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Abstract. Greatly extended series have been derived for moments of the pair-connectedness
for bond and site percolation on the directed square and triangular lattices. The length of the
various series has been at least doubled to more than 110 (100) terms for the square-lattice
bond (site) problem and more than 55 terms for the bond and site problems on the triangular
lattice. Analysis of the series leads to very accurate estimates for the critical parameters and
generally seems to rule out simple rational values for the critical exponents. The values of the
critical exponents for the average cluster size, parallel and perpendicular connectedness lengths
are estimated by = 2.277694), v, = 1.73382525) andv, = 1.096 84414), respectively.

An improved estimate for the percolation probability exponent is obtained from the scaling
relation = (vj + v, — y)/2=0.276494). In all cases the leading correction to scaling term

is analytic.

1. Introduction

Models exhibiting critical behaviour similar to directed percolation (DP) are encountered
in a wide variety of problems such as fluid flow in porous media, Reggeon field theory,
chemical reactions, population dynamics, catalysis, epidemics, forest fires, and even galactic
evolution. Directed percolation is thus a model of relevance to a very diverse set of physical
problems and it is therefore no wonder that it continues to attract a great deal of attention.
Furthermore, two-dimensional directed percolation is one of the simplest models which is
not translationally invariant and therefore cannot be treated in the framework of conformal
field theory [1]. This leaves open a number of fundamental questions about this model.
What should one expect an exact solution to look like and more concretely are the critical
exponents rational?

In the absence of an exact solution the most powerful method for studying lattice-
statistics models is probably that of series expansions. The method of exact series
expansions consists of calculating the first few coefficients in the Taylor expansion of various
thermodynamic functions, or, in more abstract terms, various moments of some appropriate
generating function. Given such a series, highly accurate estimates can be obtained for the
critical parameters using differential approximants [2]. In the most favourable cases one can
even find an exact expression for the generating function from the first-series coefficients.

Low-density series in the variablg, which is the probability that bonds or sites are
present, were first derived by Blease [3], who used a transfer-matrix method to calculate
series for the cluster size and other moments of the pair-connectedness of bond percolation
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on directed square and triangular lattices. These series were greatly extended byeEssam
al [4], who also studied site percolation. They devised a non-nodal graph expansion, which
enabled them to calculate twice as many terms correctly from the basic transfer-matrix
calculation, and derived the series to order 49 (48) for the square bond (site) problem and to
order 25 (26) for the triangular bond (site) problem. These long series resulted in accurate
exponent estimates and led to the conjectured critical exponeats11/18, v, = 79/72,

v = 26/15, andg = 199/720 [4].

High-density series for the percolation probability were derived by Blease [3]. The
square bond series was greatly extended by Baxter and Guttmann [5] using a superior
transfer-matrix method and an extrapolation procedure based on predicting correction terms
from successive calculations on finite lattices of increasing size. The analysis of the resulting
series conformed to the conjectured fraction for This series and the one for the square
site problem were recently extended by Jensen and Guttmann [6] who also studied the
triangular bond and site problems [7]. The analysis of these extended series yielded more
precise exponent estimates. From these estimates they concluded that there are no simple
rational fractions whose decimal expansion agrees with the highly accurate estimgtes of
obtained from the square bond and triangular site series. In particular, the rational fraction
suggested by Essast al [4] is incompatible with the estimates.

In this paper | combine an efficient transfer-matrix calculation with the non-nodal graph
expansion and the above-mentioned extrapolation method and have been able to more than
double the number of series terms for moments of the pair-connectedness. Most of the
series have been extended to order 112 for the square bond problem, 106 for the square site
problem, 57 for the triangular bond problem and 56 for the triangular site problem. The
series were analysed using differential approximants which can accommodate a wide variety
of functional features and certainly should be appropriate in this case. The major result of
the analysis is that the exact exponent values conjectured by Etsdifd] generally seems
to be incompatible with the numerical estimates from the differential approximant analysis.

The remainder of the article is organized as follows. In sacfid will give further
details of the models studied in this paper. Section 3 contains a description of the series-
expansion technique with special emphasis on the transfer-matrix calculation (section 3.1)
and the extrapolation procedure for the square bond case (section 3.3). Details of the
extrapolation procedure for the remaining problems are given in the appendix. Details of
the series analysis are given in section 4 and the results are discussed and summarized in
section 5.

2. Specification of the models

Domany and Kinzel [8] demonstrated that site and bond percolation on the directed square
lattice are special cases of a one-dimensional stochastic cellular automaton in which the
preferred direction is time. DP is thus a model for a simple branching process in which a
site x occupied at time may give rise to zero or one offspring on each of the sitésl at

time t + 1. Whether a sitéx, r) is occupied or not depends only on the state of its nearest
neighbours in the row above. The evolution of the model on the square lattice is therefore
governed by the conditional probabilitie€®(o,|o;, 0,), with o; = 1 if site i is occupied

and O otherwise. These transition probabilities are the probabilities of finding the site

in stateo, given that the sitegx — 1,7 — 1) and (x + 1, — 1) were in states; ando,,
respectively. One has a very free hand in choosing the transition probabilities as long as
one respects conservation of probabiliBfl|o;, o,) = 1 — P(0loy, o). In addition studies

have generally been limited to cases in which the transition probabilities are independent
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of both x andr. In this paper | restrict my study to the following two cases corresponding
to bond and site percolation:

1 — p)rtor bond

(1 _ p)lf(lfm)(lfa,.) S|te (21)

P(O|O’[, Ur) = {

On the triangular lattice the model is described by the probabil®iés |o;, o;, o,) of

finding the site(x, ¢) in states, given that the siteéx—1,r—1), (x,7—2), and(x+1,7—1)
were in states;, o, ando,, respectively, and | study the two cases

(1— p)rtoter bond

(1 _ p)l—(l—fﬁ)(l—m)(l—dr) Slte (22)

P(Qloy, 01, 0/) = {
The behaviour of the model is controlled by the branching probabilitiWhen p is
smaller than a critical valug, the branching process eventually dies out and all space—time
clusters remain finite. Fop > p. there is a non-zero probabilit] (p) that the branching
process will survive indefinitely. This percolation probability is the order parameter of the
process, and close g, it vanishes as a power-law:

P(p) o (p — pc)f p— pe (2.3)

In the low-density phasép < p.) many quantities of interest can be derived from the
pair-connectedness, ,(p), which is the probability that the site is occupied at time
given that the origin was occupied at= 0. The moments of the pair-connectedness may
be written as

o)

/*Ln,m(p) = Z Z-xntmcx,t(p)' (24)

t=0
Due to symmetry, moments involving odd powersxo¥anish. The remaining moments
diverge asp approaches the critical point from below:

Inm(P) O (pe — p)~ 7 Hmatm) p— .. (2.5)

One generally only studies the lower-order moments such as the mean clust&¢;size
roo(p), the first parallel momengq 1(p), the second perpendicular momento(p), and
the second parallel momepp 2(p).

3. Series expansions

From (2.4) it follows that the first and second moments can be derived from the quantities
St)=Y Cup) and X)) =) x’Ci(p) (3.1)

as
S=) SO  pmoa=) 1S0)  poa=) 13S0  peo=) X10. (32)
=0 =1 =1 =0

S(¢t) and X (r) are polynomials inp obtained by summing the pair-connectedness over

all lattice sites whose parallel distance from the origirr.isAs shown by Essam [9] the
pair-connectedness can be expressed as a sum over all graphs formed by taking unions of
directed paths connecting the origin to the giter),

Cei(p) =) d(@)p* (3.3)
8
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wheree is the number of random elements (bonds or sites) in the ggaphny directed
path to a site whose parallel distance from the origin t®ntains at least:(¢) steps with
m(t) = t for the square lattice ana (r) = | (+ + 1)/2] (integer division) for the triangular
lattice. From this it follows that ifS(z) and X (r) have been calculated for< tmnax then
one can determine the moments to orddtn.x + 1) — 1. One can, however, do much
better, as demonstrated by Essatral [4]. They used a non-nodal graph expansion, based
on work by Bhatti and Essam [10], to extend the series to ondgk.x) approximately
equal to 2n(rmax (the actual order varies a little from problem to problem). Details of this
expansion will be given below, but here it will suffice to note that it works by calculating the
contributionsS™ (+) and X" (¢) (correct to ordern(¢)) of non-nodal graphs t§(¢) and X (¢)
and using the non-nodal expansions to calculate the final series(forand the various
moments. Further extensions of the series can be obtained by using a procedure similar
to that of Baxter and Guttmann [5]. One looks at correction terms to the series and tries
to identify extrapolation formulae for the fira} correction terms allowing one to derive a
furthern, series terms correctly.

