SLINK: An optimally efficient algorithm for the

single-link cluster method
! R. Sibson

King's College Research Centre, King's College, Cambridge, and Cambridge University

Statistical Laboratory

The SLINK algorithm carries out single-link (nearest-neighbour) cluster analysis on an arbitrary
dissimilarity coefficient and provides a representation of the resultant dendrogram which can
readily be converted into the usual tree-diagram. The algorithm achieves the theoretical order-of-
magnitude bounds for both compactness of storage and speed of operation, and makes the application
of the single-link method feasible for a number of OTU’s well into the range 10° to 10%. The algorithm
is easily programmable in a variety of languages including FORTRAN.

(Received January 1972)

1. Background

The single-link, or nearest-neighbour, cluster method is one of
the oldest methods of cluster analysis; it was suggested by
workers in Poland in 1951 (Florek et al., 1951a, b) and
independently by McQuitty (1957) and Sneath (1957). Its
obvious disadvantage—the ‘chaining’ effect—has long been
well known, and has prompted the invention of many other
cluster methods of either a hierarchic or a non-hierarchic
(overlapping) kind ; see Lance and Williams (1967) and Jardine
and Sibson (1971). These methods also have their disadvan-
tages. The alternative hierarchic methods have been criticised
by Jardine and Sibson for lack of continuity, which they regard
as being a far more severe defect than the chaining effect in
many applications; it is also difficult to see how most of these
methods could be programmed for more than a few hundred
OTU’s. Many problems with a large set of OTU’s turn out on
inspection to be distribution-mixture problems, rather than
cluster-analysis problems in the strict sense in which the OTU’s
do not constitute a random sample from some larger popu-
lation. Nevertheless there are many problems for which a
large-scale cluster method is needed: this paper shows that the
single-link method can be programmed efficiently enough to
meet this need, and since its defects are well-enough understood
and of such a nature as to cause it to be misleading only rather
rarely, the method itself should generally be acceptable; in fact
Jardine and Sibson have proposed an axiomatic framework for
cluster methods within which it is uniquely acceptable, and in
that context its defects must be viewed as those of hierarchic
classification itself. They suggest overlapping methods to
supplement single-link although these are applicable only up to
about 100 OTU’s. Fisher and van Ness (1971) have explored
just which conditions are satisfied by the various hierarchic
methods, and although they do not rule out other methods they
point out that single-link (nearest-neighbour in their termin-
ology) has many advantages. The present paper provides an
algorithm for carrying out the single-link method which
achieves the theoretical order of magnitude bounds on speed
and compactness, and the author believes this algorithm to be
superior in these respects to other general-purpose single-link
algorithms known to him which have appeared in the literature
(see Gower and Ross, 1969; Lance and Williams, 1967;
Wishart, 1969; van Rijsbergen, 1970); it enables single-link
cluster analysis to be applied on an unprecedented scale, and
also renders its application to smaller numbers of OTU’s a
trivial matter in terms of computer usage.

2. The single-link method

Following Jardine and Sibson (1971), we define a dissimilarity
coefficient (DC) to be a symmetric non-negative function
d:P x P—> % where P is the set of OTU’s, and where

30

d(a, a) = 0 for all a € P. We also define a dendrogram to be a
function c:[0, c0) — E(P), where E(P) is the set of equivalence
relations on P, and c satisfies the conditions

h < k' implies c(h) < c(h')
c(h) is eventually P x P
c(h + 8) = c(h) for all small enough § > 0

Thus a dendrogram is a nested sequence of partitions with
associated numerical levels, the partition at a high enough level
being the whole set P. A dendrogram is usually represented as
the familiar tree-diagram, but there is a great deal of freedom—
freedom which can be misused—over the order in which the
OTU’s are disposed along the baseline; this order forms no part
of the dendrogram as such. The single-link method of cluster
analysis is defined very simply as follows. Let d be the dissimi-
larity coefficient. At a fixed level & consider the graph whose
vertices are OTU’s and whose edges link just those pairs of
OTU’s of dissimilarity at most 4. Then c(/) is the equivalence
relation corresponding to the partition of P defined by the
connected components of this graph. It is very easy to check
that the c(h) defined in this way for different values of 4 do in
fact give a function ¢ which satisfies the conditions for a
dendrogram. The transformation d — ¢ so defined is the single-
link cluster method. Some authors have regarded the partition
c(h) at one level or at some small number of levels as constituting
the result of applying the method ; we shall take the more usual
and simple point of view that it is the whole dendrogram which
is the result of the method.

