6 tmax then
one can determine the moments to orderm(tmax + 1) − 1. One can, however, do much
better, as demonstrated by Essamet al [4]. They used a non-nodal graph expansion, based
on work by Bhatti and Essam [10], to extend the series to ordern(tmax) approximately
equal to 2m(tmax) (the actual order varies a little from problem to problem). Details of this
expansion will be given below, but here it will suffice to note that it works by calculating the
contributionsSN(t) andXN(t) (correct to ordern(t)) of non-nodal graphs toS(t) andX(t)

and using the non-nodal expansions to calculate the final series forS(p) and the various
moments. Further extensions of the series can be obtained by using a procedure similar
to that of Baxter and Guttmann [5]. One looks at correction terms to the series and tries
to identify extrapolation formulae for the firstnr correction terms allowing one to derive a
further nr series terms correctly.

The series expansions for moments of the pair-connectedness is thus obtained as follows:
(i) Calculate the polynomialsS(t) and X(t) for t 6 tmax using the transfer-matrix

technique to an order greater thann(tmax) + nr .
(ii) For eacht use the non-nodal graph expansion to calculateSN

t = ∑
t ′6t S

N(t ′) and
XN

t = ∑
t ′6t X

N(t ′) correct to ordern(t).
(iii) From the sequences obtained fromSN

t − SN
t+1 = −SN(t + 1) and XN

t − XN
t+1 =

−XN(t + 1) for t < tmax identify the firstnr correction terms.
(iv) Use these correction terms to extend the series forSN andXN to ordern(tmax)+nr .
(v) Finally calculate the series forS, µ0,1, µ0,2 andµ2,0 correct to ordern(tmax) + nr .
Details of the transfer-matrix technique, non-nodal graph expansion and extrapolation

procedure are given in the following sections.

3.1. Transfer-matrix technique

Figure 1 shows the part of the square and triangular lattices which can be reached from
the origin O using no more than five steps. Note that, in keeping with the prescription
used by Essamet al [4], vertical steps on the triangular lattice correspond to incrementing
t by two. The calculation of the pair-connectedness is readily turned into an efficient
computer algorithm by use of the transfer-matrix technique. From (2.1) and (2.2) one sees
that the evaluation of the pair-connectedness involves only local ‘interactions’ since the

Figure 1. Directed square and triangular lattices with orientation given by the arrows.
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transition probabilities depend on neighbouring sites only. The probability of finding a
given configuration can therefore be calculated by moving a boundary through the lattice
one site at a time. At any given stage this line cuts through a number of, sayk, lattice sites
thus leading to a total of 2k possible configurations along this line. Configurations along
the boundary line are trivially represented as binary numbers, and the probability of each
configuration is represented by a truncated polynomial inp.

Figure 1 shows how the boundary (marked by large filled circles) is moved in order
to pick up the weight associated with a given ‘face’ of the lattice at a positionx along
the boundary line. On the square lattice the boundary site atσr is moved toσx and the
weight P(σx |σl, σr) is picked up. Similarly on the triangular lattice the boundary site
at σt is moved toσx while picking up the weightP(σx |σl, σt , σr). In more detail, let
S0 = (σ1, . . . , σx−1, 0, σx+1, . . . , σk) be the configuration of sites along the boundary with
0 at positionx and similarlyS1 = (σ1, . . . , σx−1, 1, σx+1, . . . , σk) the configuration with 1
at positionx. Then in moving thex ′th site as just described the boundary line polynomials
are updated as follows on the square lattice

P(S0) = W(0|0, σl)P (S0) + W(0|1, σl)P (S1)

P (S1) = W(1|0, σl)P (S0) + W(1|1, σl)P (S1)

and as follows on the triangular lattice

P(S0) = W(0|σr, 0, σl)P (S0) + W(0|σr, 1, σl)P (S1)

P (S1) = W(1|σr, 0, σl)P (S0) + W(1|σr, 1, σl)P (S1).

The pair-connectedness is calculated from the boundary polynomials before the
boundary leaves the site by summing over all configurations with a 1 at that site. In
practise the data was collected when the boundary reached a horizontal position on the
square lattice and a position parallel to the right edge of the triangular lattice. The pair-
connectedness is obviously symmetrical inx, Cx,t (p) = C−x,t (p), so it suffices to calculate
the pair-connectedness forx > 0. More importantly, due to the directedness of the lattices,
if one looks at sites(x, t) with x > 0 they can never be reached by paths extending onto
points (x ′, t ′) in the part of the lattice for whicht ′ > bt/2c, x ′ < −bt/2c. This effectively
means that the pair-connectedness at points with parallel distancet from the origin can be
calculated using a boundary which cuts through at mostbt/2c + 1 sites. Thus the memory
(and time) required to deriveS(t) andX(t) grows like 2bt/2c+1.

For the bond and site problems on the square lattice I was able to calculate the pair-
connectedness up totmax = 47 and for the triangular lattice up totmax = 45. Since the
integer coefficients occurring in the series expansion become very large the calculation was
performed using modular arithmetic [11]. Each run fortmax, using a different prime number,
took approximately 12 hours using 64 nodes on an Intel Paragon, and up to eight primes
were needed to represent the coefficients correctly. The major limitation of the present
calculation was available computer memory rather than time.

3.2. Non-nodal graph expansion

The non-nodal graph expansion has been described in detail in [4] and here I will only
summarise the main points and introduce some notation. A graphg is nodal if there is
a point (other than the terminal point) through which all paths pass. It is clear that each
such nodal point effectively works as a new origin for the cluster growth. This is the
essential idea behind the non-nodal graph expansion.SN(t) is the contribution toS(t)

obtained by restricting the sum in (3.3) to non-nodal graphs. The non-nodal expansions are
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obtained recursively from the polynomialsS(t) andX(t). First one setsSN(1) = S(1) and
XN(1) = X(1) and then for 26 t 6 tmax one calculatesSN(t) andXN(t) from

SN(t) = S(t) −
t−1∑
t ′=1

SN(t ′)S(t − t ′) (3.4)

and

XN(t) = X(t) −
t−1∑
t ′=1

[SN(t ′)X(t − t ′) + XN(t ′)S(t − t ′)]. (3.5)

Next form the sums of (3.2) using the truncated non-nodal polynomialsSN(t) and XN(t)

instead ofS(t) andX(t). The final series are then obtained from the formulae

S = 1/(1 − SN) (3.6)

µ0,1 = µN
0,1S

2 (3.7)

µ0,2 = [µN
0,2 + 2(µN

0,1)
2S]S2 (3.8)

µ2,0 = µN
2,0S

2. (3.9)

3.3. Extrapolation procedure

When forming the sums (3.2) one could have stopped the summation at anyt prior to
reachingtmax and used the formulae above to derive the series correct to ordern(t). Let SN

t

andXN
t denote the non-nodal expansions obtained in this fashion. As observed by Baxter

and Guttmann [5] one can often extend the series considerably by looking at correction
terms to such series. The polynomialsS(t) and X(t), and thus likewise the non-nodal
expansions, will obviously contain terms of much higher order than that to which the final
series is correct. One can therefore look at the difference between successive expansions,
e.g.

SN
t − SN

t+1 = −SN(t + 1) = pn(t+1)
∑
r>0

st,rp
r (3.10)

which yields sequences of numbersst,r with t < tmax. As observed in [5] the first sequence
of numbersst,0 is often quite simple and can readily be conjectured so that a closed form
expression or a simple recurrence relation can be found. In the following I will give the
details of how this is done in the square bond case. The treatment of the other problems
are detailed in the appendix. Note, that if one can find the firstnr correction terms one can
useSN

tmax
= ∑

m>0 aN,mpm to extend the seriesSN = ∑
m>0 ampm to ordern(tmax) + nr , via

an(tmax)+1+k = aN,n(tmax)+1+k −
bk/2c∑
m=0

stmax+m,k−2m. (3.11)

So in order to find the correct series terman(tmax)+1+k from the ‘partial’ termaN,n(tmax)+1+k

one first subtractsstmax,k which yields correctly the termaN+1,n(tmax+1)−1+k. One continues
this process until arriving ataN+bk/2c+1,n(tmax+bk/2c+1)−q , whereq = 1(0) if k is even (odd),
which is the correct term in the series forSN .