The series expansions for moments of the pair-connectedness is thus obtained as follows:

(i) Calculate the polynomialss(r) and X (¢) for r < fmax USINg the transfer-matrix
technique to an order greater tha€may) + 7,

(ii) For eacht use the non-nodal graph expansion to calcukite= Do SN () and
XN =3, XN (') correct to orden(r).

(iii) From the sequences obtained frasf — SY, = =S¢ + 1) and X} — X}, =
—XN(t + 1) for t < tmax identify the firstn, correction terms.

(iv) Use these correction terms to extend the seriesfoand X* to ordern (tma) + 7,

(v) Finally calculate the series fdf, 101, o2 @and uz o correct to orden (fmax) + 1.

Details of the transfer-matrix technique, non-nodal graph expansion and extrapolation
procedure are given in the following sections.

3.1. Transfer-matrix technique

Figure 1 shows the part of the square and triangular lattices which can be reached from
the origin O using no more than five steps. Note that, in keeping with the prescription
used by Essart al [4], vertical steps on the triangular lattice correspond to incrementing
t by two. The calculation of the pair-connectedness is readily turned into an efficient
computer algorithm by use of the transfer-matrix technique. From (2.1) and (2.2) one sees
that the evaluation of the pair-connectedness involves only local ‘interactions’ since the

— z =

Figure 1. Directed square and triangular lattices with orientation given by the arrows.
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transition probabilities depend on neighbouring sites only. The probability of finding a
given configuration can therefore be calculated by moving a boundary through the lattice
one site at a time. At any given stage this line cuts through a number ok, $atjice sites
thus leading to a total of*2possible configurations along this line. Configurations along
the boundary line are trivially represented as binary numbers, and the probability of each
configuration is represented by a truncated polynomial.in

Figure 1 shows how the boundary (marked by large filled circles) is moved in order
to pick up the weight associated with a given ‘face’ of the lattice at a positi@iong
the boundary line. On the square lattice the boundary site & moved too, and the
weight P(oy|oy, 0,) is picked up. Similarly on the triangular lattice the boundary site
at o, is moved too, while picking up the weightP(o,|o;, 0;,0,). In more detail, let
SO0 = (01,...,0,_1,0,011,...,0%) be the configuration of sites along the boundary with
0 at positionx and similarlyS1 = (o1, ...,0,_1, 1, 041, ..., 0%) the configuration with 1
at positionx. Then in moving thex'th site as just described the boundary line polynomials
are updated as follows on the square lattice

P(S0) = W(0|0, o7) P(SO) + W(O|1, o7) P(SD)
P(S1) = W(10, 0;) P(SO) + W(1]1, 0;) P(SD)
and as follows on the triangular lattice
P(S0) = W(Olo,, 0, ;) P(SO) + W(O|o,, 1, 0;) P(S1)
P(S1) = W(lo,, 0, 07) P(SO) + W(l|o,, 1, 07) P(SD).

The pair-connectedness is calculated from the boundary polynomials before the
boundary leaves the site by summing over all configuration witl atthat site. In
practise the data was collected when the boundary reached a horizontal position on the
square lattice and a position parallel to the right edge of the triangular lattice. The pair-
connectedness is obviously symmetricakinC, ;(p) = C_, ;(p), so it suffices to calculate
the pair-connectedness for> 0. More importantly, due to the directedness of the lattices,
if one looks at sitegx, ) with x > 0 they can never be reached by paths extending onto
points (x’, ') in the part of the lattice for whicl' > |r/2]|, x’ < —[t/2]. This effectively
means that the pair-connectedness at points with parallel distafnoe the origin can be
calculated using a boundary which cuts through at nio&| + 1 sites. Thus the memory
(and time) required to deriv&(¢) and X (1) grows like 2//21+1,

For the bond and site problems on the square lattice | was able to calculate the pair-
connectedness up tg.x = 47 and for the triangular lattice up tg.x = 45. Since the
integer coefficients occurring in the series expansion become very large the calculation was
performed using modular arithmetic [11]. Each run#gyy, using a different prime number,
took approximately 12 hours using 64 nodes on an Intel Paragon, and up to eight primes
were needed to represent the coefficients correctly. The major limitation of the present
calculation was available computer memory rather than time.

3.2. Non-nodal graph expansion

The non-nodal graph expansion has been described in detail in [4] and here | will only
summarise the main points and introduce some notation. A ggajgshnodal if there is

a point (other than the terminal point) through which all paths pass. It is clear that each
such nodal point effectively works as a new origin for the cluster growth. This is the
essential idea behind the non-nodal graph expansi®M(s) is the contribution toS(r)
obtained by restricting the sum in (3.3) to non-nodal graphs. The non-nodal expansions are
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obtained recursively from the polynomia$§s) and X (r). First one sets" (1) = S(1) and
XN (1) = X(1) and then for X ¢ < fmax One calculates” (t) and XV (¢) from

t—1
NOENOED I AMGONCETY (3.4)
=1
and
t—1
XN =X@) — Z[SN(t/)X(t — )Y+ XYHS@ - 1)]. (3.5)

=1
Next form the sums of (3.2) using the truncated non-nodal polynonsialg) and XV (r)
instead ofS(z) and X (¢). The final series are then obtained from the formulae

§S=1/(1-58") (3.6)
Hos = i, 2 (37)
to2 = [1h, + 2(ud 1)?S1S? (3.8)
12,0 = 1y oS% (3.9)

3.3. Extrapolation procedure

When forming the sums (3.2) one could have stopped the summation at jrigr to
reaching/max and used the formulae above to derive the series correct to otderLet SV
and X" denote the non-nodal expansions obtained in this fashion. As observed by Baxter
and Guttmann [5] one can often extend the series considerably by looking at correction
terms to such series. The polynomiadl§&) and X (z), and thus likewise the non-nodal
expansions, will obviously contain terms of much higher order than that to which the final
series is correct. One can therefore look at the difference between successive expansions,
e.g.

SV = SN =SV + D =p VY st (3.10)

r=0

which yields sequences of numbers with 1 < rmax. As observed in [5] the first sequence
of numberss, o is often quite simple and can readily be conjectured so that a closed form
expression or a simple recurrence relation can be found. In the following | will give the
details of how this is done in the square bond case. The treatment of the other problems
are detailed in the appendix. Note, that if one can find thedjrgtorrection terms one can
useS) =3 - oan.p" to extend the serieS¥ = 3" _a,p" to ordern(tmad +n,, via

k/2]
Ay (tma)+1+k = AN n(tma)+1+k — Z S tmaxckm k—2m - (311)
m=0
So in order to find the correct series teti;,.,+1+« from the ‘partial’ termay (0+1-+k
one first subtracts, ., which yields correctly the termay 1 ,¢.t1)-1+k- ONE continues
this process until arriving aty i |x/2)+1.n(mact k/21+1—q» Whereq = 1(0) if k is even (odd),
which is the correct term in the series 6.
In the square bond case the first sequence of correction terms start out as

sio=1,25, 14,42 132 429 ...

which is immediately recognizable as the Catalan numbBers (2r)!/(¢!(t + 1)!). These
also occurred as the first correction term for the percolation probability series [5]. There is a
very simple combinatorial proof for the first correction term. The first correction term arises
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from the simplest (containing the minimum number of random elements) non-nodal graphs
terminating at levet + 1. These graphs are also the ones giving the first ter§Vof + 1).
It is obvious that these graphs are composed of two paths of lengtheach, which meet
at levelr 4+ 1 but does not cross earlier. These graphs are in one-to-one correspondence with
staircase polyominoegor polygon$ and it is well known that the latter are enumerated by
the Catalan numbers [12,13].

As was the case for the percolation probability series the higher-order correction terms
can be expressed as rational functions,@f For SV these extrapolation formulae are

or /2]

Zbrk(ZI) Cr 1+2+Zar1Ct —r+j t> r (312)
161r/2]! 4 =

st,r

which are very similar to the formulae found in the percolation probability case [5]. The
extrapolation formulae fo;a{,\f ,and H«(I)\{z are simply(¢ + s, . and (¢t + 1)2s;.,, respectively.

The factor in front of the first sum has been chosen so as to make the leading coefficients
particularly simple. | was able to find formulae for all correction terms up t916. The
coefficients in the extrapolation formulae are listed in table 1.

