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Abstract

Empirical evidence shows that naive Bayesian classifiers perform quite well compared to
more sophisticated network classifiers, even in view of inaccuracies in their parameters. In
this paper, we study the effects of such parameter inaccuracies by investigating the sensi-
tivity functions of a naive Bayesian classifier. We demonstrate that, as a consequence of
the classifier’s independence properties, these sensitivity functions are highly constrained.
We investigate whether the various patterns of sensitivity that follow from these functions
support the observed robustness of naive Bayesian classifiers. In addition to the standard
sensitivity given the available evidence, we also study the effect of parameter inaccura-
cies in view of scenarios of additional evidence. We show that the standard sensitivity
functions suffice to describe such scenario sensitivities.

1 Introduction

Bayesian networks are often employed for clas-
sification tasks where an input instance is to be
assigned to one of a number of output classes.
The actual classifier then is a function which
assigns a single class to each input, based on
the posterior probability distribution computed
from the Bayesian network for the output vari-
able. Such classifiers are often built upon a
naive Bayesian network, consisting of a single
class variable and a number of observable fea-
ture variables, each of which is modelled as be-
ing independent of every other feature variable
given the class variable. The numerical param-
eters for such a naive network are generally esti-
mated from data and inevitably are inaccurate.

Experiments have shown time and again that
classifiers built on naive Bayesian networks are
quite stable: they are competitive with other
learners, regardless of the size and quality of the
data set from which they are learned (Domingos
& Pazzani, 1997; Rish, 2001; Liu et al., 2005).
Apparently, inaccuracies in the parameters of
the underlying network do not significantly af-
fect the performance of such a naive classifier.

The observed stability of naive Bayesian clas-

sifiers may be attributed to (a combination
of) properties of the data and of the classifier
function. The commonly used winner-takes-all
rule, which assigns an instance to a class which
is most probable according to the underlying
Bayesian network, for example, seems to con-
tribute to the naive classifier’s success (Domin-
gos & Pazzani, 1997). The observed stability
may also be attributed to the naive indepen-
dence properties of the classifier. It has been
shown, for example, that naive Bayesian classi-
fiers perform well for both completely indepen-
dent and functionally dependent feature vari-
ables (Domingos & Pazzani, 1997; Rish, 2001).

In this paper, we employ techniques from sen-
sitivity analysis to study the effects of parame-
ter inaccuracies on a naive Bayesian network’s
posterior probability distributions and thereby
contribute yet another explanation of the ob-
served stability of naive Bayesian classifiers. In
general, the sensitivity of a posterior probabil-
ity of interest to parameter variation complies
with a simple mathematical function (Castillo et
al., 1997; Coupé & Van der Gaag, 2002), called
a sensitivity function. We will demonstrate
that the independence assumptions underlying
a naive Bayesian network constrain these sensi-



tivity functions to such a large extent that they
can in fact be established exactly from very lim-
ited information. In addition, we study the var-
ious sensitivity properties that follow from the
constrained functions. We would like to note
that sensitivity analysis has been applied be-
fore in the context of naive Bayesian classifiers,
as a means of providing bounds on the amount
of parameter variation that is allowed without
changing, for any of the possible instances, the
class an instance is assigned to (Chan & Dar-
wiche, 2003). We extend on this result with
further insights.

For classification problems, it is often as-
sumed that evidence is available for every sin-
gle feature variable. In numerous application
domains, however, this assumption may not be
realistic. The question then arises how much
impact additional evidence could have on the
output of interest and how sensitive this impact
is to inaccuracies in the network’s parameters.
We introduce the novel notion of scenario sen-
sitivity to capture the latter type of sensitivity
and show that the effects of parameter variation
in view of scenarios of additional evidence can
be established efficiently.

The paper is organised as follows. In Sec-
tion 2, we present some preliminaries on sensi-
tivity functions and their associated sensitivity
properties. In Section 3, we establish the func-
tional forms of the sensitivity functions for naive
Bayesian networks and address the ensuing sen-
sitivity properties. In Section 4 we introduce
the notion of scenario sensitivity and show that
it can be established from standard sensitivity
functions. The paper ends with our conclusions
and directions for future research in Section 5.

