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Abstract 

This article addresses the problem of an active portfolio manager whose performances are 

assessed against a benchmark and who must comply with a weights constraint. This situation 

is frequently encountered, in particular because the funds are often committed by their own 

prospectus to a minimum (or maximum) portfolio concentration. We characterize the optimal 

asset allocation which depends on the targeted ex ante Tracking Error and on the weights 

constraint. We analyze the implications of the weights constraint on the manager’s 

performance and on the relevance of performance measures such as the Information Ratio. In 

particular, we obtain that, due to the weights constraint, at the optimum, the Information Ratio 

often decreases when the manager is free to deviate more from the benchmark. 

 

Keywords: Tracking Error; Weights constraint; Portfolio Optimization; Information Ratio. 
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1 – Introduction 

 

Active portfolio manager performances are commonly measured relative to a benchmark. 

This is most often done through a Tracking Error, defined as the standard deviation of the 

difference between the fund and the benchmark’s returns. In such a situation, the fund 

manager sets a maximum value for the tracking error ex ante and maximizes an objective 

function such as the fund’s expected return1. Portfolio selection under a tracking error 

constraint has been studied in the literature. In particular Roll (1992) and Jorion (2003) have 

examined the deformation of the efficient frontier due to these tracking error constraints. 

Their solution for the constrained optimal portfolio can be expressed as the sum of the optimal 

portfolio in absence of the tracking error constraint plus a “self-financing” portfolio as defined 

in Korkie and Turtle (2002). 

Other restrictions on investment policies are commonly found in the contracts between 

investors and portfolio managers. Some of these restrictions state that the share of certain 

types of assets should be smaller, higher or equal to a given percentage. This type of 

restriction is called in this paper a portfolio weights constraint and writes mathematically: 

∑
∈

≤
Li

i wx , or ≥ w  , or = w  

where  is a set of restricted securities, xi is the weight in security i and w  is the given 

percentage.  

These constraints are often inherent to the fund policy and are often specified in the fund’s 

prospectus. For instance, an industry sector fund mainly invests in its corresponding sector; a 

fund dedicated to prudent investors may set an upper bound on its stock’s holdings or a lower 

limit on its holdings of governmental bonds and bills; stock funds restrict the share of non 

                                                 
1 Note that this problem is quite general. Indeed, when the portfolio returns are compared to a benchmark, even 
when the tracking error constraint is not explicit, the optimization of a “risk averse” manager involves a tracking 
error constraint. 
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stock securities whereas bond and money market funds restrict the stock’s share. For instance, 

US stock funds commonly include in their prospectus an obligation to hold less than 20% of 

non US stocks. Other funds restrict their investment in foreign securities. In fact, each 

“investment style” implies explicit or implicit constraints. These constraints appear worldwide 

and have been documented in the US context in Almazan et al (2004). 

Weights constraints can also be set by regulators. Although some of these regulatory 

restrictions have been softened in recent years, they still apply in many countries. Regulations 

are made more explicit in “bank-based” financial markets like in Japan, Germany, France, or 

Italy where quantitative rules constraining stocks, foreign securities, real estate holdings, 

derivative securities, restricted stock or private equity as well as other classes of assets are 

imposed. Some of these regulatory constraints are specific to the fund profile and are often 

redundant with the prospectus commitments which can be more (but not less) stringent2. In 

addition, funds with tax benefits or tax deferred funds are often subject to weight restrictions. 

For instance, in most European countries, ceilings on non European security holdings are 

imposed3. Another regulatory restriction (important, in particular for mutual funds) is on short 

sales. Although short sales constraints are particular weights constraints, hence our framework 

applies; we do not directly address them in this paper, mainly because we focus our analysis 

on the case of a single weights constraint. 

                                                 
2 For instance, in Switzerland the “two thirds rule” applies: depending on the fund category at least two thirds of 
the assets must pertain to the relevant geographical sector, class of assets or maturity. In France, a strongly 
regulated country, bond and money market funds cannot hold more than 10% of stocks and stock funds must 
hold at least 60% of stocks of their relevant geographical sector (France, Euroland, EU, Asia…). Similar rules 
apply in most European countries. As other examples, stocks cannot exceed 65% of the assets of life insurance 
funds in France, 35% in Germany, 20% in Italy. 
 
3 For example, in France, tax advantaged stock funds (PEA) must be composed at least of  75% of European 
stocks and other tax advantaged insurance funds (DSK, NSK) are subject to a floor involving European stocks 
and small caps,.. 
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Finally, portfolio managers and investors may be obligated to hold shares of a firm during a 

given period. These lock-in restrictions may be regulatory or non regulatory4.  

The subject of this article, which is portfolio allocation under benchmarking and weights 

constraints, has not been studied so far, to the best of our knowledge. However, simultaneous 

tracking error and weights constraints are often encountered in practice. Indeed, many fund 

managers, in particular sector fund managers whose performance is compared to the 

corresponding sectorial benchmark, must satisfy weights constraints imposing a minimum 

concentration in the corresponding sector. 

The first intuition could be that these two constraints are redundant, since the weights 

constraint imposes a concentration in a particular set of assets while the tracking error 

constraint imposes a maximum “distance” from an index representing this set. In fact, this 

first intuition is inaccurate as portfolio managers are often pointing out when complaining that 

the weights constraint limits their performance. Indeed, we show and explain in this paper that 

the weights constraint is usually different from the tracking error constraint and that both can 

be binding, even when the benchmark meets the weights constraint. On the one hand, when 

the tolerance of the fund manager towards deviation from the benchmark is high enough, by 

investing in a more diversified portfolio outside the sector, the performance can be enhanced. 

For instance, a high tech fund manager compelled to invest at least 90% in high-tech stocks 

whose performance is assessed towards a high-tech benchmark could eventually obtain a 

better mean-tracking error trade-off by investing only 70% of the portfolio in the high tech 

sector. On the other hand, the weights constraint can be met by investing in a portfolio that 

                                                 
4 For instance, SEC rule 144 forbids the incumbent shareholders to sell shares during the three months following 
an IPO. Such lock-in restrictions are also imposed to employees entering in an employee stock ownership plan, 
to firm managers who are granted restricted shares or stock-options…. Other “de facto” lock-in restrictions come 
from capital gain tax differentials between short term and long term investments, from the desire of individuals 
or families to keep control of companies... 
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could be 100% invested in the sector, but with very different weights than those of the index, 

therefore yielding a high tracking error.  

In absence of a weights constraint, the maximum obtainable ex ante Information Ratio -

defined as the ratio between the expected excess return and the tracking error (denoted TE) is 

independent of the level of the TE (see for instance Roll (1992) or Jorion (2003)). Hence, the 

Information Ratio (denoted IR) only depends on the ability of the fund manager to generate 

returns under a TE constraint (whatever the level of the constraint is), hence is a coherent 

performance measure. We show in this article that this is no longer true in presence of a 

weights constraint. In particular, an investor optimizing an expected return–tracking error 

tradeoff under a weights constraint does not necessarily choose the portfolio that maximizes 

the IR. Moreover, it often occurs that the weaker the TE constraint (the higher the TE 

allowed), the smaller the optimal IR. These results undermine the relevance of the Information 

Ratio as a performance measure. 

Portfolio optimization, the analytics of the efficient frontier and its computational issues have 

been extensively studied in the Finance literature. Deviations from the standard framework 

such as general linear constraints (for instance Markowitz (1959), Sharpe (1970)), short sales 

constraints (for instance Ross (1977) and Dybvig (1984)), benchmarking (for instance Roll 

(1992) and Jorion (2003)), VaR constraints (for instance Alexander and Baptista (2004) in the 

case of a standard mean-variance framework or Alexander and Baptista (2007) in the case of a 

mean-tracking error framework), drawdown constraint (Alexander and Baptista (2006)) 

mean-variance dynamic rebalancing (for instance Richardson (1989) and Bajeux-Besnainou 

and Portait (1998)), have also been studied. Our paper differs from this literature in that it 

addresses portfolio selection under both tracking error and weights constraints. 