In the square bond case the first sequence of correction terms start out as

st,0 = 1, 2, 5, 14, 42, 132, 429, . . .

which is immediately recognizable as the Catalan numbersCt = (2t)!/(t !(t + 1)!). These
also occurred as the first correction term for the percolation probability series [5]. There is a
very simple combinatorial proof for the first correction term. The first correction term arises
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from the simplest (containing the minimum number of random elements) non-nodal graphs
terminating at levelt + 1. These graphs are also the ones giving the first term ofSN(t + 1).
It is obvious that these graphs are composed of two paths of lengtht + 1 each, which meet
at levelt +1 but does not cross earlier. These graphs are in one-to-one correspondence with
staircase polyominoes(or polygons) and it is well known that the latter are enumerated by
the Catalan numbers [12, 13].

As was the case for the percolation probability series the higher-order correction terms
can be expressed as rational functions ofst,0. For SN these extrapolation formulae are

st,r = 2r

16br/2c!

br/2c∑
k=1

br,k(2t)kCt−r+2 +
2r∑

j=1

ar,jCt−r+j t > r (3.12)

which are very similar to the formulae found in the percolation probability case [5]. The
extrapolation formulae forµN

0,1 andµN
0,2 are simply(t + 1)st,r and(t + 1)2st,r , respectively.

The factor in front of the first sum has been chosen so as to make the leading coefficients
particularly simple. I was able to find formulae for all correction terms up tor = 16. The
coefficients in the extrapolation formulae are listed in table 1.

From (3.12) it is clear that thetmax − r terms available in the sequences for the
correction terms are not sufficient to determine all the 2r + br/2c unknown coefficients
of the extrapolation formulae for larger. However, from table 1 one immediately sees that
the leading coefficientsar,2r and br,br/2c in the extrapolation formulae are very simple In
particular one has,(−1)rar,2r = 2, and

br,br/2c =
{

(−1)br/2c(r − 9) r odd

(−1)br/2c r even.

Likewise, ar,1 is zero forr > 2. In general I find that the leading coefficientsar,2r−m are
expressible as polynomials inr of orderm:

(−1)rar,2r−m =



−4r r > 0, m = 1

4r2 − 10 r > 2, m = 2

−8r3/3 + 80r/3 − 40 r > 4, m = 3

4r4/3 − 100r2/3 + 86r − 48 r > 6, m = 4

−8r5/15+ 80r3/3 − 92r2 − 62r/15+ 350 r > 8, m = 5.

So when calculating the coefficients listed in table 1 I first used the sequences for the
correction terms to predict as many of the extrapolation formulae (3.12) as possible. Then
I predicted as many of the leading coefficients as possible. This in turn allowed me to
find more extrapolation formulae, which I used to find more of the formulae for the leading
coefficientsar,2r−m. I repeated this until the process stopped with the extrapolation formulae
listed in table 1.

For XN the sequence determining the first correction formula starts out as

xt,0 = 0, 2, 8, 30, 112, 420, 1584, 6006, 22 880, . . .

from which one sees thatxt,0 = 2(t − 1)Ct−1. The proof of this formula is a little more
involved. First one needs the number of configurations,w(t, x), of two non-crossing paths
terminating at(x, t). Essam and Guttmann [14] gives a formula for the number of non-
crossing watermelon configurations withp chains which joins steps and at heightq from
the origin

ws(0) = 1 ws(s − q) = ws(q)
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and

ws(q) =
q∏

i=1

(p + i)s−2i+1

(i)s−2i+1
1 6 q 6 bs/2c (3.13)

where (a)k = a(a + 1)(a + 2) · · · (a + k − 1), is Pochhammer’s symbol. A watermelon
configuration with two chains is in one-to-one correspondence with the configuration
obtained from the two non-crossing paths by deleting the two bonds connected to the
origin and the two bonds connected to the terminal point, so thatw(t, x) = wt−2(x). In the
casep = 2 (3.13) reduces to a simple product of binomial coefficients,

ws(q) =
q∏

i=1

(s − i + 2)(s − i + 1)

i(i + 1)
= s!(s + 1)!

(s − q)!q!(s + 1 − q)!(q + 1)!

= 1

s + 2

(
s

q

) (
s + 2
q + 1

)
. (3.14)

The correction termst,0 can easily be derived from (3.14) as (remembering thatst,0

arises from paths terminating at levelt + 1)

st,0 =
t−1∑
q=0

wt−1(q) = 1

t + 1

t−1∑
q=0

(
t − 1

q

) (
t + 1
q + 1

)

= 1

t + 1

t∑
q=0

(
t − 1

q

) (
t + 1
t − q

)
= 1

t + 1

(
2t

t

)
= Ct .

In this derivation I have used only standard properties of binomial coefficients, the main
one being the formula

p∑
q=0

(
m

q

) (
n

p − q

)
=

(
m + n

p

)
. (3.15)

After this little diversion I return to the calculation ofxt,0. From (3.1) and the
measurement ofx with respect to the centre line it is clear that

xt,0 =
s∑

q=0

(s − 2q)2ws(q) (3.16)

wheres = t − 1. By simple expansion of the square and insertion ofws(q) one finds

xt,0 = 1

s + 2

[
s2

s+1∑
q=0

(
s

q

) (
s + 2
q + 1

)
− 4s

s+1∑
q=0

q

(
s

q

) (
s + 2
q + 1

)

+4
s+1∑
q=0

q(q + 1)

(
s

q

) (
s + 2
q + 1

)
− 4

s+1∑
q=0

q

(
s

q

) (
s + 2
q + 1

) ]
= 1

s + 2

[
s2

(
2s + 2
s + 1

)
− 4s2

(
2s + 1
s + 1

)
− 4s(s + 2)

(
2s

s

)
− 4s

(
2s + 1
s + 1

) ]
= 1

s + 2

[
−2s2(2s + 1)

s + 1

(
2s

s

)
+ 4s(s + 2)

(
2s

s

)
− 4s(2s + 1)

s + 1

(
2s

s

)]
= 1

(s + 2)(s + 1)

(
2s

s

)
[2s2 + 4s] = 2s

(s + 1)

(
2s

s

)
= 2sCs = 2(t − 1)Ct−1.
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The major step was the use of (3.15) to get rid of the sum overq. For the rest of the
calculations I only used the definition and well known properties of the binomial coefficients.

In this case I find that the general extrapolation formulae can be written as

xt,r = 2r

16br/2c!

br/2c+1∑
k=1

br,k(2t)kCt−r+2 +
2r∑

j=0

ar,jCt−r+j t > r. (3.17)

The coefficients are not reproduced here due to the excessive length of this material, but
are available from the author (please see end of article for details). Again I found that
the leading coefficients are very simple, so a procedure similar to that used to find more
extrapolation formulae forSN was applied forXN also. Though in this case it is slightly
more complicated because different polynomials are found forar,2r−m depending on whether
r is odd or even. I was able to find the extrapolation formulae forr 6 15.

From the polynomials forSN(tmax) andXN(tmax), using the extrapolation formulae given
above, I extended the series forS(p), µ0,1(p) andµ0,2(p) to order 112 and the series for
µ2,0(p) to order 111. The new series terms are listed in table 2, while the terms forn 6 49
can be found in [4]. The full series are available from the author via e-mail or can be
retrieved from the authors homepage on the world wide web (see later for details).

For the square site problem I have identified the first 12 extrapolation formulae for
SN and the first nine forXN . This allowed me to derive the series correctly to order 106
and 103, respectively. For the triangular bond and site cases the first 10–12 extrapolation
formulae were found and the series calculated to orders 55–57 depending on the particular
problem. Details of the extrapolation formulae and lists of the new series coefficients can
be found in the appendix. The full series and tables of the coefficients in the extrapolation
formulae can be obtained from the author.

4. Analysis of the series

In the vicinity of the critical point one expects the moments of the pair-connectedness to
have the functional form

f (p) ∝ A(pc − p)λ[1 + a1(pc − p)11 + b1(pc − p) . . .] (4.1)

whereλ is the critical exponent,11 the leading confluent exponent and the. . . represents
higher-order correction terms. By universality we expectλ to be the same for all the
percolation problems. In addition to the physical singularity, the series may have non-
physical singularities for other values (real or complex) ofp.