2 Preliminaries

To investigate the effects of inaccuracies in its
parameters, a Bayesian network can be sub-
jected to a sensitivity analysis. In such an anal-
ysis, the effects of varying a single parameter on
an output probability of interest are studied.
These effects are described by a simple math-
ematical function, called a sensitivity function.
If, upon varying a single parameter, the parame-
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Figure 1: The possible hyperbolas and their
constants, where the constraints on r, s and t
are specific for sensitivity functions.

ters pertaining to the same conditional distribu-
tion are co-varied proportionally, then the sen-
sitivity function is a quotient of two linear func-
tions in the parameter x under study (Castillo et
al., 1997; Coupé & Van der Gaag, 2002); more
formally, the function takes the form

f(x) =
a · x + b

c · x + d

where the constants a, b, c, d are built from the
assessments for the non-varied parameters. The
constants of the function can be feasibly com-
puted from the network (Coupé & Van der
Gaag, 2002; Kjærulff & Van der Gaag, 2000).

A sensitivity function is either a linear func-
tion or a fragment of a rectangular hyperbola. A
rectangular hyperbola takes the general form

f(x) =
r

x− s
+ t

where, for a function with a, b, c, d as before, we
have that s = −d

c , t = a
c , and r = b

c + s · t. The
hyperbola has two branches and the two asymp-
totes x = s and f(x) = t; Figure 1 illustrates
the locations of the possible branches relative
to the asymptotes. Since both x and f(x) are
probabilities, the two-dimensional space of their
feasible values is defined by 0 ≤ x, f(x) ≤ 1; this
space is termed the unit window. Since any sen-
sitivity function should be well-behaved in the
unit window, a hyperbolic sensitivity function
is a fragment of just one of the four possible
branches in Figure 1.

From a sensitivity function, various proper-
ties can be computed. Here we briefly re-



view the properties of sensitivity value (Laskey,
1995), vertex-proximity and admissible devia-
tion (Van der Gaag & Renooij, 2001). The
sensitivity value for a parameter is the abso-
lute value

∣∣∣∂f
∂x(x0)

∣∣∣ of the first derivative of the
sensitivity function at the assessment x0 for the
parameter; it captures the effect of an infinites-
imally small shift in the parameter on the out-
put probability. The impact of a larger shift is
strongly dependent upon the location of the ver-
tex of the sensitivity function, that is, the point
where

∣∣∣∂f
∂x(x)

∣∣∣ = 1. A vertex that lies within the
unit window basically marks the transition from
parameter values with a high sensitivity value to
parameter values with a low sensitivity value,
or vice versa. If an output probability is used
for establishing the most likely value of the out-
put variable, the effect of parameter variation
on the most likely output value is of interest.
The admissible deviation for a parameter now
is a pair (α, β), where α is the amount of vari-
ation allowed to values smaller than its assess-
ment without changing the most likely output
value, and β is the amount of variation allowed
to larger values; the symbols ¡ and ¢ are used
to indicate that variation is allowed up to the
boundaries of the unit window.

3 Sensitivities in Naive Classifiers

Upon being subjected to a sensitivity analy-
sis, the independence assumptions of a naive
Bayesian network strongly constrain the gen-
eral form of the resulting sensitivity functions.
In fact, given just limited information, the ex-
act functions can be readily determined for each
class value and each parameter. In this section
we derive these functions and discuss their en-
suing sensitivity properties.

3.1 Functional forms

Before establishing the sensitivity functions for
naive Bayesian networks, we introduce some
notational conventions. We consider a naive
Bayesian network with nodes V (G) = {C} ∪E,
E = {E1, . . . , En}, n ≥ 2, and arcs A(G) =
{(C, Ei) | i = 1, . . . , n}; C is called the class
variable of the network and Ei are termed its

feature variables. We now study the sensitivity
of the posterior probability Pr(c | e) of a class
value c given an input instance e in terms of
a parameter x = p(e′v | c′ ), where e′v denotes
some value of the feature variable Ev and c′ is
a value of the class variable. The original assess-
ment specified in the network for the parameter
x is denoted by x0. The notation pc is used for
the posterior probability of interest prior to pa-
rameter variation. We use fPr(c|e)(x) to denote
the sensitivity function that expresses the prob-
ability of interest in terms of the parameter x.

The following proposition now captures the
sensitivity function that describes the output
probability of interest of a naive Bayesian net-
work in terms of a single parameter associated
with one of the feature variables. The propo-
sition shows that this function is highly con-
strained as a result of the independences in the
network and the parameter being conditioned
on a value of the class variable. In fact, for any
class value and any parameter, only one of four
different functions can result. We would like to
note that the proposition holds only for param-
eters and output probabilities that allow for a
hyperbolic sensitivity function.