3. Order-of-magnitude limitations

A dendrogram on N OTU’s can have up to N — 1 distinct
splitting levels—levels at which c¢(h) changes—and so at the very
least storage of O(N) is required for a dendrogram. There are
in fact numerous ways of achieving this order-of-magnitude
bound. A DC on N objects can take up to $N(N — 1) distinct
values, and most cluster methods, in particular the single-link
method, can be affected by changes in any one of these, so a
cluster method operating on a DC will have a time-dependence
at least O(N?) because each DC value must be examined at
least once. The DC is the starting-point for cluster analysis,
but almost always it is obtained from data held separately for
each OTU. If the DC is to be held in core storage for random
access, O(N?) locations will be needed, whereas both the
original data and the dendrogram only require O(N) locations,
although if there is much data the constant may be large. Thus
wewant to avoid holding the DC in core if possible,and this is a
failing of most clustering algorithms, which require repeated
random access to the DC,for example to sort the values into
numerical order. The SLINK algorithm avoids this problem by
using the DC values a part-row at a time—at stage n random

The Computer Journal

access is needed only to values of the form d(i, n) for i < n—
and no sorting or rearrangement procedures are employed. The
storage needed for a part-row is again O(N), and so provided
the DC values can be either generated on demand in the order
2-1; 3-1, 3-2; 4-1, 4-2, 4-3; 5-1, . . . or read in this order from
an input stream or device, having been generated and written
in this order to, for example, disc store, then the core store
requirement is only O(N) for the cluster method.

4. The pointer representation

Although the characterisation as a function c:[0, c0) - E(P)
certainly captures what is meant by a dendrogram, it is clearly
not how the information would actually be kept. There are
many ways of specifying a dendrogram on N objects in about
2N function values; we shall achieve it by means of two func-
tions each defined on the set 1, ..., N. The pair of functions
will be called a pointer representation. n:1,...,N—>1,..., N
andA:1,...,N - 1,..., N = [0, oc] constitute a pointer repre-
sentation if the following conditions hold

n(N) = AMN) = ©
n(i) > i Ar(@)) > A() fori< N
We shall show that there is a natural 1-1 correspondence

between pointer representations and dendrograms. Suppose
first that ¢ is a dendrogram. Define n, A for i < N by

M) = inf {h:3j > i with (i, /) € c(h)}
n(i) = max {j:(i,) € c(A(i))}

Thus A(i) is the lowest level at which i is no longer the last object
in its cluster, and =(i) is the last object in the cluster which it
then joins; we are, of course, regarding the OTU’s in P as being
labelled by the integers 1, ..., N. It is easy to see that m, A so
defined is a pointer representation. Now suppose that we are
given a pointer representation n, A. We define a function o by
taking a(i, 4) to be the first element k in the sequence

i, n(i), n2(i), n*@@), ..., N
for which A(k) > h. Then define

c(h) = {()) : o(i, h) = a(j, h)}

It is easy to check that ¢ defined in this way is a dendrogram.
We now prove that these two transformations are mutually
inverse.

Lemma

The transformations ¢ — =, 4 and =, 1 - ¢ defined above are
mutually inverse, and so constitute a 1-1 correspondence
between dendrograms and pointer representations.