From (3.12) it is clear that then.x — r terms available in the sequences for the
correction terms are not sufficient to determine all the+2|r/2] unknown coefficients
of the extrapolation formulae for large However, from table 1 one immediately sees that
the leading coefficients, ». and b, |,/2) in the extrapolation formulae are very simple In
particular one has,—1)"a, > = 2, and

(=D —9) r odd
(=172 r even.

Likewise, a, 1 is zero forr > 2. In general | find that the leading coefficierts,._,, are
expressible as polynomials inof orderm:

by \rj2) =

—4r r>0m=1
4r2 - 10 r>2,m=2
(=) ar.2r—m = { —8r3/3 4 80r/3 — 40 r>4,m=3
4r%/3 - 1002/3 + 86r — 48 r>6m=4
—8r°/15+ 80r3/3 — 922 — 62r/15+ 350 r>8m=5.

So when calculating the coefficients listed in &hl | first used the sequences for the
correction terms to predict as many of the extrapolation formulae (3.12) as possible. Then
| predicted as many of the leading coefficients as possible. This in turn allowed me to
find more extrapolation formulae, which | used to find more of the formulae for the leading
coefficientsa, ».—,,. | repeated this until the process stopped with the extrapolation formulae
listed in table 1.

For XV the sequence determining the first correction formula starts out as

x,0=0,2,8,30,112 420, 1584 6006 2288Q . ..

from which one sees that o = 2(r — 1)C;_1. The proof of this formula is a little more
involved. First one needs the number of configuratiang, x), of two non-crossing paths
terminating at(x, 7). Essam and Guttmann [14] gives a formula for the number of non-
crossing watermelon configurations wighchains which joins steps and at height from

the origin

ws(o):]- ws(S—l])=ws(6])
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and

g .

@) =[[ L2 1<) (3.13)

i=1 (l)s72i+l

where (a);y = a(a + V)(a + 2)---(a + k — 1), is Pochhammer’'s symbol. A watermelon
configuration with two chains is in one-to-one correspondence with the configuration
obtained from the two non-crossing paths by deleting the two bonds connected to the
origin and the two bonds connected to the terminal point, sowliatx) = w;_»(x). In the
casep = 2 (3.13) reduces to a simple product of binomial coefficients,

w()_ﬁ(s—i—i—Z)(s—i—i—l)_ sl(s + 1)}

TS BT T G- algls +1-lg + D!
1 s s+2
_s+2(q><q+l>' (3.19)

The correction terns; o can easily be derived from (3.14) as (remembering hat
arises from paths terminating at level- 1)

t—1 t—1
1 t—1\[t+1
$1,0 = wi-1(g) = —— ( ) < )
q; r+1=\ 4 g+1

0l -1\ [(r+1)_ 1 2\ _ -
i1\ g t—q) t+1\t )"

In this derivation | have used only standard properties of binomial coefficients, the main
one being the formula

£C)(,)-(7)

After this little diversion | return to the calculation of;,o. From (3.1) and the
measurement of with respect to the centre line it is clear that

xo= Y (s — 202w, (q) (3.16)
q=0

wheres = ¢t — 1. By simple expansion of the square and insertiomgpfy) one finds

B 1 2s+l s s+ 2 s+1 s s+ 2
x"o_s+2[s§<4>(Q+1>_4‘g;q<4><q+1>

s+1 s+1

4 NE s+2)_4 (s)(s—i—Z)]

+q=0q(q+)<q><q+l ;q ) aa1
1 [ (2542 (25 +1 2 25 +1
al (07) - (T e (V) -4 (1))
1 252(2s + 1) (25 25 4s(2s + 1) (25
s+2[_ s+1 (S>+4s(s+2)<8)_ s+1 (S)]

_ 1 2s 2 _ 2s 2S>
B (s+2)(s+1)<s>[zs +4‘Y]_(s+1)<s

=25C, = 2(t — 1)Cy_1.
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The major step was the use of (3.15) to get rid of the sum qveFor the rest of the
calculations | only used the definition and well known properties of the binomial coefficients.
In this case | find that the general extrapolation formulae can be written as

o lr/2]+1 2r
= by (20)%C,_, v i Crorti t>r. (3.17
X1, 1617 /2] ; 1 (2)°Cy +2+;a,, =) r. )

The coefficients are not reproduced here due to the excessive length of this material, but
are available from the author (please see end of article for details). Again | found that
the leading coefficients are very simple, so a procedure similar to that used to find more
extrapolation formulae fos" was applied forx" also. Though in this case it is slightly
more complicated because different polynomials are found,fgr.,, depending on whether

r is odd or even. | was able to find the extrapolation formulae-fer 15.

From the polynomials fo§" (fmax) and X" (tma0), Using the extrapolation formulae given
above, | extended the series f8(p), 1o.1(p) and ue2(p) to order 112 and the series for
p2.0(p) to order 111. The new series terms are listed in table 2, while the terms<o$9
can be found in [4]. The full series are available from the author via e-mail or can be
retrieved from the authors homepage on the world wide web (see later for details).

For the square site problem | have identified the first 12 extrapolation formulae for
SN and the first nine forx”. This allowed me to derive the series correctly to order 106
and 103, respectively. For the triangular bond and site cases the first 10-12 extrapolation
formulae were found and the series calculated to orders 55-57 depending on the particular
problem. Details of the extrapolation formulae and lists of the new series coefficients can
be found in the appendix. The full series and tables of the coefficients in the extrapolation
formulae can be obtained from the author.

4. Analysis of the series

In the vicinity of the critical point one expects the moments of the pair-connectedness to
have the functional form

F(p) < A(pe — p)*[L+ ai(pe — p)* + bi(pe — p) .. ] (4.1)

where is the critical exponentA; the leading confluent exponent and the represents
higher-order correction terms. By universality we expg&cto be the same for all the
percolation problems. In addition to the physical singularity, the series may have non-
physical singularities for other values (real or complex)pof

The series for moments of the pair-connectedness were analysed using inhomogeneous
first- and second-order differential approximants. A comprehensive review of these and
other techniques for series analysis may be found in [2]. Here it suffices to say that a
Kth-order differential approximant to a functighis formed by matching the earliest series
coefficients to an inhomogeneous differential equation of the form (see [2] for details)

K d i
> 0i) (xdx) fx) = P) (4.2)
i=0

where Q; and P are polynomials of ordeN; and L, respectively. First- and second-order
approximants are denoted bk [No; N1] and [L/No; N1; N2], respectively.
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4.1. The square bond series

In this section | will give a detailed account of the analysis of the square bond series
which leads to the most accurate estimates. The analysis of the series for the other
problems are described summarily in the following sections. In addition to the moment
series | have also analysed the series(p)/mo1(p) ~ (p. — p)~"' and the series
n2.0(P)1o2(p)/(1o1(p)? ~ (pe — p) 2.

In order to locate the singularities of the series in a systematic fashion | used the
following procedure: | calculate alll]/N; M] and [L/N; M; M] first- and second-order
inhomogeneous differential approximants witth — M| < 1 andL < 35, which use more
than 95 or 90 terms, respectively. Each approximant yidgfdpossible singularities and
associated exponents from thé zeroes ofQ; or Q,, respectively (many of these are of
course not actual singularities of the series but merely spurious zeros.) Next these zeroes are
sorted into equivalence classes by the criterion that they lie at most a disténapatt. An
equivalence class is accepted as a singularity if it contains moreNhapproximants, and
an estimate for the singularity and exponent is obtained by averaging over the approximants
(the spread among the approximants is also calculated). | Msed20 (15) for first-order
(second-order) approximants, which means that at least two-thirds to three-quarters of all
approximants had to be included before an equivalence class was accepted. The calculation
was then repeated fdr— 1, k — 2, ... until a minimal value of 8 or so was reached. To
avoid outputting well-converged singularities at every level, once an equivalence class has
been accepted, the approximants which are members of it are removed, and the subsequent
analysis is carried out on the remaining data only. One advantage of this method is that
spurious outliers, a few of which will almost always be present when so many approximants
are generated, are discarded systematically and automatically.

In table 3 | have listed the estimates for the physical critical ppinand the associated
exponents obtained from the six series that | studied. The errors listed in the parentheses
are calculated from the spread among the approximants and equals one standard deviation.
Note that these error estimates shondd be seen as accurately representing the true errors.
N, is the number of approximants included in the estimates.