Proposition 1. Let Ev be a feature variable
with the value ev and let x = p(e′v | c′ ) be
a parameter associated with Ev. Then, the
sensitivity function fPr(c|e)(x) has one of the
following forms:

fPr(c|e)(x) ev = e′
v ev 6= e′

v

c = c′ x

x − s1

x − 1

x − s2

c 6= c′ pc · x0 − s1

x − s1
pc · x0 − s2

x − s2

where s1 = x0− x0
p′ and s2 = x0 + (1−x0)

p′ are the
vertical asymptotes of the corresponding func-
tions and p′ is the original value of Pr(c′ | e).
Proof. We prove the property stated in the
proposition for ev = e′v; the proof for ev 6= e′v is
analogous. We begin by writing the probability
Pr(c, e) in terms of the network’s parameters:

Pr(c, e) =
∏

Ei∈E\{Ev}
p(ei | c) · p(c) · p(ev | c),



where ei is the value of the variable Ei in the
input instance e. This probability relates to the
parameter x = p(e′v | c′ ) as

Pr(c′ , e)(x) =
∏

Ei∈E\{Ev}
p(ei | c′ ) · p(c′ ) · x

for c = c′ and as

Pr(c, e)(x) =
∏

Ei∈E

p(ei | c) · p(c)

for c 6= c′. Similarly, Pr(e) can be written as

Pr(e) = Pr(c′ , e) +
∑
c 6=c′

Pr(c, e),

where Pr(c′ , e) again relates to the parameter
x as indicated above and the other term is con-
stant with respect to the parameter. For c = c′

we now find for the sensitivity function that

fPr(c′ |e)(x) =
Pr(c′ , e)(x)
Pr(e)(x)

=
a · x

a · x + d
=

x

x− s1

and for c 6= c′ that

fPr(c|e)(x) =
Pr(c, e)(x)
Pr(e)(x)

=
bc

a · x + d
=

rc

x− s1

with the constants

a =
∏

Ei∈E\{Ev}
p(ei | c′ ) · p(c′ )

bc =
∏

Ei∈E

p(ei | c) · p(c)

d =
∑
c 6=c′

Pr(c, e)

The constant s1 = −d
a is the vertical asymp-

tote that is shared by all functions; its value is
determined from

s1 = − Pr(e)− Pr(c′ , e)
Pr(c′ , e)/p(ev | c′ )

= x0 − x0

p′

In addition, the function fPr(c′ |e)(x) has a hor-
izontal asymptote at t = a

a = 1. The functions
fPr(c|e)(x) with c 6= c′ , all have t = 0

a = 0. The
constants rc = bc

a of the latter functions are de-
termined from pc = rc

x0−s1
.
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Figure 2: Example sensitivity functions for the
parameter x = p(e′v | c′) with x0 = 0.2, p′ = 0.4,
where ev = e′v (left) or ev 6= e′v (right).

From the values of the asymptotes found in the
proof above, we observe that for ev = e′v the
sensitivity function fPr(c′|e)(x) is a fragment of
a IVth-quadrant hyperbola branch; all other
functions fPr(c|e)(x) with c 6= c′ are fragments
of Ist-quadrant branches. For ev 6= e′v we find
IIIrd- and IInd-quadrant branches, respectively.
These properties are illustrated in Figure 2. To
intuitively explain why the function fPr(c′|e)(x)
has a different shape than the other functions,
we observe that varying a parameter p(ei | c′ )
has a direct effect on the probability Pr(c′ | e),
whereas the probabilities Pr(c | e), c 6= c′ , are
only indirectly affected to ensure that the dis-
tribution sums to one. Due to the constrained
form of these functions, moreover, all fPr(c|e)(x),
c 6= c′ , have the same shape. The function
fPr(c′|e)(x) therefore must be deviant.

We illustrate the functional forms derived
above with an example. The example shows
more specifically that as a result of their con-
strained form, any sensitivity function can be
established from very limited information.