Proof
We prove that ¢ — n, A — ¢’ in fact leads back to ¢, and that
7, A= c— 7', A’ leads back to m, A. Consider first c—> 7, 4 - ¢’
By definition ¢'(h) = {i,) : 6(i, h) = o(j, h)}. Now (i, o(i, h)) €
c(h) and (j, a(j, h)) € c(h), so if (i, h) = o(j, h) we have
(@i, j) € c(h), that is, ¢'(h) = c(h). Conversely, if (i, j) € c(h) then
(a(i, h), 6(j, h)) € c(h). Suppose that these are not equal ; without
loss of generality o(i, h) < o(j, h). Then A(e(i,h) < h, a
contradiction. We deduce that c(h) = ¢’(h) and hence that
c(h) = c'(h), that is, ¢ = ¢’. Now consider n, A - ¢ - 7/, A".
A’ is defined by
A'(Q) = inf {h:3j > i with (i, j) € c(h)}
= inf {h:3j > i with 6(i, h) = a(j, h)}
But o(i, k) is such a j if one exists, so
A@) = inf {h:6(i, h) > i}
= A(i)
max {j:(i,) € e(A'()}
max {j: (i, j) € c(A(i))}

Volume 16 Number 1

Now
(i)

max {j:o(i, A(i)) = o(j, (i)}
m(a;({j:n@@) = o(j, M)}
(i

So n’, ' = =, A and the proof is complete.

5. Recursive updating of the pointer representation

Our reason for considering the pointer representation of a
dendrogram rather than any other comparably compact
representation is that the pointer representation can be updated
on the inclusion of a new OTU in a highly efficient way. We
shall use the phrase ‘the dendrogram on the first » OTU’s’ to
mean the single-link dendrogram obtained from the restriction
of the DC to the first n OTU’s; this will in general be different
from the restriction to the first » OTU’s of the single-link
dendrogram on all N OTU’s, and the latter is a construct which
we shall not use. Quantities relating to the dendrogram on the
first n OTU’s will be given subscript n, so the dendrogram is c,
and its pointer representation is x,, 4,.

For given n we define u,(i) recursively on i:

#(f) = min {d@i, n + 1), min max {u,(}), ,()}} .-

ma(j) =i

Thus p,(7) is defined for i = 1, ..., n and since
() <d@i,n+1)

and d is a (finite) DC, u,(i) is finite for all i. We then define &, A,
which we shall prove to be the pointer representation of ¢, ;,
that is, 7, 1, 4,41, as follows.

an+ 1) =n+1 An + 1) = o0
M) = min {u,(i), A,(0)} for i<n + 1
n(i) = m,(i), except that if u,(i) < A,(i) or

(1, (D)) < A,()) then =n(i) = n + 1, again
fori<n+1.

Lemma
n, A= Tnt1s }'n+l

Proof
We show first that «, A is a pointer representation. Certainly
an+1)=n+1, A(n+ 1) =00, so consider i <n + 1.
ni)=mn,(i)>ior =n+1>iif i <n, and if i = n then
U,(n) < 0o = 4,(n) so n(n) =n+ 1 > n. Thus in all cases
an)>i if i<n+ 1. If @) =n+ 1, and i <n, then
Mi) < o0 = An + 1), and if i = n then A(n) = p,(n) < 0 =
AMn + 1). If =(i) = =, (i) then p, (i) > 4,() and p, (7)) > A,()
so A(n(i)) = A(m,()) = min {p,(m,(0)), A(m, (D))} > A, (i) = Ali).
In all cases we have i < n 4 1 implies A(i) < A(n(i)). Having
established that n, A is a pointer representation, we must now
show that it in fact represents the right dendrogram.
Consider some fixed level A. The clusters for c,,, at level A
are related to those for ¢, as follows: add a one-OTU cluster
consisting just of n + 1; unite with this each cluster containing
an OTU isuch thatd(i, n + 1) < h. Define k,(i,) = {j:(i, /)e
¢,(h)}. Then we can express this process in terms of ¢ by saying
that o,,,(i, h) = o0,(i, h) unless there exists je k,(i, h) with
d(j,n + 1) < h, in which case 0,,,,(i, /) = n + 1. To establish
that n, A = 7,4, 4,4, it will be enough to show that ¢ defined
in terms of m, A has the property required of o,,,, since
clearly 7, A — o is 1-1. It is easy to see that if (i, h) # a,(i, h)
then o(i, h) = n + 1, so it is enough to check that o(i, h) =
n + 1if and only if there exists j € x,(i,) withd(j,n + 1) < A.
Now
tn(0a(i, 1) < h

if and only if

either d(o,(i, h),n + 1) < h

or for some j such that n,(j) = ,(i, h)