The series for moments of the pair-connectedness were analysed using inhomogeneous
first- and second-order differential approximants. A comprehensive review of these and
other techniques for series analysis may be found in [2]. Here it suffices to say that a
Kth-order differential approximant to a functionf is formed by matching the earliest series
coefficients to an inhomogeneous differential equation of the form (see [2] for details)

K∑
i=0

Qi(x)

(
x

d

dx

)i

f (x) = P(x) (4.2)

whereQi andP are polynomials of orderNi andL, respectively. First- and second-order
approximants are denoted by [L/N0; N1] and [L/N0; N1; N2], respectively.
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4.1. The square bond series

In this section I will give a detailed account of the analysis of the square bond series
which leads to the most accurate estimates. The analysis of the series for the other
problems are described summarily in the following sections. In addition to the moment
series I have also analysed the seriesµ0,2(p)/µ0,1(p) ∼ (pc − p)−ν‖ and the series
µ2,0(p)µ0,2(p)/(µ0,1(p))2 ∼ (pc − p)−2ν⊥ .

In order to locate the singularities of the series in a systematic fashion I used the
following procedure: I calculate all [L/N; M] and [L/N; M; M] first- and second-order
inhomogeneous differential approximants with|N − M| 6 1 andL 6 35, which use more
than 95 or 90 terms, respectively. Each approximant yieldsM possible singularities and
associated exponents from theM zeroes ofQ1 or Q2, respectively (many of these are of
course not actual singularities of the series but merely spurious zeros.) Next these zeroes are
sorted into equivalence classes by the criterion that they lie at most a distance 2−k apart. An
equivalence class is accepted as a singularity if it contains more thanNc approximants, and
an estimate for the singularity and exponent is obtained by averaging over the approximants
(the spread among the approximants is also calculated). I usedNc = 20 (15) for first-order
(second-order) approximants, which means that at least two-thirds to three-quarters of all
approximants had to be included before an equivalence class was accepted. The calculation
was then repeated fork − 1, k − 2, . . . until a minimal value of 8 or so was reached. To
avoid outputting well-converged singularities at every level, once an equivalence class has
been accepted, the approximants which are members of it are removed, and the subsequent
analysis is carried out on the remaining data only. One advantage of this method is that
spurious outliers, a few of which will almost always be present when so many approximants
are generated, are discarded systematically and automatically.

In table 3 I have listed the estimates for the physical critical pointpc and the associated
exponents obtained from the six series that I studied. The errors listed in the parentheses
are calculated from the spread among the approximants and equals one standard deviation.
Note that these error estimates shouldnot be seen as accurately representing the true errors.
Na is the number of approximants included in the estimates.

Generally the estimates for various ordersL of the inhomogeneous polynomial are
exceptionally well converged and excellent agreement is observed both between the various
estimates for each series as well as between thepc-estimates from the different series.
Apart from the first-order approximants for smallL to µ2,0(p)µ0,2(p)/(µ0,1(p))2 all
estimates forpc are consistent with the highly accurate valuepc = 0.644 700 15(15).
This slight discrepancy is not important since one generally would expect largeL first-
order approximants and second-order approximants to yield more reliable estimates. These
approximants are better at dealing with analytic background terms or other features which
might possibly slow down the convergence of the estimates to the true critical values.
Further note thatNa generally is well above the cut-offNc showing that in most cases
only a few approximants are discarded. The uncertainty in the last digits of thepc-estimate,
given in parentheses, is probably on the conservative side, and is mostly due to the tendency
of µ0,1 andµ0,2 to favour a somewhat lower estimate for the critical point.

Before proceeding I will consider possible sources of systematic errors. First and
foremost the possibility that the estimates might display a systematic drift as the number
of terms used is increased and secondly the possibility of numerical errors. The latter
possibility is quickly dismissed. The calculations were performed using 128-bit real numbers
(REAL*16 on an IBM RISC work station). The estimates from a few approximants were
compared to values obtained using MAPLE with up to 100 digits accuracy and this clearly
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Table 3. Estimates ofpc and critical exponents for the square bond problem.

First-order DA Second-order DA

L pc γ Na pc γ Na

0 0.644 700 51(60) 2.278 32(77) 25 0.644 700 181(37) 2.277 716(30) 22
5 0.644 700 18(72) 2.278 07(71) 25 0.644 700 169(26) 2.277 708(23) 18
10 0.644 700 04(13) 2.277 602(93) 26 0.644 700 158(41) 2.277 703(34) 23
15 0.644 700 136(29) 2.277 665(56) 23 0.644 700 146(29) 2.776 90(23) 20
20 0.644 700 102(21) 2.277 649(21) 24 0.644 700 146(17) 2.277 689(14) 18
25 0.644 700 097(49) 2.277 646(42) 23 0.644 700 149(20) 2.277 693(15) 21
30 0.644 700 108(29) 2.277 659(24) 26 0.644 700 162(12) 2.277 704(11) 16
35 0.644 700 129(21) 2.277 678(15) 21 0.644 700 29(22) 2.277 92(42) 22

L pc ν‖ Na pc ν‖ Na

0 0.644 700 153(12) 1.733 818 4(50) 22 0.644 700 169(97) 1.733 845(45) 19
5 0.644 700 154(31) 1.733 818(12) 27 0.644 700 178(50) 1.733 846(28) 16
10 0.644 700 115(11) 1.733 807 1(35) 22 0.644 700 171 8(88) 1.733 836 2(42) 20
15 0.644 700 142(33) 1.733 819(21) 22 0.644 700 136(50) 1.733 813(34) 18
20 0.644 700 162(14) 1.733 831 9(78) 25 0.644 700 154(23) 1.733 827(11) 19
25 0.644 700 149(24) 1.733 824(11) 25 0.644 700 142(13) 1.733 821 3(67) 18
30 0.644 700 155 7(63) 1.733 827 9(31) 23 0.644 700 122(34) 1.733 806(25) 21
35 0.644 700 150 3(61) 1.733 825 4(32) 22 0.644 700 164(20) 1.733 831 2(92) 20

L pc 2ν⊥ Na pc 2ν⊥ Na

0 0.644 700 40(13) 2.193 828(55) 22 0.644 700 196(17) 2.193 711(11) 17
5 0.644 700 438(94) 2.193 843(36) 22 0.644 700 192(18) 2.193 708(10) 18
10 0.644 700 41(17) 2.193 826(95) 22 0.644 700 174(47) 2.193 703(29) 17
15 0.644 700 147(17) 2.193 685 2(79) 22 0.644 700 163(23) 2.193 693(12) 18
20 0.644 700 201(17) 2.193 712 6(82) 23 0.644 700 217(40) 2.193 722(22) 16
25 0.644 700 200(10) 2.193 713 2(54) 23 0.644 700 192(28) 2.193 708(13) 16
30 0.644 700 196(10) 2.193 710 7(51) 23 0.644 700 183(12) 2.193 703 9(64) 17
35 0.644 700 195(14) 2.193 711 0(69) 23 0.644 700 182(15) 2.193 703 1(84) 18

L pc γ + ν‖ Na pc γ + ν‖ Na

0 0.644 700 091(76) 4.011 423(76) 24 0.644 700 091(32) 4.011 434(35) 18
5 0.644 700 042(74) 4.011 375(65) 25 0.644 700 095(20) 4.011 440(23) 18
10 0.644 700 023(97) 4.011 361(79) 25 0.644 700 079(37) 4.011 413(44) 20
15 0.644 700 071(72) 4.011 403(73) 24 0.644 700 105(47) 4.011 455(50) 20
20 0.644 700 015(66) 4.011 350(57) 26 0.644 700 096(32) 4.011 443(34) 18
25 0.644 700 04(15) 4.011 39(15) 21 0.644 700 096(63) 4.011 440(73) 19
30 0.644 700 037(68) 4.011 370(59) 24 0.644 700 101(21) 4.011 448(22) 19
35 0.644 700 038(54) 4.011 369(49) 23 0.644 700 090(20) 4.011 438(22) 18