Generally the estimates for various orddtsof the inhomogeneous polynomial are
exceptionally well converged and excellent agreement is observed both between the various
estimates for each series as well as betweenpthestimates from the different series.
Apart from the first-order approximants for small to uz0(p)io2(p)/(o1(p))? all
estimates forp. are consistent with the highly accurate valpge = 0.644 700 1515).

This slight discrepancy is not important since one generally would expect Iarfijest-

order approximants and second-order approximants to yield more reliable estimates. These
approximants are better at dealing with analytic background terms or other features which
might possibly slow down the convergence of the estimates to the true critical values.
Further note thatv, generally is well above the cut-off. showing that in most cases

only a few approximants are discarded. The uncertainty in the last digits gf thstimate,

given in parentheses, is probably on the conservative side, and is mostly due to the tendency
of we1 andug» to favour a somewhat lower estimate for the critical point.

Before proceeding | will consider possible sources of systematic errors. First and
foremost the possibility that the estimates might display a systematic drift as the number
of terms used is increased and secondly the possibility of numerical errors. The latter
possibility is quickly dismissed. The calculations were performed using 128-bit real numbers
(REAL*16 on an IBM RISC work station). The estimates from a few approximants were
compared to values obtained using MAPLE with up to 100 digits accuracy and this clearly
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Table 3. Estimates ofp. and critical exponents for the square bond problem.
First-order DA Second-order DA

L Pe Y Na Pe Y Nq
0 0.64470051(60) 2.27832(77) 25 0.644 700 181(37) 2.277716(30) 22
5 0.64470018(72) 2.27807(71) 25 0.644 700 169(26) 2.277 708(23) 18
10 0.644 700 04(13) 2.277602(93) 26 0.644700158(41) 2.277703(34) 23
15 0.644 700 136(29) 2.277665(56) 23 0.644 700 146(29) 2.77690(23) 20
20 0.644700102(21) 2.277649(21) 24 0.644 700 146(17) 2.277689(14) 18
25  0.644700097(49) 2.277 646(42) 23 0.644 700 149(20) 2.277693(15) 21
30 0.644 700 108(29) 2.277 659(24) 26 0.644700162(12) 2.277704(11) 16
35 0.644700129(21) 2.277678(15) 21 0.64470029(22) 2.27792(42) 22
L Pc V) N, § 24 V| Ng
0 0.644 700 153(12) 1.7338184(50) 22 0.644 700 169(97) 1.733845(45) 19
5 0.644 700 154(31) 1.733818(12) 27 0.644 700 178(50) 1.733846(28) 16
10  0.644700115(11) 1.7338071(35) 22 0.6447001718(88)  1.7338362(42) 20
15 0.644700142(33) 1.733819(21) 22 0.644 700 136(50) 1.733813(34) 18
20 0.644700162(14) 1.7338319(78) 25 0.644 700 154(23) 1.733827(11) 19
25 0.644700149(24) 1.733824(11) 25 0.644700142(13) 1.7338213(67) 18
30 0.644 700 155 7(63) 1.7338279(31) 23 0.644 700 122(34) 1.733806(25) 21
35 0.6447001503(61) 1.7338254(32) 22 0.644 700 164(20) 1.7338312(92) 20
L Pc 2v) Ny Pc 2v) Ng
0 0.64470040(13) 2.193828(55) 22 0.644 700 196(17) 2.193711(11) 17
5 0.644700438(94) 2.193843(36) 22 0.644700192(18) 2.193708(10) 18
10  0.64470041(17) 2.193826(95) 22 0.644 700 174(47) 2.193703(29) 17
15 0.644700147(17) 2.1936852(79) 22 0.644700163(23) 2.193693(12) 18
20  0.644700201(17) 2.1937126(82) 23 0.644 700 217(40) 2.193722(22) 16
25 0.644 700 200(10) 2.1937132(54) 23 0.644 700 192(28) 2.193708(13) 16
30  0.644700196(10) 2.1937107(51) 23 0.644700183(12) 2.1937039(64) 17
35 0.644 700 195(14) 2.1937110(69) 23 0.644 700 182(15) 2.1937031(84) 18
L Pe Y+ Na Pe Y+ Na
0 0.644700091(76) 4.011423(76) 24 0.644700091(32) 4.011434(35) 18
5 0.644 700 042(74) 4.011375(65) 25 0.644 700 095(20) 4.011 440(23) 18
10 0.644700023(97) 4.011361(79) 25 0.644700079(37) 4.011413(44) 20
15 0.644700071(72) 4.011403(73) 24 0.644 700 105(47) 4.011 455(50) 20
20 0.644 700 015(66) 4.011 350(57) 26 0.644 700 096(32) 4.011443(34) 18
25 0.644 700 04(15) 4.01139(15) 21 0.644700096(63) 4.011440(73) 19
30 0.644700037(68) 4.011 370(59) 24 0.644700101(21) 4.011448(22) 19
35 0.644700038(54) 4.011369(49) 23 0.644 700 090(20) 4.011438(22) 18
L Pe Y+ 2y Nao e v+ Na
0 0.644 700 043(87) 5.74515(10) 24 0.644700079(19) 5.745208(29) 18
5 0.644 700 079(96) 5.74520(13) 24 0.644 700 084(25) 5.745 224(35) 16
10  0.64470005(11) 5.74517(13) 21 0.644 700 075(29) 5.745 208(37) 17
15 0.64470011(10) 5.74525(17) 22 0.644 700 075(17) 5.745213(25) 22
20  0.644700051(27) 5.745156(34) 24 0.644700087(38) 5.745 232(51) 17
25  0.64470013(17) 5.74531(32) 25 0.644 700 082(22) 5.745 225(32) 18
30 0.644 700 068(45) 5.745180(57) 21 0.644 700 082(25) 5.745231(50) 18
35  0.64469999(10) 5.74510(11) 25 0.644 700 091(45) 5.745 231(75) 19
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Table 3. (Continued)

First-order DA Second-order DA

L Pe y+2v, Na Pe y+2v, Ny,

0 0.6447000819(37)  4.4712988(18) 22 0.644700119(52)  4.471341(57) 20
5 0.6447000806(26)  4.4712981(13) 23 0.644700117(21)  4.471329(20) 17
10  0.6447000857(78)  4.4713017(62) 24  0.644700115(46)  4.471332(46) 16

15  0.644700138(69) 4.47136(10) 21 0.644700094(68)  4.471319(50) 16

20  0.644700101(24) 4.471315(21) 23 0.644700132(40)  4.471351(42) 16

25  0.644700101(29) 4.471316(25) 25 0.644700101(16)  4.471314(14) 16

30  0.644700112(21) 4.471324(19) 21 0.644700121(42)  4.471340(46) 19

35  0.644700119(17) 4.471330(16) 21 0.644700114(41)  4.471334(44) 18
20

“© " . - 40 s et Y B S
50 60 70 80 9% 100 110 120 56 60 70 80 9% 100 110 120 500 60 70 8 % 100 110 120
Number of terms Number of terms Number of terms

Figure 2. The deviation in the last two digits, §8p,, from the central estimate of the critical
point p. = 0.64470015, of the estimates for the critical point by second-order differential
approximants. Shown is (from left to right and top to bottom) estimates from the snigs
r02(p)/1o.1(P), 112,0(P)o.2(P)/(10,1(P))2, o.1(P), 1o,2(p), @anduz0(p).

showed that the program was numerically stable and rounding errors were negligible. In
order to address the possibility of systematic drift and lack of convergence to the true critical
values | refer to figure 2. In this figure | have plotted the deviation in the last two digits,
10°Ap,, from the critical pointp. = 0.64470015. Included in the figure are estimates
from inhomogeneous second-order differential approximants with 35 to the six series

that | have studied. From this figure it is evident that the series estimates displayed on the
top row are well converged once the number of terms exceeds 90 or so, while the series
on the bottom row still show evidence of a systematic drift and the estimates have not yet
converged to their asymptotic value. This is particularly manifest for the segieand .o 2

shown in the bottom left and central panels. Since these series were the ones responsible
for most of the error on the estimate fpy, and given the very good convergence of the
estimates from the series shown in the top row, it does not seem overly optimistic to adopt
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the tighter estimate. = 0.647 7001%5). Clearly the large majority of estimates for the
first three series lie well within this error-bound as the number of terms increase and likewise
the estimates from the remaining series clearly seem to converge towards this value.