we have p,(j) < hand 1,(j) < A

i.e. if and only if

31

either d(o,(i, h),n + 1) < h
or for some j € k,(i, #) such that
n,(j) = o,(i; h) we have p,(j) < h
and so by an inductive argument we have

u,(0,(i, B)) < hif and only if there exists
jek,(i, h) such that d(j,n + 1) < h
Now o(i, k) = n + 1 if and only if
either n(j) = n + 1forsomej = i, m,(i), ... < 0,(i, h)
or #n(an(i’ h)) < h
But if the first of these alternatives holds, we must have
() = m(m,())) for some j = i, m,(@), . . . < 6,(i, b)
or () = wj) for some j = i, m,(i), ... < o,(i, h)
and since for such a j4,(j) < A, this implies that for some
j € k,(i, h) we have p,(j) < h and hence p,(a,(, b)) < h. Thus
the first alternative implies the second, and
o(i,h)=n+1
if and only if p,(0,(, b)) < h.
if and only if there exists j € x,(i, k)
withd(j,n+ 1) < h
ifand only if 6, 1(i, /) =n + 1
and this completes the proof.

If we start with 7,, A;, which must be given by =,(1) = 1,
A,(1) = oo, then after N — 1 steps of the above recursive
process, we shall obtain 7y, Ay which is the pointer represen-
tation of the single-link dendrogram on the whole set P = 1,
..o N

6. The SLINK algorithm

The SLINK algorithm is simply a convenient way of carrying
out the recursive process computationally. Three arrays of
dimension N are used, and we shall denote them by II, A, M.
Suppose that IT, A contain m,, 4, in their first n locations. Then
the SLINK algorithm overwrites these to place 7, 1, 4,4 in
the first n + 1 locations as follows:

1.SetII(n +) ton + 1, A(n + 1) to o
2.Set M()tod(i,n + 1)fori=1,...,n
3. For i increasing from 1 to n
if AG) = M(i)
set M(I1(i)) to min {M(I1(i)), A(i)}
set A(i) to M(i)
set II(i)ton + 1
if A() < M(i)
set M(I1(i)) to min {M(I1(i)), M(i)}
4. For i increasing from 1 to n
if A() = A1)
set (i)ton + 1
The total space needed for this process, assuming that the DC
values are available in the correct order, is clearly O(N)—in
fact 3N plus overheads—and the number of operations needed
to find my, Ay is O(N?), so, as claimed, the SLINK algorithm
constructs a representation of the single-link dendrogram in a
way which is optimally efficient in order-of-magnitude terms.
It is also clear that the amount of work done for each dissimi-
larity value is verysmall: generate or read it and load it into M ;
check it against the value in A and adjust values accordingly;
check A entries against one another. It seems unlikely that this
scheme of operations can be substantially reduced, and so it is
unlikely that any other algorithm can improve much on the
constant multiplying N2 in any given language/machine context.

7. Classifiability -
Jardine and Sibson (1971) suggest the use of the quantity

4, = ¥ (dGJj) = d*(i,j))/igj d@,J)

i<j

as a measure of classifiability, where d*(i, j) is the ultrametric
DC corresponding to the single-link dendrogram ¢ and is

32

defined by

d*(i,j) = inf {h:(i, j) € c(h)} .
The smaller 4, is, the more amenable to single-link classi-
fication the data is. The calculation of 4; can readily be

incorporated into an implementation of the SLINK algorithm,
and this is recommended.

8. Presentation of results

The user of a cluster method may reasonably expect to be
provided with output in a form which he can readily appreciate,
and this will usually take the form of numerical output from
which a tree-diagram can easily be drawn, possibly accom-
panied by the tree-diagram itself, either drawn on a plotter or
approximated on a line-printer. For most purposes the latter
is adequate. The pointer representation of a dendrogram is not
particularly helpful from the user’s point of view, and it is
desirable to convert it into another representation called the
packed representation for output. The packed representation
consists of two functions 7, v defined as follows.