Section 2 presents the general background and sets up an introductory example involving a 

weights constraint and the TE constraint. 
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Section 3 considers the case of an equality weights constraint and section 4 the case of an 

inequality constraint. In section 5, the loss and the reduction of the IR due to the weights 

constraint are evaluated, the coherence of the IR is questioned and an alternative performance 

measure is suggested. A numerical example that illustrates the main results of the paper is 

developed in section 6. Section 7 is a conclusion. 

 

2. Background and introductory example 

 

We present in 2.1 some known results about the efficient portfolios meeting a tracking error 

constraint. We introduce in 2.2 a weights constraint and analyze its implications through a 

simple numerical example. 

 

2.1 Definitions, notations and background results 

We consider a portfolio manager who can trade n risky assets (i = 1,…,n) but no risk free 

asset. The expected returns of risky assets are represented by a n-dimensional vector μ, which 

ith component is denoted μi. The variance-covariance matrix (n×n) of the returns on risky 

assets is V. A bold letter represents a vector or a matrix.’ indicates the transpose of a matrix 

or a vector; 1 is the unit vector with n components equal to 1. We note x a portfolio of risky 

assets and its corresponding vector of weights and μx its expected return.  

Recall the solutions of the optimization program when the performance is assessed against a 

benchmark (represented by a portfolio b). When the manager maximizes the expected return 

with a constraint on the tracking error TE (Roll’s problem), or equivalently, when he/she 

optimizes a mean-tracking error trade-off, his/her optimization program is: 

x
Max  μ’x, subject to (x - b)’ V (x - b) ≤ TE2 and 1’x = 1. 
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It is convenient to consider the deviation from the benchmark y  ≡ x - b and write this 

program in the equivalent and alternative form: 

(T)   
y

Max  μ’ y –
2
γ 'y V y ,      with: 1’ y = 0.  

where y  ≡ x - b is a self-financing portfolio5 (sum of the weights equal to zero), and the 

benchmark b is the “host portfolio” as defined in Korkie and Turtle (2002). In the sequel, self 

financing portfolios are referred as SF, are underlined. In the case of weights summing up to 

one, the portfolio is called “fully invested” (for instance x is the weights vector of a fully 

invested portfolio while y  is an SF weights vector). 

The “multiplier” γ  can be interpreted as a “risk aversion” parameter and the constraint states 

that the sum of the weights is equal to zero. 

The self financing portfolio y  represents the “active part” of the portfolio management (a 

purely passive allocation replicates the benchmark b, hence y  = 0). 

The solution of (T) is well known (see Roll (1992)) and writes: 

(1)     *y
θ  = θ  u   

where 

(2)                                                 u  = t − a, 

(3)                                                a =
1V'1

1V
1

1

−

−

 

is the standard minimum variance portfolio (fully invested) in the Markowitz framework 

(with no TE constraint),  

(4)                                                           t = 
μ

μ
−

−

1

1

V'1
V  

                                                 
5 Also referred as “arbitrage”, “zero-weight” or “zero-investment” portfolios. 
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is the portfolio that maximizes the Sharpe ratio (with no risk-free asset), or “standard tangent 

portfolio” (in the Markowitz framework)6 and: 

(5)     
γσ

μ
γ

θ 2

1μV'1

a

a==
−

 

Since θ  is inversely proportional to γ, the “multiplier” θ (which lies between 0 and +∞ for 

risk averse investors) can be interpreted as a “risk tolerance” parameter. In the following, μa is 

assumed positive, which is a standard assumption7. 

In equations (1), u is self-financing (SF). The solutions b + *y
θ

 for θ  positive are referred as 

T-portfolios and their representative points in the (σ, μ) space span the upper branch T of an 

hyperbola. In the Excess-Return space (expected excess return as a function of the tracking 

error), we consider the SF portfolios *y
θ

 and T becomes linear as it follows from (1) and as 

shown in Jorion (2003). 

More precisely, it follows from (1) that, in the excess return space, the T-portfolios 

corresponding to positive values of θ are represented by the semi-straight line stemming from 

the origin (representing portfolio b) with a slope equal to μu/σu, where μu and σu are 

respectively the expectation and the standard deviation of the return of u. Moreover, it is also 

convenient to represent the solutions of (T) corresponding to negative values of θ  (inefficient 

portfolios) by the semi-straight line T’ stemming from the origin with a negative slope equal 

to – μu/σu, symmetrical with respect the TE axis , as shown in Figure 1. 

In the sequel, we deal mainly with SF portfolios and all the geometrical figures are 

represented in the excess return space. 

 

                                                 
6 In the absolute return space, this tangent is drawn from the origin since there is no risk-free security. 
7 In presence of a risk-free asset, μa higher than the risk-free rate is an equilibrium condition. In absence of a 
risk-free rate, μa >0  is the realistic assumption; as pointed out in Green (1986), a sufficient but much stronger 
condition is that there is no SF portfolio with a non-negative correlation with all assets.   
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2.2. The addition of a weight constraint: introductory numerical example. 

We present in this section a simple numerical example that illustrates the impact of an 

additional linear constraint on the tracking error optimization program. This example shows 

the distortion of the solution and the reduction of the information ratio implied by the 

constraint. It also reveals a paradoxical consequence of the presence of a weights constraint: 

the Information Ratio may decrease when a higher tracking error is allowed. 

Assume that three securities are traded, numbered 1, 2 and 3 where 1 and 2 are domestic and 

3 is foreign. The benchmark is an equally weighted average of securities 1 and 2. The 

securities 1, 2 and 3 have expected returns respectively of 10%, 12% and 14%; standard 

deviations are all equal to 20% and the correlation between any two of them is equal to .5. A 

portfolio manager is compelled to a tracking error of 5% at most (program (T)). In addition, 

we also address the case in which he/she is also constrained to hold at least 90% of domestic 

assets (program Tracking-error with Inequality Constraint (TIC)). We can then write 

succinctly: 

(T)                   Max μx,  s.t. TEx ≤ 5%  ;   

(TIC)   Max μx , s.t. TEx ≤ 5% and x1+ x2 ≥ 90%  

where x1 and x2 are the weights in securities 1 and 2; μx is the expected return of the portfolio 

and TEx is the Tracking error. The objective of maximizing the expected return (or 

equivalently expected excess return) subject to a TE constraint is naturally associated to the 

Information Ratio (IR = expected excess return/TE) as a performance measure, which is 

analogous to the Sharpe ratio associated to the mean-variance optimization program.  

The solutions of (T) and (TIC) are represented in table 1. 

 x1 x2 x3 μx − μb IRx 

Solution of (T) 25% 50% 25% 1% 20% 

Solution of (TIC) 21.55% 68.45% 10% 0.77% 15.4% 
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Table 1 

The solution of (T) is obtained directly8 from equation (1). This portfolio yields an expected 

return of 12%. Since the benchmark yields 11%, the Information Ratio is 20%.  

This simple example shows that, although the benchmark satisfies the constraint, a rational 

manager would optimally invest in 25% of foreign security. When constrained to hold at most 

10% of the later (as in (TIC)), this constraint is binding.  In fact, the manager solving (TIC) 

chooses9 a portfolio composed of 21.55%, 68.45% and 10% in securities 1, 2 and 3 

respectively, yielding an expected return of 11.77%, which represents a loss of 23% in 

Information Ratio. 