Next | turn my attention to the estimates for the critical exponents. Very precise estimates
for y, v, and 2, can be obtained by examining table 3. | have used a slightly more
systematic and enlightening procedure. Close to the critical point there is an apparent linear
dependence of the estimates for critical exponents on the estimatgs fOne can use this
to obtain improved estimates for the exponents by performing a linear fit of the exponent
estimates as a function &fp, (the distance from the critical point). The result of such
linear fits is listed below. In these fits | used the same set of approximants as those on
which the estimates in the tables above were based. But | discarded any approximant for
which |Ap.| = |p. — 0.644 700 1% > 0.000000 15. The error on the ‘pure’ exponent part
of the estimates mainly reflects the slight difference between the first- and second-order
approximants (the errors as listed are approximately twice this difference). In the estimates
for y andy + 2v, | used only the first-order approximants with> 15.

y = 2.27769410) + 750Ap,
vy = 1.7338243) & 500Ap,

2v, = 2.1936872) + 500Ap,

y + vy = 4.01149515) + 11507 p,
y + 2v, = 5.74530815) + 1400A p,
y 4+ 2v, = 4.4713683) + 1000 p...

As can be seen the exponent estimates are very precise. Even with the very small error
in the p.-estimate, this is still the major source of error (by an order of magnitude) in the
exponent estimates. As previously noted [6], there is no simple rational fraction whose
decimal expansion agrees with the estimateg afbtained from the percolation-probability
series. The same is true for the estimatespofind 2, listed above. In particular note
that the rational fraction suggested by Essenal [4], v, = 26/15= 1.733333.., and
2v, = 79/36 = 2.19444..., is incompatible with the estimates. The rational fraction
suggested fory = 41/18 = 2.277777... lies within the error bounds for the exponent
estimate if the error orp. exceeds 10°. So the more conservative error estimate listed
earlier would just include the suggested valueyof However, most of the estimates in
table 3 clearly exclude the exact fraction as does the more narrow error estimate on
Finally 1 note that the better converged estimatesyfer 2v, and 2, yields the estimate
y = 2.277 6815), which, within the error, agrees with the direct estimate but points to a
possibly slightly lower value of.

The estimate fop. advocated above lies within the error-bounds of that obtained from
the percolation probability series [@]. = 0.644 700 §10), though a lower central value is
favoured by the series analysed in this paper. From the scaling refatotw+v, —y)/2 |
obtain the estimatg = 0.276 4897) & 750Ap., which is consistent with the direct estimate
B =0.276 4310). It is quite likely that the minor discrepancies between the central values
would disappear if the percolation probability series could be extended from the 55 terms in
[6] to an order comparable to the series analysed here. Evidence to this effect is provided
by the biased estimai@ = 0.276 48314) calculated afp. = 0.644 700 15 using Dlog P&d
approximants utilizing at least 45 terms of the percolation-probability series.

| also analysed the series in order to estimate the leading confluent expanents
was the case for the percolation-probability series both the Baker—Hunter transformation
and the method of Adler, Moshe and Privman (see [6] and references therein for details

(4.3)
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regarding these methods) yielded estimates consistentAyite: 1. So there are no signs
of non-analytic corrections to scaling.

Finally | looked for non-physical singularities of the series. The series have a
singularity on the negative axis closer to the origin than This singularity is quite
weak and consequently the estimates for its location and the associated exponents are quite
inaccurate. The singularity is locatedat = —0.51685) and the associated exponents are
y = 0.06515), vy = 0.97(3) and 2, = 0.90(15). It is quite possible that the divergence of
the cluster length series at is logarithmic and the estimates are certainly consistent with
y =0,y =1andv, = . Finally there is some weak evidence of a pair of singularities
in the complexp-plane atp,. = —0.225515) 4+ 0.440(1)i. Note that this singularity pair
also lies within the physical disc. The exponent estimatgs.aare not very accurate. The
cluster size series seemsdonvergewith exponenty ~ —3, whiley; >~ 1 andv; =~ % but
the error on these estimates are as large as 25-50%.

4.2. The square site series

In table 4 | have listed some of the estimates fgrand critical exponents obtained from

an analysis of the square site series. The estimates are based on approximants using at
least 85-90 terms witlv. = 15. Though the length of the series is comparable to the
bond case the estimates are generally less accurate. In particular it should be noted that
the p.-estimates obtained from different series are only marginally consistent leading to the
rather poor estimatep. = 0.705485 @15), which is at least an order of magnitude less
accurate than in the bond case. Some exponent estimates differ significantly from those of
the bond case. Particularly andy + 2v, are generally quite a bit smaller than the bond
estimates. However, due to the discrepancy between the various site series, the importance
of this deviation is questionable. If the error-bar pnis accepted, the resulting exponent
estimates from the site series will agree with the bond estimates.

If one accepts the exponent estimates from the bond series one can use the linear
dependence betwegn and exponent estimates to obtain improved estimatep fofThis
is just the reverse of the method used in the previous section to obtain the exponent
estimates.) By performing a linear fit of the.-estimates as a function of the deviation
of the exponent estimate from the central values listed in the previous section | obtain
the estimatep. = 0.70548535). In these fits | used the approximants whose exponent
estimates differ by less than 0.001 from the central values. This estimate agrees with that
obtained from the percolation-probability series [§]= 0.705 48%5).

The square site series have a singularity on the negative axis closer to the origin then
pe. In this case the singularity appears to be stronger than in the bond case, i.e. the various
estimates are better converged. The singularity is located at —0.451 952 23) and the
associated exponents are quite possibly consistentwv%—% (i.e. the cluster-size series
convergey vy = 1 andv; = % There is firm evidence of a pair of singularities in the
complexp-plane atp, = —0.22631) + 0.38471)i, which is within the physical disc. The
exponent estimates at this pair of singularities are quite accurate. The cluster-size series
seems taconverge with y >~ —3, while vy >~ 1 andv, ~ % where errors on the estimates
are only a few per cent.

4.3. The triangular bond series

Table 5 lists a selection of estimates fgrand critical exponents obtained from the analysis
of the triangular bond series. The estimates are based on approximants using at least 45 or
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Table 4. Estimates ofp. and critical exponents for the square site problem.

First-order DA Second-order DA
L pc Y Na  pe Y Nq
0 0.70548390(20) 2.276850(66) 19 0.70548500(26)  2.27751(15) 17
5  0.70548409(20) 2.276924(88) 23 0.70548516(28) 2.27760(18) 18
10 0.70548441(35) 2.27721(30) 24 0.70548472(19)  2.277334(95) 17
15 0.705484594(68) 2.277232(33) 23 0.70548471(14)  2.277314(74) 19
20 0.705484805(72) 2.277364(39) 24 0.70548486(36) 2.27742(25) 20
25 0.705484723(82) 2.277319(46) 20 0.705484671(58) 2.277295(35) 16
30 0.705484811(34) 2.277367(18) 21 0.705484689(29) 2.277306(16) 16
35 0.705484850(62) 2.277389(31) 21 0.705484713(83) 2.277313(39) 17
L Pec V| N, 124 V| Ng
0  0.70548449(93) 1.73347(25) 19  0.70548496(30) 1.73370(10) 16
5 0.70548427(28) 1.733416(72) 23 0.70548491(23) 1.733686(84) 16
10 0.70548485(36) 1.73366(14) 20 0.705485020(95) 1.733729(25) 16
15 0.70548513(26) 1.733763(88) 23 0.70548491(34) 1.73369(12) 18
20 0.70548565(53) 1.73397(20) 22  0.70548480(17) 1.733650(66) 19
25 0.70548575(33) 1.73403(12) 23 0.70548470(21)  1.733608(93) 17
30 0.70548560(63) 1.73396(28) 19 0.70548443(26) 1.73350(11) 16
35 0.70548545(43) 1.73388(17) 24 0.70548452(21) 1.733548(84) 16
L Pc 2v) Ny Pc 2v) Ng
0 0.7054869(13) 2.19445(46) 19 0.70548650(23) 2.19433(21) 19
5 0.70548687(57) 2.19447(16) 19 0.70548647(23) 2.19434(13) 16
10 0.7054851(15) 2.19397(33) 21 0.70548649(12) 2.194254(51) 16
15 0.7054857(10) 2.19400(39) 19 0.70548577(24)  2.194033(76) 20
20 0.705486 6(16) 2.19434(53) 19 0.70548589(42)  2.19406(13) 21
25 0.7054860(10) 2.19412(42) 19 0.70548585(24)  2.194048(81) 17
30 0.7054860(12) 2.19410(45) 20 0.70548560(65) 2.19391(28) 18
35 0.7054862(13) 2.19408(53) 20 0.70548515(78)  2.19376(31) 17
L Pc Y+ Y Ny Pc v+ V| Ny
0 0.70548365(38)  4.00989(23) 19 0.70548403(70)  4.01023(58) 18
5 0.70548381(17) 4.01000(12) 23 0.70548438(33)  4.01047(39) 16
10 0.70548385(42) 4.01005(29) 25 0.70548441(34) 4.01055(30) 16
15 0.70548362(55) 4.00994(38) 24 0.70548430(51) 4.01046(44) 21
20 0.70548349(30)  4.00979(20) 19 0.70548424(34)  4.01041(28) 18
25 0.70548380(43) 4.01006(30) 22 0.70548450(65) 4.01067(65) 21
30 0.70548380(21) 4.00999(14) 21 0.70548428(21) 4.01043(18) 16
35 0.70548378(61) 4.01002(43) 23 0.70548447(33) 4.01061(32) 19
L Pe Y+ 2y Na  pe Y + 2y Nq
0 0.70548358(35)  5.74311(21) 19 0.70548460(45)  5.74420(51) 19
5  0.70548355(20) 5.74307(14) 19 0.70548443(18) 5.74400(20) 17
10 0.70548404(60) 5.74358(65) 23 0.70548434(18)  5.74392(21) 17
15 0.70548382(10) 5.743299(94) 19 0.70548431(52) 5.74390(62) 20
20 0.70548379(15) 5.74327(14) 22 0.70548415(22) 5.74369(24) 18
25 0.70548375(16) 5.74321(13) 22 0.70548400(10) 5.74352(10) 16
30 0.70548368(16) 5.74317(14) 19 0.70548422(25)  5.74377(30) 16
35 0.70548387(24) 5.74334(22) 25 0.70548474(65)  5.74449(85) 19
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Table 4. (Continued)