V(i) = A(x(d))
1 Y(n(z())) > iif i < n, and
v(j) < v@) if i < j < v (n(e(@))
This in fact characterises the dendrogram uniquely, and it is not
difficult to convert the pointer representation to the packed
representation, the conversion taking time O(N?) with a very
small coefficient for N2. It is convenient to provide an extra
array of dimension N to facilitate the conversion, so the total
store size is 4N plus overheads. The packed form represen-
tation is a numerically coded form of a tree-diagram, which may
be constructed from it as follows: in positions 1, . .., N along
the baseline insert OTU numbers, the number in position i
being t(i); above this draw a vertical to height v(i) above the
baseline ; when all verticals have been drawn, draw a horizontal
to the right (that is, in the direction of increasing position
number) until it meets another vertical. This will give a tree-
diagram representing the dendrogram, but with all vertical
stems displaced to the extreme right of the clusters which they
represent. This form of tree-diagram can be produced extremely
easily from the packed form output on a line-printer, and this is

- normally to be recommended. If a more conventional form of

tree-diagram is wanted, then either a more elaborate computer
graphics technique can be used, or the dendrogram can simply
be re-drawn by hand; this is easy because the OTU’s are
presented by the packed representation in a suitable order for a
tree-diagram to be drawn on them.

Appendix
A FORTRAN SLINK PROGRAM

The program given here calculates the single-link dendrogram
from a DC read in value-by-value from an input stream. Much
of the main subroutine is special to this case, but the sub-
programs called from it are quite general and have been separ-
ated out to allow them to be used in calling programs designed,
for example, to work with an internally generated DC. The
calling program for the subroutine SLINK must declare NA,
NB as integer arrays and HA, HB as real arrays, all singly
subscripted and of the same dimension, and must set NMXOBJ
to their dimension and TOP to a large positive real value such
that TOP-1.0 is larger then every DC value. It must also set
the stream numbers NRDATA, NWRECD, NPDEND as
appropriate. Subroutine RCLOCK should be provided to set T
to the time in seconds (data type REAL) from some appro-
priate point in the calling program. Experience with this pro-
gram shows that it spends almost all its time reading DC values,
and this emphasises the desirability of using internally gener-
ated DC values, or at least of avoiding the FORTRAN I/O
package, for any substantial number of OTU’s. The time taken

The Computer Journal

by the main part of the program excluding the reading or
generation of DC values is, on Cambridge University Computer
Laboratory TITAN, approximately 100 seconds for N = 1,000,

and increases as N2.