Note that the Information Ratio does not decrease necessarily when the constraint on the 

tracking error softens. Indeed, assume that the tracking error is constrained to be smaller than 

8% (instead of 5%); the manager solving (TIC) with a constraint TEx ≤ 8% chooses a portfolio 

composed of 5.95%, 84.05% and 10% in securities 1, 2 and 3 respectively, yielding an 

expected return of 12.08% and an Information Ratio of 13.51% (instead of 15.40% with a 

constraint TEx ≤ 5%).  

This surprising result and its implication on the relevance of the Information Ratio as a 

measure of a constrained manager’s ability to generate expected returns are thoroughly 

discussed in section 5. In particular, we prove there that optimizing μ under an inequality 

constraint on TE is equivalent to maximizing IR under an equality constraint on TE (but not 

under an inequality constraint). 

 x1 x2 x3 μx − μb IRx 

Solution of (TIC) with TEx ≤ 5% 21.55% 68.45% 10% 0.77% 15.40%

                                                 
8 Note that there is a direct one-to-one relation between the risk aversion parameter θ and the tracking error 
target: TE = θσu.  
9 In this simple case of only 3 securities, (TIC) is solved through its two binding constraints, forming a system of 
two equations and two unknown, x1 and x2. 
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Solution of (TIC) with TEx ≤ 8% 5.95% 84.05% 10% 1.08% 13.51%

Table 2 

In this paper, we generalize this simple example and analyze in a general framework the 

impact of weights constraints and the corresponding loss in expected returns and information 

ratios.  

 

3. Tracking error with an equality weights constraint 

 

Although the case of an equality weights constraint is not frequent in practice10, it is a 

necessary technical step to address the most frequent case of inequality studied in section 4. 

After presenting the framework (common to the cases of equality and inequality) we study the 

analytics and the geometrical representations of the optimal solutions. 

 

3.1 Framework and notations 

We consider a subset of the n traded assets (for instance the first l securities of the list).  is 

called the set of “limited” or “restricted assets” because, in some cases, portfolios are 

constrained to a limited weight in assets . Let L1  be the n-dimensional vector whose ith 

component is either equal to 1, if asset i belongs to , or equal to 0 otherwise ( L1  is the 

indicator vector of the subset ). 

Generically, wx represents the weight of a fully invested portfolio on the limited assets and wy 

the weight of a SF portfolio on the limited assets; Therefore, wx = ∑
∈Li

ix = '
L1 x and wy = y1'

L . 

                                                 
10 Lock-in constraints, as mentioned in the introduction, would be an example of an equality constraint. 
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The weight constraint that may be imposed on the fully invested portfolio x states that wx is 

either equal to a constant w  or cannot exceed w 11; when ω stands for bww − , the constraints 

can be written for the SF active part, y = x - b , in function of ω:  

(ec) (equality constraint)   x y bw w w w w ω= ⇔ = − =  

(ic) (inequality constraint)   x y bw w w w w ω≤ ⇔ ≤ − =  

Note first that ω  can be positive or negative, most likely between -1 and +1 (since w  and wb 

are in most cases between 0 and +1). 

Note also that (ic) while written as a “cap-constraint” is equivalent to a “floor-constraint” 

written as ∑
∈Mi

ix w−> 1  on the subset  of securities, the “complementary set” of . Hence, 

without any loss of generality, in the sequel, we consider cap constraints only12. 

 

When an equality constraint (ec) is imposed on portfolio weights, which is the case 

considered in this section, the manager’s program writes, for a given value ω :  

     (TEC-ω)            
y

Max  μ’ y –
2
γ 'y V y ,  with: y1'  = 0  ;  ω=y1'

L  

The solution of program (TEC-ω) for a given weight ω is an SF portfolio representing the 

optimal “active part” of the asset allocation and is noted *

,
y

θω  (to be distinguished from *y
θ

 

which solves (T)). When the risk aversion γ  (related to θ  by (5)) is positive, *

,
y

θω  is referred 

as a TEC-ω portfolio. The solutions of program (TEC-ω) for γ negative (“inefficient” 
                                                 
11 The parameter w  is not bounded in our analysis, although, in practise, it would most likely be between 0 and 

1 as w <0 would constrain the portfolio to hold globally short positions in the restricted securities; while w >1 
would constrain the “unrestricted” securities to be globally held short. 
12 Note also that constraints (ec) and (ic) are particular cases of general linear constraints where L1  would be 
substituted by any vector of n. It would be a straightforward technical exercise to generalize the results of this 
paper to a general linear constraint. We choose not to do so, as we cannot think of any financial interpretation 
coming out of this generalization. 
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portfolios) are referred as TEC’-ω portfolios. In the expected excess return–TE space, TECω  

is defined as the set of points representing TEC-ω  portfolios (for a given ω and for all 

positive θ ) and TEC’ω  the graphical representation of portfolios  TEC’-ω  (θ  negative). We 

prove in 3.3 that TECω and TEC’ω are respectively the upper branch and the lower branch of 

an hyperbola.  

 

3.2 Analytical solution of (TEC-ω). 

Before deriving the solution of program (TEC-ω), we characterize in Lemma 1 a remarkable 

SF portfolio, the constrained minimum-tracking error portfolio satisfying the weights 

constraint. This portfolio, chosen by an investor with an infinite risk aversion γ  and 

compelled to satisfy the constraint ω=y1'
L  is denoted ωz . 

Lemma 1 

The weights vector ωz  of the constrained minimum tracking error portfolio which solves: 

y
Min  'y V y , with: y'1  = 0; '

L1 y  = ω ,   writes: 

(6)      ωz  = ω s 

with s =
ak ww −

− ak 13  and   
L

1
L

1

1V'1
1Vk −

−

=  

Besides, since μa is assumed positive, sμ and wu have the same sign, hence 
ω

μ z  and ω wu 

have the same sign. 

Proof: see the Appendix. 

 

                                                 
13 It is easily shown that kw  cannot equal aw  except when all assets are restricted; in this case the problem in 
meaningless.   
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Note that portfolios s and k are both independent of θ and of the constraint level ω (but not on 

the list of restricted securities characterized by L1 ), s is SF and k is fully invested. 

 

Note that s is the constrained minimum tracking-error SF portfolio with a weight ws on 

restricted assets equal to 1. Besides, it follows from (6) that the minimum-TE portfolios ωz  

are geometrically represented by two semi- straight lines14 stemming from the origin 

(representing the benchmark) and symmetrical around the TE axis, characterized in 

Proposition 3. 

Proposition 1 (proved in the appendix) characterizes the solution *

,
y

θω
 of program (TEC-ω). 

Proposition 1 

For any values of θ and ω, the solutions of (TEC-ω) are combinations of two self-financing 

portfolios u and s (both independent of ω and θ) and write: 

 (7)     *

,
y

θω
= (ω – θ wu) s + θ u 

Equivalently: 

(8)                                             *

,
y

θω
  = *y

θ
+ (ω −θ wu) s  

where *y
θ

= θ u is solution of program (T) as given in (1). 

 

Equations (7) and (8) lead to four different interpretations:  

First, (7) writes equivalently as *

,
y

θω
= ω s + θ (u −wu s) which expresses the solution *

,
y

θω
as a 

combination of two portfolios: the first one ω s, which is the constrained minimum tracking 

error portfolio ωz  with a weight ω in the restricted assets, is chosen by an investor with a zero 

risk tolerance. The second portfolio, θ (u −wu s) , has a zero weight on the restricted assets 

                                                 
14 Most likely two segments since -1 ≤ ω ≤ +1. 
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and provides for additional expected return at the expense of increasing the tracking error 

without changing the weight on restricted assets.  

Second, the previous decomposition shows a linear and separable impact of any change in the 

two parameters ω and θ on the solution *

,
y

θω
.  

Third, (7) implies a two fund separation, the two separating funds being portfolios u and s, 

which are independent of θ and ω (however, s depends on the list  of restricted assets). 