L pc γ + 2ν‖ Na pc γ + 2ν‖ Na

0 0.644 700 043(87) 5.745 15(10) 24 0.644 700 079(19) 5.745 208(29) 18
5 0.644 700 079(96) 5.745 20(13) 24 0.644 700 084(25) 5.745 224(35) 16
10 0.644 700 05(11) 5.745 17(13) 21 0.644 700 075(29) 5.745 208(37) 17
15 0.644 700 11(10) 5.745 25(17) 22 0.644 700 075(17) 5.745 213(25) 22
20 0.644 700 051(27) 5.745 156(34) 24 0.644 700 087(38) 5.745 232(51) 17
25 0.644 700 13(17) 5.745 31(32) 25 0.644 700 082(22) 5.745 225(32) 18
30 0.644 700 068(45) 5.745 180(57) 21 0.644 700 082(25) 5.745 231(50) 18
35 0.644 699 99(10) 5.745 10(11) 25 0.644 700 091(45) 5.745 231(75) 19
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Table 3. (Continued)

First-order DA Second-order DA

L pc γ + 2ν⊥ Na pc γ + 2ν⊥ Na

0 0.644 700 081 9(37) 4.471 298 8(18) 22 0.644 700 119(52) 4.471 341(57) 20
5 0.644 700 080 6(26) 4.471 298 1(13) 23 0.644 700 117(21) 4.471 329(20) 17
10 0.644 700 085 7(78) 4.471 301 7(62) 24 0.644 700 115(46) 4.471 332(46) 16
15 0.644 700 138(69) 4.471 36(10) 21 0.644 700 094(68) 4.471 319(50) 16
20 0.644 700 101(24) 4.471 315(21) 23 0.644 700 132(40) 4.471 351(42) 16
25 0.644 700 101(29) 4.471 316(25) 25 0.644 700 101(16) 4.471 314(14) 16
30 0.644 700 112(21) 4.471 324(19) 21 0.644 700 121(42) 4.471 340(46) 19
35 0.644 700 119(17) 4.471 330(16) 21 0.644 700 114(41) 4.471 334(44) 18

Figure 2. The deviation in the last two digits, 1081pc, from the central estimate of the critical
point pc = 0.644 700 15, of the estimates for the critical point by second-order differential
approximants. Shown is (from left to right and top to bottom) estimates from the seriesS(p),
µ0,2(p)/µ0,1(p), µ2,0(p)µ0,2(p)/(µ0,1(p))2, µ0,1(p), µ0,2(p), andµ2,0(p).

showed that the program was numerically stable and rounding errors were negligible. In
order to address the possibility of systematic drift and lack of convergence to the true critical
values I refer to figure 2. In this figure I have plotted the deviation in the last two digits,
1081pc, from the critical pointpc = 0.644 700 15. Included in the figure are estimates
from inhomogeneous second-order differential approximants withL 6 35 to the six series
that I have studied. From this figure it is evident that the series estimates displayed on the
top row are well converged once the number of terms exceeds 90 or so, while the series
on the bottom row still show evidence of a systematic drift and the estimates have not yet
converged to their asymptotic value. This is particularly manifest for the seriesµ0,1 andµ0,2

shown in the bottom left and central panels. Since these series were the ones responsible
for most of the error on the estimate forpc, and given the very good convergence of the
estimates from the series shown in the top row, it does not seem overly optimistic to adopt
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the tighter estimatepc = 0.647 700 15(5). Clearly the large majority of estimates for the
first three series lie well within this error-bound as the number of terms increase and likewise
the estimates from the remaining series clearly seem to converge towards this value.

Next I turn my attention to the estimates for the critical exponents. Very precise estimates
for γ , ν‖, and 2ν⊥ can be obtained by examining table 3. I have used a slightly more
systematic and enlightening procedure. Close to the critical point there is an apparent linear
dependence of the estimates for critical exponents on the estimates forpc. One can use this
to obtain improved estimates for the exponents by performing a linear fit of the exponent
estimates as a function of1pc (the distance from the critical point). The result of such
linear fits is listed below. In these fits I used the same set of approximants as those on
which the estimates in the tables above were based. But I discarded any approximant for
which |1pc| = |pc − 0.644 700 15| > 0.000 000 15. The error on the ‘pure’ exponent part
of the estimates mainly reflects the slight difference between the first- and second-order
approximants (the errors as listed are approximately twice this difference). In the estimates
for γ andγ + 2ν⊥ I used only the first-order approximants withL > 15.

γ = 2.277 690(10) ± 7501pc

ν‖ = 1.733 824(3) ± 5001pc

2ν⊥ = 2.193 687(2) ± 5001pc

γ + ν‖ = 4.011 495(15) ± 11501pc

γ + 2ν‖ = 5.745 308(15) ± 14001pc

γ + 2ν⊥ = 4.471 368(3) ± 10001pc.

(4.3)

As can be seen the exponent estimates are very precise. Even with the very small error
in the pc-estimate, this is still the major source of error (by an order of magnitude) in the
exponent estimates. As previously noted [6], there is no simple rational fraction whose
decimal expansion agrees with the estimate ofβ obtained from the percolation-probability
series. The same is true for the estimates ofν‖ and 2ν⊥ listed above. In particular note
that the rational fraction suggested by Essamet al [4], ν‖ = 26/15 = 1.733 333. . . , and
2ν⊥ = 79/36 = 2.194 44. . . , is incompatible with the estimates. The rational fraction
suggested forγ = 41/18 = 2.277 777. . . lies within the error bounds for the exponent
estimate if the error onpc exceeds 10−7. So the more conservative error estimate listed
earlier would just include the suggested value ofγ . However, most of the estimates in
table 3 clearly exclude the exact fraction as does the more narrow error estimate onpc.
Finally I note that the better converged estimates forγ + 2ν⊥ and 2ν⊥ yields the estimate
γ = 2.277 681(5), which, within the error, agrees with the direct estimate but points to a
possibly slightly lower value ofγ .

The estimate forpc advocated above lies within the error-bounds of that obtained from
the percolation probability series [6]pc = 0.644 700 6(10), though a lower central value is
favoured by the series analysed in this paper. From the scaling relationβ = (ν‖+ν⊥−γ )/2 I
obtain the estimateβ = 0.276 489(7)±7501pc, which is consistent with the direct estimate
β = 0.276 43(10). It is quite likely that the minor discrepancies between the central values
would disappear if the percolation probability series could be extended from the 55 terms in
[6] to an order comparable to the series analysed here. Evidence to this effect is provided
by the biased estimateβ = 0.276 483(14) calculated atpc = 0.644 700 15 using Dlog Padé
approximants utilizing at least 45 terms of the percolation-probability series.

I also analysed the series in order to estimate the leading confluent exponents11. As
was the case for the percolation-probability series both the Baker–Hunter transformation
and the method of Adler, Moshe and Privman (see [6] and references therein for details
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regarding these methods) yielded estimates consistent with11 = 1. So there are no signs
of non-analytic corrections to scaling.

Finally I looked for non-physical singularities of the series. The series have a
singularity on the negative axis closer to the origin thanpc. This singularity is quite
weak and consequently the estimates for its location and the associated exponents are quite
inaccurate. The singularity is located atp− = −0.5168(5) and the associated exponents are
γ = 0.065(15), ν‖ = 0.97(3) and 2ν⊥ = 0.90(15). It is quite possible that the divergence of
the cluster length series atp− is logarithmic and the estimates are certainly consistent with
γ = 0, ν‖ = 1 andν⊥ = 1

2. Finally there is some weak evidence of a pair of singularities
in the complexp-plane atp± = −0.2255(15) ± 0.440(1)i. Note that this singularity pair
also lies within the physical disc. The exponent estimates atp± are not very accurate. The
cluster size series seems toconvergewith exponentγ ' −3, while ν‖ ' 1 andν⊥ ' 1

2, but
the error on these estimates are as large as 25–50%.

4.2. The square site series

In table 4 I have listed some of the estimates forpc and critical exponents obtained from
an analysis of the square site series. The estimates are based on approximants using at
least 85–90 terms withNc = 15. Though the length of the series is comparable to the
bond case the estimates are generally less accurate. In particular it should be noted that
thepc-estimates obtained from different series are only marginally consistent leading to the
rather poor estimate,pc = 0.705 485 0(15), which is at least an order of magnitude less
accurate than in the bond case. Some exponent estimates differ significantly from those of
the bond case. Particularlyγ andγ + 2ν‖ are generally quite a bit smaller than the bond
estimates. However, due to the discrepancy between the various site series, the importance
of this deviation is questionable. If the error-bar onpc is accepted, the resulting exponent
estimates from the site series will agree with the bond estimates.