First-order DA Second-order DA

L Pc Yy +2vy1 N, Pc y+2v, Na

0 0.7054838(33)  4.4729(94) 19 0.70548457(13) 4.47071(10) 20
5  0.70548458(16) 4.47069(11) 19 0.70548460(10) 4.470740(93) 16
10 0.70548463(16) 4.47072(10) 20 0.70548457(11) 4.470695(93) 19
15 0.70548477(19) 4.47084(15) 19 0.70548473(27) 4.47084(25) 21
20 0.70548443(43) 4.47061(26) 20 0.70548472(17) 4.47081(15) 17
25 0.70548449(47) 4.47066(30) 20  0.70548480(49) 4.47089(45) 19
30 0.70548475(42) 4.47087(37) 19  0.7054842(13)  4.4704(11) 17
35 0.70548469(22) 4.47078(18) 19  0.7054851(13)  4.4713(12) 20

40 terms withN, = 15 or 10 for first and second order, respectively. As one would expect,
due to the shorter series, the estimates are generally encumbered with larger errors than was
the case for the square bond series. The estimates fand 2, are generally consistent

with those from the square bond series, while the remaining exponent estimates exceeds
those from the square bond case. The linear fipppfto the deviation of the exponent
estimates from the values favoured by the square bond series yiglds0.478 0251),

which is in excellent agreement with the estimate= 0.478021) from the percolation-
probability series [7]. The triangular bond series does not appear to have any non-physical
singularities.

4.4. The triangular site series

In table 6 | have listed some estimates fpr and critical exponents obtained from an
analysis of the triangular site series similar to that for the bond problem. In this case all
exponent estimates are consistent with the square bond case. The biased estirate for
based on the usual fitting procedurepis= 0.595 646 85) in excellent agreement with the
estimatep. = 0.595647 210) from the percolation probability series [7]. Again there is
no compelling evidence for non-physical singularities.

5. Summary and discussion

From the analysis presented in the previous section it was clear that the square bond
series yield by far the most accurate-estimates which in turn enables one to obtain
very precise estimates for the critical exponents. The remaining cases yielded less accurate
estimates. Though the square site and triangular bond cases tended to yield exponent
estimates only marginally consistent with the square bond estimates, #simates showed
less consistency among the various series. In the square site case this could possibly be
caused by the presence of rather strong non-physical singularities closer to the origin than
p.. The triangular site estimates, though marred by larger error-bars, were fully consistent
with the square bond estimates. | have therefore chosen to base my final exponent estimates
mainly on the square bond series.

From figure 2 it would appear that the estimate= 0.644 700 1%5) is fully consistent
with the data and not overly optimistic. With this highly accuratevalue one can obtain
very accurate exponent estimates using the values listed in (4.3). The values of the critical
exponents for the average cluster size, parallel and perpendicular connectedness lengths are
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Table 5. Estimates ofp, and critical exponents for the triangular bond problem.

First-order DA Second-order DA
L Pec Y Nq De Y Nq
0 0.478 026 8(13) 2.27850(35) 21  0.47802548(13) 2.277976(80) 15
4 0.47802596(10) 2.278170(47) 16 0.47802578(42) 2.27809(21) 14
8 0.47802614(10) 2.278242(64) 16  0.47802560(16) 2.278054(48) 11
12 0.47802602(42) 2.27819(14) 20 0.47802579(27) 2.278093(91) 14
16 0.47802599(29) 2.27819(10) 18  0.47802605(50) 2.27820(19) 17
L pe v Na  pe Vi Na
0 0.478027 2(19) 1.734 35(30) 17 0.478026 24(79) 1.73413(18) 17
4 0.4780255(10) 1.73404(33) 17 0.47802585(59) 1.73404(17) 12
8 0.47802551(57) 1.73398(16) 16 0.478 026 4(10) 1.73417(30) 15
12 0.4780256(18) 1.73403(53) 19 0.47802536(79) 1.73392(22) 11
16  0.478024 4(25) 1.73365(65) 18 0.478027 3(19) 1.73441(52) 15
L De 2v) N, Pe 2v| N,
0  0.47802716(70) 2.19429(16) 18 0.4780260(10)  2.19389(23) 17
4 0.47802683(80) 2.19420(15) 17 0.4780261(17) 2.19395(54) 14
8 0.478024 74(53) 2.19355(15) 16 0.4780246(12) 2.19355(33) 14
12 0.4780251(28) 2.19367(71) 18 0.4780244(12) 2.19349(36) 14
16 0.4780247(11) 2.19354(35) 17 0.47802522(40) 2.19369(11) 11
L De Y+ No  pe Y+ Nqg
0 0.47802676(52) 4.01259(28) 18 0.47802665(24) 4.012624(79) 13
4 0.47802670(47) 4.01261(14) 20 0.47802686(12) 4.012693(33) 13
8  0.47802645(51) 4.01251(22) 19 0.47802666(17) 4.012649(45) 11
12 0.47802612(59) 4.01236(30) 17  0.47802653(68) 4.01244(54) 16
16 0.47802622(45) 4.01243(21) 16 0.47802682(16) 4.012688(36) 11
L Pe Y+ 2y Ng Pe Y + 2y Na
0  0.4780254(17)  5.7456(17) 17  0.4780264(16)  5.7464(14) 13
4 0.478 025 1(10) 5.74566(95) 19 0.4780266(24) 5.7460(20) 13
8 0.4780252(11) 5.7457(11) 17 0.478026 4(19) 5.7461(16) 17
12 0.47802566(33) 5.74623(26) 16 0.4780254(10)  5.7457(11) 16
16 0.47802588(78) 5.74633(52) 18  0.4780263(18) 5.7463(12) 17
L Pc y+2v) Nq Pc y+2v, N,
0  0.47802616(38) 4.47228(18) 16 0.47802585(24) 4.47204(14) 13
4  047802632(82) 4.47234(41) 17 0.47802570(52) 4.47191(33) 14
8  0.47802589(47) 4.47214(23) 17 0.47802637(54) 4.47235(31) 11
12 0.47802566(48) 4.47196(31) 18 0.47802624(50) 4.47228(31) 13
16 0.47802618(31) 4.47228(15) 17 0.47802610(42) 4.47218(23) 12

estimated byy = 2.277694), vy = 1.73382%25) andv, = 1.096 84414), respectively.