1 [
2 c
3 c PORTRAN SLINK ee3 CREATED 15/12/71
4 c
L c
[c Calling program Sets stream nurpers, value of TOP (infinity)
7 c and value of NMX08J (dimension of arrays),
8 [+
9 SUBROUTINE SLINK(NA,NB,HA,HKB,NKMXOBJ,TOP,NRDATA,NWRECD,NPDEND)
1e DIMENSION NA(NMXIBJ),NB(NMXOBJ),HA(NMXOBJ),HB(NMXOBJ) ,REP(2),
11 1 ' TITLE(6))
12 DLTA AD,AS,AW/1HD,1HS,1HW/
13 c .
14 c Pead reference code, number of objects (0OTUsS), type (S for
15 c similarities, otherwise dissimilarities) and mode (W for whole
16 c matrix, D £or subdisgonal with diagonal, otherwise strictly
17 [+ subdiagonal),
18 c
19 READ (NRDATA,9€01) REF(1),REF(2),NOBJ,ATYPE,AHODE
29 c
21 c Check that numper of objects 18 within range, that type is not 8,
22 c and that mode is not W or D,
23 c
24 I¥(XDORJ,LT,2,0R,NOBJ,GT,NNXOBJ) STOP 1
25 IP(ATYPE,EQ,AS) STIP 2
26 1F(AMODE,EQ, AW ,OR,AKODE,EQ,AD) STOP 3
27 c
28 c Initialise for one object,
29 c
e HHIS3 = @
31 S1ZE = ¢,8
32 A1) =)
3 HA(1) = TOP
34 c
35 c For each of the remaining objects set NA(I) to I and HA(I
36 c to 70P, and read the current parterow into HB,
37 c
a8 PO 1 I = 2,80BJ
39 1) = 1=-)
40 Rr(1) = 1
41 HA(I) = TOP
42 READ (KRDARTA,9002) (HR(J), J = 1,I1)
43 c
44 c Check for xissina DC values, signalled by negative entry, and
45 o replace thea by TOP-1,6, Update NXISS, the number of missing
46 [DC values, and SIZE, the sum of the DC values,
47 c
48 DO 2 J = 1,11
49 IF(HB(J)) 3,272
50 3 HE(J) = TOP~1,0
51 NMISS = NMI3S+1
52 2 SIZE = SIZE+HB(J)
53 c
54 c SLINK1 is a subroutine which carries out the rest of the SLINK
55 c Aldorithn to produce the pointer represeptation of the complete
56 c dendarogras in NA and Ha,
57 c
58 1 CALL SLINKL(NA,HA,HB,I11,NMXOBJ)
c
i; c SLINK2 is a subroutine which converts the pointer representation
61 c into the packed representation by a chain-building method,
62 c
63 CALL SLINK2(NMA,NB,HA,HB,NOBJ,NMXOBJ)
c .
:; c Object labe)s are read into HB and finally a title for the DC
66 c is read, STALE is calculated as the largest value in HA, and
67 c the packed representation and other information is written to a
68 [+ printer-type strcanm,
69 c
7e DO 4 I =),NOBJ
7 J = NB(I)
72 4 READ(NRDATA,9€03) HB(J)
73 READ (NRDATA,9084) (TITLE(J), J = 1,6)
74 ¥RITE (NWRECD,9005) (TITLE(J), J = 1,6),REF(1),REF(2),NOBJ
5 SCALE = 0,9 .
76 po s I s },NOBJ
77 IF(HA(I)=TOP+1,2) 6,7,7
e L] SCALE = AMAX1(SCALE,HA(I))
79 WKITE(NWRECD,9006) HB(I), HA(I)
89 GOTO 3
el ? WRITE (NWRECD,9007) HB(I)
82 S CONTINUE .
c
:: c 1f there is missing data this is reported, otherwise the value
8s [of DELTA-ONE-HAT is calculated using the function SLINK3,
86 c which returns the sum of the values of the ultrametric DC
87 c corresponding to the dendrogram,
es [
89 IP(NM1ISS) 999,8,9
9e s NPAIR = NOBJ#(NOBJ=-1)/2
91 WRITE(NWRECD,9008) NMISS,NPAIR
92 G0TO 10 .
93 8 DELHAT = (SIZE=SLINK3(NA,HA,NOBJ,NMXOBJ))/SIZE
94 WRITE(NWRECD,9003) DELHAT
95 1¢ DO 11 1 = 1,NDBJ .
96 IF(HA(1)=TOP+1,0) 11,12,12
97 12 HA(I) = =1,0
98 11 CONTIHUE
99 ¢ .
198 c The packed representation is written to a punch-type stream
181 c and finally the runtice in seconds is calculated,
92 c B
:oa WRITE(NPDEND,9018) REF(1),NOBJ,SCALE, ((HB(I),HA(I)), I = 1,NOBJ)
104 WRITE (NPDEND,%004) (TITLE(J), J = 1,6)
185 CALL RCLICK(T)
106 WRITE (NWRECD,9011) T
107 RETURN
108 c
109 c Duzmy label,
References

112

123
124
125
126
127
128
129
139
131
132
133
134
135
136
137
138
139
143
141
142
143
134
145
148
147
148
149
159
151
152
153
154
155
156
157
158
159
162
151
162
163
164
165
166
167
168
169
179
171
172
173
174
175
176
177
178
179
183
181
182
183
184

‘185

186
187
198
189
190
191
192
193
194
195
196
197
198
199
299
291
202
203
204
205

206 .
‘227

225

c
999

naa

9eal
9032
9ee3
96c4
9e¢5
1
2
9eé6
9es7
9es8
9ea9
9Jel1e
9011

oaa

« o

aoan

10

1

12

13

14

999

ooa

-«

STIP @

FORMAT statenents,

.FORMAT (4X,2A4/15,2A1)

FORMAT(P10,4)

PORMAT (A 4)

FGRMAT (3A4/3A4)