If one accepts the exponent estimates from the bond series one can use the linear
dependence betweenpc and exponent estimates to obtain improved estimates forpc. (This
is just the reverse of the method used in the previous section to obtain the exponent
estimates.) By performing a linear fit of thepc-estimates as a function of the deviation
of the exponent estimate from the central values listed in the previous section I obtain
the estimatepc = 0.705 485 3(5). In these fits I used the approximants whose exponent
estimates differ by less than 0.001 from the central values. This estimate agrees with that
obtained from the percolation-probability series [6]pc = 0.705 485(5).

The square site series have a singularity on the negative axis closer to the origin then
pc. In this case the singularity appears to be stronger than in the bond case, i.e. the various
estimates are better converged. The singularity is located atp− = −0.451 952 2(3) and the
associated exponents are quite possibly consistent withγ = − 1

2 (i.e. the cluster-size series
converges), ν‖ = 1 andν⊥ = 1

2. There is firm evidence of a pair of singularities in the
complexp-plane atp± = −0.2263(1) ± 0.3847(1)i, which is within the physical disc. The
exponent estimates at this pair of singularities are quite accurate. The cluster-size series
seems toconverge, with γ ' −3, while ν‖ ' 1 andν⊥ ' 1

2, where errors on the estimates
are only a few per cent.

4.3. The triangular bond series

Table 5 lists a selection of estimates forpc and critical exponents obtained from the analysis
of the triangular bond series. The estimates are based on approximants using at least 45 or
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Table 4. Estimates ofpc and critical exponents for the square site problem.

First-order DA Second-order DA

L pc γ Na pc γ Na

0 0.705 483 90(20) 2.276 850(66) 19 0.705 485 00(26) 2.277 51(15) 17
5 0.705 484 09(20) 2.276 924(88) 23 0.705 485 16(28) 2.277 60(18) 18
10 0.705 484 41(35) 2.277 21(30) 24 0.705 484 72(19) 2.277 334(95) 17
15 0.705 484 594(68) 2.277 232(33) 23 0.705 484 71(14) 2.277 314(74) 19
20 0.705 484 805(72) 2.277 364(39) 24 0.705 484 86(36) 2.277 42(25) 20
25 0.705 484 723(82) 2.277 319(46) 20 0.705 484 671(58) 2.277 295(35) 16
30 0.705 484 811(34) 2.277 367(18) 21 0.705 484 689(29) 2.277 306(16) 16
35 0.705 484 850(62) 2.277 389(31) 21 0.705 484 713(83) 2.277 313(39) 17

L pc ν‖ Na pc ν‖ Na

0 0.705 484 49(93) 1.733 47(25) 19 0.705 484 96(30) 1.733 70(10) 16
5 0.705 484 27(28) 1.733 416(72) 23 0.705 484 91(23) 1.733 686(84) 16
10 0.705 484 85(36) 1.733 66(14) 20 0.705 485 020(95) 1.733 729(25) 16
15 0.705 485 13(26) 1.733 763(88) 23 0.705 484 91(34) 1.733 69(12) 18
20 0.705 485 65(53) 1.733 97(20) 22 0.705 484 80(17) 1.733 650(66) 19
25 0.705 485 75(33) 1.734 03(12) 23 0.705 484 70(21) 1.733 608(93) 17
30 0.705 485 60(63) 1.733 96(28) 19 0.705 484 43(26) 1.733 50(11) 16
35 0.705 485 45(43) 1.733 88(17) 24 0.705 484 52(21) 1.733 548(84) 16

L pc 2ν⊥ Na pc 2ν⊥ Na

0 0.705 486 9(13) 2.194 45(46) 19 0.705 486 50(23) 2.194 33(21) 19
5 0.705 486 87(57) 2.194 47(16) 19 0.705 486 47(23) 2.194 34(13) 16
10 0.705 485 1(15) 2.193 97(33) 21 0.705 486 49(12) 2.194 254(51) 16
15 0.705 485 7(10) 2.194 00(39) 19 0.705 485 77(24) 2.194 033(76) 20
20 0.705 486 6(16) 2.194 34(53) 19 0.705 485 89(42) 2.194 06(13) 21
25 0.705 486 0(10) 2.194 12(42) 19 0.705 485 85(24) 2.194 048(81) 17
30 0.705 486 0(12) 2.194 10(45) 20 0.705 485 60(65) 2.193 91(28) 18
35 0.705 486 2(13) 2.194 08(53) 20 0.705 485 15(78) 2.193 76(31) 17

L pc γ + ν‖ Na pc γ + ν‖ Na

0 0.705 483 65(38) 4.009 89(23) 19 0.705 484 03(70) 4.010 23(58) 18
5 0.705 483 81(17) 4.010 00(12) 23 0.705 484 38(33) 4.010 47(39) 16
10 0.705 483 85(42) 4.010 05(29) 25 0.705 484 41(34) 4.010 55(30) 16
15 0.705 483 62(55) 4.009 94(38) 24 0.705 484 30(51) 4.010 46(44) 21
20 0.705 483 49(30) 4.009 79(20) 19 0.705 484 24(34) 4.010 41(28) 18
25 0.705 483 80(43) 4.010 06(30) 22 0.705 484 50(65) 4.010 67(65) 21
30 0.705 483 80(21) 4.009 99(14) 21 0.705 484 28(21) 4.010 43(18) 16
35 0.705 483 78(61) 4.010 02(43) 23 0.705 484 47(33) 4.010 61(32) 19

L pc γ + 2ν‖ Na pc γ + 2ν‖ Na

0 0.705 483 58(35) 5.743 11(21) 19 0.705 484 60(45) 5.744 20(51) 19
5 0.705 483 55(20) 5.743 07(14) 19 0.705 484 43(18) 5.744 00(20) 17
10 0.705 484 04(60) 5.743 58(65) 23 0.705 484 34(18) 5.743 92(21) 17
15 0.705 483 82(10) 5.743 299(94) 19 0.705 484 31(52) 5.743 90(62) 20
20 0.705 483 79(15) 5.743 27(14) 22 0.705 484 15(22) 5.743 69(24) 18
25 0.705 483 75(16) 5.743 21(13) 22 0.705 484 00(10) 5.743 52(10) 16
30 0.705 483 68(16) 5.743 17(14) 19 0.705 484 22(25) 5.743 77(30) 16
35 0.705 483 87(24) 5.743 34(22) 25 0.705 484 74(65) 5.744 49(85) 19
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Table 4. (Continued)

First-order DA Second-order DA

L pc γ + 2ν⊥ Na pc γ + 2ν⊥ Na

0 0.705 483 8(33) 4.472 9(94) 19 0.705 484 57(13) 4.470 71(10) 20
5 0.705 484 58(16) 4.470 69(11) 19 0.705 484 60(10) 4.470 740(93) 16
10 0.705 484 63(16) 4.470 72(10) 20 0.705 484 57(11) 4.470 695(93) 19
15 0.705 484 77(19) 4.470 84(15) 19 0.705 484 73(27) 4.470 84(25) 21
20 0.705 484 43(43) 4.470 61(26) 20 0.705 484 72(17) 4.470 81(15) 17
25 0.705 484 49(47) 4.470 66(30) 20 0.705 484 80(49) 4.470 89(45) 19
30 0.705 484 75(42) 4.470 87(37) 19 0.705 484 2(13) 4.470 4(11) 17
35 0.705 484 69(22) 4.470 78(18) 19 0.705 485 1(13) 4.471 3(12) 20

40 terms withNc = 15 or 10 for first and second order, respectively. As one would expect,
due to the shorter series, the estimates are generally encumbered with larger errors than was
the case for the square bond series. The estimates forν‖ and 2ν⊥ are generally consistent
with those from the square bond series, while the remaining exponent estimates exceeds
those from the square bond case. The linear fit ofpc to the deviation of the exponent
estimates from the values favoured by the square bond series yieldspc = 0.478 025(1),
which is in excellent agreement with the estimatepc = 0.478 02(1) from the percolation-
probability series [7]. The triangular bond series does not appear to have any non-physical
singularities.