Example 1. We consider a naive Bayesian net-
work with a class variable modelling the stages
I, IIA, IIB, III, IVA and IVB of cancer of the
oesophagus; the feature variables of the network
capture the results from diagnostic tests. For a
given patient, the available findings are sum-
marised in the input instance e, given which
the following posterior distribution is computed
over the class variable S:

S I IIA IIB III IVA IVB

Pr(S | e) 0.01 0.19 0.01 0.07 0.61 0.11



We further consider the feature variable CT-
loco, modelling the observed presence or absence
of loco-regional lymphatic metastases. The net-
work includes the following assessments for the
parameters for this variable:

S I IIA IIB III IVA IVB

CT-loco yes 0.02 0.02 0.48 0.48 0.48 0.27
no 0.98 0.98 0.52 0.52 0.52 0.73

Now suppose that we are interested in the ef-
fects of inaccuracies in the parameter x =
p(CT-loco = no | S = IVA) on the posterior
probabilities Pr(S | e) for our patient who has
no evidence of loco-regional metastases. These
effects are captured by six functions with the
vertical asymptote s1 = 0.52 − 0.52

0.61 = −0.33.
Without having to perform any further compu-
tations, we now find that

fIVA(x) =
x

x + 0.33
and

fS(x) = Pr(S | e) · 0.85
x + 0.33

for any S 6= IVA. We further find that for the
complement of the parameter x all functions
have their vertical asymptote at s2 = 1.33. ¤

3.2 Sensitivity properties

For a naive Bayesian network, any sensitiv-
ity function is exactly determined by the as-
sessment for the parameter being varied and
the original value of the probability of inter-
est. From the function now any sensitivity prop-
erty of interest can be computed. We study the
properties of sensitivity value, vertex proximity
and admissible deviation.

Sensitivity value and vertex proximity
For the various possible sensitivity functions for
a naive Bayesian network, the sensitivity values
are readily established: for ev = e′v we find that∣∣∣∣∂fc′

∂x
(x0)

∣∣∣∣ = (1− p′) · p′

x0
≥ pc · p′

x0
=

∣∣∣∣∂fc

∂x
(x0)

∣∣∣∣ .

For ev 6= e′v, we find a similar result by replac-
ing x0 by 1 − x0. Note that for a binary class
variable, the sensitivity values for its two class
values are the same. This property holds for any
binary output variable in any Bayesian network.
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Figure 3: The sensitivity value for fPr(c′|e)(x) as
a function of x0 and p′, for ev = e′v.

Based upon the general form of the sensitiv-
ity value derived above, Figure 3 depicts the
sensitivity value of fPr(c′|e)(x) given ev = e′v for
different combinations of values for x0 and p′.
We observe that high sensitivity values can only
be found if the assessment for the parameter
under study is small and the original posterior
probability p′ is non-extreme. More formally,
we have that

∣∣∣∂fPr(c′|e)
∂x (x0)

∣∣∣ > 1 if and only if

x0 < p′ − p′2 ≤ 0.25. For ev 6= e′v, high sensitiv-
ity values can only be found if the assessment
for the parameter is larger than 0.75 and the
original posterior probability p′ is non-extreme.
Note that high sensitivity values can thus only
be found for the parameters that describe the
least likely value of a feature variable given a
particular class value. This property was no-
ticed before for general Bayesian networks (Van
der Gaag & Renooij, 2006).

In view of naive Bayesian classifiers, we ob-
serve that input instances which occur the more
frequently given a particular class are also likely
to be the more probable given that class in the
network underlying the classifier. Since high
sensitivity values can only be found for the pa-
rameters that describe the least likely value of a
feature variable, the posterior probability of the
corresponding class value for such an input in-
stance will not be very sensitive to inaccuracies
in the various parameters. In fact, the vertical
asymptote of an associated sensitivity function,
and hence the x-value of the function’s vertex,
will be quite distant from the parameter’s as-
sessment, resulting in a rather flat function in
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Figure 4: Examples of sensitivity functions for
the parameter x = p(e′v | c′), where ev = e′v and
c′ is not the most likely value. Variation either
can make c′ the most likely value (left) or will
not change the most likely value (right).

the broader vicinity of x0. The most likely class
value will then hardly ever change upon small
shifts in a parameter. The above argument thus
corroborates the empirically observed robust-
ness of classifiers to parameter inaccuracies.

Admissible deviation In view of classifica-
tion, the property of admissible deviation is es-
pecially of interest. The admissible deviation
for a parameter gives the amount of variation
that is allowed before an instance is classified
as belonging to a different class. The follow-
ing proposition now gives a general form for all
possible deviations in a naive Bayesian network.
The proposition more specifically shows that in
such a network, the most likely class value can
change at most once upon varying a parameter.