Besides, the weights allocated to the two separating funds do not sum up to one, which at first 

may not seem to be a problem since only self financing portfolios are involved, but actually 

raises some issues discussed in the interpretation of Proposition 2 of section 3.3. Moreover, 

the three funds b, s and u are necessary to span all the fully invested portfolios b + *

,
y

θω
 

solutions of (TEC), for all values of θ and ω. 

Fourth, equation (8) implies that any TEC-portfolio is obtained by adding to the 

unconstrained optimum portfolio *y
θ

= θ u solution of (T) a “fraction” ( )uwθω − of the self 

financing portfolio s. The addition of portfolio s is used to obtain the required weight ω. 

 

3.3. Geometrical representation of the solutions of (TEC-ω) 

Recall that the solutions *y
θ

 = θ u of the unconstrained program (T) are represented by the 

two symmetrical semi-straight lines T’ and T (as in Figure 1). Each T’-T portfolio corresponds 

to a particular value of θ and has a weight wyθ* on the restricted assets. T’-T is spanned 

clockwise by increasing θ (the weight in u increases). When θ increases from – ∞ to + ∞, wyθ* 

increases from – ∞ to + ∞  if   wu > 0, or decreases from +∞ to – ∞ if   wu < 0.  

Since wu is the difference wt – wa between the weights of restricted assets in the tangent 

portfolio and in the minimum variance portfolio, it may be positive or negative: intuitively, it 

is positive when the returns of the restricted assets have a high expected value and volatility 
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(more aggressive portfolios contain more restricted assets), and is negative otherwise. Since it 

is more common to restrict aggressive assets, wu is positive in most circumstances. 

Figures 1, 2 and 3 represent TECω , TECω' (forming a hyperbola as shown later), T and T’ 

when wu > 0, wu < 0 and wu = 0 respectively.  

Tracking error

detcepxE
ssecxe

nruter

b

 

Figure 1: T and TECω tangent frontiers in excess return space (wu > 0) 

gω 

zω 

TECω T 

T’ 

TEC’ω 
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Tracking error

detcepxE
ssecxe

nruter

b

 

Figure 2: T’ and TEC’ω tangent frontiers in excess return space (wu < 0) 

 

Tracking error

detcepxE
ssecxe

nruter

b

 

Figure 3: T and TECω frontiers in excess return space (wu = 0) 

 

T 

TECω 

TEC’ω 
T’ 

gω 

zω 

zω 

TEC’ω 
T’ 

TECω 

T 
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When wu > 0 or < 0 (Figures 1 and 2 respectively), the two frontiers TECω and T (or TEC’ω 

and T’) are tangent at point 
ω

g  which represents the unique solution of program (T) with a 

weight ω on the restricted assets. Indeed, as pointed previously, considering the different 

portfolios of T’-T when moving clockwise, the corresponding weight wy* increases (when wu > 

0), or decreases (when wu < 0), taking all values between −∞ and + ∞. Hence, there is a 

unique T’-T portfolio with wy* = ω. Since this portfolio solves program (T) and satisfies the 

weight constraint ω, it also solves (TEC-ω) and therefore is common to TECω and T (or 

TEC’ω and T’). This portfolio called the tangent portfolio and denoted 
ω

g  can be 

characterized using equation (7):  

(9)        
ω

g  = θω u ,  

with: 

(10)     θω = ω /wu 

 

Note that θω is the risk tolerance parameter of the unconstrained investor choosing the self-

financing portfolio 
ω

g  (which implies a weight ω on restricted assets). Since portfolio 
ω

g  is 

chosen by the unconstrained investor with a risk tolerance parameter θ = θω, it is efficient if 

θω ≥ 0 and inefficient (on the lower part of frontier T) otherwise15. 

Note also that the unconstrained SF optimal portfolio *

θ
y  can be generated by any single fund 

belonging to the frontier T. Selecting 
ω

g  as the generating fund of T and since (from (9)) u = 

ωθ
1  

ω
g , equation (1) yields: 

(11)     *y
θ

=   
ωθ

θ
ω

g . 

                                                 
15 Note that the terms “efficient” and “inefficient” refer here to the mean-tracking error space. 
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When wu = 0 (Figure 3), the two branches of the hyperbola generated by the solutions of 

(TEC-ω) are symmetrical around the TE axis and its two asymptotes are T’ and T. 

 

We can now state Proposition 2 which follows directly from equation (8), the definition of θω 

and the composition of 
ω

g :  

Proposition 2 

When wu ≠ 0, the solution of (TEC-ω) can be written as: 

(12)      *

,
y

θω
 = (1 − 

ωθ
θ ) ωz  + 

ωθ
θ

ω
g  

 

Equation (12) provides a « standard » two-fund separation. It expresses the solution *

,
y

θω
 of 

(TEC-ω), for any value of θ, as a combination of two funds ( ωz  and 
ω

g ), the sum of the 

weights allocated to these two funds being equal to 1; these combinations generate an 

hyperbola. Note that equations (7) and (12) provide two different forms of separation. In a 

way, (7) is a more general form of separation than (12) since it involves two SF separating 

funds s and u which are independent of both parameters θ and ω. The two separating funds 

are therefore common to all investors restricted on the same set  of assets, for any value of 

their risk tolerance θ and of the level ω of their weights constraint. However, as pointed 

previously, the sum of the two weights in s and u is generally different from 1 and such non 

convex combinations do not necessarily generate an hyperbola.  

 

There are three possible situations as far as the sign of ω is concerned: 

- ω = 0: the benchmark satisfies the equality constraint; 
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- ω > 0: the benchmark satisfies the inequality weights constraint but not the equality; 

- ω < 0: the benchmark does not satisfy the inequality constraint, which is unlikely16. 

For realistic values (ω ≥ 0), assumed in the rest of the paper, we characterize the set of 

hyperbolas TECω   in Proposition 3 (proved in Appendix). 

Proposition 3 

• For ω > 0 (case represented in Figure 4), the set of constrained frontiers TEC’ω-TECω, 

(when ω varies) is a network of hyperbolas characterized by: 

- Parallel asymptotes which slopes h and -h are given by:  

(13)      h= 2

2

2
s

s

a

au

σ
μ

σ
μμ −  

- The slopes of the two semi-straight lines stemming from the origin and symmetrical 

around the TE axis representing the minimum TE self financing portfolios ωz  are equal to: 

s

s

σ
μ± . 

• For ω = 0 (the benchmark satisfies the equality constraint), the constrained efficient frontier 

TEC0 is a semi-straight line stemming from the origin, which slope is the same as the slope 

h of the hyperbolas upper asymptote. 

 

Note that the slope h of the hyperbolas upper asymptotes is lower than the slope of the 

unconstrained frontier T ( 2
a

au

σ
μμ ), which implies that T intercepts the hyperbolas TECω (for 

all ω > 0). 

 

                                                 
16 Such a situation may prevail for instance when meeting the “constraint” is a condition for tax benefits which is 
not necessarily satisfied by the benchmark. 
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   4-a         4-b 
 

Figure 4: The locus of minimum tracking error portfolios zω  (4-a) and the network of 

hyperbolas TECω when ω > 0 (and wu > 0) with their parallel asymptotes (4-b) 

 

 

4. Tracking error with an inequality weights constraint 

 

In this section, we consider an inequality constraint (ic-ω) ( ω≤y1'
L ), most frequently 

encountered in practice. Recall that we assume ω ≥ 0 (equivalent to wb ≤ w ), which means 

that the benchmark satisfies the inequality weights constraint (the most realistic case). 

 

The optimization program then writes:  

      (TIC-ω)                 
y

Max  μ’ y  –
2
γ 'y V y ,    with: y1' = 0; ω≤y1'

L    

For a given value of ω  and any θ ≥ 0, the solutions are referred as TIC-ω portfolios and their 

geometrical representation in the expected excess return-TE space are referred as TICω. 

zω2 

zω1 

  
                         
  Locus of  zω 

gω2

gω1 

zω1

zω2

 
             
Asymptotes 
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Note that the weights constraint (ic-ω) is either binding (in this case, it satisfies the equality 

constraint and the solution *

,
y

θω
 derived in the Proposition 1 holds), or not binding and the 

unconstrained optimum *y
θ

 given in (1) prevails. 