FURAMAT(1H1//116, 34HPORTRAN SLINK 003 CREATED 15/12/71//1He,
6HDC IS ,6A4/1He,18HREFERENCE ,2A4/1He,3HON ,14,3H OBJECTS//
1H2,25HDENDROGRAN IN PACKED FORM/1Ke,l14HOBJECT LEVEL/)

PORMAT (1H ,1X,A4,1X,F10,4)

PORMAT(1R ,1X,A4,6X,1H=)

FCRMAY (/1H2,12,26H DC VALUES MISSING OUT OF ,18)

.FORMAT(/1H2,17HDELTA=ONE=HAT IS ,F6,4)

FGRMAT(4HDATA,A4,4H2222/15,1X,F10,4/(A4,1X,F10,4))
FORMAT(/1H3,11HJI3 RAN IN ,P7,2,54 SECS)
END

SUBROUTINE SLINK1(NA,HA,H3,I1,NMXOBJ)
DIMERSION WA (MHMXIBJ),HA(NMXOBJ),HB(NMXOBJ)
D01 J = 1,11

NEXT = HA(J)

IF(HA(J)=HB(J)) 2,3,3

B = HB(J)

IF(HE(NEXT)=H) 1,1,4

H o= H)(J)

NA(J) = 1141

HA(J) = HB(J)

IF(HB(NEXT)=H) 1,1,4

ER(NEXT) = H

CONTINUE

DOS J = 1,1l

NEXT = NA(J)

IF(HA(J) =HA(NEXT)) 5,6

NE(J) = Il+1 ’

CCNTINVE

RETURN

END

SUBRJUTINE SLINK2(NA,NB,HA,HB,NOBJ,NMXOBJ)
DIMENSION NA(MNMXIBJ),NB(NMXOBJ),HA (KMXOBJ) ,HB (NMXOBJ)
NB(HJ3J) = NIDJ

DO 1 N = 2,80BJ

H = HA(NIBJ+1=N)

REXT = KIBJ

NOW = NEXT

NEXT = NB(NOW)

IF (H=HAINEXT)) 3,2,2

NE(NOW) = NOBJ+1eN

NB(NO3J+1~N) = NEXT

NEXT = NB(NCBJ)

NGW = NEXT

N = NA(RIW)

IF(NB(NOW)) 5,999,6

NEXT = NB(NOW)
IF(NB(H)) 7,999,8
NB(NOW) = NB(N)

NB(N) = =NOW

IF (NEXT=NOBJ) 4,11,999
NOSE = ~NB(N)

NB(NOW) = NB(NOSE
NB(N) = NOW

NA(NOW) = NOSE
IF(NEXT=NOBJ) 4,11,999
NOSE = «NB(NOW)

NEXT = NB(NOSE)
IP(NB(N)) 9,999,160

NB (NOSFE) = HB(N)

NE(N) = =NOSE
IP(NEXT~NOBJ) 4,11,999
NA(NOW) = =NB(N)

NB(N) = -NOSE

N = NA(NOW)

NB(NOSE) = NR(N)
IF(NEXT=NOBJ) 4,11,999
NEXT = =~NB(NOJDJ)

DO 12 N = },NOBJ
HB(N) = HA(N)

NB(N) = NEXT

NEXT = NA(NEXT)

DO 13 N =)},NOBJ

NOW = NB(N)

NA(N) = NOW

HA(N) = HB(NOW)

DO 14 N =) ,NOBY

NOW = NA(N)

NB(NOW) = N

RETURN

STIP @

END

‘FUNCTION SLINK3(NA,HA,NOBJ,NMXOBJ)
DIMZIISION NA(UMXIBJ),HA(NNXOBJ)
NOBJ] = NGBJ-1

SLINK3 = e.@

DO 1 I = },NOBJL

DU 2 J = 1,1

Nl = [e1=J .
IFP(HA(N1)=HA(I)) 2,2,)3

CONTINUE

Nl = @

I1 = 141

DO 4 J = I1,NOBY

IP(HA(J) =HA(I)) 4,1,1

CONTINUE

SLINK) = SLINK34FLOAT((I=N1)#(JeI))*HA(I)
RETURN

END

FISHER, L., and VAN NEss, J. W. (1971). Admissible clustering procedures, Biometrika, Vol. 58, pp. 91-104.