4.4. The triangular site series

In table 6 I have listed some estimates forpc and critical exponents obtained from an
analysis of the triangular site series similar to that for the bond problem. In this case all
exponent estimates are consistent with the square bond case. The biased estimate forpc

based on the usual fitting procedure ispc = 0.595 646 8(5) in excellent agreement with the
estimatepc = 0.595 647 2(10) from the percolation probability series [7]. Again there is
no compelling evidence for non-physical singularities.

5. Summary and discussion

From the analysis presented in the previous section it was clear that the square bond
series yield by far the most accuratepc-estimates which in turn enables one to obtain
very precise estimates for the critical exponents. The remaining cases yielded less accurate
estimates. Though the square site and triangular bond cases tended to yield exponent
estimates only marginally consistent with the square bond estimates, thepc estimates showed
less consistency among the various series. In the square site case this could possibly be
caused by the presence of rather strong non-physical singularities closer to the origin than
pc. The triangular site estimates, though marred by larger error-bars, were fully consistent
with the square bond estimates. I have therefore chosen to base my final exponent estimates
mainly on the square bond series.

From figure 2 it would appear that the estimatepc = 0.644 700 15(5) is fully consistent
with the data and not overly optimistic. With this highly accuratepc value one can obtain
very accurate exponent estimates using the values listed in (4.3). The values of the critical
exponents for the average cluster size, parallel and perpendicular connectedness lengths are
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Table 5. Estimates ofpc and critical exponents for the triangular bond problem.

First-order DA Second-order DA

L pc γ Na pc γ Na

0 0.478 026 8(13) 2.278 50(35) 21 0.478 025 48(13) 2.277 976(80) 15
4 0.478 025 96(10) 2.278 170(47) 16 0.478 025 78(42) 2.278 09(21) 14
8 0.478 026 14(10) 2.278 242(64) 16 0.478 025 60(16) 2.278 054(48) 11
12 0.478 026 02(42) 2.278 19(14) 20 0.478 025 79(27) 2.278 093(91) 14
16 0.478 025 99(29) 2.278 19(10) 18 0.478 026 05(50) 2.278 20(19) 17

L pc ν‖ Na pc ν‖ Na

0 0.478 027 2(19) 1.734 35(30) 17 0.478 026 24(79) 1.734 13(18) 17
4 0.478 025 5(10) 1.734 04(33) 17 0.478 025 85(59) 1.734 04(17) 12
8 0.478 025 51(57) 1.733 98(16) 16 0.478 026 4(10) 1.734 17(30) 15
12 0.478 025 6(18) 1.734 03(53) 19 0.478 025 36(79) 1.733 92(22) 11
16 0.478 024 4(25) 1.733 65(65) 18 0.478 027 3(19) 1.734 41(52) 15

L pc 2ν⊥ Na pc 2ν⊥ Na

0 0.478 027 16(70) 2.194 29(16) 18 0.478 026 0(10) 2.193 89(23) 17
4 0.478 026 83(80) 2.194 20(15) 17 0.478 026 1(17) 2.193 95(54) 14
8 0.478 024 74(53) 2.193 55(15) 16 0.478 024 6(12) 2.193 55(33) 14
12 0.478 025 1(28) 2.193 67(71) 18 0.478 024 4(12) 2.193 49(36) 14
16 0.478 024 7(11) 2.193 54(35) 17 0.478 025 22(40) 2.193 69(11) 11

L pc γ + ν‖ Na pc γ + ν‖ Na

0 0.478 026 76(52) 4.012 59(28) 18 0.478 026 65(24) 4.012 624(79) 13
4 0.478 026 70(47) 4.012 61(14) 20 0.478 026 86(12) 4.012 693(33) 13
8 0.478 026 45(51) 4.012 51(22) 19 0.478 026 66(17) 4.012 649(45) 11
12 0.478 026 12(59) 4.012 36(30) 17 0.478 026 53(68) 4.012 44(54) 16
16 0.478 026 22(45) 4.012 43(21) 16 0.478 026 82(16) 4.012 688(36) 11

L pc γ + 2ν‖ Na pc γ + 2ν‖ Na

0 0.478 025 4(17) 5.7456(17) 17 0.478 026 4(16) 5.7464(14) 13
4 0.478 025 1(10) 5.745 66(95) 19 0.478 026 6(24) 5.7460(20) 13
8 0.478 025 2(11) 5.7457(11) 17 0.478 026 4(19) 5.7461(16) 17
12 0.478 025 66(33) 5.746 23(26) 16 0.478 025 4(10) 5.7457(11) 16
16 0.478 025 88(78) 5.746 33(52) 18 0.478 026 3(18) 5.7463(12) 17

L pc γ + 2ν⊥ Na pc γ + 2ν⊥ Na

0 0.478 026 16(38) 4.472 28(18) 16 0.478 025 85(24) 4.472 04(14) 13
4 0.478 026 32(82) 4.472 34(41) 17 0.478 025 70(52) 4.471 91(33) 14
8 0.478 025 89(47) 4.472 14(23) 17 0.478 026 37(54) 4.472 35(31) 11
12 0.478 025 66(48) 4.471 96(31) 18 0.478 026 24(50) 4.472 28(31) 13
16 0.478 026 18(31) 4.472 28(15) 17 0.478 026 10(42) 4.472 18(23) 12

estimated byγ = 2.277 69(4), ν‖ = 1.733 825(25) and ν⊥ = 1.096 844(14), respectively.
An improved estimate for the percolation probability exponent is obtained from the scaling
relationβ = (ν‖ +ν⊥ −γ )/2 = 0.276 49(4). As already noted these estimates are generally
incompatible with the exact fractions conjectured by Essamet al [4]. Only γ is marginally
consistent with the suggested fraction,γ = 41/18 = 2.77 777. . . , if a larger error-bar were
adopted forpc.
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Table 6. Estimates ofpc and critical exponents for the triangular site problem.

First-order DA Second-order DA

L pc γ Na pc γ Na

0 0.595 647 31(31) 2.277 848(67) 16 0.595 645 98(71) 2.277 49(16) 18
4 0.595 646 41(30) 2.277 597(79) 18 0.595 646 5(13) 2.277 55(64) 16
8 0.595 646 64(41) 2.277 67(12) 18 0.595 646 81(10) 2.277 708(28) 12
12 0.595 646 53(27) 2.277 628(81) 16 0.595 646 67(20) 2.277 672(64) 13
16 0.595 646 84(78) 2.277 72(22) 18 0.595 646 59(32) 2.277 662(84) 12

L pc ν‖ Na pc ν‖ Na

0 0.595 646 56(15) 1.733 766(15) 16 0.595 646 75(45) 1.733 796(53) 15
4 0.595 645 4(11) 1.733 58(18) 16 0.595 646 62(60) 1.733 78(11) 11
8 0.595 645 9(88) 1.7336(17) 16 0.595 644 8(32) 1.733 44(74) 11
12 0.595 647 6(31) 1.734 07(68) 16 0.595 645 7(13) 1.733 61(29) 11
16 0.595 650 7(29) 1.734 77(65) 16 0.595 643 2(58) 1.7328(15) 15

L pc 2ν⊥ Na pc 2ν⊥ Na

0 0.595 650(12) 2.1943(37) 16 0.595 647 0(38) 2.1938(12) 14
4 0.595 655 5(49) 2.1958(11) 16 0.595 647 7(10) 2.193 97(25) 11
8 0.595 648 9(14) 2.194 25(30) 17 0.595 647 53(88) 2.193 97(24) 11
12 0.595 646 9(73) 2.1938(15) 16 0.595 645 7(22) 2.193 57(42) 12
16 0.595 647 3(10) 2.193 87(22) 16 0.595 648 5(18) 2.194 11(37) 16

L pc γ + ν‖ Na pc γ + ν‖ Na

0 0.595 643 5(26) 4.010 06(80) 18 0.595 645 3(22) 4.0108(10) 15
4 0.595 644 6(16) 4.010 36(54) 16 0.595 647 6(46) 4.0122(24) 17
8 0.595 645 42(67) 4.010 64(27) 17 0.595 647 29(73) 4.011 68(46) 11
12 0.595 644 89(48) 4.010 41(20) 16 0.595 647 19(88) 4.011 68(49) 11
16 0.595 644 95(28) 4.010 47(10) 17 0.595 645 0(12) 4.010 57(55) 11