More precisely, the constraint (ic) is not binding if and only if the unconstrained optimum 

satisfies the weights constraint: θ '
L1 u ≤ ω, or equivalently:  

(14)                                     ω ≥ θ wu  

When wu ≠ 0, inequality (14) can also be written, depending on the sign of wu: 

(15)               
uw

ωθ <   (or ωθθ < ) if wu > 0   

(w increases with θ  when moving clockwise along T); or: 

(16)                
uw

ωθ ≥  (or ωθθ > ) if wu < 0  

(w decreases with θ  when moving clockwise along T).   

Recall that wu is the difference wt – wa between the weights of restricted assets in the tangent 

portfolio and in the minimum variance portfolio and that its sign is probably more often 

positive than negative although we cannot discard a negative sign.  

When wu < 0, since ω ≥ 0 and θ ≥ 0, the condition of equation (16) is always satisfied which 

means that the weights constraint is always unbinding and that TICω is the same as T. 

We characterize the TIC-ω portfolios (for θ > 0 and ω > 0) in proposition 4: 

Proposition 4 

Assume ω ≥ 0 and θ ≥ 0.  

• If wu > 0 the solution of (TIC-ω) writes: 
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(17)     
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧
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u
u

u

w
w

w
ωθθωθ

ωθθ

θω

θω

for

for

*

,

*

,

suy

uy
  

These TIC-ω portfolios are represented, in the excess return –TE space, by the segment [0, 

ω
g ] of T and the right branch of TECω , tangent at point 

ω
g  (see Figure 5). 

• If wu ≤ 0 , the constraint (ic-ω) is not binding, the unconstrained optimum satisfies the 

constraint and the solution of (TIC-ω) writes: 

(18)      *

,θω
y  = θ u           for   0≥θ  

The TIC-ω portfolios are represented, in the excess return-TE space, by the frontier T (see 

Figure 6). 
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Figure 5: Efficient portfolios in the case of an inequality constraint (wu > 0) 

 

gω 

zω 

T’ 

TICω 
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Figure 6: Efficient portfolios in the case of an inequality constraint (wu < 0) 

 

Note that, when wy* is higher than the ceiling ω,  portfolio s is added in order to lower this 

weight and meet the inequality constraint. When wy* is smaller than ω, the inequality 

constraint is not binding and the unconstrained optimum *
θ

y  solves (TIC-ω). 

 

5. Loss assessment, Information Ratios and graphical interpretations 

 

In this section, we evaluate the loss due to the weights constraint and its impact on the 

Information Ratio and question its legitimacy as a performance measure in presence of a 

weights constraint. 

Two different approaches are possible depending on the considered optimization program:  

- In the first approach (followed in the previous paragraphs), we consider the optimal trade-off 

between the expected excess return and the TE for a given individual, characterized by his/her 

zω 

gω 

TEC’ω 

TECω 
TICω = T 

T’ 
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risk aversion parameter γ  and an objective function μ’ y  –
2
γ 'y V y . This is the approach 

followed in 5.1 where the loss due to the weights constraint is defined as the decrease in the 

value function due to the constraint.  

- In the second approach, which is more relevant for many asset managers, the level TE of 

Tracking Error is set in the fund’s policy and the manager maximizes the expected return 

under a Tracking Error constraint (in the presence or the absence of a weights constraint). 

These two approaches are mathematically equivalent. In 5.2, we follow the second approach 

and compute the information ratios with and without the weights constraint.  

The relevance of the Information Ratio as a performance is questioned in 5.3. In 5.4., we 

consider an alternative definition of the Information Ratio and of the Tracking Error which 

implies similar results. Finally, in 5.5, we introduce a new definition of a performance 

measure under tracking error and weights constraints 

  

5.1. Optimal trade-off between expected excess return and tracking error: loss analysis 

The fund manager maximizes the objective function yVy
2

yμy '')Φ( γ−=  that can be 

interpreted as a certainty equivalent excess rate of return.  

The loss L(ω) due to the equality weights constraint (ec-ω) is measured by the decrease in the 

certainty equivalent excess rate of return. It depends on the risk aversion parameter γ or, 

equivalently, on the risk tolerance θ and writes: )Φ()Φ()( *

,

*

θωθ
ω yy −=L . 

In the case of an inequality weights constraint, the constraint is either binding and the loss is 

L(ω), or not binding, and there is no loss. Therefore, we only address the case of an equality.  

Proposition 5 (proved in the Appendix) provides a simple expression of this loss: 

Proposition 5: 
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The loss L(ω) in certainty equivalent return is given by equation (19) and is proportional to 

the square of the difference between the required weight ω and the unconstrained optimal 

weight 
θ*yw : 

(19)                                               L(ω) = 
2

2

2

*
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ

ω
σ
σ

θ
μ

y
a

sa w  

where 
θ*yw = θ wu 

 

5.2. Impact of a weights constraint on the information ratio (IR) 

The optimization program of the manager considered in this section writes: 

Mean-TE tradeoff:  
y

Max  μ’ y , with: 'y V y ≤  TE2, with or without (ec-ω) or (ic-ω). 

Since the constraint on the tracking error is binding at the optimum we can write this Mean-

TE  tradeoff as: 

y
Max μ’ y , with: 'y V y  = TE2, with or without (ec-ω) or (ic-ω). 

We assume that TE ≥ ωσs (= ω
σ z the minimum tracking error obtainable), which is a necessary 

and sufficient condition for the existence of a solution. The performance of an active asset 

manager who tries to outperform a benchmark under a TE constraint is often assessed through 

an Information Ratio IR defined as the Expected excess return divided by the Tracking Error 

TE. An alternative definition of the Information Ratio is considered later on.  

Since the Information Ratio IRy is equal to μ’ y /TE, for any given value of TE the Mean-TE 

program defined above is equivalent to the following IR-TE maximization program: 

(IRTE)  
y

Max  IRy, with: 'y V y = TE2 , constrained or not by (ec-ω) or (ic-ω). 
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This program must be carefully distinguished from the IR-TE trade-off: 
y

Max  IRy, , with: 

'y V y ≤ TE2 , constrained by (ec-ω) or (ic-ω). Indeed, as pointed out in the introductory 

example and shown in section 5.4., this last program may yield one or an infinity of interior 

solutions which do not optimize the Mean-TE tradeoff ; in this respect, the Mean-TE and the 

IR-TE tradeoffs are not equivalent. We consider thus (IRTE) whose solution will be qualified 

as the “optimal IR” (from the viewpoint of the mean-TE trade-off). 

A binding weights constraint lowers the Information Ratio. The impact of the weights 

constraint on the Information Ratio is characterized in Proposition 6 (proved in the 

Appendix). We consider only the most realistic cases when the benchmark satisfies the 

inequality constraint but not the equality. 

 

Proposition 6 

• In absence of a weights constraint, the optimal IR is independent of TE and writes: 

(20)                                                 2
*

**

a

au

y

yIR
σ

μμ
σ
μ

==         

• In presence of an equality weights constraint, the optimal IR depends on ω  and TE: 

(21)                                                 
TE
TEh

TEIR ss
222

* )(
σωωμ

ω
−+

=     

When wu  > 0, )(* TEIRω  first increases with TE to its maximum value IR* and then decreases 

to its asymptotic value h; when wu ≤ 0, it increases asymptotically to h. 

• In presence of an inequality constraint, the optimal IR writes: 

        IR* for TE ≤ TE (
ω

g ) 

        )(* TEIRω  for TE > TE(
ω

g ) (the tracking error of 
ω

g ); in this case, )(* TEIRω  < IR*. 