An improved estimate for the percolation probability exponent is obtained from the scaling
relationg = (vy+v, —y)/2=0.276494). As already noted these estimates are generally

incompatible with the exact fractions conjectured by Essam@ [4]. Only y is marginally
consistent with the suggested fraction= 41/18=2.77777. .., if a larger error-bar were

adopted forp,.
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Table 6. Estimates ofp. and critical exponents for the triangular site problem.

First-order DA Second-order DA

L Pe y No  pe y Nq

0 0.59564731(31) 2.277848(67) 16 0.59564598(71) 2.27749(16) 18
4
8

0.59564641(30) 2.277597(79) 18  0.5956465(13)  2.27755(64) 16
0.59564664(41) 2.27767(12) 18 0.59564681(10) 2.277708(28) 12
12 059564653(27) 2.277628(81) 16 0.59564667(20) 2.277672(64) 13
16  0.59564684(78) 2.27772(22) 18 0.59564659(32) 2.277662(84) 12

L pe v Na  pe Vi Na

0.59564656(15) 1.733766(15) 16

1.73358(18) 16

0.595 646 75(45)
0.595 646 62(60)

1.733796(53) 15
1.73378(11) 11

0
4 0.5956454(11)
8
1

0.595 645 9(88) 1.7336(17) 16 0.595644 8(32) 1.73344(74) 11
2 0.5956476(31) 1.73407(68) 16 0.595 645 7(13) 1.73361(29) 11
16  0.5956507(29) 1.73477(65) 16 0.595 643 2(58) 1.7328(15) 15
L pe 2v) Ny Nq
0 0.595650(12) 2.1943(37) 16 0.595 647 0(38) 2.1938(12) 14
4 0.595 655 5(49) 2.1958(11) 16 0.595 647 7(10) 2.19397(25) 11
8 0.595 648 9(14) 2.194 25(30) 17 0.59564753(88) 2.19397(24) 11
12 0.5956469(73) 2.1938(15) 16 0.5956457(22) 2.19357(42) 12
16  0.595647 3(10) 2.19387(22) 16 0.595 648 5(18) 2.19411(37) 16
L Pc Yy + V| Ng Y+ 0 N,
0 0.595 643 5(26) 4.01006(80) 18 0.595 645 3(22) 4.0108(10) 15
4 0.595644 6(16) 4.01036(54) 16 0.595647 6(46) 4.0122(24) 17
8 0.59564542(67) 4.01064(27) 17 0.59564729(73) 4.01168(46) 11
12 0.59564489(48) 4.01041(20) 16 0.59564719(88) 4.01168(49) 11
16 0.59564495(28) 4.01047(10) 17 0.5956450(12) 4.01057(55) 11
L Pe Y+ 2y N, Y+ 2y N,
0 0.595 648 4(66) 5.7469(60) 17 0.595644 4(17) 5.74386(91) 11
4 0.595 644 0(29) 5.7437(10) 16 0.595 644 2(28) 5.7438(16) 12
8 0.595 649 2(45) 5.7468(31) 18 0.5956432(32) 5.7433(12) 13
12 0.595646 3(37) 5.7448(24) 17 0.595 646 2(20) 5.7448(13) 12
16 0.5956457(15) 5.744 40(85) 17 0.595 646 5(13) 5.74502(80) 12
L Pe Yy +2v, Na Pe y+2v, Ng
0 0.5956477(11) 4.47167(39) 16 0.59564715(31) 4.47161(13) 12
4 0.59564748(19) 4.471776(73) 17 0.59564706(43) 4.47156(17) 14
8 0.59564749(26) 4.471770(98) 17 0.59564724(29) 4.47164(12) 12
12 0.59564756(33) 4.47179(12) 16 0.59564744(81) 4.47170(29) 14
16 0.59564758(42) 4.47180(15) 17 0.59564729(15) 4.471670(61) 12

Below | have listed improved estimates for a number of critical exponents obtained
using various scaling relations.
A =pB+y =2554188)
T =y — B =1457347)
7= UH/VL = 1.580 744)
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y' =y — v, = 0.5438Q7)
§= ﬁ/UH =0.159 413)

Here A is the exponent characterizing the scale of the cluster size distributias the

cluster length exponent, is the dynamical critical exponeng, the exponent characterizing

the steady-state fluctuations of the order parameter, \Wlaledn characterize the behaviour

at p. ast — oo of the survival probability and average number of particles, respectively.
Assuming that the exponent estimates from the square bond case are correct, improved

p.-estimates were obtained for the three other problems studied in this paper. These are:

pe. = 0.705 485 35) square site
pe. = 0.478025%1) triangular bond
pe = 0.595 646 85) triangular site

Finally | note, that the analysis of the various series, in order to determine the value of
the confluent exponent, yielded estimates consistentyjth- 1. Thus there is no evidence
of non-analytic confluent correction terms. This provides a hint that the models might be
exactly solvable.

E-mail or WWW retrieval of series

The series and the coefficients in the extrapolation formulae for the directed
percolation problems on the various lattices can be obtained via e-mail by sending
a request to iwan@maths.mu.oz.au or via the world wide web on the URL
http://www.maths.mu.oz.au/"iwan/ by following the relevant links.
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Appendix. The extrapolation formulae and series for the square site, triangular bond
and triangular site problems

A.1l. The square site problem

The sequence determining the first correction termsfrstarts out as
s,0=10,1,2 6,18 57 186 622 2120 7338 ...

from which one sees that;g + s,—1.0 = C,—1. Shapiro [15] has given an interpretation of
this sequence by adding diagonals in a certain Catalan triangle.

At first glance one might find it strange that the correction term differs from the bond
case, since clearly all the non-nodal bond graphs that give rise to the first correction term
have their counterparts as site graphs. In the following | shall always be talking only of
non-nodal graphs consisting of two equal-length paths. The reason for the difference is
quite simply that for some graphs theweight in (3.3) is O for thesite graph but non-zero
for the bond graph. A schematic representation of such a graph is shown in figure A1l. A
proof of this was given by Arrowsmith and Essam [16], who showeddlkg} is non-zero
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Figure Al. Schematic pictorial representation of a non-nodal graph which
contributes toS” in the bond problem butot in the site problem.

if and only if g is coverable by a set of directed pattusd has no circuit (or loop) From
figure Al we see that in the bond case the graph obtained by putting in the bonds a-b and
c—d has no loops. However, in the site case there is a loop from the origin to point d and
this graph does, therefore, not contribute in the site case. On the other hand it is clear that
for any contributing site graph there is a corresponding contributing bond graph. So the
contributing site graphs form a subset of the bond graphs.

In order to prove the formula foy, g it is convenient to give another interpretation of the
loop-free non-nodal graphs. Let us first characterize the graphs by the disgtheteeen
the paths. Since the graphs start and end with0, and the distance zero appears nowhere
else along the graph, these two ‘steps’ can be deleted. It is clear that in each step (increase
of t+ by one)k changes by 0 ot=1. Whenk is unchanged there are two configurations
corresponding to both paths moving either south-east or south-west, while for changes of
+1 there is just one configuration. The non-nodal graphs are thus in bijection with paths
of lengthr — 1 starting and ending at the ground level, which can take north-east, east
and south-east steps, and where east steps come in two varieties or colours (such paths are
known astwo-colour Motzkin paths It is one of the fundamental results of combinatorics
that the number of two-colour Motzkin paths of length- 1 is C,,. It is easy to see that
loop-free non-nodal graphs form the subset where the distance between paths is never 1
twice in a row, i.e. ifk, = 1 thenk, 1 = 2. These graphs are in bijection with two-colour
Motzkin paths with no east steps on the ground level.

Figure A2. Typical two-colour Motzkin path with no east steps on the ground level.

Figure A2 shows an example of a two-colour Motzkin path with no east steps on the
ground level. It is clear that all paths formed by taking the parts of the original path lying
one level above the ground level (those above the dotted line), are ordinary unrestricted two-
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colour Motzkin paths, and these paths are therefore enumerated by the Catalan numbers.
The number of no-loop non-nodal graphs can therefore be expressed in terms of Catalan
numbers, by summing over the number of timesthe associated restricted two-colour
Motzkin path meets the ground level prior to the terminal point. Dgtdenote the number

of two-colour Motzkin paths of length with no east steps on the ground level. The number

of such two-colour Motzkin pathsp, o, which does not hit the ground level prior tois

simply C,_; because the path obtained by deleting the first and last step is an ordinary
two-colour Motzkin path of lengtth — 2. The number of restricted two-colour Motzkin
pathsD, 1 which hit the ground level once is,

n—4
Dp1= Z Ciy1Cha i1 = Z CiC; i,j=z1l
=0 i+j=n—2

This formula is simply obtained by noting that the path to the left of the point where the
restricted path meets the ground level for the first time can have a lémgthging from 0
to n — 4 (the four steps connecting the ground level to the level above are discarded) while
the length of the second pathis— 4 — k. Obviously the number of left and right paths
are justCy1 andC,_4 11, independently, which leads to the formula above once we sum
over the length of the left path. The generalizationtp,, is obvious
Dy = > Ci,Ci---Ci, ity im = 1,m < [n/2] — 1.
i1+ig+-+ip=n—m—1

The sumD, = Z}:ﬁj’l D, . is exactly the same as that obtained by Shapiro [15] by
adding diagonals in the Catalan triangle.