L pc γ + 2ν‖ Na pc γ + 2ν‖ Na

0 0.595 648 4(66) 5.7469(60) 17 0.595 644 4(17) 5.743 86(91) 11
4 0.595 644 0(29) 5.7437(10) 16 0.595 644 2(28) 5.7438(16) 12
8 0.595 649 2(45) 5.7468(31) 18 0.595 643 2(32) 5.7433(12) 13
12 0.595 646 3(37) 5.7448(24) 17 0.595 646 2(20) 5.7448(13) 12
16 0.595 645 7(15) 5.744 40(85) 17 0.595 646 5(13) 5.745 02(80) 12

L pc γ + 2ν⊥ Na pc γ + 2ν⊥ Na

0 0.595 647 7(11) 4.471 67(39) 16 0.595 647 15(31) 4.471 61(13) 12
4 0.595 647 48(19) 4.471 776(73) 17 0.595 647 06(43) 4.471 56(17) 14
8 0.595 647 49(26) 4.471 770(98) 17 0.595 647 24(29) 4.471 64(12) 12
12 0.595 647 56(33) 4.471 79(12) 16 0.595 647 44(81) 4.471 70(29) 14
16 0.595 647 58(42) 4.471 80(15) 17 0.595 647 29(15) 4.471 670(61) 12

Below I have listed improved estimates for a number of critical exponents obtained
using various scaling relations.

1 = β + γ = 2.554 18(8)

τ = ν‖ − β = 1.457 34(7)

z = ν‖/ν⊥ = 1.580 74(4)
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γ ′ = γ − ν‖ = 0.543 86(7)

δ = β/ν‖ = 0.159 47(3)

η = γ /ν‖ − 1 = 0.313 68(4).

Here 1 is the exponent characterizing the scale of the cluster size distribution,τ is the
cluster length exponent,z is the dynamical critical exponent,γ ′ the exponent characterizing
the steady-state fluctuations of the order parameter, whileδ andη characterize the behaviour
at pc as t → ∞ of the survival probability and average number of particles, respectively.

Assuming that the exponent estimates from the square bond case are correct, improved
pc-estimates were obtained for the three other problems studied in this paper. These are:

pc = 0.705 485 3(5) square site

pc = 0.478 025(1) triangular bond

pc = 0.595 646 8(5) triangular site.

Finally I note, that the analysis of the various series, in order to determine the value of
the confluent exponent, yielded estimates consistent with11 ' 1. Thus there is no evidence
of non-analytic confluent correction terms. This provides a hint that the models might be
exactly solvable.

E-mail or WWW retrieval of series

The series and the coefficients in the extrapolation formulae for the directed
percolation problems on the various lattices can be obtained via e-mail by sending
a request to iwan@maths.mu.oz.au or via the world wide web on the URL
http://www.maths.mu.oz.au/˜iwan/ by following the relevant links.
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Appendix. The extrapolation formulae and series for the square site, triangular bond
and triangular site problems

A.1. The square site problem

The sequence determining the first correction term forSN starts out as

st,0 = 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, . . .

from which one sees that 2st,0 + st−1,0 = Ct−1. Shapiro [15] has given an interpretation of
this sequence by adding diagonals in a certain Catalan triangle.

At first glance one might find it strange that the correction term differs from the bond
case, since clearly all the non-nodal bond graphs that give rise to the first correction term
have their counterparts as site graphs. In the following I shall always be talking only of
non-nodal graphs consisting of two equal-length paths. The reason for the difference is
quite simply that for some graphs thed-weight in (3.3) is 0 for thesite graph but non-zero
for the bond graph. A schematic representation of such a graph is shown in figure A1. A
proof of this was given by Arrowsmith and Essam [16], who showed thatd(g) is non-zero
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Figure A1. Schematic pictorial representation of a non-nodal graph which
contributes toSN in the bond problem butnot in the site problem.

if and only if g is coverable by a set of directed pathsand has no circuit (or loop). From
figure A1 we see that in the bond case the graph obtained by putting in the bonds a–b and
c–d has no loops. However, in the site case there is a loop from the origin to point d and
this graph does, therefore, not contribute in the site case. On the other hand it is clear that
for any contributing site graph there is a corresponding contributing bond graph. So the
contributing site graphs form a subset of the bond graphs.

In order to prove the formula forst,0 it is convenient to give another interpretation of the
loop-free non-nodal graphs. Let us first characterize the graphs by the distancek between
the paths. Since the graphs start and end withk = 0, and the distance zero appears nowhere
else along the graph, these two ‘steps’ can be deleted. It is clear that in each step (increase
of t by one)k changes by 0 or±1. Whenk is unchanged there are two configurations
corresponding to both paths moving either south-east or south-west, while for changes of
±1 there is just one configuration. The non-nodal graphs are thus in bijection with paths
of length t − 1 starting and ending at the ground level, which can take north-east, east
and south-east steps, and where east steps come in two varieties or colours (such paths are
known astwo-colour Motzkin paths). It is one of the fundamental results of combinatorics
that the number of two-colour Motzkin paths of lengthn − 1 is Cn. It is easy to see that
loop-free non-nodal graphs form the subset where the distance between paths is never 1
twice in a row, i.e. ifkn = 1 thenkn+1 = 2. These graphs are in bijection with two-colour
Motzkin paths with no east steps on the ground level.

Figure A2. Typical two-colour Motzkin path with no east steps on the ground level.

Figure A2 shows an example of a two-colour Motzkin path with no east steps on the
ground level. It is clear that all paths formed by taking the parts of the original path lying
one level above the ground level (those above the dotted line), are ordinary unrestricted two-
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colour Motzkin paths, and these paths are therefore enumerated by the Catalan numbers.
The number of no-loop non-nodal graphs can therefore be expressed in terms of Catalan
numbers, by summing over the number of timesm the associated restricted two-colour
Motzkin path meets the ground level prior to the terminal point. LetDn denote the number
of two-colour Motzkin paths of lengthn with no east steps on the ground level. The number
of such two-colour Motzkin paths,Dn,0, which does not hit the ground level prior ton is
simply Cn−1 because the path obtained by deleting the first and last step is an ordinary
two-colour Motzkin path of lengthn − 2. The number of restricted two-colour Motzkin
pathsDn,1 which hit the ground level once is,

Dn,1 =
n−4∑
k=0

Ck+1Cn−4−k+1 =
∑

i+j=n−2

CiCj i, j > 1.

This formula is simply obtained by noting that the path to the left of the point where the
restricted path meets the ground level for the first time can have a lengthk ranging from 0
to n − 4 (the four steps connecting the ground level to the level above are discarded) while
the length of the second path isn − 4 − k. Obviously the number of left and right paths
are justCk+1 andCn−4−k+1, independently, which leads to the formula above once we sum
over the length of the left path. The generalization toDn,m is obvious

Dn,m =
∑

i1+i2+···+im=n−m−1

Ci1Ci2 · · ·Cim i1, . . . , im > 1, m 6 bn/2c − 1.

The sumDn = ∑bn/2c−1
m=0 Dn,m is exactly the same as that obtained by Shapiro [15] by

adding diagonals in the Catalan triangle.
The higher-order correction terms are quite complicated though still expressible as linear

functions ofst,0,

2r (r + 1)!st,r =
na∑

k=1

ar,kst−r+k−1,0 +
r∑

k=1

(
t − r

k

)
[br,k(st−r−1,0 + 2st−r,0) + cr,kst−r,0]

(A.1)

where na = r − 1 + max(br/2c, 2). This representation leads to particularly simple
coefficientscr,k, since cr,r−m24/(r + 1)! are expressible as polynomials inr of order m

for r > m.
The sequence determining the first correction term forXN starts out as

xt,0 = 0, 0, 0, 2, 8, 34, 136, 538, 2112, 8264, . . . .