Proposition 2. Let pT = max{pc | c 6= c′ }, let
cT be a value of C for which Pr(cT | e) = pT,
and let fT(x) = fPr(cT|e)(x). Then,

• we have fPr(c|e)(x) ≤ fT(x) for all c 6= c′ ;

• for ev = e′v the admissible deviation for the
parameter x is:

condition admissible deviation

pT < p′ (x0 − xs, ¢)
pT = p′ (0, 0)
pT > p′ (¡, xs − x0) if x0 < p′

pT

(¡, ¢) otherwise

where xs = pT · x0
p′ ;

• for ev 6= e′v then the above admissible devi-
ations hold with each occurrence of x0 and
xs replaced by 1−x0 and 1−xs, respectively.

Proof. The first property follows from the ob-
servation that all functions fPr(c|e) with c 6= c′

have the same horizontal and vertical asymp-
totes and therefore do not intersect. As a con-
sequence, either c′ or cT is the most likely value
of C, regardless of the value of x. If the two
functions fPr(c′|e)(x) and fT(x) intersect at xs,
then we have that xs ∈ [0,∞〉 for ev = e′v and
xs ∈ 〈−∞, 1] for ev 6= e′v. The second and third
properties stated above now follow immediately
from the general forms of the functions.

We observe from the above proposition that, for
any parameter, an admissible amount of varia-
tion different from ¡ or ¢ is possible only to the
left or to the right of the parameter’s assessment
but never in both directions. From this observa-
tion we have that upon varying the parameter,
the most likely class value can change only once.
Figures 2 and 4 support this observation.

Example 2. We consider again the naive
Bayesian classifier and the patient information
from Example 1. Suppose that we are once more
interested in the effects of inaccuracies in the pa-
rameter x = p(CT-loco = no | S = IVA) on the
posterior probabilities Pr(S | e) for the patient.
We recall that the value IVA corresponds to the
most likely stage for this patient, with a proba-
bility of 0.61. The second most likely stage for
the patient is stage IIA, with probability 0.19.
We now find that the most likely stage changes
from IVA to IIA at xs = 0.19 · 0.52

0.61 = 0.16. The
admissible deviation for the parameter thus is
(0.36, ¢). Note that the most likely stage can-
not change into any other value upon varying
the parameter under study. ¤

In view of naive Bayesian network classifiers, we
have from the above proposition that we can ex-
pect to find large admissible deviations for mist
instances. To support this expectation, we con-
sider a parameter x with ev = e′v; similar argu-
ments hold for ev 6= e′v. If pT < p′, we have from
the functional forms that the assessment x0 for
the parameter is unlikely to be very small, as for



functions with an asymptote to the left of the
unit window the intersection of the sensitivity
functions lies to the left of x0. If pT > p′, on
the other hand, we expect an admissible devia-
tion within the unit window only for very small
values of x0. If the instances that are modelled
as the more probable given a particular class
value, occur the more often in practice, then for
these instances we expect that x0 is not a small
value and that p′ > pT. In practice we would
therefore expect most instances to result in ad-
missible deviations of (¡, ¢).

4 Scenario sensitivity

For classification problems, it is generally as-
sumed that evidence is available for every single
feature variable. In practical applications, how-
ever, this assumption may not be realistic. In
the medical domain, for example, a patient is
to be classified into one of a number of diseases
without being subjected to every possible diag-
nostic test. The question then arises how much
impact additional evidence could have on the
probability distribution over the class variable
and how sensitive this impact is to inaccuracies
in the network’s parameters. The former issue
is closely related to the notion of value of in-
formation. The latter issue involves a notion of
sensitivity that differs from the standard notion
used in the previous sections in the sense that
it pertains not to available evidence but to sce-
narios of possibly additional evidence. We refer
to this notion of sensitivity as scenario sensi-
tivity and use the term evidence sensitivity to
refer to the more standard notion. Although it
is applicable to Bayesian networks in general,
in this section we discuss scenario sensitivity in
the context of naive Bayesian classifiers.

To study the effect of additional evidence on
an output probability for the class variable, we
consider the ratio Pr(c | eN) to Pr(c | eO) where
eO and eN denote the evidence prior to and after
receiving the new evidence respectively.