The higher-order correction terms are quite complicated though still expressible as linear
functions ofs, o,

ng

. ~(t—r
2 (r + l)!sl,r = Z Ar kSt—r+k—1,0 + Z ( k > [br,k(sl—r—l,o + Zsf—r,O) + Cr,kst—r,o]
k=1 k=1

(A.1)

wheren, = r — 1+ max(|r/2],2). This representation leads to particularly simple
coefficientsc,;, sincec,,_,2*/(r + 1)! are expressible as polynomials inof order m
for r > m.

The sequence determining the first correction termXdr starts out as

x0=0,0,0,2,8,34, 136 538 2112 8264 ....
In this casex, o = u(t + 1) is determined by the following recurrence relation
u(Q =0 u(l)=0 u2 =0 u@d) =2 u(d) =8
u+5) =[Q2+4)u@) + (10+ 131)u(t + 1) + (63/2 + 25/2t)u(t + 2)

+A4+ 2t)u(t + 3) + (—53/2 — 11/2t)u(t + D]/ (¢t + 6).

The formulae for the higher-order correction terms are complicated though still expressible
as functions ofy, o,

2r r
1 t—r
6" (r+ 1)!xt,r = Zar,kx17r+k73,0 + Z < k ) [br,kxt7r74,0 + cr,kxtfr73,0]
k=0 k=1

+(t —r)([dra+ (t —r — Dd,2/2]x:— 20
+[dr,3 +@—r— 1)dr,4/2]xt7r71,0)- (AZ)
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Table A3. New series terms for the directed triangular lattice site problem.

n S(p) 1o,1(p) #o,2(p) H2,0(p)

27 31086416 2537201920 180162619784 3493604 968
28 54484239 4696226 432 351465799212 6578499 844
29 95220744 8662963994 682372429474 12255365130
30 166451010 15938662 652 1319072709540 22945871212
31 290209573 29236920460 2539112346126 42418505522
32 506071134 53506 963048 4868 795 865052 79065895 100
33 880465145 97662175022 9301026350316 145071334272
34 1532283109 177 894 354 832 17707 215868 596 269543696 068
35 2660274891 323249218548 33597579475 250 490798690662
36 4621898737 586 336 769 144 63552411513904 910306336 312
37 8009846 706 1061171804692 119850074 633534 1644056 437 386
38 13891471400 1917510976 440 225393528 150372 3049141333676
39 24041215812 3457940539676 422719590219566 5456382479138
40 41625532064 6226878220792 790809981499 104 10141493117 240
41 71931529791 11192318698210 1475724176 635586 17948 875370594
42 124411612350 20092 269 205 896 2747568614463 200 33532113165512
43 214621391390 36 004 956 808 838 5103796 857539224 58529997237 324
44 370839553549 64 452114092524 9460996 104 306 040 110351718228800
45 639024 696 294 115182948 294 020 17501002 169903 066 189161996 834 038
46 1102419174084 205638719322044 32311701334 358584 361978973535312
47 1898477439658 366 587 483 305 266 59540588 349 689 460 605431024 385712
48 3271434676999 652904 591 166 608 109522752581 367 792 1185609582832 608

49 5624820363027 1161134164194872 201098347347 198582 1916175057 214 282
50 9693710116271 2063632450148 240 368654 569738994916 3885789400216 356
51 16634472160 666 3661795173290544 674667 552855892942 5981962 784372730
52 28649053574 116 6494555752892 524 1232887441544215856  12779152925915688
53 49158925607599 11502147999 885690 2249412773359085386 18336104911125754
54 84477695445892 20358932047 872636 4098441587758882072 42326707 460800448
55  144947819272120 35990408 059 294200 7456 350674610337790 54742323913 847946
56 249148051950911 63598870606450408 13548513117 372733000

From the polynomials forS™ (fmax) and XN (fmax) With fmax = 47, and using the
extrapolation formulae, | extended the series $6p), wo1(p) and we2(p) to order 106
and the series fopr,o(p) to order 103. The new series terms are listed in table Al.

A.2. The triangular bond problem

The correction terms for the triangular bond problem are very simple. The first correction
term for SV is just a constant, o = 2, while the first correction term fok" alternates
between 0 and 2. The non-nodal graphs responsible for these correction terms are almost
trivial. It is clear (see figure 1) that the non-nodal graphs terminating at tevel having

the smallest possible number of bonds are those composed of two paths meeting on the
centre line { odd) or on the site next to the centre-lineefven), with each path having as

few south-east and south-west steps as possible. These sites can be reached by a non-nodal
graph withr 4+ 1 bonds. For odd the only two such graphs are those consisting of a path
with [7/2] + 1 south steps and a path starting with a south-east (south-west) step followed
by |z/2] south steps, while ending with a south-west (south-east) step. éx@n, the two

graphs are those consisting of a path withi2| south steps terminating with a south-east
(south-west) step and a path starting with a south-east (south-west) step followet2py
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south steps. It is easy to check that any other non-nodal graph contains more bonds. So
5.0 = 2 while x, o alternate between 0 and 2 since favdd the non-nodal graphs terminate
on the centre-line and therefore do not contributeto.

The sequence determining the second correction terms™ds

1,2,5,10, 17, 26, 37,50, 65, ...

from which it is clear that, ; grows as a polynomial in, 5,1 = t2 — 2t + 2. In general the
correction terms can be represented as a polynomiadfiiorder 2-. The alternation between
odd and even values ofseen inx, o eventually also manifests itself in the correction terms
for SV. The general formulae for the correction term is,

1 2r ) tmod?2 L(r=3)/2]
L= Lt =17 + . >2r—2. (A
= e 2 Y Ly X b t>2r -2 (A3)

The prefactors and the expression of the polynomials in terms-ofl has been chosen
to make the leading coefficients particularly simple. Once again it should be noted that
the leading coefficients, »._,, are polynomials irr of orderm + [m/2] (this is valid for
m < 5), which again was used to obtain a few additional correction formulae.
The extrapolation formulae fak? are very similar to the ones above,

1 z . tmod2 <
= D (1 =1 + >2r — 2. A4
r!(r+1)!j;oar"’(t )+ r\(r +]_)|Zbr1(t ! r (A.4)

Xt,r

In this case the leading coefficients of batly,_,, andb,,_,, can be predicted. For
r > m | find thata, »._,, can be expressed as a polynomial iof order< m + 2. Likewise
(=D"b,r—m/(r + D!is a polynomial inr of order 2n for r > 2m.

As stated earlier, the non-nodal contribution to the series for the triangular bond case
were calculated up tan.x = 45. With the extrapolation formulae | derived the series for
S(p), roa(p) anduo2(p) to order 57 and the series fon o(p) to order 56. The resulting
new series terms are listed in table A2.

A.3. The triangular site problem

In this case the first correction term f&¥ alternates between 0 and 1 while the first
correction term forx" is 0. The graphs giving rise to these correction terms are very
simple. First note that the graphs giving rise to the bond correction terms all have loops
when viewed as site graphs. The non-nodal site graphs with fewest element®ddr
consist of the two paths starting with a south-east (south-west) step followgd2ysouth

steps and ending with a south-west (south-east) step. These graphs -hd@eandom
elements (remember that the origin is not a random element).r Egen one can easily

see that there are no loop-free non-nodal graphs witt2 or fewer elements. This fully
accounts for the first correction terms.

The other extrapolation formulae for the triangular site problem are very similar to
those for the bond case. The only difference is that the order of the polynomials correcting
the odd¢ values is somewhat higher. Once again the leading coefficients are low-order
polynomials inr. With the help of the extrapolation formulae | extended the series for
S(p), ro1(p) and ug2(p) to order 56 and the series far, o(p) to order 55. The new
series terms are listed in table A3.
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