In this casext,0 = u(t + 1) is determined by the following recurrence relation

u(0) = 0 u(1) = 0 u(2) = 0 u(3) = 2 u(4) = 8

u(t + 5) = [(2 + 4t)u(t) + (10+ 13t)u(t + 1) + (63/2 + 25/2t)u(t + 2)

+(4 + 2t)u(t + 3) + (−53/2 − 11/2t)u(t + 4)]/(t + 6).

The formulae for the higher-order correction terms are complicated though still expressible
as functions ofxt,0,

6r+1(r + 1)!xt,r =
2r∑

k=0

ar,kxt−r+k−3,0 +
r∑

k=1

(
t − r

k

)
[br,kxt−r−4,0 + cr,kxt−r−3,0]

+(t − r)([dr,1 + (t − r − 1)dr,2/2]xt−r−2,0

+[dr,3 + (t − r − 1)dr,4/2]xt−r−1,0). (A.2)
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Table A3. New series terms for the directed triangular lattice site problem.

n S(p) µ0,1(p) µ0,2(p) µ2,0(p)

27 31 086 416 2 537 201 920 180 162 619 784 3 493 604 968
28 54 484 239 4 696 226 432 351 465 799 212 6 578 499 844
29 95 220 744 8 662 963 994 682 372 429 474 12 255 365 130
30 166 451 010 15 938 662 652 1 319 072 709 540 22 945 871 212
31 290 209 573 29 236 920 460 2 539 112 346 126 42 418 505 522
32 506 071 134 53 506 963 048 4 868 795 865 052 79 065 895 100
33 880 465 145 97 662 175 022 9 301 026 350 316 145 071 334 272
34 1 532 283 109 177 894 354 832 17 707 215 868 596 269 543 696 068
35 2 660 274 891 323 249 218 548 33 597 579 475 250 490 798 690 662
36 4 621 898 737 586 336 769 144 63 552 411 513 904 910 306 336 312
37 8 009 846 706 1 061 171 804 692 119 850 074 633 534 1 644 056 437 386
38 13 891 471 400 1 917 510 976 440 225 393 528 150 372 3 049 141 333 676
39 24 041 215 812 3 457 940 539 676 422 719 590 219 566 5 456 382 479 138
40 41 625 532 064 6 226 878 220 792 790 809 981 499 104 10 141 493 117 240
41 71 931 529 791 11 192 318 698 210 1 475 724 176 635 586 17 948 875 370 594
42 124 411 612 350 20 092 269 205 896 2 747 568 614 463 200 33 532 113 165 512
43 214 621 391 390 36 004 956 808 838 5 103 796 857 539 224 58 529 997 237 324
44 370 839 553 549 64 452 114 092 524 9 460 996 104 306 040 110 351 718 228 800
45 639 024 696 294 115 182 948 294 020 17 501 002 169 903 066 189 161 996 834 038
46 1 102 419 174 084 205 638 719 322 044 32 311 701 334 358 584 361 978 973 535 312
47 1 898 477 439 658 366 587 483 305 266 59 540 588 349 689 460 605 431 024 385 712
48 3 271 434 676 999 652 904 591 166 608 109 522 752 581 367 792 1 185 609 582 832 608
49 5 624 820 363 027 1 161 134 164 194 872 201 098 347 347 198 582 1 916 175 057 214 282
50 9 693 710 116 271 2 063 632 450 148 240 368 654 569 738 994 916 3 885 789 400 216 356
51 16 634 472 160 666 3 661 795 173 290 544 674 667 552 855 892 942 5 981 962 784 372 730
52 28 649 053 574 116 6 494 555 752 892 524 1 232 887 441 544 215 856 12 779 152 925 915 688
53 49 158 925 607 599 11 502 147 999 885 690 2 249 412 773 359 085 386 18 336 104 911 125 754
54 84 477 695 445 892 20 358 932 047 872 636 4 098 441 587 758 882 072 42 326 707 460 800 448
55 144 947 819 272 120 35 990 408 059 294 200 7 456 350 674 610 337 790 54 742 323 913 847 946
56 249 148 051 950 911 63 598 870 606 450 408 13 548 513 117 372 733 000

From the polynomials forSN(tmax) and XN(tmax) with tmax = 47, and using the
extrapolation formulae, I extended the series forS(p), µ0,1(p) and µ0,2(p) to order 106
and the series forµ2,0(p) to order 103. The new series terms are listed in table A1.

A.2. The triangular bond problem

The correction terms for the triangular bond problem are very simple. The first correction
term for SN is just a constantst,0 = 2, while the first correction term forXN alternates
between 0 and 2. The non-nodal graphs responsible for these correction terms are almost
trivial. It is clear (see figure 1) that the non-nodal graphs terminating at levelt + 1 having
the smallest possible number of bonds are those composed of two paths meeting on the
centre line (t odd) or on the site next to the centre-line (t even), with each path having as
few south-east and south-west steps as possible. These sites can be reached by a non-nodal
graph witht + 1 bonds. Fort odd the only two such graphs are those consisting of a path
with bt/2c + 1 south steps and a path starting with a south-east (south-west) step followed
by bt/2c south steps, while ending with a south-west (south-east) step. Fort even, the two
graphs are those consisting of a path withbt/2c south steps terminating with a south-east
(south-west) step and a path starting with a south-east (south-west) step followed bybt/2c
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south steps. It is easy to check that any other non-nodal graph contains more bonds. So
st,0 = 2 while xt,0 alternate between 0 and 2 since fort odd the non-nodal graphs terminate
on the centre-line and therefore do not contribute toXN .

The sequence determining the second correction terms forSN is

1, 2, 5, 10, 17, 26, 37, 50, 65, . . .

from which it is clear thatst,1 grows as a polynomial int , st,1 = t2 − 2t + 2. In general the
correction terms can be represented as a polynomial int of order 2r. The alternation between
odd and even values oft seen inxt,0 eventually also manifests itself in the correction terms
for SN . The general formulae for the correction term is,

st,r = 1

r!(r + 1)!

2r∑
j=0

ar,j (t − 1)j + t mod 2

r!(r + 1)!

b(r−3)/2c∑
j=0

br,j (t − 1)j t > 2r − 2. (A.3)

The prefactors and the expression of the polynomials in terms oft − 1 has been chosen
to make the leading coefficients particularly simple. Once again it should be noted that
the leading coefficientsar,2r−m are polynomials inr of orderm + bm/2c (this is valid for
m 6 5), which again was used to obtain a few additional correction formulae.

The extrapolation formulae forXN are very similar to the ones above,

xt,r = 1

r!(r + 1)!

2r∑
j=0

ar,j (t − 1)j + t mod 2

r!(r + 1)!

r∑
j=0

br,j (t − 1)j t > 2r − 2. (A.4)

In this case the leading coefficients of bothar,2r−m and br,r−m can be predicted. For
r > m I find thatar,2r−m can be expressed as a polynomial inr of order6 m+2. Likewise
(−1)rbr,r−m/(r + 1)! is a polynomial inr of order 2m for r > 2m.

As stated earlier, the non-nodal contribution to the series for the triangular bond case
were calculated up totmax = 45. With the extrapolation formulae I derived the series for
S(p), µ0,1(p) andµ0,2(p) to order 57 and the series forµ2,0(p) to order 56. The resulting
new series terms are listed in table A2.

A.3. The triangular site problem

In this case the first correction term forSN alternates between 0 and 1 while the first
correction term forXN is 0. The graphs giving rise to these correction terms are very
simple. First note that the graphs giving rise to the bond correction terms all have loops
when viewed as site graphs. The non-nodal site graphs with fewest elements fort odd
consist of the two paths starting with a south-east (south-west) step followed bybt/2c south
steps and ending with a south-west (south-east) step. These graphs havet + 2 random
elements (remember that the origin is not a random element). Fort even one can easily
see that there are no loop-free non-nodal graphs witht + 2 or fewer elements. This fully
accounts for the first correction terms.

The other extrapolation formulae for the triangular site problem are very similar to
those for the bond case. The only difference is that the order of the polynomials correcting
the odd-t values is somewhat higher. Once again the leading coefficients are low-order
polynomials inr. With the help of the extrapolation formulae I extended the series for
S(p), µ0,1(p) and µ0,2(p) to order 56 and the series forµ2,0(p) to order 55. The new
series terms are listed in table A3.
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