This optimal IR always increases with ω. 
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Recall that 22
s

s

a

auh
σ
μ

σ
μμ −= is the slope of the upper asymptotes of the hyperbolas TEC-ω . 

Recall also that, as stated in Lemma 1, zω = ω s , sμ and wu have the same sign and that we 

assume ω > 0. The expressions of sμ and sσ are given in the Appendix. 

 

Proposition 6 has several theoretical and practical implications, in particular on the relevance 

of the Information Ratio as a performance measure; these implications are studied in 5.3. 

 

5.3 Limits of the Information Ratio as a performance measure 

Proposition 6 characterizes the relation between the Information Ratio and the Tracking Error. 

In absence of a weights constraint, according to equation (20), the maximum Information 

Ratio IR* is independent of the level of the tracking error TE set in the fund’s policy. This 

result is also a direct consequence of Roll (1992) and Jorion (2003) analysis, since T (Figure 

1) is a semi-straight line starting at the origin and with a slope equal to IR*. It means that the 

Information ratio IR* of the manager: 

- only depends on his/her technical ability; 

- cannot be improved with more flexibility by allowing a higher tracking error; 

- is a theoretically meaningful tool for comparing the performances of two funds 

tracking the same benchmark, even if the funds operate under different tracking errors.  

 

In presence of a weights constraint (equality or inequality), according to Proposition 6, the IR 

chosen by the manager depends on the tracking error TE as well as on ω  and . In particular, 

an individual, managing two different funds constrained by different tracking errors operates 

under two different Information Ratios. This “duality” prevails even if these two funds track 
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the same benchmark and face the same weights constraint (characterized by the same 

restricted assets  and the same ω). Τherefore, the Information Ratio becomes a spurious ex-

ante measure of the technical ability of the fund’s manager.  It is thus important to stress that, 

in presence of a weights constraint, it may be theoretically flawed to compare on the basis of 

their Information Ratios17, the performances of two funds operating under different values of 

ω or TE.  

As stated in Proposition 6, the optimal IR increases with ω in the case of an inequality 

constraint. This intuitive result is easily obtained from program (IRTE): when relaxing the 

weights constraint (increasing ω) the value function (optimal IR) increases. This result 

questions the legitimacy of using IR for comparing the performance of two funds with 

different constraint levels (and the same TE). However, we focus on the impact of TE on the 

optimal IR, as it not only challenges the relevance of the IR but also implies a result that may 

be considered counter-intuitive: the optimal IR may decrease with a less stringent (higher) 

Tracking Error. Therefore, we study the optimal IR and its graphical representation as a 

function of TE (for given  and ω), first in the case of an equality constraint and then in the 

case of an inequality. 

 

• In the case of an equality weights constraint (ec-ω), the dependence between the optimal 

IR and the tracking error goal is characterized by the function *
ωIR (TE), given by (21). Its 

graphical representation can be interpreted as the efficient frontier in the TE-IR space and 

depends on  and ω. The shape of this efficient frontier depends on the sign of wu, or 

                                                 
17 In fact, the performance measure is an “ex post” or “empirical” Tracking Error RI ˆ , which is an estimator of 
the “true” but unobservable parameter IR. In addition to the theoretical problem raised in this paper (the 
estimated parameter IR is not necessarily relevant), well known statistical problems come from the volatility of 
the estimator ( RI ˆ ), which implies that many years are necessary to estimate IR with some confidence. These 
important statistical problems are beyond the scope of this paper. 
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equivalently on the sign of the return μzω of ωz  (the minimum TE portfolio satisfying the 

weights constraint), as stated in proposition 6 and shown in Figures 7 and 8. 

  

- If wu > 0 (roughly, if restricted assets are more volatile), the information ratio increases 

with TE until it reaches the unconstrained information ratio IR* and then decreases towards 

its asymptotical value h, as shown in Figure 7. This result can be obtained from simple 

geometric considerations. Indeed, assume 0>uw  and consider any point y  of the frontier 

TECω represented in Figure 1. The slope of the segment [0, y ] is equal to IR( y ). From 

Figure 1, this slope first increases with TE until it reaches the slope of the segment [0, 
ω

g ] 

(which is equal to *IR ) and then decreases (asymptotically towards h as shown in Figure 4). 

This result contrasts with the constant *IR  (due to the linearity of T) in absence of weights 

constraint; it is a direct consequence of the concavity of TECω. In this case, the manager 

chooses the maximum IR attainable only if her/his TE goal corresponds to the tracking error 

of the tangent portfolio 
ω

g  (characterized in 3.3). Note that a given manager does not 

always choose a higher Information Ratio when allowed a higher TE: beyond TE(
ω

g ), even 

though a higher TE softens the constraint and increases the expected return μ’ y , it 

decreases the value function μ’ y /TE of program (IRTE). Since the optimal ex-ante 

(theoretical) Information Ratio depends on TE, it is very questionable to assess assets 

managers’ performances on the basis of their ex-post (empirical) Information Ratios. 
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Figure 7: Information ratios in the case of an equality constraint (wu > 0) 

 

- If wu < 0 (roughly, if restricted assets are less volatile), the information ratio 

increases steadily with TE towards its asymptotical value h as shown in Figure 8. In 

this case, we get the intuitive result that the optimal Information Ratio increases when 

a higher tracking error is allowed. This result can be obtained geometrically from 

Figure 2. However, it is still questionable to rank different constrained funds on the 

basis of their Information Ratios, since a higher IR may simply mean that the manager 

operates under a higher TE.  

- If wu = 0, the unconstrained information ratio IR* is equal to the asymptotical value 

h, 0=
ω

μ z  and the information ratio increases with TE from 0 to IR*.  The graphical 

representation is analogous to that of Figure 8, where h = IR* and 0=
ω

μ z . 

Note that the solution of 
y

Max  IRy, with: 'y V y ≤ TE2, constrained by (ec-ω) yields the 

interior solution 
ω

g . 

                                     
    Asymptote 

zω 

gω 

T 

TECω 

 
               

*IR  

 
                                      
h 
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Figure 8: Information ratios in the case of an equality constraint (wu < 0) 

 

• The case of an inequality constraint (ic-ω) is the most frequently encountered and we only 

consider a benchmark satisfying this constraint.  

- When wu > 0 (Figure 9), the optimal Information Ratio is constant and equal to IR* for 

values of TE lower than TE(
ω

g ) and decreases towards its asymptotical value h when TE 

increases beyond TE(
ω

g ). 

Note again that, in the range of TE values where the Information Ratio decreases with TE, it 

is fallacious to use Information Ratios to assess and compare the performance of different 

funds if they operate under different values of TE. Besides, we obtain again that the higher 

the tolerance to deviations from the benchmark, the smaller the optimal IR. We may give 

the following intuitive explanation of this result: when the weights constraint is not binding 

the optimal IR is constant and a binding weights constraint decreases its value; but the 

zω 

T 

TECω 

 
                                      
 

*IR   
                                      
h 
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weights constraint is relatively more restrictive when the TE bound is larger; hence the 

optimal IR decreases with TE.  
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Figure 9: Information ratios in the case of an inequality constraint (wu > 0) 

 

- When wu < 0, according to Figure 6, the Information Ratio is constant and equal to IR*. 

Note that in this case, the Information Ratio remains an adequate measure of portfolio 

performance. 

- The case wu = 0 is analogous to the case wu < 0 but with IR* = h. 

Note that the solution of 
y

Max  IRy, with: 'y V y ≤ TE2, constrained by (ic-ω) is indeterminate 

(as shown in Figure 9, any (TIC-ω) portfolio with TE ≤ Min(TE(
ω

g ),TE) solves the program). 