FLOREK, K., LUKASZEWICZ, J., PERKAL, J., STEINHAUS, H., and ZUBRZYCK], S. (1951a).

FLorek, K., LUKASZEWICZ, J., PERKAL, J., STEINHAUS, H., and ZUBRZYCKI, S. (1951b).

fini, Colloguium Math., Vol. 2, pp. 282-285.

pp. 93-207 (in Polish with English summary).
GOWER, J. C., and Ross, G. J. S. (1969). Minimum spanning trees and single-linkage cluster analysis, Appl. Statist., Vol. 18, pp. 54-64.

Volume 16 Number 1

2

Sur la liaison et la division des points d’un ensemble

Taksonomia Wroclawska, Przegl. antrop., Vol. 17,

33

JARDINE, N, and SiBsoN, R. (1971). Mathematical Taxonomy, J. Wiley and Sons Ltd., London and New York.
Lance, G. N., and WiLLiams, W. T. (1967). A general theory of classificatory sorting strategies, I. Hierarchical Systems, The Computer

Journal, Vol. 9, pp. 373-380.
McQuitry, L. L. (1957).
Measmt., Vol. 17, pp. 207-222.

Elementary linkage analysis for isolating orthogonal and oblique types and typal relevancies, Educ. Psychol.

SNEATH, P. H. A. (1957). The application of computers to taxonomy, J. gen. Microbiol. Vol. 17, pp. 201-226.
VAN RUSBERGEN, C. J. (1970). A fast hierarchic clustering algorithm. The Computer Journal, Vol. 13, pp. 324-326.
WIisHART, D. (1969). An algorithm for hierarchical classifications, Biometrics, Vol. 25, pp. 165-170.

Book review

Understanding Natural Language, by Terry Winograd, 1972;
195 pages. (Edinburgh University Press, £4-00)

This is a reprint in book form of an article that recently filled an
entire issue of the journal Cognitive Psychology.

Mr Winograd is to be congratulated on a most impressive piece of
work. He has an imaginary robot called SHRDLU (I did not find
any explanation of this name) which operates on a ‘world’ consisting
of five cuboids of various shapes, colours and sizes, three pyramids
and a box, all sitting on a table top. This ‘world’ does not in fact
exist, but can be seen on a television screen. The robot has an arm
that can lift these objects, move them elsewhere within the limits of
the table top, and set them down again.

The robot can be asked questions, and be given instructions to
perform removal and building operations. The book includes a
fairly long example to demonstrate the sort of conversation and
operations that are possible. While this example looks remarkable,
one is not told what one would really like to know, namely
1. are all the author’s conversations with the machine as good as
this, or was the best one picked for the book ?

2. what happens when someone other than the author gives the
instructions ?

3. what happens if the user, while using correc t English, is deliberately
perverse in trying to fool the machine?

The discussion of disentangling the syntax of English in general,
and also trying to take the meaning into account within the limited

world of SHRDLU’s experience, is detailed and thoughtful. Yet
many questions and difficulties arise that the book does not discuss
at all.

Two examples must suffice:

In a section on ‘Analysis of Word Endings’ it is shown how, given
a word that is not in the dictionary, it may be modified to try for
a more basic word. If you use the word ‘babies’ it will correctly
try ‘baby’, but the flow-diagram given will also try ‘ty’ if ‘ties’ is not
in the dictionary, without thinking of trying ‘tie’.

In describing the definition facility it is said that if we say ‘A“marb”
is a red block which is behind a box’, the system recognises that we
are defining a new word If we then talk about ‘two big marbs’,
the system will build a description exactly like the one for ‘two big
red blocks which are behind a box’.

This seems to lead us to the situation that if we define a train as
‘an engine pulling a set of coaches’ then two long trains must be
‘two long engines pulling a set of coaches’.

But I do not wish to be too critical in face of such a fine effort.
I admire not only the programming, but also the excellent work that
has gone into producing such an informative and readable book.
What a pity that it should have been given a front cover of so
juvenile an appearance.

I. D. HiLL (London)

[Note: SHRDLU is the top line of characters on a linotype machine,
corresponding to QWERTYUIOP on a typewriter.

Book Review Editor]

The Computer Journal