Proposition 3. Let EO and EN be sets of fea-
ture variables with ∅ ⊆ EO ⊂ EN ⊆ E and
EN − EO = {E1, . . . , El}, 1 ≤ l ≤ n. Let eO

and eN be consistent instances of EO and EN ,

respectively. Then, for each c, we have that

Pr(c | eN)
Pr(c | eO)

=
∏l

i=1 Pr(ei | c)∑
cj

∏l
i=1 Pr(ei | cj) · Pr(cj | eO)

where ei is the value of Ei in EN .

Proof. The property follows immediately by ap-
plying Bayes’ rule and exploiting the indepen-
dences that hold in the naive network.

The above proposition now allows us to com-
pute the new posterior probability distribution
over the class variable from the previous one.

Example 3. We reconsider the naive Bayesian
network and the patient information from the
previous examples. In addition to the tests to
which the patient has already been subjected,
a scan of the liver can be performed. We now
are interested in the posterior distribution over
the various stages if the result of this test were
positive. For the feature variable CT-liver, the
following parameter assessments are specified:

S I IIA IIB III IVA IVB

CT-liver yes 0.05 0.05 0.05 0.05 0.05 0.69
no 0.95 0.95 0.95 0.95 0.95 0.31

From the table and the probability distribu-
tion Pr(S | e) from Example 1, we find that∑

S Pr(CT-liver = yes | S) · Pr(S | e) = 0.1204.
The new posterior probability of S = IVB now
follows directly from

Pr(IVB | eN)
0.11

=
0.69

0.1204
= 0.63

without requiring any additional computations
from the network. Note that the new test result
would change the most likely stage. ¤
The above proposition allows for establishing
the impact of additional evidence on the poste-
rior probability distribution over the class vari-
able. To capture the sensitivity of this impact
to parameter variation, we consider the function
h(x) that describes the above probability ratio
as a function of a parameter x = p(e′v | c′):

h(x) =
(

Pr(c | eN)
Pr(c | eO)

)
(x) =

Pr(c | eN)(x)
Pr(c | eO)(x)

If the parameter x pertains to a variable in the
set EN − EO, then the denominator is a con-
stant with respect to x. The function h(x) then



just is a scaled version of the sensitivity func-
tion fPr(c|eN )(x). Given the probability distribu-
tion Pr(C | eO) over the class variable, we can
therefore immediately determine the sensitivity
of the impact of the additional evidence from
the sensitivity function fPr(c|eN )(x). Note that
in a naive Bayesian network the latter function
is known for each parameter x once the posterior
probability distribution Pr(C | eN) is available.

Example 4. We reconsider the previous exam-
ple. We now are interested in the effects of in-
accuracies in the parameter x = p(CT-liver =
yes | IVB) on the ratio Pr(IVB | eN) to
Pr(IVB | eO). We recall that the new poste-
rior probability of S = IVB would be 0.63; the
probability given just the available evidence was
0.11. We now establish the sensitivity function
fPr(IVB|eN )(x) = x

x+0.41 and find that

hIVB(x) =
1

0.11
· x

x + 0.41
From Example 3 we had that the probability of
the class value IVB increased from 0.11 to 0.63
upon a positive liver scan, thereby becoming 5.7
times as likely. We can now in addition conclude
that if the parameter x is varied, the class value
IVB can become at most 6.4 times as likely as
without the additional evidence. ¤

5 Conclusions

In this paper, we used techniques from sensi-
tivity analysis to study the effects of parame-
ter inaccuracies on a naive Bayesian network’s
posterior probability distributions. We showed
that the independence assumptions of such a
network constrain the functional form of the as-
sociated sensitivity functions: these functions
are determined solely by the assessment for the
parameter under study and the original poste-
rior probability distribution over the class vari-
able. The sensitivity properties following from
the functions provided some fundamental argu-
ments which corroborated the empirically ob-
served robustness of classifiers to parameter in-
accuracies. More research is required, however,
to further substantiate these arguments. We
further introduced the novel notion of scenario
sensitivity, which describes the effects of pa-

rameter inaccuracies in view of scenarios of ad-
ditional evidence. We showed that for naive
Bayesian networks scenario sensitivity can be
readily expressed in terms of the more stan-
dard sensitivity functions. In the near future,
we would like to study scenario sensitivity in
Bayesian networks in general.
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