 

5.4. An alternative definition of the Information Ratio 

Note that two alternative definitions of the Information Ratio and of the Tracking Error are 

commonly used (see for instance Goodwin (1998)). In this paper, it is the ratio between the 

zω 

gω 

T 

TECω 

TICω 

 
                                      
 

*IR  

 
                                      
 
 
 

h 
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Expected Excess Return and the Tracking error TE being defined as the standard deviation of 

the excess return. These definitions (see for example Roll (1992) and Jorion (2003)), are used 

respectively as a measure of “global” performance of the portfolio and as a measure of the 

“distance” to the benchmark. IR measures the global performance (stock picking and market 

timing due to a beta18 different from 1) and the associated TE is the “total distance” of the 

portfolio return to the benchmark return Rb. This definition, that does not rely on any factor 

model is the one used in our paper for different reasons specified hereafter.  

An alternative definition of the Information Ratio and Tracking error is based on a regression 

of the return of the portfolio on the return of the benchmark. IR’ is then the ratio of the alpha 

of the portfolio by the non-systematic risk of the portfolio and TE’ is a measure of specific 

risk: IR’ = α/σ(ε) and TE’= σ(ε)19. These definitions are broadly used by practitioners and 

academics, in particular for performance analysis. IR’, also commonly called Appraisal Ratio 

measures the stock picking performance. It is associated with the partial distance to the 

benchmark TE’= σ(ε).  Therefore, it does not account for the excess returns due to leverage 

(β≠1) that may be interpreted as a consequence of market timing. These two alternative 

definitions only coincide when β =1.  

In our framework, we could have used one definition or another. We chose the first one 

mainly because it fits better the basic problem at hand: a manager is committed to a maximum 

“total distance” TE to the benchmark and tries to maximize the expected return by all means 

(stock picking and betas different from 1). However, substituting Rb by βRb, and considering 

the maximization of α subject to a constrained TE’, all of our results hold (βRb can be 

considered as a “pseudo” benchmark). 

 

                                                 
18 Defined as the regression coefficient of the portfolio return against the return of the benchmark. 
19 When using an index model, ε  is the residual noise and α is the “abnormal” return (a la Jensen). 
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5.5. The Adjusted Information Ratio: An alternative performance measure under tracking 

error and weights constraints 

We look for an alternative and unambiguous performance measure in order to overcome the 

problem of an optimal IR that varies with the tracking error TE and the constraint level ω.  

From equation (7), subtracting the minimum tracking error portfolio ωz  to the optimal 

solution *
,θω

y  of (TEC-ω), we get: 

(22)     *
,θω

y – ωz = θ (u - wu s) 

Consider the Information Ratio of portfolio *
,θω

y – ωz ; according to equation (22), this ratio is 

equal to 
swu

swu

u

u

−

−

σ
μ

and is independent of the risk tolerance parameter θ, or equivalently of the 

Tracking Error goal. It is also independent of the level of the constraint ω, but depends on the 

set  of restricted assets, since portfolio s depends on these particular assets through 1L. 

We call “Adjusted Information Ratio” or “Asymptotic Information Ratio” (for reasons 

detailed below), of a portfolio y  subject to a weights constraint, the Information Ratio of the 

portfolio *
,θω

y – ωz . The “Asymptotic IR” can be interpreted by considering an “adjusted 

benchmark”: b + ωz . Among the fully invested portfolios satisfying the equality weights 

constraint, b + ωz  is the “closest” to the benchmark (it minimizes the tracking error, satisfies 

the equality constraint, and thus the corresponding inequality constraint). The active part of 

the portfolio management process may be defined with respect to this adjusted benchmark. 

The asymptotic IR is the standard Information Ratio computed against the adjusted 

benchmark. 
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Let AIR = 
swu

swu

u

u

−

−

σ
μ

be the maximum adjusted IR attainable under any weights constraint 

involving the set of restricted assets 20. Since AIR is independent of θ as well as of ω, it is 

theoretically valid for comparing the performances of different funds subject to different 

constraint and TE levels. 

The value and the geometrical interpretation of AIR are given in Proposition 7 (proved in the 

Appendix).  

 

Proposition 7  

The Adjusted Information Ratio AIR is equal to the slope of the asymptotes of TECω and 

equal to the asymptotical constrained information ratio: 

(23)      AIR = h 

 

This result can be related to Figure 4: the hyperbolas TECω have a common slope, 

independent of ω, which is the IR of the portfolio with an infinite tracking error as well as the 

AIR. Hence, the asymptotical IR must be equal to the common slope of these asymptotes. 

Although this approach is theoretically appealing, the computation of the empirical AIR 

(which is the suggested “ex post” performance measure) raises a practical problem. Indeed, 

contrary to the benchmark which is an observable portfolio, the adjusted benchmark is not 

observable, since the composition of ωz  depends on non observable parameters. However, the 

only unobservable input necessary to construct ωz  is the matrix of variance-covariance V (as 

opposed, for example to portfolio u for which expected returns are also needed) and V can be 

estimated from historical returns using standard methods. 

                                                 
20 The dependence of the AIR on  is not a major problem since, in most cases, the restricted assets are 
unambiguously related to the benchmark (when the benchmark is a domestic index the restricted assets are the 
foreign securities, the stock funds are constrained on non stock assets …).  
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6. Numerical example 

We consider 7 traded securities (or asset classes), corresponding to 5 domestic ( dx1 ,…, dx5 ) 

and 2 foreign assets ( fx1 , fx2 ). Their expected returns μ and standard deviations σ  are: 

 

 dx1  dx2  dx3  dx4  dx5  fx1  fx2  

μ 12% 11% 12% 12% 14% 16% 17% 

σ 22% 35% 25% 20% 35% 20% 28% 

Table 3 

 

The correlations between any two domestic assets as well as the correlation between the two 

foreign assets are equal to .3. The correlation between a domestic and a foreign asset is equal 

to .2. The benchmark is an equally weighted average of domestic assets. It follows from 

standard computation that wu = wt - wa = 15.44%, which is positive.  

 

We consider a portfolio manager in charge of two different funds, with the same benchmark 

but bound by two different tracking errors respectively equal to 5% and 10%. Program (T) 

implies an unconstrained optimal IR (IR*), equal to 23.14%, for any values of θ or TE. 

Assume now that in both funds, the sum of the weights on foreign assets is constrained to be 

smaller than 20%. The optimal allocation for both tracking errors is presented in Table 4. 
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 dx1  dx2  dx3  dx4  dx5  fx1  fx1  μ σ (x-b) IR 

 

IR* = 23.14%   ;   AIR = 8.25%   

b 20.00% 20.00% 20.00% 20.00% 20.00% 0.00% 0.00% 12.20% 0.00% 0.00% 

zω+b 14.28% 18.54% 15.93% 12.71% 18.54% 13.63% 6.37% 13.05% 3.93% 21.62% 

gω+b 13.80% 16.09% 15.49% 12.18% 22.44% 11.52% 8.48% 13.17% 4.20% 23.14% 

 

TE = 5% 

T 12.62% 15.35% 14.64% 10.70% 22.91% 13.70% 10.08% 13.36% 5.00% 23.14% 

TIC 13.27% 13.48% 15.02% 11.62% 26.61% 9.28% 10.72% 13.30% 5.00% 22.09% 

 

TE = 10% 

T 5.24% 10.70% 9.28% 1.40% 25.81% 27.41% 20.16% 14.51% 10.00% 23.14% 

TIC 11.28% 3.52% 13.23% 9.47% 42.51% 0.70% 19.29% 13.81% 10.00% 16.08% 

Table 4 

Following first the approach of 5.1 (certainty equivalent excess returns), we consider a given 

risk tolerance parameter θ. The tracking error of 5% is chosen by a manager with a risk 

tolerance parameter θ equal to 1.54 (see footnote 8). The decrease in the value function 

implied by the constraint is given in Proposition 5 (equation (19)). The solution of the 

unconstrained program (T) yields a value for the objective function equal to .578% (which is 

a certainty equivalent excess return). When the same portfolio manager is constrained to hold 

20% of foreign assets at most, the value function of (TIC-ω) is equal to .566%. It roughly 

represents a loss of 1.2 basis points in return, which is very small in this example. 

 

Following now the approach of 5.2 (Information Ratios), we consider a portfolio manager 

solving (T) and (TIC-ω) with a tracking error constraint at a given level TE and assess the 

impact of the weights constraint on the Information Ratio. Since wu is positive, we are in the 
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situation of Figure 9: due to the weights constraint, when TE is greater than 4.20% (which is 

TE(
ω

g )) and increases, the Information Ratio decreases towards its asymptotical value 

8.25%. When the portfolio manager is restricted to a tracking error of 5% at most, the solution 

of (T) does not satisfy the inequality constraint, which is thus binding for program (TIC). 

Then, the solution of (TIC) yields an expected return of 13.30%, which implies a decrease of 

the Information Ratio from 23.14% to 22.09%. When the tracking error constraint is 

weakened from 5% to 10%, the optimal Information Ratio decreases about six times more, 

from 22.09% to 16.08%. As pointed in paragraph 5.3, the Information Ratio is an inadequate 

measure of performance. Indeed, the same manager ends up with very different values of IR 

when managing, with the same skills and efforts, different funds constrained by the same 

restricted assets, at the same level ω. 

 

This example shows also that, even when the impact of the weights constraint on the value 

function (optimal certainty equivalent excess return) is very small, its impact on the optimal 

Information Ratio can be very significant. Moreover, the better the return-TE tradeoff (the 

higher the certainty-equivalent return), the smaller is the IR. 

The alternative performance measure, the AIR, is equal to 8.25% for all values of θ (or TE) 

and ω; it only depends on the manager’s skills, not on the constraints levels. 

 

7. Concluding remarks and extensions 

 

In many situations a minimum concentration in a subset of securities is required and the 

portfolio performance is assessed against a benchmark often composed of these securities. 

This article analyzes the consequences of a weights constraint on benchmarked asset 

allocation. It presents three different sets of results:  
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- Separation results: in particular, the active part of all optimal portfolios is a combination of 

the same two funds u and s for any value of the risk tolerance parameter θ and any level ω of 

the weights constraint, for a given set of restricted assets . 

- The analytics and the geometry of the efficient frontier in the excess return-Tracking Error 

space: when the weights constraint is not binding, the efficient frontier is linear and 

hyperbolic otherwise. In case of an inequality constraint, it is thus generally composed of 

successive linear and hyperbolic segments. 

- The influence of the weights constraint on the optimal Information Ratio: in the inequality 

constraint case, the optimal IR increases when the weights constraint softens (higher ω ) and 

decreases, in most cases, when TE increases beyond a threshold. Moreover, even when the 

weights constraint has a very small impact on the certainty equivalent excess return, it can 

change the IR dramatically. This undermines the appropriateness of the Information Ratio as a 

performance measure. We suggest an alternative performance indicator, the Adjusted 

Information Ratio, which avoids most of the theoretical drawbacks of the standard IR at the 

cost of a more complicated estimation of this performance measure.    

 

The results obtained in this article can be extended in different directions. A first possible 

extension is the inclusion of a risk-free security among the traded assets. The presence of a 

risk free asset does not change the results substantially. The unconstrained efficient frontier is 

again a straight line, but with a higher slope and the constrained frontier is still an hyperbola 

(in the case of an equality constraint), or a combination of linear or/and hyperbolic segments 

(in the case of an inequality constraint). A second possible extension of our analysis is the 

introduction of multiple weights constraints. Consider for instance the case of two compatible 

equality constraints: 1L1’ y  = ω1 and 1L2’ y  = ω2. From the previous results, the solutions of 

the two optimization programs span two hyperbolas TECω1 and TECω2. The curve 



 42

representing the solutions of the optimization program with the two binding constraints 

TECω1ω2 is an hyperbola tangent to TECω1 and TECω2. With more constraints, a network of 

such tangent hyperbolas is obtained. 
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Appendix 

 

Notations 

We define the following scalars: 

 

and the (fully invested) portfolio structures: 
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Proof of Lemma1: 

The minimum tracking error portfolio ωz  solves: 

y
Min  'y V y  s.t. y'1  = 0  and  '

L1 y  = ω  

Using Lagrange multipliers, the program can be rewritten as 

μV11V11V11V1μVμμV1 1
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1
L

1
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111 −−−−−− ====== '''''' FEDCBA
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y1y'1yV'y '
Ly

νλ −−Min  

where λ  and ν are the multipliers. The standard first-order conditions are: 

(A1)     ( ) ( ) kaV211V21z 11 βανλ
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From (A2) and (A3) and using (A1) we obtain: 
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Substituting for α  and β  from (A4) into (A1), we obtain: 
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ak ww

 

From (A5), we obtain: 

(A6)     2
susz Aw σωωμμ

ω
==  

Since aμ  is assumed positive A is positive and wu and sμ  have the same sign. When the 

benchmark satisfies the inequality constraint ( 0>ω ), wu and 
ω

μ z  have the same sign.  

 

Proof of Proposition 1: 

Using Lagrange multipliers, TEC-ω can be rewritten as 

y1y1yVyyμ Ly
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where λ  and ν are the multipliers. The standard first-order conditions are 
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It follows from (A7) that: 
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and by substituting for λ  and ν  from (A11) into (A10) and rearranging: 
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Proof of Proposition 3: 

• It follows from (A12) that: 
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Note that (A14) applied to 0=ω  (when the benchmark satisfies the equality constraint) 

implies that ( )suu w
A

μμθ −
2

 is the variance of  *
,0 θ

y  and is therefore positive.  

Then, 222
*

,
ωσσ

θω sy −  is positive, we can take its square root and (A13) and (A14) lead to the 

equation of the efficient frontier TEC-ω: 
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For 0≠ω  (A15) is the equation of the upper branch of an hyperbola. For 0=ω  (in this case 

the benchmark satisfies the equality constraint) the efficient frontier is a straight line. 

Asymptotically, we can write: 
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The minimum tracking error SF portfolios are thus located on a straight line. 

 

Proof of Proposition 5: 

u
2
yy μAμ *
θ

*
θ 22

θσ
θθ

=−=)y( *Φ  

(A13) and (A14) lead to:  

(A19)    LσAμ 2
yy *

θω,
*
θω,

−=−= )y()y( **

, θθω θ
ΦΦ

2
 

where  

(A20)    
2

2

22
2

*22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

θ
ω

σ
σ

θ
μθωσ

θ y
a

sa
us wwAL  

 

Proof of Proposition 6: 

From (A15), we obtain: 
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Standard calculus shows that, when 0>uw , ( )TEIR*
ω  is maximum and equal to IR* for 
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ω

μω gTE
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u

==  and that its limit at positive infinity is equal to h. These results are 

also easily obtained geometrically: Figure 1 shows that the slope of the semi-straight line [0, 

*

,
y

θω
] (which is equal to *

ωIR ) increases with TE until it reaches the slope of the semi-straight 

line  [0, 
ω

g ] (which is equal to *IR ) and then decreases. The results for 0≤uw  are obtained 

geometrically from Figure 2 which shows that the slope of the semi-straight line [0, *

,
y

θω
] 

increases with TE when the latter increases from )z( ωTE  to infinity. 

Finally, in the case of an inequality constraint, the optimal IR increases with ω since it is the 

solution of program (IRTE) which itself increases when the tracking error constraint is 

softened (i.e. when TE increases). 

 

Proof of Proposition 7: 

From (A12), we obtain: 
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From (A23) and (A24), we have:  
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